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heat content

hydraulic conductivity of unsaturated water
soil constant introduced in (16)

thickness of the ice lens

latent heat

pressure

defined by (39)

defined by (39)

entropy

temperature

time

defined in (19)

=exp (BW), defined at (17)

volume

flux of water

degree of saturation by movable water
surcharge on the ice lens, i.e. frost-heaving pressure
space coordinate
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thermal conductivity

thermal conductivity of water-saturated soil
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SEGREGATION-FREEZING AS THE CAUSE OF
SUCTION FORCE FOR ICE LENS FORMATION

Shunsuke Takagi

INTRODUCTION

The most enigmatic problem in the theory of frost
heaving is the generation of the suction force that
draws pore water up to the freezing interface of a
growing ice lens, increasing its thickness despite the
pressure exerted by the overlying burden of the
frozen soil and surface load (see cover for photograph
of ice lens). Most of the current literature on frost
heaving explains the suction by use of the Laplace
equation in capillary theory, which gives the pressure
difference across a curved meniscus boundary of two
different materials. However, capillary theory is not
yet proven to be valid on the freezing meniscus of
pore water,

In the case of a capillary tube containing air and
water separated by a meniscus, the molecules com-
posing the meniscus are stationary, and the Laplace
equation gives the pressure difference across the
meniscus. The molecules composing a freezing menis-
cus, however, are constantly renewed; theory does
not yet prove whether the Laplace equation is valid
or not on such a meniscus. We have found experi-
mental evidence indicating that the Laplace equation
is valid on a static ice/water meniscus where molecules
are stationary, but not on a freezing meniscus where
molecules are renewed,

In their definitive theoretical work in this field,
Everett and Haynes (1965) caution that their theory
of ice stress derived by applying capillary theory on
ice/water menisci may fail when kinematic effects
predominate. Koopmans and Miller (1966) measured
the capillary potential of the ice/water meniscus and
showed that the resulting curve coincided with the
soil moisture characteristics, if they substituted the
ice/water interfacial tension with the air/water inter-
facial tension. They took 24 hours to get one point
of data. Their experiment shows that capillary theory
applies on the static ice/water interface. Penner (1967)

and Sutherland and Gaskin (1973) showed that the
pressure required to stop ice lens growth was larger
than the pressure predicted by capillary theory. Their
experiments were kinematic. We may interpret these
studies as indicating that the freezing of pore water is
not a static effect caused by the capillary pressure but
is a kinematic effect caused by the simultaneous flows
of heat and water.

We have developed a concept suitable for describing
the ice lens formation by using the theory of simul-
taneous flows of heat and water (Takagi 1959, 1963,
1965, 1970, 1974, 1975, 1977), which is systematized
and stated in this report.

SEGREGATION FREEZING

We shall introduce segregation freezing as the agent
for creating suction force to draw water to the freezing
front and exerting frost-heaving pressure to the over-
lying burden.

Corte (1962) observed that ice growing upward can
carry soil particles floating on the surface (Fig. 1). The
explanation of the floating of a soil particle on a
heaving ice surface is possible only by assuming that,
between the surfaces of the particle and the ice, there
exists a thin layer of unfrozen water whose molecules
are constantly replenished during the heaving by the
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Figure 1. A particle floating
on the heaving ice surface,
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Flgure 2. Ice lens forming on the thin water layer.

influx of water from the adjacent reservoir into the
freezing front. In other words, we should recognize
that, adsorbed or absorbed between the particle and
the ice, there exists a heterogeneous layer of water
whose “thickness’’ is maintained at a certain constant
value during the freezing process. It should be stated,
however, that theoretical physics cannot yet explain
the water of this nature and we are quite ignorant of
its properties.

In Figures 1 and 2, soil particles are represented by
a rectangular shape, because the thickness of the
heterogeneous layer is clearly shown in this form. In
the case of an actual more complicated shape, the
conceptual correction of “thickness” can be made
easily.

The freezing of a thin water layer generates suction
that draws water, as shown in Figure 1, from the sur-
rounding reservoir. The freezing of water that gen-
erates suction will be called segregation freezing. In
this case the heterogeneous water adsorbed or absorbed
between the particle and the ice freezes. In contrast,
the freezing of homogeneous free pore water will be
called in-situ freezing. This freezing mechanism does
not generate suction; i.e. the in-situ freezing front
advances with the progress of the freezing.

