
A D— AO 55 7 ’ 3 RCNSSELAER POLYTCCPVII lIST t ROT N V COMPUTER RESCAR——CIC F/a 9/2CHAP UStR•5 M*NUAL.(tJ)
MAT 76 K P LO€PtRC AFOSR—76—2937UNCLASSiFIED C$1~—56 AFOSR—TR—76—lfl4 NI.

__ ______
a

END

OAFF

8 —7 8
OOC

-

II _____
‘~ II~ 11 2.2

I I .~~
‘~ IIHI~°

Hill’ 25 IHII~ HlQ~
6

MICROCOPY RESOLUTION TEST CHART
NA IIONA L BUREAU OF ~‘IAN DAR OS I~~~3 -A

~R FURTHER IRAN ‘

.~ ~~ 1’

—a

H DC

JUN 21 1978

- ——

67~ ~~~~~~~~iTechnical Report CRL—56 ~~~~
(c~ (

(t
1
~ ~~CHAP USER ’ S MANUAL

—‘ L~— By

(1
J

Keith P./LoePere /

~~~~2aY~~~~~ ~~~fl/c ~,7

P ~~~~~~~~~ D D C

~ c” ______ JUN 21 1978

tI

~~~~~~~~~~~~

I
E

Prepared for

Directorat e of Mathematical and Information Sciences
Air Force Office of Scientific Research

Air Forc ems Command.
Grant

-

. 78 06 19 088
e,~ :J ~~~~~~~ ~~~~~~~

Rensselaer Polytechnic Institute
TROY , NEW YORK 12 1 8 1

Approves for public re1e~*~~
-

I
~

distribution unhi~ited

I — --
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~±. ~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~

--

~~~~~~~~~~~~

. ______-



ABSTRACT

A comput er r e p r e s e n t a t i o n  for  line drawin gs tha t

has been found part icular ly  convenien t  an d has become

widely accepted is the chain code . This representation

is compact and allows most common processing functions

to be performed efficiently.

CHAP is a collect ion of FORTRAN rout ines des igne d

to process chain—encoded line drawings. Routines exist

in CHAP to man ipulat e , synthes ize , analyze , an d do input

and output upon chains. This report is intended to

serv e as a user ’s manual for CHAP . It describes the use

of the  CHAP rout ines alon g with  o ther  informat ion

needed to write a program utilizing the routines. A

programming example is included. -

I~~~~~~~~~~~~~~~~~~~ I
NTIS White Such.. 

~~DOC luff SectIon o I
~ 

UHANNOU~CEQ o
JUSTIFI CATION 

By 
OISTIflBUT ION/A VA IUIILITY coo 

LA/ i

I



ACKNOWLEDGM ENT

The work descr ibed  here  was suppor ted  in part  by

the Direc to ra t e of Mathemat ical and Inf ormat ion Sc ienc es ,

Air Force  Off ice of Sc ient if i c  R e s e a r c h , under Gran t

AFOSR 76— 2937, P r o f e s s o r  Herbe r t  Free man Pr inc ipal

Investigator.

ii

1. - -1.--—.-- — —- ___;~~~~.-

~

_ — --— *



COWrEN’rs
Page

I INTRODU CTION . . . .. . 1

2.. CHAINS IN ~~~ . . .. . . .. 2

3. M ANIPULATING THE CHAIN DATA STRUCTURE 3

A. Chain Synthesis ............... 3
B. Input and output.............. 5

C. Extracting Parts of Chains .. . .- . . .. . 6

D. Taking a Chain Apart into Primitives . .. 9

E. Link—by—Link Movements .. . .. . . . .. 10

L4~ SUPPORTING ROUTINES .. . .. . . .• .- .. . . 11

A. ~ .nary plane .. . . . .. . . . 1 1

B. Arrays of Links or Vertices . .. . .. . . 11

5.. COMPUTATIONAL ROUTINES .. . . . . . . - . 13

A. Angles1 Distances, and Extents .. . . . . 13

B. Areas and Moments . .- . . .- . .- . . 1k

C. Correlations .. .. . . . . . . .- . .. . . . 16

6. SPECIAL FUNCTIONS . . .- . . .- . . .- . . . . 17

A. Rotation and Scaling . . . . . . . . . 17
3.Intersections ............. 17

C. Po~ ygona1 Approximation . . . . . . . . 18

D. Profiles . .- . . . . . . . . . . . 18

S. Centroidal profiles . . . . . . . . 19

F.Shape Featu.res ............. 20

7. COMMON BLOCKS .. .. . . . . . .. . . . . . . 21

8. FORMAL CALL SEQUENCES .. . . . . . . . . . . 22

9 • RESERVED MAKES . . . .. . . . . . . . . . . 35

in

1. 
--_ - - -



Page
1O. ERPOR MESSAGES . . . . • . . ... . . . . . 36

i T .  PROGRANMING EXAMPLE . . . • . .. . . . . . .

12. MACHINE DEPENDENCIES . . . . . . . . . . . . k6

A. 1BM 360 / 370 . ... . . . . . .. . . . . k6

B. UNIVAC 1108 / 1110 . . . . . . . . . . . 1+6

13. REFERENCES . . . . . . . . . . . . • . . 1+7

1L ~. SIGNAL CODE SUMMARY . . . . • . . . . . . . 14.5

15. ROUTIi’IE INDEX . . . . . . . . . . . . . . . 50

iv

- 
—- ————- _.__ — _--—-- --——--—-- - 

——  — 
.

~
.—



PART 1

.Lzrn~ODUCTI0N

One of the ways devised to represent line drawings in

a fore computers can msonipulate is the chain cody CitiP ia a set

or routines designed to facilitate the manipulation of chains.

These routines are written mostly in FORTRAN and are FORTRAN

cs l1~nble1

It is assumed that the reader understands all of the

properties of chains. One set of properties that is assumed by

CHAP that may not be standard is that a Ch~ fn starts of f to be

visible and to have a grey level, elevation, and color of zero ..

These properties occur as if signal codes to their e~~ ect actually

occurred. It is convenient to view it this way even though the

signal codes do not actually exist at the beginning of the chain.

Signal codes may be added to the begiri~ning of a chain, if desired ,

to change these default attributes..

The origin of a chain is asau~ ed to be (0 , 0) if no

specification is made to the contrary. When x or y coordinate

specifiers are present , the field value in them is 1638k greater

than the actual value . That is, the five digit field in the code

has a value of 16381+ (1+00008) for a value of zero . It is possible

to have x or y coordinate values in the range -16381+ to 16383.

Sections included herein describe the use of the CHAP

routines. CHAP routine s exist to take apart , synthesize , analyze,

and do input and output upon chains. A few common block.s must be

defined at the beginning of the mainline user prog ram. The section

discussing this should be noted .

1

—I--- —--~
_ —--____-,~1~

_-- .~~~
- - - - -  - -— — — -w- 

~~~-


PART 2

CHAINS IN CHAP

C1ia1ni~ are stored in arrays. A eh~in array has the

following format

word 1 ~ the maximum number of links thi s chain array

can hold

words 2, 3, and 1+ ~ initial value of zero

words 5 and beyond ~ the chain links

The part of the array used to store chain links must be large

enough to store the link R packed as indicated by word one .. The

nnaber of words it will take to store a given number of links

depends on the implementation ; see the appro priate section. For

a aaehine that can. hold 10 14nk ~ per word , a 10-word array can

hold (10 — 1~) • 10 = 60 links..

ChaIni~ are passed to a routine by specifying just its

name. Remember in writi ng user routine s that this is an integer

array being passed..
A single dimension array of chai ns would consist of a

two—dimensional array where the number of column~ is the number

of chain ~ and the number of rows is the ‘word lengt h of each ch~iin ..

(This is tru e for FORTRAN user ’s programs .) Each ch~~tn in the

array must have words 1, 2,. 3, and 1+ set as above .. Addressi ng

chain 3, for example , for a routine would be done by specifying

chai n (1 , 3) as the argument (start of column 3) . Some

implementatio ns may not correctly pass the address of the column

to be use d as a scalar chain; see the appropriate section. These

notions can be extended to higher dimensioned arra ys of chains..

2

- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~ - - _~~ - —

PART 3

MANIPULATING THE CHAIN DATA STRTJCTTIRE

A. Chain Syn.thesis

Chain synthesis routines are used to build up a chain

element by element . These rou tine s can generate links or signal

codes.

A. common first operatio n is to use subroutine CLEAR

(chai n) to set chain to be a m~1l chain .. j null chain has no

linka or signal codes in. it. It does, however, have the default

attributes described before. A chain may not be cleared if it is

open. (discussed later) .

Three routines exist to add links to the end of a chai n.

Subroutine LINK (chamn~ link, number) adds the li nk numbered link

a number number of times to the end of the specified cha in. This

call is ignored if the number speci fied is less than or equal to

zero. The way in which the link is added depends on number ; signal

codes are generated whenever that would be the most efficient

means of storing the links.

