AD=ADSS 743 RENSSELAER POLYTECHNIZ INST TROY N Y COMPUTER RESEAR==ETC F/6 9/2
CHAP USER'S MANUAL.(U)

MAY 78 K P LOEPERE AFOSR=76-2937
UNCLASSIFIED AFOSR=TR=78-1038

n Pl
I"“—l-:9 :: li22 122
BRaih "% S
I“" T
S &

N
O

i e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

‘R FURTHER TRAN ~ . .#

>
oo
(@]
O
L
=
i

Rensselaer Polytechnic Institute

[roy, New York 12181

{ APOSRITR= 78 - 143 &/

(g

ANy

(A 6’\ T S
m Technical Report CRL-56 - Lo 4 4 T (¢ /
- </_¢ | CHAP USER'S MANUAL. |

= i TR

2 Keith P. /Loepere /

D Z Vay W78 / q_y/

DDC
SIel

JUN 21 1978

| CUGTT
| E

Prepared for

Directorate of Mathematical and Information Sciences
Air Force Office of Scientific Research
Air Forec ems Command
Grant AFOSR-T6-2937

Rensselaer Polytechnic Institute

TROY, NEW YORK 12181

Approved for publie relea!t"

- Y~ § distribution unlimit d.
HPDT 7S A~ M e

s

ABSTRACT

A computer representation for line drawings that
has been found particularly convenient and has become
widely accepted is the chain code. This representation
is compact and allows most common processing functions

to be performed efficiently.

CHAP is a collection of FORTRAN routines designed
to process chain-encoded line drawings. Routines exist
in CHAP to manipulate, synthesize, analyze, and do input
and output upon chains. This report is intended to
serve as a user's manual for CHAP. It describes the use
of the CHAP routines along with other information
needed to write a program utilizing the routines. A

programming example is included.

| ACCESSION for
NTIS White Section B
boc Buff Section [
UNARNOUNCED

O

JUSTIFICATION

Dist. — AVAIL and/or SPECIAL
———L7AIL. and/or SPEGIAL _

A

ACKNOWLEDGMENT

The work described here was supported in part by
the Directorate of Mathematical and Information Sciences,
Air Force Office of Scientific Research, under Grant
AFOSR T6-2937, Professor Herbert Freeman Principal

Investigator.

il

Te

2.
3.

be

6.

CONTENTS

CHAINS IN CH

MANIPULATING THE CHAIN DATA STRUCTURE

A. Chain Synthesis

> & & o o o - > > o o o

e o o > L4 > & > o

B. Ingutndoutputooo.ooooo

>

C. Extracting Parts of Chains « « « ¢ «

D. Taking a Chain Apart into Primitives

E. Link-by-Link Movements . « o

SUPPORTING ROUTINES

A.Mary?lane........

B. Arrays of Links or

> & o & o o

Vertices

COMPUTATIONAL ROUTINES

A. Angles, Distances

> e o L 3 >

L

, and Extents

B. Areas and Moments

C. Correlations . .

SPECIAL FUNCTIONS

> o

> >

A. Rotation and Scaling

B. Intersections .

> L3

> L 3

C. Polygonal Approximation

D, Profiles « « ¢ o & ¢ & &

E. Centroidal Profil

€S

F. Shape Features .

COMMON BLOCKS o o «

FORMAL CALL SEQUENCES
RESERVED NAMES « « .

L >

L 4 >

>

. o

iii

>

>

>

1
13
13
14
16
17
17
17
18
18
19

21
22
35

10.
17.

12.

13.
4.
15.

ERROR MESSAGES ¢ ¢ o o o o o«
PROGRAMMING EXAMPLE . « . « &
MACHINE DEPENDENCIES . . « »

A. IBM 360 / 370 . .

B. UNIVAC 1108 / 1110 . . .

REFERENCES o e ¢ ¢ o o « « o
SIGNAL CODE SUMMARY « ¢« ¢ « o«

ROUTINE INDEX o« o« « ¢ o o o &«

iv

W

.
.
.
14

— i g —

Page
36

42
L6
46
L6
L7

50

PART 1
INTRODUCTION

One of the ways devised to represent line dra!;ngs in
a form computers can manipulate is the chain codtfiéﬁgg;is a set
or routines designed to facilitate the manipulation of chains.
These routines are written mostly in FORTRAN and are FORTRAN
callable.

It is assumed that the reader understands all of the
properties of chains. One set of properties that is assumed by
CHAP that may not be standard is that a chain starts off to be
visible and to have a grey level, elevation, and color of zero.
These properties occur as if signal codes to their effect actually
occurred. It is convenient to view it this way even though the
signal caodes de not actually exist at the beginning of the chain.
Signal codes may be added to the beginning of a chain, if desired,
to change these default attributes.

The origin of a chain is assumed to be (0, 0) if no
specification is made to the contrary. When x or y coordinate
specifiers are present, the field value in them is 16384 greater
than the actual value. That is, the five digit field in the code
has a value of 16384 (400008) for a value of zero. It is possible
to have x or y coordinate values in the range -16384 to 16383.

Sections included herein describe the use of the CHAP
routines. CHAP routines exist to take apart, synthesize, analyze,
and do input and output upon chains. A few common blocks must be
defined at the beginning of the mainline user program. The section
discussing this should be noted.

PART 2
CHAINS IN CHAP

Chains are stored im arrays. A chain array has the
following format:

word 1 ¢ the maximum number of links this chain array

can hold

words 2, 3, and 4 : initial value of zero

words 5 and beyond : the chain links
The part of the array used to store chain links must be large
enough to store the links packed as indicated by word one. The
number of words it will take to store a given number of links
depends on the implementation; see the appropriate section. For
a machine that can hold 10 links per word, a 10-word array can
hold (10 - 4) * 10 = 60 links. !

Chains are passed to a routine by specifying just its
name. Remember in writing user routines that this is an integer
array being passed.

A single dimension array of chains would consist of a
two-dimensional array where the number of columns is the number
af chains and the number of rows is the word length of each chain.
(This is true for FORTRAN user's programs.) Each chain in the
array must have words 1, 2, 3, and 4 set as above. Addressing
chain 3, for example, for a routine would be done by specifying
chain (1, 3) as the argument (start of column 3). Some
implementations may not correctly pass the address af the column
to be used as a scalar chain; see the appropriate section. These

notions can be extended to higher dimensioned arrays of chains.

PART 3
MANIPULATING THE CHAIN DATA STRUCTURE

A. Chain Synthesis

Chain synthesis routines are used to build up a chain
element by element. These routines can generate links or signal
codes.

A common first operation is to use subroutine CLEAR
(chain) to set chain to be a mull chain. A null chain has no
links or signal codes in it. It does, however, have the default
attributes described before. A chain may not be cleared if it is
open (discussed later).

Three routines exist to add links to the end of a chain.
Subroutine LINK (chain, link, number) adds the link numbered link

a number number of times to the end of the specified chain. This
call is ignored if the number specified is less than or equal to
zero. The way in which the link is added depends on number; signal
cades are generated whenever that would be the most efficient
means of storing the links.

A set of links can be added by calling LINKSQ (chain,

set, dimension of set, number). Set is a one-dimensional array of

links to be added to the end of the specified chain. Number is the
number of times this link sequence is to be added. A group repeat
cade is generated by this routine. The call is ignored if number
of the dimension of set is less than one.

