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Abstract

This report investigates forms of the state noise
covariance matrix in the Kalman Filter. This matrtx, de-
noted gd. incorporates the effects of random errors driving
system dynamics into the filter computations. The gd
matrix is derived by integration from the matrix of contin-
uous time driving noise strengths, which normally includes
only diagonal terms. This often leads to use of a diagonal
gd matrix with constant terms. However, the derivation
shows that gd should have off-diagonal and time varying terms.
The study investigates the effects of including such terms
in gd. Three alternate forms of gd are derived for a speci-
fic inertial navigation system. These, and a standard dia-
gonal form, are tested using a covariance analysis. The
results show little difference in performance for the dif-
ferent filters. This is attributed to two primary factors:
highly accurate external measurements, and the use of inte-
gration sub-intervals for covariance propagation. These
sub-intervals generate appropriate off-diagonal gd terms
when a diagonal form of gd is used over each sub-interval.
This suggests that an appropriate form of non-diagonal gd.
which would not have to be added in at each sub-interval,
could significantly reduce Kalman Filter computation require-
ments. Specific additional studies to test this possibility

are suggested,

ix
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STATE NOISE COVARIANCE COMPUTATION IN THE KALMAN FILTER

[. Introduction

Problem Statement

The Air Force mission requires aerospace vehicles with
highly accurate navigation systems. To achieve the re-
quired accuracy, these systems typically include two or
more separate navigation subsystems. The usual combina-
tion consists of an inertial navigation system (INS) and
some external measuring device or devices such as Doppler
Radar, Tactical Air Navigation (TACAN), a barometric alti-
meter, or a Global Positioning System (GPS) receiver. By
properly combining the information from these different
measurements, the onboard computer can generate navigation
data which is more accurate than that supplied by any
single instrument alone. A widely used a]goritﬁm for com-
bining this information is the Kalman Filter.

In theory, the Kalman Filter is exactly defined by a
mathematical model which describes the behavior and perfor-
mance of the vehicle and its navigation systems. This
"truth model" includes a large number (typically 50-100) of
individual variables or "states", including components of
position and velocity, INS platform angles, gyro drift
rates, and measuring instrument biases. In most applica-
tions, states such as position and velocity exhibit non-

ltnear behavior. In order to keep the truth model linear,
1




— T ————

these states are modeled as linear perturbations about a
known nominal path, These "error states" are used in the
model for this study.

In practice, a Kalman Filter based on this complex
truth model would require computer resources (memory space
and processing time) far beyond the capacity of any airborne
computer. Thus, the task of the designer is to introduce
approximations to the truth model in order to meet practi-
cal constraints, while maintaining sufficient navigational
accuracy.

Objectives

The purpose of this study is to examine one specific
type of approximation which is widely used in Kalman Filter
design. This approximation deals with the computation of
the strength, or covariance, of the state noise (also
known as dynamic driving noise or system noise) in the fil-
ter computations. This noise determines how fast the uncer-
tainty in the vehicle state increases between navigation
measurements. In many applications which use a discrete
time form of the Kalman Filter, this matrix is approximated
as a diagonal matrix with constant terms, Individual ele-
ments are adjusted for good filter performance through a
tuning process.

However, examination of the truth model equations show
that the state noise covartance matrix should include off-
diagonal terms and vary with the vehicle state, This study

attempts to determine the effects on filter performance of
2
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restoring off-diagonal and state dependent terms to the
state noise covariance matrix.

Study Approach

e — N S

The study tested several alternate forms of the state
noise covariance matrix. These matrices were assigned type
numbers in order of increasing complexity. The forms
tested were:

Type 1 - Diagonal, with constant terms (standard type).

Type Il - Full (including off-diagonal terms), but
still constant.

Type IIl - Full, with state dependent terms derived
directly from the truth model by an approximate
numerical integration technique.

Type IV - Full, with state dependent terms analytically
derived to approximate the performance of the truth
model.

To evaluate these alternatives, a specific system was
tested. The system chosen consisted of a fairly typical
inertial navigation system aided by a barometric altimeter
and a GPS receiver. The truth model for the baro-inertial
system was developed by Widnall and Grundy (Ref 1). Myers
and Butler (Ref 2) modified this model to incorporate the
GPS measurements. The filter model was derived directly
from the truth model by deleting all but the first 16 of the
52 states (see Appendix A). Kalman Filters based on each of

the proposed noise matrix types were then designed.
3




Each of the proposed filters was tuned to give good
performance over a chosen flight profile., The covariance
of the true error in the estimation of the primary naviga-
tion states (position and velocity errors) was then com-
puted for each filter. This type of testing 1s termed a
"covariance analysis". The error covariance results serve
as the primary criterion for comparison of the proposed
filters. Another criterion is the relative burden (number
of computations and storage space required) which each
places on the airborne computer,

Assumptions and Limitations

As mentioned above, the system tested in this study
uses error states to maintain linear truth and filter
models. These errors are modeled as linear perturbations
to the states about a nominal path. In order to keep the
assumption of linear perturbations as accurate as possible,
a new nominal path is normally computed each time a measure-
ment is incorporated. A Kalman Filter using these techni-
ques is termed an Extended Kalman Filter. This filter uses
the values of the errors which 1t computes for each exter-
nal measurement to reset the INS.

The covariance analysis used to evaluate the filters
in this study works in theory only for a linear Kalman Fil-
ter and a linear truth model., As described in Chapter IV,
it does not supply external measurements which the Extended
Kalman Filter could use to compute a new nominal path., In-

stead, it supplies a precomputed nominal path to the filter




throughout the flight. Thus, errors in computation of the
nominal path by the filter cannot degrade the performance of
the filver in a covariance analysis, as they would in actual
implementation. Therefore, the covariance analysis presents
only a limited indication of the performance of each filter.
This type of analysis was judged to be adequate for this
study for reasons given in Chapter IV.

Several other assumptions and limitation are signifi-
cant in this study:

1. It was assumed that the Global Positioning System
satellites always maintain the same positions relative to
the aircraft. The extra program logic to propagate satel-
1ites and periodically select a new set for measurements
would have greatly increased computation requirements and
is not relevant to the problem being studied. A single
case of satellite geometry was computed for a randomly sel-
ected time and then used throughout the study.

2. The truth model as obtained from the Air Force
Avionics Laboratory contains known anomalies in the vertical
channel (altitude error, vertical velocity error, etc.)
which can cause errors in that channel to become excessive.
These errors were corrected by Intermetrics, Incorporated
under an AFAL contract (Ref 3), but the corrected model was
not available in time for this study. Some simple correc-
tions were applied in the Filter tuning process to obtain
a workable model. Because of this limitation, vertical

channel states were not tuned and evaluated as critically

o — — e e

e

T —

e e e S




as horizontal channel states in the study.

3. Exhaustive fine tuning of the filters was not con-
ducted. No performance requirements are available for the
filters, so it is impossible to determine what performance
is "adequate". The important factor here is the relative
peformance of the filters based on each of the proposed
state noise computations. This can be evaluated with only
reasonably good tuning.

4. Numerical problems which often occur in Kalman
Filters due to finite computer wordliength were not considered.
The CDC Cyber computer used for the simulations provides
very high precision (60 bits), so roundoff and truncation
problems are not significant. This is not the case for an
airborne computer, so these problems would have to be
studied for an actual application of the proposed computa-
tions.

Overview

Chapter II of this report presents the mathematical
background for the problem. Chapter III shows derivations
for the four models to be tested. Chapter IV describes the
testing method and the test parameters which were used.
Chapter V presents the test results and an analysis of

these results. Because the truth model and filter model




I1I. Theoretical Background

Introduction

This chapter presents the context of the problem being
studied. It introduces the notation used and the theoreti-
cally correct state noise covariance computation. Then it
discusses the need for approximate computations, and some
available approximations. The specific approximations to
be tested are described in the next chapter.

The purpose of this chapter is not to derive the equa-
tions rigorously, but only to depict them and explain their
context. The equations and notation are taken from Refer-
ence 4, Chapter 4.

Kalman Filter Formulation

In order to discuss the Kalman Filter in detail, some
vector and matrix notation is needed. An underscored upper
case letter, A, indicates a matrix. An underscored lower
case letter, x, indicates a vector. A matrix element is
depicted as an upper case letter with indices enclosed in
parentheses, e.g. P(5, 5). A time derivative is denoted by
a dot above the quantity, e.g. i. A superscript T, as in
QT, indicates a matrix transpose. A superscript -1 indi-
cates a matrix inverse, as in A'l.

A nonlinear, homogeneous state differential equation

can be written as

x(t) = f(x(t), t] (1)




where x(t) is the system state, including states such as
position, velocity, and INS platform tilt angles. It is
highly desirable to use a linear state equation for a
filter if possible. In many cases, equation (1) can be
linearized by changing x to "error states". Then the
states consist of linear perturbations to the above men-
tioned states about some nominal "path", X, - A linear
state equation can then be written for the errors about the

nominal path by computing

af[x(t), t]
X

(2)

F(t) =
x=x

_ n
Using this form, a class of stochastic processes can
be described by the continuous time, stochastic state dif-

ferential equation
x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (3)

where:

- x(t) is the system state. Since error states are
used here, x includes components such as position and velo-
city errors, INS platform misalignment angles, and measure-
ment instrument anomalies.

- F(t) is the plant or system matrix, as described
above.

- B(t) and u(t) are terms used to incorporate deter-
ministic control inputs.

- G(t) is a selection matrix for stochastic driving

nojses.




- w(t) is a vector of zero-mean, white Gaussian nofses
which drive the system.

External measurements are available to the system at
discrete sample times. These imperfect measurements, 2z,

can be described as
l(ti) by ﬂ(tf)l(ti) + !(t1) (4)

where H is a selection matrix of the states in the measure-
ment and v is a zero-mean, white Gaussian noise.

A white noise can be described as a random process for
which there is no correlation in time between subsequent
samples; i.e., the process can go from a known value at a
given sample time to any other possible value at the next
sample time, no matter how close together the sample times
are. A Gaussian noise is one whose joint probability dis-
tributions are Gaussian. White Gaussian noise is character-

ized by two parameters, the mean and the "strength":
E(w(t)) = 0 (5)
E(w(t)w'(t')) = Q(t)s(t-t") (6)

where

£ 1s the expectation operator,

§ is the Dirac delta function.
Thus, w(t) is described as a "zero-mean, white Gaussian
noise of strength Q". Similarly, the discrete time noise

v(t) 1s described by its statistics:
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E(v(t)) = 0 (7)

E(v(t)v(T(t))) = R(ty) for t, = t,

= 0 for t, # ty (8)

Then !(ti) is described as a "zero-mean, white Gaussian
noise of covariance R".

In this thesis, the effect of deterministic control
inputs is ignored, so B(t) and u(t) will no longer appear. f
Because of the driving noise w(t), x(t) is a random process.
Under the assumptions that equation (3) is linear in x
(i.e., that F is not a function of x), w(t) is a white

Gaussian noise, and x(t) can initially be described as a

Gaussian random variable, it can be shown that x(t) will al-
ways remain Gaussian (Ref 4:4-22). These assumptions all
hold for equation (3), so the system error state, x, is
modelled as a Gaussian random variable.

A Gaussian random vector variable x is described by
two parameters - the mean, m , and the covariance matrix
P. Heuristically, the mean is the average or "expected"
vaiue of x, and the covariance is a measure of the spread
of possible x values about the mean. For a Gaussian random
variable, the mean value corresponds to the mode, or the
most likely value of x. The Kalman filter uses the mean as
its estimate, denoted‘g, of the state x.