A set of links can be added by calling LINKSQ (chain,

!!~~
dimension of set, number) . Set is a one—dimensional arra y of

links to be added to the end of the specified chain. Number is the

number of tine s this link sequenc e is to be added. A group repeat

cade is generated by this routine . The call is ignored if number

of the dimension of set is less than one.

The third link generati ng routine uses the Bresenham

algorithm (Bresenham, 3.. E., “Algori thm for computer control of

a digita l plotter ” , IBM Systems T, (1*), 1965, pp. 25—30) to

3

.‘.—.—- — - - -. ,- -,-- ‘.--
~~~~~~ — .



generate a series of links that appro~r1ma tee a straight line over

an interval of ( delta x, delta y’). CBLINE (chain, delta x, delta

i) adds these links to the end of the specified chain..

Routines also exist to add signal codes to the end of

a chai n. These are:

INVIS (chain) — invisible chain follows

VTSIRL ( thai n) - visible chain follows

POINT (chain,, marker) — a given chain marker number

COLOR (chain, color) — a given color indicator

ELEVAT (chain, value) — a given eleva tion value

GREY (chai n, grey) -- a given grey level value

XCOORD ( chain, x) — a given x coordinate specifier

YCOORD (chain, 
z) 

— a given y coordinate specifier

ROTIND (chain, angle) — a rotation specifier

NODE ( chain, node, intersections) — a node specifier

where intersections is the number of

intersecting chains (zero if unde fined)

SCLIIW (chain, mode, scale, position) — a scaled chain

speci fier with. position the position. of the

octal point in the scale factor of type mode

One fi,~al routine exIsts to- generate chain elements .

This routine is a counterpart to the GET routine (discussed later) .

A collection of things can be generated by this routine one at a

time. PUT ( chain, first, second) adds to the end of the specified

chain an element as follows:-

4

____U~~~~  
- - 

~~~~


first second element

0—7 0 the link specified by first

10 0 ignored

11 0 invisible chain follows

12 0 visible chain follows

105, 111 , generates the signal code first — 100

112 ,. 113, x (is., 0-5, 13, 74, 1~~, 22, 23, 24)

118 , 1 19, where second is the string of octal

l ao- digits to follow the signal code as

an octal number (ex. 1?8 , 1 generates

a color specifier of 1)

122 an x coordinate speci fier

123 y a y coordinate specifier

Only 122 and 123 can have negative value s of second .

LU. other values form the octal digits that fallow the signal

code directly from the value of x. The value of x or y must be in

range. The above are the only valid arguments..

B. Input and 0ut~put

Chains can be output in a format that can. be subsequent ly

read in.. Also, chains can be printed in a meaningful form..

INPUT (uni t, chain) reads a chain from FORTRAN logical

unit uni t. Reading takes place until an end-of—chai n code is

encountered, The chain is checked for validity. The forma t of the

input (assumed to be from cards) is as follows:-

5

— ~~ ~~~~~~~~
- ________

colm~ng 1—6 ignored

columns 7—72 chain data

coln~n~ 73—8.0 ignored

Any character that is not an octal digit is ignored . When called ,

this routine reads in a new card and cont inues to read cards until

it finds the end—of—cha i n code. The next chain read in (if any)

must begin on a new card. The chain read in overrides the previous

valu e of chain; ie.., chain is cleared first .. This means that the

specfied chain cannot be open (discussed later) .

OUTPUT (unit, chain) is the opposite of the above . Onto

FORTRAN logical unit unit, chain is punched. Punching begins o~ ~
new card and continues as necessary until the end—of—chain ccde is

punched. The output format is the same as the above input format.

Sequencing numbers starting at 1 and going up by I are also

generated in. columns 73—80.

A more meanin gful output can be generated by LIST (unit ,

chain). This routine lists a given chain on a given FORTRAN

logical unit. The output consists of groups of five links. Blanks

separate the groups from one an.other and from signal codes.

Fields within signal codes are separated by blanks. No line

printed will have more than 120 characters on it. Single spacing

is used. The end-of—chain code is printed.

C. Extracting Parts of Chains

These routines look at the logical structure of chains.

They provide a means of extracting information about the chain

parts and assembling them differently. The first routine listed

6

here does not extract a part but it does look at the physical .

arrangement of chain segments. INITXY (chain, x, y) scans down a

chain looking for x and y coordi nate specifiers. The value of the

last x and last y coordinate specifier f ound before the first actual

link is returned. If no x (y) coordinate specifier is found , zero

is re turned for x (y) ..

One way to ident ify a portion of a chain is through

marker codes in the chain. A section so identified can be copied

from one chain (chains) to the end of ano the r (chaind) by MARKE R

(ebaind, chai na, first , second). This routine moves the segment

be tween marker first and marker second. If first is out of ran ge ,

movement starts at the beginning of chai n chains .. Given that

first is in range for markers , chain. chains is scanned until the

first occurre nce of marker first. I f this marker is not

encountered , nothing is moved. Assuming it is found , the signal

code and the chain following it up until and includi ng the first

occurre nce of marker second is copied. I f marker second does not

occur after marker first, there is no marker second , or second is

out of ra nge for markers , the copy run s until the end of chain

chains. Thus , MARKER (chaind, chains, -.1 , — 7) is a copy of chains

to the end of chaind .

Thre e routines in thi s set copy portions based on the

value of signal codes. They look for all segments with an

attribute in a given range. COL O RD , ELAT ED, and GREYD all of

(chaind, Cha inR, first , second) copy to the end of chaind all

portions of chains where the value of the color , elevation , or

grey level (respective ly) are in range. Copying a segment also

7

- ~~.
—

- — - -_ _ _ _ _ _ _ _ _ _ _ _ _

copies the signal code that causes the chain to enter or stay in

the desired range. If zero is in the desired range, the initial

part of chains (which has a default initial attribute of zero) is

moved along with a signal code with value of zero . The way the

range is chosen is as follows:’ if second is greater than or equal

to first , all values between and including first and second are

copied. If second is less than fir st, all values including first

and second except those between second and first are used.

In. cases where there is no other criterion to use as

to what segments to move , it is possibl e to move segments by

number. Whenever a signal code occurs, that signal code and what

follows is in the next higher numbered segment . Routine s that move

on the basis of segment numbers are : VISSEG (visible portions

only) , INVSEG (invisible portions only), NCOLOP (colored),

NELEV (elevated), and NGREY (grey level) all of (chai ru,~~ chains,

first, second). First and second form a range of segment numbers.

If first is less than one , it is the same as specifying one . A

value of second less than one is the same as infinity (effectively).

Given these meanings, if second is greater than first, all seg~ents

with numbers between and including first and second are copied.

If second is less than first, all segments including first and

second except those between second and first are copied. For first

equal to second, only this one value is copied. Note: for all

of the above except INVSEG, the default initial attribute means

that segment one starts at the beginning of chain chains and so if

one is in range , a signal code is generated for this signal code

(with a value field of zero) and the chain copy starts from the

8
- _ _ _ _ _ _ _ _ _ _ _

beginning of the ~h~ in .

1). Thking a Chain Apart into Primitives

The standard way of working on a chain is to take it

link and signal code by link and signal code. A facility is

provided to read a ch~,tn sequentially in this ~~nner. A chain

that is being read must be open. Onl y a certain number of chains (1+)

can be open at a time.. To open a new one , OPEN (chain) is used.

Ch~in chain cannot already be open. Once ap~ned. , INPUT and CLEAR

cannot be applied to the chain. GET (chain , first , second) can

now be used to get the next piece of information. In providing

this information, all multiple link codes are expanded fully and

returned link by I t nI~~ If the next entity is a link, first is set

to the link value and second is set to zero. Signal codes are

returned as follows~
signal code first second

040~ 1(1 0

Q14a1 11 -Q

0402 12- 0

040-5xyz 105 x7z8
Okl3abcde 111 abcde~

041 4abcde f 112 abcdef3

Q4l5abcdefg 113 abcde fg8

0422a 118 a

Q423abcd 119 abed8
0L 2t1abc 120 abc8
O426abcde 122 abcde8~~1 6381f

9

p - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~..
~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.- - ——. ——-- -,--.-—-—- — - ‘
~
-T - _______________- —



signal code first second

O427abcde 123 abcde8— 16384

Default attribut es do not get returned as signal codes. All other

codes (except 0404, 04 17, 0L~2O, and 0421 which are returned link

by link in. their expansion) are skipped.. If the chain is not open,

first is set to 10 and second to 0.

The ch~in can be un-opened by CLOSE ( chain) . The chain

can now be worked on by INPUT and CLEAR. If the chain is re-opened,

sequential reading will begin at the beginning of the chain again.

E. Link-by-Link Movements

This routine differs from the previous copying routines

in its method of operation. It uses GET and PUT to copy the chain

link by link.