The third link generating routine uses the Bresenham
algorithm (Bresenham, J. E., "Algorithm for computer control of
a digital plotter", IBM Systems J., (4), 1965, pp. 25-30) to

T T ——— i sy T o - — -

generate a series of links that approximates a straight line aver

an interval of (delta x, delta y). CHLINE (chain, delta x, delta

Y) adds these links to the end of the specified chain.

Routines alsc exist to add signal codes to the end of
a chain. These are:

INVIS (chain) - invisible chain follows

VISIBL (chain) - visible chain follows

POINT (chain, marker) - a given chain marker number

COLOR (chain, color) - a given color indicator

ELEVAT (chain, value) - a given elevation value

GREY (chain, grey) - a given grey level value

XCOORD (chain, x) - a given x coordinate specifier
YCOORD (chain, y) - a given y coordinate specifier
ROTIND (chain, angle) - a rotation specifier

NODE (chain, node, intersections) - a node specifier

where intersections is the number of

intersecting chains (zero if undefined)

SCLIND (chain, mode, scale, position) - a scaled chain

specifier with position the position of the
octal point in the scale factor of type mode
One final routine exists ta generate chain elements.
This routine is a counterpart to the GET routine (discussed later).
A collection of things can be generated by this routine one at a
time. PUT (chain, first, second) adds to the end of the specified

chain an element as fcllows:

first second

Q-7

o
10 0
11 0
12 0
105, 111,

12, 113, x

118, 119,
120
122 *
1235 y

element

the link specified by first

ignored

invisible chain follows

visible chain fallaws

generates the sigmal code first - 100
(ie., 05, 13, 4, 15, 22, 23, 24)
where second is the string of occtal
digits to follow the signal code as
an octal number (ex. 118, 1 gemerates
a color specifier of 1)

an x coordinate specifier

a y coordinate specifier

Only 122 and 123 can have negative values of second.

All other values form the cctal digits that follow the signal

cade directly from the value of x. The value of x or y must be in

range. The above are the only valid arguments.

B. Input and OQutput

Chains can be output im a format that can be subsequently

read in. Alsc, chains can be printed in a meaningful form.

INPUT (unit, chain) reads a chain from FORTRAN logical

unit unit. Reading takes place until an end-of-chain code is

encountered. The chain is checked for validity. The format of the

input (assumed to be from cards) is as follows:

columns 1=-6 ignored
columns 7-72 chain data
columns 73-80 ignored

Any character that is not an aoctal digit is ignored. When called,
this routine reads in a new card and continues to read cards until
it finds the end-gf-chain code. The next chain read in (if any)
must begin on a new card. The chain read in overrides the previous
value of chainj ie., chain is cleared fifst. This means that the
specfied chain cannot be open (discussed later).

OUTPUT (unit, chain) is the opposite of the above. Onto

FORTRAN logical unit unit, chain is punched. Punching begins o: a

new card and continues as necessary until the end-of-chain ccde is
punched. The output format is the same as the above input format.
Sequencing numbers starting at 1 and going up by 1 are also
generated in columns 73-80.

A more meaningful output can be generated by LIST (unit,
EEEEE?‘ This routine lists a given chain on a given FORTRAN
logical unit. The output consists of groups of five links. Blanks
separate the groups from one amother and from signal codes.
Fields within signal codes are separated by blanks. No line
printed will have more than 120 characters on it. Single spacing

is used. The end-af=chain cade is printed.

C. Extracting Parts of Chains

These routines look at the logical structure of chains.

They provide a means of extracting information about the chain
parts and assembling them differently. The first routine listed

> T TR - e e ———— - w s

here does nat extract a part but it does look at the physical
arrangement of chain segments. INITXY (chain, x, y) scans down a
chain locking for x and y coordinate specifiers. The value of the
last x and last y coordinate specifier found before the first actual
link is returmed. If no x (y) coordinate specifier is found, zero

is returned for x (y).

One way to identify a portion of a chain is through
marker cades in the chain. A section so identified can be copied
from one chain (chains) to the end of another (chaind) by MARKER
(chaind, chains, first, second). This routine moves the segment

between marker first and marker second. If first is out of range,
movement starts at the beginning of chain chains. Given that
first is in range for markers, chain chains is scanned until the
first occurrence of marker first, If this marker is not
encountered, nothing is moved. Assuming it is found, the signal
cade and the chain following it up until and including the first
accurrence of marker second is capied. If marker second does nat
accur after marker firgt, there is no marker second, or second is
out of range for markers, the copy runs until the end of chain
chains. Thus, MARKER (chaind, chains, =1, =1) is a copy of chains
to the end of chaind.

Three routines in this set copy portions based on the
value of signal codes. They look for all segments with an
attribute in a given range. COLORD, ELATED, and GREYD all of
(chaind, chains, first, second) copy to the end of chaind all

portions of chains where the value of the color, elevation, or

grey level (respectively) are in range. Copying a segment also

copies the signal code that causes the chain to enter or stay in
the desired range. If zero is in the desired range, the initial
part of chains (which has a default initial attribute of zero) is
moved along with a signal code with value of zero. The way the
range is chosen is as follows: if second is greater than or equal

to first, all values between and including first and second are

copied. If second is less than first, all values including first

and second except those between second and first are used.

In cases where there is mo ather criteriom to use as
to what segments to move, it is possible to move segments by
number. Whenever a signal code occurs, that signal code and what
follows is in the next higher numbered segment. Routines that move
on the basis of segment numbers are: VISSEG (visible portions
only), INVSEG (invisible portions only), NCOLOR (colored),

NELEV (elevated), and NGREY (grey level) all of (chaind, chains,

first, second). First and second form a range of segment numbers.

If first is less than one, it is the same as specifying one. A
value of second less than one is the same as infinity (effectively).
Given these meanings, if second is greater than first, all segments

with numbers between and imncluding first and second are copied.

If second is less than first, all segments including first and

second except those between second and first are copied. For first

equal to second, only this one value is copied. Note: for all

of the above except INVSEG, the default initial attribute means
that segment ome starts at the beginning of chain chains and so if
one is in range, a signal code is generated for this signal code

(with a value field of zero) and the chain copy starts from the

beginning of the chain.

D. Taking a Chain Apart into Primitives
The standard way of working on a chain is to take it

link and signal code by link and signal code. A facility is
provided to read a chain sequentially in this manner. A chain

that is being read must be open. Only a certain number of chains (4)
can be open at a time. To open a new one, OPEN (chain) is used.
Chain chain cannot already be open. Once opemed , INPUT and CLEAR
cannot be applied to the chain. GET (chain, first, second) can

naw be used ta get the next piece of information. In providing
this information, all multiple link codes are expanded fully and
returned link by link. If the next entity is a link, first is set
to the link value and second is set to zero. Sigmal cades are

returned as follows:

signal code first second
Q400 10 (o}
Q401 11 Q
Q4Q2 12 0]
Q405xyz 105 Xyzg
O413abcde " abcd98
Q414abcdet 112 abcdets
Q415abcdefg 113 abcdefga
ou22a 118 a
Q423abed 119 abcda
Q424abe 120 ahcs
0426abede 122 abcdea-46384
9

signal code first second

Q427abede 123 abcdea-16384
Default attributes do not get returned as signal codes. All other
codes (except 0404, Q417, 0420, and Q421 which are returned link
by link in their expansion) are skipped. If the chain is not open,
first is set to 10 and second to O.
The chain can be un-opened by CLOSE (chain). The chain
can now be worked on by INPUT and CLEAR. If the chain is re-opened,

sequential reading will begin at the beginning of the chain again.

