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20. A3STRACT (Continued)

(a) the basic statistical properties of acoustic signal and
noise fluctuations

(b) the ability of the random-process models to properly
si.ulate the important properties of the acoustic vari-
ables

Cc) the ability of the stochastic models to accurately pre-
dict measures of systen effectiveness

Cd) the choice of a stochastic ~~de1 and estimation of its
inputs , for a particular scenario.

Volume II ii a compilation of appendices ~~ich provide re—
ferences, calculations, documentation and background inf or—
nation to support the results reported in Volume I.
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Executive Su~ nary

This volume consists of Appendices which e].a-
borate on certain topics brought up in the main text of
Volume I.

Appendix A provides definitions of statistical
properties for stochastic processes and

fluctuation data analysis.

Appendix B gives an overview of sonar perfor-
mance prediction , including the various
types of acoustic and system models and
levels of simulation .

Appendix C describes the acoustic signal and
noise models used in the study , and dis-

cusses their validity.

Appendi x D surveys statistical fluctuation
models based on an acoustic mechanism :

varying multipath interference caused
by source/receiver motion . The various
statistical distributions and correlation

functions are shown to be closely related.

Appendix E describes some stochastic fluctua-
tion models which are not derived from

properties of the acoustic field but are

in co~unon use in performance modeling.

