
AD— A USS 7fl RENSSLLACR POLYTECHNIC INST TROY N Y CO*UTtN ~(5(~~~~ cTC F/S 9’Z
DOCUPCNTATZO$4 MANUAL FOR CHAP .(U)
NAY 70 K P LOCPERE AFOSR—76—293?

uNCI.ASSI~ IEO Ct 57 AFOSR”TR 70 1039 Vt

I
I

_

_ _ _ _ _ _ _ _ _ _ _

END
V

DArE
cI1.E D

8 —78
Dot

S

.0 ~~~~ ~~ ~~II _______ ~ 132 11H122
I. ’

t~ ~ 2.O

IIII1~8
I .25

~~ ~
M~CROCOPT RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANDAR DS I~ IF~~ A

TkA~ ~~

>-

C)

/ LU
•

________ - ~~~~~~~~~~~~~~~~~ .-~~ - --~~~~ .~~ .- - --- --~ —.

1$ AFOt3B~~~— 7 8 - 1 03 9 !
—

— - - —

~ 1 U~Ui... . ..èiiIi J

_ _

7/
l~.

Techn ical Repcrt CRL—5 7

(
~ ~
—

DOCUMENTATION MANUAL FOR CHAP
/~~L By

• /t’~
/

iceith P./Loepere /

Li’
~
-
>-~

-i
~
----——---- —-—

~
-)

LU
• 4

1Ic~4~

_

2
~ ~9 ~~~rj

Prepared for

Directorate of Mathematical and Information Sciences
Air Force O f f ice of Sc ien t if ic R e s e a r c h

Air Force~J~~ste F
Grant

78 06 ic ~ 087

Rensselaer Polytechnic Institute
TROY , NEW YORK 12 181

Approved for public r.lia~i;-
distribution unhi ited.

~~~~~~~~~ / ~~~ I

- •~



ABSTRACT

This is a documentation manual for the CHAP chain

proces sing lan gua ge. CHAP is a co l lec t ion of rout ines

develope d fo r  ana lyz ing , s y n t h e siz ing , and manipulating

chain—encoded line drawings. This report describes the

internal operation of the CHAP rout ines. It is a

comp anion  volume to t h e  CHAP Us er ’s Manual .

A CCESSION f~
NTIS White Section
DCC Duff Secti on 0
UNANNOUNCED o
JUSTIFICATION 

By
D1STNIDUTIQN/Ay* ILABI LJTT CODES

Dint. AVAIL and,~ SPECIA L

i

• •L. ———----r - —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• - — - __________ • ___________



ACKNOWLEDGM ENT

The work  des cr ib ed here  was s u p p o r t e d  in part  by

th e Dir e c t o r a t e  of Mat hemat ical an d I n f o r m a t ion Sc ienc es ,

AIr  Force O ff ice of Sc ie n t i f ic Rese arch , un der Grant

AFOSR 76— 2937, Professor Herbert Freeman Principal

Investigator.

ii

• —a. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~——- — ~~~~—•  . . - -_________ - - - - - •



• CONTENTS

Page
1 • INTRODUCT ION • . . . . . • . . . • . . . •

2. DATA STRUCTURES . . . .. . . .. . . . . .  2

A. Chains . . . . . . . . . . . . . . . . . 2

B • PLANES . . . . . • . . . . . . . • . . . 3

C • STATUS . • . . . . . . • . . . . • • • • 3
1•, 1’tf•Vt ~t~J

~~ II ~Jflfl. • • • • • . . . • . . . . . . . . •

. Constants . • • . • • • • • • • • • • •

3. PRIMITIVE ACCESS ROUTINE S . . . . . • . . . 6
~4. DIGIT ACCESS . . . . . . . . • . • . . . . • 8

A. Input . • . . . . . . . . . . . . . . . 8

B. Output . . . . . . . . . 9

5. ACCESS TO GROUPS OF DIGIT.;,  . . . . . . . . . 12

6. ADDING LINKS . • . . . . . -. • . • . • . . • lL~

7. INPUT A~ND OUTPUT. ............. 17

8. SEGMENTING . . . . . . . • . . • . . . * • • 18

9. SEGMENT ROUTI NES . . . . . . • . . . . . . . 2 1

10. SEQUENTIAL ACCESS . • . . . . . . . . . . • 22

11 . ARRAYS OF LINKS OP VERTICES . . . . . • . • 2k

12. ANGLES, DISTANCES, AND EXTENTS . .. . . . • . 25

13. AREAS AND MOMENTS • • . • . . . . . . . . . 28

1k. SPECIAL FUNCTIONS . . . . . . .. . . . . .  29

15. CREATING A VERSION OF CRAP . . . . . . . . . 35

16. CALLING STRUCTURE . • . • . . . . . • . • 37

• A. External Re ferences • . . • • . . . . . 37

B. Re ferencing Mo dules . . • • . • . • . L~O

ii’

______________ 
- 

~~~~~~~~~~


Page

17. CHAP TAPE FORMAT • . . • • . . 44

18. ROUTINE INDEX • • • • • • 45

iv

—-
~
——-•w

PART 1

INTRODUCTION

CHAP is a set of rout in es des igned to fac il i t a t e the

manipulation of chain—encoded line drawings. This material

highlights the operation of CHAP . To comprehend it fully,

it is n e c e s s a r y to b e fam il iar with the r e f e r e n c e s lis te d

below . Also , the di scus sions in th is manual r e la te to

the program listing of CHAP which is available upon request from

~r. H. Freeman, Rensselear Polytechnic Institute, Troy, N. Y. 12181.

Sect ions include d here in des cr ibe the oper at ion of

the CHAP routines. The primary purpose of this manual ,

though , is to provide information to be used to create

new implementations of CHAP and to extend CHAP in the

future.

Primary R e f e r e n c e s

1. K. Loepere , “CHAP User ’s Manual ” , Tech. Rept. CRL—56
ESE Dept., R e n s s e l a e r Po ly techn ic Inst itu t e , Troy ,
New York 12181.

2. H. Freeman , “Computer Processing of Line—Drawing
Ima ges ” , Computing Surveys, 6, (1), March 197!#, 5 7 — 9 7 .

].

—~~~ V
_ _ _ - - — -~~ -- -V .----- -

• - —

PART 2

DATA STRUCTURES

A. Chains

A chain is stored in an intege r array. There is a four—

word header followed by the actual chain data.. The header contains

the following information:

word 1: maximum number of’ chain links that this array

can hold

word 2: present number of links stored in this chain

word 3: 1 mean.s that the last link in the chain is a

part of a signal code ; 0 means that the last

link is a directional link

word 4: the index of the buffer in STATUS associated

with this chain

The chain links start in the f i f th word.. The end—of—chain code

is not stored in the chain and the link count does not count

anything other than the links actually in the chain. Word 3 of

the header is used when adding link.s to the end of the chain.

This word must always be set when adding links. When this value

is zero and a 4 link is added , an extra 04 must be added to

change the old 0 and the new 14. to a 0404 code. This is done only

when the last chain link is Q and when this is flagged by the
V

word 3 zero code indicating a directional link.

V Links are stored as series of three binary bits. A

multiple of three number of bits (30 for IBM , 36 for UNIVAC) at

the end (low order bits) of each word are used to store links.