When a measurement is processed in a Kalman Filter,

the result is the best obtainable state estimate relative

10




to a wide range of criteria (Ref 4: 5-49 to 5-54), so the ;
( covariance is relatiyely small. As the vehicle moves away
from the measurement time, uncertainties build up in the
f states, so the covariance grows. The filter propagates the
state estimate, i, and the covariance matrix, P, forward in
time. When a new measurement is processed, the filter must
combine the measurement information, z, with the propagated
state estimate, denoted 3-. In effect, the filter computes
a weighted average of i- and z, using the propagated state

covariance matrix P-, and the measurement covariance matrix

R, as weighting factors. The updated state estimate and
covariance are denoted as £+ and £+. Thus, there are two
basic computations performed in a Kalman Filter: propaga-
tion of the state estimate and its covariance in time, and
incorporation of a measurement to update the state estimate
and covariance. The time propagation equations are of pri-
mary 1ﬁterest in this study.

Propagation of the state estimate is based on equation

‘ (3). This solution is facilitated through the use of a

state transition matrix, ¢, defined by:

d(t, ty) = E(tlelt, t) (9)

0

alty, tol = L (10)

where I is the identity matrix. o(t, t,) describes the
change in the state x, between times t and t for the homo -

geneous system, If F(t) is a constant, then ¢(t, to) 1s a

11
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function only of the elapsed time t-to. and not of the
particular values t and ty- In this case, ¢ is often
written as d(t-t ) or o(at). !
Using this state transition matrix, the propagation
equations for the Kalman Filter can be derived. The

results are:

_;i-(ti) 'Q(ti' t1_1)£+(t1_1) (11)
P = ety ty ) PRt p) el by )

+ri ety 0 (NG (e (8 1) d (12)

The equations for a measurement update use the values

of P* and R to compute a gain matrix, K, for measurement

time t, :
K(ty) = Pt R (L) IH(E P (L IRT (L )*R(E,)7E (13)

This gain matrix is then used to compute the updated values

of the state estimate and covariance as follows:

xt e xT o+ K(z-HxT) (14)
PP =Pt - KHPT (15)

(The time indices t; are omitted for convenience.)

The primary ourpose of the filter is to keep track of
the state estimate, g; In order to do this, it must also
keep track of the covariance, P. As equations (13) and (14)
show, accurate evaluation of P is critical in computing the

state estimate. Thus, proper evaluation of equations (12)

12
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and (15) is very important in achieving good Kalman Filter
performance.

Kalman Filter Implementation

A typical truth model for an aerospace aided interial
navigation system contains 50-100 states. Thus, the
matrices of equations (3) to (15) are of dimensions as
large as 50x50 to 100x100. The computer resources to store
and manipulate such large matrices are simply not available
in the airborne computer. Many simplifications and approxi-
mations to these models can be made, often with only a very
slight performance degradation. Some of these implementa-
tion techniques will be discussed here.

Of the 50-100 states in the truth model, some are more
important than others. The position and velocity states
are of direct interest to the user, since that is what a
navigation sytem is supposed to tell him. States such as
gyro drift rates and accelerometer misalignments are only
of interest when they help %he navigation system to obtain
better position and velocity estimates. Many states which
have only small effects on navigation performance can be
combined or dropped from the model. This simplified "fil-
ter model" typically contains 10-20 states.

The theoretical and laboratory analysis of a system
ylelds an accurate sysfem model in the form of equation (3),
1.e. involving an F matrix rather than a & matrix. The Kal-
man Filter is based on the ¢ matrix, which can be derived

from F. The solutton to equations (9) and (10) is very

13

§
i

T —




time consuming to generate on line. If the F(t) matrix is
slowly varying, then for a At that is small compared to the
time constants of the system, the solution to equations (9)
and (10) can often be approximated to sufficient accuracy
by g(ti+At, gyl 1 @ E(ti)At.

Using this approximation, equation (3) can be written
in discrete time difference equation form (ignoring deter-

ministic inputs) as:
x(i+1) = o(i+1, 1) x(i) + !d(1) (16)

where i and i+l indicate consecutive instants of time At
seconds apart. The Wy term is the discrete time equivalent
of the white Gaussian driving noise w in equation {3). It
is zero-mean, white Gaussian noise of strength Qq- The sub-
script "d" serves to distinguish gd and Wy from their con-
tinuous time counterparts. The primary impact of this
change on the Kalman Filter equations is in equation (12),

which becomes
P(1+1) = o(i+1, 1) P(1)eT(1+1, 1) + Q (4) (17)

The first term in this equation is the same as before.

From equations (12) and (17), it can be seen that
t Byl
Qq(i) = ft: lg(ti, 1)G(r)Q(r)6 (r)a'(ty, t)dr (18)

The purpose of this study is to investigate some techniques
for evaluating this Q4 term. From equation (17), it 1is

clear that this term directly affects the covariance

14
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computation, which was seen to be important for accurate
state estimation in equations (13) and (15). Thus, numeri-
cal computation of gd directly affects the performance of
the filter.

A direct evaluation of gd by solution of equation (18)
is not appropriate for two reasons. First, this would pre-
sent an excessive computational burden to the airborne com-
puter. Second, and a more basic problem, is that this will
not give a correct result for a reduced order filter model.
Many important states in the truth model are affected by
the driving noise only indirectly, through other states.
For example, the driving noise may cause the position error
covariance to grow by increasing the uncertainty in velo-
city, which is integrated to compute position. In other
cases, the best available model for a driving noise may be
a time correlated noise. This can be incorporated in equa-
tion (3) by adding another state to x, driving that state
with white noise, and then driving other states with that
state (this is called a shaping filter (Ref 4:4-80)). When
such states are removed to obtain the reduced filter model,
some sources of uncertainty are also removed. The direct
evaluation of equation (18) to obtain gd in this case would
model a time correlated noise as zero, which is clearly
incorrect.

The designer compensates for this by adding so called

"pseudo-noises" to the gd matrix in the Kalman Filter.

15
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These are whi:2 noises with strengths chosen to approximate
the error contributions of the discarded states.

The usual technique in Kalman Filter design is to
treat all of the noises as independent, discrete-time
pseudo-noises. Thus, gd is approximated as a diagonal
matrix of constant terms, with one entry for each indivi-
dual state. Through some type of performance evaluation,
such as a covariance analysis or a Monte Carlo analysis as
described in Chapter IV, the designer tests and adjusts the
individual noise terms to obtain the best possible overall
performance from the filter. This process is known as
"tuning" the filter.

This type of filter design minimzes the computational
burden of covariance propagation, since gd is precomputed

and only one number must be stored for each state. The pur-

pose of this study is to determine whether some alternative
gd evaluations can give better navigation performance with

an acceptable increase in computer loading. The specific

alternative forms for Q, are derived in the next chapter.
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III. Proposed State Noise Covariance Computations

Introduction

In the last chapter, the basic Kalman Filter equations
were presented. The need for an accurate state noise co-
variance matrix, Q,, was shown, and the usual diagonal form
of the matrix was described. The purpose of this study is
to evaluate some alternatives to this standard form. This
chapter shows why some different computations might be
expected to give better performance. Then it derives the
four types of state noise matrices to be evaluated. These
were listed in Chapter I in order of increasing complexity.
The type numbers assigned there will be retained, but they
will be described here in a more developmental order. The
full gd matrix with constant terms (Type II) is derived
from the time varying types (Types IIIl and IV), so it is
discussed last.

Need for Alternate State Noise Computations

Recall the defining equation for the discrete time

state noise covariance matrix:
t ¥ T )
Qa(ty) = g1 elty DENAUNET(DLT(ty, ldr (18)

The simplest approximation to this integral results from a
first-order, Euler Integration of equation (18). Then G(t)
g(t)gT(t) is treated as constant in time and o(t,, t, ,) is
approximated as I. Then gd is computed as EQJTAt. Thus,
only if gggT has any off-diagonal terms will gd have off-
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diagonal terms. Physically, this would mean that the same
noise source affects more than one state. Such noises are
generally removed from a model by choosing the geometry of
the model properly to avoid such direct noise correlations.
Thus, this type of computation normally results in a dia-
gonal gd matrix.

A more accurate evaluation of equation (18) can be ob-
tained by letting ¢, and possibly QQQT. vary with time.
Trapezoidal integration can then be used (Ref 4:6-113) to

obtain

Qq(t) = 1/2[0(t+at, t)G()Q(L)GT(t)oT (teat, t)
+ G(t+At)Q(t+at)a (teat)]at (19)

In this form, it can be seen that even when QQQT is a dia-
gonal matrix, gd will have off-diagonal terms due to the
generally non-symmetrical nature of the & matrix.

If the first-order approximation for ¢(t+At, t) of
I+F(t)At is substituted into equation (19), the off-diagonal
terms in Q, can be seen to come from the F(t)Aat term in
?(At). The usual justification for omitting these off-dia-
gonal terms is that the integration step size (At) is small
enough that the contribution of the F(t)At term in equation
(19) is negligible. However, if the integration step size
ts increased (e.g., in order to reduce the number of compu-
tations required between updates), these terms will become

more significant.
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If F(t) is computed as a function of a nominal state,
Xy (as in equation (2)), then the terms in gd will also
be state-dependent. Furthermore, certain states in the
truth model cause uncertainties in other states to grow at
different rates as a function of the state. Some of these
states are discarded in the filter and replaced with

2-sensit1ve

pseudo-noises. For example, g-sensitive and g
gyro drift rates cause the platform misalignment uncer-
tainty to grow as a function of acceleration. Use of a
constant value pseudo-noise for such states will either
overestimtate the uncertainty in low g situations or under-
estimate it in high g situations. A state dependent noise
matrix can compensate for this problem.

For these reasons, a full, state and time-varying gd
matrix might be expected to give a Kalman Filter the capa-
bility of achieving better navigation performance than
that obtained using the standard approximation. To test
this idea, three alternative forms for Q4 computation are
evaluated in this study. A standard gd type filter is used
as a comparison.

Type I State Noise Computation

Type I is the standard state noise computation techni-
que described briefly at the end of the last chapter. It
is included in this study as a baseline for comparison for
the results of the filters based on other proposed state

noise computation types.
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The Qd matrix in this filter is a diagonal matrix with
constant terms. Each term in this matrix represents the
direct effect of driving noise on one particular state.
These terms were adjusted to give good overall performance
through a covariance analysis program. This program is
explained in the next chapter. Basically, it uses both the
truth model and the filter model to provide a measure of
how well the filter is performing.

Tuning this type of filter tends to be an intuitive,
trial and error process. The designer may have to trade
accuracy in some states for more accuracy in others. Since
the states are highly interrelated, it is seldom clear what
the effect of changing one Qd term will be. In the models
used in this study, the most significant 16 states (Table
1) from a 52 state truth model (Table II) form the filter
model. Only four of these states contain driving noise in
the truth model, so 12 pseudo-noises had to be added and
tuned. The resulting tuned gd matrix terms are listed in
Table III.