- - - - 
~~~~~~~~~
----- - 

_



Appendix F discusses the approach u.ed in the
study to simulate a sonar signal processor
and detector .

Appendix G provides justification for certain
results used in the study about array
response : the relative importance of
transmission-loss and beam-pattern-
induced fluctuations , conditions under
which beam splitting can be ignored ,

and the effect of sidelobe suppression
on noise fluctuations .

Appendix H documents the algorithms used to

model signal and noise and the statis-

tical analysis package .

I-
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Introduction

This volume is a compilation of appendices

which provide references , calculations , documentation ,

and background information to support the results re-

ported in Volume I. Most of the material is mentioned

or summarized in the main text of Volume I, so that the

purpose of this report is to elaborate on the details

for the interested reader. Each ~.ppendix addresses a

single topic , and can be read as a stand-alone document ,

with its own references and figures.

iii



Appendix A

SOME DEFINITIONS FOR STOCHASTIC PROCESSES
AND STATISTICAL PROPERTIES OF FLUCTUATIONS

In Volume I , acoustically modeled time series of
signal , noise, and transmissioA loss are compared with series
generated from stochastic processes. The comparison is of
statistical properties of the two types of data. In the case
of the stochastic process , there are underlying statistical
properties which in fact define the process ; the time series
are simply realizations or samples from the process . The
first part of this Appendix sets down definitions of terms

commonly used to describe the statistical properties of

stochastic processes.

For the acoustically modeled data , basic statistical
properties are not usually known in advance , but rather must

be determined (estimated) from analysis of the time—series
themselves. ~1oreover the properties of interest in this
study are not necessarily the same as those used to define
the stochastic processes. Hence , for comparison of the
acoustic and stochastic model outputs , specific statistical
properties had to be chosen . That choice is the subject of

the second part of this Appendix .

A .l Some Definitions for Stochastic Processes

These definitions of properties of stochastic

processes follow the more popular references (A-i through

A-3).

A-l
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• Stochastic Process. A stochastic process is a

family of random variables {X(t), tcTi , where
T is a set of indices — usually associated with

time. In this paper X will be real—valued , and
T either a sequence (in which case X is called
a discrete parameter process) or an interval
(with X a continuous parameter process) .

• San le Function. The function of t obtained

by sampling X at each t is a sample function
or realization or sample path of the process
X.

• Distribution Functions. A stochastic process

X(t) is determined statistically by its ~th

order distribution functions:

PtX(t 1) < A 1, X(t2) < A2~~~~~1 X(tn) < A~ )

E F (A 11 A21 ...,A ;  t1~ t2 1 . . . 1 t~~)1

for any n , Ct 1
} an d

The corresponding density function of X(t) is

t1,. ~~~~~~
~~1~A2 . . ~~~ 

TI

f(A11 A 2 1 . . .1 A~ ; t1,t21 ...~~t~~).

A—2
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• Expected Value. For t fixed EIX(t)] ‘fzf(z;t)dz

is the expected value or ensemble average of X
at t.

• Autocovariance. C(t1,t2) — E~~[X(t1)—~.i(t1
)].

[X(t 2)— (t2)]) where ~(t~ ) — E[X(t1)J

• Autocorrelation . R(t1,t2) E(X(t1)X(t2)]

Note that C(t1,t2) R(t11 t2) —

and E(X(t)32 — C(t ,t) R(t ,t) — (~ (t)]
2.

• Stationary Process. X(t) is stationary in

the strict sense if its joint distribut ions

do not change with t , i.e.,

F(A1,A2, ..., A
~

;t i+h ,t2+b ,.. ., tn+h)

= F(A1,A21 ... ~A~ ;t11 t21 ... ~t~~) for  any h

with t. +h in T.
3.

A

X(t) is stationary in the wide sense if

E(X(t+h)X(t)] R(t+h ,t) E R(h) for all t,

and E(X(t)] — ~ is independent of t.

• Ergodicity. Let X (t) be stationary and

defined for all real t. If the time—average

of X,



_ _ _ _ _ _ _ _ _ _ _

T
<1(t)> — u r n  

~~ I X(s)ds ,
T~-

exists and equals the constant E [X(t)] with

probability 1, then I is said to be E2~~C
in thE, mean.

Now , X(t) is ~~~~~~~ if (with probability 1)

all its statistics can be determined from a
single sample function from X.

A sufficient condition (Birkhoff-Khintchine ,

see Ref . A—4) for a stationary , continuous
process to be ergodic is that it have finite
variance and an autocovariance function which
converges to zero as the lag tends to infinity.

A stationary Gaussian random process with zero

mean is ergodic if

f  ~~~~~ <

• Power Spectral Density. For a wide—sense

stationary process X (t), the power sp~çtral
densi~y or power spectrum at angular frequency

c~ is

S(~ ) -f R(T)e~
’~ dT.

A-4 
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If 1(t) is also ergodic and S(c~) exists, then

S(~~) lim 

~4[ 
( X(t)e~~

t
dtf

with probability one.

The power in band ~2 is ~~fS(c~)dc~.

• Markov Process. X(t) is a Uarkov process if
for every n and t1 < t2 < ...<t~

P(X(t~ ) < A :X(t~_1 )1... ,X(t1)]

~ P[X (t~~) <

or equ ivalen tly

P[X(t~~) < A X(t) for all t < t~ _1]

P(X(tn) < A : x (~~ 1n. 
+

• Gaussian Process. X(t) is a Gaussian or

normal random process if the random variables

X(t1), X(t2),... , X(t~ ) are jo~nt ly normal

for an y n and ~t1).



A .2 Statistical Measures for Comparison

The primary purpose of the comparisons of acousti-
cally and stochastically modeled time series is not to test
the hypothesis that two series are sample functions from
some common , underlying process but rather to determine if

the two series possess the same detection—related properties.
Accordingly, a number of statistical descriptors have been
selected for their relevance to sonar performance, and it is

in terms of these properties that the comparisons are presented .

It is emphasized that the “validity” of a particular
model depends on the application . The properties chosen here
are believed to be broad enough to allow a user to judge
whether or not a simulation enjoys the accuracy required for

+ his particular case.

A.2.l One—Dimensional Distribution Functions and Moments

The statistical package described in Appendix H

was applied to both acoustic and stochastic fluctuation tir~e

series to determine:

• one—dimensional sample distributions

• corresponding moments (mean , variance ,

skewness, kurtosis)

+

+ 

• percentiles and the range of the data

In accordance with the discussion of Appendix D

about candidate distribution functions for fluctuations of

A—6
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TL and noise intensity , the sample distribution functions
were subjected to the two-sided Kolmogorov test for fit
against the logarithmic transform of the :

• log-normal distribution

• chi—square distribution (exponential ,-nd

gamma), arbitrary number of degrees of
freedom (d.f.)

• non—central chi—square distribution with

2 d.f. and arbitrary noncentrality parameter .

In each case “best” parameters were selected by matching
the distributions at the median (using the arbitrary loca—
tion parameter), fitting the candidate distribution to

the sample distribution at the 15th and/or 85th percentiles
(using scale or shape parameters), and then testing. The

test was also repeated with the median shifted in steps up

to 1.5 dB , allowing for the possibility that the match of

medians was not proper .

The Kolmogorov statistic is the largest difference

(Do) between the candidate and sample distribution functions ,

the latter based on n independent samples. The test then
derives from the probabil ity:

P[D~ > C(n ,~~)] —

where C(n,~~) is obtained from tables and ~ is called the

significance level , usually taken to be 0.01 or 0.05. If

the Kolmogorov statistic D~ satisfies

A-7



Dn <

then the hypothesis that the samples were drawn from the
candidate distribution is not rejected at the significance

level a , i.e. , the size of is consistent with what would
be expected with probability 1—a (the “confidence level”):

P(D~ < C) — 1—a .

One complication with the application of the
Kolmogorov test is in determining the number n of independ-
ent samples , since C(n ,a) is asymptotic to l//~ and the
test is thus quite sensitive to the value of n. In the
results given below , two time—series samples are treated as

independent if they are separated in time by an amount for
which the autocovariance function is small. Of course , zero
correlation implies independence only under very special
conditions , but a conservative test results when n is calcu-
lated in this way.

A .2.2 Autocorrelation Properties

In determining the temporal properties of the data.

this investigation stopped short of calculating sampled joint-

density functions and concentrated on the temporal auto—

covariance function and its Fourier transform (Power Spectral

Density), The former is important in current stochastic

modeling , while the latter displays the underlying periodic—

ities of the time series. In interpreting the results , note

that an assumption of ergodicity (and hence also stationarity)

has been imposed — since time (and not ensemble) averaging

is performed and correlation is calculated as a function of +

time lag only . +

L A .8 
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The Fourier transform is called a “spectrum” in
this report , but it is not the conventional power spectral
density of pressure. In fact , the autocovariance is for the
log transform of intensity and thus the spectrum defies
interpretation as anything more than an identification of
the oscillation periods of the dB variable. Moreover an
FFT has been employed and the discrete spectrum values are
to be viewed as averages over “frequency~ bins of size approx-
imately equal to the reciprocal of the maximum lag time of
the autocovariance function (which lag is in turn about 25%
of the duration of the time series).

A .2.3 Stationarity and Ergodicity

A “conventional” test for stationarity has been

applied to the time series: it simply calculates moments

over subintervals of time. Since the sample time series