The link in the highest bit positions used to store links in the

2

- - ~ - J__ -V — —~~
-
~~~~~-V-- - _ V ~~~~~ ~~~~~~~~~~~~~~~~ .--— - - - - - 

~~~~- ‘ ~~~~~--- 
- V.. -

~~~~~~~~~~~~~~~~~~~~~ 
—



first word that is used to stare chp in links is numbered 1. The

next three bits down correspond to- link 2 and so on.

B. PLANES

PLANES is the common block that contains the binary

plane .. Its de finition is /PLANES/ NY, NY, PLANE which appears in

the CRAP block data subroutine.. NY and NY are the dimensions of

the binary plane ; the plane is dimensioned (0: NX— 1 , 0: N Y — I ) . .

NX must be an integral multiple of the number of bits used per

word as defined in CRAPMC. PLANE Is an array of bits.. The binary

plane is stored by column~ in PLANE. Since NX is an integral

multiple of the number of bits used per word , a column fits in

an integral number of (consecutive) words.

C. STATUS

STATUS is the open chain status array .. It is de fined

as /STATUSI NUN, LENG, STATES In the block data routine were LENG

is 6 and STATES is an integer array dimensioned by NUN * LENG.

NUN is the maximum number of chains allowed to be open at a given

time. STATES is considered to be an array which contains NUN

(dimensioned 0 to NUM—.1) rows each of length. LENG all stored

consecutively. Each row corresponds to an open chain. The contents

of the words in a given row are:

word 1: the machine address of the chain corresponding

to this entry

word 2: 0 if this entry does not correspond to a chain;

1 if there is a chain open for which this row

is being used

3
- - - - - V . .. . ~~~~~~~~~~~~~~~~~ -V -~~~~~-. 

~~
_-,--

•



wor d 3; the last link in the chain processed — this will

either be the number of the last directional

link returne d by a call, to GET, the number of

the last link in the signal code that the last

returned value consisted of or from which the

last value originated (in the case of multiple

link codes), or, for code 0421, the number of

the link just before the start of the group

of links specified if this code has not been

completely returned or the last link in the

0421 code it this repeat code has just been

completely processed

word 4; 0 means tha t either the last value returned was

a directional link or tha t a signal code was

just completed; 1 means that the last value

returned was the 0 in a 01+04 signal code ; 2

means that a link repeat code has not been

completed by the last value returned; 3 means

that a group repeat code has not been finished

wor d 5; for case 2 in word 4 this is the link being

repeated; for case 3 in word 4 this is the

length of the group to be repeated

word 6:’ for cases 2 and 3 in word 14., this is the number

of links (total) that are remaining to be

returned for this signal code (code s 17, 20 ,

and 21)

Presently, NUN is set to 4 and STATES has 21+ elements.

14

-— ~~~~~~~~~~~~~~~~~~~~~ — ~~ 
-V V .—-- - --



D.. WORK

/WORK/ SIZE, TEMP is the temporary workspace defined

in the users program. T~~(P is an integer array of dimension SIZE..

E. Constants

There are two common blocks defined in the CHAP block

data routine that provide constants..

/XYCOMPI AX ,, A! are the x and y (respectively) components

of the link types.. AX and A! are eight-element integer arrays.

They contain the increments for the link types in order 0 to 7.

/CHAPMC/’ NBW , NLW , EX, BLANK, DIGITS , MAXINT are all

integer constants.

NEW — number of bits stored per word — This number must

be a multiple c’~f three. This is the number of

bits used per word for storing both chain

links and binary plane bits. The define d

number of bits are stored in the low order

positions of the words..

NLW — number of links stored per word - This number is

equal to NEW / 3.
EX — the internal character code for an ‘X ’ suitable

for printing under an Al format

BLANK — as above , but the character code for a blank

DIGITS - an eight element array giving the character

codes for the eigh t octal digits in order 0 to 7

MAXINT — the maximum positive machine representable

Integer

5

—— 

. ., - _•-___=_
.___J V  — -- - — - . - -—- — - • -  W.~~ ~~

. a-



PART 3

PRIMITIVE ACCESS ROUTINES

The routines in this section provide bit level access

in some way . They are all machine dependent ..

ADDR ( ARRAY) is an integer function which returns the

machine address of its (integer array) argument. For the IBM

implementation, this is an. assembly language routine. The U1~~VAC

version uses the routine LOC to provide this function.

GTLINK (BUF FER , I) is an integer func tion that returns

the 1th link In BUFFER.. BUFFER is the address of the first word

in the chain ( first word of the header). The routine computes

the word index in which the 1tn link is found . For the IBM

implementation, assemble language routines are used to extract

the link. UNIVAC uses the FLD function.

STLINK (LINK , BUFFE R , I) is the reverse of GTLINK. The

word in BUFFER where the 1th link is found is deterrnin.ed. The

1th link is set to the value of LINK. All other links in the

chain are unaf fec ted .

BPRINT (I’.7) is the binary plane print routine . This

routine contains a nested set of do loops that extract the

appropriate bits one at a time and put out an. ‘X ’ in. the print

line for each corresponding 1 bit and a blank for each 0. The

bits are extracted by FLD in. the UNIVAC version and by assembly

language routines for IBM.

APLANE ( CHAIN) adds a chain to the binary plane . It

uses GET to extrac t the links one at a time and adds the vertices

• to the plane if they are within the limits of the plane. Visible

6

—- — -~~~~~~
-- - ——--—--  

~~~~~~- - .- -.-—-~~- -~~~~~~- 
. .- --,---- -

~~ —

and invisible signal codes are detected and used to set a flag

indicating whether or not a given in range vertex should be

printed. This routine also detects the x and y coordinate

specifiers and alters its running x and y location pointers.

BPLANE (CHAIN) clears the binary plane (word by word)

and then uses APLANE to add the chain to it.

PRINT (CHAIN, 1W) uses B?LANE to add the chain to the

plane and then uses BPRINT to print the plane .

The above routines in the UNIVAC version. use FLD to

perform bit manipulation. The IBM version uses the three routines

lAND, ICR , and SHIFT.. These are all integer func tions. lAND and

IOR compute the bitwise and and or (respectively)of their two

arguments. SHIFT (WORD , N) shifts WORD N places left circular.

The shift is done on a basis of 30 bits. Bits shifted out of bit

2 are shif ted back onto the right end of the word.

7

V
V —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - —~---- — .. - 
‘- .- . -v •



PART 1~

DIGIT ACCESS

These routines are the standard input and output

routine s used by the remainder of the routines .. They have a

standard calling sequence so that they may be equ ivalenced .

A. Input

The standard input digit routine calling sequence Is

NAME ( UNIT, INI T, CHAIN , OVER) where NAME is an integer function.

This routine fetches the next digit from CHAIN or from logical

unit UNIT, which ever is appropriate. If INIT is true , this call

will not fetch the next digit but will reset the input. For a

chain, this corresponds to the beginning. For a input unit , this

corresponds to starting a new line .. The next call with INI T false

will get the first digit. OVER is set to true if there is no next

digit; in. this case , the functional re sult is zero .

GETDIG gets a digi t from a logical unit.

CHDIG gets a digit from a chain. This is done by

calling DIGCE ( UNIT , INI T , CHAIN , OVER, NUN) with a MUM value of

1 (normal mode). The routine ICHDIG ( VAL ) is associated with this

routine. It calls DIGCH with a NUN value of two . This causes

DIGC}I to set its chain pointer to point to the VALth1 link. The

next call to CBDIG will then return the VAL + 1st link. The value

returned by I CHDIG (and by DIGCH with mode 2) is the old value

of the chai n pointer (last digit number returned ).

Notice that the chM n or input pointers are kept in

V 

the routines. Only one chain or unit can be operated on. at a time

by these routines.

8

- 
- — V -V  — - - -~~ - - V



B.. Output

The standard output digit routine calling sequenc e is

MANE (UNIT, DIGIT, CLEAR , CHAIN) . This routine adds DIGIT to the

end of the chain CHAIN or the logical unit UNIT, which ever is

appropriate.. An error termination occurs if there is no room to

bold the digit. If CLEAR is set to true , the DIGIT is ignored

but the rem~inf ng digits stored within, the routine will be

cleared. For line routines, this means that the next digit that

is sent for output will begin a new line.

PtTTCK is the standard output routine. It increments

the link count in the chain and adds the digit. CLEAR is not

meaningful to this routine.. This routine can operate on several

different chains in succession without using clear since nothing

is stored within the routine.

PUTDIG is the punch card output rou tine. It is autorna-

tically initialized to start on a new card with a sequenc e

number of one. The CLEAR operation will reinitialize it.

NDUNB is a dummy output routine.

LISDIG is the printing routine. It calls routine DIGLIS

with mode 1.. Associated with this routine are th.ree support

routines that each call DIGLIS. They are :- SIGLIS (UNIT) (mode 2) ,

SPACET (UNIT) (made 3), and SIGEND (mode 4) .

DIGLIS (UNI T, DIGIT , CLEAR, CHAIN , MODE ) is the actual

printing routine. The normal operation of this routine is to

accumulate groups of five digits and then. ta add them to the print

line with a blank between. the groups. A check is made to be sure

that the group will completely fi~ on a line. Whenever a group

9
- - . - n rn - t~~~- - — - - C~~~~~4-- _.~s:i~ 

-~~~ - - - - - 
~~

- - - —-



will not fit on a line, the present contents of the line are

printed and a new line started for the group.. CLEAR works in a

similar fashion except that the last group need not contain five

digits.

Whenever the MODE is not 1 for DIGLIS , the call

specifies an output formatting’. Mode equal to 2 is the start of

a signal code speci fication. Any digits saved inside the routine

are added to the print line ( and the print line printed if

necessary to provide room for the digits). Assuming’ that there

is room on the line , a double blank followed by 04 is the n added.

If there is not room on the line, a new line is started with

04. The double blank is not added ~ f the 04 will start a line,

if the last entity added to the end of the line was a signal code

( which ends in a double blank ) .. Mode 3 adds a single space. Mode

4 (end of signal code) adds a double blank. These modes clear

out any digits ( going to a new line if necessary) and add the

appropriate number of blanks unless this is the start of a new

line. Mode 4 also sets a flag indicating the presence of the

double blank for use if the next function is mode 2.

DUMB (UNIT) is a dummy version of SPACET . Signal code

routines call a spacing function to identify signal code fields.

SPACET is used for printing. DUMB would be used otherwise unless

it is necessary to take certain special signal code fields into

account.

OCTAL is a special output routine. It calls LOCTA

(UNIT , DIGIT , CLEAR , CHAIN , MODE) with MODE equal to 1. This

call causes a running total (initial value of zero ) to accumulate

10

- - V  -~~~~-—~~~~~~~~~~~~~~~~~ --  —-- V ~ V V - -~~~~~~~~~~ ---~~~~~~ --



the digits sent to it. The digits form an octal number with the

first digit sent becoming the high order digit, etc. Calling

OCTIN (OUT) caunes a call to LOCTA with a mode of 2 to zero the

running total and to assign the old value of the total to OUT.

