AD=A05S 744 RENSSELAER POLYTECHNIC INST TROY N Y COMPUTER RESEAR=-ETC F/6 92
DOCUMENTATION MANUAL FOR CHAP, (V)
MAY 78 . K P LOEPERE AFOSR=T76=2937
UNCLASSIFIED CRL=57 AFOSR=TR=78-1039 NL

B g2e 25
flig i
= 2

"“ “ fl2

HE

< e

I

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

} ¢ A

roan THNTUED T ’E ;i 3
PR atipd b2 B be / Y ’ ,c,’.'
it §wivi R IM% O id sttt Al

>
o
o
(-
=
(W
L)
=

JUN 21 1978 |

e

Rensselaer Polytechnic Institute

['rov. New York 12181

@@%;78-1ﬁ3_§’ ,
, ¥ R il YU s -nld* J‘J.‘A ‘.L"

A bR,
lrb Technical Repcrt CRL-5T
gy)

LF /

u,/ DOCUMENTATION MANUAL FOR_CHAP . {

By

N

’/f%&Keith P./Loepere //

Prepared for

Directorate of Mathematical and Information Sciences
Air Force Office of Scientific Research

Air Forcerﬁysgggﬁgﬂamm&nd,_ﬂa F
Grant ¢ r‘av/AF SR-T6-2937
\),/b/__‘

78 06 19 087

Rensselaer Polytechnic Institute

TROY, NEW YORK 12181 :
Approved for public reléase;"
distribution unlimited,

-l

L P B e

ABSTRACT

This is a documentation manual for the CHAP chain
processing language. CHAP is a collection of routines
developed for analyzing, synthesizing, and manipulating
chain-encoded line drawings. This report describes the
internal operation of the CHAP routines. It is a

companion volume to the CHAP User's Manual.

ACCESSION for

NTIS White Section Q&
Doc Buff Section [
UNANHOUNCED O
JUSTIFICATION. ..o ..

DISTRIBUTION/AVAILABILITY CODES
Dist. AVAIL and/or SPECIAL

A

ACKNOWLEDGMENT

The work described here was supported in part by
the Directorate of Mathematical and Information Sciences,
Air Force Office of Scientific Research, under Grant

AFOSR T76-2937, Professor Herbert Freeman Principal

Investigator.

il

1e

&

3.
L.

Se
6.
7.
8.
9.
10.
1.
12.
13.
T4
15.
16.

INTRODUCTION . .
DATA STRUCTURES
A, Chains . . .
B. PLANES . « .
C. STATUS « «
D, WORK « & &
EZ. Constants .
PRIMITIVE ACCESS

DIGIT ACCESS . .

A. Input . . .

B. Qutput . . .
ACCESS TO GROUPS

ADDING LINKS . .
INPUT AND OUTPUT
SEGMENTING « « &
SEGMENT ROUTINES

SEQUENTIAL ACCESS

CONTENTS

L] L] . . L]

ROUTINES

ARRAYS OF LINKS OR VERTICES

ANGLES, DISTANCES,
AREAS AND MOMENTS
SPECIAL FUNCTIONS

L3 L L4 .

CREATING A VERSION OF CHAP

CALLING STRUCTURE

A. External References .

B. Referencing Modules .

iii

AND EXTENTS

Page

hh O 0 00 O WM UM W W o

-— — —
o N &

21
22
24
25
28
29
35
37
37
40

Page

170 CHAP TAPE FORI{AT e o o o o . e o o o o o e o 44

1 8. ROUTIIE INDEX [. . . L] . . 45

iv

e ——

PART 1

INTRODUCTION

CHAP is a set of routines designed to facilitate the
manipulation of chain-encoded line drawings. This material
highlights the operation of CHAP. To comprehend it fully,
it is necessary to be familiar with the references listed
below. Also, the discussions in this manual relate to
the program listing of CHAP which is awailable upon request from
Dr. H. Freeman, Rensselear Polytechnic Institute, Troy, N. Y. 12181.

Sections included herein describe the operation of
the CHAP routines. The primary purpose of this manual,
though, is to provide information to be used to create

new implementations of CHAP and to extend CHAP in the

future.

Primary References

1. K. Loepere, "CHAP User's Manual", Tech. Rept. CRL-56
ESE Dept., Rensselaer Polytechnic Institute, Troy,
New York 12181.

2. H. Freeman, "Computer Processing of Line-Drawing
Images", Computing Surveys, 6, (1), March 197k, 57-97.

PART 2
DATA STRUCTURES

A. Chains
A chain is stored in an integer array. There is a four-
word header followed by the actual chain data. The header contains
the following information:
word 1: maximum number of chain links that this array
can hald
word 2: present number of links stored in this chain
word 3: 1 means that the last link in the chain is a
part of a signal code; O means that the last
link is a directional link
word 4: the index of the buffer in STATUS associated
with this chain
The chain links start in the fifth word. The end-of-chain cade
is not stored in the chain and the link count does not count
anything other than the links actually in the chain. Word 3 of
the header is used when adding links to the end of the chain.
This word must always be set when adding links. When this value
is zero and a 4 link is added, an extra O4 must be added to
change the old O and the new 4 to a OLO4 code. This is done only
when the last chain link is O and when this is flagged by the
word 3 zera code indicating a directional link.
Links are stored as series of three binary bits. A
multiple of three number of bits (30 for IBM, 36 for UNIVAC) at
the end (laow order bits) of each word are used to store links.

The link in the highest bit positions used to store links in the

first word that is used to store chain links is numbered 1. The

next three bits down correspond to link 2 and so on.

B. PLANES

PLANES is the common block that contains the binary
plane. Its definition is /PLANES/ NX, NY, PLANE which appears in
the CHAP block data subroutine. NX and NY are the dimensions of
the binary plane; the plane is dimensioned (Q: NX-1, QO: NY=1).
NX must be an integral multiple of the number of bits used per
word as defined in CHAPMC. PLANE is an array of bits. The binary
plane is stored by columns in PLANE. Since NX is an integral
multiple of the number of bits used per word, a column fits in

an integral number of (caonsecutive) words.

C. STATUS
STATUS is the apen chain status array. It is defined
as /STATUS/ NUM, LENG, STATES in the block data routine were LENG
is 6 and STATES is an integer array dimensioned by NUM * LENG.
NUM is the maximum number of chains allowed to be open at a given
time. STATES is comnsidered to be an array which contains NUM
(dimensioned O to NUM=1) rows each of length LENG all stored
consecutively. Each row corresponds toc an open chain. The contents
of the words in a given row are:
word 1: the machine address of the chain corresponding
to this entry
word 2: O if this entry does not correspond to a chain;
1 1f there is a chain open for which this row

is being used

word 3: the last link in the chain processed - this will
either be the number of the last directional
link returned by a call to GET, the number of
the last link in the signal code that the last
returned value consisted of or from which the
last value originated (in the case of multiple
link codes), or, for code 0421, the number of
the link just before the start af the group
of links specified if this code has not been
completely returned or the last link in the
Q421 code if this repeat cade has just been
completely processed

ward 4: O means that elther the last value returned was
a directional link or that a signal code was
just completed; 1 means that the last value
returned was the O in a Q404 signal codej 2
means that a link repeat code has not been
completed by the last value returned; 3 means
that a group repeat code has not been finished

word S: for case 2 in word 4 this is the link being
repeated; for case 3 in word 4 this is the
length of the group to be repeated

word 6: for cases 2 and 3 in word 4, this is the number
of links (total) that are remaining to be
returned for this signal code (codes 17, 20,
and 21)

Presently, NUM is set to 4 and STATES has 24 elements.

e s S . e - e - g -~

D. WORK
/WORK/ SIZE, TEMP is the temporary workspace defined

in the users program. TEMP is an integer array of dimension SIZE.

E. Constants

There are two common blocks defined in the CHAP block
data routine that provide constants.