Type III State Noise Computation

This alternative uses the results of a trapezoidal
integration to obtain a more complete gd matrix directly
from equation (19). The g(t)g(t)gT(t) matrix is taken
directly from the truth model. This matrix is in fact con-
stant in time, so it can be written as QQQT. The o(at)
matrix is approximated as I+F(t)At, using the F matrix from

the truth model. For each integration step, a value of
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Table I

Filter Model Variables

Basic Pinson INS Error Model (East-North-Up Cocrdinates)

1. 88X - Longitude Error I
2. &L -~ Latitude Error !
3. &h - Altitude Error |
4. GVE - East Velocity Error ;
9. 6VN - North Velcoity Error i
6. 6VZ - Vertical Velocity Error |
7. eg - East Component of Attitude Error |
8. eEN T North Component of Attitude Error §
9. €7 - Vertical Component of Attitude Error

Altimeter Error Model

10. eref" Altimeter Scale Factor Error

11. Ga - Vertical Acceleration Error Variable in
Altitude Channe)l

User Clock States for the GPS Receiver

12. ch - Clock Phase Error
13. 5"5 - Clock Frequency Bias

First Order Markov Model for Gyro Drift Rates

14. DXf - X Gyro Drift Rate
15. DYf - Y Gyro Drift Rate
16. DZf - Z Gyro Drift Rate




Table II

Truth Model Variables

Variables 1-16 are the same as the filter model variables
(Table I).

G-Sensitive Gyro Drift Coefficients

17. DXx - X gyro spin axis g-sensitivity
18. DX - X gyro input axis g-sensitivity
19. DY{ - Y gyro spin axis g-sensitivity
20. DY - Y gyro input axis g-sensitivity
21. o2¥ ~ 1 gyro spin axis g-sensivitity
2é. DZZ - Z gyro input axis g-sensitivity

G2-Sensitive Gyro Drift Coefficients
23. DXx - X gyro spin input gg-sensitivity
24, Dny - Y gyro spin_input g5;-sensitivity
25. Dlyi - Z gyro spin™nput g“-sensivitity
Gyro Scale Factor Errors
26. GSFx - X gyro scale factor error
27. GSF. - Y gyro scale factor error
28. GSF{ - L gyro scale factor error

Gyro Input Axis Misalignments

29. XG - X gyro misalignment about Y

30. XGZ - X gyro misalignment about Z :

3L. YGx - Y gyro misalignment about X H

32. YGz - Y gyro misalignment about Z !

33, ZGx - 1 gyro misalignment about X |

34. ZGy - Z gyro misalignment about Y g
Accelerometer Biases §

35. AB - X accelerometer bias J

36. AB, - Y accelerometer bias i

37. AB{ - 7 accelerometer bias i

¥

Accelerometer Scale Factor Errors

38. ASFx - X accelerometer scale factor error

39. ASF” - Y accelerometer scale factor error

40. ASF{ - I accelerometer scale factor error
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Table Il - Truth Model Variables - Continued

Accelerometer Input Axis Misalignments

41. XA - X accelerometer misalignment about Y

42. XA{ - X accelerometer misalignment about Z

43. YAx - Y accelerometer misalignment about X

44. YAZ - Y accelerometer misalignment about Z !
45, ZAx - I accelerometer misalignment about X !
46. ZAy - I accelerometer misalignment about Y

Barometric Altimeter Error
47. e - Error due to variation in altitude of a

po constant pressure surface. i
i

Gravity Deflections and Anomaly ?
48 § *= FEast deflection of gravity |

49. 69: - North deflection of gravity
50. ng - Gravity anomaly

Clock Errors

51. Gra - Clock aging bias
52. éru - Clock random frequency bias




Q(1,1)
Q(2,2)
Q(3,3)
Q(4,4)
Q(5.5)
Q(6,6)
Q(7,7)
Q(8,8)
Q(9,9)
Q(10,10)
Q(11,11)
Q(12,12)
Q(13,13)
Q(14,14)
Q(15,15)
Q(16,16)

The gd matrix is obtained by multiplying each of the above

Table III
Qd Values for Filter Type I

= 2x1071® (rad?/sec)
= 2x10°1% (rad?/sec)
1000 (ft%/sec)
= .01 (ftz/sec3)
= .01 (ft?/secd)

i

= .01 (ft/secd)

= 2.5x10-10 (rad®/sec)
= 2.5x10'10 (radz/sec)
= 2.5x10'10 (radZ/sec)
= 4x10°8 (1/sec)

= 5)(10'4 (ftz/secs)

= 400 (ft%/sec)

= 1x10710 (ft2/sec?)

= 5.86)(10'20 (radz/sec3)

0‘20

« 5.86x1 (rad?/sec?)

= 1.62x10°%7

(radzlsec3)

terms by At seconds.
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F(t) is computed for the starting value of X, as in equa-

\ tion (2), then F is assumed to be only a function of time.
The multiplication of equation (19) to be carried out is
then

Qq(ty) = 1/20(1+F(t)at)6QGT (1+F(t )at)T+6Q6"1at  (20)

This calculation was carried out for the truth model,
and the upper left 16x16 portion of the resulting gd matrix
was retained for the filter. The results of this computa-
tion are listed in Table IV (parts a and b).

As mentioned in Chapter II, this derivation does not

account for noises which are removed when states are re- E

moved from the truth model. Thus, pseudo-noises have to
be added to the computed results of Table IV. These pseudo-
noises have to be tuned for best performance just as in the
Type 1 filter.

Note that the only state dependent effect seen in
Table IV is from the wander azimuth angle, a. This indicates
that in a fixed azimuth system, a gd matrix derived in this
manner would be a function only of At.

Tuning of the Type III filter should be easier than
for the Type I because more of the driving noise has been
derived analytically. This leaves only a few states for
which pseudo-noises must be added to compensate for states
removed from the truth model. The final values of these

additional pseudo-noises are listed in Table IVc. Note
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Table IV a.

Qd Values for Filter Type III

Derived Diagonal Terms

Q(3,3)
Q(4,4)
Q(5,5)
Q(6,6)
Q(7,7)
Q(8,8)
Q(9,9)
Q(11,11)
Q(12,12)
Q(13,13)
Q(14,14)
Q(15,15)
Q(16,16)

where

Qg7°K}-0t?
035,(cos(a).At)2+Q36-(51N(0)'At)2*047'At2

035'(51n(a)'At)2+035-(cos(a)-At)2+Q49-At2

Q37854047 K3-atP 4050 2t

Qg (cos(a)+at)?eq - (sinfa)-at)?
014&(sin(a)-At)2+015-(cos(a)'At)z
Q)6 at?

Qq7°K5-at?

2:Q, %05, At
2

2

2:Q)4
2:Q)5

2:Qy6

- a is the wander azimuth angle of the INS platform

- KI'KZ’K3 are gains for the third order vertical

channel model.

- Qn is the value of Q(n,n) from the truth model.
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Table IV b.

gd Values for Filter Type III

Derived Off-Diagonal Terms

Q(3,6)
Q(3,11)
Q(4,5)
Q(6.11)
Q(7.8)
Q(7,14)
Q(7,15)
Q(8,14)
Q(8,15)
Q(9,16)
Q(12,13)

gd is symmetric, so the symmetric terms must also be added,

| AN 0(693)=Q(3i6)

= Kp*KpeQy,at

2

2
-K1~K300470At

sin(u)-cos(q)-(Q35-Q36)-At2
“Q47°Kp Ky at?
sin(a)-cos(a)-(QM-le)-At2
Qla-cos(a)-At
-015~sin(u)-At
014-sin(a)-At

Q5 cos(a)-at

Ry * &S

052°At2
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Table IV c.

gd Values for Filter Type III

Added Pseudo-Noises
-15

Q(1,1) = 4x10 ;
Q(2,2) = 4x1071°

Q(3,3) = Above term + 600

Q(7,7) = Above term + 5x10°8 |
Q(8,8) = Above term + 5x1078 |
Q(9,9) = Above term + 5x10°8

Q(10,10) = 8x10°8

Q(11,11) = Above term + 1x1073

Q(12,12) = Above term + 700

To obtain the final Qy matrix, add the pseudo-noises in
Table IVc to the computed terms in IVa and IVb and multiply
by at/2.
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that only nine pseudo-noises had to be added in the Type I

filter.
Type IV State Noise Computation

This filter is based on the work of Widnall (Ref 5,
Ref 6). He derived values for state dependent, on-diagonal
pseudo-noises based on an analysis of the true system equa-
tions (equation (3)). Rather than simply discard the ex-
cess states in the truth model when designing the filter
model, he lumped them all under the category of driving
noise. Then he determined the appropriate strength for a
single white Gaussian noise to simulate the result of
these separate noise contributions. For several of the
states, this had to be approximated in order to assure that
the noise contributions added in each integration step
would add up to the appropriate amount of noise for a com-
plete maneuver. For other states, the errors could come
from several sources, so the error source with the largest
covariance is selected. This technique was used to gener-
ate gd relations for states 4 through 11, and these are
listed in Table V a.

The remaining on-diagonal terms were filled in with
terms computed for the Type III filter gd matrix. An
examination of this matrix (Table IV) shows that many of
the off-diagonal terms can be computed as the product of
the square roots of the corresponding diagonal elements and
a fixed correlation factor. For the others, the correla-

tion factor varies as a function of the wander azimuth
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Table V a.
Qd Values for Filter Type 1V

Derived On-Diagonal Terms

0(4)4) = 2'V°Fs.(oMl)z/At+2‘TGE'(UGE)2
Q(5,5) = 2-V-F - (0y)2/0t+2 g (o)) °
0(656) = Z.V.FS.(OMI)Z

0(7’7) 7 Z‘V.FS.(GMZ)

a(8,8) = Q(7.7)
Q(9,9) = q(7,7)

= . . 2 . 2 2 . . 2
Q(10,10)= 2 §17 (017) +2 316(016) /hc+2+|h]| (016) /
(h~At)
M NS 2
0(11,11)‘ (OABZ) e (OGZ) /TGZ
where:
V = Path velocity at beginning of interval (ft/sec).
F. = Magnitude of the specific force vector in the hori-

zontal plane (ft/sec).
oM1 T Largest standard deviation among 3 accelerometer
scale factor errors and 6 gyro input axis misalign-

ment angles (8.73,)(10'lo rad.).
OM2 = Stangard deviation of gyro drift coefficient

(0.3%/hr/g)
Tee* TGN TGz T g;a¥i£% ?Comaly correlation times. Computed
DGE’DGN’DGZ = Grav?tyxdeflection correlation distances

(values: DGE=DGN=60,800 . ) DGZ=364,800 %)~

O aic s U nins = Standard deviations,of gravity,deflections
RESTARTTSL . fvalues: 46.377x30°7, 5.47x10° ", and
1.127x10 "ft/sec”)
1/correlation time for barometric altimeter bias
state due to weather effects (first order Markov
model). Computed as V/DALT; DALT=250 n.m.

