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A REVIEW OF
DYNAMIC RESPONSE OF COMPOSITES

INTRODUCT LON

The dynamic¢ response of a composite has peen a hotly pursued
research subject since the middle of nineteen sixties. It is a subject
which has wide technological applications and also possesses challenging
theoretical and experimental problems. Vast literatures are now avail-
able on the subject. Various theories have been proposed to predict the
dynamic response ot a composite. The ultimate goal of research in this
area is to obtain an approximate theory which is reasonably simple and,
at the same time, is able to predict fairly accurately the response of a
composite structure subject to a dynamic loading. Despite the voluminous
research papers published, this goal does not seem to have been achieved.
This i1s not a reflection on the lack of research ability in the area.
Quite the contrary, there are several sophisticated theories which are
able to predict accurately certain aspects of the dynamic response of a
composite. This is a reflection on the difficulty of analyzing a com-
posite material. One can have an exact or nearly exact theory which is
cither mathematically intractable or practically unfeasible. On the other
hand, one can have a very simple approximate theory which is too crude to
predict even the simplest dynamic response of a composite.

The purpose of this project was to critically review the state of
the art on the subject of the dynamic response of composites and to suggest
possible future rescarch dirvections. As we embarked on the project, it

soon became clear that the task was a much more difficult one than we
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have anticipated. The more than three hundred papers compiled at the end
of this report by no means exhaust all papers in the area. Papers which
deal with the static response of a composite are not included in the
references. A review of the more than three hundred papers reveals that
most papers discuss either harmonic waves or transient waves. Of course,
there are papers which discuss both harmonic and transient waves. When
the material is linear, harmonic waves can be superimposed to obtain a
transient wave. This approach is not applicable for nonlinear materials.
Therefore, papers which discuss harmonic waves invariably assume that the
material s [incar,

Pablished papers on plates and shells which are made of composite
materials were also reviewed. Although  the reviecw of these papers is not
presented here, the papers are included in the Refererces at the cond of
this report. Likewise, review of papers which model composites as fluids
is not presented but they arce included in the References.

In Chapter 1, we brietfly review the existing theories of the dynamic
response of a composite.  This is followed by a review in Chapter 11 of

papers which deal with harmonic waves in composites. Transient waves in

composites are discussed in Chapter 111,  Although the original objectives

of this project do not include reviewing the experimental results, we felt
that some experimental results are of sufficient interest and are relevant
to the theoretical predictions that a few words should be said about them.
This is contained in Chapter IV. Finally, in Chapter V we comment on the
ditftferences between various theories and also suggest possible future

rescdarch directions,




[. A SUMMARY OF THE EXISTING THEORIES

For most realistic structural composites, an exact description of the
static or dynamic behavior is mathematically impracticable. As an alterna-
tive, a number of investigators have sought approximate theories. The

representatives of such theories are briefly described as follows:

B3 Effecgggigggulus Theories

The effective modulus theories such as those proposed by Postma [ P6 ]
and White and Angona [W11] replace the actual composite by a homogeneous,
generally anisotropic medium whose material constants are a geometrically
weighted average of the properties of the constituents. If C;ikl are such
effective moduli of the composite, this theory relates volume averages of
stresses to volume averages of strains by a general anisotropic linear

tress-strain relation of the form

Vg
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Of course, the constants C are expressions in terms of the material

*
ke

constants of the constituents and the parameters defining the geometric

layout of the composite. The constants C;jkl satisfy the relations
o L NS R S (2)
ijke jike ijik kLij i
Thus, of the 81 constants C;jkl' only 21 are independent. In general, the

number of independent elastic constants is much less than 21 because of the
existence of symmetries in the structuring of the material. In particular,
in the case of a laminated medium consisting of alternating layers of two

isotropic elastic materials, the number of independent elastic constants

reduces to only S.




1.2 Q{fgg}jygmﬁjj}jquSi;thqyics

in a servies of papers [S18,A9,G610,G11,A10] by Achenbach, Grot, Herrmann

While vielding satistactory results tor certain geometries under

for virtually all geometries when applied to wave propagation.

aobserved in composites.  Such effects become important where dominant

with discontinuous material properties, any continuum theory must in one

way or another take into account the influence of microstructure.

tollowing theories were developed with this purpose in mind.

The etfective stiftfness theory was the first continuum model for

dynamic effect such as geometric dispersion and hence to reflect the in-

static loads, the ettfective modulus theories exhibit serious deficiencies
Specifically,

these theories are incapable of reproducing the dispersion and attenuation

signal wave lengths are of the order of the typical camposite microdimen-

sion. Since dispersion and attenuation are results of the microstructure

lLaminated media and tiber-reintforced composites to account for a typically

tluence of the micrvostructure of a composite. The theories were developed

and Sun. Higher ovder theorvies of this kind were dervived by Turhan |[T15].

The theories have been formulated in several different

the case of the lincarly clastic Laminated composites
one.  Here we outline  the theory of clastic waves in
[S18] bricetlv.  The rveintorcing and matrvix lavers are

homogeneous, linear isotropic clastic materials.  For

ts perhaps a typieal

Laminated composites

hoth assumed to be

clastic waves propa

Qating in the composites, this theory approximates the displacements of the

reintorced laver and the matrix laver in the kth ce
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where uik and uTk denote the displacements of the reinforcing and matrix
layers respectively, ugf and u:: denote the displacements at the mid-
planes of the two corresponding layers, ig and ig are local coordinates
measured from the corresponding midplanes, wgt and w§§ represent anti-
symmetric thickness shear deformations, and wgg represents symmetric
stretch deformation of the kth reinforcing layer. Similar definitions
apply for wgﬁ, wg; and wg;. The approximate theory allows dynamic

interaction of the layers through the continuity of displacements at the

interfaces. This is obtained from Eq. (3) as

fk fk

m
0i 2%y X3at)

K mk
uoi(xl,x2 ,xs,t) - u

(4)
mk

fk
2 )xs’t)

o Fle 2 1 mk
= 70 oy (X)X sxg,t) * 3 d U, (XX
With the assumption of the displacement fields given by Eq. (3), one can
5 e . : fk wmk
obtain the strain, and consequently the elastic strain energy W and
in the kth reinforcing layer and the matrix layer, respectively. One also
3 v : Lfk ka " : - :
obtains the kinetic energy 1 and . Now, if the composite consists
of n reinforcing layers and n matrix layers within a certain thickness %,

the total strain energy wz and kinetic energy Tl are

n
W, = § Wtk wmKy (5)

£

n
I otk PN (6)

-3
n

The basic assumption in the effective stiffness theory is the smooth opera-

tion in which wl is expressed in terms of wf and W" by

~ 1 £
W = I d——T-J— (W + Wm) LIXZ (7)
9 { m

where wf and W' are now defined for all Xse If the layering thicknesses

e
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are small, W’ and W' are approximately equal to Wtk and wmk within

each layer. Therefore, the strain energy density W can be defined as

W= xs’“k)/(dt. $d) (8)

=3 Wk "
where htk and W are assumed to hold for all «x and

not just xtk

e

mk e g : : : ! :
%, . Similar smoothing operation is applied to the kinetic energy. By

assuming the smallness in the layer thicknesses, Eq. (4) can be approximated
by a differential form:
5. # b O, e o X o)
(\t Y _‘I‘l 2

1 - d

(9)

Finally, one invokes Hamilton's principle in which the continuity conditions
(9) are included by using the Lagrangian multipliers \i:
t\

§ (T -W -XlSl - A, -XSSS)JV dt = 0 (10)

-

This results in a system of partial differential equations tor the displace-
ment s uni and w:i'

Sun, Achenbach and Herrmann [S18] then used these displacement equations
to study the propagation of plane harmonic waves in a laminutcd‘mcdium. Dis-
persion relations for harmonic waves propagating parallel to and normal to
the direction of the layering were presented, and the approximate dispersion
curves were compared with exact curves. The limiting phase velocities at
vanishing wave members agree with the exact limits. The lowest antisymmetric
mode tor waves propagating in the direction of the layering shows the

strongest dispersion which is very adequately described by this theory over




a substantial range of wave numbers. Various theories of effective stiff-

ness will be reviewed later.

[.3 Mixture Theories

Another approach, suggested by Lempriere [L7]), is to use the mixture
theories as models of the dynamics of composites. The fundamental concept
of mixture was postulated by Truesdell and Toupin [T12], and further
developed by Green and Naghdi [G5,G7,G8], Green and Steel [Go], Steel [S14],
and others. In these theories, the constituents of the structural composite
are superimposed in space and allowed to undergo individual deformations.
The microstructure of the composite is then simulated by specifying the
nature of constituent interactions and the form of the mixture constitutive
relations.

While general conservation laws governing the mixture may easily be
formulated, the practical application to composite materials encounters
difficulties in that it is rather difficult to analytically specify the
interactions between the constitutents on the basis of the knowledge of
the geometry and constitutive relations of the individual constituents.

In 1971, Bedford and Stern [Bl1] first proposed a mixture theory for a
laminated composite wherein the interaction parameters were determined on
the basis of results of certain simple quasi-static problems. Then, in a
series of papers by Bedford and Stern [S15,516,B13], Hegemier and Nayfch
[H7], and Hegemier, Gurtman and Nayfeh [H8], mixture theories were formu-
lated for certain laminated and fiber-reinforced composites with varying
degrees of success. In the following, we outline the binary mixture theory
for wave guide-type propagation in laminated and unidirectional fibrous

composites formulated by Hegemier, Gurtman and Nayfeh in [H8] .

- e g e - ———————
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For a periodic arvvay of lineavly elastic, isotvopic and homogencous
bi-laminates, bonded at their intertaces, these authors tirst integrated
the elastadvanamie equations of motion and constitutive relations tor each
constituent over the thickness ot cach constituent and detfined averaged
stresses and displacements over that thickness. By using the condition
that L. must be continuous across intevtaces, they obtained the momentum
equations in the torm |

) 420 AT
)nlll\ ] ~"“il” -t

NN 1
£11) {
’ Jp (Pl o (20 |
3 o 2 "‘\ L\‘u\\ » P
(RN a s
tnowhich the supeescripts or subscripts 1 oand 2 refer to 1 and 2 constituents }
¥

respectively, the supeescript  a veters to average value, and "partial"

stresses and densities ave detined as

where |
Ny ha,(h‘ t h:) ; o Ly (La)
tsoa volume traction of the x-constituent, and “‘ ts one halt ot the thick

ness of the c-constituent.  In (L), P ois an "interaction” term vetlecting
momentum transter trom one constituent to another via shear interaction

across laminate intevtaces. By a vational analvsis, Hepemievr, ete., tound

the intevaction term  Potaking the torm

' \ ¢ 2
i N u‘l‘) u\ \‘> (1)
\hl ¥ N 1t \ \
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Similarly, integration of the consitutive relations for the individual con-
stituents followed by a rational analysis, Hegemier, etc., found the

constitutive relations for the mixture as follows:

ciP) , o o028 | . 5 ., (20)

" | b 12
(106)
g 3.
D S T L R L
XX 12 X X 22 XX
where .
T Pl L
“ae Mo E/* Y8 " E
(17)
(oeyB i B 25 ol )
in which
s )
Ey U\nu)“ (18)

and A“ P uq are Lamé constants of the a-constituent.

For fibrous composites, Hegemier, etc., approximated a hexagonal array
of fibers by concentric, linear elastic cylinders, with perfect interface
bonds and subject to vanishing shear stress and radial displacement on the
outer boundaries so that for a cylindrical element, o =1 (r < ) denotes
fiber and a = 2 (rl SE S rz) denotes matrix. They found that the

momentum equations for fibrous composites can be also written in the form

(11) where, for this case,

Sn |,
e o (2a) (la)
P 2 — S TP, & 9
7 e i T )
iy =7, " "1%9
2 1
in which
3
PO i L R
ryt*r, I -rl 4
d 5 Fe iz (20)
1 re - re
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They also found that the constitutive relations of the mixture still take
the form (16) where

: = (A + 312;)|n! - A[‘/l). €8 = X(XX[{/I‘. (x#R)

A o + "'”7
nyo j Ry 2 ¥ IRy Ve, |

Compartson of exact and approximate phase velocity data for laminated and
fibrous composites indicate that the theories just described provide good

agreement for wavelengths greater than the typical composite microdimension.

.4 Continuum Theories Based on Asymptotic Expansions
For laminates and directionally reinforced fibrous composites, con-
siderable success has been achieved in the development ot continuum models
based upon asvmptotic expansion techniques in which the ratio of the
characteristic lengths of the structuring to the wavelengths is assumed
muach smaller than unity.  One approach, utilizing direct asymptotic expan-
sions, has been proposed by Ben-Amoz [B22,B23] and is appropriate for
problems of the wave-puide type.  Another technique, utilizing spatial
and asymptotic expansions, has been proposed by Hegemier and developed in
a series of papers by Hegemier and Nayteh [H7], Hegemier, Gurtman and
Navfeh [H8], Hegemier and Bache [HY,B1,H10], and Gurtman, etc. |G13]. The
latter applied to problems of both the wave-puide and wave-reflect types.
The technique developed by llegemier, ot al., models a heterogeneous
composite as a continuum with microstructure.  In this theory, the govern
ihg mﬁhninns.nl‘cnmpthﬂ) determined trom a knowledge of the geometry
and constitutive relations of the composite microcomponents. In addition,
this theory provides intformation on stress and displacement ticelds wi\“in
the microcomponents of the composite. A typical example is the elastic

waves in laminated composites.  We will briefly present the case of wave

propagation normal to the laminate in the following.
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For an elastic bilaminate, let h(l) and h(z) be the half thickness
of the layers and y be the distance perpendicular to the layering.
Hegemier, et al. |[H7] started from the equations of motion and constitu-
tive relations for the individual layers and expanded the stress and dis-
placement into power series of the local coordinates with origin at the
centroid of the constituent layer. By imposing the continuity conditions
of the stress and displacement across the layer interface, they obtained
the equations in a difterential-difference form. Finally, assuming that
all difference expressions admit Taylor series expansions in the quantity
A= h(l) + h(:). which is the half thickness of a unit cell, they converted
the difterential-ditference equations to partial differential equations.
After some algebraic and trigonometric manipulations, the two partial

differential equations are shown to satisfy the tollowing global differen-

tial equation tor ¢ and Y which are essentially the stress and the strain:

) 2
{cosm:y“’ 3 )eosh(2y'?) ¢ 3) « L5 sinh2y ) €9 )sinn(2y¥ ca)
1 1 2K T T
Yy
- ¢cosh(2 e )}{®}= Q o
sh(2 € 9, ¥
where
E = y/L, T = ct/L, € = AR
(23)
> bl
ym\ - ch(a\/“(all\). % p(-)c(‘-)/p(l)c(l)
In Eq. (23), 2 is a reference length, c(“) and p(“‘ are the wave speed

and mass density of the ath laver, and ¢ is the wave speed of the com-

posite when € = 0. In the limiting case € = 0, Eq. (22) reduces to

a2 1)? 2)2 1?2 _(1 2 ) )
{52 - (97 @0 1O Dyak {3} - o @b

and hence ¢ is obtained by letting the coefficient of 3{ to be unity:




2 >y 2 2 -
0D L ) LN LTS W R )

b e =1 .

Y = Y (25)

- . ) o - . - \ .
Equation (22), when expands in powers of €, can be written as, after making

use of Eq. (25),

)

Py 0 lah 2
{(l ta,e s + a,€ 3& + ...)85

E cd
(26)
: 242 hyh 2 4>} b
L *hlt at 5 hJL al * "')al}{‘¥ .
where
a, = 2%/41 , 8, = 2°/6!
2 1 2)2 2 2)2.2
1>,=§-(y() '\(‘\~-§t\'(” _Y())
ey 3 (27)

af (3% @2 )? 2)2 . 2)®
big» It's["( Sl VA AR BN VLSS AR )]

This was obtained by Hegemier, et al., [H7]. However, h4 obtained here is

difterent trom that ot [HII], and it scems that hl of |HI1) is in error.

One could have obtained a general expression for the coefficients a,

and h,“ of £q. (27) if one rewrites Eq. (22) in the following form:

{ 0 cosh(2y ed ) - (0 -1)cosh(28 €d ) - cosh(2 ED_)} {¢)} =0 (28)
1 { {3 Y

where

1 2 2
yax? ey, =yt 4

: (29)
vo8 = (1+Kk)2/4k

Noticing that Eq. (25) can be written in the tform

0 yd - (0-1)§7= 1 (30)

Equation (28) reduces to




2 2
{cosh(z €d) - [:2!—:—-3—7 cosh(2 ¢ Y3 ) - Y‘—;—{‘-; cosh(2 ¢ 531)] } {3 } ‘9 0O

Expansion of each term in powers of ¢ leads to

‘s 7 s o 2 i
E ~£:2:l andn a2 “gf"‘l (1-87)y (n‘l)-gl-yz)ﬁ (nf}l..zn 5o |52 '
n=0 ()T © & g el 1 f

(2n+2)! Y2 . &2
{:‘} = 0 (32 |

Therefore,

yentl
a, = — -
<N 3 Y !
(2n+2)! (33)
yen+l 2,.2(n+1) 24 c2(n+1)
B, 5 £ 201005 Al 4 1% 1 1 o
B (oeed) | v - &2
It can be shown that Eq. (33) reproduces Eq. (27) for n = 1 and 2.
By letting
¢ 2
{W} ={$} oqx[ﬂ(ﬁ-%s)] (34)

where cp and Kk are the nondimensional phase velocity and wave number,
Eq. (22) reduces to the exact frequency equation obtained by Rytov |R13].
On the other hand, it we substitute Eq. (34) into Eq. (20), then one obtains
various approximate frequency equations depending on how many terms in

’ 2N
Eq. (20) are retained. 1t we keep all terms up to ¢, we may call the
approximation Nth order theory. Hegemier [H11] used a different defini-
tion for the order of approximation. For the Nth order theory, he used
. N INeL X :
Eq. (22) and kept the terms ¢ and € in the power series expansion
of cosh( )} and sinh( ). With this definition, the first ovder theory
(N = 1) would include not only the ¢’ terms, but also some (not all) temms

of €" and % Numerical examples show that his first order theory yields

better accuracy than several existing theories of the same orvder.
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It should be mentioned that the binary mixture theory of Hegemier,
e

t al., outlined in Section [.3 can be obtained from a modified first order
o
theory of Hegemieor.

[.§ Variational _Methods

For harmonic waves in a composite with a periodic structure, a varia-
tion approach may be employed. This can particularly become a very effective
tool, if one uses a variation statement in which not only the displacement,
but also the stress tield is given independent variation. Morcover, by
permitting discontinuity in the displacement and the stress test functions,

one can expect a more accurate reproduction of the local variation in the
displacement and stress fields within and across the constituent materials.

Examples of such calculations can be found in a paper by Kohn, ot al. [KS5],
where the theorem of stationavy potential energy which leads to the Ravleigh
quotient for the cigen-trequency is used, and in a thesis by Wheeler |[WL0},

and in another thesis by Wu [WI7]. Nemat-Nasser [N12] developed more gencral

variation principles in which the displacement, the stress, and the strain
in one case, and the displacement and the stress in another case, are given

independent variations and which include appropriate general boundary and
discontinuity conditions. Here we illustrate Nemat-Nasser's variation
principles by using the one-dimensional case as follows.,

For waves propagating in an clastic medium whose properties vary
periodically in the direction of propagation, i.e., the x-direction, let

a be the periodicity-length. Then one has

p(x+a)

"

X))

n(x+a) = n(x)




where n stands for A+2u when dilational waves are considered, and for
u when shear waves are considered. Consider harmonic waves propagating
normal to the layers of a composite consisting of periodically elastic A
layers bonded together. Assume that a typical cell in this composite con-
sists of two materials, MB, 8=1,2, where m! occupies the region

a
-a/2 sx s -b/2 and b/2 < x £ a/2, and M" occupies the region

s

- b/2 < x £b/2. Now consider the functional i
a/2
| 1 2 1
‘ J1 = { = Doo* + % pw uu* - ‘ﬁ\ + c.c.} dx

-a/2 (30)

, {X[u*(%) -ur (- )C-iq;l]} *<6<u*>}x=0b/2 +c.c.

in which the superscript star denotes the complex conjugate, the temm c.c.

aa
rol %

stands for the complex conjugate of quantities which precede it, X is the

Lagrangian multiplier, and

(2)

’ 0 = ao + (1—0.)0“) , {u) = u('n -uU) 7]

(2) &5 S

+ - s - :
g(xo) and g - g(xol. ¢ standing for either o©

where at Xov 8
or u in (37), and o is a weighting parameter. The first variation of

J is then

i 1
83, = [ { [Dc %5]50* + [%%-+ pmzu]éu* . c.c.} dx

X

AFG s (3) - [o ¢ %)-Ac’i‘l“] s (1)
[ - e eDfa el

- {(0) su* - (u) Sor 0c.c.}

x=tb/2




& = fl-ainkt? & apll? (39)

The vanishing of ’GJI for arbitrary variation of the indicated quantities
then Quarantees the satisfaction of the field equation, the quasi-periodicity
conditions, and the continuity of the displacement and the stress across the
two materials within the cell.