/XYCOMP/ AX, AY are the x and y (respectively) components
of the link types. AX and AY are eight-element integer arrays.
They contain the increments for the link types imn order O to 7.

/CHAPMC/ NBW, NLW, EX, BLANK, DIGITS, MAXINT are all
integer constants.

NBW - number of bits stored per word - This number must
be a multiple of three. This is the number of
bits used per word for storing both chain
links and binary plane bits. The defined
number of bits are stored in the low order
positions of the words.

NLW - number of links stored per word - This number is
equal to NBW / 3.

EX - the internal character code for an 'X' suitable
for printing under an A1 format

BLANK - as above, but the character code for a blank

DIGITS ~ an eight element array giving the character
codes for the eight octal digits in order O to 7

MAXINT - the maximum positive machine representable

integer

PART 3

PRIMITIVE ACCESS ROUTINES

The routines in this section provide bit level access
in some way. They are all machine dependent.

ADDR (ARRAY) is an integer function which returns the
machine address of its (integer array) argument. For the IBM
implementation, this is an assembly language routine. The UNIVAC
version uses the routine LOC to provide this function.

GTLINK (BUFFER, I) is an integer function that returns
the I'® link in BUFFER. BUFFER is the address of the first word
in the chain (first word of the header). The routine computes
the word index in which the Ith link is found. For the IBM
implementation, assemble language routines are used to extract
the link. UNIVAC uses the FLD function.

STLINK (LINK, BUFFER, I) is the reverse of GTLINK. The
word in BUFFER where the Ith link is found is determined. The
Ith link is set to the value of LINK. All other links in the
chain are unaffected.

BPRINT (IW) is the binary plane print routine. This
routine contains a nested set of do loops that extract the
appropriate bits one at a time and put out an 'X*' in the print
line for each corresponding 1 bit and a blank for each O. The
bits are extracted by FLD in the UNIVAC version and by assembly
language routines for IBM.

APLANE (CHAIN) adds a chain to the binary plane. It
uses GET to extract the links one at a time and adds the vertices

to the plane if they are within the limits of the plane. Visible

e AN SN e - e o - - J—— - —r .

and invisible signal codes are detected and used to set a flag
indicating whether or not a given in range vertex should be
printed. This routine also detects the x and y coordinate
specifiers and alters its running x and y location pointers.

BPLANE (CHAIN) clears the binary plane (word by word)
and then uses APLANE to add the chain to it.

PRINT (CHAIN, IW) uses BPLANE to add the chain to the
plane and then uses BPRINT to print the plane.

The above routines in the UNIVAC version use FLD to
perform bit manipulation. The IBM version uses the three routines
IAND, IOR, and SHIFT. These are all integer functions. IAND and
IOR compute the bitwise and and or (respectively)of their two
arguments. SHIFT (WORD, N) shifts WORD N places left circular.
The shift is done on a basis of 30 bits. Bits shifted out of bit

2 are shifted back onto the right end of the word.

PART &4

DIGIT ACCESS

These routines are the standard input and output
routines used by the remainder of the routines. They have a

standard calling sequence so that they may be equivalenced.

A. Input
The standard input digit routine calling sequence is

NAME (UNIT, INIT, CHAIN, OVER) where NAME is an integer function.
This routine fetches the next digit from CHAIN or from logical
unit UNIT, which ever is appropriate. If INIT is true, this call
will not fetch the next digit but will reset the input. For a
chain, this corresponds to the beginning. For a input unit, this
corresponds to starting a new line. The next call with INIT false
will get the first digit. OVER is set to true if there is no next
digit; in this case, the functional result is zero.

GETDIG gets a digit from a logical unit.

CHDIG gets a digit from a chain. This is done by
calling DIGCH (UNIT, INIT, CHAIN, OVER, NUM) with a NUM value of
1 (normal mode). The routine ICHDIG (VAL) is associated with this
routines It calls DIGCH with a NUM value of two. This causes
DIGCH to set its chain poinmter to point to the VAL'P link. The
next call to CHDIG will then return the VAL + 18t link. The value
returned by ICHDIG (and by DIGCH with mode 2) is the old value
aof the chain pointer (last digit number returned).

Notice that the chain or input pointers are kept in
the routines. Only one chain or unit can be operated on at a time

by these routines.

'W’-‘f*‘—"'——_” - N —— o ETE——

_B. Qutput
The standard output digit routine calling sequence is

NAME (UNIT, DIGIT, CLEAR, CHAIN). This routine adds DIGIT to the
end of the chain CHAIN or the logical unit UNIT, which ever is
appropriate. An error termination occurs if there is no room to
hold the digit. If CLEAR is set to true, the DIGIT is ignored
but the remaining digits stored within the routine will be
cleared. For line routines, this means that the next digit that
is sent for output will begin a new line.

PUTCH is the standard output routine. It increments
the link count in the chain and adds the digit. CLEAR is not
meaningful to this routine. This routine can operate on several
different chains in succession without using clear since nothing
is stored within the routine.

PUTDIG is the punch card output routine. It is automa-
tically initialized to start on a new card with a sequence
nunmber of cne. The CLEAR operation will reinmitialize it.

NDUMB is a dummy output routine.

LISDIG is the printing routine. It calls routine DIGLIS
with mode 1. Associated with this routine are three support
routines that each call DIGLIS. They are: SIGLIS (UNIT) (mode 2),
SPACET (UNIT) (mode 3), and SIGEND (mode 4).

DIGLIS (UNIT, DIGIT, CLEAR, CHAIN, MODE) is the actual
printing routine. The normal operation of this routine is to
accumulate groups of five digits and then to- add them to the print
line with a blank between the groups. A check is made to be sure

that the group will completely fit on a line. Whenever a group

i S T T . e AN . A—— I ey G e E——g |~ p—

will not fit on a line, the present contents of the line are
printed and a new line started for the group. CLEAR works in a
similar fashion except that the last group need not contain five
digits.

Whenever the MODE is not 1 for DIGLIS, the call
specifies an output formatting. Mode equal to 2 is the start of
a signal code specification. Any digits saved inside the routine
are added to the print line (and the print line printed if
necessary to provide room for the digits). Assuming that there
is room on the line, a double blank followed by O4 is then added.
If there is not room on the line, a new line is started with
O4. The double blank is not added if the O4 will start a line,
if the last entity added to the end of the line was a signal ccde
(which ends in a double blank). Made 3 adds a single space. Mode
4L (end of signal code) adds a double blank. These modes clear
out any digits (going to a new line if necessary) and add the
appropriate number of blanks unless this is the start of a new
line. Mode 4 also sets a flag indicating the presence of the
double blank for use if the next function is mode 2.

DUMB (UNIT) is a dummy version of SPACET. Signal code
routines call a spacing function to identify signal code fields.
SPACET is used for printing. DUMB would be used otherwise unless
it is necessary to take certain special signal code fields into
account,

OCTAL is a special output routine. It calls LOCTA
(UNIT, DIGIT, CLEAR, CHAIN, MODE) with MODE equal to 1. This

call causes a running total (initial value of zero) to accumulate

10

the digits sent to it. The digits form an octal number with the
first digit sent becoming the high order digit, etc. Calling
OCTIN (OUT) causes a call to LOCTA with a mode of 2 to zero the
running total and to assign the old value of the total to OUT.
This routine set is used to form octal numbers out of signal

code fields.

b 3

R - oaamesaa et S - ————

PART 5
ACCESS TO GROUPS OF DIGITS

These routines access several digits at a time.