In in-situ freezing, the ice pressure and the water
pressure may not necessarily be equal, but mechanical
equilibrium is established between ice and water. Ice
and water are also equithermal; i.e. they are in thermal
equilibrium. Therefore, the equilibrium of in-situ
freezing is twofold. In the case of segregation freezing,
however, thermal equilibrium is established, but as
shown below, mechanical equilibrium is not. Only one
type of equilibrium is present in this case.

The in-situ freezing temperature is determined by
the condition that the three phases — ice, water, and
vapor — are in thermodynamic equilibrium (Takagi
1959). The segregation freezing temperature is deter-
mined, as shown in the following, by the two-phase
equilibrium.
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Let us consider an ice lens resting on soil particles,
as shown in Figure 2. If the uppermost part of the thin
water layer freezes, water must be sucked in from the
neighboring reservoir to recover the original thickness
of the thin water layer. Then, if the soil particles stay
at the same position during e freezing process, the
surface DD rises by the thickness of the frozen portion.
This is our explanation of frost heaving. According to
our concept, therefore, an ice lens grows on soil parti-
cles.

Stress in the thin water layer that sustains the weight
of the ice lens plus any surcharge on it acts in the water
layer as if the water were solid. However, to calculate
the freezing temperature of the thin water layer, i.e.
the segregation freezing temperature, the simpler
thermodynamic state of the pore water underlying the
ice meniscus BMA may be considered instead of the
complicated thermodynamic state of the thin water
layer under the flat ice surface AB, because we may
assume they are equithermal.

The pore water underlying the ice meniscus BMA
and the ice lens overlying BMA are, in turn, equithermal,
but not in mechanical equilibrium. The weight of the
ice lens is not supported by the pore water, but by the
thin water layers and the soil particles underlying the
layers. The stress of the ice lens, therefore, is inde-
pendent of the pore water pressure. In soil mechanics
terminology, the pore water pressure is neutral to
mechanical effects, but the stresses of the thin water
layers and the soil particles are effective. They belong
to different categories in terms of mechanical effects
(Terzaghi 1942).

For simpler treatment we replace the ice stress with
the ice pressure P;. Then we can describe the thermo-
dynamic equilibrium between the ice lens and the pore
water by use of a formula of classical thermodynamics:

V, dP,, - S, dT = V,dP,~S,dT 1)

where V is the specific volume, S the specific entropy,
P the pressure, and T the temperature. The suffixes w
and i refer to water and ice, respectively. Note that P;
and P,, may not necessarily be equal in this equation.
(See Takagi (1965) for a treatment dealing with the
tensorial ice stress.)

The meaning of the variations denoted by the total
differentials in this equation must be clarified. We
choose the datum state (i.e. the starting point of the
variation) to be the state of in-situ freezing. The tem-
perature at the datum state, therefore, is the in-situ
freezing temperature 7,. We raise the pressure of the
ice at the datum state by

dP; = w+ph )




where w is the surcharge overlying the ice lens, h the
thickness of the ice lens, and p; the density of ice.
We do not change the pressure of the pore water:

dapP, = 0. (3)

We assume that the soil column underlying the soil
particles is incompressible, so that no disturbance can
intrude into the system during the proposed pressure
increase. During the process, we maintain the thermo-
dynamic equilibrium between the pore water and-the
ice lens by keeping (1) valid, but leave the tempera-
ture free to change. Note that w + p/ is the surcharge
on the ice at the freezing front, which may be inter-
preted, if frost heave actually takes place, to be the
frost-heaving pressure.

Thus we can reach the final stage of the formula-
tion. We find 7, the segregation-freezing temperature

Ts = Ti[1 = (w+ph)/(p;L)] 4)

by lettingdT = T -T,andS; = L/T, in (1), where
T) is the in-situ freezing temperature and L the latent
heat. Therefore, 7, is always less than T,, the differ-
ence being determined by the ice pressure increment,
i.e. the frost-heaving pressure.