This routine set is used to form octal numbers out of signal

code- fields.

11-— — - - - - V  - •V? —___-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -——-V - — _~~~~
_V — - - -.- -— V-- - -v - - - - •- — —



PART 5 
-

ACCESS TO GROUPS OF DIGITS

These routines access several digits at a time.

QCOF24 (IN , OUT , UNI T, CRAIND , CHAINS , SPACE ) is the

variable length comment move routine (code 014,11 . . 04 127777) .

UNIT, CHAIND , and CHAINS are , respectively, the logical uni t ,

destination chain, and source chain to be used whichever are

appropriate. I’To provision is made for moving from one logical

unit to another. Movement takes place from the input using

function IN to the out put using subroutine OUT. Prior to calling

this routine, the 04 11 should have been moved . Also, a space

should have been added. This routine then moves the input to the

output until it finds a possible 04127777 group. If the group is

found, a space is added by SPACE ( unless there were no digits

moved between the original 014.11 and this group), 0412 is added,

another blank, and 1277 then added. If the group is not the full

04127777, the digits are output and processing continues. r~,n

error occurs if the input runs out before 04127777 is encountered.

No signal code end is flagged after the 04127777 is moved.

QMOVE (COUNT , IN , OUT , UNI T, CHAIND, CHAI NS) also

moves from the input (logical unit UNIT or chain CHAINS) using

function IN to the output (logical unit UNIT or chain CHAI ND )
V using routine OUT. The number of digits to be moved is given

by COUNT . The call is ignored if count is zero.

SIGNAL (IN, OUT, MOVE, SPACE, UNIT, CHAIND, CHAINS ,

CODE) is the general purpose signal code move routine, Prior to

the call , 04 and the two digits defining the code (given by CODE)

-V --V -- -- - ~~~~~~~ --V—~~~ -V - V .



should have been moved. Movement is performed as for QMOVE. MOVE

is the routine to perform movement of a given number of digits.

SPACE is the routine to be used for spacing (or flagging) the

output. This routine performs the proper grouping and spacing

of all recognized signal codes and flags th3se it does not

recognize. The end of signal code is not flagged by this routine.

PUTC~~ (CHAIN, MAXNUM , NODIG , NUMB ) is an output to

chain routine. NUMB is checked to make sure it is not negative

and is less than MAXNUM . If SO , a NODIG number of digits are

extracted one at a time from NUMB. The digits are extracted with

the low order octal digit last. The digits extracted are added

to the end of the specified chain.

MSTORE (NUMB, CHAIN, DIGITS) extracts a DIGITS number

of digits (low digit last) from NUNB and adds them in order to

the end of CHAIN.

LINIT (CHAIN , LINK , YES) is the first routine to look

at word 3 of the header of a chain. This routine checks to see

if, when directional link LINK is added to the end of the chain

CHAIN , a O1~04 code needs to be generated. If the last entity (if

there is One) in the chain is a directional link and if it is

zero and if the link to be added is a four , another 40 is added

to the chain so that when the 4 is added (not by this routine),
a 0404 code will result. If this addition is performed , YES is

set to true.

13

— —  —-~~—~~~~~ —-— ‘--V.- - -- ~~~~_V•V_ ~~~~~~~ V • . V~~~~~~~~~~~~ -V~~ç 
- V_— -



PART 6

ADDING LINKS

CLEAR (CHAIN) sets the link count to zero and the last

link type to directional in the specified chain. If the chain is

found in any used entry in STATUS (ie., is open), a termination

occurs.

INVIS (CHAIN) adds a 0401 code and sets the signal code

end flag.

VISIBL. (CHAIN) adds a 0402 code and a signal code end

flag.

COLOR , ELEVAT , GREY, XCOORD , and YCOORD all of (CHAIN ,

VALUE) use PUTCRF to add the desired VALUE after the appropriate

signal code determiner (O4xy). Far XCOORD and YCOO~ D, the value

is biased by 16384 to allow positive and negative values for

VALUE. In all cases, the signal cod e end flag is set .

POINT (CHAIN , VALUE ) operates line GREY..

NODE (CHAIN, NODES, INTERS) is similar to the above

except for having two fields to add by PUTCRF.

SCLIND ( CHAIN , MODE , SCALE , P05) has thre e fields to

add by PUTCHF.

ROTIND ( CHAIN, ANGLE ) adds a 0414 code. ANGLE is

converted to radians in the range 0 to 2 * P1. The whole part  of

this angle is added and then five digits are extracted from the

fractional part, high digit first. The digits are added in order

to the chain. The signal code end flag is set.

LINK ( CHAIN , LINKS , NTIM) optimizes its addition of the

V 
links. If NTIM is less than eight, the link LINKS is added the

14

-V_____________ —--—-V - -- - - -----.~~~~~~~ ---‘-- - —‘—-V- V ‘V



appropriate number of times. LINIT is used to see if a 0404 code

must be generated. The signal code end flag is not set unless only

one link was added and that link formed a 04014. code. For NTIM

values greater than seven, signal codes are generated and the

signal code end flag set. A 0417 code is generated if NTIM is

less than 512. For greater values of NTIM, a 0420 code is

generated. The number of digits needed to represent NTIM is

computed. The 0420 code is generated with a count field of this

size. An. error occurs if it is not possible to represent NTIM

in fewer than 12 digits.

LINKSQ (CHAIN, LIST , DIM , NTIM) generates a 014.21 code.

The appropriate fields are filled in with DIN and NTIM (by PUTCHF)

and th.en. the links are added. The signal code end. flag is set.

CHLINE ( CHAIN, ]~ELTX, DELTY) uses tL~e Bresenhan

algorithm to generate a straight line approximation. A pseudo

quadrant number is determi ned for the endpoint . ( 1 means oct ant

1 , 2 is octan.t 2 , 3 is 14.~ 4 Ls 3, 5 is 8 , 6 is 7, 7 is 5, and

8 La 6) The octant number establishes the link types in. the

approximation. The absolute values of DELTX and DELTY are

determined and ordered to find the limits of the approximation

loop. The standard Bresenham algorithm is then used to determine

the link sequence. Unless only one link is added and LINIT

produces a O4OL~ code, the signal code end flag is not set,

(Reference: Bresenham, J. E., “Algorithm for computer control of

V a digital plotter”, IBM Systems J.,, (Z~.), 1965, pp. 25—30)

15

- -- - __ L V ~~-V~ -V .~. .__________ -



PUT (CHAIN, LINK, FLAG) contains a mixture of functions.

Arguments are checked in all cases. If link is in the range 0

to 7 (directional link), it is added, possibly with a 0404.

signal code generated by LINIT. For signal code values of LINK,

the appropriate case is selected and fields, if necessary, are

added by PUTCBF. An unrecognizable value for link results in. an

error.

Two routines associated with PUT are PPUT (CHAIN , LINK,

FLAG) and PCLOSE ( CHAIN) . These routines pack link repeat signal

codes. PPUT keeps a count ( initially zero) of the number of

consecutive occurrences of a link. ~.Vhen a different  link or

a signal code occurs, LINK is called to pack the number of

occurrences found. The new signal code is Output or the new

link is recorded with a count of one. PCLOSE causes the remaining

link and count in the routine to be cleared out by LINK. PUT

is used to add signal codes. PPUT is equivalent to PUT except

that it maintains this internal counter which prevents this

routine from being usable for more than one chain at a time.

PCLOSE is necessary to allow the routine to be used for a

different chain. PCLOSE operates by calling PPUT with a link

value of —1 ~ PUT would flag an error for this argument.

16

V —— - V.  - -  - —-  -‘ . --- V .. —-‘V - —-V



PART 7

INPUT AND OUTPUT

INPUT (UNIT, CHAIN) is the actual chain input routine.

A check is first made to see if the chain is open (present in a

used entry in. STATUS). Given that it is not open, digits are

read in. from the desired unit one at a time and added to the end

of the chain. When. a 0 is encountered , the next digit is checked

for the possibilty of a signal code. If the next digit is not a

4, the 0 is output and processing resumes. When. a code is found,

SIGNAL. is used to add it to the chain. A signal code of 0400 is

not added to the chain. and encountering- such a code ends the

input process. The signal code end flag is set appropriately.

OUTPUT (UNIT, CHAIN) , the punch routine, is nearly

identical to INPUT. In. this routine, however, all signal codes

including 0400 are punched. Encountering a 0 punches it but

causes a check for a possible signal code. Vthen a signal code is

found, either SIGNAL is used to output it or (in the case of 0400),

the code is punched directly. Encountering the end of the chain

is recognized as end of chain and causes a 0400 code to be

punched.

LIST (UNIT, CHAIN), the listing routine, differs from

OUTPUT only in that calls are made to SIGLIS and SIGEND, when

• appropriate , to forma t the output.