916 = Standard deviation of altimeter bias (500 feet)

817 1/correlation time for altimeter scale factor error
- (1/7200 sec)

0y7 = ?tgg?ard deviation of altimeter scale factor error

At = Integration step size, seconds

h = Altitude, feet

B16
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Q(3,3)

Q(12,12)
Q(13,13)
Q(14,14)
Q(15,15)
Q(16,16)

Q(1,1) =
q(2,2) =
Q(3,3) =
Q(12,12) =

Table V b,
Q4 Values for Filter Type 1Y

Terms Copied from Type IIl Filter

Qqp K at? /2
Q05,0 At /2
Qg At2/2

Q4

Qs

U6

where terms are as defined in Table IV a,

Pseudo~Noises Added for Tuning

2x10~15 (radZ/sec)

2x10"19 (radZ/sec)

above term+300 (ftz/sec)
above term + 350 (ftz/sec)
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Table V ¢
Qd Values for Filter Type 1V

Terms Computed as Correlations of Diagonal Terms

Q(3,6) = VQ(3,3) xvQ(6,6) x [1]

Q(3,11) = VQ(3,3) x RTIL,TTJ x [-1]
Q(4,5) = 0

Q(6,11) = VQ(6,6) x VQ(11,11) x [1]

Q(7,8) = 0

o'(7.14) = VQ(7,7) xVQ(14,18) x [cos{a)N/?)
Q(7,15) = VQU7,7) xVQ(15,15) x [-sin(a) V2]
Q(8,14) = JU(8,8) xVQ(14,14) x [sin(a) V2]
Q(8,15) = VQI8,8) xV/Q(15,15) x [cos(a)/V2]
Q(9,16) = VQ(9,9) x VQ(16,16) x [1A/Z]
Q(12,13) = VQ(12,12) xVQ(13,13) x [1)

gd is symmetric, so, for example, Q(6,3)=Q(3,6). To obtain
gd from the given terms, multiply each term by At. (Note:
the correlation factors given here depend on the fact that
the truth model driving noise terms Q14 and Q15 are equal.
If they were not equal, the relationship between Qd(7,14).
Qd(7,15), Qd(8,14), and Qd(8,15) would be more complicated,

as can be seen from the equations in Table IV).
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angle, a. For example,

0 (3,3) = Qgy-KE-at?-(at/2)
Qq4(6,6) = 047'K§'At2-(At/2)
0 (3,6) = Q4pK; K eat?(at/2)

so that Q4(3,6) = v@,(3,3) xvVq,(6,6). In this case, the

correlation factor is 1. Similarly, Q,(8,15) =\/6;T€T§7 X
vﬁﬂ;fngTES x [cos (a)/ VZ), so the correlation factor is

cos (a)/ V2.

For the Type IV gd matrix, the off-diagonal terms were
generated from the on-diagonal values using these derived
correlation factors. These on- and off-diagonal terms are
listed in Table V c.

This type of filter still needs some tuning. The on-
diagonal states which were taken from the Type IIl Q,
matrix must be tuned as before. The final tuned values are
listed in Table V. The derivation of appropriate Qd values
has minimized the amount of tuning necessary for this
filter.

Type II State Noise Computation

This gd matrix is an attempt to incorporate some of the
effects of off-diagonal terms derived above with a minimum
impact on the computational burden which the Kalman Filer
imposes on the airborne computer. Thus, it includes only
constant terms, as in the Type I gd matrix, but adds off-

diagonal terms. This change could be implemented in an
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operational filter with only a few extra additions for each
propagation and a few extra words of storage.

In the derivation of the Type III gd matrix, 11 dis-
tinct off-diagonal terms found (there are 22 off-diagonal
terms, but gd is symmetric, so only 11 must be stored).

As can be seen from Table V, two of these terms have cor-
relation factors of zero, and two have correlation factors
of sin (a). Since these terms must be constant, it is
necessary to select a reasonable value for a. In many
applications, a is set to zero at the start of a flight,
and stays fairly close to zero, so a value of zero was
chosen for a. This also represents the effective value of
a for a fixed azimuth INS. This causes the correlation
factors sin (a) to go to zero also, so two more correlated
terms drop out.

This leaves a total of 23 parameters in the gd matrix:
16 diagonal terms and 7 distinct off-diagonal terms. To
minimize the impact of these extra terms on filter tuning,
the off-diagonal terms were not individually tuned. The
diagonal terms were varied in the tuning process, and then
the off-diagonal terms were computed using the correlation
factors derived from the Type III gd matrix (these are the
same correlation factors used for the Type IV matrix).

The final values of gd for filter Type Il are listed in
Table VI.
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Table VI a.
Qd Values for Filter Type I1I

Diagonal Terms

gli,1) = 2071 |
Q(2,2) = 2x1071® !
Q(3,3) = 1000

Q(4,4) = .01

Q(5,5) = .01 g
Q(6,6) s .0 f
Q(7,7) = 2.5x10710 |
Q(8,8) = 2.5x10710

Q(9,9) = 2.5x10°10

T

| Q(10,10) = 4x1078

§ Q(11,11) = sx107%

; 0(12,12) = 400
Q(13,13) = 1x10°10
Q(14,14) = 5.8x10720
Q(15,15) = 5.86x10" 20
Q(16,16) = 1.62x10" 17

Units for these numbers are the same as those in Table III.
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Table VI b.
Qd Values for Filter Type Il

Off-Diagonal Terms

Q(3,6) = VQ(3.3) xVQ(6,6) x [1]
Q(3,11) = VQH.” X\/th.lls X [=1]
Q(6,11) = VQ(6,6) xVQ(I1,11J x [1]

Q(7,14) = Q7,7 x VAIF, 18] x [14/7)
Q(3,15) = VOIS,8) x VA(I5,15) x [1A/7]
Q(9,16) = VAUI,9) x VQ(TI6,.18) x [1A/T)

Q(12,13) = VQU12,12) x VA(13,13) x [1]
gd is symmetric, so for example, Q(6,3)=Q(3,6).
Qd’ multiply each of the above terms by At.
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The method used for testing the Kalman Filters based
on each of these proposed state noise covartance matrices

{s described in the next chapter,




IV. Evaluation of Proposed Filters

Introduction

Previous chapters of this report introduced the Kalman
Filter, and discussed some of the approximations and sim-
plification techniques which are needed to make it prac-
tical. Particular attention was focused on the need for
an accurate computation of the driving noise covariance
matrix, Qd. The defining equation was shown and the usual
approximation was described. Then some alternate forms of
gd calculations were depicted.

In order to evaluate these alternative computations,
some method of assessing the performance of the resulting
Kalman Filters must be used. The best test of a filter is
to implement it in an airborne navigation system and gather
actual flight data. The cost of such testing is very high,
so it is generally limited to providing final performance
verification of filters which have already undergone exten-
sive testing. Thus, this study is limited to the use of
computer simulations for performance analysis.

This chapter describes the testing process used for
this research. It discusses the nature of the computer
simulation used and the reasons for the selection of that
type of simulation. 1[It describes the flight profile over
which the simulation was run, and the different parameters
which were used in testing. The test results and’analysis

and discussion of these results will be presented in the
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next chapter.

Covariance Analysis

There are two basic types of computer simulations
available for Kalman Filter testing. They are the covar-
iance analysis and the Monte Carlo analysis. Both depend
on the use of both the truth model and the filter itself
to analyze the performance of the Kalman Filter.

In a Monte Carlo analysis, the simulation run uses
the Kalman Filter just as it would be used in flight. The
computer uses a random number generator to generate the
driving noise for the truth model and presents appropria-
tely noise-corrupted external measurements, z, to the
filter. The filter generates a state estimate, g, based
on these measurements. Then these estimates are compared
with the true state values generated by the truth model,
and errors are computed. In order to have some confidence
in the statistical accuracy of these errors, several runs
must be made over the same profile to get a statistically
significant sample. Then the sample mean and the covar-
iance of the errors can be computed.

The Monte Carlo analysis provides an accurate test of
a Tinear Kalman Filter, or of nonlinear variants such as
the Extended Kalman Filter. However, for a long flight pro-
file, it takes an excessive amount of computer time to
generate statistically significant results. A faster simu-
lation is possible for some problems in the form of the

covariance analysis.
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The basts for the covariance analysis technique comes
from Kalman Filter theory and ltnear system theory, Under
the assumptions that the truth mode] ts a ltnear system
driven by white Gaussian noise, and the Kalman Filter fis
based directly on the truth model, it can be shown that
the covariance which the filter computes for the state
estimate is the same as the covariance which the ftlter
commits in estimating the state., It can be seen from
equations (12), (13), and (15) that this covariance, ﬁ;
can be computed for all time without knowledge of the
values of the measurements (note that z does not appear in
equations (12), (13) and (15)), Thus, the covariance ana-
lysis computes the covariance of the error in the state
estimates directly. There is not need for random number
generators to supply driving noises or for a large number
of test runs to generate valid statistics,

Practical Kalman Filters are based on a simplified,
reduced order model of the system, so the assumption that
the filter model accurately describes the behavior of the
system is not valid, Howeyer, in an off-line simulation,
both the truth model and the filter model can be used, In
this way, the actual errors committed by the filter in
estimating the state can be eyaluated (Ref 7),

Let the subscript "s" denote the system (truth) model
and "f" denote the filter model components, Then the error
committed by the filter ts stmply the difference between

the true state, xs, and the ftlter state estimate, xf
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Since these states are of different dimension, this is

{ written:

e(t) = x () - Txe (t) (21)

S

] )
k where € is an error vector and T is a transformation matrix '
from the true state to the filter state. A common for

T 18 [L:Q]T, indicating that the filter contains the first

n states from the truth model. The equations for propa-

gating and updating the covariance of this error, Ee’ can
be derived just as equations (12), (13), and (15) were de-
rived for the covariance estimate in the filter, Pe.

For the special case in which the models contain only

error states and an impulsive control is available to reset

all of the estimated errors to zero for each measurement,
these covariance eauations have an especially convenient
form. In this case, the error covariance, ge. satisfies the

same equation as the system covariance, Ps' The time pro-

o P o e

pagation equation for ge is equation (12) or (17). In
practice, the gain matrix computed by the filter, Ef, will 4

be used to update the state estimate, so it must be used to

update the truth model covariance. Thus, for a covariance
analysis, the Kalman Filter being tested must be used to !
compute the gain matrix through equations (12), (13), and

(15). Since 5f is not the same as the theoretically optimal

gain which a filter based on the truth model would compute,

the update equation for ge must be modified from the form

of equation (15). The result is:




] . T 77
.P_e = (.I.-Isfﬂs)?_e - (L-Isfﬁs) +I5f8 fI (22)

Thus, by using both the truth model and the filter
model, the covariance of the true errors committed by the
filter in estimating the state can be computed through the
use of equations (12), (13), (15), and (22). Note that
there is still no dependence on the specific measurements
g(ti) which the filter would receive. Therefore, it is
still possible to compute directly the covariance of the
error in the state estimate in a single simulation run.

The covariance analysis has several limitations. It
computes only the covariance of the errors, ignoring their
mean value. By the nature of its equations, sign errors in
the filter model matrices can go undetected. The most ser-
jous limitation is that a covariance analysis is theoreti-
cally correct only for linear Kalman Filter and truth
models. i

As described in Chapter II:Jthe filter in this study is
not strictly linear, but rather is an Extended Kalman Fil-
ter, which is linearized about a nominal path, Xpe In
actual use, a new nominal path would be computed after each
measurement incorporation. However, in a covariance ana-
lysis, there are no measurements available. Information
about some nominal path is supplied to the filter by the
covariance analysis program, but there is no way to assure

that the filter estimates would actually stay near. this no-

minal path.
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In & covariance analysis, the state dependent terms in
the model are always based on the nominal state, X+ In on-

line use, these terms must be based on the estimated state,

~

Xx. The difference between these two values of x can cause

the F(t) matrix, as evaluated in equation (2), to vary signi-
ficantly between the covariance analysis tests and on-1line
application. Thus, a filter that works well in a covariance
analysis may perform less well in actual use.

For this reason, a covariance analysis usually plays a
Timited role in the development of a Kalman Filter. It is
usually used for tuning because of its faster run time.