E. Link-by-Link Movements

This routine differs from the previous copying routines
in its method of operation. It uses GET and PUT to copy the chain
link by link.

SUBCH (chaind, chains, vertex 1, vertex 2) copies onto

the end of chaind that part of chains that is between vertices

vertex 1 and vertex 2. The chain chains is scanned link by link

until a link is found ending at a vertex greater than or equal to
vertex 1. Copying then takes place until a link is found that ends
at a vertex greater than or equal to vertex 2. Specifying vertex 2
as less than one is the same as specifying infinity (effectively).
The movement includes all signal codes that GET returns. Link
repeat codes are constructed as appropriate while moving; however,

group repeat codes are not comstructed.

10

PART 4
SUPPORTING ROUTINES

A+ Binary Plane

An alternate way of looking at a chain is through a
facility in CHAP called the binary plane. The binary plane is
an array of bits of dimensions 0 to nx - 1 and O to ny - 1 where
hx and ny are implementation-dependent constants. Each bit
corresponds ta a point in the (x, y) plane. A value of 1 for a
bit implies that a visible vertex is at that point.

A chain may be added to the binary plane by APLANE
(chain). This will set to 1 all bits corresponding to visible

vertices in chain, Visible vertices are either the initial vertex
or a vertex that is arrived at by a visible link. All other bits
in the array are unaffected. '

BPLANE (22552) clears the binary plane before adding
the chain to the plane.

BPRINT (window) prints the binary plane. Window is a
four-element array giving the initial and final x and the initial
and final y coordinates of a window in the binary plane. For all
1 bits in the window (including the border), an 'X' is printed.
Blanks are printed otherwise.

PRINT (chain, window) clears the binary plane, adds

the specified chain to it, and then prints the specified window.

B. Arrays of Links or Vertices

These routines all perform a similar function. They

return arrays containing the links or vertices of a chain.

11

g v e

ARRAY (chain, list, dimension of list, no. of elements

returned, overflow flag) praduces an array of links. The array is

filled with all of the links of the chain. The overflow flag is
set if list is not large enough to hold all of the links. All
signal codes (except link caodes) are ignored.

The links of the inverse chain can be found by calling
INVERT (chain, list, dimension of list, no. of elements returned,

overflow flag). This routine functions in an analogous fashion to

ARRAY.

VERTEX (chain, x coordinates, y coordinates, dimension

of x coordinates and y coordinates, number of elements returned,

overflow flag) is also similar ta ARRAY but it returns the x and

¥ coordinates of the vertices of the chain. The values returned
are the starting coordinates aof all of the links and the final
coordinates of the chain. Signal caodes are ignored.

CHPAX (chain, list, dimension of list, no. of elements

returned) returns the links of the chain in the code of the PAX

language. The element after the last link (no. of elements

returned + 1) has a value of zero.

12

PART 5
COMPUTATIONAL ROUTINES

A. Angles, Distances, and Extents

The angle between the x axis and a chord of the chain

can e found by ANGLE (chain, vertex 1, vertex 2, angle). The

angle is the angle between a directed ray in the pasitive x
direction from the vertex vertex t and a directed ray from the
vertex numbered vertex | to the vertex numbered vertex 2. The
resultant angle is in degrees.

LENGTH (chain, length, type) finds the length of a chain.

Only invisible links are counted if type is equal to 1 . A type
value ef 2 will count only visible links. All links are counted
for any other value of type.

PDIST (chain, vertex 1, vertex 2, distance) finds the

distance between the vertex numbered vertex 1 and the vertex
numbered vertex 2. For this routine, vertex i is considered to be
the end of link i - 1 except for vertex ome which is the start of
link one.

The distance from a given point to a chain is scanned

by PNTCND (chain, x, y, maximum distance, minimum distance,

vertex at maximum distance, vertex at minimum distance). (x, ¥)

is a point from which distances tao the vertices of the chain are
checked. The maximum and minimum distances to the endpoints of all
links and the imitial coordinates of the chain (vertex one) are
returned.

LNCHD (chain, x1, yt, x2, y2, maximum distance, minimum

distance, vertex at maximum distance, vertex at minimum distance)

13

e, - v

is similar to PNTCND. Here, the maximum and minimum perpendicular
distances from the vertices of a chain to a line defined by points
(fl,_zl) and (EE, ZE) are found.

MAXMIN (chain, xy) finds the maximum and mimimum points
an a chain.‘E!_is a four-element array which receives, in order,
the maximum x, the minimum x, the maximum y, and the minimum y
values of all vertices of the chain.“Vertices’ here again means
the initial coordinates of the chain and the endpoints of all of
the links.

WHEX (chain, type, extemt) finds the extent (maximum -

minimum value) of a chain. Type can have a value of 1, 2, 3, or 4

specifying that the extent is to be computed along the Q, 45, 90,
or 135 degree (all respectively) axis relative to the x axis. X
and Y coordinate specifiers are ignored in making this computation.
The final routine in this group relates to the difference
between the initial and final vertices of a chain. RESID (chain,

link type 1, number of link type 1, link type 2, number of link

type 2) finds the residue of a chain. The residue of the chain
contains the two types of links indicated in the amounts indicated.
Using the initial coordinates and this information is the most

efficient way to determine the final coordinates of a chain.

B. Areas and Moments
ECAREA (chain, area) returns the integral (area) of all

portions of the chain relative to the x axis. A chain portion

that is directed in the negative x direction adds a corresponding

negative increment of area. Thus, the area of a closed figure is

1L

returned by this routine. If the closed figure was encircled
counterclockwise, the area will be negative.

The first moment of the chain is computed by MOM1
(chain, angle, first moment). The chain is assumed to be closed

and connected although no error will occur if this is not the case.
The moment is computed relative to an axis rotated by angle degrees
from the x axis. The angle can only be 0, 45, 90, or 135. A
clockwise encircled figure above the axis has a positive moment.
Reversing either the direction of encirclement or the relation to

the axis (but not both) will make the moment negative.

MOM1A (chain, angle, x, y, first moment) computes
the first moment of the chain as above but the chain is first
translated to have initial coordinates of x and y instead of those
it does have.

MOM2 and MOM2A have the same arguments as MOM!1 and
MOM?A above and perform similar functions except that they return
the second moment about the specified axis.

CENTRD (chain, x, y) returns the x and y coordinates
of the centroid (center of mass) of the specified figure. The
chain is assumed to be closed and connected. The direction of
encirclement does not matter.

Another routine that finds a first moment about an

axis is LMOM! (chain, x1, y!, x2, y2, first moment). In this case,

the axis is a directed axis from point (51, Zl) to (EE' ¥2). The
chain is assumed to be closed and connected. A clockwise
encircled chain above the axis (considering the axis the be the

positive x direction, this would correspond to being in the

15

el i < -

positive y direction) has a positive moment. Reversing either the
direction of encirclement or the relation to the axis (but not
both) changes the sign of the moment.

LMOM2 has the same arguments as LMOM1 and operates the

same as LMOM1 except for returning the second moment of the chain.

C. Caorrelatiaons
These routines use the temporary array provided in CHAP
to compute chain correlations. All signal codes (except link codes)
are ignored.

CROSS (chain 1, chain 2, correlation value, shift value)

computes a crosscorrelation of chain 1 and chain 2. Chain 2 is

shifted by the desired number of links past chain 1. The correlation
value is computed with wrap-around oan the chains.