If we consider that the stress in the ice lens is deter-
mined by the configuration of the ice surface, the
stress is not necessarily uniform in the ice lens. The
nonuniform stres< caused by the capillary force is con-
sidered by Everett and Haynes (1965). The difference
of the capillary forces between the top and bottom
menisci is considered by Loch and Miller (1975) to
explain the cause of the flow of ice molecules in the
growing ice lens. However, the capillary force does
not seem to be directly related to the crystal growth.

In supercooled water, ice crystals grow with sharp
edges (Hobbs 1974, Glen 1974) and frequently form
dendrites. They grow against the chemical potential
gradient in the solid; their growth rate is determined
by the heat transfer and the availability of the growth
material in the liquid. When the water temperature
is very close to the ice temperature, however, ice grows
into the water forming a smooth ice surface (Glen
1974). The growth rate in this case is still determined,
we believe, by the heat transfer and the availability of
the growth material in the liquid, although we could
not find any reference that clearly states this. The ice
stress caused by the ice/water menisci does not seem
to be a cause of crystal growth.

We showed (Takagi 1965) that the ice stress given
on the right-hand side of (2) is the normal stress com-
ponent in the vertical direction. This normal stress
may be interpreted to be the overall representative

value of the ice stress in the segregation freezing, in the
same sense as the overall representative ice stress in the
in-situ freezing is interpreted (Takagi 1959) to be
atmospheric. Obviously, the stress of the ice forming
inside a pore of soil is higher than atmospheric pressure
by the amount of the capillary pressure caused by the
curved ice surface. The formula of the in-situ freezing
temperature, derived by assuming the ice pressure to be
equal to atmospheric pressure is, however, confirmed
experimentally (Schofield 1935, Williams 1964, Low et
al. 1968). Atmospheric ice pressure, therefore, may be
the overall representative value of the internal stress of
the ice freezing in-situ, and choosing atmospheric pressure
is probably a convenient way of avoiding the variability
of the internal ice pressure in in-situ freezing. Choosing
the ice stress expressed by the right-hand side of (2)

in the formulation of the segregation freezing tempera-
ture should therefore be interpreted in the same sense
as choosing the atmospheric ice pressure in the formula-
tion of the in-situ freezing temperature,

ANALYSIS

We shall use (4) of segregation freezing temperature
as one of the boundary conditions of the simultaneous
flows of heat and water to analyze the formation of a
single ice lens. We shall make the physical system as
simple as possible to keep the analysis feasible.

We assume the unfrozen soil underlying the ice lens
to be incompressible under the action of the surcharge
and, moreover, under the action of the flows of heat
and water. At present this assumption is needed be-
cause the currently available water flow equations do
not include volume change caused by absorption and
depletion of water. Also, we do not yet know the con-
stitutive equations of soils to describe the deformation
due to surcharge and water content variations, Unifi-
cation of hydraulics and mechanics still seems to be a
remote goal. The assumption of incompressibility
obviates these difficulties. Furthermore, this assumption
simplifies the analysis, becausc the segregation freezing
front overlying an incompressible unfrozen soil layer
stays at the initial level until in-situ freezing replaces the
ongoing segregation freezing.

In this system the freezing front starts to descend
when in-situ freezing begins. The selection rule, stating
which of the two processes should start, emerges at the
end of the analysis.

We assume that segregation freezing takes place at the
ground surface. Then, we may not consider the compli-
cated flow of unfrozen water in the frozen region. In
fact, we are going to analyze the frost needle formation
on the ground surface.




According to the present theory, frost needles grow
on soil particles. Pore water between soil particles may
or may not freeze, because 7, < T7,. In this analysis,
we disregard the individuality of the frost needles (as
seen on the cover) and suppose that the ice lens forma-
tion and heat and water flows are uniform in the hori-
zontal direction. In other words, we suppose that the
flows are one-dimensional in the vertical direction. The
aim of this analysis is not the formulation of actuality

but the clarifying of the implication of our assumptions.

We will analyze only for the limit of ¢ = 0. For
t = 0, we can linearize the highly nonlinear equations
of simultaneous flows of heat and water, and can solve
them analytically.

Before entering into the details of the analysis, it is
appropriate to give an overview of the analysis.

First, we shall solve the heat conduction in the
nascent ice layer by Portnov’s (1962) method, of which
the essence is given in Appendix A. The boundary
temperature conditions are the step-change air tem-
perature 7, at the upper side of the ice lens AA in
Figure 3, where x = - h(t) and the segregation freezing
temperature 7 at its lower side SS, where x = 0. This
solution enables us to express the temperature gradient
at SS as a function of T and 7.