Hence, by choosing the appropriate test functions u and o, in the
form of Fourier series for this case, one is able to calculate the frequency
and so the Fourier coefficients from Jl’ (36), by putting SJl = 0. For
this case, numerical results obtained by Nemat-Nasser showed an extremely

rapid convergency to the exact results.

1.6 Lattice-type Models

{

In a fiber-reinforced composite the fibers act as wave guides for a
wave propagating in the direction of the fibers. For a wave propagating
normal to the direction, the fibers undergo little deformation and essentially
act as obstacles interacting with each other and with the surrounding medium
in a manner which is similar to the behavior of mass particles in a lattice
system. These observations have motivated kinematical assumptions regarding
the deformations of the reinforcing elements and of the matrix material which
are analogous to those used by the phycists in wave guides and lattice models
respectively. Thus, the fibers are considered as long and slender structural
elements and the matrix is replaced by a system of springs. A three-dimen-
sional theory of this type was first worked out by Turhan [T15]. A lattice
model simulating a periodic structure of laminated plates which are
formed by a redistribution of masses and stiffnesses of fibers was first

presented by Drumheller and Sutherland [D10]. Related works will be reviewed

later on.




1.7 Micromorphic Theory of Continua

A theory of micromorphic continua has been developed by Eringen, et al.

(E2,Tl6], and Habip {HI] in a series of papers. The theory is intended for
the prediction of thermodynamic behavior of granular solids, anisotropic and f
polymeric fluids and, in particular, composite materials. In this theory the
mechanical fields are considered as distributions. Partial differential i
equations governing the moments of fields up to any order have been derived.

In this theory, a smoothing operation is also employed in which sums over

individual constituents are approximated by integrations over the entire
material volume. This theory is, in effect, a non-classical mixture theory.
As with the general mixture theories, the general forms for interactions
and constitutive relations are postulated. However, the unknown functions

and/or constants involved must be determined from experiments.

1.8 The Neighborhood Concept

A neighborhood concept related to the differential-geometric method in
the continuum theory of dislocation has been proposed by Ben-Amoz [B21]. In
this theory, one avoids the difficulties associated with discontinuous
material properties by utilizing a neighborhood averaging ;echnique. Unfor-
tunately, the relations between the displacements of the constituents and
the corresponding neighborhood averages must be postulated and/or deduced

from experiments. So far this technique has not been further developed.

1.9 Theory of Elasticity with Microstructure

In the continuum models aforementioned the media dealt with all

possess a periodic microstructure such as media with equally spaced tibers

or periodic laminae. The treatment in such cases is greatly facilitated




by the existing periodicity which enables the derivation of continuum

theories based on an analysis of the micromotion‘in a unit cell. While ?
substantial progress has been made with media possessing a periodic micro-

structure, little progress has been made with media lacking periodicity,

such as inclusions of arbitrary geometry embedded in a matrix material.

For media lacking periodicity, the theory of elasticity with microstructure

developed by Mindlin [M4] is certainly an effective tool provided the matrix

1s an isotropic elastic material. In this theory, a set of equations for

the macro-motion that contain in some measure the effects of the micro-

motion has been deduced. Recently, Ben-Amoz [B30] has extended the theory

of elasticity with microstructure to a heterogencous medium consisting of

inclusions of arbitrary geometry embedded in a matrix material. His treat-
ment is structured along the lines of Mindlin's theory although there are
important ditferences. The crucial difference is that the arbitrary
material constants in Mindlin's theory are deduced here in terms of known
constituent properties. Specifically, two pairs of characteristic constants
are identified: both length and time scales associated with dilatati;nal
and shear waves. In the following, the dynamic theory for composite
materials of Ben-Amoz is outlined briefly. For wave propagation in a
heterogeneous medium consisting of inclusions of arbitrary geometry em-
bedded in a matrix material, Ben-Amoz has obtained the displacement

equations of motion as

o~ 2 2 Y ¢ 2 N = l 22 l 2.:
Gy (1-8%)Vu, « (X, +G ) (1-B))e,, = (‘ o - L >“' R

40)

1 s ?) 2%
a4 (l g lhv v“i




where
\ o= \v. : : = BN %GV
v \t\t ’\m\m' k\' (f\f'.(m\m
i = k. { 1 - 26
" \v (\\y G, G, =G/, + G,)
B2 = (a®x +B% )/ (A +26
2, (TR G/ QA+ 26,)
Sl : (3= v =41 (G . -6 J/X ]
4 1 1 t m'’ v (41)
8 =3 l 1 (v £ 41 t.\ kkl’. hm\/ \I\']
Y= 2 Q1+ (v - 41 (U0 - 1/po)eg]
1. = | r2av
f = '\" ) il ¢ &
¢
& ok oo iyt
"R £ m' m

In the foregoing, D \{ and Gf represent the inclusion density and
moduli whereas Py \m' Um represent the corresponding matrix properties;

vf and , denote the volume fractions of inclusion and matrix in a unit

cell, respectively. The integral 1{ taken over the inclusion volume V!
in a representative volume V is the polar moment of inertia of the
inclusions about the center of the representative volume and thus the
eftfect of inclusion distribution is contained in this integral which enters

into the material constants «, 8, Y. From (40), Ben-Amo:z has extracted

the tollowing two syvstems tor rotational and dilatational modes:
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The systems of equations are valid up to wavelengths of che order of a unit
cell dimension and are found to reduce under special assumptions to Mindlin's
equations in the long wave approximation. For a harmonic plane wave propa-
gating in thévﬁedium, the dispersion curves for a cubic array of spherical
particles obtained by this theory are rather similar to the curves sketched

in [Md] for the lowest acoustic modes.

1.10 Viscoelastic Analogies

A model for the prediction of the dispersive effects in layered composite
materials based upon a viscoelastic analogy has been proposed by Barker
[Bo]. The model consists of a particular stress relaxing equation of state
of the Maxwell type. The parameters involved are defined in terms of the
properties of the constituent materials and geometry of the layered com-
posite. The technique, which is semi-empirical, predicts almost exactly
the average stress in a unit cell of the laminate. In effect, the model
smoothes out the detailed behavior arising from reverberations in the

layers of the composite.

1.11 Discrete Continuum Theory

A discrete continuum theory for periodically layered composite matevials
has been proposed by Chao and Lee [C3]. The treatment is mor; or }e<s along
the line of Achenbach, et al. [A9] but without using the smoothing process.
In this theory, the displacement field for each layer is obtained by dcvoiOp-
ing a two-term truncated Taylor series. The governing equations which
incorporate interface continuity conditions are derived in the form of a
system of diftferential-diftference equations. Application is made to propa-

gation of plane harmontc waves in an unbounded layered medium.  Thickness
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twist vibrations are studied. Numerical results predicted by this theory

agree quite closely with the exact results. In general, agreements are i

even better than effective stiffness theory, as wave number gradually

increases. |

: 1.12 Statistical Approach

McCoy [M2], Bose and Mal [B41,B42] have proposed a statistical approach
% for longitudinal waves of both compressional and shear types in a fiber
veinforced composite where fibers are randomly distributed but of identical
properties. In this theory, the composite is considered to be statistically

uniform. The phase velocity and damping of the average waves are obtained

by a statistical consideration as functions of the statistical and the
mechanical parameters. Correlations in the positions of the tibers is intro-
duced. The theory leads to Hashin and Rosen's formulas [Ho] for bulk

modulus and shear modulus if the correlations are ignored. The correlation
terms have a significant effect on the damping property of the composite,
especially at high frequencies and concentrations. The effect is to increase
the velocity and decrease the specific damping capacity. Ziegler's [Z1)

mean wave technique for laminated random media and Krumhansl's |K9] average

Fourier-Floquet method for disordered composites are similar to this approach.

I.15 Hydrodynamic Concept
Lo —ae ol St -~

In a series of papers, Tsou and Chou [T13,T14], Torvik |[T11], Chou and

Wang [C6], Munson and Schuler [M13] developed a theory based on the flow

across a selected control volume of the medium  to predict the Huponiot curve

of a shock moving in the fiber-reinforced and taminated composites. They

derived individual mass, momentum and energy conservation equations. By this
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théory, they were able to determine not only the average Hugoniot, but also
the integral of the interface shear stress over the width of the shock. 1In
some cases, they obtained good comparisons between theoretical and experi-
mental results on a variety of composite geometries. This hydrodynamic
approach seems to be a useful tool for determining the range of response
that may be expected under compressive shock loading. Related works will
be discussed later.

We have thus summarized most of the published theories in this chapter.
We‘will review published work which used these theories to study harmonic and

transient waves in composites in the following two chapters.




I1. HARMONIC WAVES

The work on harmonic or sinusoidal wave propagation in composites con-
sists of waveguide analyses, in which the geometrical cross section of the
composite does not vary in the propagation direction, and wave-reflect
analyses, in which the material properties vary periodically in the direction
of propagation. In the waveguide case, for wave propagating in the z

direction, a typical response tunction f  is expressed as

F(x;¥:2:8) = Flx,y) exp i(kz -wt) (44)
and in the wave-reflect case as
fF(x,y,z,t) = F(x,y,z) exp i(kz - wt) (45)

where F is the mode shape, X, y and =z are the coordinates, Kk is the
wave number, w the frequency, and t is time. In case of wave-reflect
type propagation, F has the same periodicity as the geometry in the =
direction. The dispersion of the waves is expressed in terms of the rela-
tionship between any two of the quantities ¢, ® or &, where ¢ =w/K is
the phase velocity. For wave-reflect case, ® is periodic in Kk with
period 2n/a, where a is the length of the unit cell in the propagation
direction. These two types of analyses of harmonic waves in composites,

based on various methods, are discussed as follows.

IT.1 Exact Theories

The initial study of harmonic or sinusoidal waves in laminates was
made by Rytov [R13]. By use of elasticity theory, he obtained the exact
solutions for the case of dilatational waves propagating normal to the
laminates (wave reflection problem) and the case of symmetric waves

propagating parallel to the layvers (waveguide problem). He presented the




phase velocity spectrum for cach case. The zero frequency limit of the

primary mode, which corresponds to the static elastic solution, was also
obtained. Rytov's exact solution is widely used as a basis for estimating
the accuracy ot the theories of continuum for composites,

Sun, Achenbach and Herrmann [S20], and Achenbach [All] discussed the
time-harmonic waves in  layered composite materials propagating in the
direction of the lavering. They considered a medium of alternating lavers
of two ditterent homogencous materials. Using the solutions of the equa
tions of elasticity representing plane time-harmonic waves, they derived
exact dispersion reiations tor both cases of svimetric deformations and
antisvimetric detormations.  The results obtained show that tor the high
values of the ratio of the shear moduli, or the lavering stiffness, the dis-
persion curves depart sharply trom the limiting phase velocities for "long
waves' at very small wave numbers.  Thus, they concluded that the applicability
of the eftective modulus theory tor wave propagation in practical laminates
1s very limited since it cannot account tor dispersion.

Puppo, Fenp and Hacner {I'7] analveed sinusotdal wave propagation
parallel to fiber direction in a unidirectional tiber-reintforced composite.
They modeled the hexagonal arrvay of cirvcular tibers in a matrix by a
circular tiber with concentric cvlinder of matrix. They then solved the
concentric rod problem by the method of clasticity. 1t appears from theirv
numerical results that the calculation of the parameter o, which is the
coeftficient of the second term in the expression ot the phase velocity in
terms of wave number was somewhat questionable,

Hottuar, ot al. (N7 also did the analvsis of the concentric rod,
whaeh mode s the hexagonal aveay o corcular tibers an o matvey matevial,

and compared 1t with the results for the equivalent Laminate for plass epony
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constituents. A very similar qualitative nature may be seen but the parameter
a  for the two geometries is unequal.

Reuter [R7] studied the dispersion of flexural waves in circular
bimaterial cylinders. He obtained the general torm for displacements and
the frequency equation for the first mode of flexural wave propagation in
an infinitely long circular bimaterial cylinder. The theory follows the
technique developed by Pochhammer and Chree for elastic bars which is well
known in the theory of elasticity. They presented several first-branch
dispersion curves ftor the first flexural mode for various ratios of the
constituent cylinder radii. Dispersion characteristics significantly
different from those predicted by the theory tfor homogeneous cylinders are
realized.

Lai, Dowell and Tauchert [L1] also provided a thorough treatment of
propagation ot harmonic waves in a composite elastic cylinder. They showed
vigorously how special conditions corresponding to particular combination
of material properties can be derived trom the general solution. The
problem treated in detail pertains to a composite circular elastic rod of
infinite length consisting of two layers. The central portion is solid
while the outer portion is a cylindrical shell. Their numerical results,
in terms of frequency and real wave number, were given for a composite rod
of a soft core with a stiff casing. The results were checked with the
asymptotic frequency equations at short wavelength. The exploration of
the dispersive phenomena and the development of various simplified theories

for harmonic waves in a composite rod can be based on the results of this

investigation,




Rade, ¢t al. [B2] considered the Bloch-type wave propagation in a
three dimensionally fiber-reintforced composite of orthogonal tvpe. The
tibers tn the direction of propagation (the z-direction) were assumed as
a round fiber surrounded by a circular sheath consisting of material for
which the properties were obtained by homogenizing the resin matrix and the
lateral tibers running in the two directions orthogonal to propagation.
they pertformed the Bloch analysis by expanding the displacements in a
three-dimenstonal Fourier series and derviving an intinite-order matrix tor
the coetticrents of the Fourier series.  The determinant of this matrix
provides the dispersion relation for the sinusoidal waves. The intfinite
matrix was solved in two wayvs: (1) a perturbation technique and (2) a
truncation technique in which only a tfinite number of terms in cach of the
series was used. It owas found that the lavering in the direction of propagation
nas little effect on the dispersion.  Calculations using only three terans
tn the Fourier series in the lateral directions and just the zevoth
(averaging) term in the propagation divection were carrvied out for both
isotropic and orthotropic fiber-bundle properties. The isotropic results
agree well with the known axisyvmmetric waveguide solution while the
orthotropic properties give much better agreement with experiment.

Sve |S42] carried out an exact analysis of time-harmonic waves
traveling obliguely in a periodically laminated medium. The analyvsis was
based on two-dimensional equations of elasticity and Bloch theory. Dis-
persion relation was obtained for harmonic waves propagating in an arbitrary
direction, Limiting phase velocities were presented for infinite wavelength
for any angle of propagation in the torm of a tourth-order determinant. In
case of propapation along or across the lavers, this determinant reduces to

two determnant s of second order that vield the imiting phase velocities




directly. His numerical results indicate clearly the dependence of dis-
persion upon the angle of propagation.

Sve [S43] also investigated thermoelastic waves in a pertodically
laminated medium. By an exact analysis, he studied the eftect of thermo-
elastic coupling on sinusoidal waves propagating in the directions parallel,
perpendicular and oblique to the planes of laminates. The effect of
thermoelasticity is to cause complex propagation constants to occur except
in the case of shear wave perpendicular to laminates in which the response
1s unattected. His numerical results indicate that thermoelastic attenuation
ts confined primarily to the quasi-longitudinal modes. The phase velocities
and mode shapes are also influenced by the attenuation parameters, especially

tor large frequencies.

Christensen [CY] presented an analytical formulation of the effective
attenuation of harmonic waves, of low frequency, through layered elastic
medium. The effective attenuation is defined as the difference in trans-
mitted energy to initial total energy. This energy is accounted for through
secondary wave scattering ettects resulting in pulse dispersion. When the
layvers have equal impedance and equal stiftness, pulse attenuation vanishes.
As a result of the analysis, an explicit expression for attenuation was
derived by a perturbation technique. The theory presents a useful analytical

result in wave propagation in laminated composites.

Lee and Yang [L4], and Lee [L3] analyzed the harmonic waves in composite

materials with periodic structure of elastic constants and density variation.

They employed Bloch or Floguet theory and treated the propagation in terms

of Floquet waves. The theory was presented for a laminated composite material

and propagation normal to the lamination. They found that the frequency

spectrum has a banded structure, comprising pass or propagating bands and




stop bands. 1t was shown that the frequencies at the boundaries of the
bands correspond to wave profiles which are normal modes of vibration of the
individual cells with fixed or tree surfaces. Both types occur at each
limiting frequency. They also interpreted properties of Floquet waves in
terms of normal mode theory and interpreted the high trequency limit for
Floquet waves in terms of geometrical optics type analysis. ‘4
Schoenberyg [S1] considered plane sinusoidal waves propagating through
a medium made up of plane lavers of anisotropic homogeneous linearly elastic
material. Using a matrix formulation, he found the stresses and displace-
ments in terms ot the boundary conditions on one boundary, =0, e
calculated the generalized transter tunction ﬁ explicitly. The transfer
tunction R can be thought ot as a transfer function between the solutions
gt a0 and 2 S where n is the laver number. li is & function of
trequency  w  and the material parameters in cach of the n  lavers. In
the special case of normal incidence, he tound that the eigenvalues are

solutions to a bicubic equation instead of a sextic equation.

Sutherland |S39] analytically predicted phase velocity and attenuation i

[%

tor two specific composites using the time-temperature superposition principle }
\ e

to vield the viscoclastic portion of the total dispersion spectrum.  The i
7

two composites, he considered, ave quartz cloth embedded in a phenolic matrin i
8

and stainless steel reintorced epoxy. He speculated that the difference b
?:

between the total spectrum and the viscoelastic portion is then ascribed to ]
4

the effects of internal geometry. He determined the total spectrum experi-
mentally but not analvtically. The results ave applicable to harmonic waves

traveling perpendicular to the tiber dirvection once the corresponding total

spectrum has been determined.
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Kaul and Herrmann [K1] considered free vibration of an elastic cylinder
with laminated periodic structure. The circular cylinder considered has a i
periodic variation of elastic constants and density normal to the axis of
the cylinder. They then developed the theory of torsional vibrations of !
| such a cylinder in terms of Floquet or Bloch waves which are quasi-periodic

waves and whose amplitude profile has the same periodicity as that of the

material and repeats with the periodicity of the cell. Using Floquet's ]

theory, they obtained the dispersion spectrum for time-harmonic waves propa-

E gating in such a periodically laminated cylinder. It was shown that the
dispersion spectrum has a band structure, consisting of passing bands and
stopping bands. Motion in the case of grazing incidence, and motion at the
end of the zones were discussed. [t was also shown that as the radius of the
cylinder tends to infinity, the torsional waves in a circular cylinder

degenerate to SH-waves in laminated plates.

[1.2 Variational Approaches

Kohn, Krumhansl and Lee [KS] employed variational methods based on the
Floquet or Bloch theory to study the propagation of harmonic elastic waves
through composite materials of periodic structure. In these wethods, varia-

i tional principles were developed in the form of integrals over a single cell

of the composite. The variational principles provided a means of determining
phase velocities and stress distributions in Floquet waves traveling through
the composite unchanged in form from cell to cell. Strain energy principle
was used and possible jump conditions were discussed. The Rayleigh-Rit:
procedure was applied to the solution of the variational equation to calculate

dispersion relations, the phase velocities and stress profiles. The one-

dimensionally periodic syvstem was evaluated and compared with the exact




solution. The results show that this approach, by using smooth displacement

test functions, provides a satisfactory determination of natural frequencies ﬁ
B
"

and phase velocities, but is inadequate for stress profile. In principle, |
|

this method can be used to study time-harmonic waves propagating in composites
withrather general structuring as long as the composites are periodic from
cell to cell.

Bevilacqua, Krumhansl and Lee [B35] made a generalization of the
previous work based on strain energy consideration. The Ravleigh-Ritz

procedure was adopted in which the displacement tields were expressed by

complex Fourier series in filament and by simple Fourier series in matrix.
Consequently, they obtained stress profiles more accurately than those
when the whole displacement field was expressed by simple Fourier series
in the previous work.

Bevilacqua and Lee [B3o] utilized different polynomial repre-
sentations in filament and matrix for a simple model composite problem
comprising a slab of each material with fixed boundary conditions. This
simple model provided the same difficulty of a discontinuity in strain at
interface, but provided a simpler case for assessing various approaches. Tt
was pointed out that Fourier series representation is less convenient in
two-dimensional and three-dimensional cases when the polynomial form may
prove to be superior.