SUBCH ( chaind, chains, vertex 1, vertex 2) copies onto

the end of chaind that part of chains that is between vertices

vertex 1 and vertex 2. The chain chains is scanned link by link

until a link is found ending at a vertex greater than or equal to

vertex 1. Copying then takes place until a link is found that ends

at a vertex greater than or equal to vertex 2. specifying vertex 2

as less than one is the same as specifying infinity (effectively).

The movement includes all signal codes that GET returns. Link

repeat codes are constructed as appropriate while moving; however,

group repeat codes are not constructed.

10

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ‘ — —-  T”~” T T  ~~ —p ~~~—



PART 4

SUPPORTING ROUTINES

A.. Binary Plane

An alternate way of looking at a chain is through a

facility in CHAP called the binary plane. The binary plane is

an array of bits of dimensions 0 to n x —  1 and 0 to ny — 1 where

nx and ny are implementation-dependent constants. Each bit

corresponds to a point in the (x, y) plane. A value of 1 for a

bit implies that a visible vertex is at that point.

A chain may be added to the binary plane by APLANE

( chain). This will set to- 1 all bits corresponding to visible

vertices in chi~in.. Visible vertices are either the initial vertex

or a vertex that is arrived at by a visible link. All other bits

in the array are unaffected..

SPLANE (chain) clears the binary plane be fore adding

the chain to the plane..

BPRINT (window) prints the binary plane . Window is a

four-element array giving the initial and final x and the initial

and final y coordinates of a window in the binary plane. For all

1 bits in the window (including the border), an ‘X’ is printed..

Bl~nfr~ are printed otherwise..

PRINT (chain, window) clears the binary plane, adds

the specified chain to it, and then prints the specified window..

B. Arrays of Links or Vertices

These routines all perform a similar function. They

return arrays containing the links or vertices of a chain.

11

— ~--~~~~~~~~~~~~-- —-P-’, - -~~~~~~~ ~- —- - . — - ____________



ARRAY (chain,, list, dimension of list, no. of element s

returned, overflow flag) produces an array of links. The array is

fille d with all of the links of the chain. The overflow flag is

set if list is not large enough to hold all 0-f the links.. All

sign-~1 codes (except Fink codes) are ignored..

The ii mkR of the inverse chain can. be found by calling

INVERT ( chain, list, dimension of list, no.. of element s returne d,.

overflow flag ). This routine functi ons in an ~nnlogous fashion to

ARRAY.

VERTEX (chain, x coordinates , y coordinates, dimension

of x coordinates and y coordinates, number of elements returned ,

overflow flag) is also sfmtl~r to ARRAY but it returns the x and

y coordinates of the vertices of the chain. The values returned

are the starting coordinates of all of the lin ks and the final

coordinates of the chatn . Signal codes are ignored.

CBPAX ( chain , list, dimension of list, no. of elements

re tur ned) returns the links of the chain in the code of the FAX

language. The element after the last link (no. of elements

returne d + 1) has a value of zero.

12

a— -~-~~~~.=- - - -~ ------ — — - -  — —  - —‘- 
- 

- ___. —



PART 5

COMPUTATIONAL ROUTINES

A. Angles, Distances , and Extents

The ~‘ngle between the x axis and a chord of the chain

can be found by ANGLE (chain, vertex 1, vertex 2, angle). The

angle is the angle between a directed ray in. the positive x

direction from the vertex vertex 7 and a directed ray from the

vertex numbered vertex 1 to the vertex numbered vertex 2. The

resultant angle is in degrees.

LENGTH (chain , length , type) finds the lengt h of a chain.

Only invisible links are counted if typ e is equal to 1 • A type

value of 2 will count only visible links. All links are counted

for- any other value of type.

PDIST (ch~ fn , vertex 1, vertex _2, distance) finds the

distance between the vertex numbered ver tex 1 and the vertex

numbered vertex 2. For this routine , vertex I is considered to be

the end of link i — 1 except for vertex one which is the start of

link one..

The distanc e from a given point to a chain is scanne d

by PNTCND (ch~ in, x, y, maximum distance, minimum distance,

vertex at m nrimum distance , vertex at minimum distance ). (x , y)

is a point from which distances to the vertices of the chain are

che cked. The maximum and minimum distances to the endpoints of all

links and the initial coordinates of the chain ( vertex one ) are

returned.

LNC HD (chain , xl , yl , x2 , y2, maximum distanc e, mini mum

distance , vertex at me~1~aum distanc e, vertex at minimum distance )

t3

~~~~~~~~~~~~~~
-
~~~

--——— - — — - —  --- -
~~~~~  

-
~~

-

Is similar to PNTCND.. Here , the maximu m and mini mum perpendicular

distances from the vertices of a chain to a line defined by point s

(xl , y l) and (x2, y2) are found.

M~~ 4IN~ (chain, zy) finds the mayi mum and minim’im points

on a ehain~ X.y is a four—element array which receives, in order,

the mm~ !mun x, the minimum x, the maximum y, and the minimum y

value s of all vertices of the chain .~Vertices” here again means

the initial coordi nstes 0-f the chain and the endpoints of all of

the Finks.

WHEX (chain , type , extent) fInd ~ the extent (maximum —

miit um value) of a chain.. Type can have a value of 1 , 2, 3, or 4

specifying that the extent is to be computed along the 0, 45, 90,

or 135 degree (all respectivel y) axis relative to the x axis.. X

and Y coordinate specifiers are ignored In maki ng this computation .

The final routine in. this group relates to the differenc e

between the initial and final vertices of a chain. RESID (chain,

link type 1, number of link type 1, link type 2, number of link

type 2) find s the residue of a chain. The residue of the chain

contains the two type s of links indicated in. the amount s indicated.

Using the initial coordinates and this information is the most

efficient way to determine the fi nal coordinates of a chain..

3. Areas and MomentB

ECAREA (chain., area) returns the int egral (area) of all

portions of the chain relative to the x axis. A chain portion

that is directed in the negative x direction adds a corresponding

negative increment of area.. Thu s, the area of a closet figur e Ia

114

-

- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ - -- 

— - ___________________



returned by this routine. If the closed figure was encircle d

counterclockwise, the area will be negative.

The first moment of the chain is computed by MOM1

( cha~ n, angle, first moment ). The chai n is assume d to be closed

and connected although no error will occur if this is not the case.

The moment is computed relative to an axis rotated by angle degrees

from the x axis. The angle can only be 0, 45, 90, or 135.. A

clockwise encircled figure above the axis has a positive moment..

Reversing either the direction. of encirclement or the relation to

the axis (but not both) will make the moment negative.

MOMTA ( chain, angle, x, y, first moment) computes

the first moment of the chain as above but the chain is first

translated to have initial coordinates of x and y instead of those

it does have..

MOM2 and MOM2A have the same ar gument s as MOM I and

MOM PA above and perform similar functions except that they return

the second moment about the specified axis.

CENTRD (chain, x, y) returns the x and y coordinates

of the centroid (center of mass) of the specified figure. The

chain is assumed to be closed and connected. The direction of

encirclement does not matter .

Another routine that finds a first moment about an

axis is L140M1 (chain, xl , yl , x2, ~~~~~~, first moment) . In thi s case ,

the axis is a directed axis from point (xl, 71 ) to (x2, 72). The

chain is assumed to be closed and connected. A clockwise

encircled chain above the axis (considering the axis the be the

positive x direction , this woul d correspond to being in the

15

- - - -_ _~~~~ -
—- - _.

~~~~ -.-—  - —U-— - - ~~ - - - -w - _ _ _ _ _ _ _ _ _ _ _ _ _


positive y direction) has a positive moment. Reversing either tbe

direction of encircle ment or the relation to the axis (but not

both) changes the sign of the moment..

LMOM2 has the same argu ments as LMOM1 and operates the

same as LMOM1 except for re turning the second moment of the chain.

C. Correlations

These routines use the temporary array provided in CRAP

to compute chain correlations. All signal codes (except link ~udes)

are ignored.

CROSS (cha in 1, chain 2, correlation value , shift value)

computes a croa scorrelation of chain 1~~and chain 2. Chain 2 is

shifted by the desired number of links past chain 1. The correlation

value is computed with wrap—around on the chains.

AUTO (chain , dimension of correlation array, correlation

array, resultant dimension) re turns in the correlation array a

set of the correlation values in the autoco-rrelation of the chain.

The first element is the autocorrelation function of zero, the

second value is the autocorrelation function of one, etc. The

resultant dimension of the array is one half of the number of

links in the chain. This value is zero if there are not at least

two links in the chain.