Once this tuning is completed, the filter is tested in a
more accurate way (Monte Carlo analysis and/or flight
testing) to assure proper performance. The covariance ana-
lysis results are viewed as a limited, initial indication
of performance. v

In this study, a covariance analysis is used because of
computer time considerations. Thus, the results presented
are limited by the problems noted above. However, the in-
tent of this study is to evaluate the relative nerformance
of the proposed Kalman Filters. Since the filters differ
only in the computation of the driving noise covariance
matrix, Rd’ nonlinearities and other unseen effects in the
covariance analysis are likely to be approximately the same
for all of them. Thus, the covariance analysis provides a

valid method for the required performance analysis.
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The covariance analyses for this study were run using a
computer program supplied by the Air Force Avionics Labora-

tory known as the General Covarjance Analysis Program (GCAP)

(Ref 7). This program provides utility subroutines for
storing and manipulating the truth model and filter model
matrices, covariance matrices, Kalman gain matrix, and so
on. The user supplies subroutines to read in his input
data, compute a nominal path, and compute the components of
his truth model and filter model matrices.

The GCAP program propagates the covariance in time
through the use of a continuous time differential equation

of a different form from equation (12):
B(t) = F(E)P(t) + PCEIET(t) + G(t)Q(t)GT(t) (23)

This equation has the same solution as equation (12), so ‘
the results of this equation are valid for the current i
study. The GCAP program integrates E(t) given in equation }
(23) using a fourth-order, Runge-Kutta integration routine.
This routine computes new values of F(t) and g(t)g(t)gT(t)
at the beginning, middle, and end of each integration step,. |

Thus, this routine provides a more accurate numerical pro-
pagation of the covariance than equation (12) for the same

integration step size.

Equation (23) causes a problem for this study, It re-

- {
quires a value for Q(t), but the study is testing forms for }

the more commonly used gd(t). Thus, the propagation of the

filter covariance is separated into two parts. The
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homogeneous part is computed using equation (23) with Q(t)

set to 0. Then the effect of the driving noise, Qd‘ is

added to this result. This calculation is wore representa-

tive of the type of calculation used in on-line Kalman Fil-
ter applications than a direct integration of equation (23).
A direct evaluation of (23) is used for the truth model to
provide greater accuracy.

The GCAP program provides the needed calls to a user-
supplied subroutine (TRAJ) to generate the nominal path, X
Then it calls another subroutine (FLTMAT or SYSMAT) to com-
pute the values of the filter or truth model matrix elements
for that value of X These matrices are then used for co-
variance propagation and updating. The basic sequence is

as follows:

1. Initialize matrices.

2. Compute the nominal state, X

3. Compute linearized filter matrices, Ff and gdf‘

4. Propagate the filter covarfance matrix, Pc, one in-

tegration step forward in time (i.e., integrate equa- |
tion (23) with Q(t)=0 for one integration step, then

add gdf(ti)).

E 5. Repeat steps 2-4 until it is time for a measurement

update.

6. Compute matrices He and Rg.
7. Compute a Kalman gain matrix, Keo using equation

(13). Use this gain matrix to update gf.
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8. Repeat steps 2-6 using the truth model matrices,
Es’ gs, ﬂs’ and gs, and the true error covariance ma-

trix ge. (Use equation (23) directly in step 4.)

9. Use the Kalman gain matrix computed for the filter,

K¢s to update the true error covariance matrix, ge,

using equation (22).

10. Repeat steps 2-9 until the specified stop time is

reached.

The true error covariance matrix, Po» represents the
covariance of the error committed by the filter in esti-
mating the state. The program provides facilities for
plotting both the filter covariance, gf, and the true error
covariance, ge. This plotted output provides a convenient
form for presenting test results, and in fact will be used
for this purpose in the next chapter.

Test Parameters

As mentioned above, the GCAP program provides calls to
a subroutine to generate a nominal path, X
the subroutine simply reads values for X, from a file gen-
erated by an external program. The external program used is
called the Profile Generator Program, or PROFGEN (Ref 8).
This program generates parameters such as position, velo-
city, attitude angles, and specific force vectors for an
aircraft traversing a specified flight path. The user
specifies the maneuvers he wishes the aircraft to perform:

turns, pitches, climbs, dives, path accelerations, etc. In

addition, he specifies certain aircraft performance factors,
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such as maximum roll rate. The program can simulate a wide
range of maneuvers and gives very accurate computed values
of the vehicle parameters.

wo factors in the study affected the type of flight
profile selected. In order to show the benefits of siate
dependent terms in the noise matrix, a flight profile with
large changes in dynamics such as velocity, specific force,
and altitude was desired. This suggests a profile typical
of a high performance aircraft, involving high and Tow
flight, high-g turns, straight flight, and so on.

The second factor in profile selection is the integra-
tion step size. Small integration steps provide more
accurate integration, but greatly increase the computational
burden of the Kalman Filter. Normally, the designer must
minimize this computational burden, so he would like to
use as large a stepsize as possible. The stepsize must be
small enough to allow a sampling frequency at least twice
as high as the frequency corresponding to the fastest error
state dynamics in the model, in order to avoid aliasing pro-
blems. From the viewpoint of computational burden, it is
desirable to use a stepsize as near this Timit as possible
while maintaining sufficient accuracy.

From the derivation in Chapter III, it can be seen that
the off-diagonal terms in the proposed Qd matrices are pro-

2

portional to At®, while the on-diagonal terms and pseudo-

noises are proportional to At. Thus, if At is small, the
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off-diagonal terms will be significantly smaller than the
on-diagonal terms, so the approximation of setting the off-
diagonal terms to zero is justified. However, as At is in-
creased, the magnitude of the off-diagonal terms increases,
so for a large At, they become significant.

Furthermore, as the integration step size is reduced,
more of these smaller integration steps must be computed.
The process of integrating equation (23) and then adding
gd is repeated several times between updates. Integration
of equation (23) after gd has been added for the previous
integration step causes off-diagonal terms to be computed
for P even when gd is diagonal. Thus, to show the effects
of including off-diagonal terms in the gd matrix most
clearly, a large integration stepsize is desired.

The flight profile chosen for this study consists of a
representative combat flight for an F-4 aircraft. The in-
puts to the PROFGEN program split the flight into segments.
For each segment, the desired maneuver is specified. The
maneuvers specified for the flight used for this study are
listed in Table VII.

For this flight profile, an integration stepsize of 2

seconds was selected. This stepsize was found to give

accurate tracking of the error state dynamics. Larger inte-

gration stepsizes were found to cause numerical problems in
the GCAP program which caused the covariance matrices to

have negative terms on the diagonals. This effect appears
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Table VII a.
Flight Profile for Test Cases

Initial Conditions*: ;
Time = 4728 seconds ]
Velocity = 934.8 ft/sec. !
Heading = 91.6 deg.

Pitch Angle = -2.04 deg.

Latitude = 42.43 deg. i
Longitude = -72.25 deg. (72.25 deg. Mest)

Altitude = 17,743.4 feet

*NOTE: This profile starts in the middle of a longer flight,
so the initial conditions are not round numbers. The times
listed here will be seen on the plotted output, so the

actual times are listed rather than elapsed times.
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to be caused by the rapidly changing dynamics of the chosen
flight profile.

2 is not small

Clearly, for a stepsize of 2 seconds, At
compared to At, so this stepsize should provide a good test
for the proposed alternative state noise covariance compu-
tations. To provide a comparison, the filters were also
tested with an integration stepsize of 0.2 seconds. The
filters would have to be retuned to give the best obtain-
able performance with this value of At. However, the com-
puter cost for these runs was relatively high, so this was
not done. Instead, the filters were retested using the Qd
matrix values listed in Table III to VI, solely to provide
a basis of comparison for the longer integration stepsize
runs.

The external measurements available to the filter are
provided by a Global Positioning System (GPS) receiver.
This system consists (when it becomes operational) of a set
of 24 satellites evenly distributed in three orbital planes.
The position of each satellite is known very accurately,
and each broadcasts a very accurately timed sequence of
pulses. By measuring the time delay between these pulses
and pulses generated by an onboard clock which is synchron-
ized with the satellite clocks, the position and velocity
of the receiver can be measured very accurately. Errors in
the onboard clock cause inaccuracies in the measurement in
the form of a range bias and a range rate bfas. To reduce

these errors, extra "user clock" states to model the biases




Segment Time

1

o

10

11

12

13

47238~
4733

4733~
4769

4769-
4805

4805-
4815

4815-
4915

4915-
5095

5095-
5110

5110-
5135

5135-
5140

5140-
5142.5

5142.5-
5168.5

5168.5-
5173

5173-
5178

Table VII b.

Flight Profile for Test Cases

Action

Pitch down to -6.54 deg. and decelerate
to 844.7 ft/sec.

Descending right 360 deg. 4.5 g turn.
Descending left 360 deg. 4.5 g turn.
Pitch up to +1.56 deg. (Altitude at end

= 10586 ft.)

Sinusoidal heading changes, 14.4 deg/sec,
climb to 12,886 ft.

Sinusoidal heading changes, 12 deg/sec,
maximum yaw = 15 deg, climnb to 17,025 ft.

Climbing 1 g 5 deg. right turn, climb to
17 +370 ft.

Pitch to level flight, climb to 17,386
ft.

Straight flight. Ends at Lat. = 42.34
deg., Lon. = -71.21 deg., A1t = 17386 ft.

1 g, 2 deg. right turn.

Pitch down to -45 deg., descend to 9127
ft.

Continue descent to 6439 ft.

Descending 0.5 g 30 deg. right turn, de-
scend to 3452 ft.




are added to the baro-inertial system model used in the
filter.

For this study, it is assumed that four satellites are
continuously in view in a fixed location with respect to
the aircraft, and both range and range rate measurements are
available from each satellite (this is somewhat different
from the way the actual system will work, but the difference
is not relevant to this study). To be realistic, the simu-
lation should account for the fact that the satellites move.
It should propagate them in time and optimally select a new
set of them for measurements at regular intervals. However,
the program logic to do th{s is fairly complex and time con-
suming, and has no bearing on the issue of alternative Q,
evaluations. Therefore, the observation geometry matrix,
H(t), was computed once, using satellite geometry for a ran-
domly chosen time and location. Then this H matrix was
assumed to be constant throughout all test runs.

Measurements were presented to the filter every 10 se-
conds. This update interval was chosen as a fairly repre-
sentative value of the update intervals used in typical
high accuracy, aided inertial navigation systems.

Kalman Filters for each of the proposed gd matrices
were coded in the appropriate form for the GCAP program.
Then a covariance analysis was performed for each one, using
the parameters described in this chapter. The results of

these tests are presented and discussed in the next chapter.
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V Results and Discussion

Introduction

Previous chapters have introduced the problem to be
evaluated in this study. The notation used and the mathe-
matical formulation of the Kalman Filter were presented in
Chapter I1. The need for approximate computations in order
to achieve practical on-line implementation was shown. In
Chapter IV, some specific methods for evaluating the state
noise covariance matrix, Q,, were derived. The methods
used for testing Extended Ka]mah Filters based on these
covariance matrices were described in Chapter IV.

This chapter presents the results of the testing for
filters based on the four proposed Qd matrices. The test
results are shown in both graphical and tabular form. These
results are discussed and analyzed, and suggestions for fu-
ture studies are made.