Tobon [T10] also made an analysis of propagation of eclastic waves in
composite materials by variational methods. He carried out a minimum
strain enecrgy calculation using a Fourier series expression for the displace-
ment field. o the one-dimensional case, this method of evaluation is unsatis-

tactory tor stress protiles as shown in [RS5]. 1t scoms that successtul two-

Jimensional and three-dimensional caleculations by this method is tfeasible

1t discontinuities are permitted in strain energy calculations,




Bevilacqua and Lee [B37] presented another variational statement based
on complementary energy consideration so that the variational integral is
expressed in terms of stress. Starting with a continuous displacement
variation in Fourier series form, they first determined the corresponding
stress variation by integrating the equation of motion. Then inserting
this result into the variation integral, they obtained a matrix eigenvalue
problem to determine the values of fundamental frequency. The corresponding
stress profile obtained exhibits the correct form of stress-gradient
discontinuity at the interfaces, and provides an accurate approximation.
However, the frequency is less accurately predicted than by their improved

strain energy approach [B35].

Variational methods were also explored by Wheeler and Mura [WI0], and
wu [W17]. Instead of using the procedure of Rayleigh-Ritz, Wu emploved,
however, the Galerkin procedure.

In a series of papers [N12-10], Nemat-Nasser applied more general
variational principles to the Floquet wave problem than those considered by
Kohn, Lee, et al. Based on Hellinger-Reissner variational method, he
developed general variational principles in which the displacements, the
stresses and the strains in one case, and the displacements and the stresses
in another case, are given independent variations, and which include
appropriate general boundary and discontinuity conditions. From the general
variation principle, he then derived a new quotient, in contrast to Ravleigh
quotient, to determine the frequencies of harmonic waves in composite. Waves
propagating normal to the layering in a laminated medium were analvzed in
detail, and dispersion curves were presented. Numerical results show an
extremely rapid convergency to the exact results and are more accurate than
those obtained by Kohn, et al. Also, based on the new quotient, he developed

quite accurate lower and upper bounds for frequencies of the harmonic wave: .




Nemat-Nasser, Fu and Minagawa [N17] further investigated harmonic
waves in one-, two- and three-dimensional composites using a new quotient
derivable from a general variational method in which both stresses and
displacements are varied independently. The general energy method was

tormulated by assuming periodic structure with continuous and continuously

differentiable mass density and elastic constants within the unit cell. The
final result is in a simple form and represents either upper or lower bounds
on the frequencies. It was shown that the new quotient vields upper bounds
it the stress variables are tree, and lower bounds it the displacment varia-
bles are tree. Procedures on error estimating were also given. Numerical
results show the supertority ot the new quotient compared to the Ravleigh
quotient used by KNohn, et al.

Nemat-Nasser and Minagawa [NIS] again compared Ravleigh quotient with
the proposed new quotient to examine reasons for the astonishing accuracy
of the latter. Compartson led to a scheme tor obtaining improved test func-
tions which give very accurate bounds for frequencies. The scheme seems to

be extremely ettfective in all cases of harmonic waves in lavered composites.

1.5 Effective Modulus Theories

Behrens [BIS] treated the propagation ot elastic waves of Bloch form
in a lamellar periodic composite tor long wavelength cases.  The analvsis
vields expressions tor the tive independent effective elastic constants,
which he called averaged elastic constants, of the wmaterial. The theory is
valid when the wavelength is long compared with the intercomponent spacings
of the composite and when the composite is a periodic structure.

Rehrens [B19] also analveed the propagation of elastic waves of Bloch
form in a tfilamentary composite tor long wavelength cases.  The phase

v

homogenized" elastic constants were obtained.  Again,

velocity and the nine




the theory is valid when the wavelength is long compared with the intercom
ponent spacings ot the composite.

Behrens [B20] again discussed long waves of Bloch form traveling in
filamentary composites. He showed that such stable Floquet waves or Bloch
waves retain their torm relative to the periodic structure of the composite
as they travel. He treated the problem using the "method of long waves"
which he proposed previously. What he actually treated is a cylindrical
inclusion in a cvlindrical medium, a very idealized condition for typical
tiber composites.

Using an approach similar to that used in studying the propagation of
electromagnetic waves through random media, Mok [MS] and Osten [02] dis-
cussed the sinusoidal dispersion in a fiber-reinforced material. They
considered isolated, transverse, cyvlindrical and/or spherical inclusions and
then combined them by random averaging to obtain sinusoidal dispersion
solution for composites. The effective modulus and density were then obtained
tfrom the dispersion solutions. Both of them are complex numbers and depend
on wave trequency. This fact apparently indicates the existence of dissipa-
tion and dispersion in the composite under dynamic loadings.

Weitsman [W7] presented an analytic treatment of wave propagation in
unidirectional continuous filament composite material. The theory is based
on inextensible tiber reinforcement and therefore should be applicable to
unidirectional composites reintorced with closely spaced tibers which are
much stiffer than the matrix material. The theory is also restricted to
waves of sufficient length that geometric dispersion is not signmiticant. He
showed the existence of three types of harmonic waves and discussed their
associated characteristics such as slowness surtaces, velocities, propagation

directions, displacevents and energy tlux. He also considered wave scattering




at a plane of fiber misalignment. In general, when any of the three wave

types impinge on such a plane, reflected and transmitted waves of all three
types are generated. Condition under which Rayleigh surtface wave may exist
was also discussed.

Weitsman [WS] further investigated the ;oflcction of harmonic waves in
tiber-reinforced materials. Two cases were considered: (1) fibers are
inextensible, (2) fibers are almost inextensible. He showed that three
types of harmonic waves exist for each case. The reflections of each type
of wave trom a plane free surtace-bounding a half-space were investigated,
and numerical results were presented. Ditfferences and similarities between
the nature of wave propagation of the two cases were discussed. The results
might be valuable for composite material that are sparsely reintforced by
highly rigid fibers although the practical signiticance of the theory is
limited by the simplifving assumptions incorporated into the mathematical
model.

Datta |D1] considered a unidirectional fiber-reinforced composite
through which elastic shear waves propagate in the direction perpendicular
and polarization parallel to fiber direction. Fibers were assumed to be
randomly distributed and of elliptic cross section with transverse axes
either aligned or randomly oriented. Wave equation was solved in the limit
of long wavelengths making use of results for single fiber in infinite
medium. Since multiple scutt?ring was neglected, solution is limited to
small fiber-volume ratios. For perfect orientation of fiber axes, he
derived two effective transverse shear moduli. A limit of nurrow‘cuvitios

withvanishing volume (Gritfith cracks) was discussed. 1t is useful in

fracture mechanics of composites.




Weitsman and Benveniste |[W9] consider the propagation of harmonic
waves tn ocomposite material reinforced by fibers whose directions vary
continuous in space. They focused special attention on the case of slight
variations in fiber directions and on plane waves that propagate parallel
to the unperturbed divection; a case in which the solution can be expressed
completely in analytical torm. They concluded with a solution to a specitic
example in which they assumed that the fiber directions vary linearly with
the angle from an initial to a final position. 1In a discussion of the
specific solution, they pointed out that this linear variation in fiber

directions gives rise to secondary waves throughout the composite body; and

these results tend to indicate that it may be possible to detect internal
deviations in the fiber dirvections by means ot dvnamic tests. The basic
ideas presented in their work tollow that classical formulation of wave
propagation in anisotropic materials, The fiber-reinforced composite was
represented by means of an equivalent transversely isotropic medium. The
solution is valid for long wavelengths,

Shoenbery and Weitsman [SI11] further studied plane harmonic waves
propagating in composite reintorced by fibers with pertodically varving
directions. The fibers were assumed to wobble periodically about a
dominant direction and all fibers were assumed to be parallel to each
other. The fiber-reinforced composite was represented by an equivalent,
transversely isotropic medium whose preterred dirvection coincides with the
direction of the tibers. The wobbliness endows the matervial with a struc-
tural periodicity which generates dispersion at all frequencies and
tnstability for various frequency bands. The zones of instability were
analyzed by the perturbation method. Bounded solutions and unbounded

solutions were discussed.  The existence of unbounded solution is equivalent




to the "parametric resonance' encountered in other dyvnamic problems. The

analysis s valid only tfor wavelengths which are larger than by an order of

magnitude the cell dimension of the composite.

1.4 Effective Stiffness Theories

As mentioned earlier, the effective stittness theory was the first
continuum model tfor laminated media and fiber-reintorced composites to
account tor geometric dispersion,  For a fiber-veinforced composite a
stmple form ot the theory was developed by Achenbach and Herrmann

(U4, AL They cmploved the theory to study the propagaton of

plane harmonie waves an the directions of the tCibers and normal to the tiber
divections.  They found that plane transverse waves propapgating in the
divection of the thibers ave dispersive.  The dispersion curves tor boron
epoxy and glass epoxy depart at small wave numbers tfrom the constant phase
velocity predicted by etftective modulus theory. 1t was also tound that the
dispersion of longitudinal waves tor small wave number is negligible as
compared to dispersion of transverse waves., [t appears that in order to
account tor the dispersion of longitudinal waves propagating in the direction
ot the tibers, more complex model is needed.

Fo improve the simple model tor fiber-rveintorced composites, Achenbach
and Sun JAI8] constructed a more accurate homogeneous continuum thecry of
the effective stiftfness type tor a fiber-reinforced composite. They considered
a tfiber-reintorced composite of unidirvectional tibers in a rectangular arra
embedded in o matrix matertal.  The model was based on expansions ot the
displacement s across pepresentative cells,  The transition from the actually
imhomogencous composite to a homogencous cont rauum was achieved by aintroducing

continuum fields tor gross displacement and tocal deformations.  The etfective




stiftness theory tor ftiber-reintorced composites was then derived. For the

transverse harmonic waves propagating in the direction of the fibers, phase

velocities were calculated numerically. The results show that for wavelengths

that are of the order of magnitude of a tiber-diameter or a distance between
tibers, the phase velocity 1s markedly dependent on the wavelength 1t the
elastic constants of the reinforcing material ditter substantially from those
of the matrix material.

An analogous etftfective stittness theory for fiber-reintforced composites
with rectangularly-spaced rectangular tibers was worked out by Bartholomew
and Torvik [BY], and was applied to discuss the harmonic waves propagating
in such composites. bExpressions tor dispersion of longitudinal and tlexural
waves propagating parallel to the fibers were derived. Propagation across
the fibers was also brietly considered. Again, a very marked dispersion was
observed when the elastic constants of the fibers difter substantially from
those of the matrix material.

For a laminated medium, Sun, Achenbach and Herrmann |S18,S517,A8,H14,
A12] derived an effective stiffness theory in terms of macroscopic displace-
ments plus additional independent variables which give micromechanical
variation in the unit cells. They employed the governing equations to
determine curves relating the phase velocity to the wave number for harmonic
waves propagating parallel to and normal to the layering, and they compared
these results with the exact solutions. The lowest antisymmetric wmodes tor
waves propagating in the direction of the layering show the strongest varia
tion of the phase velocity over a substantial range of wave numbers. The
limiting phase velocities at vanishing wave numbers agree with those ot the
etfective modulus theory and with the exact limits. It was pointed out that
their theories of the type bear close resemblance to Mindlin's theorv of

linear elasticity with microstructure,
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Achenbach, Sun and Hevrmann [AY] further developed the effective
stitfness theory. The constitutive equations, the stress equations of
motion, and natural boundary conditions were presented, and suftficient
conditions for a unique solution were discussed. They employved the
governing equations and boundary conditions to study the thickness-twist
motion of a laminated composite. For every eigenvalue there is a low
frequency acoustic mode and a high frequency optical mode. The frequencie:
of the acoustic modes were compared with the corresponding frequencies pre

dicted by the effective modulus theory, and the relative magnitudes of the

material parameters tor which these trequencies are substantially at variance
were indicated.

Ihe governing equations of the etfective stittness theory were emploved
by Sun [S21] to study surface waves propagating along the tree surtace ot a
lavered half-space. Several examples of time-harmonic surtace wave motion
were considered including waves in a laminated layer over a rigid halt-space,
Ravieigh waves and Love waves in a laminated layer over an elastic halt-space.
Dispersion curves were presented and comparison was made to rvesults trom the
etffective modulus theory and to exact solutions where these are available.
These show that the dispersion curves are in good agreement with the exact
solutions and that the etfective stiftness theory gives a better approximation
than the etftfective modulus theorv--an advantage gained at the expense ot a
more complicated procedure than that of the ettfective modulus theory.

[he effective stitftness theory was refined to include second-orvder

‘

terms in the displacement expansions by Achenbach and Hevremann [ANIS]. 0 Tine
harmonic wave propagatton in Lamnated mediom (anbounded ) was then stadied

by means of this retined theorv, e exact and approvimate dispersion cavves

show vood aercement . Ao, time harmonie waves propagating in baminated




plate was analyzed by employing this refined theory. Comparison of the

disperston curve tor flexural motion with an exact curve shows similar
qualitative behavior. The qualitative difference is due to "material dis-
persion” which is thus seen to be significant for smaller wavelengths even
in the presence of "geometrical dispersion."

The propagation of time-harmonic waves traveling in an arbitrary
direction in a periodically laminated medium was examined by Sve [S42]. In
addition to an exact analysis, he applied the effective stitfness theory to

the problem and obtained the corresponding approximate dispersion relation.

Numerical results also indicate the dependence of dispersion upon the angle
of propagation. A comparison with the exact solution shows that agreement
is satistactory tor those angles where the dispersion is the strongest.

Higher-order refinements of the effective stiffness theory were
developed by Drumheller and Bedford [D11] for a laminated medium. Theyv
presented improved displacement and stress interface boundary conditions
suitable for higher-order (higher than first order) theories so that the
resulting theory is in a form suitable for the solution of dynamic process
including determination of stresses. Two examples of time-harmonic wave
propagation show that the inclusion of stress boundary condition has
negligible etffect on the dispersion curves while the mode shapes are
substantially modified. These indicate that an effective stiffness theory
adequate for the determination of stresses must include stress interface
boundary conditions. Consequently, they obtained more accurate dispersion
curves.

The effective stiffness theories as described above are based on the
construction of strain and Kinetic encrgy densities, and the subsequent use
of Hamilton's principle.  For constituent materials that are not pertfectly

clastic this approach encounters difticulties, An alternative way of Jderiving
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the balance equations of linear momentum and moment of momentum directly
tfrom physical arguments based on momentum considerations was presented by
Achenbach [Al6]. This alternative method has the advantage that it can be
used for composites in which the individual lavers are not elastic.

Grot and Achenbach [G10] extended the alternative formulation of effec-
tive stiftness theory to a viscoelastic laminated composite including
temperature effects.  They derived a set of constitutive equations for a

laminated medium composed ot layvers of two anisotropic thermoviscoelastic

thermoelastic layers and isotropic thermoelastic lavers were briefly dis-
cussed.  This nonlinecar theory has the advantage that it can be used for
composites which are not elastic.

An extension ot the effective stitfness theory to include large
deformations and nonlinear material behavior was also carried out by Grot
and Achenbach [G11] for a laminated elastic composite. The resulting syvstem
of nonlinear field equations, consisting of balance equations, constitutive
equations and constraint conditions, bear a close resemblance to equations
defining a nonlinear theory of elasticity with microstructure. The equations
were employed to study the propagation of small amplitude time-harmonic waves

superimposed on a large static deformation. The results are very similar to

appeared in the dispersion relation depend not only on the structuring but
also on the large static deformation.

An effective stiffness theory for a composite of a cylindrical peometry
was developed by Chou and Achenbach |C7]. They presented field equations
governing the mechanical behavior of layered cvlinders. Grot |G12] proposed

an ettective stittnes . continuum model for curvilinear laminated composites

solids. The special cases of isotropic thermoviscoelastic lavers, anisotropic

those in linear theory of effective stiftness except that the coefficients that

-
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of a very general tvpe. The model was developed by expanding the variables

in a series within each layer and averaging over the thickness. A constitu-
tive theory for nonlinear elastic materials was then developed, and special
cases of the theory (linear cases) for cylindrical and spherical laminae

were presented and discussed. [t was expected that if the ratio of the
thickness of the layering to the radius of curvature of the layering is small,

the approximate theory with two term expansion in describing the behavior of

the laminated body should be as adequate as the approximate theories of plane
laminates presented earlier.

Drumheller and Bedford [D12] used a modification of the simpler micro-
structure theory developed earlier for elastic laminates by Sun, Achenbach
and Herrmann [S18] to analyze plane harmonic wave propagation in elastic
laminates. This new version incorporates higher-order thickness variations
in the displacement functions and includes restrictions on both displacement
and stress at the laminate interfaces. To assess the potential of the
second-order microstructure theory for accurate modeling of mechanical
processes in laminates, dispersion curves and especially mode shape data
for both displacements and stresses were obtained and compared to correspond-
ing exact solutions. The comparisons indicate that while dispersion curves
may be nearly identical, extremely significant differences may be observed
in the mode shape. It provides a strong evidence that dispersion comparison
alone cannot constitute a valid criterion for the assessment of a microstruc-
ture theory.

Hlavacek [H15] used an effective stiffness theory for fiber-reinforced
composites with hexagonal packing of unidirectional fibers. In the theory

a typical hexagonal fiber and matrix layout is replaced by circular cylinders
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possessing the same volume of materials. He then illustrated the essence of
this theory by plane harmonic waves. Propagation in directions parallel and
normal to the fibers were considered. A correspondence between the elastic
constants of an equivalent transversely isotropic medium and the parameters
of this effective stiffness model was shown using various wave speeds at
vanishing wave numbers.

Hlavacek {Hlo] also presented an effective stiffness model for isotropic
two phase elastic composites containing spherical inclusions. His model
consists of two concentric spheres, the inner one represents an inclusion,
the outer one the matrix. He assumed a continuous field of gross displace-
montg ug which was assigned to the interior of the smaller sphere and to
the outer surface of the outer sphere, using a linear expansion about the
common center. In addition, he assumed a local homogeneous deformation of
the matrix described by a continuous tensor field. The local displacements
in the matrix were then tixed by the condition of continuity at the inter-
face, and by assuming a linear dependence on the radius. In this way, he
arvived at an elastic potential density as an expression in terms of the
local detormation and the gradient of the gross displacements. Dispersion
curves for harmonic plane waves were presented. The limit phase velocities
for vanishing wave numbers vielded the effective moduli which, for a tungsten-
carbide-cobalt alloy, agree very well with Hashin and Shtrikman's calculations

(15 )

[1.5 Interacting Continuum Theories and Theories of Mixtures

Bedford and Stern [Bl1] proposed a one-dimensional mixture theory for
a layvered medium wherein the interaction parameters were determined on the

basis of results of cortain simple quasi-static problems.  The novel feature




of their theory is that each constituent is permitted to have an individual
motion, with mechanical coupling between the motions introduced to model
constituent interactions in the actual composite. They employed this theory
to study the time-harmonic waves propagating parallel to the interfaces of a
laminated composite. The dispersion curve so obtained shows good agrcement
with the exact solutions. &

Stern and Bedford [Slo] developed a three-dimensional model based upon

the mixture theory. Results were applied to plane harmonic waves propagating
in a layvered medium.  Dispersion characteristics based on this theory were
compared with "effective stiffenss' theory and exact solutions. It was found
that neither the mixture theory nor the "effective stiffness' theory could
describe adequately the material response over a wide range of wavelengths.
Only for disturbances propagating in the direction of the layvering, this
theory reflects fairly accurately the proper kind of dispersive behavior
and hence may be regarded as a good model for such analyses.

Bedtford and Stern [Bl13] proposed a multi-continuum mixture theory
based on the development of the equations by means of two coupled
media in which the fiber directions are natural axes of symmetry for the
fiber-reinforced material and the transverse isotropy also corresponds to
laminated material where the directions normal to the lavers are the natural
symmetry axes. The results are the basic equations for the considered media.
Martin [M1] used this mixture theory to predict the phase velocity of plane
waves in a fiber-reinforced elastic solid. He found the phase velocity as
a function of the wave number and as a function of the direction of propaga-
tion relative to the fiber direction. AMNso, the particle motion of each of
the constituents was solved for at various wave numbers. 1t was found that

there are four possible propagation velocities in a binary mixture of this
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tvpe, and that two of these waves correspond to nearly shear motion while

the remaining two correspond to nearly compressive motion.

Hegemier and Nayfeh [H7] developed a continuum theory for wave propaga-
tion normal to the layering of laminated composites based on an asymptotic
scheme. The hierachy of models are defined by the order of truncation of the
asyvumptotic sequence. Based on the calculation of the lowest-order dispersive
model, accuracy superior to several existing theories was observed. They
then cast the lowest-order theory in a standard mixture form. For harmonic
waves propagating normal to the laminates, the phase velocity spectra of this
mixture theory exhibit good correlation with exact results for the first mode
to the cutoff frequency. The simplified theory in binary mixture form has
practical applications in view of its simplicity.