16

— - - — -C--- - - --- --- - —-—— - - -—- -
~~~ -~.----- - - -V ~—~-- --



PART 6

SPECIAL FUNCTIONS

A. Rotation and Scaling

A fundamental chai n operation is to rotate and scale..

Rotation and scaling requires a requanti zation of the links .

CRAP ’ a rotate and scale algorithm does a requant ization but doe s

not do a post edit. Thus , str aight lines may not end up perfect ly

straight .. Chsina coarse ly quanti zed may end up considerably

dist orted. Normally , chain~ retain, their shape. ROSCAL ( chaind,

chains, angle , x scale, y scale) scales chains by the given scale

factors and rotates by the specified angle (in degrees) all

relative to- the start of the chain . The re sult is added to the end

of chaind. When an x or y coordinate specifier is encountered,

the new x and y coordinates are computed (given the specified

rotation and ~~~p1i ng) and x and y coordinate specifiers are

generated. All other non—link code s (those passed by GET) are

mair~tained unchanged but are otherwise ignored.

B. Intersections

All intersections of one chain with anothe r can be

found with INTERS ( chain 1, chain 2, dimension of all arrays ,

type of intersections array, chain 1 location array, chain 2

location array, number of intersections found ). The result is

three arrays whose element s form corresponding three element

sets of information. There are two possibilities for each set

of three values . If the intersection type is one , the intersection

occurs at vertices of the two cha’t na and the chain locations

ret ur ned are the vertex nll hers in the two chains where the

17

- - 

__

•--‘_-_--
~
--_

~~~

,.—

~~~
_

_ ~~~
- -- 

- - - 

- - - -
~~



intersection occurs.. A non-nodal intersection is flagge d by an.

intersection typ e of two . In this case , the chain location s are

the 1I1-nk numbers of the two intersecting links . All signal code s

(in particular, x and y coordinate specifiers ) except link type

codes are ignored.. This routine uses temporary workspace.

C. Polygonal Approximation

The algorithm of TI. Ramer (in “An Iterative Procedure

for the Polygonal ApproTimation. of Plane Curves”, Computer

Gr aphics and Iaa~ e Processing, 1 , 1972, pp. 21i4—256) is

implemented by thi s routine. POLY GN (chain, xcoordinates array,

y coord1In~ tes array, polygonal approTl i~ation vertex numbers,

desired toleranc e, n~nber of vertices in ap proxim ation , dimension

of all arrays, number of vertices returned ) first sets the first

two arrays to the vertices of the chain . All non.l’tnk’ signal codes

are ignored in. this process. The polygonal approxima tion vertex

numbers are indices of paint s define d by the x and y coordinates

arrays in the polygonal approximation. The se point s define a

polygonal curve such that the ~a~ i mn~ distance from a chain vertex

to the polygonal section approximating the curve section is less

than the desired tolerance .. This routine uses temporary workspace.

D. profiles

These routines pro vide for profile computation and

matching..

XPROFL ( chain, flag, profile, column dimension of

profile, number of profile pairs returne d) computes a maximum

edge profile if flag is true and a sinimum edge profile if flag

18

~~~~~~~~~~~~~~~ ‘~~~ - r- —~~ 
- - - -

~~~~~~

_ - w - ‘ -  . —



is faise.. Pro file is a two row array which will be given the

profile pairs.. The profile pairs are given in order following

the curve counterclockwise. To determine the direction of

encirclement, the endpoints are connected by a straight line, the

enclosed area is computed, and the sign checked. The chain is

inverted, if necessary, to provide the correct direction.. This

routine uses temporary workspace.

A y edge profile can be computed by TPRO FL which

functi ons similarly to XPROFL and has the same arguments.

- Two profiles may be matched by MATCH (inward shift,

lateral shift, profile 1 ,. column dimension of pro file 1, profile

~~ column dimension of profile 2). The inward shift and lateral

shift given provide for maximum area overlap of encasing

rectangles of the two chains.

~~. Centruidal profiles

Another type of profile is the centroidal profile. The

centroidal profile contains the distances (measured along the

residues) from the centroid to the vertices of the closed chain.

The first value in. the profile is the greatest value and all

values are normalized by th~ maguitude of tL.~ greatest distance.

Positive values correspond to vertices that are on portions of

the cur ve that are encircling the centroid in a clockwise sense ;

negative values correspond to counterclockwise .

CENPRO (chain, array of profile values , dimension of

the profile array, number of values returned) computes such a

pro file.

19

- ~- - ~~~~ tc~a~ r—~~~~~~~~~~__, - ,- - -— .~ 
,PShh1~~~ul~~~~~~~~~ .,- --,-——~ - - - -~~~-- - - -  -. r - - - .



F. Shape Features

BAYPEN (chain , maximum bay depth, maximum pewt nsnlar

depth , bay area, peninsular area, chord length) provides some

shape features of an open chain. A chard between the initial and

final endpoints of the chain are used to determine the values.

A bay is an area to the left of this chord ; a peninsula is to the

right . The maximum. distance to the chord in. all bays and all

peninsulas are computed along with the areas of all bays and the

area of all peninRulas.

20

-- .
~~~~~

-
~~~~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - - - -  ---- - - - - ----‘ -v  - - _ _ _ _ _ _ _ _ _ _ _ _ _



PART 7

COMMON BLOCKS

The operation of certain routines requires that the

user define a certain commo n block in his program. This is the

temporary workspace array. Temporary workspace is defined as:-

/WORX/ size, array where array is an integer array of dimension

size. Size is also an integer. No initial values need be given

to the array .

temporary workspace is needed by only six routines.

Estimates of the space needed by them follows.

AUTO - space to hold all of the links of the given chain

CROSS — space to hold all of the links of both ch.ain.s

INTERS - space to hold 3 * (2 + sum of the number of

links in both chains)

POLYGN — an upper limi t is the number of vertices in. the

ch~r1

XPROFL , TPROFL — space to bold all of the links of the

given chain

A system de fined common block which may be of use is

IXYCOMP/ ax, ay. The x and y components of the eight link types

in order, 0 to 7, are in ax and 
~j , 

respectively.

The system define d common blocks are defined in a block

data subroutine that must be linke d together with the program .

21

— 
—--.— . -- - -— ___ __ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - — — - .--- --- -.-,
~
--——-—--— — — -- - - 

~
---v - -~~~~~~~~ 

— —



PART 8
FORMAL CALL SEQUENCES

ANGLE ( CHAIN , NP1, NP2, A)

CHAIN — integer chain array

NFl — number of vertex 1 ( integer)

NP2 — number of vertex ~ (integer)

A — computed angle in. degrees (real)

APLANE (CHAIN)

CHAIN — integer chain array

ARRAY ( CHAIN , LIST, N, L, OVER)

• CHAIN — int eger chain array

LIST — array to hold links (integer)

N — dimension of LIST ( integer)

L -. number of links returne d (integer)

OVER — overflow flag (logical)

AUTO (CHAIN, NA, ACORP , M)

CHAIN - integer chain array

NA — dimension of ACORR ( integer)

ACORR — resultant autocorrelation values (real)

N — number of values returned (integer)

BAYPEN ( CHAIN, MAXBAY, M AXPEN, BAYAR, PENAR , LENGTH)

CHAIN — integer chain, array

MAXBAY — maximum bay distance (real)

MAXPEN — maximum peninsu lar distanc e (real)

BATAR — bay area (real)

PEItAR - peninsular area (real)

LEw~TH — chord length (real)

22

_______________________________________________________ —S E - - - _— - -~~ — - —--.~~- , ~



BPLANE ( CHAIN)

CHAIN — integer chain array

HPRINT (1W)

1W — four element window specification

C~NPRO (CHAIN, PROFL, DIM, N)

CHAIN - integer chain. array

PROFL — profile values ( real)

DIM — dimension of PROFL (integer)

N’ — number of value s returned (integer)

CENTRD ( CHAIN, CX, CT)

CHAIN — integer chain array

CX — x coordinate of centro-id (real)

CT - y coordinate of centro-i d (real)

CHLINE (CHAIN, DELTX~ DELTY)

CHAIN’ - integer chain array

DELTX — desired x change ( integer)

DELTY - desired y change (integer)

CHPAX (CHAIN, LIST, N’, L)

CHAIN — intege r chain array

LIST — resultant link list ( int eger)

N — dimension of LIST (integer)

L - number of links (not counting 0) returned ( integer)

CLEAR ( CHAIN)

CHAI N — integer ch~j~n array
- 

CLOSE (CHAIN)

CHAIN — integer chain array

23

- - --- • —S - _



COLOR (CHAIN , VALUE)

CHAIN — integer chain array

VALUE — desired color value (integer)

COLORD (CHAIND, CHAINS,. LIMIT 1 , LIMIT2)

CHAIND — destination :chain array (integer)

CHAINS — source chain array (integer)

LIMIT! — low end limit (int eger)

LIMIT2 - high end limit (integer)

CROSS (CHAIN!, CKAIN2, CORR, J)

CHAIN! — first chain array (integer)

CHAIN2 —- array of chain to be shifted (integer)

CORR — resultant correlation value (real)

J - shift value (integer)

ECARSA (CHAIN, 5)

CHAIN — integer chain array

S — resultant x axis integral (real)

ELATED (CHAIND, CHAINS, LIMIT!, LIMIT2)

CHAIND — destination chain array (integer)

CHAINS — source chain array (integer)

LIMIT! - low end limit (integer)

LIMIT2 — high end limit (integer)

ELEVAT ( CHAIN , VALUE )

CHAIN - integer chain arr ay

VALUE — desired elevation value (integer)

2~

I- - - _~~~~~~~~.. — -_-.-‘---_-- —__ &fp.~ — 
—

~
-—- --