Notice that output routines reconstruc t the end of chain

signal code tha t the input routine threw away. The input routine

does not consider the 01+00 code when deciding to set the end

signal code flag since this code is not at the end of the chain.

17

— - _. ___a— ——..-----— r—— ~~ - —r ~~~~~~~~~~~~ V — 
~~~~~ 

.ç V~~ V -
—

PART 8

V
SEGMENTING

NMOVE (CHAI ND, CHAINS, SIG1 , SIG2 , OUT, END, SIG, LAST)

moves a chain segment. Once started, this routine will move

from CHAINS to CRAIND using OUT as its output routine, that part

of CHAINS up to, but not including, a signal code of type SIGI

or SIG2. Links are extracted one at a time from CHAINS. If the

end of chain is encountered in doing this, END is set and the

routine returns. If the digit is not 0, it is output. For a

digit of 0, a check is made for a signal code. The 0 is output if

the next digit is not 4. A 014. combination , flagging a signal code ,

causes the next two digits to be fetched and checked. If the code

is not SIG1 or SIG2, SIGNAL is used to move the signal code

fields once the O4xy digits are moved. When SIG1 or SIG2 is found,

the digits Okxy are not added to the chain and processing stops.

SIG is set to the signal code determiner that was detected. Also,

LAST is set to a 1 (0 otherwise) if the last entity moved to

CHAIND (not counting the terminating signal code) was a signal

code.

VSEG (~ HAIND , CHAINS, LIMIT 1 , LIMITE , SI~Y, TEMP , N)

moves all segments of a given value. Two ranges of values are

established to cover the two possible value divisions. If the

• value 0 (default attribute value) is in the set to be moved ,

a signal code of type SIGY and with a value field of zero

(consisting of N digits) is generated. The routine switches its

state back and forth between actual transfer (using PUTCH) and

just ~,assing the input (using NDUMB). The initial state depends

18

• - --- — - --V - --- --V. . - --‘VT - - —

on whether or nat 0 is in the set of values to be moved. NMOVE

is used to move all portions up to the occurrence of the signal

code SIGY. When SIGY is found, the temporary array TEMP (N) is

used to accumulate the digits in the signal code field. The value

is checked to see if it is In range. If so, a signal code of type

SIGY with the value accumulated is produced. Otherwise, the state

is changed to pass mode and the signal code is not produced in

cHAIND.

NTHSEG (CHAIND , CHAINS, LIMIT 1 , LIMIT2 , SIG1, SIG2,

NSIG , INIT) moves segments by number. SIGI and SIG2 are the

signal codes of opposite attributes (such as visible and invisible).

Movement takes place only for segments of type SIGI with

numbers in range. Movement occurs possibly in two phases; if the

limits specify a double range, the move portion of this routine

is used twice with different limits. The state of this routine

switches back and forth as the chain segments either turn into

segments with attributes SIG1 or 51G2. If INIT is 1 (specifying

that the default attribute is type SIG1) and segment 1 is in range,

NSIG (CHAIND , CHAINS) is called to generate the initial signal

cod e corresponding to the default attribute. INIT is zero if V,•his

is not to be done. From then on, starting with the appropriate

initial state, segments are either moved or passed (PUTCH or

NDUNB) until SIG1 or 51G2 is encountered by NMOVE. If the chain

becomes of type SIG1 , the segment count is Incremented. The

limits are checked to see if this next range should be moved.

If code SIG2 is encountered , the segment counter is not incremented

and the state changes to pass. For segments with a move state,.

19
-—- V_ - .nc-,.-z_ - t.i.a._ ._z— _ _ . _ _

~
-
~
- _ —-V

~~~~~~~~~~~~~ 
V fl V_~ - - - •

~
. - — - — - —



the signal code that is appropriate is generated and SIGNAL is

used to move the as yet unpassed fields to the outpU t. chain.

Movement will then proceed ufl.til the SIG2 code is encountered or

a SIG1 code causes the segment counter to be Incremented out of

range.

Notice that the routine NMOVE produces a flag indicating

the last .entity moved (signal code or directional link). VSEG

and NTHSEG put this value into the chain field for this whenever

the move was an actual transfer. Also, generation of signal

codes, either initial or as a result of transfer, are also so

flagged in the signal code end flag in the chain. -

MARKER (CHAIND , CHAINS, LIMITI , LIMIT2) is a separate

routine. If LIMIT1 is out of range for markers ( ie. ,  movement

starts at beg~tnnfng), a check Is made for the possible need of

a 0404-f code when the two chains are joined and the routine starts

movement from the beginning. Otherwise, CHAINS is passed until

NMOVE finds a marker which this routine recognizes as LIMIT1.

When this is found, a signal code with this value is added to

CHAIND. Movement then occurs, using NMOVE, until a marker is

found. The marker code is always added to the end of CHAIND.

However, if the marker is equal to LIMITa, the operation of this

routine ends. The signal code end flag is set whenever a signal

code (including the marker codes) is added to CHAIND.

20

. - -_
~~

- — -  - •  — — — V - 
~

VJ
~
____

~~ 
- - —



PART 9

SEGMENT ROUTINE S

COLORD , ELATED, and GRETI) all of ( CHAIND , CHAINS , LIMIT1 ,

LIMIT2) use VSEG to move the desired segments. They also check

the limits to be sure they are valid for the type of code being

found.

INVSEG, VISSEG, NCOLOR, NELEV , and NGPEY all of

( CHAI ND , CHAINS, LINIT1, LIMIT2) and their corresponding

initial signal code routines NINV (a dummy routine since it is

never called) , NVIS, NCOLS, NELVS , and NGRYS use NTHSEG to move

the desired segments.

21

- — V - - - - -. ~,- .- -- _ .  - — - - -



PART 10

SEQUENTIAL ACCESS

INITXY (CHAIN, X, Y) scans for the last x and y coordinate

specifiers before the first link. X and T are given initial values

of 0. When an actual link is found, the routine returns.

Otherwise (signal codes), the signal code is checked to see if it

can generate a link. Those that definitely can not are passed.

Those that definitely do cause the routine to return. For link

repeat codes , if the count is zero , the code is passed. For

group repeat codes , if the count is zero , the input pointer is

repositioned past the link group ; if the group length is zero ,

the code is passed. If these codes do represent links, they cause

the routine to return.. Whenever an x or y coordinate specifier

is encountered, the value is computed and the appropriate value

is assigned. The last values so assigned will be returned.

OPEN ( CHAIN) scans STATUS. If this chain is found in

an active entry, an already open error occurs.. Assuming that

the chain is not open and that there is room for it, the STATUS

entry will be set as active and to be used for this chain. The

chain field is set to the entry number in. STATUS. The STATUS

entry is also set so that GET will start from the beginning.

CLOSE (CHAIN) looks for the ( assuming there is one )

used entry in STATUS associated with this chain and sets it to

be not used.

GET (CHAIN, FIRST, SECOND ) first checks to see if the

chain is open by matching the field in the chain with the STATUS

entry. If the chain is not flagged as being open b the

22 

-~ m.- . •---.-- - —  —.- - -— --V — -• _ - -_ _ --,,•-- - • -



corresponding entry, 10 , 0 are returned for FIRST and SECOND.

For an open chain, the action depends on the value of the fourth

entry in the STATUS entry. A value of one will return the extra

4 in. the 0404 code and set the entry back to 0 for normal

processing on the next call . For mode 2, the link is returned ,.

the count decremented , and if 0, the STATUS entry set to zero

for the next time.. A mode of 3 will cause the appropriate link

in the group to be returned , the tatal count to be decremented ,

and , if 0, the mode to be reset and the last link encountered

pointer to be updated to the end of the code group. If the mode

is zero , this implies normal processing. A normal link is

returned and the link counter updated if the next entry is a

link.. For field value signal codes, OCTAL Is used to produce

the octal number and the link counter is appropriately updated.

Signal codes that produce no output are passed. Link or group

repeat codes cause the mode to be set accordingly and the STATUS

fields set. Operation then proceeds as if the routine had been

entered in that mode . Link or group repeat codes that do not

specify links are skipped. Notice that the last link encountered

indicator is set by the result of ICI~~IG and that ICEDIG is used

to position the input to the desired point.

23

• —_ _  — ~- -s-— - .  • - — - - -~~~~ -~~~- - ~~T



PART 11

ARRAYS OF LINK S OR VERTICES

ARRAY (CHAIN, LIST, N , L, OVER) is a simple loop that

uses GET to extract links. Signal codes are ignored. Each link is

added to LIST with an appropriate check for array overflow made.

INVERT (CHAIN , LIST , N , L, OVER ) first calls ARRAY

with the same arguments. If this call was successful, elements

from opposite ends of the filled in. portion of LIST are

interchanged forming their inverse form as they are moved. If

there is an odd number of elements (one element with no element

to interchange with) this element is inverted separately.

CHPAX (CHAIN, LIST, N, L) operates just like ART~AY

except that overflow is an error and that the links are converted

to PAl form before inserting into the LIST. The element beyond

the last link filled in is set to zero .