are always of finite duration , a non-stationary series and
a stationary one with a low—frequency trend cannot be dis-
tinguished . In fact , the stochastic process models which
are constructed as stationary processes can show radically
different moments from interval to interval (the results of
Volume I show examples). For calculation of time—series
statistics , this study in essence assumes that all processes
are stationary, but with long—term trends which cannot be
quantified because of the short sample times.

Most of the statistical calculations also implicitly

assume ergodicity by using time averages in place of ensemble

averages. However , in cases for which there are many repli—

cations (e.g., ambient—noise acoustic simulations), both
types of averages are found and a comparison made. In fact ,

in one case for which the time duration of the series was too

A- 9
1,



short (compared with the decorrelation time) to yield many
uncorrelated samples , the ensemble statistics were used as
a more reliable estimate of moments. A Smirnov test for
equivalence of distribution functions from two different
time—series replications was also performed .

A. 2.4 Cross—Correlation Properties

In only two cases was the cross—correlation of

two time series investigated . First , for a few replications

of acoustically modeled noise, the normalized cross—covariance

was found to be uniformly small , and all replications were

treated as independent . Secondly, acoustically modeled beam

noise samples from two different beams but from the same

replication of the noise field were cross—correlated . The

results varied from sample to sample , from high to low to

negative correlation , indicating that further study is

needed before trends can be predicted .

A.2.5 Level-Crossing Properties

Among the most important statistical properties of

the time series are the intervals of time for which the data

are above or below a threshold level — this is the essence

of the detection application. Accordingly, time series of

TL, noise and signal excess were input to a “detector” package

(described in Appendix H) which determined for a given level

L:

(i) Time to first and last passage above (below )



p. - -
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(ii) Sample distribution of time intervals for
which the series is above (or below) L,

(iii) Sample probability that a time interval of
length s contains at least one point above

(or below) L,

(iv) Sample distribution and moments of waiting
time to passage above (or below) L,

(v) Sample distribution and moments of waiting
time to “sustained” passage above (or below)
L.

The first of these is of little value without much replica-
tion , while the second is fundamental to most of the others
and yields “detection probability ” and “holding times .”
“Cumulative~detection probability

’S is the motive for (iii),
calculated as the fraction of intervals of length s with at
least one point above L , or directly from (ii) as one minus
the fraction of intervals of length s with no points above L.

The distribution of waiting times (iv) can be found
from (ii) as

Sample Probability that the Waiting Time is Zero

Sample P(Waiting Time — 0)

fraction of points above L,

+ and



Sample P(Waiting Time — T)

— (Number of intervals of length T or more with all
points below L)/Total number of points

Finding the distribution of modified waiting time

(v) is more complicated and requires estimation of the proba-

bility of waiting for a time period M until the time series

has remained above the level L for period K. The sample esti-

mate for If < K Is

Sample P(Waiting Time — M)

+ 
— (Number of intervals of length K or more with all

+ points above L)/Total number of points

while for r > 1,

Sample P(Waiting Time K + T )

= (Number of intervals of length T or more in the
complement of the set of all intervals of length
K or more)/Number of points +

For the comparisons of Volume I the focus is on

(ii) — (iv). The modified waiting times (v) can certainly

be important , but the scope of the present study was limited .

I

I

’
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Appendix B
OVERVI EW OF SONAR PERFORMANCE PREDICTI ON

The primary obj ect ive of this study is to determine
bow the modeling of the acoustic environment affects the pre-
diction of sonar—system performance. The investigation has
been performed for a very special case (a single ocean envi-
ronment , a generic towed-array system , a special detector ,
a limited number of target tracks , a stable source , etc.).
Throughout the report of results (Volume I) are references
to various kinds of models: environmental , acoustic , per-
formance , engagement , sonar-equation ; and to model outputs:
ambient noise levels , signal time series , measures of effec-
tiveness (MOE ’s), detection probabilities , etc. This Appendix
presents an overview of the various model types and applica-
tions. The purpose is to show how the specifics of this study
relate to the general performance—prediction problem .

B.l Acoustic and Performance Prediction

Consider first that “predictive capability ” is what
is sought here , i.e., the capability to estimate in advance
characteristics of the system performance or engagement
results. In that case , the reconstruction of exercise re-
sults, the explanation of time—series data , or the under-
standing of the dominant mechanisms can be viewed as 

+ 

+

development or evaluation of the “predictive capability.”
The word “model” is then used in a general sense to describe
method of prediction: it can be based on an understanding

of the first princ iples underlying the physical phenomena ,

or it can be a strictly empirical , parameterized fit to

measured data. Empirical models require a substantial

B-i

I— 
-— — A



~ 1

quantity of supporting data , and cannot be applied with
confidence outside the regime of the measurements. Models
based on first principles generally require less measured
data and can be extrapolat ed with  some degree of confidence.

There is then a hierarchical ordering of models
relevant to sonar system analyses:

e Environmental Acoustic Models
These estimate properties of signal propaga-
tion and noise for given locations , geometries ,
times , frequencies , e t c . ,  and provide inputs
to performance models. Implicit  in the defini-
tion of this class of models are the environ-
mental models which provide the inputs , e.g.,

sound speed , wave spectrum , bathyrnetry , bottom

r e f l ec t i v i t y ,  etc. Acoustic models may be
determinist ic or random , and may be required
to predict the actual value of a variable
for specified conditions or a s ta t i s t ica l
characterizat ion over an ensemble of condit ions .
A good example is that  of ambient noise for
arrays; depending on the ap~iication , the noise

model might be called upon to predict such
things as:

- plane—wave intensities as a function of
angle , averaged over a large ocean area
and over a season

- statistics of temporal fluctuations of 
+

plane—wave intensities , at a specified

location and over a short time interval

B—2
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— statistics of the cross—spectral density
of noise power for pairs of hydrophone

+ locations, ensembled over a number of sur-
• face ship traffic patterns.

• Sonar Performance Models
These models combine the acoustic data with
the target and sonar—system properties to
yield estimates of sonar—system performance.
In most cases, the model must estimate a
measure of effectiveness (MOE) under specified
conditions about location , target/ sonar geome— 

+

t r y ,  sonar p la t form conditions , etc . It then
must simulate the response of the sonar system

+ 
to a given target . Again , this type of model
may treat variables as deterministic or random ,
and may yield ensembled statistics or single +

estimates of the MOE .

In the example of a towed array , the model
might be called upon to predict the range at
which a particular target in a specified
acoustic environment will  be detected . The
results may then have to be ensembled statis-
tically over time or location or target
velocities or whatever .

• Examples of performance models are SHARPS,

TASSRAP , SI}AAS , OMS , PEP Level II , PASS .

• Engagement Models
The engagement models go beyond sonar

performance to predict MOE ’s related to more

B-3
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complicated Naval engagements - including
such activities as weapon delivery , tactics ,
-or follow—up processes. In so doing , they
must use performance models for one or more
sonars , for weapons, for platforms, etc.

Examples of engagement models are APAIR ,
APSUB , SIM II , PEP. 

-

The present study concentrates on the characteriza-
tion of fluctuations for certain acoustic and performance
models , but stops short of an investigation of the engagement
models.

B.2 Application and Validation of_Models

B . 2 . l  Environmental  Acoustic

Environmental acoustic models have as their primary
application the use in performance models to predict sonar
effec t iveness .  Other applications , such as in terpreta t ion
of acoustic data , are in the realm of evaluation or improve-
ment of the acoustic models themselves .

For acoustic models based on physics principles ,
evaluat ion is carried Out extensively by the R&D community
via carefully controlled scientific experiments in which
the mechanisms hypothesized as dominant are closely monitored .
It is nearly impossible to “validate” a transmission loss
model if the source/receiver geometries and ocean environ-
mental conditions are not known . Empirical models are con-

sidered valid for the conditions corresponding to the data

on which they are based (if known ) and nowhere else. Rules
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of extrapolation are usually based on physical principles
and so convert the empirical model to a physical model.
Appendix C discusses the validation of the particular acoustic
models used in this study .

B.2.2 Performance

Performance models have a broad spectrum of appli-
cations , inc luding:

• concept evaluation

• design of systems

• trade-off of system candidates

• deployment optimization

