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NOMENCLATURE

c heat con tent
0 hydra ulic conductivity of unsaturated water

0~ soil constan t introduced In (16)
Si thickness of the Ice lens
L latent heat
p pressure
q defined by (39)
r defined by (39)
S entropy
T temper atu re
t time

U,5 (~) defined in (19)
u x exp (~l4’), defined at (17)
V volume
v flux of water

W degree of saturation by movable water
w surcharge on the ice lens, i.e. frost .heaving pressure 

0

x space coordinate
a therm al diffusivity

e~ thermal diffusivity of water -saturated soil

~ soil constant Introduced in (16)
9. (E) defined in (42)

~ thermal conductivity
a~~ thermal conductivity of water-saturated soil

~~ soil constant Intr oduced in (40)

~s constant introduced in (7) and formulated in (31)
v soil constant introduced In (55)

~ var iable defined by (20)
p density

y volume occupied by both soil particles and unmovable water In a unit volume of the
soil mass

0 Subscr ipts
A air

I Iniltu freezing
i Ice
S segregation freezing

0 

w water
1 the first lay.r ln Flgure 3, I.e. the lce lens

s soil

2 th. second layer in Figure 3, 1.. the unfrozen soil
iv 
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- I

SEGREGATION-FREEZING AS THE CAUSE OF
SUCTION FORCE FOR ICE LENS FORMATION

Shunsu ke Takagi ari d Sutherland and Gaskin (1973) showed that the
pr essure required to stop ice lens growth was larger
than the pressu re predicted by capillary theory. Their

INTRODUCTION experiments wer e kinematic. We may interpret these
studies as indic ating that the freezing of pore water is

The most enigmatic problem in the theory of frost not a static effect caused by the capillary pressure but
heaving is the genera tion of the suction force that is a kinematic effect caused by the simultaneou s flowsdraws pore water up to the freezing interfa ce of a of heat and water.
growing ice lens, increasing its thick ness despite the We have developed a concept suitable for describingpressure exerted by the overlyin g burden of the the ice lens formation by using the theory of simul-frozen soil and surface load (see cover for photog raph taneous flows of heat and water (Ta kagi 1959, 1963,of ice lens). Most of the current lite ratu re on frost 1965, 1970, 1974, 1975, 1977), which is systematizedheaving exp lains the suction by use of the Laplace and stated in thi s report.
equation in capill ary theory , which gives the pressure
difference across a curved meniscus boundary of two
different materi als. However , cap illary theory is not SEGREGATION FREEZINGyet proven to be valid on the fr eezing meniscus of
pore wate r . We shal l introduce segregation freezing as the agentIn the case of a capillary tube containing air and for creating suction force to draw water to the freezingwater separated by a meniscus , the molecules corn- front and exerting frost-heaving pressure to the over-posing the meniscus are stationary, and the Laplace lying burden .
equation gives the pressure difference acr oss the Corte (1962) observed that ice growing upward canmeniscus. The molecules composing a freezing menis- carry soil partic les floating on the surfa ce (Fig. 1). Thecus, however, are constantly rene wed; theory does explanation of the floating of a soil particle on anot yet prove whether the Laplace equation is valid heaving ice surface is possible only by assuming that ,or not on such a meniscus. We have found experi - betwe en the surfaces of the par ticle and the ice, theremental evidence indicati ng that the Lapl ace equation exists a thin layer of unfrozen water whose molecules

0 is valid on a static ice/water meniscus where molecules are constantly rep lenished during the heaving by theare stationary , but not on a fr eezing meniscus where
molecules are renewe d.

In their definit ive theoretical work in this field , _____________________
Everett and Hayn es (1965) caution that th eir theory
of ice stress derived by app ly ing capill ary theory on
ice/water menisci may fail when kinematic effects ~ Ponlcis //predomin ate . Koopmans and Miller (1966) measured _____

the capillary potent ial of the ice/water meniscus and —

showed that the resul ting curve coincided with the I
soil moisture characte ristics , if they substitu ted the
ice/wate r interfac ial tension with the air/water inter- 

_____________________ 0facial tension. They took 24 hours to get one point
of data . Their experiment shows that capillary theory Figure 1. A p ar ticle f loating
applies on the stat ic ice/water interface . Penner (1967) on the heaving ice surf ace. 
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Let us consider an ice lens resting on soil particles,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
as shown in Figure 2. If the uppermost part of the thin