Hegemier, Gurtman, Navfeh and Bache [H8,19) discussed the waveguide
type propagation both in layered and fiber-reinforced composites. Based
upon asymptotic expansions, again they developed a simplified first-order
mixture theory of which the momentum interaction term is identical in form
with Bedford's but the constitutive equations for the stress in each con-
stituent involve the strains in both constituents. They employed this first-
order mixture theory to study time-harmonic wave propagation in both waveguide
type laminated and fiber-reinforced composites. Dispersion relations were
obtained. A comparison of the approximate and the exact phase velocity data
indicates that the theory provides good first mode agreement. Additional

accuracy may be obtained by taking more terms in the asymptotic expansions

which result in a more complicated higher-order mixture theory.




Hegemier and Bache [H10] further extended the first-order interacting !
continuum theory for wave propagation in one-dimensional elastic laminated i
composites to the general two-dimensional elastic case. The phase velocity
spectrum of the general two-dimensional theory was investigated for one- |
dimensicnal harmonic wave propagation at various propagation angles with
respect to the laminates. Comparison with the first three modes of the
exact theory gives excellent agreement. It is seen that this theory exhibits

somewhat better correlation than the effective stiffness theory, especially i

at propagation angles close to the normal.

Nayfeh and Gurtman [N4] employed the first-order binary mixture theory
to study harmonic shear wave motion in laminated composites. Both trans-
versely (SV) and horizontally (SH) polarized waves were considered. Dispersion
relations were derived and compared with the results from the exact and
other approximate theories. Comparison indicates that the agreements with
the exact theory for both types of shear waves are good, especially for the
SH type wave, for quite a wide range of wave numbers, and that the superiority

of this theory to effective stiffness is obvious.

H Gurtman, Nayfeh and Hegemier [G13] generalized the first-order theory
i of interacting continuum to study the two-dimensional wave propagation

inn composite materials. In the generalization, the material effect,

the elastic-plastic behavior and two-dimensional lay-ups (laminates) were
considered. The dispersion relation of longitudinal harmonic waves in the
elastic composite was put in a numerical dispersion code. The predicted

i response agrees well with the experimental results.

é Gurtman, et al. [G14] further applied the theory of interacting con-

; tinuum to wave propagation in three-dimensionally reinforced composites.
; The proposed model is an extension of their two-dimensional laminate and
b
{




tfiber-reintorcement formulations with an inclusion of the effects of thermo-
dyvnamics, finite deformations and nonlinear constitutive behavior. A DISP
code was develoned to study the propagation of harmonic longitudinal waves
in three-dimensional quartz-phenolic composite. Dispersion data obtained
from the DISP code were compared with experimental results. Agreement of
all values within the region ot validity (for frequency < 1 Mkz) of the
theory is quite good.

Nayteh [N5] used the theory of continuum based on asvmptotic expansions

to investigate time-harmonic waves propagating normal to the layers of multi-

lavered periodic media. By retaining all terms in the asymptotic sequences,
he obtained the dispersion relation which yvields the exact phase velocity
spectrum. The Kknown relations for the homogeneous and the bilaminated media
are obtainable as special cases from this theory. Also, it is noted that the
dispersion of the composite increases with each additional layer in each

cell of the composite. .

Navteh [NT] proposed a continuum mixture theory of heat conduction in
laminated waveguides. Theory leads to simple governing equations for the
actual composite which retain the integrity of the diffusion process in each
constituent but allow them to coexist under some defined interactions. The
resulting equations were used to study the harmonic temperature pulse. The
results were found to correlate well with some existing exact solutions.

It was also mentioned before that Ben-Amoz [B22,B23] proposed a con-
tinuum theory for waveguide type propagation of stress waves in tiber-

reinforced composites, using direct asymptotic expansions. Based on asymptotic

expansion technique, he [B24] also developed a continuum theory for wave
propagation in lavered  composites.  Waves propagating normal to the planes

ot Lamination were considered. A pair of tiber and matrix laminae were
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selected as the fundamental unit of the periodic medium. Starting from
three-dimensional equations of motion with order of magnitude arguments,
a combination of thickness expansion and crystal lattice techniques was
used to derive continuum equations (of zero order). The theory was then
used to study harmonic wave propagation in the laminated composite. The
phase velocity of waves propagating transversely to the laminate was
calculated. No numerical example nor dispersion results compared with
other theories were reported.

Ben-Amoz [B25] also considered heat conduction in laminated composites
by use of the asymptotic expansion technique. Expanding asymptotically the
microstructure equations in terms of a small parameter given by the ratio of
diffusivities of the two constituents, he again developed a continuum model
for heat conduction in which microstructure effects appear as a consequence
of the fact that the current state in a laminated medium is history-dependent.
Such a history-dependence reflects the effects of microconduction-occurring

within the microstructure on the micro-time scale.

I1.6 Other Methods

Based on perturbation theory and on the statistical consideration assum-
ing elastic parameters of the medium to be subjected to small random fluctuations,
Hudson [H20] discussed the scattering of surface waves due to a randomly
inhomogeneous medium. He derived expressions for the attenuation of Love and
Rayleigh waves when the size of inhomogeneity is small compared with the
wavelengths of incident waves. These expressions have the same forms as the
Known expresstons tor the viscoclastic attenuation.  Comparing the two, he

found that the attenuation mechanism by scattering is just like a certain type
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of viscoelasticity and that the scattering is more effestive at high frequencies
and viscoelastic attenuation is more effective at low frequencics.

Based on the assumption that geometric dispersion results mainly from
the relatively periodic arrangement of the reinforcement elements in the matrix
rather than from the precise shape of each reinforcing element, Drumheller and
Sutherland [D10] developed a lattice model which ignores the shape of the
reinforcing elements but preserves their periodicity. In the application of
this lattice model, the composite was initially treated as a nondispersive

homogenecous mixture. The effective or average properties of the mixture were

determined by either steady-wave analysis or appropriate experiments. A
lattice was then formed by redistributing the mass within the mixture to

form a periodic structure of laminates. This mass redistribution was carried
out in a manner which yields a lattice with theoretical dispersive charac-
teristics that match the measured dispersive characteristic of the composite.
Hence, for harmonic wave propagation, this model describes very well the
behavior of actual enginecering composites.

Nelson and Navi [NI11] also used a lattice model to study the harmonic
waves of plane strain propagating in composite materials. The medium was
considered as a periodic assemblage of identical cells. Using a finite
clement technique, the dynamic behavior of one reference cell was represented
by a number of generalized displacements. Thus, the continuum periodic
structure of the medium was idealized by a discrete lattice-type structure
and the problem was reduccd to an algebraic eigenvalue problem. They deter-
mined the cigenvalues for several examples. The frequency spectrum for a
fiber-reinforced composite medium was compared with the results of effective
modulus and effective stiffness theories, This theory predicts correctly the

vanishing of group velocity for half-wavelength equal to the interfiber
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distance.  The effective stittness theory vields a cutoft at a smaller wave

number while the eftective modulus theory fails to predict any dispersion,
Hence, the results, when compared with available analvtical and numerical f

i
results, show that the method gives an accurate model which 1s able to model

periodic structures of wavelength smaller than the lattice constant.

Habip [HI] applied the micromorphic theory of continua to examine the

time-harmonic waves propagating in a  composite with clastic &

1
micro-inclusions. By analogy wi‘h the results of Lringen and Suhubi [E2] and !i
of Mindltin M1}, he obtained explicat dispersion relations, governing the lowest |

and next higher modes of propagation of plane lovitudinal waves in an
unbounded elastic composite solid, in terms of the relative properties of the
constituent materials,  The corrvesponding ratio  of group velocity to phase
velocity was likewise evaluated. Results valid tor a special case were
exhibited in graphs.

Sregler [21] considered the mean waves in laminated random composites.,
He used a simple version of the effective stiftness theory for laminated
media in deriving stochastic displacement equation of motion.  Application of
the perturbation procedure of Keltler [K2], moditied by antroducing the spec
tral densities of the vandom coetficients, then led to deterministic equations
for mean wave propagation. He gave spectal attention to uncoupled modes of
mean waves propagating perpendicular or parvalicel to the dirvection of the
lavering. He established dispersion relations tor these plane harmonie wave
trains,

Krumhans (K9] atso discussed the randomness and average or mean wave
propagation in inhomogencous media.  He emploved the methods used in sold
state physics tor substantially disordered allovs to study the substantially

disordered composite.  For such composttes, he substituted Fourier-Floguet

methods for Fourier plane wave methods,  Ino tact, his approach is a perturba
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tion method making use of Floquet solutions alrveady developed for an average
medium.  From this theory he predicted: (1) there will be well detined
average Floquet waves, but in gencral they will be damped out in time;

(2) the low trequency average waves will be damped the least; (3) the dis
perston curves are shifted from those of the periodic medium; (4) moderate
homogenecous randomness does not destroy Floguet properties in the average
waves: (5) some possibly needed intormation, such as the fluctuations from
the average tield and the scattered ticld and the local intormation, is lost
by the proposced procodure.

McCov M2 ] studied harmonic wave propagation in disordered compostites.
He obtained a tormulation that is to be satisticed by the statistical average
field quantities in a statistical sample of hetevogencous, lincarly elastic
solids. A low-frequency long wavelength theory then was extracted from the
general formulation.  The predictions of this theory can be given a purcly
deterministic interpretation,  Some special cases of his theory reduces to
an eftective modulus theory.  However, by retaining corrvection terms, it was
shown that clastic wave propagation will alwavs exhibit both dispersion and
decay over large enough propagation distances.

Bose and Mal [341] also emploved the statistical approach to discuss
the tongitudinal shear waves in oa fiber-reintorced composite.  Waves are
harmonic, tibers arve vandomly distributed in parallel. The composite is
statistically unitorm. They obtained the phase velocity and damping of the
average waves as functions ot the statistical and the mechantcal parameters,
the theory leads to Hashin and Rosen's tormula [Ho] tor the axial shear
modulus £ the corvelations in the positions of tibers arve ipnored.  The
corrclation terms have o stgnificant ettect on the damping property ot the

compostte, especiallyv at high trequencies and concentration.  The eftect ot
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the correlation terms is to increase the velocity and decrease the specific
damping capacity.

Bose and Mal [B42] again discussed the time-harmonic plane waves in a
fiber-reinforced composite by statistical approach. The composite consists of a
homogeneous isotropic medium containing long parallel randomly distributed
circle fibers of identical properties. They discussed the general case of
time-harmonic plane waves propagating perpendicular to the fibers. The main
result was to obtain the phase velocity and the damping of the waves of both
compressional and shear types into which the average waves are to be separated,
In the case of thin fibers (compared to wavelength), the results concerning
the transverse bulk modulus and transverse rigidity were compared with those
of Hashin and Rosen. Numerical calculations were made for boron filters in
an aluminum matrix. It was tound again that correlation terms or the
correlations in the positions of fibers have a signitficant effect on the
damping property of the composite, especially at high frequencies and concen-
trations.

As mentioned earlier, Chao and Lee [C3] developed a discrete continuum
theory for periodically layered composite materials. They presented the
governing field equations incorporating interface continuity conditions in
the form of a system of differential-difference equations. They applied this
model to discuss the propagation of plane harmonic waves in an unbounded
layered medium. Thickness twist vibrations were studied. Numerical results
were compared with those of exact solution (harmonic waves). It was seen that
the results agree with exact results quite closely. Agreements are better
than effective stiffness theory in general as wave number gradually increascs.

It was also mentioned before that Ben-Amoz [B30] extended Mindlin's
theory of elasticity with microstructure to a heterogencous medium consisting

of inclusions of arbitrary geometry embedded in a matrix material. He applied
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this theory to examine harmonic plane wave propagating in such a medium. The
=2

dispersion curves for a cubic array of spherical particles obtained by this

theory are rather similar to the curves sketched by Mindlin [M4] for the lowest
acoustic branches. Certainly, the theory developed by Ben-Amoz is an effec-

tive tool in treating wave propagation in media lacking periodicity such as

inclusions of arbitrary geometry embedded in a matrix material.




I[TI. TRANSIENT WAVES

In this section, transient analyses of waves propagating in composite
mate 1s based on Fourier synthesis are first discussed. Then, in addition,
other techniques tor obtaining the solutions to transient problems are

mentioned.

III1.1 Fourier Synthesis

In discussing a pressure pulse propagating in heterogeneous materials,
Osten [02] used a computer code called FURRY. He expressed the applied
pressure pulse at  t = 0 as a Fourier series in time. The
amplitude of each component in the Fourier series were then determined
numerically. To determine the pulse shape at a later time t, each com-
ponent of the initial pulse is allowed to propagate the distance ct, where
¢ = c¢(x) and x is the circular frequency of that Fourier component. The |
differences in ¢ thus cause the pulse to disperse. Osten also allowed
for attenuation of each component in the form e "' where Y is real and
also Y = y(x). Osten applied the FURRY code to the sinusoidal dispersion
solutions he obtained for a composite with randomly distributed inclusions
of spheres and cylinders. He compared FURRY code predictions with the
attenuation curves obtained by Bjork [B39], by a series of 2-D finite
difference code calculation, and found that FURRY underpredicted the
attenuation. He attributed the discrepancies to absence of nonlinear
attenuation effects in FURRY and speculated that nonlinearity, acting in
conjunction with geometric dispersion, may tend to enhance the dispersive
attenuation.

Peck and Gurtman [P3] carried out Fourier analysis of pulse propagat-

ing parallel to the interfaces of a laminated composite. They considered
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a uniform pressure pulse of step-function in time applied to the

boundary of a half-space. The laminates are perpendicular to the half-
space boundary. Starting from the equations of elasticity, they applied
Fourier integral transforms over time t and the propagation direction X
in the analysis. Exact solutions were obtained in the form of an infinite
series of integrals, each of which is the contribution to the transient
response from a mode of sinusoidal wave.

Peck and Gurtman then evaluated the asymptotic solution in integral
form by using the saddle-point technique developed by Folk, et al. [F2].
Of particular importance is a contribution from the first mode, which
dominates the long-time solution. This contribution is known as the
head-of-the-pulse approximation. For the strain in the direction of

propagation, the head-of-the-pulse solution takes the form

e (Y, 1) v e H(E) (40)

where i
T

H(E) = % - [ Ay (n)dn
0 (47)

o oEsexicgdft, = (3 la®

in which ¢, 1s the speed of wave propagation, « 1is the crucial disper-
sivity parameter, € is the static strain under the same load and Ai is
the well-known Airy function. The above expressions can be interpreted as
follows: the wave is roughly a step pulse arriving at § = 0, i.e., at

t = x/c so that the main disturbance is propagating at speed ¢, The

ol

quantity T has the dimension of time, and t-x/¢  is time after arrival




of the wave. Thus & 1is a nondimensional time of arrival. The quantity

T may be regarded as a characteristic dispersion time of the pulse.
Equation (46) states that the strain is uniform in the direction

of propagation. The stress in the x-direction is quite non-uniform because

the moduli of the layers are different. In terms of the average stress

over the cross section, o(x,t), one has

o(x,t) v o_H(E) (48)

where % is the applied stress.

Further applications of the head-of-the-pulse approximation will be
mentioned later when it is employed in other problems.

Voelker and Achenbach [V1] carried out a similar analysis of stress
waves in a laminated medium generated by transverse forces. The laminated
medium composed of alternating layers of two homogeneous isotropic elastic
solids is suddenly subjected to a spatially uniform distribution of
transverse forces, which are applied in a plane normal to the layering.
The resulting two-dimensional transient-wave propagation problem is
analyzed by means of modal analysis. The normal and shear stresses at
the interfaces are expressed as infinite integrals that are integrated
for not too large values of time. For large values of time, the integrals
are estimated by the method of stationary phase. The predominant contri-

bution to the interface shear stress comes from the head-of-the-pulse

approximation. The normal stress at the interface, which is




composed of several contributions, is oscillatory (and dies out at t1/3),

and thus the interface bonds may be subjected to tensile stress. The solu-
tion obtained should be useful in determining the validity of the continuum
theories.

Balanis [B3] considered the transient one-dimensional wave propagation
in a semi-infinite periodic composite medium, which consists of periodic
array of two elastic layers perfectly bonded together. Waves are generated
by a surface velocity input and travel perpendicular to the layers. He
applied the Fourier integral transform over time t in the analysis.
Fourier transformed interface velocities and stresses are analyzed. An
approximation for materials with similar impedences is then presented. He
found that for situations where the times taken by the longitudinal wave
to traverse the layer thicknesses are in an integer ratio, periodicity
results in the frequency domain. He treated such a case and obtained
the interface stressed due to a square wave input. The results of
this example are quite interesting. However, the approximation scheme

seems to suffer from lack of generality.

II1.2 Floquet or Bloch Theories

Krumhansl [K8] analyzed the propagation of transient waves in
periodic composites by means of Floquet or Bloch theory. He used the quasi-
periodic Floquet waves to form a basis for the analysis of transient problems
and expressed the solutions of the problems in the form of Fourier-Floquet

series. A brief summary of this theory for one-dimensional systems is as

fol lows:
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Consider the Floquet wave solutions for displacement

uv(x;q) = vv(x;q) exp (igx) 49

with time variation prescribed by the additional factor exp(tiwt), where

w = w4, (50)

q is the wave number, and Vv  represents the vth mode.

The function vv(x;q) is periodic with the period of the composite con-
figuration. The solutions are defined in v denumerable regions of w, the
pass band, and for -m/a < q € Wa where a is the width of a unit cell.
Multiplying constant factors can be selected tfor the u functions to

generate an orthonormal set satistying the relation:

Q0

J p(x)u;(x;q)uv.tx.q)dx = §,,,»8(a-q") (51)

-0
The band orthogonality is given by the Kronecker delta and the q space
orthogonality by the Dirac §-function. Using this relation, solution tor

propagation ot waves without applied forces can be represented in the form:

n/a
u(x;t) = ) J e, (et e eV ug(xia)dg (52)

v

C
\%)
-n/a

with the coefficients cv(i.q} determined by application of orthogonality:

fk ir
cv(*,q)clwv + cv(—,q)e e J p(x)u;(x;q)u(x;t)dx,
N (53)
1 y # -iwy,t i .
iu\)[cv(*.q)olwv - eyae Y ]= [ PEIUREG A (x; )dx

Equation (52) thus provides the solution for an initial value problem when

the initial displacement and velocity are prescribed.  For initial disturbance

in a localized region, this method enables one to manipulate the solution

B ——




into the form of a stationary phase integral for which a head-of-the-wave
apalysis can be carried out. [t is also noted that by separation of solu- |
tions into components even and odd in x, half-space problems can be
treated.

Krumhansl and Lee [KI10] further employved the Fourier-Floquet methods
to transient elastic waves in periodic composites. They found that the
head-of-the-wave solutions in the far field are dominated by the maximum
group velocity contributions from each trequency band. For an infinite
periodically lavered medium which is initially at vest and subjected to a
momentum impulse at x = 0 (it would be convenient to arrvange x = 0 at

symmetry plane ot the periodic composite), the velocity response at far

field is given in closed form by a set of Airy tunctions. The appearance

of Airy tunctions in the far field response is just like what Peck and
Gurtman obtained in the head-of-the-pulse approximation tfor an analogous
problem. In addition, Krumhansl and Lee tound the asymptotic behavior of

a pulse initially uniform over a plane with the following features: (a) the

-1/3

asymptotic peak amplitude decreases as X , (b)) the pulse spreads out

s ; = 4 : 1/3
and becomes less steeper with rise time proportional to X

,  (¢) peak
stress also falls off at large x, though it is complicated to calculate.
They also discussed the motion of a periodic layered composite under applied
forces. The discussion includes both a formal representation of the
ireen's function and the treatment of short pulse pressure loading
on a surface.

A Fourier-Bloch technique for superposing the finite-element sinusoidal
Bloch wave modes to gencrate transient solutions to 2-D boundary value
problems was also presented by Peck, et al. [P4]. For a step-pressure load

on the surtace of the composite, the responses are calculated at small and
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large propagation distances. Five modes give good convergence at small
propagation distance, about 1/2 spacing of the longitudinal layers,
although even more modes would be desirable. However, at the larger
propagation distance (about twice the spacing of the longitudinal layers)
one mode only provides a good approximation to the response. This depen-
dence of number of modes required on the propagation distance provides
some insight into the regions of validity of one-mode or two-mode approxi-
mations that are commonly obtained with the continuum theories. The
transient solutions also showed that the layering in the propagation
direction changes the micromechanical shear stresses at the edge of the
longitudinal layer by a factor of two, even though the layering has little
effect on the overall dispersion.