Test Results

The results of the covariance analysis testing are pre-
sented in Figures 1 to 48. These plots present the square
root of the estimation error covariances of the state vari-
ables listed. This "one-sigma" value of the error in the
state estimate gives a description of the expected error,
in that 68% of the errors will be less than or equal to this
value. 99.8% of all errors will be less than or equal to
three times this one-sigma value. All error states are

assumed to have a mean value of zero.
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The variables plotted are Longitude error, Latitude
error, Altitude error, and East, North, and vertical com-
ponents of velocity error. For each of the filters tested,
two plots are shown for each variable. The first of these
is labeled "FILTER" and depicts the covariance computed by
the filter for each state estimate. The second plot is
labeled "SYSTEM" and depicts the true error covariance com-
puted by GCAP using the truth model system matrices and the
Kalman gain matrix from the filter.

One set of plots is shown for each of the proposed
filters. Recall that these filters differ only in the form

of the state noise covariance matrix, gd:

Type 1 - gd is a diagonal matrix, with constant terms.

Type II - gd is a full matrix, with constant terms.

Type III - gd is a full matrix, with varying terms de-
rived by a trapezoidal integration of the
defining integral (equation (22)).

Type IV - gd is a full matrix, with terms which vary

as a function of the system state.

The plots shown were generated with an integration
stepsize of 2.0 seconds. The scales for these plots are

Time - Mission time, seconds.

Longitude - Radians.

Latitude - Radians.

Altitude - Feet.

East Velocity - Feet/sec.

North Velocity - Feet/sec.
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Vertical Velocity - Feet/sec.

Interpretation of Test Results

The two types of plots shown are to be interpreted dif-
ferently. The plots labeled "FILTER" show, in root-mean-
square (rms) form the covariance computed by the filter for
its state estimate. The primary importance of this covari-
ance information is its use in computing the Kalman gain
matrix. If the computed covariance is too large, the gain
will be larger than the optimal value, causing the filter to
weight the measurement information too heavily. This causes
tﬁe navigation system to track the noise in the measurements,
and to fail to take advantage of all of the information
available in its own state estimate. If the covariance is
too small, the gain will be smaller than optimal, so the
filter will weight the propagated state estimate too heav-
ily, If the covariance becomes excessively small, the fil-
ter will ignore the external measurements. This is known
as filter divergence, since it allows the errors in the
navigation system to grow without bound. Thus, the "FILTER"
covariance plots have only an indirect meaning, in that they
influence the values of the actual errors committed by the
filter.

The more directly meaningful plots are those labeled
"SYSTEM". These depict the rms valuves of the true estima-
tion errors, calculated by GCAP using the truth model sys-
tem matrices and the Kalman gain matrix computed by the

filter. The goal of Kalman Filter design and tuning is to
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minim{ize these errors, Therefore, a smaller value of the
"SYSTEM" rms errors indicates better filter performance.

The data shown in Figures 1 to 48 indicates that there
is very little difference in the performances of the four
filters tested. Most of the plotted lines are so similar
that it is difficult to distinguish any difference at all.
In testing, they can be compared by placing one directly
over the other, with the axes aligned. Since that method
is not practical here, the actual numbers plotted for a
typical post-transient time point are listed in Table VIII.

The data produced with an integration stepsize of 0.2
seconds was so close to the values computed for a stepsize
of 2 seconds that the plots are indistinguishable. These
error values are 1isted in Table IX. Because the plots are
so similar to Figures 1 to 48, they are not shown.

Discussion of Results

Figures 1 to 48 and Table VIII show that there is vir-
tually no difference in the performances of the proposed
filters. The only significant differences appear in the
vertical channels (altitude and vertical velocity errors).
However, the vertical channel model has deficiencies which
place these results in doubt. Myers and Butler (Ref 2) re-
ported that the vertical channel model used for this study
diverged from correct state estimation for a long flight.
For the shorter flight profile of this study, divergence
did not occur. However, the vertical channe) modél is not

considered suitable for an accurate measurement of Kalman
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Table VIII
Steady State RMS Estimation Errors At = 2.0 Seconds

Component Type I Type II Type III Type IV
Longitude _7. 3.58 4,32 3.42 3.92
(Radiansx10™ “)+ 3.53 4.29 3.41 3.83
Latitude S 2.67 2.70 2.94 2.76
(Radiansx10™ ")+ 2.51 2.55 2.50 2.59
Altitude - 47.9 50.6 50.4 27.8
(Feet) + 39.9 42.9 35.7 24.7
East Velocity - .054 .056 .029 .078
(Feet/sec) + .010 .010 .010 .010
North Velocity- .136 .138 . 380 . 145
(Feet/sec) + .010 .010 .009 .009
Vertical Velocity- .084 .262 . 349 .063
(Feet/sec) + .011 .011 .011 .010
NOTES:

- Indicates the error prior to measurement incorporation.

+ Indicates the error after measurement incorporation.

Errors listed are for time 5098 seconds. This time was

selected as representative of steady state performance.
Longitude: 10"7 radians = 1.54 feet (at Lat=42.4°)
Latitude: 1077 radians = 2.09 feet
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Table IX

i Steady State RMS Estimation Errors At = 0.2 seconds

x

|

4

i Component Type I Type II Tvpe II1l Tvpe 1V
Longitude . - 3.56 4.20 3.41 3.91 ‘

k (Radians x10™7)+ 3.52 4.18 3.41 3.83
Latitude .- 2.68 2.71 2.92 2.76 |
(Radians x10~7)+ 2.51 2.55 2.50 2.60 :
Altitude - 48.0 52.0 50.5 26.8 I
(Feet) $ 39.6 42.3 35.6 24.5 é
East Velocity - .052 .054 .023 .075 |
(Feet/sec) + .010 .010 .010 .010 g
North Velocity - .130 .136 .376 .139 :
(Feet/sec) + .010 .010 .009 .009
Vertical Velocity - .076 .102 .324 .062
(Feet/sec) + 011 .011 011 .010

See notes for Table VIII.
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Filter performance, so the vertical channel results were not
used for comparison of the proposed filters. The other var-
iables errors in East and iorth components of position and
velocity, indicate that the filters are achieving almost
identical performance. This appears to contradict the ex-
pectation of a performance gain suggested by the develop-
ment of Chapters Il and III. Several factors which could
cause this result must be considered.

One factor is that the gd matrix is only one of the
parts of the Kalman Filter model which significantly affect
estimation accuracy. From equation (17), it is seen that
the covariance which the filter estimates and uses to com-
pute the gain matrix is driven by the state transition
matrix, Q(ti+l’ ti)‘ as well as the driving noise matrix.

If the driving noise is small, the first term in (17) could
dominate the computation. Then almost any form of a gd
matrix with reasonably accurate tuning would produce similar
results in this testing. It might further be expected that

if gd is small compared to fggT

, making the gd terms even
smaller would have little effect on performance. However,
it was found during the tuning process that significant
reduction in the gd terms caused a severe performance degra-
dation. Therefore, the idea that the similarity of the test
results stem from a lack of filter performance sensitivity
to the proper gd values can be rejected.

Another factor is that the filters were not exhaus-

tively fine-tuned, as mentioned in Chapter I. A1l of the
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filters were tuned until further tuning efforts appeared to
have only marginal and somewhat ambiguous effects. However,
there is still the possibility that futher refinements in
tuning would ultimately give one of the filters signifi-
cantly better performance than the others. The tuning
effort was extensive enough (approximately 120 tuning runs)
that this possibility is judged to be unlikely.

A factor that appears to be significant in these re-
sults is the accuracy of the measurements available from
the GPS receiver. In the model used (Appendix A), these
measurements are modeled as range and range rate measure-
ments from each of four satellites. The one-sigma errors of
these measurements are 20 feet for range and 0.1 foot/sec.
for range rate. The combined information from four such
satellites can yield measurements of even greater accuracy,
depending on the geometry of the satellites when a measure-
ment is taken. For example, a single observation of all

four satellites measure position with an error as small as

. » = 10 feet
4;(2*6‘—('{)‘

As long as the Kalman Filter continues to run without
divergence (i.e., without reducing the gain to ignore ex-
ternal measurements), these highly accurate measurements
will allow it to have small errors in position and velocity.
Even when the gain is substantially different from the opti-

mal value, the errors will be small. Thus, the effect of a
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better Qd matrix in more accurately calculating the gain
matrix produces only a very small benefit in reducing the
errors in the filter.

As mentioned in Chapter IV, for a small integration
stepsize, the off-diagonal terms in gd are insignificant in
comparison to the diagonal terms. It is possible that for
an integration stepsize of 2 seconds, these off-diagonal
terms are still not extremely significant, and thus that
they make little difference in fiter performance. Also, in
the Type 111 Qd matrix, the off-diagonal terms are computed
directly from the noise values of the Q matrix in the truth
model (see Table IV). Then pseudo-noises are added to the
diagonal terms. These pseudo-noises may be substantially
larger than the true noise terms from which the correlated
off-diagonal terms were computed. Thus, the off-diagonal
terms in this Rd matrix could be disproportionately low, so
that they have little effect on performance.

Conversely, the off-diagonal terms for the Type II Qd
matrix were computed with the correlation factors from the
Type III analysis, but using the pseudo-noise values of the
diagonal terms. This could possibly make the off-diagonal
terms too large, i.e., it might be more appropriate to have
only some of the pseudo-noise appear in the correlatec terms.
Provisions were made in the covariance analysis program to
scale the off-diagonal terms by an arbitrary factor, in

order to test this idea. However, this testing was not
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performed due to time limitations. Thus, the possibility
that the off-diagonal terms as computed were too large or
too small to give proper results must be considered.

A1l of the potential reasons given so far for the test
results seen in Figures 1 to 48 and Tables VIII and IX are
at least possible, and some must be considered highly prob-
able. However, there is another factor which outweighs all
of them. This effect is caused by the way in which the
time propagation equation for the covariance is computed
(equation (23)) is used in GCAP, but equation (12) could be
used instead). The computation used in the testing for this
study included a partitioning of the integration interval,
which tended to mask the effects of off-diagonal terms.

To see this, consider how P(t) is propagated. As ex-
plained in Chapter IV, equation (23) cannot be used directly,
as GCAP would normally do. Instead, Q(t) is set to zero,

equation (23) is integrated, and finally ﬂd is added:

PT(t+at)=r Ot ()R (1) +P(T)ET (1) 1dT4Q,(teat) (24)

Theoretically, this computation should be performed once

for the interval from one update to the next. However, in
GCAP a Runge-Kutta integration technique is used, which is
not sufficiently accurate with a stepsize equal to the typi-
cal update interval of approximately 10 seconds. In most
on-line Kalman Filter applications, an even simpler Euler
integration is used to evaluate equation (24) or an equiva-

lent form such as equation (12). Thus, to achieve
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sufficient numerical accuracy, the integration stepsize must
be reduced. However, there is no need to reduce the update
interval.

An integration stepsize smaller than the update iner-
val is often called an integration sub-interval. Using
this idea, equation (24) is evaluated for some At, smaller
than the 10 second measurement update interval, which gives
accurate numerical integration. This caluclation is re-
peated until the next update time i1s reached, then a
measurement is processed. In the testing for this study,
the update interval was set at 10 seconds. This was divided
into 5 sub-intervals of 2 seconds for propagation via equa-
tion (24).