• cost—effectiveness and force level analyses

• opt imizat ion of system operation and tact ics

• engagement reconstruction

• exercise planning

Each has its own requirements for MOE accuracy, ensembling ,
etc.

Evaluation of performance models is a controversial
subject , and should be viewed in terms of’the objective (pre—
sumably a predictive capability) and the type of model
(empirical or based on first principles). First , a model
based on physical principles must consist of components
accounting for the target characteristics , the acoustic envi-
roninent , the source/receiver geometries , the sonar system
response to the signal and noise , and the detection process

-- ~~~~~~~~~~~~~~~~~~ 
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(manual or automatic , including classification or localiza-
tion). If the quantitative importance of each component is
determined and if each component is found to have the appro-
priate accuracy, then there is a basis for “validating” the
performance model as a predictive capability. On the other
hand , if the sonar system behavior is nontrivially dependent
on the component variables and if the components cannot be
evaluated , then the number of unknowns will usually preclude
“validation” of the performance model unless enormous quanti-
ties of performance data are available. Needless to say ,
empirical performance models demand even more data for evalua-
tion .

B.3 Basis and Output of Performance Models

The outputs of performance models are quantitative
predictions of system performanc e , usual ly called measures
of ef fect iveness  (MOE ’s). Examples of interest to the sur-
veillance and tactical sonar community are:

• Area Coverage

• Detection Contours

• Sweep Rate

• SPA Size

• Instantaneous Detection Probabil i ty

• Cumulative Detection Probability

• Distribution of Holding—Time Intervals

• Time to Lost Contact

• Tim e to Reacquire

B- 6
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• Time to Classify or Localize

• Barrier Effectiveness

Each has a definition complicated by the ensemble of condi-
tions over which the estimates are to apply. To focus this
study , it is proposed that detection histories , or at least
detection—probability histories, are the underlying variables
for most of these MOE ’s.

Given that detection history is the principal out-
put and that the target and environmental parameters are
the inputs , the basis for the performance model is nothing more

than a sonar equation , which itself should be viewed as a
model. It gives the system detection characteristics as a
function of input signal and noise properties . In general ,
the sonar equation relevant ‘to performance modeling is of
the form:

S — SL - TL + ASG + PGS

N AN + ANG + PGN

where all quantities represent relative intensities (mean—
square pressures b in dB’s, and

S — signal level , after processing ,

SL — source level ,

TL — transmission loss from source to receiver ,

ASG — array gain for the signal ,

PGS — processing gain for the signal

(including operator),

3—7
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N noise level , after processing ,

AN — all noise before processing ,

ANG = array gain for noise,

PGN processing gain for noise .

The signal-plus-noise is the phased sum of S and N. Each
variable can be viewed as time-varying or constant , as a
random variable or as deterministic . The performance model
first estimates such quantities and then determines appro-
priate detection histories based on the system ’s detection
algorithm.

As discussed in Appendix F , most performance models
relevant to low-frequency, passive systems have as detection
algorithm the thresholding of signal—to—noise .ratio (SNR).
In terms given above , a detection is called if

f(S-N) > TB

where TB is the threshold and f is a functional operating
on S-N (the SNR). Now , TB may be time-dependent (e.g.,
allows for alerting) and may have to be treated as a random
variable since it embodies operator performance. The func-
tion , f , may represent scaling, squaring , time-integration ,
etc. The “usual” sonar equation and the one used in this
study is found for f the identity operator and

S - N - TL - TL - AN + (ASG - ANG) + (PGS - PGN)

SL - TL - AN + AG + PG

1 .  B-8



where AG is total array gain and PG is processing gain .
Then

— Probability of Detection — P(S-N > TB).

If “signal excess” is defined as

SE — (S - N) - TB ,

then detection occurs whenever SE > 0. Hence , in this case,
the performance model can provide either detection histories
via a time series of SE (and perhaps TB) or detection
probabilities via P(SE > 0).

3-9
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Appendix C
THE ACOUSTIC MODELS AND THEIR VALIDITY

Transmission loss and noise predictions generated
!rcm state—of-the—art acoustic models serve as the control
data for this study . They provide deterministic , known
acoustic environments which serve as “real data” for the
test of selected stochastic models and also assist in ex-
plaining fluctuation mechanisms and developing improved
stochastic simulations . In what follows, the rationale
for the use of acoustic models instead of measured data
and the assumptions/ l imitat ions associated wi th  such an
approach are discussed. In addition , some details about
the particular models and their validity are presented .

C.l  Acoustic Fluctuation Mechanisms

At low frequencies in a deep water environment ,
the signal level received by an omni—directional hydro—
phone from a moving narrowband source f luctuates  in time .
Long-term variations in average received level might be
associated with the source moving through convergence
zones. Superimposed on this envelope is a rapid varia-
tion caused by the changing phases of the various propa-
gation paths connecting the source and receiver . Under

many circumstances , these phase fluctuations have been

shown to be the results of changes in range . In other

words , the detailed variations observed in time series of

received signal level are due simply to the source moving

the complicated multipath interference patterns of the
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acoustic field past the receiver . While the precise posi-
tions of peaks and nulls in the transmission—loss fluctua-
tions are not predictable , there are convincing demonstra-
tions that the distributions of received levels , as well
as the spatial (range ) spectra of transmission loss , can
be accurately estimated using propagation models which com-
bine all paths on a fully—coherent basis. Hence , for a
particular range of CPA and target speed , a representative
time series of received signal level can be generated .

Since , at low frequencies , the ambient—noise field consists
of contributions from surface ships , it follows that  the
ambient—noise variability can be simulated by combining
the received signals from all relevant surface ships .

Finally, fluctuations in the output of beamed systems can
be simulated by taking into account the array response to
the signal and noise fields .

Although it is assumed to be the case for this
study , the dominance of motion—related , multipath fluc-
tuations for TL is not universal. When relative source/

receiver speeds are low , the effects of the dynamic ocean

medium ( f ron ts , internal  waves) may contribute signifi-
cant ly  to the total  TL f luc tua t ion .

C.2  Signal Fluctuat ion Mode l ing

Signal fluctuations are simulated by tracking

sources through the multipath interference patterns in

the acoustic field modeled by either ray or wave propaga-

tion codes. The resulting time series can be scaled ,

shifted , averaged , and combined with array response

L _ _
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patterns to simulate a number of target speeds and bearings
from the array . The incoherent averaging appropriate to
the signal processor can be applied to these time series
via the detector simulation .

The transmission loss simulations used in this
study are derived from the Parabolic Equation (PE) model
(Ref. C-l) for RB and RSR paths and from a version of the
FACT model (Ref. C-2) for bottom bounce propagation . A

combination of the two models is considered to be the
best available method for simulating the fluctuations of
the transmission loss for the case at hand . The PE tech-
nique is an extremely accurate and efficient approach for

refracted paths , but is presently unable to properly han-
dle the high—loss bottom bounce paths. Hence , output of
the FACT model for the coherently-summed bottom—bounce
multipaths is added in phase to the refracted—path field
generated by PE. This FACT cont r ibut ion  is important only
to ranges of about 100 nm.

The TL mode l output is transmission loss as a
funct ion  of range , TL(R) , for a narrowband signal at 25 Hz.
It is sampled every 1/6 nm and exhibits the multipath
interference in full detail. Given the target source level
SL(t) and range rate R(t), the time series of the signal

is found from :

S( t )  S L( t )  — T L [ R ( t ) ] .

1 •  c~:



Note that for a given target and ocean environ-
ment the signal model is completely deterministic; fluctua-
tions arise solely irom source motion through the multi—
path interference field. There is no attempt to account
for fluctuations due to the variations in the medium with
similar time scales , nor are the range/azimuth-dependencies
in the environment treated in detail. In fact , if a sta-
ble source is at constant range from the receiver , whether
moving or not , this model will yield a signal which is
constant in time (except , perhaps , for modulation by the
beam pattern).

C.2.l Model Validity

First of all , the environmental inputs (sound
speed , bottom reflectivity , bathymetry ) correspond to a
PARKA lI-A Experiment track (Ref. C-3).

FACT is the Navy Interim Standard transmission
loss model for range—independent environments . It has
been subjected to extensive comparisons with data —

especially for the PARKA conditions-and has been shown
to give very reliable results whenever the environmental
inputs are accurate. For the case under consideration ,
the environment is effectively treated as range—indepen-
dent to ranges of about 100 nm , where the bottom bounce