QcomM (IN, OUT, UNIT, CHAIND, CHAINS, SPACE) is the
variable length comment move routine (code 0411 . . . 04127777).
UNIT, CHAIND, and CHAINS are, respectively, the logical unit,
destination chain, and source chain to be used whichever are
appropriate. No provision is made for moving from one logical
unit to another. Movement takes place from the input using
function IN to the output using subroutine OUT. Prior to calling
this routine, the O411 should have been moved. Also, a space
should have been added. This routine then moves the input to the
output until it finds a possible 04127777 group. If the group is
found, a space is added by SPACE" (unless there were no digits
moved between the original O411 and this group), 0412 is added,
another blank, and 1277 then added. If the group is not the full

Qu127777, the digits are output and processing continues. An

error aoccurs if the input runs out before 04127777 is encountered.

No signal code end is flagged after the 04127777 is moved.

QMOVE (COUNT, IN, OUT, UNIT, CHAIND, CHAINS) also
moves from the input (logical unit UNIT or chain CHAINS) using
function IN to the output (logical unit UNIT or chain CHAIND)
using routine OUT. The number of digits to be moved is given
by COUNT. The call is ignored if count is zero.

SIGNAL (IN, OUT, MOVE, SPACE, UNIT, CHAIND, CHAINS,
CODE) is the general purpose signal code move routine. Prior to
the call, O4 and the two digits defining the code (given by CODE)

12

should have been moved. Movement is performed as for QMOVE. MOVE
is the routine to perform movement of a given number of digits.
SPACE is the routine to be used for spacing (or flagging) the
output. This routine performs the proper grouping and spacing

of all recognized signal codes and flags those it does not
recognize. The end of signal code is not flagged by this routine.

PUTCHF (CHAIN, MAXNUM, NODIG, NUMB) is an output to
chain routine. NUMB is checked to make sure it is not negative
and is less than MAXNUM. If so, a NODIG number of digits are
extracted one at a time from NUMB. The digits are extracted with
the low order octal digit last. The digits extracted are added
to the end of the specified chain.

MSTORE (NUMB, CHAIN, DIGITS) extracts a DIGITS number
of digits (low digit last) from NUMB and adds them in order to
the end of CHAIN.

LINIT (CHAIN, LINK, YES) is the first routine to look
at word 3 of the header of a chain. This routine checks to see
if, when directional link LINK is added to the end of the chain
CHAIN, a Q404 code needs to be generated. If the last entity (if
there is one) in the chain is a directional link and if it is
zero and if the link to be added is a four, another 40 is added
to the chain so that when the 4 is added (not by this routine),
a 0404 code will result. If this addition is performed, YES is

set to true.

e

PART 6
ADDING LINKS

CLEAR (CHAIN) sets the link count to zero anéd the last
link type to directianal in the specified chain. If the chain is

found in any used entry in STATUS (ie., is open), a termination

occurs.

INVIS (CHAIN) adds a 0401 code and sets the signal code
end flag.

VISIBL. (CHAIN) adds a 0402 code and a signal code end
flag.

COLOR, ELEVAT, GREY, XCOORD, and YCOORD all of (CHAIN,
VALUE) use PUTCHF to add the desired VALUE after the appropriate
signal code determiner (OL4xy). For XCOORD and YCOORD, the value
is biased by 16384 to allow positive and negative values for
VALUE. In all cases, the signal code end flag is set.

POINT (CHAIN, VALUE) operates line GREY..

NODE (CHAIN, NODES, INTERS) is similar to the above
except for having two fields to add by PUTCHF.

SCLIND (CHAIN, MODE, SCALE, POS) has three fields to
add by PUTCHF.

ROTIND (CHAIN, ANGLE) adds a O414 code. ANGLE is
converted to radians in the range O to 2 * PI. The whole part of
this angle is added and then five digits are extracted from the
fractional part, high digit first. The digits are added in order
to the chain. The signal code end flag is set.

LINK (CHAIN, LINKS, NTIM) optimizes its addition of the
links. If NTIM is less than eight, the link LINKS is added the

appropriate number of times. LINIT is used to see if a Q404 code
must be generated. The signal code end flag is not set unless only
one link was added and that link formed a 0404 code. For NTIM
values greater than seven, signal codes are generated and the
signal code end flag set. A Q417 code is generated if NTIM is
less than 512. For greater values of NTIM, a 0420 code is
generated. The number of digits needed ta represent NTIM is
computed. The 0420 code is generated with a count field of this
size. An error occurs if it is not possible to represent NTIM
in fewer than 12 digits.

LINKSQ (CHAIN, LIST, DIM, NTIM) generates a 0421 code.
The appropriate fields are filled in with DIM and NTIM (by PUTCHF)
and then the links are added. The signmal code end flazg is set.

CHLINE (CHAIN, DELTX, DELTY) uses the Bresenhanm
algorithm to gemerate a straight line approximation. A pseudo
quadrant number is determined for the endpoint. (1 means cctant
1, 2 is octant 2, 3 is 4, 4 is 3, 51is 8, 6 s 7, 7 is 5, and
8 is 6) The octant number establishes the link types in the
approximation. The absolute values of DELTX and DELTY are
determined and ordered to find the limits of the approximation
loop. The standard Bresenham algorithm is then used to determine
the link sequence. Unless only one link is added and LINIT
produces a 0404 code, the signal code end flag is not set.
(Reference: Bresenham, J., E., '"Algorithm for computer control of
a digital plotter", IBM Systems J., (4), 1965, pp. 25~30)

15

————— — S ——— o <

PUT (CHAIN, LINK, FLAG) contains a mixture of functionms.
Arguments are checked in all cases. If link is in the range O
to 7 (directional link), it is added, possibly with a 0404
signal code generated by LINIT. For signal code values of LINK,
the appropriate case is selected and fields, if mecessary, are
added by PUTCHF. An unrecognizable value for link results in an
error.

Two routines associated with PUT are PPUT (CHAIN, LIFK,
FLAG) and PCLOSE (CHAIN). These routines pack link repeat signal
cades. PPUT keeps a count (initially zera) of the number of
consecutive occurrences of a link. When a different link or
a signal code occurs, LINK is called to pack the number of
occurrences found. The new signal code is output or the new
link is recorded with a count of one. PCLOSE causes the remaining
link and count in the routine to be cleared out by LINK. PUT
is used to add signal codes. PPUT is equivalent to PUT except
that it maintains this internal counter which prevents this
routine from being usable for more than ome chain at a time.
PCLOSE is necessary to allow the routine to be used for a
different chain. PCLOSE operates by calling PPUT with a link

value of =1; PUT would flag an error for this argument.

PART 7
INPUT AND OUTPUT

INPUT (UNIT, CHAIN) is the actual chain input routine.
A check is first made to see if the chain is open (present in a
used entry in STATUS). Given that it is not open, digits are
read in from the desired unit ome at a time and added to the end
of the chain. When a O is encountered, the next digit is checked
for the possibilty of a sigmal code. If the next digit is not a
4, the 0 is output and processing resumes. When a cade is found,
SIGNAL is used to add it to the chain. A signal code of 0400 is
not added to the chain and encountering such a code ends the
input process. The signal code end flag is set appropriately.

OUTPUT (UNIT, CHAIN), the punch routine, is nearly
identical to INPUT. In this routine, however, all signal codes
including Q400 are punched. 'Encountering a O punches it but
causes a check for a possible signal code. When a signal code is
found, either SIGNAL is used to output it or (in the case of 0400),
the code is punched directly. Encountering the end of the chain
is recognized as end of chain and causes a 040Q code to be
punched.

LIST (UNIT, CHAIN), the listing routine, differs from
OUTPUT only in that calls are made to SIGLIS and SIGEND, when
appropriate, to format the output.

Notice that output routines reconstruct the end of chain
signal code that the input routine threw away. The input routine
does not consider the 0400 code when deciding to set the end

signal code flag since this code is not at the end of the chain.