VERTEX (CHAIN , XCOOPD , YCOORD , N~ L, OVER) sets the

first values in XCOORD and YCOORD by using INITXY. From then on,

each link produces a new pair of x and y values appropriately

incremented beyond the last pair of values. All signal codes

except x and y coordinate specifiers are Ignored. These last two

codes update the corresponding element of the pair of the last

vertex computed. A check is made for array overflow before

entering a new pair of values.

— -- ~~~-V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

——-~~~~~~~~~~ — - V — — ‘ — -~~~~~~~~~~~~~~ - - —~~ - - - ~ —~-~~ -V - -V - - - - _______-- -~~~

PART 12

ANGLES, DISTANCES , -AND EXTENTS

ANGLE (CHAIN, NP1, NP2, ANGLE)first orders NP1 and NP2

remembering what node was specified first. Links are extracted

one at a time with the x and y increments of these links being

accumulated. When NP1 is encountered, the x and y coordinates

are saved. The scan then continues for NP2. Once found, the

angle is computed. If the nodes had to be reversed, the angle

is reversed also. X and y coordinate specifiers are the only

signal codes that are used. A special check is made if the

node desired is the last node of the chain.

MAXMI N (CHAIN , XY) takes each link, one at a time ,

and uses it to update its running x and y pointers. X an~ y

coordinate specifiers are also used. After each link has been

seen, the new x and y values are compared against the old maximum

and minimum values to decide the new running maximu~i and minim um

values.

PDIST (CHAIN , NODE1 , NO DE2 , DIST) orders NOD~ 1 and

NODE2. The chain is scanned for the low node number. The

coordinates of this point are remembered. In determining these

coordinates, links up date running x and y counters and x and y

coordinat e specifiers set these counters. Once the high

numbered node is found, the distance can be determined from the

x and y change between this point and the point remembered.

WHEX (CHAI N, ITYPE, W) has an array tha t gives , for

each link and each extent type , the increment that this link

V
gives in the specified direction. Each link is taken one at a

25

V - - - - - - ----—- V— V - - -
— --

time and used to update the present extent in the appropriate

direction. A running maximum and minimum extent are maintained.

The final value is the difference of the ma~d.mum and minimum

encountered extent.

LENGTH (CHAI N, CHL , LCF) has two running counters to

remember the number of even and odd links encountered. For each

link, it is decided whether or not it should be included in. the

count (depending on the value of LCF and on. the presence of

visible or in.visible signal codes encountered)~ The calculated

length is derived from the number of odd and even lengths

included.

RESID (CHAIN, LRES 1 , NLPESI , LRES2 , NLRES2) first

determines the end point of the chain by keeping a running x

and y counter which are incremented by each link and which are

set by x and y coordinate specifiers. The initial and final

coordinates are used to determine the displacement of the chain

and the pseudo quadrant in. which this displacement occurred

(1 means octan t 1 , 2 is 2, 3 is 8, ~ is 7, 5 is 4, 6 is 3,

7 is 5, and 8 is 6). The link types for each of these octants

is looked up and the number of each link computed.

PNT CND (CHAI N, XI’, fl’, DMAX, DMIN, LMAX, LMIN) also

keeps running x and y coordinate pointers. X and y coordinate

specifiers update these pointers as well as links. After each link,
• the (square o f) the distance between the endpoint of the lInk

and (XI’, TI’) is computed and compared against the running

ma~d.mum and minimu~i distances (initial value is the distance to

the origin of the chain) . If this new distance becomes either

26
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - - - ~~~ •~~~ V~~~ • V



the new maximum or the new minimum, the vertex number is also

recorded in the appropriate variable . The correct distances are

computed at the end.

LNCI~ (CHAIN , Xl , Ti , X2, Y2, CLDMAX , CLDMIN , JMAX ,

JMIN) records distances relative to the line specified. The

points on the line are used to compute , f or each link, the

corresponding increment in perpendicular distance to the line

that this link produces. Starting with an initial distance

computed from the origin, each link is used to update the distance

and possibly update the maximum and minimum recoreded distances.

When. a new minimum or maximum is encountered , the vertex number

is recorded. X and y coordinate speci fiers also up date the

distance but are not used to determine maximum and minimum.