A 
water layer freezes, water must be sucked in from the

~~~~~ rhm ~ose~ layer ‘~~_M~~/ Th~ ~~~ ~_,_ 
neighboring reservoir to recover the original thickness

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
of the thin water layer. Then, if the soil particles stay

~jc ~~~~~~~~~ at the same position during e freezing process, the
( ~~~~ ~*~~

• ••• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ / surface DD rises by the thickness of the frozen portion.
, — — — —— - —“ 

~~
— — — This is our explanation of frost heaving. According to

our concept, therefore, an ice lens grows on soil parti.
FlOW of d es.

por Stress in the th in water layer that sustains the weight
FIgure 2 Ice lens forming on the thin water layer, of the ice lens plus any surcharge on it acts in the water

layer as if the water were solid. However, to calculate
the fr eezing temperature of the thin water layer , i.e.

influx of water from the adjacent reservoir into the the segregation freezing temperature , the simpler
freezing front . In other words, we should recognize thermodynamic state of the pore water underly ing the
that, adsorbed or absorbed between the particle and ice meniscus BMA may be considered instead of the
the ice, there exists a heterogeneous layer of water complicated thermodynamic state of the thin water
whose “thickness” is maintained at a certai n constant layer under the flat ice surf ace AB, because we may
value du r ing the freezing process. It should be stated , assume they are equithermal.
however, that theoretical physics cannot yet explain The pore water underlying the ice meniscu s BMA
the water of this nature and we are quite ignorant of and the ice lens overlying BMA are, in turn , equithermal,
its pro per ties. but not in mechanical equilibrium. The weight of the

I n Figures 1 and 2, soil particles are represented by ice lens is not supported by the pore water, but by the
a rectangular shape , because the thickness of the thin water layers and the soil particles underlying the
heterogeneous layer is clearly shown in this form. In layers. The stress of the ice lens, therefore, is inde-
the case of an actual more complicated shape, the pendent of the pore water pressure. In soil mechanics
conceptual correction of “thickness ” can be made terminology , the pore water pressure is neutral to
easily, mechanical effects , but the stresses of the thin water

The freezing of a thin water layer generates suction layers and the soil particles are effective. They belong
that draws water, as shown in Figure 1, from the sur- to different categories in terms of mechanical effects
rounding reservoir. The freezing of water that gen. (Terzaghi 1942).
cra tes suction will be called segregation freezing. In For simpler treatment we replace the ice stress with
this case the heterogeneous water adsorbed or absorbed the ice pressure P1. Then we can describe the thermo-
between the particle and the ice freezes. In contrast, dynamic equilibrium between the ice lens and the pore
the freezing of homogeneous free pore water will be water by use of a formula of classical thermodynamics:
called In-situ f reezing. This freezing mechanism does
not generate suction; i.e. the in-situ freezing front V~~ dP,,, — S~ dT = V1 dP, — S1 dT (1)
advances with the progress of the freezing.

In in-situ freezing, the ice pressure and the water where V is the specific volume , S the specific entropy ,
pressure may not necessarily be equal , but mechanical P the pressure, and T the temperature. The suffixes w
equilibrium is established between ice and water. Ice and i refer to water and ice, respectively. Note that P1
and water are also equithermal ; i.e. they are in thermal and 

~~~~ 
may not necessarily be equal in this equation.

equilibriu m. Therefore, the equilibrium of in-situ (See Takagi (1965) for a treatment dealing with the
free zing is twofold. In the case of segregation freezing, tensorial ice stress.)
however, thermal equilibrium is established , but as The meaning of the variations denoted by the total
shown below, mechanical equilibrium is not. Only one differentials in this equation must be clarified . We
type of equilibrium is present in this case. choose the datum state (I.e. the starting point of the

The in-situ freezing temperature is determined by variation) to be the state of in.situ freezing. The tern-
the condition that the three phases ice, water, and perature at the datum state, therefore, is the in-situ
vapor — are in thermodynamic equilibrium (Takagi freezing temperature T1. We raise the pressure of the
1959). The segregation freezing temperature is deter~ ice at the datu m state by
mined, as shown in the following, by the two-phase
equilibrium. dP1 = w + p 1h (2)

2

_ _ _

- — 



where w is the sur charge overlyi ng the ice lens, h the value of the ice stress in the segregation freezing, in the
thickness of the ice lens, and p1 the density of ice. same sense as the overall representative ice stress in the
We do not change the pressure of the pore water: in-situ freezing is interpreted (Takagi 1959) to be

atmospheric. Obvi ously, the stress of the ice forming
dP

~ = 0. (3) inside a pore of soil is higher than atmospheric pressure
by the amount of the capillary pressure caused by the