1?7

— S ———r = e ———T g e ——

PART 8

SEGMENTING

FMOVE (CHAIND, CHAINS, SIG1, SIG2, OUT, END, SIG, LAST)
moves a chain segment. Once started, this routine will move
from CHAINS to CHAIND using OUT as its output routine, that part
of CHAINS up to, but not including, a signal code of type SIGT
or SIG2. Links are extracted one at a time from CHAINS. If the
end of chain is encountered in doing this, END is set and the i
routine returns. If the digit is not O, it is output. For a
digit of 0, a check is made for a signal code. The O is output if
the next digit is not 4. A O4 combination, flagginz a signal code,
causes the next two digits to be fetched and checked. If the code
is not SIG! or SIG2, SIGNAL is used to move the signal code
fields once the O4xy digits are moved. When SIG1 or SIG2 is found,
the digits O4xy are not added to the chain and processing stops.
SIG is set to the signal code determiner that was detected. Also,
LAST is set to a 1 (O otherwise) if the last entity moved to
CHAIND (not counting the terminating signal code) was a signal

code.

VSEG (CHAIND, CHAINS, LIMIT1, LIMITE, SIGY, TEMP, N)
moves all segments of a given value. Two ranges of values are
established to cover the two possible value divisions. If the
value O (default attribute value) is in the set to be moved,

a signal code of type SIGY and with a value field of zero
(consisting of N digits) is generated. The routine switches its
state back and forth between actual transfer (using PUTCH) and

just passing the input (using NDUMB). The initial state depends

18

c——————— - - e — - g — -

on whether or not Q is in the set of values to be moved. NMOVE
is used to move all portions up ta the occurrence of the signal
code SIGY. When SIGY is found, the temporary array TEMP (N) is
used to accumulate the digits in the signal code field. The value
is checked to see if it is in range. If so, a signal code af type
SIGY with the value accumulated is produced. Otherwise, the state
is changed to pass mode and the signal cade is not produced in
CHAIND.

NTHSEG (CHAIND, CHAINS, LIMITj, LIMIT2, SIG1, SIG2,
NSIG, INIT) moves segments by number. SIG! and SIG2 are the
signal codes of opposite attributes (such as visible and invisible).
Movement takes place only for segments of type SIGT with
numbers in range. Movement occurs possibly in two phases; if the
limits specify a double range, the move portion of this raoutine
is used twice with different limits. The state of this routine
switches back and forth as the chain segments either turn into
segments with attributes SIG1 or SIG2. If INIT is 1 (specifying
that the default attribute is type SIG1) and segment 1 is in range,
NSIG (CHAIND, CHAINS) is called to generate the initial signal
code corresponding to the default attribute. INIT is zero if <his
is not to be done. From then on, starting with the appropriate
initial state, segments are either moved or passed (PUTCH or
NDUMB) until SIG1 or SIG2 is encountered by NMOVE. If the chain
becomes of type SIG1, the segment count is incremented. The
limits are checked to see if this next range should be moved.
If code SIG2 is encountered, the segment counter is not incremented

and the state changes to pass. For segments with a move state,

19

D T — s p— - VAT —— O — -

e T

the signal code that is appropriate is generated and SIGNAL is
used to move the as yet unpassed fields to the outpurn chain.
Movement will then proceed until the SIG2 code is encountered or
a SIG!1 code causes the segment counter to be incremented cut of
range.

Notice that the routine NMOVE produces a flag indicating
the last.entity moved (signal code or directional link). VSEG
and NTHSEG put this value into the chain field for this whenever
the move was an actual transfer. Also, generation of signal
codes, either initial or as a result of transfer, are also so
flagged in the signal code end flag in the chain.

MARKER (CHAIND, CHAINS, LIMIT!, LIMIT2) is a separate
routine. If LIMIT! is out of range for markers (ie., movement
starts at beginning), a check is made for the possible need of
a 0404 code when the two chains are joined and the routine starts
movement from the beginning. Otherwise, CHAINS is passed until
NMOVE finds a marker which this routine recognizes as LIMITI.
When this is found, a sigmal code with this value is added to
CHAIND. Mavement then occurs, using NMOVE, until a marker is
found. The marker code is always added to the end of CHAIND.
However, if the marker is equal to LIMIT2, the operation aof this
routine ends. The signal code end flag is set whenever a signal

code (including the marker codes) is added to CHAIND.

T o e e A—— e o e NI e ————————

PART 9
SEGMENT ROUTINES

COLORD, ELATED, and GREYD all of (CHAIND, CHAINS, LIMITI,
LIMIT2) use VSEG to move the desired segments. They also check
the limits to be sure they are valid for the type of code being
found.

INVSEG, VISSEG, NCOLOR, NELEV, and NGREY all of
(CHAIND, CHAINS, LIMIT1, LIMIT2) and their corresponding
initial signal cade routines NINV (a dummy routine since it is
never called), NVIS, NCOLS, NELVS, and NGRYS use NTHSEG to move

the desired segments.

21

PART 10

SEQUENTIAL ACCESS

INITXY (CHAIN, X, Y) scans for the last x and y coordinate
specifiers before the first link. X and Y are given initial values
of . When an actual link is found, the routine returns.
Otherwise (signal codes), the sigmal code is checked to see if it
can generate a link. Those that definitely can not are passed.
Those that definitely do cause the routime to return. For link
repeat codes, if the count is zero, the code is passed. For
group repeat codes, if the count is zero, the input pointer is
repositioned past the linmk group; if the group length is zero,
the code is passed. If these codes do represent links, they cause
the routine to return. Whenever an x ar y coordinate specifier
is encountered, the value is computed and the appropriate value
is assigned. The last values so assigned will be returned.

OPEN (CHAIN) scans STATUS. If this chain is found in
an active entry, an already open error occurs. Assuming that
the chain is not open and that there is room for it, the STATUS
entry will be set as active and to be used for this chain. The
chain field is set to the entry number in STATUS. The STATUS
entry is also set so that GET will start from the beginning.

CLOSE (CHAIN) looks for the (assuming there is one)
used entry in STATUS assaciated with this chain and sets it to
be not used.

GET (CHAIN, FIRST, SECOND) first checks to see if the
chain is open by matching the field in the chain with the STATUS

entry. If the chain is not flagged as being open b, the

corresponding entry, 10, O are returned for FIRST and SECOND.
For an open chain, the action depends on the value of the fourth
entry in the STATUS entry. A value of one will return the extra
L in the 0404 code and set the entry back to O for normal
processing on the next call. For mode 2, the link is returned,
the count decremented, and if O, the STATUS entry set to zero
for the next time. A mode of 3 will cause the appropriate link
in the group to be returned, the total count to be decremented,
and, if O, the mode to be reset and the last link encountered
pointer to be updated to the end of the code group. If the mode
is zero, this implies normal processing. A normal link is
returned and the link counter updated if the next entry is a
link, For field value signal codes, OCTAL is used to produce

the octal number and the link counter is appropriately updated.
Signal codes that produce no output are passed. Link or group
repeat codes cause the mode to be set accordingly and the STATUS
fields set. Operation then proceeds as if the routine had been
entered in that mode. Link or group repeat caodes that do not
specify links are skipped. Notice that the last link encountered
indicator is set by the result of ICHDIG and that ICHDIG is used

to position the input to the desired point.

23

PART N
ARRAYS OF LINKS OR VERTICES

ARRAY (CHAIN, LIST, N, L, OVER) is a simple loop that
uses GET to extract links. Sigmal codes are ignored. Each link is
added to LIST with an appropriate check for array overflow made.

INVERT (CHAIN, LIST, N, L, OVER) first calls ARRAY
with the same arguments. If this call was successful, elements
from opposite ends of the filled in portion of LIST are
interchanged forming their inverse form as they are moved. If
there is an odd number of elements (one element with no element
to interchange with) this element is inverted separately.

CHPAX (CHAIN, LIST, N, L) operates just like ARTAY
except that overflow is an error and that the links are converted
to PAX form before inserting into'the LIST. The element beyond
the last link filled in is set to zero.