AUTO (chain, dimemnsion of correlation array, correlation

array, resultant dimension) returns in the correlation array a

set of the correlation values in the autocorrelation of the chain.
The first element is the autocorrelation function of zero, the
second value is the autocorrelation function of one, etc. The
resultant dimension of the array is one half of the number of
links in the chain. This value is zero if there are not at least
two links in the chain.

16

w - e — e m— - —v -

PART 6
SPECIAL FUNCTIONS

A. Rotation and Scaling

A fundamental chain operation is tc rotate and scale.
Rotation and scaling requires a requantization of the links.
CHAP's rotate and scale algorithm does a requantization but does
not do a post edit. Thus, straight lines may not end up perfectly
straight. Chains coarsely quantized may end up considerably
distorted. Normally, chains retain their shape. ROSCAL (chaind,
chains, angle, x scale, y scale) scales chains by the given scale

factors and rotates by the specified angle (in degrees) all
relative to the start of the chain. The result is added to the end
of chaind. When an x or y coordinate specifier is encountered,

the new x and y coordinates are computed (given the specified
rotation and scaling) and x and y coordinate specifiers are
generated. All other non-link codes (thaose passed by GET) are
maintained unchanged but are otherwise ignored.

B. Intersections

A1l intersections of one chain with another can be

found with INTERS (chain 1, chain 2, dimension of all arrays,

type of intersections array, chain 1 location array, chain 2

location array, number of intersections found). The result is

three arrays whose elements form corresponding three element
sets of information. There are two possibilities for each set
of three values. If the intersection type is one, the intersection
occurs at vertices of the two chains and the chain locations

returned are the vertex numbers in the two chains where the

17

intersection occurs. A non-nodal intersection is flagged by an
intersection type of two. In this case, the chain locations are
the link numbers of the two intersecting links. All signal codes
(in particular, x and y coordinate specifiers) except link type

codes are ignored. This routine uses temporary workspace.

C. Polygonal Approximation
The algorithm of U. Ramer (in "An Iterative Procedure

for the Polygonal Approximation of Plane Curves", Computer
Graphics and Image Processing, 1, 1972, pp. 244-256) is

implemented by this routine. POLYGN (chain, xcoordinates array,

Y coordinates array, polygonal approximation vertex numbers,

desired tolerance, number of vertices in approximation, dimension

of all arrays, number of vertices returned) first sets the first

two arrays to the vertices of the chain. All non-link signal codes

are ignored in this process. The polygomal approximation vertex

numbers are indices of points defined by the x and y coordinates

arrays in the polygomnal approximation. These points define a
polvgonal curve such that the maximum distance from a chain vertex
to the polygonal section approximating the curve section is less

than the desired tolerance. This routine uses temporary workspace.

D. Profiles
These routines provide for profile computation and
matching.
XPROFL (chain, flag, profile, colummn dimension of

profile, number of profile pairs returned) computes a maximum

edge profile if flag is true and a minimum edge profile if flag

18

is false. Prafile is a two raw array which will be given the
profile pairs. The profile pairs are given in order following
the curve counterclockwise. To determine the direction of
encirclement, the endpoints are connected by a straight line, the
enclosed area is computed, and the sign checked. The chain is
inverted, if necessary, to provide the correct direction. This
routine uses temporary workspace.

A y edge profile can be computed by YPROFL which
functions similarly to XPROFL and has the same arguments.

Two profiles may be matched by MATCH (inward shift,

lateral shift, profile 1, column dimensionr of profile 1, profile

2, column dimension of profile 2). The inward shift and lateral

shift given provide for maximum area overlap of encasing

rectangles of the two chains.

E. Centraoidal Praofiles

Another type of profile is the centroidal profile. The
centroidal praofile contains the distances (measured along the
residues) from the centroid to the vertices of the closed chain.
The first value in the profile is the greatest value and all
values are normalized by the magnitude of th2 greatest distance.
Positive values correspond to vertices that are on portions of
the curve that are encircling the centroid in a clockwise sense;

negative values correspond to counterclockwise.

CENPRO (chain, array 6f profile values, dimension of

the profile array, number of values returned) computes such a

profile.

19

Ty PR e~ 3 ii w-—- T ™ —— L

- —————

F., Shape Features

BAYPEN (chain, maximum bay depth, maximum peninsular

depth, bay area, peninsular area, chord length) provides some

shape features of an open chain. A chord between the initial and
final endpoints of the chain are used to determine the values.

A bay is an area to the left of this chord; a peninsula is to the
right. The maximum distance to the chord in all bays and all
peninsulas are computed along with the areas of all bays and the
area of all peninsulas.

20

e e . e g

PART 7
COMMON BLOCKS

The operation of certain routines requires that the
user define a certain common block in his program. This is the
temporary workspace array. Temporary workspace is defined as:

/WORK/ size, array where array is an integer array of dimension

size. Size is also an integer. No initial values need be given
to the array.
Temporary workspace is needed by omnly six routines.
Estimates of the space needed by them follows.
AUTO - space to hold all of the links of the given chain
CROSS - space to hold all of the limks of both chains
INTERS - space to hold 3 * (2 + sum of the number of
links in both chains)
POLYGN = an upper limit is the number of vertices in the
chain
XPROFL, YPROFL - space to hold all of the links of the
given chain
A system defined common block which may be of use is
/XYICOMP/ ax, ay. The x and y components of the eight link types
in order, O to 7, are in ax and _ay, respectively.
The system defined common blocks are defined in a block

data subroutine that must be linked together with the progran.

21

PART 8
FORMAL CALL SEQUENCES

ANGLE (CHAIN, NP1, NP2, A)
CHAIN - integer chain array
NP1 - number of vertex 1 (integer)
NP2 - number of vertex 2 (integer)
A -~ computed angle in degrees (real)
APLANE (CHAIN)
CHAIN - integer chain array
ARRAY (CHAIN, LIST, N, L, OVER)
CHAIN - integer chain array
LIST = array to hold links (integer)
N ~ dimension of LIST (integer)
L -~ number of links returned (integer)
OVER - overflow flag (logical)
AUTO (CHAIN, NA, ACORR, M)
CHAIN - integer chain array
NA - dimension of ACORR (integer)
ACORR - resultant autocorrelation values (real)
M « number of values returned (integer)
BAYPEN (CHAIN, MAXBAY, MAXPEN, BAYAR, PENAR, LENGTH)
CHAIN - integer chain array
MAXBAY - maximum bay distance (real)
MAXPEN - maximum peninsular distance (real)
BAYAR - bay area (real)
PENAR - peninsular area (real)
LENGTH - chord length (real)

BPLANE (CHAIN)

CHAIN - integer chain array
BPRINT (IW)

IW - four element window specification
CENPRO (CHAIN, PROFL, DIM, N)

CHAIN - integer chain array

PROFL - profile values (real)

DIM - dimension of PROFL (integer)

N - number of values returned (integer)
CENTRD (CHAIN, CX, CY)

CHAIN - integer chain array

CX - x coordinate of centroid (real)

CY - y coordinate of centroid (real)
CHLINE (CHAIN, DELTX, DELTY)

 CHAIN - integer chain array

DELTX - desired x change (integer)

DELTY - desired y change (integer)
CHPAX (CHAIN, LIST, N, L)

CHAIN - integer chain array

LIST - resultant link list (integer)

N - dimension of LIST (integer)

L - uumber of links (mot counting O) returned (integer)
CLEAR (CHAIN)