~~~~~ 
— .__i, _

~___•____ . _ _ __ —- -~ - , -~ - - v----- —

GET (CHAIN, FIRST , SECOND)

CHAIN — integer chain array

FIRST — link or signal code type (integer)

SECOND — signal code value (integer)

GREY (CHAIN, VALUE)

CHAIN - integer chain array-

VALUE — desired grey level (integer)

GREYD (CHAI ND, CHAINS , LIMIT1 ,. LIMIT2)

CHAIND — destination chain array (integer)

CHAINS - source chain arr ay (integer)

LIMIT! — low end limit (integer)

LIMIT2 - high end limit (integer)

INITXT (CHAIN, I, Y)

CHAIN — integer chain array

X — initial x coordtn-~te (integer)

T - initial y coordinate (integer)

25

— - —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ . -~ ~~~~~~~~~~~~~~~~~ - , - _____________________ — _______________________________



INPUT (UNIT, CHAIN )

UNI T — FORTRAN logical unit ( integer)

CHAI N’ — integer ch~(I~ array

INTM~S ( CHAIN! , CKAIN2, J 1 , ITYPE ,. INLCHA, INLCHB, NUMINT)

CHAIN’! - first chain array ( integer)

CHAIN2 — second chain array (integer)

Jl — dimension of ITYPE , INLCHA, and INLCHB (integer)

ITYPE - type of intersectio ns array (integer)

~NLCHA — first chain locations (integer)

INLCHB — second chain locations (integer)

NUMINT — number of intersecti ons found ( integer)

INVERT ( CHAIN, LIST, N, L,. OVER)

CHAIN - integer chain array

LIST — resultant link array (integer)

N — dimension of LIST (integer )

L — number of links returned ( integer)

OVER — overflow flag (logical)

INVIS (CHAIN)

CHAIN — integer chain array

INVSE~ ( CHAIND, CHAINS , LIMIT!, LIMIT2)

CHAIND — destination chain array (int eger)

CHAINS — source chain array ( integer)

LIMIT! - low end 1i~~~t ( integer)

LIM~~2 - high end limit (integer)

LENGTH ( CHAI N, CHL , LCF)

CHAIN - integer chain array

Cff11 — computed length (real )

26

—‘-- 
-- - -_ - - - - -—-- - • -- - —---- -w



LCT — length type flag (integer)

LINK ( CHAIN, LINKS, NTIM)

CHAIN — integer chain array

LINKS — link to be added (integer)

NTIM — number of times to add (integer)

LINKSQ ( CHAIN, LIST, DIM, NTIM)

CHAIN — integer chain array

LIST — list of links to add (integer)

DIM — dimension of LIST ( integer )

NTIM — number of time s to add ( integer)

LIST (UNIT, CHAIN)

UNIT — FORTRAN logical unit ( integer )

CHAIN — int eger chain array

LNOM1 ( CHAIN, Xi , Ti , X2, 12 , FMNT )

CHAIN — integer chain array

Xl — x coordinate of first point (real)

Ti — y coordinate of first point (real)

X2 - x coordinate of second point (real)

12 — y coordinate of second point (real )

FMNT — computed first moment ( real)

LMOM2 ( CHAIN , Xi , Ti , X2, Y2, SMNT )

CHAIN — integer chain array

— x coordinate of first point (real)

Ti — y coordinate of fir st point (real)

X2 — x coordinate of second point (real )

12 - y coordi nate of second point (re al )

SMNT — computed second moment ( real )

27

________ — - ~~~~~~~~~~~~~ — - — -~.



LNCHD (CHAIN, Xi, Ti, 12, Y2, CLDMAX, CLDMIN, JMAX, JMIN)

CHAIN — integer chain array

Xi — x coor dinAte of first point (real)

Ti — y coordinate of first point ( real )

12 — x co-ordinate of second point -(real)

12 — y coordinate of second point ( real)

CLDMAX - maximum distance found (real)

CLDMIN minimum distance found (real)

— vertex at maxi mum distanc e (integer)

JMIN — verte x at minimu m distanc e (inte ger)

MARKER (CHAIND, CHAINS , MARK 1 , MARK2 )

CHAIND — destination chain array (integer)

CHAINS — source chain array (integer)

MARK1 — first marker number (integer)

MARK2 — second marker number (integer)

MATCH (XX , 1! , PROF1 , Ni , PROF2, N2)

XX — inward shift computed (int eger)

1! — lateral shift computed ( integer)

PROF1 — first two row array of profile pairs (integer )

Ni - column dimension of PROFI (integer)

PROF2 — second two row array of profile pairs (integer)

N2 — column dimension of PROF2 (integer)

MAXMIN (CHAI N, IT)

CHAIN - integer chain array

XY - four element arra y of mazmin values (integer) - .

MOM ! ( CHAI N, DEGREE , FMNT)

CHAIN — integer chain arra y

28

— - ——-—---- — —V



DEGREE - axe angle ( integer)

FMIIT - computed first moment (real)

MOM ! A ( CHAIN , DEGREE, NITX, NIT!, FMNT)

CHAIN — integer chain array

DEGREE — axis angle ( integer)

NITX - initial translate d x coordinate ( integer)

NITY - initial translated y coordinate (integer)

FMNT — computed first moment (real)

MOM2 ( CHAIN , DEGREE,. SMNT)

CHAIN — integer chain array

DEGREE - axis angle ( integer)

SMNT — computed second moment (real)

MOM2A ( CHAIN , DEGREE, NITX, NITY, SMNT)

CHAIN - integer chain array

DEGREE - axis angle ( integer)

NITX — initial translated x coordinate (integer)

NIT ! — initial translated y coordinate (integer)

2MM? — computed second moment ( real)

NCOLOR ( CHAIND, CHAINS, LIMIT ! , LIMI T2)

CRAIND — destination chain array ( integer)

CHAINS — source chain array ( integer)

LIMIT! — low end limit (integer)

LIMIT2 — high end limit (integer)

N~~..EV ( CKAIND , CHAINS , LIMIT1 , LIMIT2)

CHAIND - destination chain array ( integer)

CHAINS — source chain array (integer)

LIMIT! — low end limit (integer)

29 

- - -



LIMIT2 — high end limit (integer)

NGREY ( CKAIN~ , CHAINS, LIMIT!, LIMIT2)

CHAIND - destination chain array (integer)

CHAINS - source chain array (integer)

LIMIT1 — low end limit (integer)

LINIT2 - high end limit (integer)

NODE ( CHAI N, NODES, INTERS)

CHAIN - int eger chain, array

NODES - node value (integer)

INTERS - number of intersecting chains (integer )

OPEN (CHAIN)

CHAIN - integer chain array

OUTPUT (UNIT, CHAIN)

UNIT — FORTRAN logical unit (integer)

CHAIN - int eger chain array

PDIST ( CHAIN , NODE1, NODE2, DIST)

CHAIN — integer chain array

NO DE! — first vertex number ( integer)

NODE2 — second verte x number ( integer)

DIST — computed distance (real )

PNTCND ( CHAIN , XP , YP , DMAX , DMIN , LMAX , LMIN)

CHAI N - integer chain array

XP — x coordinate of point (real)

YP — y coordinate of point (real )

DMAX - maximum distance found (real)

DMIN - wtnimua distance found (real)

LMAX - vertex at aximum distance (integer)

30

- - --- —-—-~~~~~~-~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~- - — - - —V— - - - -—~~ -~~ ----v--



LMIN — vertex at minimum distance ( integer)

POINT (CHAIN, VALUE )

CHAIN — integer chain array

VALUE - desired marke r number (integer)

POLYGN ( CHAIN, XCOORD , YCOORD, ICL, TOL , IC, JT, K:)

CHAIN — integer chain array

XCOORD — z coordinates a-f vertices (integer)

YCOORD — y coordinates of vertices (integer)

ICL — vertex indices of approximation (integer)

TOL — approximation tolerance ( real )

IC — number of vertices in approximation (int eger)

JJ — dimension of XCOORD , TCOORD, and ICL (integer)

K — number of vertices returned in XCOORD and YCOORD

( integer)

PRINT ( CHAIN, 1W)

CHAIN - int eger chain arra y

1W - four element window specification array (integer)

PUT (CHAI N, LINK , FLAG )

CHAIN - integer chain array

LINK - link or signal code type (integer)

FLAG — signal code flag (integer)

RESID ( CHAIN, LRES 1 , NLRES1 , LRES2, NLRES2)

CHAIN - integer chain array

LRES 1 - first link type (int eger)

NLRES1 - number of linkR of type LRES1 (integer )

LPES2 — second link type ( integer)

NLRES2 — number of links of type LRES2 (integer)