27

- ---- - - ---- -— - - -- - - V V ~~~~~~ 
-

~~~~~~~ 
-

P ART 13 -

AREAS AND MO~~ NTS

ECAPEA (CHAIN, 3) uses the standard area formula. A

running y counter which is incremented by 1ink~ and set by

y coordinate specifiers is kep t.

CENTRD (CHAIN, X, T) uses ECARE A to find the area

and MOM1 to find the x and (negative) y axis moments. The

centroid coordinates are the appropriate ratios of these values.

MON T and MOM2 (CHAIN , DEGREE , MOMENT) use MOM ! A and

MOM2A, respectively, to find the given moments. Values for the

translated origin. are taken from INITXY.

MOMIA and MOM2A (CHAIN , DEGREE, INI TX, flIT!, MOMENT)

are identical except for the actual formula used to determine the

moment. They both keep a running y counter which is incremented

by each link. The y value is the distance to the axis. The initial

value of y is appropriatelt computed for each axis type. For each

link, the x and y increments relative to the axis are computed.

Given the x and y increments and the y value , the increments

to the mome nts are computed and summed.

LMOM 1 (CHAIN , Xl , X2 , Ti , ya, FMNT) computes the first
moment as the area times the perpendicular distance from the line

to the centroid of the chain.

LMOM2 (CHAIN , Xl , X2 , Ti , Y2, SMNT) uses MOM2A to

compute the moment if the line axis is vertical. Otherwise, the

increments in x and y relative to the line are computed for each

link type. Each link increments the present distance to the line

counter (which is initialized by the origin of the chain) . The x

and y Increments and distance are used to increment the moment .

28

- - .
• • a ~~~~~~~~~ -~~ -• -~ -~~~-- — —r ——- - - - —— - — - V

PART 14

SPECIAL FUNCTIONS

AU TO (CHAIN, NA, ACORR , M) fills the temporary workspace

with the links of the chain. For each shift value from 1 to the

number of links / 2 (a shift of 0 is automatically a correlation

value of 1), a do loop computes the standard correlation

function.

CROSS (CHAIN , CHAIN2 , CORR , J) first uses ARRAY to put

the links of chain 2 into the temporary workspace. These links

are then moved to the end to make room for ARRA Y to plac e the

links of the first chain. The correlation value is computed in

the standard way.
-

~ AYP EN (CHAI N , MAXBAY, MAXPEN, BATAR , PENAP, if) is a

mixture of area and distance functions. RESID is used to determine

the endpoints of the segment. INITXY provides the starting point.

The distance between them is then computed. The operation then

proceeds in a similar fashion to LNCHD and LNOM2. The increments

in x and y relative to the line for each link is computed. A

running distance is kept. For each link, a new distance is

computed and considered in the maximum bay or peninsula depending

on whether or not the distance is positive or negative. A flag

is kept to remember on which side of the chord the present point

is on. If the side does not change , the area for that side is

incremented by the link. When the side does change , beside

changing the flag, this link (which crosses the chord) adds an

increment of area to both sides of the chord . The area of the

two triangles formed by the link, the chord , and the new and old

distance vectors are added to the appropriate side areas. Notice

29

*_ —• ~~~~~~~~~~~~~~~~~~~~~~~ -— ~~- .-- --~~ — -,-•--~~—- --V— -
V - • ~~~~~~~~~~~~~ ~~~~~~~~~~ - - -— -

-- - --- - -— - - - -

that the distance is inc remented before the area is computed so

the area formula is modified slightly.
-

CENPRO (CHAIN , PROFL, DIM , if) first finds the centroid

which is rounded to the nearest Integers. For each link, the

residue distance to the centroid is computed and recorded in

PROFL with an appropriate check for overflow. The index of the

maximum distance is recorded by keeping a running maximum

(absolute) distance and a running index number of the maximum

dist ance. Also, as the residue calculations proceed , the

displacements from the centroid and the x and y increments of

the l.jnk are used to determine the direction of rotation and

the sign of the profile distance. Once all vertices are computed ,

the profile array is shifted to bring the maximum distance to

the first position. Also, normalization occurs during this shift.

The shift consists of taking the maximum element, moving it to

position one, moving the old element that was in position one to

where it belongs, etc. If this does not move all elements (shift

was not relatively prime to the number of elements), a new subset

of elements one greater in index is then moved until all have been

shifted.

XPROFL (CHAIN , FLAG , PPOFL , N , INDEX) fills the

temporary array space with the links of the chain. If FLAG is

false, the chain links are rotated to bring the lef t edge to the

right. PROFIL is then used to compute the profile.

TPROFL (CHAIN , FLAG , PROFL , N, INDEX) also fills the

temporary array with the links and rotates them so as to allign

the desired edge with the right edge of an encasing rectangle.

30

— -a- ~~ - - - ---- —- — - - — •

PROFIL computes the profile.

PROFIL (PRO FL, DIM , INDEX, LL) computes pro files. LL

is the number of links in the temporary workspace to be used.

PROFL, DIM , and INDEX correspond to PROFL , N , and INDEX in the

XPROFL and YPPOFL headers, all resDectively. The extents of the

encasing rectangle are determined from the minimum and maximum

extents along with determining twice the area. The area is

completed by a straight line from (0, 0) to (x, y) (the end of

the chain). The greatest x (and the number of the link arriving

there) on the lower border is found . If the chain encircles in

the wrong direction, it is inverted and the maximum lower edge

x link number is also changed. For each link from the maximum

lower edge x and up along the chain (possibly wrapping around

for a closed chain), the x and y increments are examined. Upward

directed links establish new pro file values. Sideward directed

links update only the second value of the old pair. If a downward

directed link is also directed outward, it updates the 3econd

value of the pair down a value (a later upward directed link

will set these values again) . Downward and inward directed links

forc e the routine into a d i f ferent mode where it will examine

links until they move up again to the value of y at which the

V curve started moving down. No action is taken until the curv9 is

back out of the peninsula or until the curve breaks out and

is moving outward. The routine stops when the curve reaches the

top of the encasing rectangle. The end profile pair values are

given the lengths of the encasing rectangle where appropriate.

31

- - - -— -——————- — - —— .——--— - V

MATCH (XX, YT, PROF1 , Ni , PROF2, N2) matches the output

of PROFIL. It maximizes the area of overlap of encasing rectangles.

The operation takes place in two parts. In the second, one chain

is shifted sufficiently to overlap another completely. In. this

case , the area of overlap is given by the length of the regions

in which the profile lengths overlap times the distance one

profile can be shifted into another. The minimum distance between

pro file values (starting from an absolute maximum of the sum of

the encasing rectangle sides) is found. A d i f ferent looD finds

this distance depending on which chain overlaps which in length.

The first phase of the rout±ne is for the case ~-:here the lateral

shift values being considered are insufficient to shift one

chain completely overlapping the other. This portion checks for

both the case were chain 2 is shifted in from above and from

below. The maximum possible inward shift (mi nimum distance between

pro file values) is found and the area of overlap (inward shift

times length of overlap) determined. As the maximum area is found ,

the area is saved in a running maximum area value and the inward

and lateral shifts corresponding to this value are saved.

SUBCH (CITAIND , CHAIN S, VERT1 , VEPT2) looks for VERTT

by passing everything until it is found . Everything from then

on until VERT2 or the end of the chain is PUT onto CHAIND .

Links cause the vertex counter to be incremented. Non—links are

transfered but do not increment the vertex counter.

INTERS (CKAIN 1 , CIiAIN2, Ji , ITYPE , INLCHA , INLCHB,

NUMINT) uses the method of overlapping rectangles to minimize the

number of tests that must be made. The links of both chains are

32

— — .-—-~~~~~~~~~~~~~~~~ -~~----- - -‘- —-— -~~~~~ -- - -

found and used to establish two arrays of x and y coordinates at

opposite ends of the temporary array space. Another array is

created to hold the vertex numbers in both chains that are

wi thin the overlapping rectangles. The program iteratively

examines all vertices in the overlapped area of the two chains

and determines those vertices of the two chains still within that

region. Given this new subset of vertices, the rectangular area

in which the vertices of the two chains lie is determined and

overlapped to limit the region in which possible intersections

occur. Onc e this has been done to the point at which no fur ther

reduction is possible , che intersections are found . All vertices

lef t in chain 1 are checked against all vertices in. chain 2 for

a match (intersection type 1) . If there is no match , the vertices

are checked with the next vertex in the ’~chain to see if they form

a unit rectangle (type 2 intersection) . A check is made for

the case where the next vertex is outside of the rectangle.

(Re ference: Freeman , H., “Techniques for the Digital Computer

Analysis of Chain-Encoded Arbitrary Plane Curves ” , Proc. National

Electronics Conference, Chicago, Illinois, vol. 17, pp. 42 1 —432 ,

October 1961.)

POLYGN (CHAI N, XCOORD , YCOORD , ICL, TOL, IC, JJ , K) uses

temporary workspace as the open stack. The x and y coordinates

are generated in. XCOOPD and YCOOPD. For a closed chain, the

vertices with the maximum and minimum x values are found and

the minimum is added to open and closed (ICL) and the maximum is

added to open. An open chain has the first vertex put in closed

and the last in open. Depending on the slope of the chord that is

33__________
- —~~~~~.

being considered as an approximation, either the vertical or

horizontal distance to the chain is used to approximate the true

perpendicular distance. The vertex with the maximum distance is

recorded and the true distance evaluated. If this distance is

greater than the tolerance, the new vertex is added to open and

the process repeats. Otherwise, the chord is a good approximation

and so the open vertex is moved to close. Processing continues

until no more open vertices remain (all chords have been. found

satisfactory~. (Reference: Ramer, U., “An Iterative Procedure

for the Polygonal Approximation Of Plane Curves”, Comouter Graphics

and Image Processing, (1972), I, pp. 244—256)

ROSCAL (CIIAIND , CHAINS, ANGLE , XSCALE, YSCALE) extracts

links from CHAINS and approximates them with straight lines to

form CHAIND. Signal codes encountered are moved to CHAI~D. X and

y coordinate specifiers are transformed relative to the origin

and are put into CHAIND. For each link, the new x and y coordinates

after scaling and rotating (in that order) about the origin are

computed (relative to the start of the chain). Starting from the

end of the last link generated, other links ~re generated to

approximate a straight line to the new ooint. This procedure is

an iterative procedure that finds the slope of the straight line

to the new point and determines where a new link would fall

relative to this line . Links generated will approximate the

transformed chain only on. a link by link basis and only as well as

the underlying grid allows the links to end a t V a given point.

314

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - ----. ‘~ - -

PART 15

CREATING A VERSION OF CHAP

This section summarizes the actions necessary to create

a working version of CHAP for a given computer.

A. Block Data Routine

A set of values must be chosen for NX and NY , the size

of the binary plane. NX must be an integral multiple of the number

of bits per word to be stored. Also , PLANE must be defined to be

of size NX * NY / number of bits per word to be used.

CHAPMC must be carefully checked. NB?! must be set to the

number of bits per word to be used. ThIS must be equal to three

times NLW, the number of links to be stored per word. The

definitions of LX, BLANK, and DIGITS may have to be changed

depending on the manner in which the given FORTRkN compiler

expects definitions of character constants. Finally, MAXINT

must be set to the highest machine representable positive integer.

B. Bit Manioulating Routine s

Probably the easiest routine to write is ADLR . This

routine must return the address of its argument. The argument

will always be an integer array. The value returned must be an

address assigned in some unique way. Two chains that occupy

different areas c-f memory must be given different address values

and a given chain must always be given the same resultant address

value. If two chains are identical but are di f fe ren t memory
V arrays, they have di f ferent values returned by this function.

(This is to say that returning the address relative to the start

35

-

~~~~~~~~~~~~~~~~
-- - -  - - V V - - 

~~~~~~~~~~~~~~~~~~~~~~~ P—~~--_____ 
! . .• - . ~~~

- V

of the routine as opposed to the start of the core load or

something to that e f fec t is not acceptable) .

The best model for the other routines that need to be

modified is the UNIVAC version. In this version, there are two

routines that fetch a set of bits from a word (GTLINK and BPRINT)

and two that sore into a word (STLINK and APLArTE). The UNIVAC

fersion uses FLD (i, k, e) which is both. a function and a

pseudo—variable. I is the first bit to be used (where 0 is the

leftmost bit in a UNI VAC word) , k is the number of bits to use ,

and e is either the word to fe tch from or the word to store into.

A similar function and a subroutine which operates like this

pseudo variable must be written. ~iatch out for the bit numbering

in the computer in question; the expressions for the bits to be

used in the UNIVA C expressions may have to be modified if the

numbering of the bits is different.

There are no other known problems. Generally, if CHAP

compiles on a given computer , it will run and adjust itself to

the configuration.

If the FORTRAN in question does not pass the address

of , for example, A (1, 3), but instead creates a temporary , this

should be noted in the user’s manual. This means that arrays of

chains are not permitted in this FORTRAN.

36

________ ~_~V_ ~ . _
~~~~~~ —~~~- - ~~~~~~~~~ ~

V
~VWV V - ~~ a--



PART 16

CALLING STRUCTURE

A. External References

The following is a list of all external references

made by routines in the IBM version of CHAP. The UNIVAC version

differs only in the machine dependent routines.