We assume that the soil column underl yi ng the soil curved ice surface. The formula of the in-situ freezing
particles is incompressible, so that no disturbance can temperature, derived by assuming the ice pressure to be
int rude into the system during the proposed pressu re equal to atmospheric pressure is, however, confirmed
inc rease. During the process, we maintain the thermo- experimentally (Schofield 1935, Williams 1964, Low et
dynamic equilibrium between the pore water and the at. 1968). Atmospheric ice pressure, therefore, may be- - ice lens by keeping (1) valid , but leave the tempera- the overall representative value of the internal stress of
tu re free to change. Note that w + p 11, is the surcharge the ice freezing in-situ , and choosing atmospheric pressure
on the ice at the freezing front, which may be inter- is probably a convenient way of avoiding the variabili ty
pre ted, if frost heave actually takes place, to be the of the internal ice pressure in in-situ freezing. Choosilig
frost-heaving pressure , the ice stress expressed by the righ t-hand side of (2)

Thus we can reach the final stage of the formula . in the formulation of the segregation freezing tempera-
tion. We find T5 the segregation-freezing temperature ture should therefore be interpreted in the same sense

as choosing the atmospheric ice pressure in the formula-
T5 = T1 [1 — (w + pj h) / (p 1L ) ]  (4) tion of the in-situ freezing temperature.

by letti ng dT = T~ — T1 and S1 = L/Ti in (1), where
T1 is the in-situ freezing temperature and L the latent ANALYSIS
heat. Therefore, T~ is always less than T1, the differ-
ence being determined by the ice pressure increment , We shal l use (4) of segregation freezing temperature
i.e. the frost-heaving pressure. as one of the boundary conditions of the simultaneous

If we consider that the stress in the ice lens is deter- flows of heat and water to analyze the formation of a
mined by the configuration of the ice surface, the sing le ice lens. We shai i make the physical !ystem as
stress is not necessarily uniform in the ice lens. The simple as possible to keep the analysis feasible.
nonu niform stre~c caused by the capillary force is con. We assume the unfrozen soil underlying the ice lens
sidered by Everett and Haynes (1965). The difference to be incompressible under the action of the surcharge
of the capilla ry forces between the top and bottom and , moreover , under the action of the fl ows of heat
menisci is considered by Loch and Mille r (1975) to and water . At present this assumption is needed be-
explain the cause of the flow of ice molecules in the cause the currently available water flow equations do
growing ice lens. However , the capillary force does not include volume change caused by absorption and
not seem to be directly related to the crystal growth. depletion of water. Also, we do not yet know the con-

I n supercooled water, ice crystals grow with sharp Stitutive equations of soils to describe the deformation
edges (Hobbs 1974 , Glen 1974) and frequently form due to surcharge and water content variations. Unifi-dendrites. They grow against the chemical potential cation of hydraulics and mechanics still seems to be agradient in the solid; their growth rate is determined remote goal. The assumption of incompressibility
by the heat transfer and the availability of the growth obviates these difficulties . Furthermore, this assumptionmaterial in the liquid. When the water temperature simplifie s the analysis, becaus - the segregation freezingis very close to the ice temperature, however, ice grows front overlying an incompressible unfrozen soil layer
into the water forming a smooth ice surface (Glen stays at the initial level until in-situ freezing replaces the
1974). The growth rate in this case is still determined , ongoing segregation freezing,
we believe, by the heat transfer and the availability of In this system the freezing front starts to descendthe growth material in the liqui d , although we could when in-situ freezing begins. The selection rule, statingnot find any reference that clearly states this. The ice which of the two processes should start, emerges at the
stre ss caused by the ice/water menisci does not seem end of the anal ysis.
to be a cause of crystal growth . We assume that segregation freezing takes place at theWe showed (Takagi 1965) that the ice stress given ground surface. Then , we may not consider the compli.
on the right-hand side of (2) is the normal stress com- cated flow of unfrozen water in the frozen region. Inponent in the vertical direction. This normal stress fac t, we are going to analyze the frost needle formationmay be interpreted to be the overall representative on the ground surface.