energy becomes negligible.

Although not yet a Navy Standard , the PE model

has also been evaluated against a number of measured data
sets. Of particular relevance is the comparison of Ref.

C—4 with PARKA Il-A shot data. Typical distributions of
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the difference between measured and predicted transmission
loss at low frequency show means less than 1 dB and stan-
dard deviations on the order of 2 dB.

In view of the agreement of the transmission loss
model with measured data for the test environment of this
study (viz., to the limit of measurement accuracy), it is
easy to argue for the use of model predictions instead of
the measured data: the model extrapolates to other source/
receiver geometries , ranges , frequencies , and even environ-
ments , and in fact can show sensitivities to these para-
meters.

C.3 Noise Fluctuation Modeling

Ambient noise can be simulated under the assump-
tion that  at low frequencies there are two basic compo-
nents :

(i) a steady background associated with very
distant  ships and wind action on the sea
surface , and

( i i )  a f luc tua t ing  component associated wi th
nearby surface ships as they move through
the multi—path interference patterns and

convergence zones.

Given the set of surface ships in the basin of interest ,

their radiated noise and velocities , a set of “signals”

can be calculated deterministically with the aid of the

detailed transmission loss function , just as in the case
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of the target signal . These contributions from individual
ships can then be summed at the receiver to yield the
time series of ship—generated noise . Its fluctuations are
again driven by the multipatb interference and convergence
zone properties of the transmission loss - but complicated
by the fact that several (or many) sources are present.

For the present study , the surface—ship contri-
• butions are calculated with the DSBN Model (Appendix H),

in the same way as for signal . The i-th ship with source
level SL1(t) and range rate R~(t) generates a signal ,

S1(t) = SL
~
(t) — TL(R~ (t ) ]~

and the collective signals make up the noise field.

As described in Appendix H , the model uses a
hypothesized set of surface ships , moving on straight-
line courses across the basin and radiating noise corre-
lated with their speeds . If the ship source levels and
courses were known , the model would be completely deter-
ministic; but since they are not , these parameters are
treated as random variables subject to constraints im-
posed by somewhat general bounds (e.g., speeds are 15
knots ~5 knots , courses are within 150 of 900 or 180°T.
source levels are near 163 dB but depend on a random
length and on speed , ship densities on average over time
must be consistent with those observed). For each point

in time , the radiated noise from each ship propagates to
the receiving array . The resultant contributions are
added incoherently (random phase), under the assumption
that fluctuations associated with a coherent sum are
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typically averaged out by the signal precessor ’s time inte-
gration . Transmission loss is derived from the modified
PE model described above , with a source depth of 60 feet,
and is corrected to simulate loss from a near-surface
source which radiates only away from the surface. The
simulated noise time series is sampled every two minutes
for the duration of a replication (e.g., 10 hours). Each
replication is initialized by random selection of ships ,
speeds, courses and source levels .

C .3 . l  Mode l Val id i ty  -

Questions can be raised about several of the
assumptions inherent in this model:

(a) How representative are the source levels?

(b) Is the mechan ism for coupling the radiated
noise to the propagation paths treated
realistically?

(C)  Is the envelope of the radiated noise from
a single ship as observed in a narrow band
properly treated as constant?

(d) Should the radiated noise be aspect—
dependent?

(e) Are important fluctuation properties lost
when the noise components from different

ships are added incoherently at the re-
cci ver?

C- 7
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(f) Are important fluctuation mechanisms over-
looked when transmission loss is modeled
as independent of bearing?

For (a) through Cd), estimates of the radiated noise pro-
perties are the best available but of questionable accuracy .
There are several navy R&D projects in progress now to mea-
sure and model merchant/fishing ship sources. For the pre-
sent study , the most important of the first four is (c),
but there is no substantive evidence to suggest that two—
minute averages are not stable levels ( i . e . ,  the t ime-
bandwidth products are large).

For question (e ) , it is the t ime—dependence of
the f luctuat ion process , rather than the marginal distri-
butions , which could be inaccurately simulated as a result
of the incohe~ ent summation . It is argued , however , t h a t
the in ter ference  would be important only if the noise corn—
ponents from t~ o or more ships were of about the same mag-
nitude , the resul t ing intensity dominated the noise , and
the modulation showed significant energy for periods above
the sampling rate (here, two minutes). These conditions
could certainly occur , but probably not very often or con-

sistently for the array problem treated here . It can be

viewed as a secondary effect which warrants future study .

Finally, the accurate prediction of absolute noise levels

requires a commensurate accuracy in the transmission loss.

For the simulation of fluctuations in the environment of

this study , it is judged that the multipath characteris-

tics will be similar in all directions and that the use

of a single detailed loss function is appropriate.
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In spite of the potential inaccuracies from the
above or other model inadequacies , we are encouraged by
the results of the evaluations of a number of models which
are no more sophisticated than the DSBN model . For the
prediction of broadband (say , 1/3 octave), averaged (say ,
more than several hours) noise levels, models which use
static ship densities have shown good agreement with data
when the environmental inputs were accurate and conditions
did not press model limitations ; see, e.g., Ref. C-5.

We know of no ambient noise measurement data
appropriate for conclusive validation of a model which
predicts the detailed t ime dependence of beam noise , i.e.,
there are no data with sufficiently accurate information
about the environment and sources . There are , however ,
measurements which are par t icular ly  applicable to our
study . The NRL SIAM mode l (Ref. C-6), which is quite
similar to DSBN, predicted beam noise statistics from
Monte Carlo simulations based on historical shipping den-
sities . The results (Ref. C—7) show reasonable agreement
between the measured and predicted distributions of beam
noise at 50 Hz.

As a f ina l  consideration on the val idi ty of
noise simulations , compare the s igni f icant  confidence
associated with a signal prediction against that of a

noise prediction suffering from the uncertainties in ship

locations , velocities and mean source levels . For a

fixed ocean environment and target parameters , the signal

simulation can be interpreted as a good approximation

to what might be measured ; and such model evaluations

have been successful in the past. However , in the case
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of noise , the detailed ship data for a “deterministic” pre-
diction are not (and never have been) available. Thus,
the model is run for shipping fields consistent with the
best information available - usually ship densities and
percentages by type within grossly—defined lanes .

The rationale then is that a “representative”
noise time series generated by a model of this type is
the most realistic approximation to true noise data
available , and it can be analyzed to determine the domi-
nant mechanisms and the sensitivities to the environment.
Since the shipping parameters are so poorly defined , a
number of real izat ions of noise t ime series are generated
from a constrained population of shipping fields - then
common s tat ist ical  properties and a base for predicting
them can be iden t i f ied .

C. 4 Signa l-Plus—Noise and Signal- to—Noise
Rat io  Modeling

As noted in Appendix F , there are valid reasons
for modeling the detection process as one which thresh-
olds on a func t ion  of s ignal—to—noise  rat io ( SNR ) ,  rather
than one which compares the measurable quant i t i es . signal-
plus-noise (S + N) and an est imate of noise .

Simulat ing the lat ter  in its precise sense in-
volves coherent summation of the signal and noise time

series as well as modeling the noise estimate - be it in

neighboring frequency bins or azimuthal angles . These
+ operations present new problems since they require simula-

tion of the relative phases of signal and noise and of
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the “coherence” of noise in frequency or azimuth . Only
the last of these is predicted with any confidence by
the deterministic models.

In this study , S and N are modeled separately
and N is treated as an estimate of noise in a neighboring
bin or beam . Thus the problem is avoided. However , a
number of assumptions about the signal-processor algorithm
and the properties of S, N and S + N have been made in
order to justify the SNR detector .

C.5 Array Response Modeling

The complete treatment of a multi—element array
requires the fully—phased pressure for both signal and
noise at each hydrophone location as a function of time .
Array beam outputs can then be simulated by weighting
and phase—delay summing these hydrophone outputs .  Such
a simulation is beyond the scope of the present study ,
but has been accomplished recen t ly .  For the specific type
of array used here , a simpler approach is appropriate.

First , suppose that  the array is a conventional
horizontal  l ine and is not too long,  i . e .  that  it is opera-

ting at design frequency , uses weighted delay and sum
beamforming, and is no more than about 25 wavelengths long .