31

- 

~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

‘ “ “ - - ______ - ____________ _______________________

ROSCAL (CKAIND , CHAINS , ANGLE, XSCALE, !SCALE)

CKAIND - destination chain array (integer)

CHAINS - source chain array (integer)

ANGLE - rot ation angle (real)

XSCALE — x scale factor (real)

YSCALE - y scale factor (real)

ROTIND (CHAIN, ANGLE)

CHAIN - int eger chain array

ANGLE - desired angle speci fier (real)

SCLIND (CHAIN, MODE, SCALE, POS)

CHAIN - integer chain array

MODE - mode of scaling (integer)

SCALE — scale factor (int eger)

P02 — position of octal point (integer)

SUHCH (CHAIND, CHAINS, VERT1 , VERT2)

CHA.IND — destination chain array (integer)

CHAINS - source chain array (integer)

VERT1 — first vertex number (integer)

VERT2 — second vertex number (integer)

v2R’rEx (CHAIN, XCOORD, YCOORD , N, L , OVER)

CHAIN - intege r chain array

XCOORD - x coordinates of vertices (integer)

YCOORD — y coordi nates of vertic es (integer)

N - dimension of XCOORT) and YCOORD (integer)

L — number of vertices returned (integer)

OVER - overflow flag (logical)

32

p. - .__,
_ _ _ _ _ _ _ - --

~~~ - -  ~~~~~~~~~~~~~~~~~ -— _ _ _  —
~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~



VISIHL (CHAIN)

CHAIN - integer chain array

VISSEG (CHAIND, CHAINS, LIMIT! , LIMIT2)

CHAIND - destination chain array (integer)

CHAINS - source chain array (integer)

LIMIT! - low end limit (integer)

L1141T2 - high end limit (integer)

WHEX ( CHAIN, ITYPS, W)

CHAIN - integer chain array

ITYPE — extent type desired ( integer)

W — computed extent (real)

XCOORD (CHAIN, VALUE )

CHAIN - integer chain array

VALUE - desired x value ( integer)

XPROFL (CHAIN, FLAG, PROFL, N’, IND EX )

CHAIN - integer chain arra y

FLAG - maximum edge flag (logical)

PROYL - two row array of profile pairs (integer )

N - column index of PPOFL ( integer)

INDEX — number of pro file pairs returned (integer)

YCOORD ( CHAI N’, VALUE )

CHAIN - integer chain ar ray

VALUE - desired y value (integer)

YPROFL (CHAIN, FLAG, PROFL , N , INDEX )

CHAIN — integer chain arr ay

FLAG - maximum edge flag (logical)

33

_ _  - _ _ _ _ _ _



PROFL - two row array of profile pairs ( integer)

N - column index of PRO FL ( integer)

INDEX - number of profile pairs returned (integer)

— —.
~
-—— -- —-i - — - -*- - -—-.- - —-,.-,-- - .

~~
--v - -  -. -----



PART 9

RESERVED NAMES

The following names are reserved in that the user

should not de fine routines or common blacks with these names.

ADDR ECAREA LMOM2 NVIS POSCAL

ANGLE ELATED LNCaD OCTAL ROTIND

APLANE ELEVAT LOCTA OCTIN SCLIND

ARRAY GET MARKE R OPEN’ SIGEND

AUTO GETDIG MATCH OUTPUT SIGLIS

BAYPEIT GREY MAXMIN PCLOSE SIGNAL

BPLANE GRE YD MOM! PDIST SPACET

EPPINT GTLINK MOM 1 A PLANES STATUS

CENP RO ICRDIG MOM2 PNTCND STLINK

CENTRD INI TXY MOM2.A. POINT SUBCE

CHAPMC INPUT MSTORE POLYGIT VERTEX

CHDIG INTEPS NCOLOR PPTJT VISIBL

CHLINE INVERT N’COL.S PRINT VISSEG

CHPAX INVLS NDtTMB PROF tL VSEG

CLEAR INVSEG NELEV PUT WHEX

CLOSE LENGTH NELVS PUTCR WO RK

COLOR UNI T NGREY PUTCHF XCOORD

CTOLORD LINK NG~TS PUTDIG XPROFL

CROSS LINKSQ NINV QCO?*~ XYCOMP

DIGCH LISDIG NMOVE Q!4OVE Y000RD

DIGLIS LIST NODE RESID YPROFL

DUMB LMOMI NTHSEG

35

- I. ~~~~~~ - __________________________________ - - — — — - - -
~-~~~~..---r - - ___________________________________



PART 10

ERROR MESSAGES

ANGLE: NO DE NU~~ ERS ILLEGAL

NODE NUMBERS OUT OF RANGE FOR THIS CHAIN

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

APLANE: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ARRAY : CHAIN ALREADY OPEN

TOO MANY CHAI NS OPEN

AUTO: ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN’

BAYPEN: CHAIN ALREADY OPEN’

TOO MANY CHAIN’S OPEN

BPLANE: CHAIN ALREADY OPEN’

TOO MANY CHAINS OPEN

SPRINT: none

CENPRO: ARRAY OVERFLOW

CHAI N ALREADY OPEN

TOO KANT CHAINS OPEN’

CENTRD; CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

CHLINE : CHAI N OVERFLOW

CHPAX: CHAIN ALREADY OPEN’

TOO MANY CHAINS OPEN’

ARRAY OVERFLOW

36

________________  
- -~ “



CLEAR: CHAIN IS OPEN

CLOSE: none

COLOR: NUMBER NOT IN RANGE

CHAIN OVERFLOW

COLORD: ILLEGAL LIMITS

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME

CROSS: TEMPORARY ARRAY OVE RFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ECARgA: CHAIN ALREAD Y OPEN

TOO MAN! CHAINS OPEN

ELATED: ILLEGAL LIMITS

CHAIN’ OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME.

ELEVAT: WJMBER NOT IN RANGE

CHAIN OVERFLOW

GET: none

GREY:- NUMBER NOT IN RANGE

CHAIN OVERFLOW

(3REYD: ILLEGAL LIMITS

CHAIN OVERFLOW

SOURCE AND DESTINATION ’ CHAINS ARE THE SAME

INITXY: none

INPUT: CHAIN IS OPEN

CHAIN OVERFLO W

INVALID SCALE MODE

IIJ ~~3AL SIGNAL CODE

37

__________ — —.—-- . — -w -



INTERS: ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALREADY OPEN’

TOO MANY CHAINS OPEN’

INVERT: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

INVIS : CHAIN OVERFLOW

INVSEG: CHAIN OVERFLOW

SOURCE AND DESTINATION’ CHAINS ARE THE SANE

LENGTH: CHAIN ALREADY OPEN’

TOO MANY CHAINS OPEN

LINK : NUMBER OF TIMES IS TOO BIG

ILLEGAL LINK

CHAIN OVERFLOW

LINKSQ: ILLEGAL LINK

TOO MANY LINKS

NUMBER OF TINES IS TOO BIG

CHAIN OVERFLOW

LIST: none

LMOM 1 : CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN’

LMOM2: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

LNCHD : CHAIN’ ALREADY OPEN

TOO MANY CHAINS OPEN

MARKER : CHAIN OVERFLOW 
- ‘

SOURCE AND DESTINATION CHAINS ARE THE SAME

MATCH: none

38

- - — -  - 
.
— —- -~~~~.— — 

~ 
-•‘_ -——~‘-~

— -w-—



MA.XNIN: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

MOM T :  ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAI NS OPEN

MOM ! A: TT.T~~GAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

MOM2 ’ ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

MOM2A: ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

N’COLOR : CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME

NELEV : CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SANE

NGRST: CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE TEE SANE

NO DE: NUMBER NOT IN RANGE

CHAIN OVERFLOW

OPEN: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

OUTPUT : none

PDIST: NODE NUMBERS OUT OF RANGE FOP THI S CHAIN

CHAIN ALREADY OPEN

39

- - -- - P—-- --- -_ — .v ___ - 
-~



TOO MANY CHAINS OPEN

PNTCND: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

POINT: NUMBER NOT IN RANGE

CHAIN OVERFLOW

POLYGN: ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

PRINT: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

PUT: ARGUMENTS NOT VALID ( invalid combination)

NUMBER NOT IN RANGE

CHAIN OVERFLOW

RESID: CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ROSC.AL: CHAIN OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

SOURCE AND DESTINATION ’ ARE THE SANE

NUMBER NOT IN RANGE (overflow on x or y coordinates)

ROTIND : CHAIN OVERFLOW

SCLIND : NUMBER NOT IN RANGE

CHAIN OVERFLOW

SUBCH : CHAI N OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SANE

— —— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ., - —————— --—- - -~~~~- - 
“

- - ___________



VERTEX : CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

VISIBL: CHAIN OVERFLOW

VISSEG: CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SANE

WHEX: TLL~!GAL EXTENT TYPE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

XCOORD: NUMBER NOT IN RANGE

CHAIN OVERFLOW

XPROFL: DISCONTINUITY ON EDGE

ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALRE ADY OPEN

- 
TOO MANY CHAINS OPEN

TCOORD: NUMBER NOT IN RANGE

CHAIN OVE RFL OW

TPPOFL: DISCONTI NUITY ON EDGE

ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALREADY OPEN

TOO MAN! CHAINS OPEN

141

I. ~~~~~~~ -~~~~~~~~ --- - 
—~~~~~- — -‘--- - - - - - -— - - -  - - — : - —



PART 11

PROGRAMMING EXAMPLE

The following program was run throu gh the IBM version

of CHAP.

INTEGER HEART,CKAIN , WINDOVI,PART , I
REAL AREA, LENG,MOMENT
DIMENSION HEART(90) ,CKAIN(40) ,wn~DoW(4) ,PART(2+O)
DATA EELRT/1,O,1 ,O,1 ,O,1,O,1 ,1,O,1 ,1 ,1 ,1 ,1 ,2,1 ,2,2,1 ,2,2,3,2,

1
2 k,3,14,Lf,1+,k,4,5,k,5,k,5,5,6,5, 6,5,6,6,7,6,6,7,6,7,
3 7,7,7,7 ,0,7,7,0,7,0,7,0,7,0,7/

DATA CHAIN/360,39*O/, WINDOW/O ,kO ,O,~+O/, PART/36O,39*O/
note that CHAIN and PART can hold 10 * (Z~.Q - 14 )  1ink~

C NOTE : WORKSPACE ARRAY NOT NEEDED by any called routine here
C CREATE A FIGURE — INPUT IS WORD CHAP WITH C A COLOR OF 1 , H A COLOR
C OF 2, A A COLOR OF 3, AND P A COLOR OF L4 ; ADD A HEART OF COLOR 7

CALL INPUT(5,CKAIN)
CALL COLOP(CHAI N,7)
CALL XCOORD ( CHAIN, 18)
CALL TCOORD ( CHAIN,0)
CALL LINKSQ( CKAIN,HEAPT,90, 1)
CALL LIST(6 ,CHAIN)
CALL PRINT ( CKAIN,WINDOW)
CALL COLORD(PART ,CHAIN’,L+, 1)
CALL LIST(6,PART )
CALL PRINT(PART,WI NDOW)

C USE ONLY HEART IN COMPUTATION ’S (remove all Letters)
C ALL CLEAP(CHAIN)
CALL COLORD( CHAIN, PART, 7,7)
CALL LEN’GTH( CKAIIT,LENG,O)

~!RITE(6, 1 )LENG1 FORMAT(2OH LENGTH OF HEART IS:,F9.k)
CALL ECAREA( CHAIN’,AREA )
WPITE (6,2)AREA

2 FORMA.T(18H AREA OF HEART IS:,F11.Li )
CALL MOM 1 (CHAIN,0,MOMENT )
WRITE( 6,3) MOMENT

3 FORMAT ( 30ff FIRST MOMENT ABOUT X AXIS IS:,F1 1 .k)
CALL MOM2( CHAIN , 90 ,MOMENT)
WRITE( 6 ,Lf )  MOMENT

k FORMAT(!+2H SECOND MOMENT ABOUT (INVERTED) Y AXIS IS:,F13.Lf)
STOP
END

1+2

______ — ~~— - —~~~ —-~~~~ --~~~~ -.—--~ ---—----‘- — - .-- -—-—- - - , _ ___~~~
_l.- —



The input to this program was the following.

EXAMPLE 042210426400110427400155541+332222110077 C
042220426400130427400130417201004264002104176010

042740017444444 H
042230426400230427400132212122176676766

04264003001+27400 164444 A
042240426400330427400 13222222220000076654444401+00 P

In the following outp ut , the chain listings are modified

to fit on the page.

0422 1 0426 40011 0427 40015 554Z~3 32222 11007 7 01+22 2
0426 40013 0427 40013 0417 2 010 01+26 40021 0417 6 010

color of T, x coordinate of 11~ , y coordinate of 15~, a series of
links,’ color of 2, x o~ l3~, y of 13Q , 1O~ ~ccurrences oflink 2, z of 2l~ , 108 occu~’rences of’~].ink°6

0427 40017 44444 4 O4�2 3 0426 L~0023 0427 40013 22121
22176 67676 6 0426 40030 0427 40016 4444 01~22 4 0426

y of 178, a series of links~ color of 3, x of 23k, y of l3ç~, aseries of links, x of 3O~, y of 168, a s~ries of links ;
color of 4, sta r t of x a~eci fier

40033 0427 1+0013 22222 22200 00076 6541+4 1~4 0422 7 0426
40022 0427 40000 0421 132 0001 10101 01011 01111 12122

x of 
~~~~~~~ 