Second, we shall solve the unsaturated water flow in
the unfrozen region; i.e. we shall determine the water
content W(x,t). The boundary condition atx = 0is
that the water content at x = 0 suddenly drops to a
certain unknown value W(0,0) at the outset of the ice
lens formation. We assign an arbitrary number W(0,0)
to the boundary value atx = Oand ¢ = 0. The initial
condition is that W(x,0) = constantfor0 < x < oo,
The boundary condition at x = oo is that W(eot) =
constant. These two constants must obviously be
equal to each other. The solution of this problem en-
ables us to calculate the flux of water entering the
freezing front. All this water becomes ice to form frost
needles; thus, we can calculate the ice lens growth rate
dh/dt.

Third, we shall solve the equation of the double
heat transfer, convected by the water flow and con-
ducted through the soil mass, by using the segregation
freezing temperature given by (4) as one of the
boundary conditions. We evaluate the thermal con-
ductivity and heat content in the duplicate heat trans-
fer equation by use of the water content distribution
W(x,t) found above. The solution of the duplicate
heat transfer enables us to calculate the temperature
gradient at the segregation freezing front as a function
of the surcharge w and the boundary water content
value W(0,0).

Surcharge w

Arrrd 7T ? 777777 7777777 o777 A xe-ht)
Ice lens h(t)
s S x=0
Unfrozen soil
|
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Figure 3. Analysis of ice lens formation.

Finally, we shall use the energy balance equations
at the segregation freezing front. We substitute the ice
lens growth rate dh/dt and the two temperature gradient
equations previously formulated at both sides of the
freezing front into the energy balance equation. Then,
we can find surcharge w, i.e. the frost-heaving pressure,
in terms of the air temperature 7 and the boundary
water content value W(0,0).

The selection rule is given by the expression of w.

If the frost-heaving pressure w is zero or positive,
segregation-freezing begins. If the frost-heaving pres-
sure is negative, in-situ freezing begins. Soil data in
this calculation were collected from many sources, and
the soils were not incompressible; however, the result
is deemed reasonable.

Heat conduction in the nascent ice layer

The ice lens is lifted as a whole at the rate of dh/dt.
Applying the theory of heat conduction in a moving
medium (Carslaw and Jaeger 1959), we have the dif-
ferential equation of the temperature 7; of the growing
ice lens:

o "dr ax Y2

where q is the thermal diffusivity of ice. Let
= x+h(t)
and then (5) becomes

ar, _ a1,
o ""5,_2"'

where 0 £ z £ h(t). The solution of this problem by
using Portnov’s (1962) method is shown in Appendix
A.
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To consider the limit of ¢ = 0, we take only the first
(i.e.n = 0) terms in (A6) and (A8) in Appendix A, and
approximate them by

2 x +h(t
T, 060) a+berfc[—(-lW ] (6)
and
h(t) = 2/t (7)

where g, b, and u are unknown constants. To deter-
mine a@ and b, we use the conditions:

T,(00) = T (8)
and
T] (" h('), t) = TA: (9)

where T is the air temperature on the ice/air inter-
face AA. Considering that

h(0) =0, (10)
we denote the value of 7, ath = 0 by

T,0) = T,(1 - w/(p,L}). (1)
Thus we have

: T4(0) =Ty erfcu

erfu (12)
and
_Ta=T,0)
b= -A«T”L— (13)

The constant u will be given at the end of the next
section.

Water flow in the unfrozen soil

We express the one-dimensional flow of unsaturated
water with the following equation (Miller and Klute
1967):

oW _ 9 L4
= omir (14)

where W(x,t) is the degree of saturation by the movable
pore water such that W = 1 when the pore is saturated
with the movable water and W = 0 when no movable

water exists in the pore, and D(W) is the hydraulic
conductivity of unsaturated water flow as a function
of W. We believe the degree of saturation is more con-
venient for mathematical analysis than the water con-
tent conventionally used in soil engineering. The cross-
effect of the temperature gradient on the water flow
may not be included in (14), because our interest is in
the flow of liquid water, not in the flow of water vapor
(Philip and DeVries, 1957). A question, “What will
happen if air is unavailable to the frost-heaving system?”’
is discussed in Appendix B.