CHAIN - integer chaln array
CLOSE (CHAIN)

CHAIN - integer chain array

23

COLOR (CHAIN, VALUE)

CHAIN - integer chain array

VALUE - desired color value (integer)
COLORD (CHAIND, CHAINS, LIMIT1, LIMIT2)

CHAIND

destination.:chain array (integer)
CHAINS - source chain array (integer)

LIMIT1 low end limit (integer)

LIMIT2 - high end limit (integer)
CROSS (CHAIN1, CHAIN2, CORR, J)
CHAINT - first chain array (integer)
CBAIN2 - array of chain to be shifted (integer)
CORR - resultant correlation value (real)
J = shift value (integer)
ECAREA (CHAIN, S)
CHAIN - integer chain array
S = resultant x axis integral (real)
ELATED (CHAIND, CHAINS, LIMIT1, LIMIT2)
CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
LIMIT! - low end limit (integer)
LIMITZ - high end limit (integer)
ELEVAT (CHAIN, VALUE)
CHAIN - integer chain array
VALUE - desired elevation value (integer)

2L

— »—*‘.--mwl. T T —————
mum 5 " oo

GET (CHAIN, FIRST, SECOND)
CHAIN - integer chain array
FIRST - link or signal code type (integer)
SECOND - signal code value (integer)
GREY (CHAIN, VALUE)
CHAIN - integer chain array
VALUE - desired grey level (integer)
GREYD (CHAIND, CHAINS, LIMIT1, LIMIT2)
CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
LIMIT! - low end limit (integer)
LIMIT2 - high end limit (integer)
INITXY (CHAIN, X, Y)
CHAIN - integer chain array
X = initial x coordinate (integer)
Y - initial y coordinate (integer)

2%

INPUT (UNIT, CHAIN)
UNIT - FORTRAN logical unit (integer)
CHAIN - integer chain array
INTERS (CHAIN1, CHAIN2, J1, ITYPE, INLCHA, INLCHB, NUMINT)
CHAIN! - first chain array (integer)
CHAIN2 - second chain array (integer)
J1 - dimension of ITYPE, INLCHA, and INLCHB (integer)
ITYPE - type of intersections array (integer)
INLCBA - first chain locations (integér)
INLCHB - second chain locations (integer)
NUMINT - number of intersectioms found (integer)
INVERT (CHAIN, LIST, N, L, OVER)
CHAIR - integer chain array
LIST - resultant link array (integer)
N - dimension of LIST (integer)
L - number of links returned (integer)
OVER - overflow flag (logical)
INVIS (CHAIN)
CHAIN - integer chain array
INVSEG (CHAIND, CHAINS, LIMIT1, LIMIT2)
CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
LIMIT! - low end limit (integer)
LIMIT2 - high end limit (integer)
LENGTH (CHAIN, CHL, LCF)
CHAIN - integer chain array
CHL - computed length (real)

26

LCF - length type flag (integer)
LINK (CHAIN, LINKS, NTIM)
CHAIN -~ integer chain array
LINKS ~ link to dbe added (integer)
NTIM ~ number of times to add (integer)
LINKSQ (CHAIN, LIST, DIM, NTIM)
CHAIN ~ integer chain array
LIST - list of links to add (integer)
DIM - dimension of LIST (integer)
NTIM - number of times to add (integer)
LIST (UNIT, CHAIN)
UNIT - FORTRAN logical unit (integer)
CHAIN - integer chain array
LMOM1 (CHAIN, X1, Y1, X2, Y2, FMNT)
CHAIN - integer chain array
X1 - x coordinate of first point (real)
Y1 - y coordinate of first point (real)
X2 - x caordinate of second point (real)
Y2 = y coordinate of second point (real)
FMNT - computed first moment (real)
LMOM2 (CHAIN, X1, Y1, X2, Y2, SMNT)
CHAIN - integer chain array
X1 - x coordinate of first point (real)
Yl - y coordinate of first point (real)
X2 = x coordinate of second point (real)
Y2 - y coordinate of second point (real)

SMNT -~ computed second moment (real)

27

LNCHD (CHAIN, X1, Y1, X2, Y2, CLDMAX, CLDMIN, JMAX, JMIN)
CHAIN - integer chain array
X1 - x coordinate of first point (real)
Y1 - y coordinate of first point (real)
X2 - x coordinate af second point (real)
Y2 - y coordinate of second point (real)
CLDMAX - maximum distance found (real)
CLDMIN - minimum distance found (real)
JMAX - vertex at maximum distance (integer)
JMIN - vertex at minimum distance (integer)
MARKER (CHAIND, CHAINS, MARK1, MARK2)
CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
MARK1 - first marker number (integer)
MARK2 - second marker number (integer)
MATCH (XX, YY, PROF1, N1, PROF2, N2)
XX - inward shift computed (integer)
YY - lateral shift computed (integer)
PROF! - first two row array of profile pairs (integer)
N1 = column dimension of PROFT (integer)
PROF2 - second two row array of profile pairs (integer)
N2 = column dimension of PROF2 (integer)
MAXMIN (CHAIN, XY)
CHAIN - integer chain array
XY - four element array of maxmin values (integer)
MOM1 (CHAIN, DEGREE, FMNT)
CHAIN - integer chain array

28

DEGREE - axis angle (integer)
FMNT - computed first moment (real)
MOM1A (CHAIN, DEGREE, NITX, NITY, FMNT)
CHAIN - integer chain array
DEGREE - axis angle (integer)
NITX - initial translated x coordinate (integer)
NITY - initial translated y coordinate (integer)
FMNT - computed first moment (real) |
MOM2 (CHAIN, DEGREE, SMNT)
CHAIN - integer chain array
DEGREE - axis angle (integer)
SMNT - computed second moment (real)
MOM2A (CHAIN, DEGREE, NITX, NITY, SMNT)
CHAIN - integer chain array
DEGREE - axis angle (integer)
NITX - initial translated x coordinate (integer)
NITY - initial translated y coordinate (integer)
SMNT - computed second moment (real)

NCOLOR (CHAIND, CHAINS, LIMIT!, LIMIT2)

CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
LIMITY = low.end limit (integer)

LIMIT2 - high end limit (integer)

NELEV (CHAIND, CHAINS, LIMIT1, LIMIT2)
CHAIND - destination chain array (integer)
CHAINS = source chain array (integer)
LIMIT! - low end limit (integer)

29

LIMIT2 - high end limit (integer)
NGREY (CHAIND, CHAINS, LIMIT1, LIMIT2)
CHAIND - destination chain array (integer)
CHAINS - source chain array (integer)
LIMIT! - low end limit (integer)
LIMIT2 - high end limit (integer)
NODE (CHAIN, NODES, INTERS)
CHAIN - integer chain array
NODES - node value (integer)
INTERS - number of intersecting chains (integer)
OPEN (CHAIN)
CHAIN - integer chain array
OUTPUT (UNIT, CHAIN)
UNIT - FORTRAN logical unit (integer)
CHAIN - integer chain array
PDIST (CHAIN, NODE!, NODE2, DIST)
CHAIN - integer chain array
NODE?! - first vertex number (integer)
NODE2 - second vertex number (integer)
DIST - computed distance (real)
PNTCND (CHAIN, XP, YP, DMAX, DMIN, LMAX, LMIN)
CHAIN - integer chain array
XP - x coordinate of point (real)
YP - y coordinate of point (real)
DMAX - maximum distance found (real)