3
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Surcharge w

According to the present theory, frost needles grow I I I I I I I I I
on soil particles. Pore water between soil particles may 

, ,),),, ~},,èJ,) ~~~~ a . -h (t )
or may not freeze, because T5 ~ T~. In this analysis,
we disregard the individuality of the frost needles (as c ens h ( t )

seen on the cover) and suppose that the ice lens forma 

-

______________________

tion and heat and water flows are uniform in the hori-
zontal direction. In other words, we suppose that the UrIrezSfl soil
flows are one-dimension al in the vertica l direction. The i
aim of this analysis is not the formulation of actuality
but the clarifying of the implication of our assumptions.

We will analyze only for the limit of t  -~ 0. For FIgure 3. AnalysIs of Ice lens f ormation.
t -~ 0, we can line arize the highly nonlinear equations
of simultaneous flows of heat and water , and can solve
them analytically. Finally , we shall use the energy balance equations

Before entering into the details of the analysis, it is at the segregation freezing front. We substitute the ice
appropriate to give an overview of the analysis, lens growth rate dh/dt and the two temperature gradient

First, we shall solve the heat conduction in the equations previously formulated at both sides of the
nascent ice layer by Portnov ’s (1962) method , of which freezi ng front into the energy balance equation. Then ,
the essence is given in Appendix A. The boundary we can find surcharge w, i.e. the frost-heaving pressure,
temperature conditions are the step-change air tem~ in terms of the air temperature TA and the boundary
perature TA at the upper side of the ice lens AA in water content value W(0,0).
Figure 3, where x = — h(t) and the segregation freezing The selection rule is given by the expression of w.
temperature T~ 

at its lower side SS, where x = 0. This If the frost-heaving pressure w is zero or positive,
solution enables us to express the temperature gradient segregation-freezing begins. If the frost-heaving pres-
at 55 as a function of TA and 7’s. sure is negative, in-situ freezing begins. Soil data in

Second, we shall solve the unsatu rated water flow in this calculation were collected from many sources, and
the unfrozen region; i.e. we shal l determine the water the soils were not incompressible; however , the result
content W(x ,t). The boundary condition atx = 0 is is deemed reasonable.
that the water content atx = 0 suddenly drops to a
certain unknown value W(0,0) at the outset of the ice Heat conduction in the nascent ice layer
lens formation. We assign an arbitrary number W(0 ,0) The ice lens is lifted as a whole at the rate of dh/dt.
to the boundary value at x = 0 and t = 0. The initial Applying the theory of heat conduction in a moving
condition is that W(x ,0) = constant for 0 < x < e~, medium (Carslaw and Jaeger 1959), we have the dif-
The boundary condition at x = is that W(ao,t) = ferential equation of the temperature T1 of the growing
constant. These two constants must obviously be ice lens:
equal to each other. The solution of this problem en-

• ables us to calculate the flux of water entering the ôT 1 dh a~ 1 — a2 r 1 5freezing front. All this water becomes ice to form frost ~~~~~~~ 

— di~ ~~~~~

‘ — 
~~

needles; thus, we can calculate the ice lens growth rate
dh/ dt. where 

~ 
is the thermal diffusivity of ice. Let

Th ird , we shall solve the equation of the double
heat transfer , convected by the water flow and con- z = x + h(t)
ducted through the soil mass, by using the segregation
freezing temperature given by (4) as one of the and then (5) becomes
boundary conditions. We evaluate the thermal con-
ductivity and heat content in the duplicate heat trans- 8T1 — 