The flux v(x,t) of liquid water is given as

vixt) = (1 -x,) D(W) (3W/ax) (1s)

where x; is the volume occupied by both soil particles
and unmovable water in a unit volume of the soil mass.
The volume of movable water in the unit volume is
(1 = x,)W. We have formulated v(x,?) in (15) to be
positive in the upward direction.

We assume the diffusion coefficient D(W) in (14),
following Gardner (1958a, 1959), to be

D(W) = D exp(6W) (16)

where D, and f are constants. However, this form of
D(W) is inadequate, because it does not become constant
in the neighborhood of W = 1 as required by Darcy flow
(i.e. the water flow saturating pores). A few years after
the analysis presented here was finished, we found
another formula (Gardner 1958b) that satisfies this re-
quirement. This analysis was not revised, however, be-
cause we believe that this defect in our data of water con-
tent is tolerable, as will be shown in the numerical
analysis section. A more realistic analysis should be
attempted when the rigid soil frost-heaving test will be-
come available.

Use of v defined by

u = exp(BW) (17)

simplifies eq 14, where D(W) is given by (16), to

1w ., %
Dot  Ya: (18)

(=Y

In view of Portnov’s (1962) formulation (App. A),
we may assume u(x,t) to be in the following form:

ulxt) = 3 (Dot)"2 U, (%) (19)

n=0
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where £ is defined by
s = X/V2Dof

and U, (£) is a function of £ only. To discuss the limit
t = 0, we need only the first term:

(20)

ulxt) = Up(8). (1)

Then (18) becomes

%.-}-Uoﬂ/.g.: 0.

7 2 (22)

Use of a single independent variable £ demands that the
boundary condition at x = e at time¢ > 0 and the
initial condition in the region 0 < x < e°oreduce to

a single condition:

Up(>) = exp(BW.,) (23)
where W, is a constant such that
w0,0) < W_ £ 1. (24)

We determine the boundary value U (0) as follows.
Use of (19) in (17) shows us that W(x,t) can be ex-
pressed with a series similar to (19). For the limit of
t — 0, taking only the first term, W(x,¢) may be
approximated by

Wixt) = ¥olt), (25)
where Y, () is related to Uqy(£) by

Up(€) = exp(BYo(E)). (26)
Because ¥ (£) is continuous, it must satisfy

w(0,0) = ¥,(0). (27)
Thus we get

Uy(0) = exp(BW(0,0)). (28)

To solve (22) with the boundary conditions (23) and
(28), we used Scott and Hank's (1962) method. Assuming
an arbitrary value of Uj (0) and given Uy (0) and
Up(0), one can compute the higher derivatives U§")(0)
(n 2 2) by use of (22). Thus, one can formulate a
Taylor series in the neighborhood of ¢ = 0. If the
convergence deteriorates as £ increases, one can
analytically continue the Taylor series to a new series
that better converges in a new range of larger values

ARSI

of £. Repeating the analytical continuation as many
times as necessary, one can find the value Ugy(<),
which, however, in general is different from the given
value of Uy(=). One renews Uy(0) and repeats the
same procedure until Uy (e°) agrees with the given value.
Thus, the Scott and Hanks method enables us to express
Uy (0) numerically in terms of Uy(0). In this way we
can find the numerical solution of Uy (£) involving
W(0,0) as a parameter.

We may approximate v(x,t) by substituting ¥y (£) in
(25) for W in (15); thus, we find

= \/-D_o_ dUp 1
vix,t) = 7—?—(\ 'XQ‘;{“T .

by use of (26). The balance of mass at the freezing
front x = 0O is given by

{29)

ah _

Pige = Pw ¥(0,0). (3¢

Use of (29) in (30) yields the differential equation of

h(t), which on integration with the initial condition
h(0) = 0 yields u introduced in (7):

v2Dg

2/ = (1-x) 2 Y5 (31)

Uy (0).