Then DI is about 17 dB and beamwidths are no smaller than

about 40• Suppose further that the array is straight ,

stationary , and precisely horizontal . It is not unrealis-

tic then to model waterborne transmission with plane waves

which enjoy perfect horizontal coherence (there is some
experimental evidence to support this assumption).
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If it is assumed that multipath interference
arrivals from off-steering—angle sources , across the array
length , were within the coherent integration time of the
processor, then the array response function could be con-
volved in both azimuth and elevation with the acoustic
signal and noise fields. Since that approach requires
the detailed angular arrival structure from every noise
source , a further si~mplification is sought .

It is the detailed vertical structure which is
difficult to treat without extensive computer effort , but
for a moderate to high—loss bottom , the influence of the
vertical arrival structure can be safely neglected for all
but near—endfire beams . Hence , in this study , the array
beam pattern has been idealized to its response in the
horizontal plane , and beams correspondingly near broadside
are considered . Add i t iona l ly ,  the combinations of beam-
width and level of sidelobe reject ion have been constrained
so that the sidelobes can be categorized in terms of an

average response rather than the detailed structure .

Appendix H describes the computer algorithms

for the array-response model .

C.6 Time Scales and Units for Modeled Quantities

It was shown in Appendix F that modeling a

narrowband signal detector via thresholding on SNR is

reasonable under special conditions related to the pro-

cessing of the signal-plus-noise and noise . It is impor-

tant then to state the scales and units of the predic—

tions of signal and noise - so that the interpretation
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of detector performance is accurate. It seems that this
step is seldom taken in the analysis of performance/engage-
ment models.

The transmission loss prediction (TL(R)) is made in
range steps chosen so that smooth interpolation between
points is accurate. Each point is best interpreted as the

(relative) intensity of the field in a narrow frequency band
centered on 25 Hz. For fixed source/receiver geometry the
coherent integration time for viewing the narrowband inten-
sity would be several seconds to minutes , while for a moving
source there is an additional range average over distances
up to 1/6 nm. Since the source is assumed to be stable over
many minutes and since the TL varies smoothly over ranges
on order of 1/6 nm or more and time periods up to minutes ,
the incoherently averaged signal over these time (range)
scales is about the same as any coherent integration . The
rule of thumb then is that the signal intensity prediction

V ‘or a 5 knot (radial speed ) source represents the output
of a narrowband (coherent) filter followed by an incoherent
integration with total integration time of 2 minutes or
less (the 5 knot target covers 1/6 nm in 2 minutes).

The noise model incoherently sums contributions
+ from stable sources moving at speeds from 0 to 20 knots ,

provides outputs every 2 minutes , and incorporates TL

with the scales given above . Hence , the noise estimate

must be viewed as the incoherent average of many coherently-

filtered samples over 2 minutes’ The coherent integration

r~
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time may be as long as about 10 seconds , so that there are
12 or more such samples to be averaged .

Because of the constraints imposed on the array
and environment given in C.5, the effects of the array re-
sponse function do not alter this interpretation of signal
and noise predictions.

In summary , predicted signal and noise time
series samples , taken every 2 minutes , should be inter-
preted as output of a signal processor which coherently
integrates for intervals of time up to 10 seconds and
then incoherently averages the results for 2 minutes .

C.7 Acoustic Modeling of Averaged Signal and Noise

The preceding subsections have been concerned
with the acoustic modeling of the detailed time series of
signal and noise , including the dominant fluctuations .
Consider here the prediction of the mean values , about
which the variables fluctuate.

It is customary in performance and engagement
simulations (Appendix E) to measure or model the “deter-
ministic ” part of signal and noise , and then to add to
it a “random” part which accounts for what are usually
believed to be “random” fluctuations . Figure C—b shows
a detailed TL range series and two smoothed versions

typical of what might be used in performance analysis.
They are quite different and lead to one of the questions

addressed in this study : what are appropriate algorithms
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for smoothing TL to obtain the “deterministic part ,” and
how do the resulting fluctuation properties depend on them?

Consider first the two extremes : (a) the deter-
ministic part is the mean for the entire time series (or
range series of TL), and (b) the deterministic part is
the full series , with as much detail as is available from
model or measurement . Now , (a) assumes complete ignorance
about estimating the locations of peaks and nulls - leaving
it to the random process model to yield representative
realizations. In (b) it is claimed that the detailed loca-
tions and levels of peaks and nulls are realistic and in
fact would agree well with measured data if the inputs
were known with appropriate accuracy .

The point of view taken here is that (b) is
usually the case , but that acoustic prediction capability
is often input—limi ted , especially for noise . Even under
input—limited conditions , models can be used to iden-

tify common properties over the range of uncertain inputs ,
as has been done for noise predictions (over shipping)
and transmission loss (over range). When these common
properties consist of a mean trend plus the distribution
and spectrum (and perhaps other properties) of the resi-
dual , then a random process model for the fluctuations
may be appropriate for mathematical convenience or economy .

For the practical matter of predicting “mean ”
TL and noise for inputs to performance models , various
smoothing algorithms are compared for the test case pre-
sented in Volume I. For TL, range averages go from frac-

tions of a mile to an A + BbogR fit , while for noise the

deta iled data and a mean over the whole series are tested .

0

- - 
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Appendix D
SOME STATISTICAL FLUCTUATION MODELS

BASED ON ACOUSTIC MECHANISMS

As discussed in Volume I , it is common practice
in performance analyses to model signal or noise or signal-
excess f luctuat ions as stochastic processes. The choice
of a specific process may be based on experience but usu-
ally tends toward mathematical convenience. What follows
is a review of sOme of the theoretical treatments of fluc-
tuations based on acoustic mechanisms . The corresponding
statistical properties are listed so that they can be
noted in the test cases of Volume I. At the same time ,
stochastic—process models alternative to the usual ones
(Appendix E) are proposed.

The scope of this effort does not allow for a
complete survey of acoustic f l u c t u a t i o n  models. Hence , the
focus is on models for low-frequency signals which have
multipath propagation as primary f luc tua t ion  mechanism
and on noise models driven by the same multipath inter-
ference from multiple sources .

D.l Quantities Modeled

Consider first exactly what parameters are to be
modeled . For the types of sonar systems considered in this
study the important quantities are the signal (S), noise
(N ) ,  and S+N in tensi t ies  resul t ing from array beainforming
and narrowband filtering followed by squared-envelope
averaging (see Appendix F). In addition , proper modeling
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of the detector - requires prediction of the properties of L
an estimate of N derived from samples in neighboring filter
bands or azimuth beams or time windows . There is, however ,
rationale for simulating performance with a detector that

thresholds on S/N. For stable source levels and beam re-
sponse , the quantities of interest are S, N , ~~~, S+N , S/h ,
N/I~. Signal intensity (S) is then identified with trans-
mission ratio (TR), the ratio of received intensity to

source intensity (lO.log TR TL).

Note that these quantities are usually formulated
in dB’s. The random-process models are most often applied

t o lO’log S or i0~ log N or l0~log (S/N) (relative to some
reference i n t e n s i t y ) ,  so that  a Gaussian distribution of
the fluctuations of one of these variables means a log—
normal distribution of the intensities . A great deal of

care must be taken in converting statistical properties

from intensity to dB units , and some further discussion

is given below .

D .l . l  In tens i ty  and Decibel Units

Let X be an intensity variable and L be the

corresponding dB variable:

L — l0~log(X/X0) ALnX ,

where X0 is reference intensity (unity 
here) and A = 4 .34 .

If X has distribution function F(c) — P(X <c), then L’s

distribution function is G,

G(d) P(L~d) P(X�edl’&) F(ed~~), (D-l)
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and

F(c) — P(X�c) P(L�ALnc) G(ALnc). (D—2 )

The density functions are related by

g(d) = f(e~~
’A ) . i~d/A 

(D—3)

and

f(c) = g(AZnc) . ~~~~. 
(D—4)

Hence X and L have significantly different density functions .

To display distribution properties of X or L it

is often sensible t.o use order statistics , which are invari-
ant under monotone (increasing) transformations . For example ,
the 20th percentile for X is. c(.2), defined as

P(X ~ c(.2)] = 0.2.

The same percentile for L is d(.2),

P(L 5 d(.2)] = 0.2,

so that

d(.2) Aen (c(.2)].

Hence , given percentiles of X , those of L are easy to find .

On the other band , moments are not easy to convert . In

+ general
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E(X’~) 
IEfX

kf(x)dx

and

E ( L k ) =fy
kg ( y ) d y  =fy

k f ( e~~
L
~) . 