a2 r 1
fer equation by use of the water content distribution — 

~~~

W(x,t) found above. The solution of the duplicate
heat tra nsfer enables us to calculate the temperature where 0 ~ z < h(t). The solution of this problem by
gradient at the segregation freezing front as a function using Portnov’s (1962) method is shown in Appendix
of the surcharge w and the boundary water content A.

- 

- 

value W(0,0).

4
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To consider the limit oft .-p 0, we take only the first water exists in the pore , and 0(W) is the hydraulic
(ie. n = 0) terms in (A6) and (A8) in Appendix A, and conductivit y of unsaturated waler flow as a function
approximate them by of W. We believe the degree of saturation is more con-

venient for mathematical analysis than the water con-
T (x t) = a + b erfc [x + h(t) 1 (6) tent conventionally used in soil engineering. The cross-

1 ‘ I 2y’&i J effect of the temperature gradient on the water flow
may not be included in (14), because our interest is in

and the flow of liquid water , not in the flow of water vapor
(Philip and DeVries, 1957). A question , “What will

h(t) = 2p~.J&ji, (7) happen if air is unavailable to the frost-heaving system?”
is di scussed in Appendix B.

where a, b, and p are unkno wn constants. To deter- The flux v(x,t) of liquid water is given as
mine a and b, we use the conditions:

v(x ,t) = (1 — x5) 0(W) (aW/ax) (15)
T1(0 ,z) = T5 (8)

where x.5 is the volume occupied by both soil particles
and and unmovab le water in a unit volume of the soil mass.

The volume of movable water in the unit volume is
T1 (— h(t),t) = TA, (9) (1 — ~5)W . We have formulated v(x,t) in (15) to be

positive in the upward direction.
where TA is the ai r temperature on the ice/air inter- We assume the diffusion coefficient 0(W ) in (14),
face A A. Considering that following Gardner (1958a , 1959), to be

h(0) = 0, (10) 0(W) = D~ exp(j3 W) (16)

we denote the value of T5 at h = 0 by where D~ and 13 are constants . However , this form of
0(W) is inadequate , because it does not become constant

T5(0) = T1 (1 — w((p 1L3I. (11) in the neighborhood of W = I as required by Darcy flow
(i.e. the water flow saturating pores). A few years after

we have the analysis presented here was finished , we found
another formula (Gardner 1 958b) that satisfies this re-

— 
T5 (0) — TA erfc ~ ‘12’ 

quirement. This analysis was not revised, however, be-
0 — erfp ‘ cause we believe that this defect in our data of water con-

tent is tolerable , as will be shown in the numerical
and analysis section. A more realistic analysis should be

attempted when the ri gid soil frost-heaving test will be-

b — 
T
* 

— T5(0) ‘13’ 
come available.

erf p - k Use of u defined by

The constant p will be given at the end of the next u = exp (flW) (1 7)
section.

simplifies eq 14, where 0(W) is given by (16), to
Water flow in the unfrozen soil

We express the one-dimensional flow of unsaturated 1 au — a2u
water with the following equation (Miller and KIute - U ~~~~~~~~~ (18)

1967):
In view of Portnov ’s (1962) formulation (App. A),

aw — a tD1W~
aW ‘14’ 

we may assume u(x,t) to be in the following form:

where W(x,t) is the degree of saturation by the movable u(x,t) = ~~ (D~,t) ”I2 U~(~) (19)
pore water such that W = 1 when the pore is saturated n=O
with the movable water and W = 0 when no movable

5
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where ~ is defined by of ~. Repeating the analytical continuation as many
times as necessary , one can find the value U0(o °) ,

= x/sJ~~~i’ (20) which , however , in general is different from the given
val ue of (J o (oo). One renews U’0(0) and repeats the

and U~(~) is a function of ~ only. To discuss the limit same procedure until U0(”°) agrees with the given value.
t -

~ 0, we need only the fi rst term: Thus, the Scott and Hanks method enables us to express
(4(0) numerically in terms of U0( O). In this way we

u(x,t) = U0(~). (21) can find the numerical solution of U0( ~) invol v ing
W(0 ,0) as a parameter.

Then (18) becomes We may approximate v(x,t) by substituting ~‘~(~) ~n
(25) for Win  ( 15);thus , we find

~ ¶~~~2. + U0 
d U 0 = 0. (22) 

~ — ~ ) ~~9. ~~ (29)
S d ~~~~J~~~’

Use of a sing le independent variable ~ demands that the
boundary condition at x °°at time t > 0 and the by use of (26). The balance of mass at the freezing
initial condition in the region 0 < x < oo reduce to front x = 0 is given by
a single condition:

= p
~~v(0,t).

U0 (ao) = exp( 13W,~) (23) dt

where W is a constant such that Use of (29) in (30) yields the differential equation of
h(t) , which on integration with the initial condition

W(0 ,0) < W. ~ 1. (24) h(0) = 0 yields p introduced in (7) :

We deter mine the boundary value U0(0) as follows. i.. . 
— _______Use of (19) in (17) shows us that W(x,t) can be cx- — (1 — 

~
) -i-- ~ Uo(O). (31)

pressed wi th a series similar to (19). For the limit of
t —~ 0, taki ng only the first term , W(x,t) may be Heat transfer in the unfrozen soil
approximated by We shall formulate the equation of the double

heat transfe r, convected by the water flow and con-
W(x,t) ~‘0(E) , (25) ducted through the soil mass. The heat content c2 per

unit volume of unfrozen soil mass is
where ~‘o(E ) is related to U0(~) by

c2 =c ~~W ( 1 — x ~
) +c

~x5 (32)
U0(~) = exp(fl~k o(E)) . (26)

• where c~ is the heat content per unit volume of soil
Because ~~~ is continuous , it must satisfy particles in~luding unmovable water , and c~ the heat

• content per unit volume of water. Let T2(x,t) be the
W(O ,0) = iIio (0). (27) temperature of the unfrozen soil mass. The convective

heat flow formulated by
Thus we get

Q = c ~~T2 v (33)
U0(0) = exp(13W(0,0)). (28)

is positive upward because the flux v(x,t), defined by
To solve (22) with the boundary conditions (23) and (15), is positive upward. The conductive heat flow R

(28), we used Scott and Hank’s (1962) method . Assuming is given by
an arbitrary value of U’0 (0) and given U0 (0) and
1.4(0), one can compute the higher derivatives 14’)(O) R = — ~2 ar2 / ax (34)
(n � 2) by use of (22). Thus, one can formu late a
Taylor series in the neighborh ood of ~ = 0. II thc where x 2 is the thermal conductivity of the soil mass.
convergence deteriorates as E increases, one can Because x is positive downward , 0 is positive down-
anal ytically continue the Taylor series to a new series ward. The duplicate heat transfer is formulated by
that better converges in a new range of larger values

6



a~c2 T2) / at aQ/ax — bR/ax. (35) qc~,,, = c,,, (1 .-;) + C5;

To simplify (35), we derive the relation whose right-hand side is the one found by letting
W = 1 in the right-hand side of (32). The constantr

aC2/at = c,,, av/ ax (36) is in the range 0 < r < 1, because dividi ng the fir st
equati on of (39) with the one at the top of this column

by diffe rentiating (32) with regard to t and using (14) shows that r = c,,,, (1 — x5)I[c~ (1 — x5) + c~ ;].
and (15) on the assumption thatc5 x5 = constan t, i.e. We used Kerste n ’s (1949) equation
that soil particles including unmovable water do not
move. Substituting (33) and (34) into (35) and using 1( 2 = K 20 (1 + X0 log W) (40)
(36), we fi n d

to express the thermal conductivity 
~2 of unsaturated

aT2 aT2 — ~ / 
aT2 \ soil. The constan t “20 is the thermal conductivity for

C2 ~~~~~ — Cw I’~~~~~~ 
— 

~, ~‘2 
~~~~