y of l3~ , a series of links; color of 7, x of 228, y of
0, group ~‘epeat of length 132~ to be repeated once1 2232 32331+ 3L~344 44454 45656 23234 4~444 44545 /+5565 65667

- 66767 77770 77070 70707 0400

(1 L ~ blank lines)

Notice the division in the chain. The chain has five segments

each starting with a color specifier and then an x and y coordinate

specifier. The first four groups (C, H, A, and P) were on the

data cards. The fifth group (heart) was added piece by piece

explicitly.

The 1/+ blank lines are part of the window in the print

call.

143

- ~ - ~~~~
—~ -- — -,— -~~ —________ _______________

XXxXXX XXXXXX
XX ~CCC XXX XX

XX X X XX
X X X X

X X X
X X X

X X
X XXX X X XXXXXX X

X X X X X- X X X X X-
X X X X X X X X X X
X X X X X X X X X

X X XXXXXXX X X XXXXXX X
X X X X XXXXX X X
X X X X X X X X X

X X X X X X X X X
X XXX X X X

X X
X X

X X
X X

XX XX
X X

XX XX
XX XX

XX XX
XX XX

X
0422 0 0422 1 0426 40011 0427 40015 55L~43 32222 11007 7

0422 4 0426 40033 01+27 40013 2222’ 22200 00076 65444 1~1~
a color of 0; color of 1 , x of 11 9, y of 15.~, a series of links;color of 4, x of 33~, y o~ l3~, a series of links
01+22 7 0426 40022 0427 LF0~O0 0421 Y32 0001 10101 01011 01111

12122 12232 32334 34344 44454 45656 23234 43444 4/~545
color of 7, x of 229, y of 0, group repeat of length 132~ to berepeated on~eL+5565 65667 66767 77770 77070 70707 0400

(14 blank lines)

Notice that only the endpoints of links are printed; this explains

the missing points in the letters. The extracte d chain parts,

listed above, show that the portions with colors between 1 and 1+

have been removed. Since 0 is in range (default attribute), a

color specifier of 0 appears at the beginning of the chain.

14 14

-~~.---- -~~~ — — - — —- -——— - ~~— - - - — - - - ---— - - -,c-- - -.- .

~ OC~~X
XX XXX XXX XX

XX X X XX
X X X X

X X X
X X X

X X
X XXX ~o~xxXx X

X X iC K X X
X X X X X X
X X X X X

X X XXXXXX K
X X K X
X X X X X

X X X X
X XXX K

X X
X X

X X
X

XX XX
X K

XX XX
XX XX

XX XX
X X X X

K
LENGTH OF HEART IS: 108.2254
ARE A OF HEART IS: —664.0000
FIRST MOMENT ABOUT X AXIS IS: —9753.6 172
SECOND MOMENT ABOUT (INVERTED) Y AXIS IS: 26760O.~3125

The letters if and A no longer appear because th2ir colors were

between 1 and 4. All else remains the same.

The computations were performed on the heart. The C and

P were removed by taking only those portions with a color of 7.

The heart still has an origin of (18,)) . As such, the axis runs

through the bottomznost and leftmost points of the heart. The

heart is drawn out counter—clockwise . This is the reason for the

-

.

negative area and first moment. Remember that the second moment

was computed about an inverted axis.

11.5
- - -.-

~.— ______________ _________ ________________.
~~~~~ — _________________ — _____________________________



PART 12

MACHINE DEPENDENCIES

A. IBM 360 / 370

The IBM 360- / 370 implementation stores both ChR in data

and Mn~ry plane data packed 30 bits per word in the low order

bits. A full—word integer holds 10 links.

The binary plane size is 120 K 120 bits .

Arrays of chains can be used as described in the text.

B. UMVAC 1108 1 1110

The full. 36 bit UNIVAC word is used to store chain data

and binary plane data. An integer holds 12 links.

The binary plane size is 11~4 K 120..

Arrays of ch~~ n.~ can be used as described in the text .

1+6

——-~~~--—--
~~~~~~~~~~ ---—--—‘ -. — —- - . -  -.


PART 13

REFEREN CES

1. Freeman , H., “On the Encod ing of Arbitrary Geometric
Conf igu ra t i ons” , IRE Trans. on Elect. Computers, EC-lO,
(2), June 1961, 260—268.