~~~ ~~~~~~

so that E(Lk)~Atn (E(X
k)]. There is seldom an easy way to

determine even the mean value of the transformed variable .

Consider next the scale and location parameters
of X and L. Suppose that  X ’ s densi ty func t ion  depends on
a location parameter a and a scale parameter b:

F( x)

Th en

G ( y )  = F (exp (~~) )  = F(~~~b~~~
a)

— 
A Y-A eib  a

— F [exp ( 
~~~~~ 

- b 1 ’

so t h a t  A~ nb becomes a location parameter for L , wh i l e
(
~

) remains a shape parameter.  The importance of this ob-
servation is that in using L as a fluctuation variable , i t
is usual to set its mean (or median ) to 0, and/or assume
that X0 is an arbitrary reference for X. In either case ,
the scale parameter of X and the location parameter of L
are treated as arbitrary . A good example is in the ex-
ponential distribution for X (see Ref. D—l):

F(x) = l—exp(—x /p ) . (D—5 )
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Then

• G (y )  — l—exp [— (exp(y/A))/~ )

= 1_exp(_ (exp (~~)(y-A1nu)] - (D—6 )

which means that while X has mean j.z and variance i.i2 , L
has variance and shape independent of i.i :

• E(L) = l01og~ + 2.5

Va r ( L )  = ( 5 . 6 ) 2

D.2  Signal Fl uctuat ions

Consider next some intensity distributions
which result from the conditions of a moving source in
a multipath environment . The usual ray formulation for
signal mul t ipa ths  is

s ( t )  =~~~ An e x P [i ( w t _ k n r+~ n ) ]  ( D — 7 )

where k n = kcose~~ k is wavenumber , r is range , u is an-
gular frequency , en is ray angle at the source , and
is a “random ” phase angle. Intensity is then proportional
to

1~J s(t)s*(t)dt, (D—8)

and the distribution is found by sampling in range , r .

D—5
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D .2 . l  Gamma and Chi-Square Distr ibut ion of Intensity

A number of important references (Physics of
Sound_in the Sea ( 1946) , Dyer (19703 , Mark ( 1972) , Whalen
(1971]) formulate models of signal (or transmission ra t io)
fluctuations which result in a Gamma distribution for the
intensity .

Reference (D—2) uses the classical random-
phasor approach . The signal pressure after filtering is
assumed to have form

s = Aexp(iO) = ~~~A . e x p ( i e )
3

3

where and A~ are real and random . Now , for

X Re ( Ae le ) ~~~Re (A ~ exP(i8~~) )

Y = Im(Ae 16 ) E Im (A ~ exP ( ie~~) ) ,

a cen t ra l - l imi t  theorem is assumed to app ly,  so that X and
Y are normal and independent with mean zero and variance
c 2 . The signal envelope q = ~,1X2 +Y2 then has Rayleigh den-
si t y :

f
q

( X )  — ~2exp(_x2/2c), for x > 0.

The signal in tens i ty  has the d i s t r ibu t ion  of q 2 , n amely

f
q
2 (x) — 2~ iexp(_x/2a 2 ) ( D —9 )
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This is the exponential distribution or gamma distribution
with 2 degrees of freedom (2 d.f.). When a = 1, q2 is a
chi-square variable wi th  2 d . f .

Dyer [1970] has a more precise derivation . Let

the pure—tone signal pressure at the receiver have form

s(t) = S
0
T ~~~

1
Ancos(wt~~~n ),

and assume

s ( t )  — A (t ) c o s (~ t— ~~(t ) ]

where A and q,. vary slowly over intervals of length T (T>1L ).
The in tens i ty  is then proportional to

X = ~~fS
2 ( t ) d t  = ~~~~~~~~~~~~~~~~ +(~~~A~sin~n)

2]. CD—b )

For N large , the sums of (D—10) are near ly  normal by a

central—limit theorem for each of the three cases :

( i )  A~ A and 
~ 

uniform on (0,21T]

~ ~n 1 is an independent set .

(No scattering, random travel time)

(ii) A~ random with E(A~) — A and Var (An )< l~
un i form on

~~~~ ~~~~~~~~~ 

independent.

(Random travel time and scattering)
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( i i i )  An random wi th  E (A ) — A , Var(A~)”i~
random with E(~~ ) = 0 , Var($~~) < < l ~

lA DI , 
~~n} 

independent.

(Scattering, but no travel—time randomness)

In ( 1)  and ( i i ) ,  the cosine and sine sums are independent
and normal with the same distribution , so that X is expo-
nentially distributed. Note here that the assumptions are

that there are many multipaths (N large) and each has
about the same intensity. Case (iii) gives a sum of
squares of two different normal variables.

Mark (1972] extends the pure tone case to finite
bandwidth and shows , under special assumptions , t h a t  th e
in tens i ty  has a gamma distribution with n d.f. where