/ •  (37) the saturated condition (W = 1), given by

It may be verified that the equation of the triple “20 = ~~ i’~ 
qa20 (41 )

heat transfer (Philip and DeVries 1957, and DeVr ies
1958), containing convection by water vapor , con- where 

~20 is the thermal diffusivity of the saturated
vection by liquid water, and conduction through the soil. The constan t A0 is a soil constant.
soil mass, reduc es to (37) when the former is simplified In view of Portnov ’s formulation (App. A), we may
on the assumption that the flow of water vapor is assume T(x,t) to be in the following form:
negligible.

Equation (37) Cf the duplicate heat transfer includes
the effect of the water flow vo n the temperature T2 (x,t) = 

~~ 
(0~ t)~~0~(~) (42)

gradient , but (14) of the unsaturated water flow does n=0
not incl ude the reciprocal relationshi p, i .e. the effect
of the temperatu re gradient on the water flow. The where we have introduced a function O,~ 

of ~ only.
validity of Onsager’s reciprocal relationship (DeGroot Taking the lowest term oft , we appro ximate T2(x,t)
and Mazur 1962) is not claimed in this paper; nor does with
thi s relationship hold in the theory by Philip and
DeVries (1957) and DeVries (1958). The neglect of T2 (x,t) 00(e) . (43)
the relationship seems to be natural , although not yet
proven, i n the simultaneous flows of heat and water Substituting T2 from (43), v from (29), c2 from (38),
through soil , because heat can penetrate soil particles and 1 2 from (40), (37) transforms to
but water cannot — a condition that is not considered

- 
in theoretical physics for proving Onsager’s relation- 020 d280 ~ 

020 x1_ log W0(E) 1
We cast (32) into a form convenient to the heat ~~ d~ ~~~~~~~ 1 + log Wo(E) X

flow analysi s

c 2 = c~, q (1 — r + rW) (3B) 
x = 0 (44)

by introducing two constants q and r through the fol- where we have defined
lowing two equations.