VERTEX (CHAIN, XCOCRD, YCOORD, N, L, OVER) sets the
first values in XCOORD and YCOORD by using INITXY. From then on,
each link produces a new pair of x and y values appropriately
incremented beyond the last pair of values. All signal codes
except x and y coordinate specifiers are ignored. These last two
codes update the corresponding element of the pair of the last
vertex computed. A check is made for array overflow before

entering a new pair of values.

PART 12
ANGLES, DISTANCES, AND EXTENTS

ANGLE (CHAIN, NP1, NP2, ANGLE)first orders NP1 and NP2
remembering what node was specified first. Links are extracted
one at a time with the x and y increments of these links being
accumulated. When NP1 is encountered, the x and y coordinates
are saved. The scan then continues for NP2. Once found, the
angle is computed. If the nodes had to be reversed, the angle
is reversed also. X and y coordinate specifiers are the only
signal codes that are used. A special check is made if the
node desired is the last node of the chain.

MAXMIN (CHAIN, XY) takes each link, one at a time,
and uses it to update its running x and y pointers. X and y
coordinate specifiers are also used. After each link has been
seen, the new x and y values are compared against the old maximum
and minimum values to decide the new running maximum and minimum
values.

PDIST (CHAIN, NODE1, NODZ2, DIST) orders NODI1 and
NODE2. The chain is scanned for the low node number. The
coordinates of this point are remembered. In determining these
coardinates, links update running x and y counters and x and y
coordinate specifiers set these counters. Once the high
numbered node is found, the distance can be determined from the
X and y change between this point and the point remembered.

WHEX (CHAIN, ITYPE, W) has an array that gives, for
each link and each extent type, the increment that this link

gives in the specified direction. Each link is taken one at a

a5

time and used to update the present extent in the appropriate
direction. A running maximum and minimum extent are maintained.
The final value is the difference of the maximum and minimum
encountered extent.

LENGTH (CHAIN, CHL, LCF) has two running counters to
remember the number of even and odd links encountered. For each
link, it is decided whether or not it should be included in the
count (depending on the value of LCF and on the presence of
visible or invisible signal codes encountered), The calculated
length is derived from the number of odd and even lengths
included.

RESID (CHAIN, LRES1, NLRES!1, LRES2, NLRES2) first
determines the end point of the chain by keeping a running x
and y counte; which are incremented by each link and which are
set by x and y coordinate specifiers. The initial and final
coordinates are used to determine the displacement of the chain
and the pseudo quadrant in which this displacement occurred
(1 means octant 1, 2 18 2, 315 8, 4 18 7, 5 158 4, 6 is 3,

7 is 5, and 8 is 6). The link types for each of these octants
is looked up and the number of each link computed.

PNTCND (CHAIN, XP, YP, LCMAX, DMIN, LMAX, LMIN) also
keeps running x and y coordinate pointers. X and y coordinate
specifiers update these pointers as well as links. After each link,
the (square of) the distance between the endpoint of the link
and (XP, YP) is computed and compared against the running
maximum and minimum distances (initial value is the distance to

the origin of the chain). If this new distance becomes either

26

Y e m— v

the new maximum or the new minimum, the vertex number is also
recorded in the appropriate variable. The correct distances are
computed at the end.

LNCHD (CHAIN, X1, Y1, X2, Y2, CLDMAY, CLDMIN, JMAX,
JMIN) records distances relative to the line specified. The
points on the line are used to compute, for each link, the
corresponding increment in perpendicular distance to the line
that this link produces. Starting with an initial distance
computed from the origin, each link is used to update the distance
and possibly update the maximum and minimum recoreded distances.
When a new minimum or maximum is encountered, the vertex number
is recorded. X and y coordinate specifiers also update the

distance but are not used to determine maximum and minimum,

PART 13

AREAS AND MOMENTS

ECAREA (CHAIN, S) uses the standard area formula. A
running y counter which is incremented by links and set by
Yy coordinate specifiers is kept.

CENTRD (CHAIN, X, Y) uses ECAREA to find the area
and MOM1 to find the x and (negative) y axis moments. The
centroid coordinates are the appropriate ratios of these values.

MOM1 and MOM2 (CHAIN, DEGREE, MOMENT) use MOM1A and
MOM2A, respectively, to find the given moments. Values for the
translated origin are taken from INITYY.

MOMTA and MOM2A (CHAIN, DEGREE, INITX, INITY, MOMENT)
are identical except for the actual formula used to determine the
moment. They both keep a running y counter which is incremented
by each link. The y value is the distance to the axis. The initial
value of y is appropriatelt computed for each axis type. For each
link, the X and y increments relative to the axis are computed.
Given the x and y increments and the y value, the increments
to the moments are computed and summed.

LMOM1 (CHAIN, X1, X2, Y1, Y2, FMNT) computes the first
moment as the area times the perpendicular distance from the line
to the centroid of the chain.

LMOM2 (CHAIN, X1, X2, Y1, Y2, SMNT) uses MOM2A to
compute the moment if the line axis is vertical. Otherwise, the
increments in x and y relative to the line are computed for each
link type. Each link increments the present distance to the line
counter (which is initialized by the origin of the chain). The x

and y increments and distance are used to increment the moment.

28

PART 14

SPECIAL FUNCTIONS

AUTO (CHAIN, NA, ACORR, M) fills the temporary workspace
with the links of the chain. For each shift value from 1 to the
number of links / 2 (a shift of 0 is automatically a correlation
value of 1), a do loop computes the standard carrelation
function.

CROSS (CHAIN, CHAIN2, CORR, J) first uses ARRAY to put
the links of chain 2 into the temporary workspace. These links
are then moved to the end to make room for ARRAY to place the
links of the first chain. The correlation value is computed in
the standard way. ’

BAYPEN (CHAIN, MAXBAY, MAXPEN, BAYAR, PENAR, H) is a
mixture of area and distance functions. RESID is used to determine
the endpoints of the segment. INITXY provides the starting point.
The distance between them is then computed. The operation then
proceeds in a similar fashion to LNCHD and LMOM2. The increments
in x and y relative to the line for each link is computed. A
running distance is kept. For each link, a new distance is
computed and considered in the maximum bay or peninsula depending
on whether or not the distance is positive or negative. A flag
is kept to remember on which side of the chord the present point
is on. If the side does not change, the area for that side is
incremented by the link. When the side does change, beside
changing the flag, this link (which crosses the chord) adds an
increment of area to both sides of the chord. The area of the
two triangles formed by the link, the chord, and the new and old

distance vectors are added to the appropriate side areas. Notice

29

that the distance is incremented before the area is computed so
the area formula is modified slightly.

CENPRO (CHAIN, PROFL, DIM, N) first finds the centroid
which is rounded to the nearest integers. For each link, the
residue distance to the centroid is computed and recorded in
PROFL with an appropriate check for overflow. The index of the
maximum distance is recorded by keeping a running maximum
(absolute) distance and a running index number of the maximum
distance. Also, as the residue calculations proceed, the
displacements from the centroid and the x and y increments of
the link are used to determine the direction of rotation and
the sign of the profile distance. Once all vertices are computed,
the profile array is shifted to bring the maximum distance to
the first position. Also, normalization occurs during this shift.
The shift consists of taking the maximum element, moving it to
position one, moving the old element that was in position one to
where it belongs, etc. If this does not move all elements (shift
was not relatively prime to the number of elements), a new subset
of elements one greater in index is then moved until all have been
shifted.

XPROFL (CHAIN, FLAG, PROFL, N, INDEX) fills the
temporary array space with the links of the chain. If FLAG is
false, the chain links are rotated to bring the left edge to the
right. PROFIL is then used to compute the profile.

YPROFL (CHAIN, FLAG, PROFL, N, INDEX) also fills the
temporary array with the links and rotates them so as to allign

the desired edge with the right edge of an encasing rectangle.

30

PROFIL computes the profile.