In this type of propagation, the gd matrix will be
added to intermediate values of P. Then these P matrices
will be used in the integral term of equation (24). If the
gd matrix is assumed to be diagonal, the diagonal elements
of the intermediate P matrices will be directly affected
by the Q, terms. The products FP and EET will generate off-
diagonal terms from the diagonal elements of P. Then the
integral term of equation (24) will compute off-diagonal
terms in t' . propagated P matrix based on the diagonal ele-
ments of gd. Thus, the effect of a diagonal form of gd
added at each sub-interval is equivalent to the effect of a
full Qd matrix (i.e., containing off-diagonal terms) added

only at the last sub-interval before a measurement incorpora-

tion.
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This effect of producing off-diagonal terms in P from
a diagonal Qd by the nature of the integration used appears
to be the most significant factor in the lack of any perfor-
mance variation among the filters tested.
Conclusion
The use of sub-intervals for covariance propagation in
Kalman Filters is a common technique. The results of this
study indicate that this technique is appropriate in many
cases. Under the conditions that
1) accurate measurements are available to the naviga-
tion system
2) several integration sub-intervals are used for co-
variance propagation,
3) a properly tuned, diagonal form of gd is added for
each sub-interval,
the testing showed that the estimation results are compar-
able to the results obtainable from larger, more complex
forms of the gd matrix. Since most Kalman Filters must use
the sub-interval technique for covariance propagation to
achieve sufficient numerical accuracy, the use of a compu-
tationally advantageous diagonal state noise covariance
matrix is justified.

Recommendations

The alternate forms of gd derived for this study could
still have some applicability which warrants futher investi-
gation. Further testing should be performed with these

forms to evaluate the effects of what appear to be the
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major factors in causing the observed test results. In
order to perform this testing, it is recommended that the
new forms of the truth model and filter model designed by
Intermetrics Incorporated (Ref 6) be used. This would
allow analysis of vertical channel performance, which
appears to be more sensitive to variations in the Kalman
Filter than the horizontal channels.

The basic variation in this testing would be a change
in the method used for covariance propagation. The GCAP
subroutine which performs this function (INTEG) was modi-
fied for this study to perform the evaluation as in equa-
tion (24) rather than (23). This change involved elim-
inating the addition of Q(t) in the P(t) equation before
integration, and adding a subroutine called (INTQ) to add
gd(t) to the propagated P(t) matrix. This can easily be
modified to add Qd(t) to P(t) only for the last integration

step before a measurement update. In order to evaluate the

Qq matrix, a value of At is needed. In the testing per-

formed, At was set equal to the integration stepsize. For

the proposed tests, At would have to be set to the update
interval, since the Qy matrix must represent the total noise
contribution for this interval.

These changes to the testing configuration will almost
certainly require retuning of the proposed Kalman Filters.
It is recommended that the filters be retuned and tested with
these changes in the models and covariance pronagation equa-

tions, but with the other test parameters the same as in
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this study. Also, a filter should be tested with a dia-
gonal gd added for each sub-interval, as Type I in this
study. This would provide a comparison to show whether
the proposed filters, with gd added only once for the total
propagation, could give performance equal to that of a
standard filter, with a diagonal Q4 added for each sub-
interval.

This comparison should indicate whether equivalent
performance can be obtained with a less frequent addition
of a full gd matrix, rather than a frequent addition of a
diagonal gd matrix. If this is true, it could lead to a
significant savings in computations for an on-line Kalman
Filter. For a typical sub-interval size of 0.2 seconds,
the 16 term diagonal Q, matrix is added 50 times, for a
total of 800 additions for the gd term of the covariance

propagation between updates. With a Qd matrix containing

off-diagonal terms added once per measurement sample per-
iod, such as Type II in Chapter III, this could be reduced
to 30 additions, while adding only 7 extra words of storage
space. This could be a substantial savings in computation.
The effect of less accurate measurements can be tested
in a very straight forward way by simply increasing the
magnitude of the terms in the measurement covariance ma-
trix, R. With this change, the performance of the Kalman
Filter would rely more heavily on the accuracy of the inter-
nal model. Thus, for less accurate measurements, a better

evaluation of the gd matrix would yield a more substantial
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improvement in filter performance than is seen when highly
accurate external measurements are available.

The off-diagonal terms generated by sub-interval pro-
pagation of a diagonal gd matrix are not the same as the
off-diagonal terms in the Type III gd matrix. The Type III
matrix contains relatively few off-diagonal terms because
it is based on the Q matrix from the truth model. This Q
matrix has only four noise terms directly driving the states
that are included in the filter model (states 1-16). When
equation (24) is used for covariance propagation, all 16
states have driving pseudo-noises, so many more off-dia-
gonal terms will be generated. Another gd matrix could be
derived in the same way that the Type IIl matrix was derived,
but with the pseudo-noises included in states 1-16 of the
Q matrix when equation (20) is evaluated. The filter based
on this type of Q  matrix could then be compared with one in
which only true driving noises are used in computing off-
diagonal terms, as in Type III.

Other parameters could also be tested. The proposed
filters could be tested using a long, low-dynamics flight
profile, in which gyro drifts, Schuler oscillations, and
other long term effects could cause problems. The effect
of multiplying the off-diagonal terms in the derived gd
matrices by a scale factor for improved tuning could be
evaluated. A1l of this testing could lead to a more

accurate Qd matrix, which could reduce the computational
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burden of the Kalman Filter without reducing navigational
accuracy.

A Timited amount of additional testing suggested in
this section was attempted. The only change made for this
testing was to add gd only for the last integration sug-
interval before an update. Runs were made using the Type
Il Qd matrix, with all the terms in Table VI multiplied by
5 to account for the longer interval for which the pseudo-
noises simulated the effects of real errors. To obtain
good performance, this filter would need to be retuned, but
time limitations prevented this.

The most noticeable cﬁange in the results in this test
was in the filter covariance propagation. With gd added
for each sub-interval, the covariénce grows quickly. With
gd added only for the last sub-interval, the covariance
grows more slowly, then has a step increase at the end of
the propagation. This allows the effects of the homogen-
eous covariance growth and the added covariance to be dis-
tinguished in the test results.

To illustrate this, Figures 49 and 50 show an expanded
scale for the filter estimates of north velocity error. In
Figure 49, Qd was added for each sub-interval. In Figure
50, gd was added only for the last sub-interval. ©Note that
the plotter interpolates between data points. The dotted
lines in Figure 50 show how the covariance would actually
propagate for small integration steps. This would be fol-

lowed by a step rise in the covariance when gd is added.
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),/ gd is added only for the last sub-interval, off-

.

diagonal terms must be included in Qq to simulate the off-

diagonal terms generated by a proper evaluation of equation
(23). A Kalman Filter using such a Qd matrix shows oromise
of giving good performance with slightly more storage space
and considerably less computation time than the usual form
requires.
Summary

The test results presented in this chapter are incon-
clusive in demonstrating the advantages of the proposed
state noise covariance matrices. They indicate that, for

the type of sub-interval propagation equations commonly

used in Kalman Filters, the usual diagonal form of Q4 Pro-
vides performance comparable to that obtained with larger,
more complex forms of gd. Futher testing could result in
an improved means of incorporating driving noise into the

covariance propagation. This method would involve a gd

matrix containing off-diagonal terms, which would be added

only once for a covariance propagation. Thus, it would

; significantly reduce the number of filter computations re-

quired, with a modest increase in computer storage space.

o~ o

This change could be found to have T1ittle or no adverse
effect on filter estimation performance. Moreover, alter-
nate forms of gd could be found to yield significantly en-
hanced filter performances for applications in which the
external measurements are not of the extremely high accuracy

characteristic of GPS measurements.
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Thus, for many practical Kalman Filter applications,
the ideas of the alternate forms of discrete time state
noise covariance matrices discussed in this study appear

to be a fruitful area for continued investigation.

120

—

P




Bibliography

Widnall, W, S. and P. A. Grundy. Inertfal Navigation |
System Error Models, Cambridge, Mass.: Intermetrics, '
Incorporated, 11 May 1973,

Myers, K. A. and R. R, Butler, "Simulation Results for
an Integrated GPS/Inertial Aircraft Navigation System."“
Proceedings of the IEEE National Aerospace and Electron-
{cs Conference, NAECON '76. New York: Institute of
Eggctrfca1 and Electronics Engineers, Incorporated,

6.

Widnall, W. S. and P. K. Sinha. Comparison of Three
Vertical Channel Designs for an Inteqrated GPS/Inertial

Navigation System. Cambridge, Mass.: Intermetrics,
Incorporated, 27 July 1977.

Maybeck, Peter S. Stochastic Models, Estimation and
Control. Textbook manuscript, 1975.

Widnall, W. S., N. A. Carlson and P. A. Grundy. Post
Flight Processor for CIRIS. Cambridge, Mass.: Inter-
metrics, Incorporated, 24 November 1972.

Sinha, P. K. Integrated GPS/Inertifal Simulator Computer
Program. Cambridge, Mass.: Intermetrics, Incorporated,
ugust 1977.

Hamilton, E. L., G. Chitwood and R. M. Reeves. The
General Covariance Analysis Program (GCAP), An Efficient
Implementation of the Covariance Analysis Equations.
PreTiminary copy, Wright-Patterson Air Force Base, Ohio:
Air Force Base, Ohio: Air Force Avionics Laboratory,
1976.

Musick, Stanton H. PROFGEN - A Computer Program for
Generating Flight Profiles. Wright-Patterson Air Force
Base, Ohio:  Air Force Avionics Laboratory, March 1976.

121

——




Appendix A

Integrated GPS/Inertial Navigation System Models

This section describes the truth model for an inte-
grated GPS/Inertial navigation system. It also describes
the reduced order model on which a Kalman Filter is based.
These models were used in the testing for this thesis. The
basic truth model is a 48-state model of a baro-inertial
navigation system using a representative inertial navigation
unit in the 1 nautical mile/hour class. This model was de-
rived by Widnall and Grundy (Ref 1). Myers and Butler of
the Air Force Avionics Laboratory modified this model by
adding the necessary user clock states to represent a typi-
cal Global Positioning System (GPS) receiver (Ref 2). The
truth model contains 52 states, of which the first 16 are
included in the filter model.

The models are described in terms of four matrices: F,
Q, H, and R. The F matrix is derived from the nonlinear
homogeneous state differential equation for the system, as
in equation (2). F is then a linearized matrix describing
the homogeneous error state behavior. Q is the matrix of
the strengths of the continuous time white, Gaussian noises
which drive the system. H is an observation geometry matrix,
as used in equation (4). R is the measurement covariance
matrix, which describes the accuracy of the measurement
information matrix.

The H matrix used in testing is for a single instance

of receiver and satellite geometry. As explained in Chapter
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IV, the observation geometry was assumed to remain constant
for the tesé runs in this study, although in reality this
matrix would change as the aircraft and satellites moved.
This H matrix was generated by randomly selecting aircraft
and satellite positions and using a satellite selection rou-
tine from the Integrated GPS/Inertial Simulation Program
(Ref 6). The H matrix entries are identical for the truth
model and filter model, except for the extra zeroes added to
the truth model to obtain the proper dimension.