Kohn [K6] considered the propagation of low-frequency elastic disturb-
ances in an infinite one-dimensional composite which is of periodically
varying density p(x) and stiffness n(x), with spatial periodicity a.
By using Floquet theory and low frequency expansions, he found that in the
limit of low frequencies the displacement u(x,t) in the composite can be
written in the form of a differential operator acting on a slowly varying

envelope function U(x,t) as

u(x,t) = [1 +v1(x)3/8x + ...JU0(x,t) 59

U(x,t) itself describes the overall long wavelength displacement field. It
satisfies a wave equation with constant (independent of x) coefficients
obtainable from the dispersion relation w = w(k) of the lowest band of

eigenmodes, i.e.

(9%/73t? - ¢? 3%/3x? - B 3%/3x" + ...)U(x,t) = 0 (55)
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where ¢ is the long wavelength sound velocity of the composite and B is
the 4th-order expansion coefficient of the square ot the frequency of the

lowest band of ecigenmodes

G0N = 2K - kY & s (56)
vl(x) in (54) is given by
A (\')_l |
vltx) = } e <1 (57) |
} n L
a/2
where
a
— ] -1 ,
n-1 = = ( N (x)dx (58)
0

Information about the local strain on the microscale of the composite laminae
is contained in the function vl(x). Kohn then appliad this approach to study
the pulse propagation in a halt-space. Appropriate Green's functions are
constructed in terms of Airy tunctions. With thesce Green's functions, the
solution of the initial value problem for a composite halt-space with free
boundary is explicitly obtained. 1t is noted that this long wavelength theory
correctly describes the head of a resulting pulse, even if the prescribed
initial pulses have step-tunction character.

Kohn [K7] extended the previous work to three-dimensional composite
material. In this case the displacement solutions to equations of motion of
periodic elastic medium are expressed as a vector in the form of a differential
operator acting on a vector tunction which describes the mean displacement
of cach cell. Again, local straimn tntformation can be obtained trom the solu-
tion. One of the applications of this method 1s the structure ot the head-of'-

a-pulse propagating in an arbitrary direction. However, application of




61

solutions to fiber-reinforced materials is conceptual rather than explicit.
His approach may be regarded as a method of microscopic field, although

relation of his work to other dynamic theory was not given.

I11.3 Effective Modulus Theories

Aboudi and Weitsman [A2] discussed the two-dimensional plane problem
of an impact on a half-space reinforced by parallel elastic fibers with a
pulse of finite duration. They assumed that the rigidity of the fibers is
greater than that of the matrix. Based on effective modulus theory, as
described previously, they expressed the constitutive equations in terms of
the reinforcement ratio and angles of inclination of the fibers. Solutions
were obtained by a finite difference scheme. Numerical results were presented
for the case of normal impact on a half-space. Comparison with the isotropic
case showed good accuracy of the solutions (with maximum error less than
1/2 percent). The investigation indicates that the vertical displacement
amplitudes decrease monotonically with fiber orientation. However, the

horizontal displacement amplitudes are shown to vary with position with maximum

and minimum displacements less predictable as a function of fiber orientation.
Aboudi and Weitsman [AS] extended their approach to study the problem

of an impacted fiber-reinforced viscoelastic half-space. The matrix,

they considered, is an arbitrary linear viscoelastic homogeneous and

isotropic half-space. The embedded oblique fibers are linear elastic,

arranged in parallel order and randomly dispersed. They adopted the

effective modulus theory to study the dynamic response of the composite

half-space to a time dependent surface load. Again, a numerical

procedure of finite-difference type was applied to the set of equations

resulting from the theorv. Results were worked out for an elastic-

clastic half-space and a viscoelastic epoxy-elastic glass fiber half-

space. Stability, convergence and accuracy of the numerical procedure
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were considered. Numerical results for surface displacements and displace-
ments at some distances beneath the surface were obtained and shown
graphically. Since effective modulus theory only gives weighted displace-
ments and stresses, it is highly possible that the effective stiffness
theory or interacting continuum theory, which accounts for microstructure
information, might give more reliable numerical results.

Eason [El] analyzed the propagation of waves resulting from the sudden
application of a force to the surtace of a cylindrical cnvitf in an infinite
fiber-reinforced solid. The fibers were assumed circumferential to the
cavity and unitormly distributed so that the material might be regarded as
a transverse isotropic solid. He used an effective modulus model to represent
this solid. The stress distribution within the solid then was determined

numertcally. e found that the maximum of the tangential stress, o at the

0
cavity increases from a value which is slightly greater than the suddenly
applied force Q for the isotropic solid to a value of several times of Q
for a highly anisotropic solid. He also found that the time at which this
maximum is achieved decreases from the time for isotropic solid to a fraction
of that time for highly anisotropic solid.

Sun, Feng and Koh [S28,S31] investigated the shear wave propagation
in a nonlinear ¢lastic fiber-reinforced composite. The composite was
modeled by a medium consisting of thin nonlinear (isotropic) matrix layers
alternating with the effective linearly elastic fibrous layers. Using the
effective modulus theory, they derived a set of threc-dimensional nonlinecar
constitutive equations. The model was employed to investigate the wave
front propagation, the stability of the shock front, growth and decay of

the shock wave and the distortion of initially sinusoidal wave. Due to the

e




nonlincarity, a sinusoidal shear wave i« distorted. At some distance a dis-

continuity may occur at a critical time. Shock front may form at such
discontinuity from an initially harmonic wave. It is noted that shocks
can be formed for composite with hardening matrix but cannot be formed for

that with softening matrix.

111.4 l‘.H‘p_g_t_'\ ve St iftness Theories

Sve [S40] discussed the propagation of a shear pulse parallel to the
interfaces of a periodically laminated medium. The propagation of wave was
caused by dmpulsive shear loads perpendicular to the laminate. He employed
the eftfective stittness theory to model the composite and applicd the method
of the head-ot -the-pulse to obtain an approximate sofutiton. [t turns out
that the solution, say tor particle velocity normal to the laminates, is the
head-of-the-pulse tunction for impulsive stress normal to the laminates [P3]
reversed, with oscillations of increasing amplitude preceding the main pulse

followed by a monotonic rise to a nondimensional amplitude of unity,

Sve and Whittier [S41] also investigated the one-dimensional pulse
propagation in an oblique laminated half-space. Using the eftfective stift-
ness theory and the head-otf-the-pulse approximation again, they studied the
impulsive waves in an oblique laminate caused by a step-pressure loading on
the boundary. It is interesting to note that the rvesponse of an abligue
Laminate is both anisotropic and geometrically dispersive.  The anisotropy
leads to a two-step response to a step loading, while the dispersivity
smooths of f the two steps and causes oscillations preceding or tollowing i

the steps.  They found that the charvacter of the response changes as

the angle of laminate, o, is varied. When o = @0, a single pulse propagates

o
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through the composite; as o is increased, the pulse splits into two; when
a = 90%, the responsec is once again a single pulse.

Sve |S45] also applied the effective stitffness theory to the response
problem of a periodically laminated elastic half-space subject to rapid
internal heating. Propagation direction parallel to the planes of the lami-
nates was considered.  The analysis indicates that dispersion assumes an
important role in thermally induced stress waves. The pulse in the far
tield may bear little vesemblance to the pulse that originated at the front
surface.

Sve and Herrmann [S4] also applied the eftective stittness theory to
study the dynamic response of a periodically laminated halt-plane subjected
to a moving load. The laminations are parallel to the surtace of the half-

plane and the traveling load is a step load of magnitude P inclined at an

angle ¢ to the surtace. The velocity cf the load is constant and supersonic.

They obtained the formal solution with the aid of Laplace transtorms and con-
structed a far-tield solution with the head-of-the-pulse procedure. They
calculated the gross normal strain at the rear tace tor: (1) moving normal
load . (4 n/2Ys (2) moving shear load (¢ ks the results indicate that
the primary etftfect of the laminations is to create a strain that has a finite
rise time and is oscillatory about the value obtained on the basis ot the
effective modulus theory which predicts a two-step response for ¢ = 0 and

a rectangular response for ¢ = w/2. Also, for nommal loading tensile strain

will oveur shortiv after the arrival of the shear wave.
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Whitney and Sun [W14] presented a refined effective stiffness theory
for extensional motion of laminated composites. [n this theory, terms of
second order in = which is the coordinate in the direction of the thickness
ot laminate are included for the longittudinal displacements while only the
first order terms in = are included for the flexural displacements. The
analysis is appropriate for oblique impact loading. In comparison with other
theortes, dispersion curves appear to verity this refined theory. With some
modi fication, the theory is applicable to fiber-rveinforced composite materials.

Bedford and Drumheller [B1O] further discussed the higher-order effec-
tive stiftness theory. A set of displacement and stress boundary conditions
at an external surtace compatible with the higher-order theory were presented.
The method developed can be used to obtain boundary conditions tor theories
of arbitrary order. Also, it makes explicit the relationship between the !
microdisplacement and microstress distributions and the actual displacement
and stress distributions on the surtace of the composite.

Bedford and Drumheller [Bl) applied a second-order effective stiftness
theory tor the dynamic behavior ot elastic laminates to the problem of a
laminated halt-space, with intertfuces normal to the boundary, subjected to

harmonically time varying displacement and stress distribution at the

boundary. The finite number of modes of the microstructure theory were

{
tfound to be sufficient to model a unitorm normal displacement boundary condi- {

2
tion but not a unitform normal stress boundary condition,  The solutions
yvield the constituent displacement and stress distributions both near the
boundary and in the tar ficld and permit an assessment ot the uscefulness of
the microstructure theory tor such boundary value problems.

The first nonlinear theory ot the eftfective stiftness type was obtained

by Rausch |R3)] who analyzed the transient wave propagation parallel to the
tnterfaces of a laminate. In deriving the effective stiftness equations,

he expressed Hamilton's principle in terms of a potential energy, which
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results in nonlinear constitutive properties, and a Kinetic energy containing
large strains and displacements to produce a Kinematically nonlinear theory.
He then sought the solution to the effective stiffness equations by a
coordinate-perturbation technique based on asymptotic expansions [R2] in
stress amplitude. The equations for the first-order perturbations are
linear differential equations which can be solved by integral transform

}_‘ techniques. e approximated the transformed solutions tor large times by

| use of the saddle-point technique. Thus, he obtained a nonlinear head-ot-

I the-pulse approximation. The first-order theory presented shows how non-
linear effects cause the geometrically dispersed wave to torm a shock but

| does not give the second-order ettect in which dispersion limits the
steepness of the wave. Consequently, steady waves ot the type tound experi- f
mentally cannot form. Thus a further approximation will require the
development of a second-order theory. However, the results of the first-
order theory provide an insight into the nature of the interaction between
geometric dispersion and nonlinear constitutive etftfects. 1t appears both
nonlinearity and geometric dispersivity have the ettfects to cause early

attenuation.

1.5 Interacting-Continuum Theories and Mixture Theories
Based on the interacting continuum concept in which every constituent b
has tts own motion but 1is allowed to interact with others, Bedtord [B12]
developed a basic nonlinear theory tor composites and explorved the implica
tions of this theory with regard to shock wave propagation. He tound that

rch constituent can support separate shock waves so that multiple shook

waves can occur in such a theory. Such multiple shock waves may be more an
artifact of the theory than an essential part of the modeling, and probably

are similar to the characteristic wave speeds in the approximate theories

|
|
|
|
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of rods and beams, which are not necessarily closely associated with the
calculation of the main response. In this theory, the appropriate boundary
conditions and Rankine-Hugoniot equations for a multi-continuum model of
composite material were formulated.

Bedford [BL1S] extended the multi-continuum theory to formulate the
jump conditions tor mass, momentum and energy across a singular wave sur-
face propagating in a multi-constituent bonded-elastic composite. He tound
that the shock surtfaces, linked by the reference configuration, exist for
cach constituent. The results are relevant to the study of acceleration
waves and shock waves and may be adopted to give boundary conditions. The
method has been applied successtully to single continua and can be applied
to a broad class of continuum theories,

Hegemier and Navteh [H7] developed a continuum theory based on an
asymptotic expansion tor wave propagation in laminated composites in which
dominant signa! wavelengths were assumed to be large compared to typical
composite micro-dimensions.  The case of propagation normal to the laminates
was considered. They obtained a hierarchy of models defined by the order
of truncation of the asymptotic sequence. In principle, retention of all
terms in the asymptotic sequence vields the exact theory. They then cast
the lower-order dispersive theory in a standard mixture tform. They obtained
the transient pulsce responses at the centroids of the 15th layer and 12th
layer respectively due to a step-stress input on the boundary. Comparison
of the result with exact analysis obtained from a one-dimensional numerical
code shows quite good agreement. It is noted that the one-third points
(I/3 first peak} on the transient waves travel at the mixture velocity. A
similar result was found in the head-of-the-pulse analysis of Peck and

Gurtman [P3].




Hegemier, Gurtman and Nayfeh [H8] extended the interacting continuum
theory by a rational Construction technique for the constitutive equations
and interacting term.  They considered the case of waveguide-type propaga-
tion in laminated and fiber-reinforced composite. Utilizing mixed spatial
and asymptotic expansions, they found that their asymptotic approach leads
to a tfirst-order expression for the momentum interaction term identical
in form with Bedford's |[Bl11], but the constitutive equations for each
constituent involve the strains in both constituents. Hence, the
resulting first-order continuum mixture theory contains microstructure.

The utility of this theory demonstrated tor both laminated and tibrous com-
posites by correlating theoretical and experimental [WIS] transient pulse
data on boron-carbon phenolic and Thornel-carbon phenolic laminated, and
unidirvectional tibrous quartz-phenolic. In each case, the input pulse is

a step function in velocity applied to both constituents at the boundary.
The response at the rear surface is a steady rise of amplitude followed by
oscillations. 1In all cases, the agreements between theoretical and experi-
mental results are quite pood.

Hegemier and Bache [H9] again discussed the transient pulse propaga-
tion, parallel to laminates in clastic-laminated composites. Based upon
asymptotic expansions they developed a modified first-order mixture
theory. For a step velocity input on the boundary, the transient data
obtained trom the simplificd theory exhibits good correlation with experi-
mental results. Because of its simplicity and satistfactory prediction,
this simplified theory, they hoped, will lead to maximum utility

Bache and Hegemier [Bl] tfurther discussed the transient wave propaga-
tion in viscoelastic-laminated composites. With minor modifications of the
techniques used for clastic cases, they constructed a general theory for

wave propagation in viscoelastic-laminated composites. The procedures are
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quite straightforward. They first applied the Laplace transformation to the
equations of motion and viscoelastic-constitutive relations, then they
deduced the continuum theory for the problem under consideration in the
Laplace transform plane from the well-known correspondence principle.
Finally, they took Laplace inversions and obtained the theory in the
physical space. In view of its simplicity and potential utility, they
derived the corresponding viscoelastic modified first-order theory, and
applied this simplified theory to investigate the transient pulse normal
to the laminates due to a step-velocity input on the boundary of a half-
space formed by the bilaminates. The composite was laminated by a quartz
fiber bundle in a phenolic matrix (constituent 1) and lronsides FF-17
phenolic resin (constituent 2). The quartz fiber material was modeled as
elastic for propagation normal to the fibers while the standard linear
solid model of viscoelasticity was used for the phenolic resin material.
They compared the stress-time history at the midplane of the 13th layer to
that for a corresponding linear elastic composite. It is seen that the
general shape of the former is more or less similar to that of the latter
but with the amplitude of the peak stress and the oscillations following
the peak damped out somewhat.

Nayfeh, Gurtman and Hegemier (N3] used the theory of interacting
continuum to study elastic wave propagation normal to the fibers of
unidirectionally-reinforced composites. The composite consists of a
periodic array of square fibers which is perfectly bonded to the
matrix material. They derived a "first-order" type dispersive model
for this complex geometry. The basic construction procedure is as
follows: (1) they modeled the fiber-matrix regions as a mixture using

the same procedure for layered materials; (2) they modeled the matrix




material regions as homogeneous laminatesunder unidirectional motion in the
direction normal to the layers; (3) they then followed the same procedure as
that for obtaining wave propagation normal to layered composites to conctruct
a dispersive continuum theory for the fiber reinforced composites. The simpli-
fied first order continuum model so constructed is seen to be similar in form
to the theory obtained by them for propagation normal to the layers of a lami-
nated composite. The only difference, in fact, is the complexity of the con-
stants in the equations. Utilizing this theory, they obtained the solution
for a step-stress input at the boundary of a semi-infinite medium of a uni-
directional fiber-reinforced quartz phenolic composite. The step-function
pressure was applied to the front surtace of the material which was a fiber-
matrix laminae. The calculated rear surface velocity, the velocity corre-
sponds to that of a matrix laminae, vs. time curve is again a steady rise of
magnitude followed by oscillations. Comparison of experimental data reported
by the Aerospace Corporation [H11] and theoretical results showed that agree-
ment is fair. If the geometrical approximation is improved and the visco-
elastic nature of the phenolic is accounted for, the agreement should be

much better.

Gurtman, Nayfeh and Hegemier [GI3] generalized the theory of interacting
continuum (TINC) to study the two-dimensional wave propagation in structural
composite materials. In their generalization, a caloric equation of state
was assumed for mean stress vs. density, and an elastic, perfectly-plastic
law of von Miscs was assumed for the deviation stress tensor. In addition,
two-dimensional lay-ups (laminates) were considered. They then developed a
hicrarchy of two-dimensional models of interacting continuum defined by the
order of truncation of the asymptotic oxpansion. Again, they tocused their

attention on the simplest "tfirst-order" theory hoping that its relative

stmplicity will lead to maximum utility while preserving the desired
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micromechanical information required by the composite designers and the
analysts. Transient response to a step-function in velocity at the boundary
of either the elastic medium or the elastic, perfectly-plastic medium
correlates well with the corresponding experimental results.

Nayfeh and Gurtman [N4] extended the interacting continuum theory to
study the transient shear wave motions in laminated waveguides. Both trans-
versely (SV) and horizontally (SH) polarized waves were considered. Transient
solutions for both types of waves were investigated via the head-of-the-pulse
approximations. The transient response of the SH waves to a step-boundary
velocity W, 1s a pulse beginning with a steady rise, followed by oscilla-
tions about the input boundary velocity,while the response of the SV waves
to a step-boundary velocity % is a pulse starting with oscillations about
zero tollowed by a smooth rise to its final value (the boundary input). It
is noted that: (1) the transient solution of SV wave is identical to that
obtained by Sve [S40] based upon the effective stiffness theory, and (2) the
transient solution of SH wave closely parallelsthat of the longitudinal
wave solution of Peck and Gurtman [P3] obtained by the exact theory and that
of Hegemier, et al. [H8) obtained by the continuum mixture theory.

Gurtman, Nayfeh and Hegemier, et al. [Gl4] applied the theory of inter-
acting continuum to study wave propagation in three-dimensionally reinforced
composites. The model developed is an extension of previously developed two-
dimensional laminate and fiber TINC formulations and explicitly considers
the effects of themodynamics, finite deformations and nonlinear constitutive
behavior. The three-dimensional material is made up of "radial" and "lateral"
tiber bundlo§ in an orthogonal array, with pockets between them filled with
pure resin. They treated the tiber bundles as isotropic, but using their

material properties in the direction of propagation. Thus, material properties




{ along the fiber are assigned to the radials, and those transverse to the
fibers are used for the laterals. Basically, they proposed modeling the
unit cell of three-dimensional quartz-phenolic as a combination of cylin-
drical and laminate waveguides. The initially square cross section of the
radial fiber is transformed into a cylinder of equivalent volume fraction
surrounded by an annular sheath whose material properties are dynamical and i
dependent upon those of the alternating fiber and resin pocket. For the
cylindrical waveguide, the individual constituents are modeled as elastic-

perfectly-plastic material, with a Mie-Grineisen caloric equation of state

relating mean pressure, density and internal energy, and with a von Mises'

vield criteria and associated flow rule governing the stress deviators.

Thus, they developed a thermodynamic theory of interacting continuum, of
waveguide type, for finite amplitude elastic-plastic wave propagation in
fiber-reinforced composites. They then smoothed the surrounding structural
elements of the actual material made up of lateral fibers and resin pockets
via the TINC laminate analysis into a hollow cylinder sheath. The complete
thermoelastic-plastic, three-dimensional TINC model then is obtained by com-

bining the solid waveguide fiber with the dispersive hollow cyclinder sheath.

For elastic pulse propagation in three-dimensional quartz-phenolic, they used
| the finite difference TINC code to compute the average velocity at the rear
of a specimen 0.635 cm thick. A step-boundary velocity is applied to both
fiber and sheath. They tfound that the velocity-time response is again a
steady rise followed by oscillations about the input. The TINC code result
was compared with experimental data obtained at AFWL (Air Forces Weapons
Laboratory), and with the head-of-the-pulse approximation. The agreement

1s excellent. The head-of-the-pulse solution, while effectively duplicating

the peak velocity and rise time of the wave, tends to diverge from the
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TINC results following the passage of the front. They also used the TINC code
to calculate the stress histories at the rears of three three-dimensional
quart z-phenolic specimens of different thickness which were tested at the
AFWL using a light gas gun. Comparison of code predictions and experimental
results indicated that there appears to be a tendency on the part of the code
to slightly overpredict the rise times, but agreement of peak pressure is
excellent.