Heat transfer in the unfrozen soil
We shall formulate the equation of the double

heat transfer, convected by the water flow and con-
ducted through the soil mass. The heat content ¢, per
unit volume of unfrozen soil mass is

€y = ¢y W(l1-xg)+c,xg (32)
where ¢, is the heat content per unit volume of soil
particles including unmovable water, and c,, the heat
content per unit volume of water. Let 7,(x,?) be the
temperature of the unfrozen soil mass. The convective
heat flow formulated by

Q=c,Tv (33)
is positive upward because the flux v(x,t), defined by
{15), is positive upward. The conductive heat flow R
is given by

R = —kydT,/0x (34)
where Kk, is the thermal conductivity of the soil mass.
Because x is positive downward, ? is positive down-
ward. The duplicate heat transfer is formulated by
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3lc, T)f0t = 3Qfdx - dR/dx. (35)
To simplify (35), we derive the relation
ac,/at = c,, dv/ax (36)

by differentiating (32) with regard to ¢ and using (14)
and (15) on the assumption thatc, x; = constant, i.e.
that soil particles including unmovable water do not
move. Substituting (33) and (34) into (35) and using
(36), we find

arT aT, g ( T
Cz-a—t—g—CwVﬁz- = a-—x'(l(z'—a—x'z-). (37)

It may be verified that the equation of the triple

heat transfer (Philip and DeVries 1957, and DeVries
1958), containing convection by water vapor, con-
vection by liquid water, and conduction through the
soil mass, reduces to (37) when the former is simplified
on the assumption that the flow of water vapor is
negligible.

Equation {37) of the duplicate heat transfer includes
the effect of the water flow v on the temperature
gradient, but (14) of the unsaturated water flow does
not include the reciprocal relationship, i.e. the effect
of the temperature gradient on the water flow. The
validity of Onsager’s reciprocal relationship (DeGroot
and Mazur 1962) is not claimed in this paper; nor does
this relationship hold in the theory by Philip and
DeVries (1957) and DeVries (1958). The neglect of
the relationship seems to be natural, although not yet
proven, in the simultaneous flows of heat and water
through soil, because heat can penetrate soil particles
but water cannot — a condition that is not considered
in theoretical physics for proving Onsager’s relation-
ship.

We cast (32) into a form convenient to the heat
flow analysis

€y =y g (1 =r+rW) (38)
2 w

by introducing two constants g and r through the fol-
lowing two equations.

gr = 1 =X,

q(1=r) = f:, Xo/Cyy-

(39)

The constant gc,, expresses the heat contained in the
water-saturated soil mass. To prove this, note that the
sum of the two equations in (39) yields the relation

gy = Cy (1 =X) *¢5 X,

whose right-hand side is the one found by letting
W = 1 in the right-hand side of (32). The constantr
isintherange 0 < r < 1, because dividing the first
equation of (39) with the one at the top of this column
shows thatr = ¢, (1 - xg)/[c, (1 = X5) +¢5 Xl -

We used Kersten's (1949) equation

Kz = Kzo (1 +X0 |Og W) (40)

to express the thermal conductivity k, of unsaturated
soil. The constant K, is the thermal conductivity for
the saturated condition (W = 1), given by

Ko = Cy Py 9% (41)

where &y is the thermal diffusivity of the saturated
soil. The constant A, is a soil constant.

In view of Portnov’s formulation (App. A), we may
assume T(x,t) to be in the following form:

Thlxt) = Z (Dg t)"%0, () (42)

n=0
where we have introduced a function ©,, of £ only.
Taking the lowest term of ¢, we approximate T, (x,t)
with
Tabot) = 8y(8). (43)

Substituting 7, from (43), v from (29), ¢, from (38),
and k, from (40), (37) transforms to

AL log Wo(k) ]
X

0 9?6 . Rar Al
Do @ FO* Dy T X TogWolE

B, _
o Tl
where we have defined
1-x, dU,
E(V =r+r Wo(t)) + Y
) = =y (45)
The boundary condition atx = Qs
6,(0) = 7,(0). (46)
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The boundary condition at x = ° and the initial con-
dition for 0 < x < <o reduces to a single condition

6p() = T.(0). (47)

Equation 44 integrates to
£
() = ©p(0)(1 + X log Wy (0) [ G(n) dn +
0

+7,(0) (48)

where ©;(0) is the yet unknown value of d© ()/d%
at¢ = 0, and G(n) is defined by

n

S0) = Ty a2 f Fol. o)