DMIN - minimum distance found (real)

LMAX - vertex at maximum distance (integer)

S TP

LMIN - vertex at minimum distance (integer)
POINT (CHAIN, VALUE)
CHAIN - integer chain array
VALUE - desired marker number (integer)
POLYGN (CHAIN, XCOORD, YCOORD, ICL, TOL, IC, JJ, K)
CHAIN - integer chain array
XCOORD - x coordinates of vertices (integer)
YCOORD =~ y coordinates of vertices (integer)
ICL - vertex indices of approximation (integer)
TOL - approximation tolerance (real)
IC - number of vertices in approximation (integer)
JJ - dimension of XCOORD, YCOORD, and ICL (integer)
K = number of vertices returned in XCOORD and YCOORD
(integer)
PRINT (CHAIN, IW)
CHAIN - integer chain array
I¥ - four element window specification array (integer)
PUT (CHAIN, LINK, FLAG)
CHAIN - integer chain array
LINK - link or signal code type (integer)
FLAG - signal code flag (integer)
RESID (CHAIN, LRES!1, NLRES1, LRES2, NLRES2)
CHAIN - integer chain array
LRES! = first link type (integer)
NLRES1 - number of links of type LRES1 (integer)
LRES2 = gecond link type (integer)

NLRES2 - number of links of type LRES2 (integer)

31

ROSCAL (CHAIND, CHAINS, ANGLE, XSCALE, YSCALE)

CHAIND - destination chain array (integer)

CBAINS - source chain array (integer)

ANGLE - rotation angle (real)

XSCALE - x scale factor (real)

YSCALE - y scale factor (real)
ROTIND (CHAIN, ANGLE)

CHAIN -~ integer chain array

ANGLE ~ desired angle specifier (real)
SCLIND (CHAIN, MODE, SCALE, POS)

CHAIN - integer chain array

MODE - mode of scaling (integer)

SCALE - scale factor (integer)

POS - position of octal point (integer)
SUBCH (CHAIND, CHAINS, VERT1, VERT2)

CHAIND - destination chain array (integer)

CHAINS - source chain array (integer)

VERT! - first vertex number (integer)

VERT2 - second vertex number (integer)
VEZRTEX (CHAIN, XCOORD, YCOORD, N, L, OVER)

CHAIN - integer chain array

XCOORD - x coordinates of vertices (integer)

YCOORD - y coordinates of vertices (integer)

N - dimension of XCOORD and YCOORD (integer)

L - number of vertices returned (integer)

OVER - overflow flag (logical)

32

VISIBL (CHAIN)
CHAIN - integer chainr array
VISSEG (CHAIND, CHAINS, LIMIT!1, LIMIT2)

CHAIND - destination chain array (integer)

CHAINS - saurce chain array (integer)
LIMIT! - low end limit (integer)
LIMIT2 - high end limit (integer)

WHEX (CHAIN, ITYPE, W)
CHAIN - integer chain array
ITYPE - extent type desired (integer)
W - computed extent (real)
XCOORD (CHAIN, VALUE)
CHAIN - integer chain array
VALUE - desired x value (integer)
XPROFL (CHAIN, FLAG, PROFL, N, INDEX)
CHAIN - integer chain array
FLAG - maximum edge flag (logical)
PROFL - two row array of profile pairs (integer)
N - column index of PROFL (integer)
INDEX - number of profile pairs returned (integer)
YCOORD (CHAIN, VALUE)
CHAIN -~ integer chain array
VALUE -~ desired y value (integer)
YPROFL (CHAIN, FLAG, PROFL, N, INDEX)
CHAIN ~ integer chain array
FLAG - maximum edge flag (logical)

v —p— T p——— -

PROFL - two row array of profile pairs (integer)
N - column index of PROFL (integer)

INDEX - number af profile pairs returmned (integer)

e R

PART 9
RESERVED NAMES

The following names are reserved in that the user

should not define routines or common blocks with these names.

ADDR ECAREA LMOM2 NVIS ROSCAL
ANGLE ELATED LNCHD OCTAL ROTIND
APLANE ELEVAT LOCTA QCTIN SCLIND
ARRAY GET MARKER OPEN SIGEND
AUTO GETDIG MATCH OUTPUT SIGLIS
BAYPEN GREY MAXMIN PCLOSE SIGNAL
BPLANE GREYD MOM1 PDIST SPACET
BPRINT GTLINK MOM1A PLANES STATUS
CENPRO ICHDIG MOM2 PNTCND STLINK
CENTRD INITXY MOM2A POINT SUBCH
CHAPMC INPUT MSTORE POLYGN VERTEX
CHDIG INTERS NCOLOR PPUT VISIBL
CHLINE INVERT NCOLS PRINT VISSEG
CHPAX INVIS NDUMB PROFIL VSEG
CLEAR INVSEG NELEV FUT WHEX
CLOSE LENGTH NELVS PUTCH WORK
COLOR LINIT NGREY PUTCHF XCOORD
COLORD LINK NGRYS PUTDIG XPROFL
CROSS LINKSQ NINV QCOMM XYCOMP
DIGCH LISDIG NMOVE QMOVE YCOORD
DIGLIS LIST NODE RESID YPROFL
DUMB LMOM1 NTHSEG
35

A T T ———— ~— -

APLANE:

ARRAY:

AUTO=

BAYPEN:

BPLANE:

BPRINT:

CENPRO:

CENTRD:

CHLINE:
CHPAX:

PART 10
ERROR MESSAGES

NODE NUMBERS ILLEGAL
NODE NUMBERS OUT OF RANGE FOR THIS CHAIN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
ARRAY OVERFLOW
TEMPORARY ARRAY OVERFLOW
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
none

ARRAY OVERFLOW

CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
CHAIN OVERFLOW

CHAIN ALREADY OPEN
TOO MANY CHAINS OPEN
ARRAY OVERFLOW

36

o p———————

CLEAR:
CLOSE:
COLOR:

COLORD=:

CRCSS:

ECAREA:

ELATED:

ELEVAT:

GET:
GREY:

GREYD:

INITXY:
INPUT:

CHAIN IS OPEN

none

NUMBER NOT IN RANGE
CHAIN OVERFLOW

ILLEGAL LIMITS

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
TEMPORARY ARRAY OVERFLOW
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
ILLEGAL LIMITS

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME

NUMBER NOT IN RANGE
CHAIN OVERFLCW

none

NUMBER NOT IN RANGE
CHAIN OVERFLOW
ILLEGAL LIMITS
CHAIN OVERFLOW
SOURCE AND DESTINATION CHAINS ARE THE SAME
none

CHAIN IS OPEN
CHAIN OVERFLOW
INVALID SCALE MODE
ILLEGAL SIGNAL CODE

37

R T &
——— o~ P a—

INTERS:

INVERT:

INVIS:
INVSEG:

LENGTH:

LINK:

LINKSQ:

LIST:
LMOM1:

LMOMZ2:

LNCHD:

MARKER:

MATCH:

ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN OVERFLOW

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
CHAIN ALREADY OPEN

TCO MANY CHAINS OPEN
NUMBER OF TIMES IS TOO BIG
ILLEGAL LINK

CHAIN OVERFLOW

ILLEGAL LINK

TOO MANY LINKS

NUMBER OF TIMES IS TOO BIG
CHAIN OVERFLOW

none

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME

none

38

BT, LT T —— O —
= T ————

MAXMIN:

MOM1T

MOM1A:

MOM2 ¢+

MOM2A:

NCOLOR®

NELEV:

NGREY:

NODE:

OPEN:

OUTPUT:
PDIST:

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ILLEGAL ANGLE

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
NUMBER NOT IN RANGE

CHAIN OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

none

NODE NUMBERS OUT OF RANGE FOR THIS CHAIN
CHAIN ALREADY OPEN

39

e ——

PNTCND:

POINT:

POLYGN

PRINT:

PUT:

RESID:

ROSCAL

ROTIND

SCLIND

.o

SUBCH:

TOO MANY CHAINS OPEN

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

NUMBER NOT IN RANGE

CHAIN OVERFLOW

ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

ARGUMENTS NOT VALID (invalid combination)
NUMBER NOT IN RANGE

CHAIN OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

CERAIN OVERFLOW

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

SOURCE AND DESTINATION ARE THE SAME
NUMBER NOT IN RANGE (overflow on x or y coordinates)
CHAIN OVERFLOW

NUMBER NOT IN RANGE

CHAIN OVERFLOW

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME

VERTEX:

VISIBL:
VISSEG:

WHEX ¢

XCOORD:

XPROFL:

YCOORD:

YPROFL:

CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
CHAIN OVERFLOW

CHAIN OVERFLOW

SOURCE AND DESTINATION CHAINS ARE THE SAME
ILLEGAL EXTENT TYPE
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN
NUMBER NOT IN RANGE
CHAIN OVERFLOW
DISCONTINUITY ON EDGE
ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW
CHAIN ALREADY OPEN

TCO MANY CHAINS OPEN
NUMBER NOT IN RANGE
CHAIN OVERFLOW
DISCONTINUITY ON EDGE
ARRAY OVERFLOW

TEMPORARY ARRAY OVERFLOW
CHAIN ALREADY OPEN

TOO MANY CHAINS OPEN

L1

PART 11
PROGRAMMING EXAMPLE

The following program was run through the IBM version
aof CHAP.

INTEGER HEART,CHAIN,WINDOW,PART,I
REAL AREA,LENG,MOMENT

DIMENSION HEART(90),CHAIN(40),WINDOW(4),PART(40)

DATA HEART/1,0,150,1,0,1,0,151,0,1,14151513251520251529253+25
1 3’2,3!3’1"’83'4’3’4’4’4’4’4’ 5'4’4’5’6’5’6’2’3,2’3’&’,
2 L}’B’Q,Q,Q,L}’l}’ 5,4,5,#,5,5,6'5,6,5.6,6,7'6,6,?,6,7,
3 797579750575750,7,0,7,0,7,0,7/

DATA CHAIN/360,39*Q/,WINDOW/0,40,0,40/,PART/260,39+*0/
note that CHAIN and PART can hold 10 * (40 - 4) links
C NOTE: WORKSPACE ARRAY NOT NEEDED by any called routine here
C CREATE A FIGURE - INPUT IS WORD CHAP WITH C A COLOR OF 1, H A COLOR
¢ OF 2, A A COLOR OF 3, AND P A COLOR OF 4; ADD A HEART OF COLOR 7
CALL INPUT(5,CHAIN)
CALL COLOR(CHAIN,?7)
CALL XCOORD(CHAIN,18)
CALL YCOORD(CHAIN,O)
CALL LINKSQ(CHAIN,HEART,90,1)
CALL LIST(6,CHAIN)
CALL PRINT(CHAIN,WINDOW)
CALL COLORD(PART,CHAIN,U4,1)
CALL LIST(6,PART)
CALL PRINT(PART,WINDOW
C USE ONLY HEART IN COMPUTATIONS (remove all letters)
CALL CLEAR(CHAIN)
CALL COLORD(CHAIN,PART,7,7)
CALL LENGTH(CHAIN,LENG,O)
WRITE(6,1)LENG
1 FORMAT(20H LENGTH OF HEART IS:,F9..4)
CALL ECAREA(CHAIN,AREA)
WRITE(6,2)AREA
2 FORMAT(18H AREA OF HEART IS:,F11.4)
CALL MOM1(CHAIN,O,MOMENT)
WRITE(6,3)MOMENT
3 FORMAT(30H FIRST MOMENT ABOUT X AXIS IS:,F11.4)
CALL MOM2(CHAIN,S0,MOMENT)

WRITE(6,4) MOMENT

4 FORMAT(42H SECOND MOMENT ABOUT (INVERTED) Y AXIS IS:,F13.4)
STOP
END

e e e

The input to this program was the following.

EXAMPLE Q42210426400110427400155544332222110077 C
042220426400130427400130417201004264002104176010
0427400174 4440, H
042230426400230427400132212122176676766
0426400300427400 16444, A
04224042640033042740013222222220000076 65444440400 P

In the following output, the chain listings are modified
to fit on the page.

0422 1 0426 40011 0427 4LOO15 55443 32222 11007 7 Qu22 2
0426 40013 0427 40013 0417 2 010 Ox26 40021 0417 6 010
color aof 1, x coordinate of 115, y coordinate of 154, a series of

links; color of 2, x of 1345, ¥ of 13 10 ccurrences of
link é, x of 213,’108 occu@éences ofgiink86 :
2 3

0427 40017 4LhLlL 4 O4 0426 40023 0427 40013 22121
22176 67676 6 0426 40030 0427 40016 LLuh 0422 4 0426
y of 178, a series of links; color of 3, x of 23,5, y of 134, a
series of links, x of 304, y Of 164, a séries of 1lInks;
color of 4, start of x specifier
L0033 0427 40013 22222 22200 00076 6544L LL 0422 7 0426
40022 0427 40000 O421 132 0001 10101 01011 01111 12122
x of 338, y of 135, a series of links; color of 7, x of 228, y of
0, group §epeat of length 132, to be repeated once
12232 32334 34344 LuL5L 45656 23234 4§44h L4545 45565 65667
. 66767 7?7770 77070 70707 0LOO

(14 blank lines)

Notice the division in the chain. The chain has five segments
each starting with a color specifier and then an x and y coordinate
specifier. The first four groups (C, H, A, and ©P) were on the
data cards. The fifth group (heart) was added piece by piece
explicitly.

The 14 blank lines are part of the window in the print
call.

XX X XXX XX
XX XX XX
X XX X
X X X
X X X
X
X XXX X X XXX X
X X X X xXr XX X X X
X X XX X XX X XX
X X X X XX X X X
XX XXXXXKXX. X X XXX X
XX X X XXXXX X X
XX XX XX XX X
XX X X XX XX X
X XXX X X X
X X
X X
X X
X X
XX XX
X X
XX X
XX XX
XX XX
X X
X

0422 0 0422 1 0426 40011 0427 40015 55443 32222 11007 7
o422 4 0426 40033 0427 40013 22222 22200 00076 65444 LL
a color of O3 color of 1, x of 114, y of 15,, a series of links;
color of 4, x of 335, y 0f 1345, a séries of links
0422 7 0426 L0022 0427 40800 ou21 %32 0001 10101 01011 0111

12122 12232 32334 34344 LLLSL L5656 23234 L3i4LL LLSLS
color of 7, x of 22,5, y of O, group repeat of length 1328 to be
repeated once

L5565 65667 66767 77770 77070 70707 0400

(14 blank lines)

Notice that only the endpoints of links are printed; this explains
the missing points in the letters. The extracted chain parts,
listed above, show that the portions with colors between 1 and 4
have been removed. Since O is in range (default attribute), a

color specifier of O appears at the beginning of the chain.