For nonlinear pulse propagation in three-dimensional quartz-phenolic
they used the corresponding TINC code to calculate the stress histories at
the rears of several 3DQP specimens which were impact-tested at AFWL using
a high pressure gas gun. Their numerical results and experimental data
indicated again that the TINC code tends to slightly overpredict rise times,
but accurately calculate the peak pressures, and signiticantly diverge from
the experimentally detemined curves after the peak.

The theory so developed has been shown to be capable of predicting the
nonlinear response of 3DQP to both mechanical and thermodynamic loading, and
capable of yielding information concerning the behavior of the three-
dimensional material's constituents. It should be a useful tool in both
design and analysis of three-dimensional composites.

Hegemier [H12] discussed the finite-amplitude elastic-plastic wave
propagation in laminated composites. He developed a binary mixture theory
for waveguide type-propagation parallel to the layers of a two-constituent
laminated composite with periodic microstructure. The model incorporates
the effects of thermodynamics, finite deformations, and nonlinear elastic-
plastic constituents. For a step-boundary velocity input, transient
displacement, stress and internal energy distributions within the micro-

components are produced to a certain degree of accuracy.




Hegemier and Gurtman [H13] also investigated the finite-amplitude
elastic-plastic wave propagation in fiber-reinforced composites. Accordingly,
they developed an approximate nonlinear theory to describe waveguide-type
propagation in unidirectional fibrous composites. The model, an extension
of the previously developed laminate formulation, considers the effects of
thermodynamics, finite deformations, and nonlinear elastic-plastic constitu-
tive behavior. A one-dimensional binary mixture theory is thus followed.
Transient wave-propagation solutions due to a step-boundary velocity input
were obtained numerically and compared with another solution from a well-
known two-dimensional finite difference code. The agreement is judged to be
excellent. However, the authors concluded that the TINC calculation is much
more time-saving than that of the finite difference code.

Aboudi [A6] extended his previous work [A3] and formulated a mixture
theory for a thermoelastic laminated medium composed of two constituents in
alternating layers. In this theory, each constituent has its own motion and
temperature, but is allowed to interact mechanically and themmally with the
others. The resulting system of coupled equations of motion and heat conduc-
tion was then used to study the response of a laminated plate subjected to
mechanical and thermal impulsive loadings. Comparison between the results
of this theory and those based on the thermoelastic effective modulus theory
which he formulated exhibits the pronounced effect of microstructure and the
effect of the reinforcement volume on the resulting field in the individual
constituents. The effect of the reinforcement is to decrease the stress in
the matrix and to increase it in the reinforcement.

Aboudi and Benveniste [A7] proposed a superimposed mixture theory for
wave propagation in a biaxially tiber-reinforced composite. The medium

studied has alternating layers in which the angle of the biaxial fibers
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ﬁ alternates from layer to layer. Each constituent has its own motion but

interacts with others. The layering microstructure is taken into account

by the interface shear stresses. The composite is then in the form of a

laminated medium composed of uniaxial fiber-reinforced material in alternating

1 layers. They modeled each layer by Bedford's mixture theory and modeled the

composite by Hegemier's binary mixture theory. In other words, the model

is a superposition of the two known theories. They calculated the response

of a material consisting of carbon phenolic reinforced by boron fibers for

pulse propagation in the direction parallel to the layers. In contrast with

the uniaxial ones, numerical results showed that the stresses in the fibers

in the case of biaxial reinforcement attain higher values as compared with

the uniaxial one. The normal stresses in the matrix are almost identical for

both types of reinforcements. It would be of interest to compare the pre-

dicted results with experimental work and thus evaluate the validity of the

proposed model. [
Nayfeh [N8] treated the transient pulse propagation in porous composites. F

He employed the interacting continuum theory to analyze the influence of f

‘
inclusions and porosity on the elastic response of both homogeneous and lami-
nated composite media. The general model analyzed by him consists of '

periodic array of two perfectly-bonded laminates; one of which consists of

an elastic homogeneous material while the other is made up of periodic array i
of cylindrical elastic inclusions that are distributed in another elastic

matrix material. He deduced several specific models as special cases. In
all cases porosity is simulated in the limit as the properties of the inclu-

sions identically vanish. He demonstrated that porosity plays a major role

in the geometric dispersion of such media. In particular it increases the

pulse arrival and rise times (spreading) ot a transient pulse. For the
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special case of elastic inclusions in a homogeneous matrix media, the results

correlate very well with existing experimental data and other approximate
analyses.

Nayfeh [N7] extended the interacting continuum (or continuum mixture)
theory to discuss the heat conduction in laminated waveguides. The resulting
theory leads to simple governing equations for the actual composite which
retain the integrity of the diffusion process in each constituent but allow
them to coexist under some interactions. He then utilized the resulting
eauations to study the response due to transient loadings. Solutions were
derived by means of Laplace transform techniques. Analytical inversion of
transforms was carried out only for the limiting cases of "weak' and "strong"
thermal coupling. The limit of strong interaction leads to the coalescence
of both temperatures; in this limiting case the composite behaves as a single
but high-order continuum according to his investigation. For the general
coupling cases, his results were obtained by a direct numerical inversion of
the transforms. Since his results for harmonic loadings correlate well with
some existing exact solutions, and those for transient loadings are reason-
able from physical considerations, the theory should be useful in studying
any transient temperature pulses in laminated composites.

Gurtman and Hegemier [GLS] modified a previously developed binary
mixture theory to account for debonding for waveguide propagation in laminated
composites with periodic microstructure. In modification, they relaxed the
interface shear stress boundary condition and proposed an interface model of
the Coulomb frictional-type. They then applied the resulting theory to
analyze the response of a waveguide-type laminate to impact loading at the
boundary, and compared the results with experimental results. A fairly good

agreement was observed.




Benveniste and Aboudi [B32] also extended the mixture theory to account
for debonding due to impulsive loading for wave propagation in a laminated
medium. Wave propagation is in the direction of the layering of a bi
laminated medium with the presence of imperfect bonding at the interfaces. |
The debonding is modeled by a tlexible bond, 1.e., an inertia-less thin
clastic film, which was originally proposed by Jones and Whittier (J.27.
Therefore, the debonding mechanism i1s represented by a model which allows
imperfect bonding both in the nomal and tangent directions.  From this,

they formulated a modified mixture theory and applied the theory to transient

wave propagation in the waveguide-type laminated composite. 1t was found
that the debonding in the tangent divection is stgniticant in modifying the
shape and amplitude ot the propagating pulse.

As pointed out previously, Ben-Amoz developed a continuum theory of
composite materials in a series of papers [B22,23,28,29] using direct
asymptotic expansions. The developments of the theory indicate that the
dynamic behavior of the model 1s "nonlocal' in time as a result of the history-
dependence of the current state. From this theory he deduced a zervo-order
model for practical applications. He analyzed the behavior of this zero
order system and found that during an carly phase the motion is contined to
a boundary layer and consists of highly damped waves. During a later phase
the behavior approaches that of a macrovcopically homogencous medium.  The
behavior during both phases is described by two distinet systems of ditterven
tial equations. He then applied this theory to determine the early phase
Behavior of a laminated halt-space subject to a step normal load for
" n parallel to the laminates [B28], and (2) propagation normal

h ilts have no appreciated differences from

| ! hy other theories

.—"_—-‘-—“______




Ben-Amoz |B27] turther considerved elastic-plastic waves in laminated

composites. Based on the assumption ot pertfectly-clastic tiber layers and

elastic-plastic matrix lavers, a continuum model was deduced for wave motion ,‘1

e ;

- |

either parallel to or normal to the divection of ftavers.  The derivation was |
1 again based on asymptotic expansions in tevms ot @ small pavameter so that
a continuum theory was obtained ta which microstructure effects appeared.

: Again he found that during the carly phase the motion is contined to a boundary
layver and consists of highly damped waves whercas the behavior during the

later phase is pradominantly that of a macroscopically homogeneous mediun.

Constdering that pulse attenuation occurs mainly during the carly phase, he
concluded that the ecarly phase motion constitutes the critical phase of
motion as in the elastic wave case.  The model should be adequate tor com

posites that arve strongly inhomopencous,

111,60 Other Methods and Problems Related to Composites

Stern, Bedtord and Yew [St5], and Bedtord and Stern [Bl1o] analyzed
waveguide propagation in lavered and unidirvectional fiber-reintorveed composites
consisted of elastic and viscoclastic materials.  They assumed a simplitied
displacement field consisting of motion only in the propagation dirvection.
The displacements are constant over the clastic veinforcing layer, but vary
over the cross section of the matrix.  The resulting equations governing such
motion were solved tfor sinusotrdal waves and yvielded very good comparisons
with exact solutions in the case of laveved composite.  The same torm of
solution was appfied to the fiber verntorced material with only a geometvic
corvection tor the sccond ovder term in the low tregquency expansion of the
cowocurve, and vielded good comparison with the exact solution in contrast
with the effective stitftness theories where the agreement with the exact

theory is best tfor large ratios of tilament to matrvix stiffuess (see, tor

example, [S18]).
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Payton [P2] investigated the dynamic bond stress in a composite structure

subjected to a sudden pressure rvise. The composite structure consists of two |
elastic semi-infinite rods bonded together along their generators. By introduc-

. i
ing an interaction term into the one-diaensional wave equations, he obtained the
dynamic bond shearing stress tor the case of a pressure step suddenly applied |
over the end of the rod. The bond stress is composed of a static and a dynamic

part and the peak bond stress that occurred at the loaded end is dominated by

the static part. Results obtatned may provide information to designers in

minimizing the possibility ot bond tailure from dvonamic loading.
Achenbach, Hemann and Ziegler [Ald] studied the tensile failure of interface
bonds in a composite body subjected to compressive loads. Carrying out the one-

dimensional analysis of wave propagation normal to the intevtaces of a laminate, i

they found that a compressive load can lead to tensile stress when a wave s
transmitted across an intertace to a lower wmpendance material, and that tracture
conditions also depend on the duration ot the load and the thickness of the
lavers. When a load of duration less than the transit time of either layver is
applied to the lower impedance layver, tracture caused by the tenstle wave re-
flected from the second interface will occur at the tirst intertace. This predi
cation was veritied by experiments.

Fing and Lee [T8) applied the geometrical acoustics approach to determine
the response of embedded circular and sphevical inclusions to a plane dilatation
wave in the surrounding medium.  One of the most interesting results obtained by
them is the existence of caustics, which s an envelope of rays, within the
embedded medium. Since ecach ray carries a finite signal, while there arve in-
finite rays meeting at a caustic, the response is infinite at the caustic. This
suggests that nonlinear response, possibly including tracture, will occur.

The geometrical acoustics approach similar to that used by Ting and Lee was
applied by Achenbach, Hemann and Ziegler [Al7] to investigate the separation at

the intertace of a civeufar incluston and the surrounding medium under an tncident
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compressive wave. They discussed the nature of the singularity associated with
the caustic. The singularity is of a square root dependence on distance to the
caustic as it is approached and then of a logarithmic dependence on distance
behind the wave front once the caustic is passed. While nonlinecar response will
modify the results, they showed that very large stresses can be transmitted to
the boundary of the inclusion.

Ting and Chou [T9] further employed this approach to investigate the propaga-
tion of stress gradient through an inclusion. They found that the reflection and
transmission of the stress gradient and the higher-order derivatives of stress do
depend on the geometries of the incident wave tfront and the interface boundary
though it is not so for the stress.  They also studied the propagation of the
stress, the stress gradient and the higher-ovder derivatives of the stress behind
the wave front. They showed that the stress gradient does not maintain the same
sign as the wave front is propagated. The implication ot this result is that the
plastic yield can occur at places behind the wave front betore it occurs at the
wave front even it the initial wave has a discontinuous rise in stress at the wave
front followed by a gradual decrcase in magnitude behind the wave tront.

An analysis based on the theory of elasticity and applicable to composites
was carried out by Achenbach [AIS] for welded elastic quarter-space. The case of
tmpulsive shear load with step-tunction time dependence applied to the surtace of
the half-space formed by the joined quarter-space was considered.  The shear load
ing was parallel to the interface of the two gquarter-space so that only shear
waves were generated. Because the stresses at the corners may be singular, he
used a technique in which cach of the waves generated at the corner was analy:zed
separately and then appropriately joined.  The shear stress on the interface was
found to have a logarithmic stngulavity at the surface of the half-space. This
singularity of stress may cause fracture at intertuace corners.

Brock and Achenbach [B44] then extended the transient shear solution to the

case of loads normal to the surface of the halt-space formed by the two quarter-
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spaces. Mixed boundary conditions were taken to be a normal velocity with zero
shear stress. In this case, the shear stress at the surface is zero because
of the mixed boundary condition and hence there is no singular shear stress

at the corner of the joined quarter-spaces. However, they found that for step
loading, a singular shear stress is propagated at the Stoneley wave velocity
wittle the normal stressces are bounded.

Brock and Achenbach [B45] further carrvied out an analysis on the
effect of an incident shear wave on the extension of an interface flaw
between two halt-spaces. Shear waves polarized parallel to the edge of the
flaw and perfectly-plastic bonding were considered. They found that in case
of a constant-velocity crack extension the incident stress must be a step
wave. The velocity of the crack is expressed in terms of the amplitude and
angle of the incident wave, the properties of the half-spaces, and the
vield stress of the bond. This analvsis should have an important value in
interpreting tractures in composites.

Ko [K3] used a technique based on Kirchott's method of retarded poten-
tials to analyze the interaction of plane waves with circular inclusion. He
showed that the singular stresses occur instde the cvlinder which 1s of
higher impedance than the surrounding medium. He also showed the position
of caustics and associated fold-over wave fronts for inclusion wave speeds
both higher and lower than those of the matrix. He then extended the
analysis to the multi-inclusion case to study the successive scatterings
{K4]. The study has application to fiber-reinforced composites. He showed
that the wave front amplitude for the first-generation scattered wave
along the center line of the row of tibers attenuates very rapidly, becoming
no more than 10 percent of the inttial value in the third inclusion. He
made a comparison of this case with the laminated case and found much more
rapid wave front attenuation in the cyvlindrical inclusion case. Determination

of the stress behind the wave front can be, in principle, obtained by this




technique, but in practice such calculation will be extremely formidable.
However, this analysis can be further extended to the case of a composite
containing inclusions of arbitrary shape.

Transient wave propagation in a unidirectional composite was also
analyzed by Haener, Puppo and Pagan [H2] in addition to the exact analysis
for the steady-state vibrations. A circular fiber surrounded by a circular
matrix shell with the outer surface confined was considered as the model.

Based on elasticity theory, an approximate theory was formulated from
variation of Hamilton's potentials. The resulting 4th-order differential
equation was then solved for the transient state in addition to the steady
state. By comparing the numerical results of the approximate theory with
those of the exact theory, they found that for the dimensions considered
in the composite the approximate theory is valid up to frequencies of 105
cycles per second. With thie approximate theory, it should be possible to
consider more realistic boundary conditions and to solve more transient
problems.

Drumheller [D8] made an extensive investigation of the propagation of
elastic waves normal to the interface of a laminated composite. He used a com-
puter code TIC based on the exact solution of the response in laminates to study
the transient and sinusoidal wave propagation. He noted that the lowest
mode has an upper cutoff frequency that tends to cause the dominant response
to occur in the first mode, and he also noted that different laminates can give
essentially identical first-mode behavior. In a successive investigation [D7],
he developed this concept further and showed how a transient analysis of one
one-dimensional laminate can be uscd to represent the response of a different

one-dimensional laminate and very likely of materials which have the same

i




first-mode low-frequency behavior. Actually, he carried guf an analysis
of lumknate using both the original laminate properties and an equivalent
laminate which has the same first mode sinusoidal-wave behavior but which
has strikingly different densities. lle showed that the linear response is
virtually identical for the two materials. Even more importantly, he
compared the nonlinear response for the two laminates by assuming bulk-
modulus nonlinearity and showed that the agreement was still quite good.
The important virture of this technique is that it can be extended to com-
plicated constitutive behavior, such as crushing and rate dependence, with
reasonable confidence and that the basic macroscopic response obtained
from geometric dispersion is properly maintained.

Riney, et al. [R9] first studied the stress-wave effects in inhomo-
geneous and porous earth materials. Then Okubo, Sve and Whitter [Ol]
investigated the effect of porosity to the dispersion of an elastic step
pulse in a three-dimensional quartz phenolic composite. Subsequently,

Sve [S46] made an extensive investigation on transient elastic wave propaga-
tion in a porous laminated composite. In Sve's analysis, it is assumed that
wave propagates normal to the laminations and that the porosity is randomly
distributed throughout one constituent and is composed of small spherical
voids. The randomly distributed porosity produces Rayleigh scattering,

and also reduces the wave speed in a constituent thereby affecting the
geometric dispersion. A dissipative equation of motion is developed for

the porous material and used for a constituent of a composite. A dispersion
relation and a pulse solution are obtained to determine the significance of
porosity in a laminated composite. From his study, Sve concluded that the
Rayleigh scattering produces a small damping effect in the tar-tield pulse

shape and small-void porosity can be adequately simulated with an effective




wave speed. Hence, he further concluded that if the pores are small and
randomly located within a constituent of the composite, it may be possible
to use a continuum approach tor low-frequency response calculation for
pulse propagation in such a porous laminated composite.

Sve [S44] also analyzed the propagation of pulse in a dissipative
laminated composite by using techniques of modal analysis and by consider-
ing the complex wave numbers. The analysis provides a far-field dispersive
solution that is valid only near the head-of-the-pulse, including spatial
attenuation. He modeled the effects of damping by assigning an imaginary
part to the wave number and found that the oscillationsabout the steady
value of the propagating pulse are reduced in amplitude and the rise time
is increased, in comparison with the undamped case. In order to obtain
the solution away from the head-of-the-pulse, it is apparent that other
techniques, such as the method of stationary phase, would be required.

Chen and Gurtin [C4] discussed the propagation of one-dimensional
acceleration waves in elastic and viscoelastic laminated composites by an
exact analysis. The composites that they considered consist of a periodic
array of alternating layers with plane boundaries. They made no assumptions
regarding linearity, and assumed only that the materials have tfading memory
when they treated viscoelastic materials. They derived an expression for
the amplitude of an acceleration wave propagating normal to the lavers.

When confined to the junction points of the cells this expression
has exactly the same form as that for a single (nonlinear) viscoelastic
material. They used this fact to derive eftfective moduli for composites.
In addition, they generalized their results, derived for laminates consist-

ing of periodic cells of two layers, to cells of N layers. This theory is

applicable to plane longitudinal motions in three dimensions.




Chen and Clifton [C5] discussed the transient longitudinal waves in
elastic and viscoelastic bilaminates. The bilaminates consist of either
elastic or viscoelastic laminates of uniform thickness and infinite lateral
extent. Wave propagates in the direction perpendicular to the laminates.
Using the Laplace transform technique and Floquet theory, they obtained
both wave front and late-time solutions for step loading by means of
asymptotic techniques. Combination of wave front and late-time solutions
shows that the wave profiles consist of a rapidly decaying precursor
followed by a dispersive transition to an equilibrium state. The transition
region in elastic bilaminates is much smaller than for viscoelasiic bilami-
nates.

Seymour and Mortell [S7] studied the propagation of one-dimensional
longitudinal pulses and weak shocks in nonlinear elastic and viscoelastic
laminated composites by an exact analysis. The composite consists of
alternating laminates, with parallel plane boundaries, which repeat period-
ically. They assumed that the deformations undergone by the medium are of
small amplitude and, in the case of the viscoelastic composite, they are of
high frequency. Thus, in the analysis, simple wave solutions were superposed
to deal with nonlinear waves which undergo reflection at the boundary.

They showed that by an appropriate choice of the width of the laminates

the nonlinear composite can appear to first order either as a linear-visco-
elastic or linear-elastic material when signal is read at cell interfaces, and
that at cell interfaces the deformation in a periodic-elastic composite is

identical with that in an appropriate nonlinear viscoelastic material. The

critical acceleration is obtained for elastic composite below which no shock
forms. These results arc extended to a viscoelastic composite chiefly by

introducing a lumped damping coefficient which is the product of the
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attenuation due to the mismatch of impedances and the rate-dependence of 1
each layer. Finally, they analyzed the weak shock for two particular signal £l
functions: (1) when the signal function is antisymmetric about the wavelet

at which a shock forms, and (2) when the shock is at the front of the pulse.