0

The boundary condition (46) is satisfied by (48). The
boundary condition (47) is satisfied if ©(0) is chosen
to be

T.-T740)

6(0) = (50)

(1 +X logWg(0)) [ Gln)dn
0

Energy balance at the segregation-freezing front
The balance of energy at the segregation freezing
front is described by

371) (372) - . dh
"i(s;‘o'("z)nro Tl

where (x,)  is the value of K, found from (40) by let-
ting W = W(0,0). Notations (3T, /dx)q and (37 ,/dx),
are values of 37, /dx and 87, /dx at x = 0. For the
limit of ¢ = 0 we find

ar,) R Dl R e
(ax erfu ‘/"ait y (52)

from (6) by use of (13), and

aT. . 1 ’
(372)0 v, . v i ©5(0) (53)

from (43) by use of (50). Thus, we can express w in
terms of parameters W(0,0), 7., and T as

(54)

Kj o2 ¢ o
I el B LT N g, P~

Vo erfu 20, =
f G(n) dn
0
Ki e‘“2+ Cw Pw 9%
Vo, erfu =
: V2D, [ Gin)dn
0

by substituting (52) and (53) for the temperature gradi-
ents in (51), (7) for h(z), and (11) for 7,(0) in (52). In
this equation u is a function of W(0,0) that can be found
by expressing Uy (0) in (31) as a function of W(0,0),
which we have derived by use of Scott and Hanks’
method; 7 is also a function of W(0,0) as given in (55)
below.

Equation (54) gives the selection rule. If the right-
hand side of (54) is zero or positive, segregation freezing
starts. If it is negative, segregation freezing cannot start
but, instead, in-situ freezing begins.

Numerical computation

The only experiment an segregation freezing in-
cluding the measurement of unsaturated water flow is,
to our knowledge, Hoekstra’s (1966, 1967). The soil
he used was Fairbanks silt, which does not satisfy the
assumption of rigid pores; therefore (4) of T may not
be exact for this soil. The water flow was unsaturated,
the initial W being equal to 0.82; therefore (16) may be
used for D(W). Although his soil column was of finite
length, we may use his data in our analysis, because we
consider only the limit of ¢ = 0. The porosity was
0.36 and therefore x; = 0.64. We determined the
specific density p of the soil by equating p, Xs to the
dry density, which was 1670 kg/m3.

Low et al. (1968) observed almost complete linearity
between 7, and W for a Wyoming Na-bentonite nearly
saturated with water. Assuming that this relationship
is valid even for other soils, we formulated

Ty =To=-v(1-W) (55)

where Ty = 273.15 K and v is a soil constant. We
chose v = 0.140, referring to Keune and Hoekstra
(1967).
Kersten's (1949) data of the thermal conductivity of
Fairbanks silt gave Ay = 0.892 and kp = 1.6039 W/m K.
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Figure 4. Frost-heaving pressure w as function
of T, and W(0,0).

Table I. Temperatures and degree of saturation for
needle ice formation.

w(0,0) TACC) Ty = TC)
0.4 -0.193 -0.084
0.5 -0.156 -0.07
0.6 -0.115 -0.056
0.7 -0.0732 -0.042
0.8 -0.0347 -0.028
0.82 ~0.0279 -0.025

The specific heat of the dry soil given by him was
795 )/kg K; therefore, c, is given by ¢, = 795 p,.
Using (39) we findg = 0.6853 and r = 0.5370.
Values of D and § determined by Hoekstra’s (1966,
1967) data were Dy = 2.92x10"? m2/sand B = 2.88.
The method of determination of these values is not
mentioned here, because special knowledge of un-
saturated water flow was used for their determination
as mentioned by us (1970). The values of Dy and 8
were reasonable as compared with other soils.
Numerical computation was performed keeping
T.. = 5°Cconstant and varying T, and W(0,0). The
relation between w and T, is shown in Figure 4 with

W(0,0) as a parameter. The ice lens that forms when
w = 0, i.e. under atmospheric pressure, is usually
called needle ice. Under this condition, 7 is equal to
T,, which may be computed from (55) by using W(0,0)
for W. The values thus found are shown in Table | and
Figure 4.