The F, Q, H, and R matrices are listed in Tables X to
XITI. Distinctions between the truth model and filter model
matrices are described in these tables. The state variables
for the filter and truth models are listed in Tables I and

IT of Chapter III.
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{1}

kg
Dge>

DALt
Btru

GZ »

Table X a

F Matrix - Notation

= Wander azimuth angle (radians)

= Vehicle Latitude (radians)
= Vehicle Longitude (radians)

= Vehicle altitude (feet)

Vehicle velocity (feet/sec). Components in E-N-Z (East-
North-Up) frame shown as Ves Vo Vg

Specific force vector. Components in wander azimuth
frame are Fs, F Fz. In the E-N-Z frame,

FE = -F tSiﬂ(Q{ - Fy COS‘(G)
Fy = Fyrcos (a) - F sin-(a)

Earth equator1a1 radius (feet)
Angular velocity of local E-N-Z coordinates with respect
to earth (rad/sec)

pg = -Vy/R
PN = VE/R
Py = VE-tan(Lat)/R

Earth angular rate (rad/sec). In local coordinates:
Qy = Q-cos(Lat)

QZ = Q+sin(lLat)

Angular velocity of local E-N-Z coordinates with respect
to inertial space (rad/sec). Components are

e e -

wy = Pty

b S

wy = we'coc(a) + wN'Sin(a)

wy = -wE‘sin(a) + wN-cos(a)

ko, ko, = Damping coefficients for baro-inertial altitude
& 3 channel

Dixges 10 = Correlation distances of gravity deflections
GN*, "8L T (feet)

= Correlation distance of altimeter error (feet)

= Inverse correlation time of clock random frequency
error (1/sec)
Vertical component of gravity (ft/sec )




Longitude Error
F(1,2) =
F(1,3) =
F(1,4) =

Latitude Error
F(2,3) =
F(2,8) =

Altitude Error
F(3,3)
F(3,6)
F(3,10)
F(3,47) =

Table X b

F Matrix - Position Errors

p,/cos(Lat)
-oy/ (Recos(Lat))
1/(Recos(Lat))

OE/R
1/R




o

F(4,2)
F(4,3)
F(4,4)
F(4,5)
F(4,6)
F(4,8)
F(4,9)
F(4,35)
F(4,36)
F(4,38)
F(4,39)
F(4,41)
F(4,42)
F(4,43)
F(4,44)
F(4,48)

F(5,2)
F(5,3)
F(5,4)
F(5,5)
F(5,6)
F(5,7)
F(5,9)
F(5,35)
F(5,36)
F(5,38)
F(5,39)
F(5,41)
F(5,42)
F(5,43)
F(5,44)
F(5,49)

North Velocity

Table X ¢
F Matrix - Horizontal Velocity Errors

East Velocity Error

2-(QN-VN+RZ‘VZ)+pN

DZ.DN*DN.VZ/R)

-VN/(cos(Lat))2

-(pE tan(Lat)+VZ/R)

Z'Qz*pz
-(Z'QN+QN)
-F,
FN
cos(a)
-sin(a)
Fx-cos(a)
-Fy-sin(a)
-(FA+GA)-cos(a)
F.ecos(a)
-(FA+GA)-51n(n)
fx-sin(a)
1

Error

-(2-uN-vE+pN-vE/(cos(Lat))2)

PN Pz-Pg V /R
-2-wz

VZ/R

PE

2

-Fe

sin(a)

cos(a)
Fx-sin(a)

F ecos(a)
-(FZ+GZ)-sin(a)
Fy-sin(a)
(FZ+GZ)~cos(a)
-Fx-cos(a)

1
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F Matrix - Vertical Velocity Error

Table X d

Vertical Velocity Error

F(6,2)
F(6,3)
F(6,4)
F(6,5)
F(6,7)
F(6,8)
F(6,10)
F(6,11)
F(6,37)
F(6,40)
F(6,45)
F(6,46)
F(6,47)
F(6,50)

-Z.QZ.VE 2 2

Z'NN
_ZopE

-Fy

Fe

k2.h

127




East Axis Tilt
F(7,3) =

F(7,5)
F(7,8)
F(7,9)
F(7,14)
F(7,15)
F(7,17)

F(7,18)
F(7,19)
F(7,20)
F(7,23)
F(7,24)
F(7,26)
F(7,27) =
F(7,29) =
F(7,30) =
F(7,31) =
F(7,32) =

North Axis Tilt
F(8,2
F(8,3

F(8,4)
F(8,7)

F(8,14)
F(8,15)
F(8,17)

F(8,18)
F(8,19) =
F(8,20) =
F(8,23) =
F(8,24) =
F(8,26) =
F(8,27) =
F(8,29) =
F(8,30) =
F(8,31) =
F(8,32) =

| I (R N I ]

" " 1 ]

nwoann

o —— T

Table X e
F Matrix - Tilt Errors

‘DE/R
-1/R

!
co¥(a)

-sin(a)
Fx-cos(a)

Fy-cos(a)
-Fy°sin(a)
-Fy~sin(a)
Fo xF «cos(a)
-Fx°Fy'sin(a)
mx-cos(a)
-w_*sin(a)
Qz-cos(a)
-w_*cos(a)
Qz-sin(a)
-mx'sin(u)

-Q
Z
1/R

sin(a)
cos(a)
F esin(a)

F esin(a)
F_ecos(a)

F ecos(a)

F +«F esin(a)

y

F_+«F ecos(a)
w_*sin(a)
«cos(a)
Qz-sin(a)
-wy-sin(a)
-nz-cos(a)
wx-cos(a)

('

K X X X K x < x
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Azimuth Error
F(9,2)
F(9,3)
F(9,4)
F(9,7)
F(9,8)
F(9,16)
F(9,21)
F(9,22)
F(9,25)
F(9,28)
F(9,33)
F(9,34)

F Matrix

-0,/R
tan(Lat)/R

wy

Table X f

- Azimuth Error

Lat)
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| Table X g
F Matrix - Miscellaneous Error States
Vertical Acceleration Error

F(11,3) = k3

F(11,10) = -kg+h ;3

F(11,47) = -k3 L
Clock Phase Error i

F(12,13) = 1 |

F(12,52) = 1 :

Clock Frequency Error
F(13,51) = 1
Baro-Altimeter Error Due to Variation in Altitude of a Con-
stant Pressure Surface
F(47,47) = 'V/DALT
East Deflection of Gravity
F(48,48) = -V/Dg;
North Deflection of Gravity
F(49,49) = aV/DGN
Gravity Anomaly ;

/  F(50,50) = -V/Dg,
Clock Random Frequency Error
/ F(52,52) = 'Btru

/
/

/

/
/

/
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The following states are modeled as random constants or

Table X h
F Matrix - Notes

random walks, and require no terms in the F matrix:

State Number

10
14-16
17-22
23-25
26-28
29-74
35-37
38-40
41-46

&1

Description
Altimeter Bias
G-insensitivte gyro drifts

G-sensitive gyro drift coefficients
-sensitive gyro drift coefficients

GZ

Gyro scale factor errors

Gyro input axis misalignments
Accelerometer Biases
Accelerometer Scale Factor errors

Accelerometer input axis misalignments

Clock aging bias

Values of Constant parameters

The terms listed here are for the truth model F matrix.

R
Q
XK1
XK2
XK3

Dge
Dgn
Dgz
DacLt
Btru

20, 925, 639.76 feet
7.292115147 x 1072 rad/sec
.03
.0003
1 x 10
60,761.15 feet
60,761.15 feet
364,566.9 feet
1,519,028.75 feet
1/(1800 sec)

-6

The

filter model F matrix consists of all listed terms for which
both subscripts are less than or equal to 16.
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driving noises.

Note:

file.

Table XI
Q Matrix

The filter model Qd matrices are derived in Chapter II.
For the truth model, a Q matrix is used to depict the
The terms listed here are actually terms

of gggT, in order to show which state is driven by each of
the noises.

Q(12,12)
Q(14,14)
Q(15,15)
Q(16,16)
Q(35,35)
Q(36,36)
Q(37,37)
Q(47,47)
Q(48,48)
Q(49,49)
Q(50,50)
Q(52,52)

100 (ft2/sec)

.86
.86
<Ge
.88
.88
.88
o195

N 00 = N D NN = o1 O

no

X

X X X X X X

10'20 ((rad/sec)z/sec)
10-20 ((rad/sec)z/sec)
10-19 ((rad/sec)z/sec)
10711 ((ft/secz)z/sec)
10'11 ((ft/secz)z/sec)
10711 ((ft/sec?)?/sec)
10~2 (ftz/sec)

.959 x 1078 ((ft/secz)z/sec)
.375 x 1072 ((ft/sec?)?/sec)
.833 x 10'9 ((ft/secz)z/sec)
.77 x 10716 ((ft/sec)zlsec)

As described in Reference 6, the noise terms for
states 47-50 and 52 vary with velocity. However, the
PROFGEN program keeps the path velocity constant throughout
the flight profile described in Chapter IV. Therefore, the
terms shown here were precomputed for the entire flight pro-
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Table XII a

H Matrix - Notation

Each observation provides range and range rate measure-
ments to each of four satellites. Measurement indices are:
k = satellite number (1-4)
i = range measurement to satellite k (i=2-.k-1)
j = range rate measurement to satellite k (j=2-k)
Other notation:
R(K)
R(k)

R' = range, receiver to earth center (feet)

computed range to satellite k (feet)

computed range rate to satellite k (ft/sec)

Ru(An,K) = Range unit vecotrs receiver to satellite k

n Direction

1 East '
2 North

3 Up

Ru(n.k) = Range rate unit veéiors. reciever to satellite
k

Direction

East
North

up
L - Receiver Latitude

WN - |3

VE'VN’VZ - Components of receiver velocity (ft/sec)
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Table XII b
H Matrix - Equations

Range Measurements }
H(1,1) = R (1,k)+R'+cos(L) i
H(1,2) = Ru(Z,k)-R'
H(1,3) = R, (3,k) |
H(1,10) = 1

Range Rate Measurements
H(J,1) = [Ru(l.k)-Ru(l,k)-(ﬁ/ﬁ)-k'

+ R (1,k)*V5~R (3,k)+Vglecos(L)
+ IRu(Z,k)~VE-Ru(1,k)'VN]°sin(L)

(R, (2,K)-R, (2,k)1+ (R/R)R"
+ R, (2,k) V=R, (3,k)+V,

H(J,2)

H(3,3) = IR, (3,K)-R,(3,k)1+ (R/R)
H(3,8) = R, (1,K)

H(3.5) = R, (2,K)

H(3,6) = R, (3,K)

H(J,11) = 1
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Table XII ¢

H Matrix - Evaluation

These H matrix terms were precomputed and used through-

out the flight profile

Satellite
Number(k) 1 2 3 4
H(i,1) |-1,284,390 -14,067,800 |673,388 8,891,740
H(i,2) |-18,531,100 | 9,958,820 10,195,300 (13,474,300
H(i,3) |.458117 .254804 .872353 .549816
H(i,10) 1 1 1 1
H(j.1)  [77.8105 -1227.55 2179.51 -272.222
H(j.2) |1442.71 -2215.39 -1333.22  |2028.61
H(j,3) |.12888x10°3 | -.276022x10"% |.322484x1079-.916360X10"
H(j,8) |-.076854 -.841773 .0402936  |.532056
H(j,5) |-.885563 .475912 .487213 .643909
H(j,6) |.458117 .254804 .872353 .549816
H(j,11) 1 1 1 1

j=24k-1

j=2+k
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Table XIII

R Matrix
R(i,i) = Covariance of Range measurement if i is even.

= Covariance of Range Rate measurement if i is odd.

R(1,1) = 400 (feet)?
| R(2,2) = .01 (ft/sec)?
| R(3,3) = 400 (feet)?
i R(4,4) = .01 (ft/sec)?
| R(5,5) = 400 (feet)?
{ R(6.6) = .01 (ft/sec)?
é% : R(7,7) = 400 (feet)?
| R(8,8) = .01 (ft/sec)?

1 The R matrices for the truth model and filter model are

identical.
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