As mentioned earlier, Barker [B6] proposed the use of a viscous-
dispersion model of the Maxwell type to represent geometric dispersion in

composite materials. He used his model to analyze the transient response i

of a layered composite medium. The result shows that the rise times are
generally larger than those of the exact solution and the oscillations about
the steady stresses caused by step loading are not presented in Maxwell's
model solutions. It seems that the attenuation is overpredicted by this
model. In fact, this technique, which is semi-empirical, averages out all
the microbehavior of the composite and hence gives only a mean stress history.

A different type of '"viscous" dispersion model was developed by

Bade, et al. [B2]. In Bade's model a general expansion of the damping terms
caused by both x and t derivatives of the velocity was postulated. The
two lowest derivatives of the expansion were used to match experimental data
qualitatively. They applied this viscous dispersion model to study the
transient pulse propagation in a waveguide-type laminated composite medium.
Comparison of dispersion model calculation with three-dimensional experi-
mental data shows good agreement except near the region of peak pressure.
They also carried out Bloch's analysis to determine the effect of the variation
of properties in the propagation direction. It was found that the layering
in the propagation direction has little effect on the dispersion.

Shea, Reaugh, et al. [S10] developed a theory very similar to that
of Bade. They used essentially the same form as the dispersivity temm of

Bade, combined with a stress deviator depending upon current value ot strain
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and the history of strain. The model was incorporated into a computer code.

A unidirectional quartz-phenolic was chosen in this program. The results of

the computation obtained by imposing a step-velocity loading condition on
the boundary show quite reasonable agreement with experimental data except
that the detailed oscillations are not reproduced by the model.

Curran, Seaman and Austin [C13] proposed the use of artificial viscosity
to compute one-dimensional wave propagation in composite materials. They
proposed a macroscopic model utilizing the dispersion properties in the !
existing hydrocodes of WONDY and PUFF types. In such hydrocodes, the arti-
ficial viscosity was estimated. Computations were made for wave propagation
in epoxy-steel laminates, quartz-epoxy, and quartz-phenolic composites for
which experimental and computational data existed. The results are in good
agreement with other models and experimental profiles for the main wave
shapes. It is an original approach for computing large amplitude, one-
dimensional wave propagation in composite materials. However, the approach
is a macroscopic one in which only averaged values of stresses, displacements
and particle velocities can be predicted.

Christensen [ C10] discussed wave propagation in layered elastic

composite on the basis of dielectric theory. Both periodic layering and
random layering were considered. In case of periodic layering, the propaga-
tion became dispersive and in case of random layering, it exhibited

dissipative behavior. Regarding the medium as an equivalent anisotropic

3 one, long wave approximation for propagation normal to layering was modeled
by using Botzman constitutive law. The dispersion relation was expanded
for long wavelength assumption and compared with known results to determine
the unknowns in the relaxation function. Results were compared with known

experimental data and very pood agreoment was observed.  The theory was
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applied to study the problem of a pressure pulse acting on a half-space of
the layered medium. The response was found to be identical with that
obtained by Hegemier [H8]. The theory proposed may be regarded as an
effective modulus model with viscoelastic constitutive law.

Drumheller and Sutherland [D10] proposed a lattice model to study the
transient waves in composite materials. Based on the assumption that
geometric dispersion results mainly from the relatively periodic arrange-

ment of the reinforcing clements in the matrix rather than from the precise

shape of each reinforcing element, they developed a lattice which ignores
the shape ot the reinforcing elements but preserves their periodicity.
In the application of this lattice model, the composite was initially
treated as a nondispersive homogeneous mixture. The effective or average

properties of the mixture were determined by either steady-wave analysis

or appropriate experiments. A lattice was then formed by redistributing

the mass within the mixture to form a periodic structure of laminated plates.
This mass redistribution was carried out in a manner which yielded a lattice
with theoretical dispersive characteristics that matched the measured dis-
persive characteristics of the composite. The model was applied to composites,
consisting of a regular array ot tungsten fibers in an aluminum matrix, sub-
jected to a step loading. Also, flyer-type impact experiments were pertormed

in the plastic range of the composites. The agreement between experiment

and calculation for the arrival time and rise time of the wave front and for
the frequency of the ringing behind the wave front is good. 1t seems that
for a wide range of engineering applications, this model can be used to pre-
dict the behavior of actual engineering composites,

Nayteh [N6] presented a discrete viscous lattice model to simulate

transient motions in elastic and viscoelastic composite. Viscosity was
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introduced via dashpot in the lattice. Integral transform techniques were
used to solve the lattice problem. From the numerical results, he found
that discretization in the model introduces oscillation about the continuum

solution, and viscosity damps those oscillations.
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1IV. EXPERIMENTAL INVESTIGATIONS

Experimental work on the propagation of waves in directionally-
reinforced composites has been carried out by many investigators by means
of ultrasonic techniques; pulse transmission measurements, and other
techniques. In this sections, summaries of the experimental investigations

are given.

IV.1 Ultrasonic Techniques

Asay, et al. [A24] measured sinusoidal-wave dispersion using ultra-
sonic techniques developed by Asay for homogeneous materials. They tested
carbon-phenolic laminates reinforced with layers of high-modulus filaments
spaced about 0.6 mm apart. The results showed a pronounced variation of
the phase velocity with the frequency.

Tauchert and Guzelsu [T3] investigated the dispersion behavior of
plane-harmonic waves in a boron-epoxy composite using ultrasonic
techniques. They determined the dependence of group velocity upon the fre-
quency for longitudinal and transverse waves propagating either parallel or
perpendicular to the fibers. It was found that transverse waves propagating
in the direction of the fibers show a very pronounced dispersive behavior,
and that the group velocity increases with the wave number. This type of
behavior is consistent with that predicted by the continuum theories.

Bedford, Sutherland and Linge [Bl4] carried out extensive investiga-
tions on a fiber-reinforced composite of tungsten wires unidirectionally
embedded in a 6061 aluminum-alloy matrix. The composite chosen for the
experiments was prepared for two constituent ratios, 2.2 and 22.1 percent
by volume of tungsten, respectively. Ultrasonic experiments were con-

ducted for plane compression waves propagating normal to the direction
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of fibers by using water-bath techniques with wide-band transducers. Experi-

mental dispersion data for the two lowest modes agree well with the predictions

based on continuum theory of mixture, except at the highest frequencies. The
dispersion data obtained demonstrate that for propagation normal to the
direction of the fibers, fiber-reinforced composites behave as wave filters

which selectively transmit or reflect periodic waves.

Robinson and Leppelmeir [R10] experimentally studied qnormal propagation

of ultrasonic shear waves in a layered steel-copper composite. Samples were

manufactured by diffusion bonding alternate layers of steel and copper foil
together. The passing bands and stopping bands in the frequency curve were
observed. The experimental dispersion fits existing theory [S40,K5] quite
well.

Rose and Mortimer [R11] measured wave velocities in unidirectional
graphite-epoxy shells with four fiber orientations. Ultrasonic techniques
and drop mass impact were both used to generate longitudinal pulse. Good
-agreement with anisotropic shell theory was found.

Reynolds and Wilkinson [R8] studied experimentally the ultrasonic
waves in CFRP (carbon fiber-reinforced plastics) composites. Experiments
were conducted on two- and three-ply laminates having various orientation
and ordering of the layers. Results were presented in terms of shear and
compression wave velocities versus propagation angle to the fiber direction

of uniaxial materials. Experimental data agree well with theoretical pre-

dictions. In addition, resin porosity was found to have important influences




- wave velocities decrease with increase of percentage

on the propagation
of resin porosity,
Felix [F1] determined experimentally phase velocity and attenuat ton
for several plastics. The results for low amplitude were representaed

adequately with a standavd linecar viscoetastic model within the limited

frequency range.  He emphasized that, tor composites using the plastics as

matrix, material attenuation as well as geometric dispersion must he con

sidered in analysis of pulse propagation. Reliable prediction should be

obtained by using the measured phase velocity of the medium together with
- - ¢ . s ;
a trequency-dependent attenuation tor stress pulse propagation in a

composite matervial,
Chang, Couchman and Yee [C2] conducted ultrasontc resonance measure

ments of sound velocity in thin composite laminates.  This could be an

important addition to the work on an experimentally difficult problem.
Measurements were made by an ultvasonic pulse-echo technigque.  However, the
description of the experiments is somewhat sketchy. Tt would be ditticult

to duplicate the experiments with the intormation provided.

Rose, Wang and Deska [R12] experimentally determined the wave surtace

in a unidirectional praphite-ecpoxy plate by using the ultrvasonte technique.
The results are in apgreement with the composite wave propagation theory

proposed carlier by Yang, et al. [Y2] and extended by Wang and Tuckmantel |

IWa].  Recently, Martin [MIS] presented a new method tor the measuvement of

phase velocity of ultrasonic waves ain elastic composites,

.

IvV. 2 Flexural Resonance 'l'och_ni\luvs

Schultz and Tsai |[S2) obtained experimental data on moduli and dawping

ratios of fiber-reintorced composites by studying the tree and torvced tvans

cantilever beams made of the matertals,  The composite

verse vibrations of

R S




exhibits anisotropic, linear viscoelastic behavior when undergoing small

oscillations. The data obtained are useful to designers concerned with
vibrations and impact loading of filament-reinforced composite structures.

Using vibrating cantilever beam specimen, Tauchert and Moon [T1] per-
formed experiments to determine the dependence on frequency of the complex
moduli of unidirectional glass-epoxy and boron-epoxy materials. Consider-
able data were presented. The damping tends to increase with frequency
whereas the modulus is relatively constant. At high frequencies, where
shear deformation and rotary inertia are significant, the specimens are
characterized as Timoshenko beams. Using these data, they compared predicted
and measured velocity and attenuation of longitudinal pulses in the rods.
They concluded that the linear theory of viscoelasticity is adequate for
predicting velocity and attenuation of fongitudinal pulses in composite
rods of unidirectional glass-epoxy and boron-epoxy materials over a large
frequency range.

fauchert {T2] also obtained flexural resonance data for a class of

v

woven-tabric composites. The data were used to measure the complex moduli,
and the results, extrapolated to some degree to extend into the frequency
range pertinent to stress wave propagation, were then applied to velocity
and attenuation prediction. [lowever, he did not discuss dispersion and
scattering phenomena which may have introduced sharp changes in the complex

moduli.

IV.3 Shock Tube Tests

'

Whittier and Peck [W15] tested impulsively a laminate of carbon-phenolic
lavers reinforced with layers ot high-modulus filaments in a shock tube. A

step-pressure rise was applied to one side ot the specimen by reflection of
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a gas dynamic shock wave. The spatial average of the free-surface velocity

over the cross section of the composite was measured with a capacitance

gage. The experimental results agree well with the head-of-the pulse approxi-
mation obtained by Peck and Gurtman [P3]. The shock tube test was found to
be an effective method to characterize the dispersivity of a composite in
avoiding the complications of nonlinearity.

Sve and Okubo [S48] investigated the rear surface velocity of three
laminated composites with lamination angles of 0%, 45°, 90° to the loading
direction by using capacitance transducers. A step pressure pulse was
imparted to the specimens using a shock tube, with response confined to
the linear elastic range. Experimental results contirm the conclusions pre-
sented in Sve and Whittier's [S41] theoretical studies which arve: (i) elastic
response 1s composed of two contributions that travel at different speeds;
(ii) the dispersion is also different for each of the contributions and
depends on the low-trequency behavior of the phase velocities; (1ii) far-

ficld average responsesof 0° and 90° lamination composites are similar, while

near-ticld responsesof them are not similar,

IV.4  Impact Tests

Washington [Wo] made near-tield measurement of stress waves propagating
parallel to Plexiglas-aluminum laminates. The laminates consisted of alumi-
num plates alternating with Plexiglas plates. The stresses were generated
by aluminum or Plexiglas-flyer plate, with thicknesses such as to produce
load durations of 0.6 to 0.8 usec., The stresses were measured at several
depths, using Manganin wires embedded in epoxy, located primarily at the
center of each laminate. The results showed strong attenuation in the
aluminum layers, even for 0.8 usec. load, but little or no attenuation in the

Plexiglas. It seems that at these short propagation distances one is




observing, primarily, the transfer of energy trom the aluminum into the
Plexiglas layer, as opposed to overall pulse attenuation.

Scaman, et al. [S6] investigated experimentally the behavior of three-
dimensional orthogonal quartz-phenolic composites at moderate to high |
stresses.  Five plate-impact shots were made, four with thick flyers for
obtaining Hugoniot data, and one with a thin flyer for pulse attenuation
data. The response was measured with Manganin wire gages embedded in epoxy
behind the specimen. Hugoniot data derived from the flyer velocity and

shock velocity were closely fitted by a straight-line in shock velocity

versus particle velocity, and fair agrcement of these data with the gage
stresses was also obtained. The rise-time data suggest that the pulse-
spreading eftects of geometric dispersivity were overridden by the stecping
cffects of nonlinearity as the peal stress was increased.  The pulse attenua-
tion results indicate both the highly attenuative nature of the material and
the inadequacy of those predictions wiich do not account for geometric dis-
persion.

Calvit and Watson {CIf|, and Sutherland and Calvit [S38] performed a
series of dynamic experiments tor fiber-reinforced viscoelastic composites
subjected to uniaxial pulse. The composites they tested were viscoelastic
resins reinforced with (i) neoprene filaments, (ii) roving glass fibers,
and (iii) nylon 66 fibers. The transient pulse was initiated by a
mechanical striker and the particle velocity was measured by using the so-
called Faraday transducer. The particle velocity records were converted
into phase velocities and attenuation coefficients. Experimental results
were compared with the predictions of effective modulus theory for the
three Kinds of reintforcement and with the predictions of Bedtord and Stern's

mivture theory for the latter two Kinds of veintorcement.  Thev concluded




that: (i) it the effects of internal geometry are small, the
modulus theory may be used to predict the dynamic response of
torced material; if the effects are not small, the prediction

theory is more accurate; and (ii) for a constant volume ratio

In a series of papers, bundergan and Drumheller [18,9,10,

puter programs in which the layers are explicitly rvepresented,

RIS

eftfective
a tiber-rein-
of the mixture

of fiber

material, the deviation of the theoretical model trom the experimental

results increases as the number of tibers per unit area decreases.

11] investi-

pated the dispersion of dilatational stress waves in a laminated composite
both experimentally and analytically. The compesite consisted of a number
of bilaminar plates, and the propagation of the wave was normal to the
plates. A flat flyver-plate accelerated by a compressed gas pgun was used
to induce a rectangutar stress pulse.  The particle velocity was measured
at the opposite end of the composite by an optical intertferometer. The

experimental results were compared with results obtained by means of com-

and which

include nonlinear ettects, iIn the first set of oxperiments |[L8], lavers

of epoxy and steel were impacted at stress levels on the order of a tew
Kilobars., It was found that the peak amplitude of the transmitted stress
wave decreased directly with the width of the input stress pulse. The bulk
of the reduction of the stress was attributed to the retlections of the
stress wave at the extreme let't and right boundaries of the composite.
Debonding of the bilaminate plates and dissipation of energy in the epoxy

material were also thought to have contributed to the stress reduction,

Comparisons of the experimental results with numerical results provided

an indication of the necessity of considering the nonlinear behavior ot

the materials,

S ——



In subsequent experiments [L9] laminates of PMMA and stainless steel
were used, By varying the number of laminates it was concluded that there
was no change in rise time tor propagation distances beyond a few unit
cells from the loading face. Another set of experiments [L10] was
carried out on the epoxy-steel laminates to investigate the response at
slightly higher stress where the effect of tracture would be more apparent.
It was found that the fracture location depended on the pulse duration, with
fair agreement between the predicted and experimentally determined fracture
locations. Subsequently, Lundergan and Drumheller {[L11] investigated the
response of obliquely-laminated composite, both experimentally and analyti-
cally. Several analytical models and a two-dimensional wave propagation
program were used to predict the transmitted wave form. Comparisons were
made between the various models and the experimental results. General agree-
ments exist between the predictions of various models. The experimentally
determined first-signal velocities and final wave amplitudes agreed with the
calculations of the modeis; however, the remaining portion of the experi-
mentally determined stress waves exhibited slower rise times than did those
of the calculated waves. It was speculated that the physical conditions
existing at the input boundary of the composite were not being adequately
incorporated into the models.

Berkowitz and Cohen [B33] studied experimentally high amplitude stress-
wave propagation in an anisotropic quartz-phenolic composite. They pertormed
Hugoniot and pulse-attenuation plate-slap tests on quartz-phenolic laminates.
They tested composites with lamination planes normal to and parallel to the
propagation direction. They concluded that the composites exhibited rate-
tndependent plasticity. Then they used a plasticity model and were able to

let the attenuation macch the experiments with some discrepancies in pulse




shape.  The number of tests was too few to validate the model conclusively,

but the validity of the plastic model was demonstrated.
) I

Reed [R4], and Munson, Reed and lundergan [M14] performed thin pulse
attenuation experiments on a cloth-laminate quartz-phenolic composite. i
Thin-pulse tests tor propagation normal to the layers indicated that:

(1) much move attenuation occurred than would be predicted by simply using

a hydrodynamical model tor guart:z-phenolic; (1i1) an empirical tit to the
Barker [Bo] viscous-dispersion model relaxation time gave very good agree-
ment with the attenuation curves. Measurements on a three-dimensional
quart:z-phenolic composite with tairly high porosity showed that the same
Barker model did not predict as large attenuation as was tound experimentally.
It remained a matter of contrvoversy, in three-dimensional quartz-phenolic
composite tests, as to whether the increase in attenuation in the three-
dimensional matertal was caused by the crushing, by the geometric dispersion,
or by a combination of the two eftfects.  Other experiments indicated good
compartisons with both micromechanical models and continuum theories ot Bade
type [B2], without accounting tor porosity,

Reed and Munson |RS] again investigated stress pulse attemuation in
cloth-laminate quart:-phenolic both analvtically and experimentally. The
composite was modeled as a homogencous viscoelastic material (Maxwell type)
with nonlinear storvage modulus and one relaxation time. Judicious curve

fitting trom one plate-impact test produced the time constant, and subse-

quent comparisons of analvtical predictions with experimental results were
based on this value, Experimental results showed mavked dispersive sprealing
of the wave profiles and very strong attenuation ot stress, but no evidence
of elastic-plastic eftects,  Model predictions agreed very well with the

measured profiles.  Attenuation prediction was also quite good.  The data
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and analysis suggested that the viscoelastic nature of the phenolic matrix
plays a dominant role in the attenuation behavior.

Michael, Christman and Isbell [M3] studied experimentally the pulse
propagation in composite materials. The pulse was generated by flyer-plate
impact and particle velocity was measured by using velocity gage. The
materials tested were COMRAD 1 composite and laminated gquartz-phenolic.
Measurements on COMRAD 1, with pulse propagation normal to fibers, showed
that the structure of the pulses was approximately the same for linear and
nonlinear response levels. Tests on laminated quavtz-phenolic indicated
that the response to step loads was somewhat dispersive. It appeared that
rate dependence and/or plasticity played a role as large or larger than
that played by the geometric disperion.

Holmes and Tsou [HI8] investigated the steady shock waves in tiber-
reinforced composite materials. The shock wave was generatad by a planar
impact of a flyer plate and propagated along the divection of the fibers.
The sample used in experiments was made of unidivectional aluminum tibers
cast in an epoxy matrix. Both shock-wave velocity and free-surtface velocit)
were measured by means of optical techniques. The shock tront in the com-
posite was found to be steady. The results ot the measured Hugoniot also
gave a satisfactory comparison with those obtained tfrom an analysis proposed
earlier by Tsou and Chou [TI3]. The experimental justification of steady
shock front is quite significant since the assumption of steady shock can
be utilized to solve problems involving composites of various configurations.

Barker, Lundergan, Chen and Gurtin |B8] studied experimentally the
shock waves and acceleration waves in laminated composites. To verify the
prediction of Barker's model [Bo], they considered a composite constisting

of alternating lavers of polymethyt-methacrylate and aluminum. Not only dJdid
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the experiments establish the existence of shock waves in low stress region,
but the nonlinear viscoelastic model predicted quite accurately their gross
structure. Also, to verify Chen and Gurtin's results [C4], they considered
a composite of alternating layers of polymethyl-methacrylate and cnéés-cut
quartz. They generated in this composite acceleration waves with input
amplitudes both above and below the critical amplitude a. and in both of
these instances the results predicted by the thecry were verified. These
experiments were the first to produce, in composites, steady shock waves at
such low stresses, and the first to display acceleration waves in composite

materials.