~(1 — r + r  Wqr = 1 —x 5 F(~’ = ‘45
(39) ‘ 1 + X  log Wo(E)

q(1 —r )  = c5 y,,/c~ .
The boundary condition atx = 0 is

The constant qc~ expresses the heat contained in the
water-saturated soil mass. To prove this, note that the eo(O) T5(0). (46)
sum of the two equations in (39) yields the relation
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The boundary condition at x = and the initial con- T1 — (54)
dition for 0 < x < reduces to a sing le condition W —

0 (oo) = T (0) (47) 2

Equation ~~ in:egrates to 
(T , - TA ) -  ~~~~ f G(rj) d~ 

(T.. -

= O’o (0)(1 + A log W0(0)) f  G(~) d~ + _____ ~ !_. + 
C~~ p~~qa20

+ T5 (0) (48) 0

where %(0) is the yet unknown value of deo(E) / dE by substituting (52) and (53) for the temperature gradi.
at ~ = 0, and G(~) is defined by ents in (51), (7) for /i(t), and (11 ) for T5(0) in (52). In

this equation p is a function of W(0 ,0) that can be found

~ by expressing (4(0) in (31) as a function of W(0,0),
= 

1 + ~~ 

exp i—. —.2~ f  F(~) d~J . (49) which we have derived by use of Scott and Hanks ’og O ,,’1~ a20 o method; T1 is also a function of W(0 ,0) as given in (55)
below.

The boundary condition (46) is satisfied by (48). The Equation (54) gives the selection rule. If the right-
boundary condition (47) is satisfied if %(O) is chosen hand side of (54) is zero or positive , segregation freezing
to be starts . If it is negative , segregation freezing cannot start

but , instead , in-situ freezi ng begins.

~~
‘ ‘

~~~ 
- ~~ — T5(0) 

,
Ot — 

‘~ Numerical computation
(1 + A log W0(0)) f  G(t~) d~ The only experiment on segregation freezing in-

0 cluding the measurement of unsaturated water flow is,
to our knowledge, Hoekstra ’s (1966, 1967). The soil

Energy balance at the segregation-freezing front he used was Fairbanks silt , which does not satisfy the
The balance of energy at the segregation freezing assumption of ri gid pores; therefore (4) of T5 may not

front is described by be exact for this soil. The water flow was un saturated,
the initial W being equal to 0.82; therefore (16) may be

faT 1 \ , faT2\ — dh L ‘51 ’ 
used for D(W) . Although his soil column was of finite

“‘V5i70 ~~~~~~~~~ — P1 ~~ ‘ length, we may use his data in our analysis , because we
consider only the limit  o f t  -

~~ 0. The porosity was
where (

~ 2)~ 
is the val ue of 

~2 found from (40) by let- 0.36 and therefore ; = 0.64 . We determined the
ting W = W(0,0). Notations (aT 1 lax)0 and (aT 2 / ax) 0 specific density p5 of the soil by equating p5 ‘~5 to the
are values of aT1fax and aT2/ ax atx = 0. For the dry density, which was 1670 kg/rn 3 .
li mit of t  -~ Owe find Low et al. (1968) observed almost complete linearity

between T1 and W for a Wyoming Na-bentonite nearl y
= 

T5 (0) — TA 1 e u 2 (52) saturated with water. Assuming that this relationship
~ax I erf p is valid even for other soils, we formulated

from (6) by use of (13), and T1 = T0 — v ( 1 — W )  (55)

(aT2\ ________ 

~~~

, ,
~~ 

where T0 = 273.15 K and v is a soil constant. We
• 0~ ‘ ‘ chose v = 0.140, refe rring to Keune and Hoekstra

(1967).
from (43) by use of (50). Thus , we can express w in Kersten ’s (1949) data of the thermal conductivity of
terms of parameters W(0 ,0), T , and TA as Fairbanks silt gave ~to = 0.892 and K 20 = 1.6039 W/m K.

a



w (Pa) W(0,0) as a parameter. The ice lens that forms when
• 0 9X) 4C~0O 

- 
6000 8000 ioqoo w = 0, i.e. under atmospheric pressure, is usually

called needle ice. Under this condition , T5 is equal to
T1, which may be computed from (55) by using W(0,O)
for W. The values thus found are shown in Table I and
Figure 4.