Although we have used the simplifying assumption
of rigid pores and collected the input data from a
variety of sources, the results shown in Figure 4 and
Table | are reasonable when compared with observa-
tions in the laboratory and in nature.
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APPENDIX A

Essence of Portnov’s method

Portnov (1962) presented an interesting idea for
handling the moving boundary heat conduction
problems. Jackson (1964) extended it and showed
several examples. However, their presentations are
still complicated. In the following a simple formula-
tion of Portnov’s idea is presented.

It is well-known that a solution of the heat con-
duction equation

in the infinite region, - < x < oo js

) = e [ on(-S28) sk (A

where ¢(x) represents the initial temperature distribu-
tion. Use of (A1) enables one to find the solution in
the moving boundary region 0 < x < h(z).

Letdlx) = ¢;(x)in0 < x < =andg(x) =
$y(x) in-e < x < 0. Assuming that #;(x) and
7 (x) are analytic in their respective regions, let

¢1(X) = Z ﬂ")x"
n=0
$lx) = Z W)X"-

n=0

Then, one can integrate (A1) to

Th) = L > (avary [ofr) Mrlertc (- =)t
n=0

+ol) (= 1)7 fn)erfe (Nx;r)’ (A2)

where /(7)erfcx is the n-time repeated integral of erfcx,

which may be expressed in the form of a single integral:

fmerfex = —2_ f -(”—;i'!)i ev? qu, (A3)
Vv J -

To find (A2), let § - x = 2us/az in the region
0 < £ < wandx-§ = 2u\/af in the region
=% < £ < 0. Then use of (A3) easily yields (A2).
The customary notation /~erfcx is rejected here in
favor of /(7 )erfcx, because /" in the functional nota-
tion can be confused with (v/=1)".

The formula changing the negative argument of
1\n)erfc(- x) to the positive argument of /(7)erfex
(c.f. formula 7.2.11 of Gautschi 1964) simplifies to

(= 1) Herfex + fmerfe(-x) = —L— E_ (x), (A4)
2n-1p1

when the polynomial £, (x), defined by

2
2
Eale) = o e (A3)

i-"H, (ix)
is introduced, where H, (x) is the Hermite polynomial

and/ = +/=1. Using (A4), one can transform (A2) to
contain positive arguments only:

Tt) = f:(zs/i)"{z‘,— o En (32 ) ¢

n=0

+ 1‘_‘#. (¢y') - ol )) /(n)erfe (wx;)l . (A6)

Equation (A6) shows that the temperature functions
forx = 0 andx = h(t) are




7(0,8) = 5_: a, 2

n=0

(A7)

Th(e)t) = f:b,,t"/?.

n=0

Therefore, (A6) can express the temperature in the
growing ice lens, if A(t) is a power series of /7 :

h(t) = 2 hat"2, (A8)
n=1

The series must begin with \/7 because t** is in the
arguments of functions £, (x/ (24/at)) and
1\")erfc(x/(24/at ). Bell’s formula (Bell 1934, Riordan
1946, 1949) which gives the nth derivative of a func-
tion f(g(x)), may be used to express a, and b,, in

(A7) in terms of the derivatives of £, (h(t)/(2v/at))
and /()erfc (h(t)/(23/at ) and arbitrary constants

(") and ¢l").

APPENDIX B

Frost-heaving without air available

We can theoretically prove that segregation freezing
cannot start in a rigid soil whose pores are saturated
with de-aired water.

To prove this, we may assume that the flow is one-
dimensional. The equation of continuity, div V = 0, re-
duces in one-dimensional flow to av/dx = 0, where V is
the velocity vector, v the vertical component, and x the
vertical coordinate. Therefore, v is a function of ¢ only.
Portnov's formulation shows that ice thickness A for
an initial small period is proportional to /7 . Sub-
stitution of this result into (30) of the balance of
mass at the freezing front indicates that v for the
initial small period must be proportional to t=%. In
other words, initial velocity is infinite throughout
the entire domain, 0 2 x > oo, Under this initial
condition, the problem of water flow cannot be solved
and, therefore, segregation freezing cannot start.

We showed experimentally (Takagi 1974) that this
theoretical conclusion with regard to rigid soils does
not necessarily hold true with regard to deformable
soils. However, the mechanics of water flow in de-
formable soils is not readily understandable.
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