2.
____________, “ Tech n iq~ues for the Dig i t a l Computer Ana lys i s
of Chain—Encoded Arbitrary Plane Curves” , Proc. Nat’l.
Elect. Conf., 17, 321_1421, October 1961.

3.
___________,

“Boundary Encod ing and Processing ” , in
Picture Processing and Psychopictorics, ed. by B. Lipkin
and A. Rosenfeld , Academ ic Pre ss , Inc., New York , 1970.

14 .
_ _ _ _ _ _ _ _ _ _,

“Computer Process ing of Line—Drawing Images ” ,
Comp u t i ng Surveys, 6 , (i) , Ma rch 19711. , pp. 57—97 .

5. J o h n s t o n , E. G., “The PAX User ’s Manual ” , Computer Sc ienc e
Center , Univer si ty of Maryland , College Park , MD. 207142,
June 1972 , (NTIS AD7145 9 7 3) .

6. Loepere , K., “Documentat ion Manual for CHAP ” , T echn ical
Repor t C R L — 5 7 , ESE Depar tment , Re nsse lae r P o ly t e c h n i c
I n s t it ut e , Troy , N. Y. 12181.

147

PAR T 14

SIGNAL CODE SUNM ARY

The following is a list of the signal codes recognized

by CHiP. A complete list can be found in the references (4) .

0400 — end of chain code

040 1 - invisible chain follows

0402 — visible chain follows

0403 — ignored

04014 — 04 link combination

O4O5xyz — marker xyz

0406 — illegal

0407uv,
~~~~~ 

, 
— identification number

O4lOwxyz, wxyz , 
— comment

04 11 . . . O1+~27777 — comment

QkI3abcde — abcd — node number , e - number of intersec-

ting chains

O4l4a b c d ef  — rotation indicator of a.bc de f 3 radians

O4l5abcdefg — a — mode of scaling, bc de f — scale

factor , g — position of octal point

0/+ 16 - illegal

O4l7uxy z — link u is to be repe ated xyz times

0420un , n+4 — repeat link u the number of times

specified

O42labcwxyz , abc - repeat the group of abc links

wxyz times

0422u - color indicator of u

— O/+23abcd — elevation indicator of abcd

48

.- —,— ——— ——--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - - -—.- - -.— - — — - -
~

—--

-

Ok 2Ltabc - grey level of abc

0425u - ignored

Ok26abcde — x coordinate of abcde - — 400008
O427abcde — y coordinate of abcde — 1400008

149

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — —~~~ — — — — -  - -~~~~—.~~“--—--.——- -
~

- -- — -w - — 
—



PART 15

ROUTINE INDEX

ANGLE 13, 22 , 36 INVERT 12 , 26, 38

APLANE 11 , 22, 36 INVIS 4, 26, 38

ARRAY 12, 22, 36 INVSEG 8, 26, 38

AUTO 16 , 22 , 36 LENGTH 13, 26, 38, 42

BAYPEN 20, 22, 36 LINK 3, 27, 38

EPLANE 11 , 23, 36 LINKSQ 3, 2?, 38, 1~2

BPRINT 11 , 23, 36 LIST 6, 27, 38, 42

CENPRO 19, 23, 36 LMOM 1 15, 27, 38

CENTRD 15, 23, 36 LMOM2 16, 27, 38

CHLINE 3, 23, 36 LNCHD 13, 28 , 38

CHP AX 12 , 23, 36 MARKER 7, 28, 38

CLEAR 3, 23, 37, 42 MATCH 19, 28 , 38

CLOSE 10 , 23, 37 MA)G~IN 14, 28, 39

COLOR Li, 2L~, 37, 42 MOM 1 15, 28, 39, 1+2

COLORD 7, 21i, 3?, 42 MOM1 A 15, 29, 39

CROSS i6, 24, 37 MOM2 15, 29, 39, 42

ECAREA h i ,  2L~, 37, 42 MOM2.A 15, 29, 39

~~ATED 7, 24, 37 NCOLOR 8, 29, 39

ELEVAT 1 , 2L~, 37 NELEV 8, 29, 39

GET 9, 25, 37 NGREY 8, 30, 39

GRE! 4, 25, 37 NODE 4, 30, 39

GREYD 7, 25, 37 OPEN 9, 30, 39

INITXY 7, 25, 37 OUTPUT 6, 30, 39

INPUT 5, 26, 37, 42 PDIST 13, 30, 39

INT~~ S 17, 26 , 38 PNTCND 13, 30, 40

50

_____ - ‘_~~~~~~~~~~ -T -—



POINT 4, 31, LeO VERTEX 12 , 32, Lf I

POLYGN 18 , 31 , 40 VISIBL L1, 33, 41

PRINT 11 , 31 , 40, 42 vissEa~ 8, 33, 41

PUT 4~ r 31 , 40 WHEX lk r  33, 41

RESID 14, 31 , 40 XCOORD 4, 33, L~l , 42

ROSCAL 17, 32, 40 XPPOFL 18 , 33, 1~1

ROTIND 4, 32,. 40- YCOORD L1, 33, 41, 1i2

SCLIND Li, 32, 40 YP RO FL 19, 33, 41

SUBCH 10, 3 . ,  40

- . -__-- -._.~~~~. ._ 5 1  - _______________ - - —-w



UN C L A S S I F I E D
SECURITY CL ASSIF ICATION OF TH IS P A GE (When Data Rniered)

DE°~~DT c h 1 h A ~~ b.1~~~A T I ~~~~ P A I E R E A D  I NSTR UCTIONS
~ ~~~~ ,jm I~ ~~~~~ I~~-~I ~ BEFORE COMPLETING FORM

I. ~~~~~~~~~~~~~~~~~ 7 8 1 0 3 8 
,42. GOVT ACCESS ION NO. 3. R E C I P I E N T S  C A T A L O G  NUMBER

4. T ITLE (an d Subtitle) 5. TYPE O~ REPORT & PERI OD C O V E R E D

/ Interim

CHAP USER ’ S MANUAL 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8- C ONTRACT OR G R A N T  NUMBER (.I

Keith P. Loepere A FOSR 76-2937

- .- - 9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS 10. PROGRAM ELEMENT. P R O J E C T, TASK
AREA & WORK UNIT NUMBERS

Elec trica l & System s Engineering Departm 9,nt
Rensse laer Poly technic Institute
Troy , New York 12 181 61l02F 2304/A2

II. C ONTROLLING OFFICE N A M E  A N D  ADDRESS 12 . REPORT DATE

May 1 978
A ir Force Of f ice  of Sc ien t i f i c  Research/NM 13. N U M B E R O F P A G E S

Bo l l ing  AFB , Was hington , DC 203 32 56
14. M O N I T O R I N G  AGENCY N A M E  & ADDRESS(I( differen t from Cont ro ll ing Off i ce )  IS. SEC URITY  CLASS.  (of this report)

UNCLASSIF IED
-
~ l5e . O EC L A S S I F I C A T I O N  D O W N G R A D I N G

SCHEDULE

16. D ISTRIBUTION STATEMENT (of this Report)

Approved for publ ic  release; d i s t r i b u t i o n  unl imi ted .

17. D I S T R I B U T I O N  S T A T E M E N T  (of the abs t ract entered In Block 20, if differen t from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere, side II necessary and iden lfy by block number)

l ine drawing processing computer graphics
i mage pr oces s in g g r a p h i c s  l an gu ages
pattern recognition

• cartography

20. AB S.j~RA CT (ContInue on revere, aide If n.c.aa.ry and Identify by block number)

A comp uter representation for line drawings tha t has been found
par t ic u l a r l y  convenien t and has become wide l y accep ted is  the c h a i n
code . This represen tation is compact and allows most common processing
functions to be performed efficiently.

CHAP is a collec tion of FORTRA N routines desig ned to process
chain-encoded line drawings. Rou tines exist in CHAP to man lpu l ate ~ ~~~~~~ ~

DD ~~~~~~~~ 1473 rouiio~so r  I NOV 65 II OBSOLETE UNCLASSIFIED
SECURITY C L A S S I F I C A T I O N  OF II.~IS PAGE (P,?~.n Data Ent.r.d)

_ _ _ _  - .  — —-- — - - - —- - -T — 0~~~~~~~~



4

UNCLASSIFIED
SECURITY CLAS S IF ICAT ION OF THIS PAGE(IThen Data Eniered~

20.

.~~~ > sy nt hes iz e , anal yze , and do input and output upon chains. This
report is intended to serve as a user ’s manua l for CHAP . It
describes the use of the CHAP routines along wi th  other information
needed to write a program u t i l i z i n g  the routines. A programm i ng
exam p le i s included .

C 

- 
.

-

- .~~~ . ~ .
~~~

.

-
~~~~~~

- U N C L A S S I F I E D

— - -- r ”~~~~ 
— 

~~~~~~~~~~ 
-,.-. .-

~~~~
—-

~ 
-