ANGLE: CLOSE GET OPEN XYCOMP

ARRAY; CLOSE GET OPEN

AUTO; ARRAY WORK

BAYPEN: CLOSE GET INITXY OPEN RESID XYCOMP

BPLANE I APLANE: CItAPMC CLOSE GET INITXY IOR OPEN

PLANES SHIFT XYCOI4P

CENPRO : CENTRD CLOSE GET INITXY OPEN XYCO?~

CENTRD: ECAREA MOM1

CHDIG: DIGCIT

CHLINE : LINIT PUTCH

CEPAX: CLOSE GET OPEN

CLEAR; ADDR STATUS

CLOSE: ADDR STATUS

COLOR: PUTCH PUTCHF

COLORD: VSEG

CROSS :- ARRAY WORK

DIGCK: GTLINK

DIGLIS: CHAPMC

ECAREA:- CLOSE GET INITXY OPEN XYCOMP

ELATED: VSEG

ELEVAT: PUTCH PUTCHT

37

- .——  — ~~~~~~~~~~~~~~~~~~~~ ~ VVVV ~~~~ -~~~~~~~~~~~ - . ________



GET: ADDR CHDIG DU~~ GTLIIIK ICHDIG NDUMB OCTAL OCTIN

QMOVE SIGNAL STATUS

GETDIG: CHAPMC

GREY: PUTCH PUTC~~

GREYD: VSEG

GTLINK:- CKAPMC lAND SHIFT

ICHDIG: DIGCH

INITXY: CHDIG DUMB ICHDIG NDUMB QMOVE SIGNAL

I1qPUT; ADDR DUNB GETDIG PUTCH QMOVE SIGNAL STATUS

INTEBS: ARRAY LNITXY WORK XTCOMP

INVERT: ARRAY -

INVIS: PtTTCN

INVSEG; NTNV NTHSEG

LENGTH: CLOSE GET OPEN

UNIT: GTLINK PUTCH

LINK: LINIT MSTORE PTJTCI!

LINKSQ:- MSTORE PUTCH

LISDIG: DIGLIS

LIST: CHDI G LISDIG QMOVE SIGEND SIGLIS SIGNAL SPACET

LNOM 1 ; C~~ mD ECAREA

LMOMZ; CLOSE GET INIT!! MOM2A OPEN XYCOMP

LNCHD: CLOSE GET INITXY OPEN XYCO~~

MARKER: CKDIG GTLINK NDUMB NMOVE PUTCH

MAThI~ : CLOSE GET INITXY OPEN XYCOMP

MOM1; INITXT MOMIA

MOM1 A: CLOSE GET OPEN XYCO}~
4

MOMZ: INITXY MOMZA

38

- - 

- —

~~~~~

- - - ~~~~~ V - —. - .

MOM2.&; CLOSE GET OPEN XYCOMP

M~STORE: PUTCH

NCOLOR:- NCOLS NTHSEG

NCOLS; PUTCE

NELEV: NELVS NTHSEG

NELVS: PUTCH

NGi~EY: NGRYS NTKSEG

NGRYS; PUTCH

NMOVE; CHDIG DUMB QMOVE SIGNAL

NODE: PUTCH PUTCHF

NT1TSEG: ADDR CHAPMC CRDIG DUMB NDUMB NMOVE PUTCH QMOVE

SIGNAL

NVIS; PUTCH

OCTAL; LOCTA

OCTIN: LOCTA

OPEN: ADDP STATUS

OUTPUT: CHDIG DUMB PUTDIG QMOVE SIGNAL

PCLCSE: PPU T

PDIST: CLOSE GET INITEY OPEN XYCOMP

PNTCND: CLOSE GET INITXY OPEN XYCO~~~

POINT : PUTCH PUTCHF

POLYGIT: CLOSE GET INITXY OPEN WORK XYCOMP

PPUT :- LINK PUT

PRINT / EPRINT: BPLANE CKAPMC lAND PLANES SHIFT

PROFIL: WORK X!COMP

PUT: LINIT PUTCE PUTCBF

PUTCH : STLINK

39
— ~~~~~~~~~~~~~~~~~~~~~ - -- --

~~~~~~~~~~~~ -~~ — - V .
~ 

- ___________



PUTCBF: PUTC}!

PUTDIG: CKAPMC

RESID: CLOSE GET INITXY OPEN XYCONP

ROSCAL : ADDR CLOSE GET INITXY OPEN PCLOSE PPUT XYCOMP

ROTIND : PUTCE

SCLIND: PUTCH PUTCHF

SIGEND: DIGLIS

SIGLIS: DIGLIS

SIGNAL: QCO~~

SPACET: DIGLIS

STLINK : CEAPM C lAND IOR SHIFT

SUBCK: ADDR CKAPMC CLOSE GET OPEN PCLOSE PPUT

VERTEX: CLOSE GET INITXY OPEN XYCOMP

VISIBL: PUTCH

VISSEG: NTKSEG NVIS

VSEG: ADDR CKAPMC CHDIG DU~Vrn NDUMB NMOVE PUTCH~

WH~~~: CLOSE GET OPEN

XCOOPD; PUTCH PUTCH?

XPROFL: ARRAY PRO FIL WORK

YCOORD: PUTCH PUTCHF

YPPOFL: ARRAY PROFIt WORK

V 3. Referencing Modules

This list , again for the IBM version, lists the modules

that reference a given other module.

1~O
- 

~~~~~~~~~~~~~ - - _7_
~ - —

ADDR: CLEAR CLOSE GET INPUT NTHSEG OPEN ROSCAL SUBCH

VSEG

ARRAY: AUTO CROSS INTEPS INVER T XPROFL YPROFL

BPLANE : PRINT

CENTRD: CENPRO LMOM1

CHAPMC: BPLANE / APLANE DIGLIS GETDIG GTLINK NTHSEG PRINT /

BPRINT PtJTDIG STLINK SUBCH VSEG

CHDIG: GET INITXY LIST MARKER NMO VE NTHSEG OUTPUT VSEG

CLOSE: ANGLE ARRAY BAYPEN BPLANE / APLANE CENP RO CHPAX

ECAREA LENGTH LMOM2 LNCHD MA)C~1IN NOM t A MOM2VA PDIST

PNTCND POLYGN PESID ROSCAL SUECH VERTEX WHEX

DIGCH: CHDIG ICHDIG

DIGLIS: LISDIG SIGEND SIGLIS SPACET

DUMB: GET INITXY INPUT NMOVE !~1THSEG OUTPUT VSEG

ECAREA: CENTRD LMOM I

GET: ANGLE ARRAY BAYPEN BPLANE / APLANE CENPRO CHPAX

ECAREA LENGTH LMOM2 LNCRD - MAXMIN MOM 1 A MOM2A PDIST

PNTCND POLYGN PESID ROSCAL SUBC}[VERTEX WHEX

GETDIG: INPUT

GTLINK : DIGCH GET LINIT MARKE R

lAND: GTLINK PRINT / BPRINT STLINK

ICHDIG: GET INITXY

INI TXY: BAYPEN BPLANE / APLANE CENP RO ECAREA INTERS LNO~!2

LNCH D MA~ 4IN MOM 1 MOM2 PDIST PNTCND POLYGN RESID

POSCAL VERTEX

lOP: BPLANE / APLANE STLINK

LINIT: CHLINE LINK PUT

141

—V.-- ~~~~~~~~~~~~~
__~~~_

¶_ -
_ ___ —

•‘S~~ V -- ~~~~~~~ ~~~~~~

LINK : PPUT

LISDIG: LIST

LOCTA : OCTAL OCTIN

MONI : CENTRD -

MOM 1A :: MON1

MOM2A: LMOM2 MOM2

MS TORE: LINK LINKSQ

NCOLS: NCOLOR

NDUMB: GET INITXY MARKE R NTNSEG VSEG

N~~VS: NELEV

NGRYS : NGREY

NINV: INVSEG

NMOVE : MARKER NTKSEG VSEG

NTHSEG: INVSEG NCOLOR N~~EV NGREY VISSEG

NVIS: VISSEG

OCTAL: GET

OCTIN: GET

OPEN: ANGLE ARRAY BAYPEN BPLANE / APLANE CENPRO CHPAX

ECAREA LENGTH LMOMZ LNCHD MAXMIN MOM I A MOM2A PDIST

PNTCND POLYGN RESID ROSCAL SUBCH VERTEX WHEX

PCLOSE: ROSCAL SUBCK

PLANES: SPLANE / APLANE PRINT / BPRINT

PPUT: PCLOSE ROSCAL SUBCH

PROFIL: ~ ‘ROFL YPROFL

PUT : PPUT

PUTCH: CHLINE COLOR EL~VAT GREY INPUT INVI S LINIT LINK

LINKSQ MARKER MSTORE NCOLS NELVS NGPYS NO DE NTHSEG

142

- &. - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ _[~~~~~~
V ~~ — - - — -- - - *J.nr ~~~~~V ~~~~~- --

NVIS POINT PUT PUTCHY ROTIND SCLIND VISIBL VSEG

XCOORD YCOO RD

PUTCHF : COLOR ELEVAT GREY NODE POINT PUT SCLIND XCOORD

YCOORD

PUTDIG: OUTPUT

QCOMM : SIGNAL

QMOVE: GET INITXY INPUT LIST NMOVE NTHSEG OUTPUT

RESID: BAYPEN

SHIFT: BPLANE / APLANE GTLINK PRINT / BPRINT STLINK

SIGEND : LIST

SIGLIS: LIST

SIGNAL : GET INI TXY INPUT LIST NMOVE NTHSEG OUTPUT

SPAGET: LIST

STATUS: CLEAR CLOSE GET INPUT OPEN

STLINK : PUTCH

VSEG: COLORD ELATED GREYD

WORK ; AUTO CROSS INTERS POLYGN PROFIL)~~ROFL YPROFL

XYCOMP : ANGLE BAYPEN BPLANE / APLANE CENPRO ECARE A INTERS

LMOM2 LNCHD MAXMI N MOM 1 A MOM2A PDIST PNTCND POLYGN

PROFIL RESID ROSCAL VERTEX

143

V VV — - —. - - —
~~ — — ~~~~~~~~~ ~~~~~~~

- _________________

PART 17

CHAP TAPE FORMAT

The CHAP tape contains a variety of information. Each.

section is headed with a card of the form: 1/ description. The

sections on the CHAP tape with line numbers are:

IBM block data routine (2—18)

IBM assembly language routines (20—11 0)

IBM machine dependent routines (112—237)

UNIVAC block data routine (239-255)

UNIVAC machine dependent routines (257-380)

CHAP (382-4014.9)

test set 1 (4051—4130)

input to test set 1 (14.1 32—4135)

output from test set I (4137—4248)

test set 2 (4250—4339)

input to test set 2 (4341—4346)

output from test set 2 (4348—4 146 0)

programming example (4462—1i499)

input to programming example (4501—4506)

output from programming example (4508—4600)

The test sets included test all of the routines in

their basic mode of operations. They are not an exhaustive test

~et. However, comparing the output when run against the desired

output provided shows whether or not the source is intact and

whether or not the FORTRAN in question func tions in the desired

manner. (Units 5 and 6 are used for input and output. These

nuz~bers m~y need to be changed to run at a given installation.)

if4

— -- — —,-,~~~~~~~~~~~~~~ - V- - ~~~~~~~~ - - _~~~~~V__ ~~~~ V -w -

PART 18

ROUTINE INDEX

ADDR: 6, 35, 41 GET: 22, 38, 41
ANGLE: 25, 37 GETDIG: 8, 38, 41
APLANE : 6, 36, 37 GREY: 14, 38
ARRAY: 24, 37, 41 GREYD : 21, 38
AUTO: 29, 37 GTLINK: 6,36, 38, 41
BAYPEN: 29, 37 lAND : 7, 41

BPLANE: 7, 37, 41 , -

ICHDIG: 8, 38, 41

BPRINT : 6, 36, 39 INI TXY: 22, 38, 41

CENPRO: 30, 37 INPUT : 17 , 38
CENTRD: 28, 37, 41 INTEPS: 32, 38
CHAPMC: 5, 35, 41 INVERT: 2L~, 38
CHDIG: 8, 37, 41 INVIS: 14, 38

CHLINE: 15, 37 INVSEG: 21, 38
CHPAX: 24, 37 lOP: 7, 41
CLEAR: 14, 37 LENGTH: 26, 38
C~~~’ 22, 37, 41 LINIT: 13, 38, 41
COL0:~ 14, 37 LINK : 14, 38 , 42

COLORD: 21, 37 LINKSQ: 1 5, 38
CROSS: 29, 37 LISDIG: 9, 38, 14.2
DIGCH: 8, 37, 41 LIST : 17, 38

• DIGLIS: 9, 37, 14.1 LMOM1; 28, 38
DUMB: 10, 41 LMOM2: 28, 38
EC ABEA : 28, 37, 41 LNCHD: 27, 38

• ELATED: 21, 37 LOCTA: 10, 42

ELEVAT: 14, 37 MARKER : 20, 38

45

V_WV V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - — - -  ---- - • -  ~~~~~~~~~~~~~~~ -- 