PROFIL (PROFL, DIM, INDEX, LL) computes profiles. LL
is the number of links in the temporary workspace to be used.
PROFL, DIM, and INDEX correspond to PROFL, N, and INDEX in the
XPROFL and YPROFL headers, all respectively. The extents of the
encasing rectangle are determined from the minimum and maximum
extents along with determining twice the area. The area is
completed by a straight line from (0O, O0) to (x, y) (the end of
the chain). The greatest x (and the number of the link arriving
there) on the lower border is found. If the chain encircles in
the wrong direction, it is inverted and the maximum lower edge
x link number is also changed. For each link from the maximum
lower edge x and up alang the chain (possibly wrapping around
for a closed chain), the x and y increments are examined. Upward
directed links establish new profile values. Sideward dirscted
links update only the second value of the old pair. If a downward
directed link is also directed outward, it updates the second
value of the pair down a value (a later upward directed link
will set these values again). Downward and inward directed links
force the routine into a different mode where it will examine
links until they move up again to the value of y at which the
curve started moving down. No action is taken until the curve is
back out of the peninsula or until the curve breaks out and
is moving outward. The routine stops when the curve reaches the
top of the encasing rectangle. The end profile pair values are

given the lengths of the encasing rectangle where appropriate.

31

e —" e g

MATCH (XX, YY, PROF1, N1, PROF2, N2) matches the output
of PROFIL. It maximizes the area of overlap of encasing rectangles.
The operation takes place in two parts. In the second, one chain
is shifted sufficiently to overlap another completely. In this
case, the area of owerlap is given by the length of the regions
in which the profile lengths overlap times the distance one
profile can be shifted into another. The minimum distance between
profile values (starting from am absolute maximum of the sum of
the encasing rectangle sides) is found. A different loop finds
this distance depending on which chain overlaps which in length.
The first phase of the routine is for the case where the lateral
shift values being considered are insufficient to shift one
chain completely overlapping the other. This portiom checks for
both the case were chain 2 is shifted in from above and from
below. The maximum passible inward shift (minimum distance between
profile values) is found and the area of overlap (inward shift
times length of overlap) determined. As the maximum area is found,
the area i1s saved in a running maximum area value and the inward
and lateral shifts corresponding to this value are saved.

SUBCH (CHAIND, CHAINS, VERT1, VERT2) locks for VERTI
by passing everything until it is found. Everything from then
on until VERT2 or the end of the chain is PUT onto CHAIND.

Links cause the vertex counter to be incremented. Non-links are
transfered but do not increment the vertex counter.

INTERS (CHAIN1, CHAIN2, J1, ITYPE, INLCHA, INLCHS,
NUMINT) uses the method of overlapping rectangles to minimize the

nunber of tests that must be made. The links of both chains are

found and used to establish two arrays of x and y coordinates at
opposite ends of the temporary array space. Another array is
created to hold the vertex numbers in both chains that are
within the overlapping rectangles. The program iteratively
examines all vertices in the overlapped area of the two chains
and determines those vertices of the two chains still within that
region. Given this new subset of vertices, the rectangular area
in which the vertices of the two chains lie is determined and
overlapped to limit the region in which possible intersections
occur. Once this has been done to the point at which no further
reduction is possible, the intersections are found. All vertices
left in chain 1 are checked against all vertices in chain 2 for

a match (intersection type 1). If there is no match, the vertices
are checked with the mnext vertex in the:chain to see if they form
a unit rectangle (type 2 intersection). A check is made for

the case where the next vertex is outside of the rectangle.
(Reference: Freeman, H., '"Techniques for the Digital Computer

Analysis of Chain-Encoded Arbitrary Plane Curves'", Proc. National

Electronics Conference, Chicago, Illinois, vol. 17, pp. 421=432,

October 1961.)

POLYGN (CHAIN, XCOORD, YCOORD, ICL, TOL, IC, JJ, K) uses
temporary workspace as the open stack. The x and y coordinates
are generated in XCOORD and YCOORD. For a closed chain, the
vertices with the maximum and minimum x values are found and
the minimum is added to open and closed (ICL) and the maximum is
added to open. An open chain has the first vertex put in closed

and the last in open. Depending on the slope of the chord that is

33

being considered as an approximation, either the vertical or
horizontal distance to the chain is used to approximate the true
perpendicular distance. The vertex with the maximum distance is
recorded and the true distance evaluated. If this distance is
greater than the tolerance, the new vertex is added to open and
the process repeats. Otherwise, the chord is a good approximation
and so the open vertex is moved to close. Processing continues
until no more open vertices remain (all chords have been found
satisfactory). (Reference: Ramer, U., "An Iterative Procedure

for the Polygonal Approximation o6f Plane Curves', Computer Graphics

and Image Processing, (1972), I, pp. 244=256)

ROSCAL (CHAIND, CHAINS, ANGLE, XSCALE, YSCALE) extracts
links from CHAINS and approximates them with straight lines to
form CHAIND. Signal codes encountered are moved to CHAIND. X and
¥y coordinate specifiers are transformed relative to the origin
and are put into CHAIND. For each link, the new x and y coordinates
after scaling and rotating (in that order) about the origin are
computed (relative to the start of the chain). Starting from the
end of the last link generated, other links are generated to
approximate a straight line to the new point. This procedure is
an iterative procedure that finds the slope of the straight line
to the new point and determines where a new link would fall
relative to this line. Links generated will approximate the
transformed chain only on a link by link basis and only as well as

the underlying grid allows the links to end at a given point.

34

s ——— . — - - oy
e —— S

PART 15

CREATING A VERSION OF CHAP

This section summarizes the actions necessary to create

a working version of CHAP for a givem computer.

A. Block Data Routine

A set of values must be chosen for NX and NY, the size
of the binary plane. NX must be an integral multiple of the number
of bits per word to be stored. Also, PLANE must be defined to be
of size NX * NY / number of bits per word to be used.

CHAPMC must be carefully checked. NBW must be set to the
number of bits per ward to be used. This must be equal to three
times NLW, the number of links to be stored per word. The
definitions of EX, BLANK, and DIGITS may have to be changed
depending on the manner in which the given FORTRAN compiler
expects definitions of character constants. Finally, MAXINT

must be set to the highest machine representable positive integer.

B. Bit Manipulating Routines

Probably the easiest routine to write is ADCR. This
routine must return the address of its argument. The argument
will always be an integer array. The value returned must be an
address assigned in some unique way. Two chains that accupy
different areas of memory must be given different address values
and a given chain must always be given the same resultant address
value, If two chains are identical but are different memory
arrays, they have different values returned by this function.

(This is to say that returning the address relative to the start

of the routine as opposed to the start of the core load or
something to that effect is not acceptable).
The best model for the other routines that need to be

modified is the UNIVAC version. In this version, there are two

routines that fetch a set of bits from a word (GTLINK and BPRINT)

and two that sore into a word (STLINK and APLANE). The UNIVAC
fersion uses FLD (i, k, e) which is both a function and a
pseudo-variable. I is the first bit to be used (where O is the
leftmost bit in a UNIVAC word), k is the number of bits to use,
and e is either the word to fetch from or the word to store into.
A similar function and a subroutine which operates like this
pseudo variable must be written. Watch cut for the bit numbering
in the computer in question; the expressions for the bits to be
used in the UNIVAC expressions may have to be modified if the

numbering of the bits is different.

There are no other known problems. Generally, if CHAP
compiles on a given computer, it will run and adjust itself to
the configuration.

If the FORTRAN in question does not pass the address
of, for example, A (1, 3), but instead creates a temporary, this
should be noted in the user's manual. This means that arrays of

chains are not permitted in this FORTRAN.

Ed

g I —

PART 16

CALLING STRUCTURE

A. Extermal References

The following is a list of all external references

made by routines in the IBM version of CHEAP. The UNIVAC versiocn

differs only in the machine dependent routines.