Warnica and Charest |WS] tested by means of plate impact laminated
quartz-phenolic with the layers inclined at 90°, 0°, 45° to the direction
of wave propagation. Pulse durations were 1 to 2 pusec. A definite spall
threshold was obtained only for the 0° composites, where spallation occurred
due to delamination. In the cases of 45° and 90° angle inclinations, delamina-
tion occurred betore spallation. In the 0° case, a significant difference
in stress was observed between the onset of microscopic cracking and
macroscopic spall,

Green, Babcock and Perkins (GY] investigated experimentally the problem
of degradation of mechanical properties of composites. They tound that

laminated quartz-phenolic composite tested with momentum traps up to 9 k-bar

had no degradation in compressive properties. For carbon-phenolic laminates,
stress up to 7 k-bar had no effect but at 8 k-bar a strength decrease of
20-40% was found. In these experiments, it was felt that not all extrancous

damage was suppressed and the specimens might have felt some tension as well

as compression,

.
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Perkins, Babcock, Shierlock and Jones [P5] conducted an experimental
study ot the effect of impulsive preloadings on the behavior of quartz-
phenolic composite. Quartz-phenolic laminates were impact-tested with
momentum traps. For compression strength and stress wave loading parallel
to the lamination, degradation occurred at both room and elevated tempera-
tures. For tension strength and stress wave loading normal to the lamination,
degradation occurred at room temperature. Uniaxial strain and uniaxial
stress preloadings were pertormed on quartz-phenolic to assess the effect
of an impulsive preload on the subsequent uniaxial stress behavior of a com-
posite material. In these tests observable damage was limited to the phenolic
matrix. As a result, post-preload experiments on the specimen under uniaxial
stress correlated the dependence of the fracture strength on the extent of
the damage to the phenolic matrix as well as the direction of the preload

relative to the fiber lay-up.

177

chuster and Reed [S3] investigated the fracture behavior of boron-
aluminum composite materials by means of shock loading. The composite was
tormed from boron filaments and aluminum matrix. The boron filaments ran
perpendicular to the direction of stress-wave loading in two orthogonal
directions in the plane of the specimen. Two types of aluminum matrix were
used: one was brazed and the other was diffusion-bonded to the filaments.
Both compeosites suffered filament cracking thought to result from the com-
pressive wave passage. The spall cracks tormed on plane parallel to the free
surface of the composite,

Reed and Schuster [Ro] further studied the tilament fracture and post-
impact strength of boron-aluminum composites. They tested specimens with
momentun traps to suppress spall and then measured tensile strength in the

plane of the specimen. They found the degradation began to occur at a fairly

]
]
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well-defined tlyer velocity higher than that required to spall aluminum,
Retained strength as low as one third of the normal strength as obtained

at the highest flyer velocities. It appeared that the primary mode of
damage in these specimens was the debonding of the fibers from the surround-
ing matrix. The investigation separated the effects of compressive shock
loading from the effects of spallation. Fracture of the filaments was shown
to occur during the initial passage of the loading wave.

Barbee, Seaman and Crewdson [BS5] made an experimental study of dynamic
tracture of a quartz-phenolic composite and a silica-phenolic composite.

The quartz-phenolic composite composed of unidirectional closely-packed
varns was tested with wave propagation parallel to the yarns. They found
that cracks both parallel and perpendicular to the varns occurred in the
matrix. The composite was also tested with momentum traps and then cracks
were found only parallel to the fibers. (rack was compressive in ortgin.
For a laminated silica-phenolic composite, no compressive damage occurred
when tested with momentum traps, but it was found that when tested without
momentum traps a spall line was formed roughly parallel to the tree surtace.
The spall took place partly by debonding between the lavers and partly by
fracture though the lavers, as was vequired to form a spall plane parallel
to the free surtacec.

Gerberich [G3] experimentally analyvzed the fracture behavior of a com-
posite with ductile fibers. Aluminum matrix composites reintforced with
unidirectional stainless-steel wires of 450 Ksi tensile strength were
analyzed tn terms of strength, stiftness, and fracture characteristics
along and across the tiber array. Tensile strengths as high as 200 ksi werve
obtained in the fiber direction while 150 ksi transverse strengths were re-
corded. Longitudinal strength and moduli agreed reasonably well with rule

of mixture predictions up to 40% fiber by volume. Interfacial bonding was




sufficient to provide transverse stiffness enhancement but did not contribute
to transverse strength. Crack propagation across fibers was found to be con-
trolled by the very ductile high strength fibers. Crack propagation between
fibers was controlled by fiber spacing. Critical stress intensities for
transverse crack propagation were reported to be as low as one third that
of the matrix.

Sierakowski, et al. {S12] presented results of an experimental program
systematically evaluating the deformation and fracture of stecl wire-reinforced
epoxy composite systems. The program involved mechanical testing in the strain

5 3 - ; - . ;
to 107 /sec. and impact testing using massive elastic targets

rate range 10~
at strain rate approximately 104/scc. Specific results included static and
dynamic properties, strain rate sensitivity, information on the nature and
character of dynamic fracture, influence of specimen geometry and reinforce-
ment spacing, etc. Further, they proposed a simplified energy criterion for
predicting failure modes and critical velocities for composite specimens with
a brittle matrix.

Cohen and Berkowitz [C12] also studied experimentally dynamic fracture
of a quartz~phenolic composite under stress-wave loading in uniaxial strain.
They carried out thin-flyer tests using 5 mil and 15 mil Mylar flyers
impacting 0.25 inch thick composites. They found significant difterence
between microscopic and gross spall, and that spall occurred by delamination.
They found secondary cracks perpendicular to the impact faces which were
most intense near the front and rear faces of the material and could have
been caused by compression wave or late-time flexure of the specimens. They
also found that a constant stress tensile fracture criteria applied in a low

impulse region while a rate process criteria applied in a high impulse

region.




Hoover and Guess [H19] designed experiments to measure the dynamic

fracture toughness K. and the work-of-fracture parameter

D Yep

of the rate of loading. K is the critical stress intensity factor at which

D

crack initiation occurs and y. - is a measure of the energy absorbed as a
crack initiates and propagates through the material. The materials tested
were carbon-carbon composites having almost exclusive application in space
industry, The data obtained should be of practical use, and the technique
described may be usctul for the dynamic testing of other materials.
Drumheller [D9] investigated the effect of debonding on stress wave
propagation in composite materials both analytically and experimentally.
Diftering from Sve's approach [S42] by introducing debonding, he studied
the phase velocity behavior in the limit of zero wave number. He found that
in the limit there are three values of phase velocity instead of two which
were found by Sve without accounting the effect of debonding. e confirmed
these three values by experiments on a laminated composite consisting of
stacks of stainless steel and polymethyl-methacrylate plates. To obtain
good agreement between theory and experiment tfor the third velocity, it was
found necessary to employ high-pressure polymethyl-methacrylate data.
Drumheller and Norwood [D13], and Drumheller and Lundergan [D14]
further studied the debonding eftect on the behavior of stress waves in com-
posite materials theoretically and experimentally. The theoretical investi-
gation was focused on the problem of a debonded composite, a situation
commonly observed in flyer-plate impact experiments. In contrast to the
fully bonded case, an additional stable wave mode, they supgested, may

propagate in the composite. Thus, another boundary condition is required

to obtain the solution. They postulated such a condition. The essential con-

cept was to introduce an intertace warping stiftfness relating the difference

as functions




between the constituent stress and the average interface stress, with the
ditfference between the corrvesponding displacements. The theory was applied
to a configuration modeling the flyer-plate experiment. Experiments were

then conducted on a composite formed trom laminates of 6061-T6 aluminum and

polymethyl-methacrylate. Pressure were sufficiently high to cause debonding.

Some difficulties arose in comparing theory and experiments. The theory
was based on the assumption of total debonding. However, the experimental
results indicated signitficant bond strength. After they modified the
theoretical results by an empirical correction to calculated wave speed,
quite reasonable agreement was obtained. The theory presented is unsatis-
factory in several respects as they admitted.

Baldwin and Sierakowski [Bd4] investigated the uniaxial static and
dynamic fracture characteristics of a composite material consisting of an
aluminum matrix, A-}3 casting alloy, and stainless steel fibers, type 304.
Dynamic compression specimens loaded parallel to the tfiber direction failed
by tilament buckling, while loading transverse to the filaments produced

fiber matrix debonding. The composite system tested did not exhibit any

rate-sensitivity in its failure characteristics,
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V. COMPARISONS AND_ RECOMMENDATIONS

V.1 Comparisons of Various Theories

The effectiveness and the applicability of a theory depend on the kind
of solution one is looking for. A theory may be very effective in finding
the solution to some aspects of wave propagation but is totally unsuitable
for finding the solution to other aspects of the wave phenomena. The applica-
bility of a theory, in most instances, reflects the assumptions made in the
theory. In comparing the applicability of various theories, we will discuss
some of the better established theories as to what limitations and assumptions
are imposed on the theory, and the merits and drawbacks of the theory. In
particular, we will look at the following questions: Is the theory applicable
to nonlinear composites and non-periodic composites? Can the theory be easily
used for solving the transient problems? How good is the approximation and
how difficult is it to include the higher order terms to get a better approxi-

mation?

V.1.1 Effective modulus theories

In the effective modulus theories, a composite is replaced by an aniso-
tropic linear solid whose static responses are equivalent to the macroscopic
responses of the composite. The relations between the macvoscopic stresses
and strains are derived solely on the bases of static loading. With the
effective modulus theories, the wave speeds in a composite are independent
of the frequencies. Therefore, the dispersion phenomena observed in the
experiments are not predicted by the effective modulus theories. Consequently,
the theories are totally inadequate for predicting the dynamic responses of a
composite. .

For the static response of a composite, the effective modulus theories

are quite adequate. The theories can be, and have been, applied to nonlinear
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composite materials such as elastic-plastic composites. There is no reason

why the theories cannot be extended to non-periodic composites, although the
analyses would become complicated. In most effective modulus theories, the

ratio of the micro-dimension to the macro-dimension is not critical. The

theories are exact regardless of the ratio.

V.1.2 Effective stiftness theories

There are two crucial steps in the effective stitfness theories. We
will use the bilaminates as an example. Firstly, the displacements within
each layer is expressed in a Taylor series (or other polynomials) about the
midplane of the layer. The coeftficients of the series are therefore defined
only at the discrete points, the midplanes. The continuity of displacement
at the layer interface yields a finite difference equation. With the assumed
displacement field, one obtains the strains, strain energy and Kkinetic energy
in each layer. The second important step is the smoothing operation in which
the functions previously defined only on discrete points are extended to
defined for all points. This is accomplished by taking a weighted average of
the strain energy in the layers. Assuming the smallness of the layer thickness,
the continuity condition is rewritten in a differential form and hence a con-
tinuum theory is developed.

Application of Hamilton's principle is to obtain the best approximate

solution for the assumed displacement field. This results in a system of

differential equations for the displacement in the composite.

The accuracy of the theory depends on the series expansion of the dis-
placement in the layer which in turn depends on the thickness of the layer.
Higher order approximation can be obtained but one has to do the entire

derivation from the very beginning. Application to transient problems is a
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matter of solving the system of differential equations and there are 12 of
them for the lowest order of approximation. Since the basic elements in
the theory are the assumption of the displacement field, smoothing operation,
and application of Hamilton's principle, the theory can be, in principle,
extended to nonlinear system. However, solviag 12 nonlinear differential
equations is not a simple matter.

Application of the theory to non-periodic composites is not possible.
However, the theory can be applied to periodically layered composites in

which each unit cell consists of more than two dissimilar lavers.

V.1.3 Theory of interacting continua

In the theory of interacting continua, not only the displacement, but
the stress also are expanded in a power series in space variables about the
midplane of each layer. Instead of using the Hamilton's principle to obtain
approximate differential cquations for the coefficients of the power series,
the entire power series for the displacement and the stress are substituted

into the equation of motion and the constitutive equation to obtain differen-

tial-recurrence relations for the coefficients of the power series. Therefore,

coefficients of the higher order power are expressed in terms of the coeffi-
cients of the lowest order power in the stress and the displacement. The
original power series expansions are rewritten in series of time differen-
tiation of the coefficients of the lowest order expansions. Application ot
the continuity in stress and displacement at the laver interfaces vields
four differential-difference equations for the stress and displacement

at the midplanes of the two-lavered composite. The finite difference

in the differential-difference equation contains the thickness of a

unit cell in the composite. The assumption of smaltlness of




the thickness allows one to expand the difference equation in Taylor series
and one has four partial-differential equations of infinite order.

As it turns out, each differential operator is accompanied by the param-
eter ¢ which is the ratio of the thickness of a unit cell to the typical
macro-dimension . Morveover, the differential operators are all of even
orders. The zero order approximation yields the effective modulus theory.
The first order theory (which is first order in ¢ and couid have been called
second  order) yvields a result somewhat better than the etftfective stiffness
theory. This is not surprising since the first order (¢?) theory takes into
account the continuity in displacement and stress at the layer interface
wherecas the tirst ovder theory in the effective stiffness theory takes into
account the continuity in displacement only, Presumably, one could develop a
second order effective stittness theory which will be equivalent to the first
order theory of interacting continua.

The theory of interacting continua has many useful features. Firstly,
the improvement of the accuracy by including the higher order terms is ecasier
to accomplish. For the bilaminates, in particular, we have an explicit
closed-form expression tor any order ot accuracy we wish to obtain by using
Eq. (32) derived on p. 13. Sccondly, this theory can be used either for a
steady state vibration of the composite or tor a transient rvesponse of the
composite. Thirdly, at least tor the bilaminates, the exact frequency equa-
tion is readily recovered from the theory.

There is no reason why the theory cannot be extended to nonlinear
composites. However, it would certainly become unwieldy it an order of higher
than the first one is attempted. As in the effective stiffness theory,

application to non-periodic composites is not possible.
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V.1.4 Mixture theories

In the mixture theories, the constituents are assumed to coexist and
are allowed to have an independent motion, even though perfect bonding between
the constituents is understood. The assumption on the relative motion of
the constituents is the crux of the theories and is also the main roadblock
for improving the accuracy of the theories. Although satisfactory results
are obtained for harmonic waves in a simple bilaminate, the problem of assuming
a suitable interaction between the laminates still remains.

Mixture theories can be applied to both harmonic waves and transient

waves. Extension to nonlinear composites is possible but again the diff.culty

lies in defining the interaction between the constituents.

V.1.5 Other theories

There are other less widely used theories which we will not compare in
detail here. However, a few words about the Floquet theory and the varia-
tional techniques are in order.

Floquet theory applies to a system of linear differential equation with
coefficients which are periodic tfunctions. Therefore, it can be readily
applied to composites whose constituents are arvanged periodically. The most
one can get from applying the Floquet theory to a composite is the form of a
steady wave train propagating in the composite and the relation between the
frequency and the wave number of the wave train. For a transient wave, one
has to superimpose wave trains of all frequencies to achieve the specified
initial and boundary conditions. Therefore, Floquet theory is most convenient
for solving steady state motion in linear, periodic composites. 1t is not
suitable for transient wave motions except when only an asymptotic solution

for large time is desired.
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In variational techniques, the governing differential equations for
wave motions in a composite are written in a tform of integrals such that,
by setting the first variation of the integrals to zero, one recovers the
governing equations. The form of the integrals is not unique, and hence
some variational methods are more effective than others. Unlike the Floquet
theory, variational methods are not limited to linear systems, although in
literatures they are applied mostly to linear composites. Even for linear
composites, variational techniques 2ve used for solving steady-state vibra-
tions only. Applications to transient problems are possible theoretically
but impractical. Some of the difficulties in applying the variational
principles are the assumption of the test functions and how one chooses the
next improved test functions. Therefore, the choice of test functions
requires subjective judgements except in simple cases where the judgements

are trivial.

V.l.6 Concluding remarks

Although various theories are available for treating linear, periodic
composites, they can be cquivalent to one another if a proper assumption is
made in each theory. An example was given by Hegemier (H11] in which he
showed the equivalence of the modified first order theory of interacting
continua to the binary mixture theory for waves propagating normal to the
layering of a composite. By combining the equations for the momentum and
the constitutive relation for a layered composite, he obtained the constitu-
tive equations in binary mixture form in which the "interaction'" term for
the mixture theory was deduced.

One can also compare various theories by looking at the frequency

cquations of cach theory. 1t should be noted, however, that if a theory
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is a tirst order theory, one can only look at terms which are of first
order. It does not make sense to include the higher order terms for com-
parison when the theories are of first order. For instance, for harmonic
waves propagating normal to the layering of a composite, the first orvder
frequency equation based on the theory of interacting continua can be

obtained from Eq. (20) on p. 12 as

(1 ~n:€:k)] wi ER —b262k3c;)c; = 0 (59)
where cp, K denote non-dimensional phase velocity and wave number,
respectively, and €, s, b: are defined in Eqs. (23) and (27). Equation
(59) provides ¢

% as a function of e“k”. If we assume that

e =) ~ Akt « 0 (60)
P
it can be shown that, by substituting Eq. (00) into (59) and equating the

coefficients of same powers in gk,
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where use has been made of Eq. (27). To compare Eq. (060) with the frequency
equation based on effective stiftness theory (SI8], we rewrite Eq. (82) of

[S18] in the following form by using the non-dimensional notations emploved

here

2 2 (2] A1) X ogns® o
1 1 G ey o sz Lo s Lo 1), (1)7,(2) c*k‘lc“
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In Eq. (02), the matrix layer and the reinforcing layer are denoted by
superscripts (1) and (2), respectively, and K is defined by Eq. (23).

Again, assuming that c; is given by Eq. (00), one obtains
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Since this is not the same as Eq. (61), the first order theory of interact-
ing continua and that of effective stiffness are not equivalent. However, )
one could make the two theories equivalent if, in the effective stiffness
theory, a different assumption than that of [S18] is made on the smoothing
operation in which the weighted average of strain energy and kinetic energy
were calculated. One could also make a different assumption on the dis-

placement field in the layers.

A remark on higher order approximation should also be in order. For the
theory of interacting continua, ,the frequency equation for higher order appro-
ximation is obtained by adding terms of (ek)“, (ek)®,.. in Eq.(60) without

changing the coefficient of the first order term given by Eq. (61). For

the effective stiffness theory, a second order approximation studied in [D12]
appeared to have changed the coefficient A given by Eq. (63) to that given
by Eq. (61) because the frequency curve of the second order appeared to have
the same curvature as that of the exact solution at k = 0.

In summary, it is seen that the differences in the theories are (a) the
assumptions made, (b) the ease in improving the accuracy, (c) the ease in
solving transient problems and (d) extensions to nonlinear and non-perioaic

; composites. The theory of interacting continua seems to be the best among
all theories when all merits and drawbacks are taken into consideration.
This, of course, does not mean that one should use the theory of interacting

continua for all problems.

V.2 Recommendations

V.2.1 Linear composites

For the response of composites whose governing differential equations

are linear, the various thcories presented here are adequate for predicting

s AR B bt TS
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the first mode frequency equation. For the transient problems, the theories
are also adequate for predicting the head-of-the-pulse propagation at large
time and at lavge distance from the point of impact. The theories are in
general less successtul in predicting, say, the space-wise stress variation
at any fixed time. In particular, the stress near the impact end and at
points which are at finite distance from the impact end has not been predict-
ed satisfactorily by any of the existing theories. It is felt that a theory
based on viscoelastic analogy between an elastic composite and a viscoelastic
solid may be able to accomplish this objective. The approach may predict

not only the short-time response but also the long-time head-of-the-pulse

response.

V.2.2 Nonlinear composites

Although some attempts have been made to analyze the dynamic response
of nonlinear composites, there seems to be no theory available which can
predict the transient response of nonlinear composites satisfactorily.
Unlike for linear composites, improving the accuracy of an existing theory
for nonlinear composites presents another difticult problem. The difficulty
of analyzing the transient response of a nonlinear composite can be illu-
strated by considering wave propagation normal to the layering of a
bilaminate due to a step normal load on the surface of the composite. For
this simple one-dimensional problem, the waves in the first layer after
the application of the normal load will be simple waves or a shock wave
depending on the stress-strain relation of the laver. Assuming that the
waves are simple waves, the reflected waves from the interface boundary
between the first and the second laver will be an unloading wave which may

generate a shock wave.  The waves transmitted to the second layer will be




simple waves. As one can see, the solution is already complicated enough

after the first reflection and transmission. For a composite which contains
many layers and hence will have multiple reflections and transmissions, any
attempt to solve the problem exactly or nearly exactly is not likely to
succeed.

What approaches one should use to solve nonlinear composite problems
require further investigations. It seems that the first problem one should
study is the one-dimensional waves propagating normal to the laverings of
a nonlinear elastic bilaminate. Clearly, the shock waves within each layver
have to be smoothed out so that only the macroscopic response is obtained.

If elastic-plastic materials are used in the layerings, one has the additional
difficulty of tracing the unloading and reloading boundaries. As in the case
of linear composites, a theory based on nonlinear viscoelastic modeling of
nonlinear composites may prove to be the most practical approach for solving

transient wave problems in nonlinear composites.
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