~~~~~~~~~~~~~~~~~~~


MATCH; 32. POINT: 14, 39

MA~~IN: 25, 38 POLYGN: 33, 39

MOMT: 28, 38, 42 PPUT: 16, 39, 42

MOM1A: 28, 38, 42 PRINT: 7, 39

MOM2: 28, 38 PROFIL: 31 , 39, 42

MOM2A: 28, 39, 42 PUT: 16, 39, 42

MSTOPE: 13, 39, 42 PUTCH: 9, 39, 42

NCOLOR; 21, 39- PUTC~~’: 13, 40, 43

NCOLS: 21, 39, 42 PUTDIG: 9, 40, 43

NDUMB: 9, 42 QCO~ ’I: 12 , 43

NELEV: 21 , 39 QMOVE : 12, 43

NEt~VS: 21 , 39, 42 PESID: 26 , 14.0 , 43

NGREY: 21 , 39 ROSCAL : 34, 40

NGRYS : 21, 39, 42 POTIND: 14, 40

NINV: 21 , 42 SCLIND : 11+, 43

NIIOVE: 18, 39, 42 SHIFT: 7, 43

NODE: 14, 39 SI3E~D: 9, 40, 43

NTKSEG: 19, 39, 42 SIGLIS: 9, 40, 43

NVIS: 21, 39, 42 SIGNAL : 12 , 40 , 14-3

OCTAL: TO, 39, 42 SPACET: 9, 40, 1~3

OCTIN: 11 , 39, L~2 STATUS: 3, 43

OPEN: 22, 39, 42 STLINK: 6, 36 , 40, 1~3

OUTPUT: 17, 39 SUBCK: 32, 40

PCLOSE: 16, 39, 42 VERTEX: 24, 40

PDIST: 25, 39 VISIBL: 14, 40

PLANES : 3, 35, 42 VISSEG: 21, 40

PNTCND: 26, 39 VSEG: 18, 40, 14.3

46

‘
— - —

~

- -

~

-•

~

- .

~~~~~~~~~~~~~~

—-—-V-V — --- - ~~~~~~~~~~~~~~~~~~ - — -—-—- —-—~--  -



WHEX: 25, 40 XYCOMP: 5, 14.3

WO RK : 5, 43 YCOORD: 14, 40

XCOORD: 14, 40 YPROFL: 30, 40

• XPROFL: 30, 40

47

- —~~~-- - - - -~---V——.-- - ~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~ ~~~ - ‘ W  -



UN CLASS IFIED
S E C U R I T Y  C L A S S I F I C A T I O N  OF T H I S  P A G E  (I+7ten flat. Entered)

REPORT DOCUMENTATION PAGE I3EFORE COM PLET ING F OPM
I R E P OR T N U M B E R  GOVT ACCESSION N0 3 R E C I P I E N T ’S C A ’ A L O G  NLV u BE°

~~QSR-TR- 7 8 - 1 0 3 9
4. TI T L E  (an d SubtItle) 5 T Y P E  OF REPO P & PER~3D C O . E P E D

DOCUMENTATION MANUAL FOR CHAP I nteri m
- -  

6. P E R F O R M I N G  ORG. RE PO R N V Y SE ’

• 7 A U T H O R ( s )  
— 

8. C O N T R A C T  OR G R A N T  N U M B ~~n

Ke i th P .  Loepere
AFOSR 76-2937

9 .  PERFORMING O R G A N I Z A T I O N  NAME AND ADDRE SS 10. PROGRAM E L E M E N T . P R O J E C T  T ASp(
A R E A  & WORK UNIT NUMBERS

Rensselaer Poly technic Inst itut e
Elec trica l and Systems Eng i neering Department —
Troy , New York 12181 61102F 23014/A2

I I . CONT R O L L I N G  O F FICE N A M E  A N D  AGGRESS 12 . R EPORT D A T E

May 1978 .—

Air Force Office of Scientific Research/NM 13. N U M B E R O F  PAGES

Boi l ing AF B , Washington , DC 20332 52
14. MO N I T O R I N G  A G E N C Y  N A M E  & ADDRESS( I f  different Iron, Controllina Office) ¶5 . SECURITY CLASSV (of this repor1~

UN C LASS I F I ED
15.. D E C L A S S I F I C A T I O N  D O W N G RA !NG

S C H E D U L E

IS. DISTRIBUTION S T A T E M E N T  (of this Report)

Approved for public release; di stribution unl imited

¶ 7 .  DIS T R I B U T I O N  ST . tENT (of ..bstr~ cl entered In Block 20. ft different from Report)

IS. SUPPLEM E N T A R Y  TES 
— -

19 . K EY  WORDS (Continue on reverse side if necessary and Identify by block number)

line-drawing processing computer graphics
image processing graph ics languages
pattern recognition
cartograp hy

• 2 0 .  A
’

.~~~RAC T 1 Conhlnue on revere. aid. II necee.ary and identity by block number)

~~This is a documentation manual for the CHAP -chain processing language ,
CHAP is a collec tion of routines developed for analyzing , syn th e s i z i n g~
and manipulating chain-encoded line draIt~ings. T h i s  r epor t  describes the
interna l operation of the CHAP routines. It is a companion vo l ume to

V the CHA P User ’s Manual.

N

r~~~ FORM ii .,,
~~~ 1 J A N 73 ~~~~ UNCLASS . IFIED

ccr,o ,...,e, ~~~~~~~~~~~~~~ S •.. _

-
V - -

—

- r