ANGLE:
ARRAY:
AUTO:

BAYPEN:

CLOSE GET OPEN XYCOMP

CLOSE GET OPEN

ARRAY WORK

CLOSE GET INITXY OPEN RESID XYCOMP

BPLANE / APLANE: CHAPMC CLOSE GET INITXY IOR OPEN

CENPRO:
CENTRD:
CHDIG:
CHLINE:
CHPAX:
CLEAR:
CLOSE:
COLOR:
COLORD:
CROSS:
DIGCH:

DIGLIS:

ECAREA:

ELATED:

ELEVAT:

PLANES SHIFT XYCOMP

CENTRD CLOSE GET INITXY OPEN XYCOMP
ECAREA MOM1

DIGCH

LINIT PUTCH

CLOSE GET OPEN

ADDR STATUS

ADDR STATUS

PUTCH PUTCHF

VSEG

ARRAY WORK

GTLINK

CHAPMC

CLOSE GET INITXY OPEN XYCOMP
VSEG

PUTCH PUTCHF

GET:

GETDIG:

GREY:
GREYD:

GTLINK:

ICHDIG:
INITXY:
INPUT:
INTERS:
INVERT:
INVIS:
INVSEG:
LENGTH:
LINIT:
LINK:

LINKSQ:

LISDIG:
LIST:
LMOM1:
LMOMZ2+
LNCHD:
MARKER:
MAXMIN:
MOM1:
MOM1A:
MOM2:

ADDR
QMOVE
CHAPMC
PUTCH
VSEG
CHAPMC
DIGCH
CHDIG
ADDR
ARRAY
ARRAY
PUTCH
NINV
CLOSE
GTLINK
LINIT
MSTORE
DIGLIS
CHDIG
CENTRD
CLOSE
CLOSE
CHDIG
CLOSE
INITXY
CLOSE
INITXY

CHDIG

SIGNAL

PUTCHF

IAND

DUMB
INITXY

NTHSEG

PUTCH
MSTORE

PUTCH

LISDIG
ECAREA
GET
GET
GTLINK

MOMTA
GET
MOM2A

DUMB GTLINK ICHDIG NDUMB OCTAL OCTIN

STATUS

SHIFT

ICHDIG NDUMB QMOVE SIGNAL

GETDIG PUTCH QMOVE SIGNAL STATUS

WORK XYCOMP

OPEN

PUTCH

QMOVE SIGEND SIGLIS SIGNAL SPACET
INITXY MOM2A OPEN XYCOMP

INITXY OPEN XYCOMP

NDUMB NMOVE PUTCH

INITXY OPEN XYCOMP

OPEN XYCOMP

38

MoﬁaA: CLOSE GET OPEN XYCOMP

MSTORE: PUTCH

NCOLOR: NCOLS NTHSEG

NCOLS: PUTCH

NELEV: NELVS NTHSEG

NELVS: PUTCH

NGREY: NGRYS NTHSEG

NGRYS: PUTCH

NMOVE: CHDIG DUMB GQMOVE SIGNAL

NODE: PUTCH PUTCHF

NTHSEG: ADDR CHAPMC CHDIG DUMB NDUMB NMOVE PUTCH GQMOVE
SIGNAL

NVIS: PUTCH

OCTAL: LOCTA

OCTIN: LOCTA

OPEN: ADDR STATUS

OUTPUT: CHDIG DUMB PUTDIG QMOVE SIGNAL

PCLOSE: PPUT

PDIST: CLOSE GET INITXY OPEN XYCOMP

PNTCND: CLOSE GET INITXY OPEN XYCOMP

POINT: PUTCH PUTCHF

POLYGN: CLOSE GET INITXY OPEN WORK XYCOMP

PPUT: LINK PUT

PRINT / BPRINT: BPLANE CHAPMC IAND PLANES SHIFT

PROFIL: WORK XYCOMP

PUT: LINIT PUTCH PUTCHF

PUTCH: STLINK

PUTCHF: PUTCH

PUTDIG: CHAPMC

RESID: CLOSE GET INITXY OPEN XYCOMP

ROSCAL: ADDR CLOSE GET INITXY OPEN PCLOSE PPUT XYCOMP
ROTIND: PUTCH

SCLIND: PUTCH PUTCHF

SIGEND: DIGLIS

SIGLIS: DIGLIS

SIGNAL: QCOMM

SPACET: DIGLIS

STLINK: CHAPMC IAND IOR SHIFT

SUBCH: ADDR CHAPMC CLOSE GET OPEN PCLOSE PPUT
VERTEX: CLOSE GET INITXY OPEN XYCOMP

VISIBL: PUTCH

VISSEG: NTHSEG NVIS

VSEG: ADDR CHAPMC CHDIG DUMB NDUMB NMOVE PUTCH
WHEX: CLOSE GET OPEN

XCOORD: PUTCHE PUTCHF

XPROFL: ARRAY PROFIL WORK

YCOORD: PUTCH PUTCHF

YPROFL: ARRAY PROFIL WORK

B. Referencing Modules

This list, again for the IBM version, lists the modules

that reference a given other module.

R Bt - R - T ———— ey T — - B

ADDR: CLEAR CLOSE GET INPUT NTHSEG OPEN ROSCAL SUBCH
VSEG

ARRAY: AUTO CROSS INTERS INVERT XPROFL YPROFL

BPLANE: PRINT

CENTRD: CENPRC LMOM1

CHAPMC: BPLANE / APLANE DIGLIS GETDIG GTLINK NTHSEG PRINT /
BPRINT PUTDIG STLINK SUBCH VSEG

CHDIG: GET INITXY LIST MARKER NMOVE NTHSEG OUTPUT VSEG

CLOSE: ANGLE ARRAY BAYPEN BPLANE / APLANE CENPRO CHPAX
ECAREA LENGTH LMOM2 LNCHD MAXMIN MOM1A MOM2A PDIST
PNTCND POLYGN RESID ROSCAL SURCH VERTEX WHEX

DIGCH: CHDIG ICHDIG

DIGLIS: LISDIG SIGEND SIGLIS SPACET

DUMB: GET INITXY INPUT NMOVE NTHSEG OUTPUT VSEG

ECAREA: CENTRD LMOM1T

GET: ANGLE ARRAY BAYPEN BPLANE / APLANE CENPRO CHPAX
ECAREA LENGTH LMOM2 LNCHL = MAXMIN MOM1A MOM2A PDIST
PNTCND POLYGN RESID ROSCAL SUBCH VERTEX WHEX

GETDIG: INPUT

GTLINK: DIGCH GET LINIT MARKER

IAND: GTLINK PRINT / BPRINT STLINK

ICHDIG: GET INITXY

INITXY: BAYPEN BPLANE / APLANE CENPRO ECAREA INTERS LMOM2
LNCHD MAXMIN MOM1 MOM2 PDIST PNTCND POLYGN RESID
ROSCAL VERTEX

IOR: BPLANE / APLANE STLINK

LINIT: CHLINE LINK PUT

L1

T S RS R s

LINK:
LISDIG:
LOCTA:
MOM1:
MOM1A::
MOM2A:
MSTORE:
NCOLS:
NDUMB:
NELVS:
NGRYS:
NINV:
NMOVE:
NTHSEG:
NVIS:
OCTAL:
OCTIN:

OPEN:

PCLOSE:
PLANES:
PPUT:
PROFIL:
PUT:
PUTCH:

PPUT

LIST

OCTAL OCTIN

CENTRD

MOM1

LMOMZ MOM2

LINK LINKSQ

NCOLOR

GET INITXY MARKER
NELEV

NGREY

INVSEG

MARKER NTHSEG VSEG
INVSEG NCOLOR NELEV
VISSEG

GET

GET

ANGLE ARRAY BAYPEN
ECAREA LENGTH LMOM2
PNTCND POLYGN RESID
ROSCAL SUBCH

BPLANE / APLANE
PCLOSE ROSCAL SUBCH
XPROFL YPROFL

PPUT

CHLINE COLOR ELEVAT
LINKSQ MARKER MSTORE

NTHSEG VSEG

NGREY VISSEG

BPLANE / APLANE CENPRO CHPAX
LNCHD MAXMIN MOM1A MOM2A PDIST

ROSCAL SUBCH VERTEX WHEX

PRINT / BPRINT

GREY INPUT INVIS LINIT LINK
NCOLS NELVS NGRYS NODE NTHSEG

L2

i - ———————— T —— p———

e R

S A B

PUTCHF:

PUTDIG:
QCOMM:
QMOVE:
RESID:
SHIFT:
SIGEND:
SIGLIS:
SIGNAL:
SPACET:
STATUS:
STLINK:
VSEG:
WORK :

XYCOMP:

NVIS POINT PUT
XCOORD YCOORD
COLOR ELEVAT GREY
YCOORD

OUTPUT

SIGNAL

GET INITXY INPUT
BAYPEN

BPLANE / APLANE
LIST

LIST

GET INITXY INPUT
LIST

CLEAR CLOSE GET
PUTCH

COLORD ELATED GREYD

PUTCHF ROTIND SCLIND VISIBL VSEG

NODE POINT PUT SCLIND XCOORD

LIST NMOVE NTHSEG OUTPUT

GTLINK PRINT / BPRINT STLINK

LIST NMOVE NTHSEG OUTPUT

INPUT OPEN

AUTO CROSS INTERS POLYGN PROFIL XPROFL YPROFL

ANGLE BAYPEN BPLANE / APLANE

CENPRO ECAREA INTERS

LMOMZ2 LNCHD MAXMIN MOM1A MOM2A PDIST PNTCND POLYGN

PROFIL RESID ROSCAL VERTEX

43

PART 17
CHAP TAPE FORMAT

The CHAP tape contains a variety of informatiomn. Each
section is headed with a card of the form: // description. The

sections on the CHAP tape with line numbers are:

IBM blaock data routine (2-18)

IBM assembly language routines (20-110)
IBM machine dependent routines (112-237)
UNIVAC black data routine (239-255)
UNIVAC machine dependent routimes (257-380)
CHAP (382-4049)

test set 1 (4051-4130)

input to test set 1 (4132-4135)

output from test set 1 (4137-4248)

test set 2 (4250-4339)

input to test set 2 (4341-4346)

output from test set 2 (4348-4460)
programming example (4462-4499)

input to programming example (4501=4506)

output from programming example (4508-4600)

The test sets included test all of the routines in
their basic mode of operations. They are not an exhaustive test
set. However, comparing the output when run against the desired
output provided shows whether or not the source is intact and
whether or not the FORTRAN in question functions in the desired
manner. (Units 5 and 6 are used for input and output. These

numbers may need to be changed to run at a given installation.)

by

B

ADDR:
ANGLE:
APLANE:
ARRAY:
AUTO:
BAYPEN:
BPLANE:
BPRINT:
CENPRO:
CENTRD:
CHAPMC:
CHDIG:
CHLINE:
CHPAX:
CLEAR:
CECEY
COLO=:
COLORD:
CROSS:
DIGCH:
DIGLIS:
DUMB:
ECAREA:
ELATED:
ELEVAT:

6, 35, 41
25, 37

6, 36, 37
a2k, 37, 41
29, 37

29, 37

7y 37, 41,
6, 36, 39
30, 37
28, 37, 41
5, 35, 41
8, 37, W
15, 37
2, 37

14, 37

22, 37, w1
14, 37
a1, 37
a9, 37

8, 37, &
9, 37, 41
10, 41

28, 37, 4
a1, 37

14, 37

PART 18

ROUTINE INDEX

GET:
GETDIG:
GREY:
GREYD:
GTLINK:
TAND:
ICHDIG:
INITXY:
INPUT:
INTERS:
INVERT:
INVIS:
INVSEG:
IOR:
LENGTH:
LINIT:
LINK:
LINKSQ:
LISDIG:
LIST:
LMOM13
LMOM2:
LNCHD:
LOCTA:
MARKER:

22, 38, &1
8, 38, 4
14, 38

21, 38
6,36, 38, 41
7y 41

8, 38, &1
22, 38, 41
17, 38

32, 38

24, 38

14, 38
21, 38

7, 41

26, 38

13, 38, 41
14, 38, 42
15, 38

9, 38, 42
17, 38

28, 38

28, 38
27, 38

10, 42
20, 38

MATCH:
MAXMIN:
MOM1:
MOM1A:
MOMZ2:
MOM2A:
MSTORE:
NCOLOR:
NCOLS:

NELEV:
NELVS:
NGREY:
NGRYS:
NINV:
NMOVE:
NODE:
NTHSEG:
NVIS:
OCTAL:
OCTIN:
OPEN:
OUTPUT:
PCLOSE:
PDIST:
PLANES:

25,
28,
28,
28,
28,
3,
a1,

21,

38
28,
38,
38
39,
39,
29
39,

9, 42

21,
21,
21,
21,
21,
18,
14,
19,

17,
16,
25,

39
39,
29
39,
L2
39,
39
39,
39,
39,
39,
39,
29
39,
39

42
42

42

42

L2

42

42

42

L2

42

L2

L2

3, 35, 42
PNTCND: 26, 39

46

POINT:
POLYGN:
PPUT:
PRINT:
PROFIL:
PUT:
PUTCH:
PUTCHF':
PUTDIG:
QCOMM:
QAMOVE:
RESID:
ROSCAL:
ROTIND:
SCLIND:
SHIFT:
SIGEND:
SIGLIS:
SIGNAL:
SPACET:
STATUS:
STLINK:
SUBCH:
VERTEX:
VISIBL:
VISSEG:
VSEG:

14, 39

33: 39

16, 39, 42
7 32 -
M, 39, 42
16, 39, 42
9 39, 42
13, 40, 43
9, 40, 43
12, &3

12, 43

26, 40, 43
34, 40

14, 40

14, 40

7y 43

9, 40, 43
9, 40, 43
12, 40, 43
9, 40, 43
3y 43

6, 36, 40, 43
32, 40

2k, 40

14, 40

21, 40

18, 40, 43

WHEX: 25, 40 XYCOMP: S, 43

WORK: 5, 43 YCOORD: 14, 40

XCOORD: 14, 40 YPROFL: 30, 40

XPROFL: 30, 40

47

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER ’/—P,GOVTACCESNONNO,

EQSR-TR- 78-1039 |

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

DOCUMENTAT ION MANUAL FOR CHAP

5. TYPE OF REPORT & PERIOD COVERED

Interim =

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Keith P. Loepere

8. CONTRACT OR GRANT NUMBER's

AFOSR 76-2937 “

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Rensselaer Polytechnic Institute
Electrical and Systems Engineering Department ~
Troy, New York 12181

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

61102F 2304/A2

11. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332

12. REPORT DATE

May 1978 .~

13. NUMBER OF PAGES

52

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CLASS. (of this report;

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

7. DISTRIBUTION ST,

4ENT (of * + abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY TES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

computer graphics
graphics languages

line-drawing processing
image processing
pattern recognition

. cartography

N

20. A RACT (Continue on reverse side If necessary and identify by block number)

the CHAP User's Manual.

This is a documentation manual for the CHAP.chain processing language,
CHAP is a collection of routines developed for analyzing, synthesizing,
and manipulating chain-encoded line drawings, This report describes the
internal operation of the CHAP routines. It is a companion volume to

DD , 3%, 1473

UNCLASSIFILED

CEMIIBDITY /M1 ACEIEI A ATIAL AP *. 1 n = amm n W.c. =

» 1‘-‘-—_&&

- —— T g 2 v