Ly

s v-o&a-'

XX XX XXX XX
X XX XX
X XX X
X X X
X X X
X X
X XXX XXX~ X
X X £ X XX
X X X X X X
X X X X X
XX XXX X
XX X X
XX X X X
XX X X X
X XXX X
X X
X X
X X
X X
XX X
X X
XX XX
XX XX
XX XX
X XX
X

LENGTH OF HEART IS: 108.2254
AREA OF HEART IS: =664.0000
FIRST MOMENT ABOUT X AXIS IS: =9753.6172
SECOND MOMENT ABOUT (INVERTED) Y AXIS IS: 26760043125
The letters H and A no longer appear because their colors were
between 1 and 4. All else remains the same.

The computations were performed on the heart. The C and
P were removed by taking only those portioams with a color of 7.
The heart still has an origin of (18, 0). As such, the axis runs
through the bottommost and leftmost points of the heart. The
heart is drawn out counter-clockwise. This is the reason for the

negative area and first moment. Remember that the second moment

was computed about an inverted axis.

PART 12
MACHINE DEPENDENCIES

A. IBM 360 70
The IBM 360 / 370 implementation stores both chain data
and binary plane data packed 30 bits per word in the low order
bits. A full-word integer holds 10 links.
The binary plane size is 120 X 120 bits.

Arrays of chains can be used as described in the text.

B. UNIVAC 1108 / 1110

The full 36 bit UNIVAC word is used to store chain data
and binary plane data. An integer holds 12 links.
The binary plane size is 144 X 120.

Arrays of chains can be used as described in the text.

e ..‘-F“—; - - - — -

e

PART 13

REFERENCES

Freeman, H., "On the Encoding of Arbitrary Geometric
Configurations", IRE Trans. on Elect. Computers, EC-10,
(2), June 1961, 260-268.

, "Techniques for the Digital Computer Analysis

of Chain-Encoded Arbitrary Plane Curves", Proc. Nat'l.
Elect. Conf., 17, 321-421, October 1961.

, "Boundary Encoding and Processing", in
Picture Processing and Psychopictorics, ed. by B. Lipkin
and A. Rosenfeld, Academic Press, Inc., New York, 1970.

, "Computer Processing of Line-Drawing Images",
Computing Surveys, 6, (1), March 19Tk, pp. 57-9T.

Johnston, E. G., "The PAX User's Manual", Computer Science
Center, University of Maryland, College Park, MD. 20TkL2,
June 1972, (NTIS ADTL4S5 973).

Loepere, K., "Documentation Manual for CHAP", Technical

" Report CRL-57, ESE Department, Rensselaer Polytechnic

Institute, Troy, N. Y. 12181.

—

PART 14

SIGNAL CODE SUMMARY

The following is a list of the signal codes recognized

by CHAP. A complete list can be found in the references (4),

0400 - end of chain code

Q4071 - invisible chain follows
0402 - visible chain follows
Q403 - ignored

0404 - O4 link combination
OLOS5xyz - marker xXyz
0406 - illegal

0407uv, - identification number

uv v

OL10wxyz, - comment

wxyz !

OLT1 + « o 04127777 - comment

Q412abcde - abcd - node number, e - number of intersec-
ting chains

Ok14abcdef - rotation indicator of a.bcdef3 radians

O415abcdefg = a - made of scaling, bcdef - scale

factor, g - position of octal pecint

0416 - illegal

OL17uxyz - link u is to be repeated xyz times

O420un, n+ly 1 — repeat link u the number of times
specified
O421abewxyz, abe ' — repeat the group of abc links

wxyz times
O422u = color indicator of u

0423abcd - elevation indicator of abcd

48

R T T T . e —————— T

O424abc - grey level of abc
O425u - ignored
O426abcde = x coordinate of abcde-- QOOOOS

0427abcde - y coardinate of abcde - L(.OOOO8

L9

s e e G g e

ANGLE
APLANE
ARRAY
AUTO
BAYPEN
BPLANE
BPRINT
CENPRO
CENTRD
CHLINE
CHPAX
CLEAR
CLOSE
COLOR
COLORD
CROSS
ECAREA
ELATED
ELEVAT
GET
GREY
GREYD
INITXY
INPUT
INTERS

13,
11,
12,
16,
20,
1,
¥,
19,
15,

17,

22,
22,

o

235,
a3,

23,

23,
23,
23,
22,
23,
24,
24,
24,
2y,
24,
24,
2s,
25,
25,
2s,
26,
26,

PART 15
ROUTINE INDEX

36
36
36
36
36
36
36
36
36

36
37, 42
37
37, 42
37, 42
37
37, 42
37
37
37
37
37
4
37, b2
38

50

T T - g

INVERT
INVIS
INVSEG
LENGTH
LINK
LINKSQ
LIST
LMOM1
LMOM2
LNCHD
MARKER
MATCH
MAXMIN
MOM1
MOM1 A
MOM2
MOM24
NCOLOR
NELEV
NGREY
NODE
OPEN
OUTPUT
PDIST
PNTCND

——————

12,

by

13,
3
5
6,

15,

16,

13,
7

19,

14,

15,

15,

13,
13,

26,
26,
26,
27,

e ——

38

38, 42

38, 42

38, 42
38

& B

>3
39, 42
39
39, 42
>3
39
39
39
39
39
39
39

e 3 ey ———

POINT
POLYGN
PRINT
PUT
RESID
ROSCAL
ROTIND
SCLIND
SUBCH

b,
18,
1,

4,
4,
17,

4,

4,
10,

31,
31,
31,
3,
31,
32,

32,

32,
32,

40

40, 42

40
40
40
40

.

) VERTEX
VISIBL
VISSEG
WHEX
XCOORD
XPROFL
YCOORD

YPROFL

12,

b,

4,
4,
18,
b,
19,

32,
33,
33,
33,
33,
33,
33,
33,

41
41
41
41
41, 42
4
§1, 42
41

AT —

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMEE ETOIE FORM
1. Rm 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
f§ﬁ.ﬁﬁi_ ~Q . 1
{8-1038
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
/ Interim
CHAP USERIS MANUAL 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Keith P. Loepere AFOSR 76-2937 —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
X : P AREA & WORK UNIT NUMBERS
Electrical & Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12181 61102F 2304/A2
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE v
May 1978
Air Force Office of Scientific Research/NM 13. NUMBER OF PAGES
Bolling AFB, Washington, DC 20332 56
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

line drawing processing computer graphics
image processing graphics languages
pattern recognition

cartography

20. ABS_‘LNACT (Continue on reverse side If necessary and {dentify by block number)

" A computer representation for line drawings that has been found
particularly convenient and has become widely accepted is the chain
code. This representation is compact and allows most common processing
functions to be performed efficiently.

CHAP is a collection of FORTRAN routines designed to process

chain-encoded line drawings. Routines exist in CHAP to manipulate, -—ﬁ?,uaqf

-

DD , 55", 1473 EOITION OF 1 NOV 65 IS OBSOLETE UNCLASS IF 1ED

p

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e -, - - 2 - "

/
u

Lk
o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20.

> synthesize, analyze, and do input and output upon chains. This
report is intended to serve as a user's manual for CHAP, It
describes the use of the CHAP routines along with other information
needed to write a program utilizing the routines, A programming
example is included.

~7

\
\‘

UNCLASSIFIED

R e B

s P —— . pp—.—— e, S et s e e s 1 . e e e