Although we have used the simpli fying assumption
of rigid pores and collected the input data from a

-02

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

var iety of sour ces, the results shown in Fi gure 4 and
Table I are reasonable when compared with observa~
tions in the laboratory and in nature.
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APPENDIX A

Essence of Portnov ’s method where I ( ”) erf cx is the n-time repeated integral of erfcx,Portnov (1962) presented an in teresting idea for which may be expressed in the form of a single integral:
handling the movi ng boundary heat conduction
problems . Jackson (1964) extended it and showed —
several examples . However , their presentations are /(n)e,j~~ = ~~ f ~ ,‘“~~~ e~

2 
du. (A3)still complicated. In the following a simple formula- x

tion of Portnov ’s idea is presented.
It is well-know n that a solution of the heat con- To find (A2), let ~ — x = 2u’I~~ in the regionduction equation o < ~ < e~ and x — = 2uV~~in the region

0e ~ < 0. Then use of (A3) easily yields (A2).ar = ~ a2 r The customary notation / “ erfc,c is rejected here inat ax2 favor of I ( ” ) erf cx, because r” in the functional nota-
tion can be confused with (V’T) ”.in the infinite region, ~~oo < x < ~~~ is The formula changing the negative argument of
I ( ’~

) erf c(.-x) to the positive argument of I ( ”) erf ca ~(c.f. formula 7.2.11 of Gautschi 1964) simplifies to
T(x, t) = ~1

L. f exp (_ ~~~~2) ø(~)d~ (Al)

(— 1)” l ( ”) erf cx + I(”)erfc(—x) = —
~ 

En(X) , (A4)
2” a!where 0(x) represents the initial temperature distribu-

tion. Use of (Al ) enables one to find the solution in when the polynomial En (x), defined by
the moving boundary region 0 � x � h(t).

• Let 0(x) = 
~i (x) in 0 < x < — and 0(x) = 

2• 02(4 ini _ °’ < X < 0. Assuming that 01(x) and 
~

n(x ) = e ’5 
d 2  (AS)

02 (x) are analytic in their respective regions, let X

= I
~~

Hn (Ix)
01 (x) =E Ø~”~x”

n~0 is introduced, where H n (x) is the Hermite polynomial
and I = yCT Using (A4), one can transform (A2) to

— contain positive arguments only:
02(x) = ~~~~

n-O 
T(x,t) = ~ (2~J ~~~)” 1~ 

,çn~ En ( x ) +Then, one can integrate (Al) to n~0 2”

T(x ,t) = ~~
. 

~~~~ a! 
~~~~~~~~~~~ f0~~) I ( ’1 ) erf c (_. ~~~~~~~~~~~ 

+ — i~”n~ (,~n) — .cn)) l ( ”) erf c (~~r)J . (A6)

Equation (A6) shows that the temperature functions
~~~~~~ (— 1 ) ” I ( ”) erf c (~ f r . r)j (A2) for x 0 andx = h(t) are

- • 
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T(0,t) =

(A7)

T(h(t),t) = ~~~bntfu12 .
n 0

Therefore, (A6) can express the temperature in the
growing ice lens, if h(t) is a power series of ~T:

h(t) = hnt~
2 . (A8)

The series must begin with ‘../i ~ because rh is in the
arguments of functions En (x/(2~~i)) and
I(”)erfc(x/(2’./~i)). Bell’s formula (Bell 1934, Riordan
1946, 1949) which gives the nth derivative of a func-
tion f(g(x)), may be used to express 0n and bn in
(Al) in terms of the derivatives of En (h( t)/ ( 2sJ ~i))
and /(“)erfc (h(t)/(2’~J~~)) and arbitrary constants
0c” ) and o~”).

APPENDIX B

Frost-heaving without air available
We can theoretically prove that segregation freezing

cannot start in a rigid soil whose pores are saw rated
with dc-aired water.

To prove this, we may assume that the flow is one-
dimensional. The equation of continuity, div V = 0, re-
duces in one-dimensional flow to av/ax = 0, where V is
the velocity vector, v the vertical component, and x the
vertical coordinate. Therefore, v is a function of t only.
Portnov ’s formulation shows that ice thickness h for
an initial small period is proportional to Vi ~. Sub-
stitution of this result into (30) of the balance of
mass at the freezing front indicates that v for the
initial small period must be proportional to t~~. In
other words, initial velocity is infinite throughout
the entire domain, 0 ~ x > ° . Under this initial
condition, the problem of water flow cannot be solved
and, therefore, segregation freezing cannot start.

We showed experimentally (Takagi 1974) that this
theoretical conclusion with regard to rigid soils does
not necessarily hold true with regard to deformable
soils. However, the mechanics of water flow in de-
formable soils is not readily understandable.
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