2~
2

n — —
~~~~~~ 2(Time)(Bandwidth).

Nearly any book on s ignal  processing ( e . g . ,
Whalen (l97 1J or Davenport and Root (1958]) models the
f i l te red  signal or noise pressure (voltage ) as a zero—
mean , Gaussian , narrowband , s t a t ionary  random process
of form

s ( t )  x ( t ) c oswt  — y ( t ) s i n w t

Then x(t) and y(t) are also stationary , uncorrela ted ,

Gaussian processes with mean zero . The envelope squared

is

q2 — x2(t) + y2(t) (D—ll)

and has the exponential distribution .

D—8
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This subsection concludes with some notes on
the gamma and chi—square distributions (see, e.g., Cramer
[1946)). If X1 are independent , normal variables with
mean zero and variance a2 — then

n
x - 

E 
x12

i l

is a gamma variable wi th  n d . f .  The density funct ion is

r ( n / 2 ) ( 8x) ’ e~~~~ x >

p( x) = (D— 12)
0 ~~~~~

• wi th E ( X )  — n/28 , Var(X) — n/ 2 8 2 . The chi—square dis t r i—
but ion is a special case of the gamma wi th  8 *  or
while the exponential  d i st r ibut ion  is a chi—square or gamm a
wi th  2 d . f .  The square—root of an exponent ia l  variable has

• th e Rayle igh  d is t r ibut ion .

For n fixed , the gamma d ist r ibut ion is a one-
par ameter f a m i ly .  In fact , a scale change X—~-(28)

2X
converts a gamma variable to a chi—square variable.  Hence ,
as. discussed in D . l . ] . , for the log t ransformat ion of X
with  arbi t rary reference i n t e n s ity , chi-square variables
can cover the general case.

As a f ina l  important note , the sum of indepen-
dent chi—square variables is again chi—square (with the

sum of the d . f . ) .  Hence , the incoherent average of in-
dependent , identically distributed intensities can be

modeled , to within a scale factor , as a chi-square vari-

able.

D-9
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D.2.2 Non-Central Chi—Square Distribution of Intensity

As seen above , the chi—square intensity results
from multipath summation when the paths have nearly equal
energy . A variation on this occurs when one path dominates
(the “specular” path) and the other (the “scattered” field)
shares the remaining energy about equally (Smith [1973] or

Urick (1975]). The standard derivation dates to Rice [1945)
or Nakagami [1943) , but can be found in most signal—process-
ing books (e.g. , Ref .  D-4 or D-5).

Let the “steady ” signal

s
1

( t )  = A cos (~i t +~~)

be added to a narrowband Gaussian noise (as in (D-bO) above),

52
( t )  = x(t)coswt + y ( t ) s i n~ t .

Then

s(t) — s
1

( t )  + s
2

( t )  (D — l 3 )

(x(t) + Acos~~)cos~ t — (y(t) + Asin~~) sin~_ t

has envelope-squared (intensity)

q2 — (x + Acosq )2 + (y + Asin~)
2. (D—14)

The density function for q2 is independent of the distri—
bution of $ and is that of a non—central chi—square van-
able wi th  2 d . f . :

• :f q 2 ( X) — 20zexpC 2a~ 
)I

~
( ~~ ) .  (D”-l5)

D- 10



The envelope itself (normalized bye) has the Rician density
function :

2 2
fq/0(Y) = YexP(~(~

’ ~‘A )]10(Ay) (D—l5)

Urick [1975] derives the same non—central chi-
square distribution for intensity (Rician for RMS pressure)
usin g a Rayleigh—phasor argument. McCabe [1976] has con-
structed a “log—Rice” random process simulation with GM
processes and formula (D—14).

The sum of non—central chi—square variables (with
noncentrality parameters the same) is again non—central

chi—square , so that the incoherent average of intensities

can be treated as a non—cen tral cM —square variate (with
appropriate d . f . ) .  Notice also that as A-~-o ,  this  variable
become s chi— square or gamma d is t r ibuted .  For about 5 or
more d . f . ,  the non—cent ra l  chi—square is approximately
normal for probabili t ies between 0.01 and 0.99 . +

Robertson (1969] has developed routines for cal-
culating the non—central chi-square distribution . Whalen
[1971] and others have calculated ROC curves based on this
variable.

D.2.3 Temporal Properties

When source motion through the multipath field
is the major cause of fluctuations , the temporal proper~-
ties of signal are determined by the changes in transmission

D— 11



loss with range and the range rate r(t) of the source.*

In terms of (D—7) and (D—8), intensity is proportional to

— ~~~~ + 
~~*

Am A
~ cos ((k.~—k~)r(t) + 

~mn~

where

km - k~ — k(cosem _cose
n).

When the RMS pressures , ~~ are of similar magnitudes ,
then the intensity fluctuations in range , r, are driven
by terms of form

AmAncos ((km_kn)r(t)]

Following Clay (1968] , define a “spatial spectrum” for
h a s I

I(km kn) — AmA n,

which Ident i f ies  the dominant oscil lations of I in range .
A typica l deep—water , long—range case at 25 Hz might yield
a spectrum of the form show n in Figure D—l. The abscissa
of the f igure is given in units of cycles per range inter-
val . To convert to a temporal scale , the range rate is
incorporated: examples are given for a 3—knot and a
9—knot source in the figure .

*For In << sound speed.
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I 
0.25 0.5 1.0 cyc1~~/l00m

Range Spectrum

I 0.25 0.5 1.0 cycles/minute

Scale for Tii~ Spectrum : 3-kr~t Source

0.75 1:5 3 cycles/minute

Scale for Tine Spectrum: 9-knot Source

Tran nissia~ F1uctuati~~ Spectrum +

• Figure D-l



Although some investigators have studied the
fluctuation spectrum (e.g., Unick [1974)), many have con-

centrated on space/time “decorrelation” scales for signals

(see , e.g. Smith [1976]) and the exponential autocorrela—

tion function so prevalent in random—process modeling.

One alternative approach is discussed at length

by Bendat (1958], the exponentia1—cc~sine autocovaniance
function : 

+

C(t) = e COSWT. (D—l7)

The reference gives a number of examples in physics for
which (D—l7) is appropriate.  More important perhaps is
the fact  that combinations of two or more such funct ions
give rise to spectra with  two or more maxima — as is
of ten  seen in signal f l u c t u a t i o n  data ( e . g . ,  Figure D—l).

Finally, it must be kept in mind that the tem-
poral properties for intensity will in general be different
from those of dB variables . In particular , there is no
simple correspondence between autocovariance functions for
the two quantities. But periodicities in one are periodi-
cities in the other so that at least the dominant compo-
nents of one spectrum should appear in the other.

D.3 Shipping—Noise Fluctuations

The multipath fluctuation models for signals
can be extended and combined to yield models for the
noise generated by distant ships . Some of these are
summarized below .
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D.3.1 Chi-Square and Non-Central Chi-Square Intensities

As mentioned in D.2.2, the standard signal-
processor ’s approach to modeling narrowband noise (or
signal) is to assume a stationary , Gaussian narrowband

pressure, whose envelope—squared (intensity ) is then a
gamma variable with 2 d.f. The incoherent average of n
independent samples leads to a gamma distribution with

2n d.f. In dB units this is equivalent to a chi-square

variable with 2n d.+f .

A justification for chi-square noise based on
some physics is given by Dyer (1973] in an extension of
his transmission fluctuation model . One approach to noise
is to assume that a number of ships , say n , contribute
about equally to the total noise intensity , that the sum
is incoherent , and that each ship ’s signal consists of
many multipaths of about equal energy . Then the noise
ii~censity is the sum of n gamma variables with  2 d . f .  and the
same variance. In dB units this is equivalent to a chi—
square variable with 2n d.f. Incoherent time averaging
raises the number of degrees of freedom .

Similar reasoning for ship signals which have
a non—central chi—square intensity (2d.f.)results in a
corresponding non—central chi—square distribution of Inten—
sity. The critical assumption in either case is that ships
contribute equal energy to the total noise field. Such a
situation is possible , but unlikely. •

D— 15



D.3.2 Distributions of Noise Intensities Related
to CM-Square

O’Connor [19733 and Dyer (1973] extend the mo-
del of D.3.l to more general cases:

(i) the noise is the sum of N exponentially—
distributed ship signals , each with

different mean intensity.

(ii) the noise is the sum of N groups of ship

signals , each group consisting of L~ equal-

mean gamma variables.

The second case is the more interesting and general . The

total noise intensity is then the sum of N variables

N
i -

i—i 3.

where Y~ is a gamma variable with mean and 2L
~ 

d. f. The

characteristic function of I is easy to find , but a non—

numerical Fourier inversion is not available. O’Connor

considers Edgeworth expansions and concludes that estima-

tion of the distribution of I should involve

(a) numerical convolution of those

with small L~ (say L~ < 5 or 10)

(b) approximation of Y~ by a Gaussian 
variable

if L1 is large C say L1 > 5 or 10).

D-l6
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His results for several examples show intensity distribu-
tions which look like anything from a chi-square (2 d.f.)
to a Gaussian (cM-square with many d.f.).

D.3.3 Temporal Properties

If ship contributions are independent variables ,
then the spectra and correlation functions add . A model
such as suggested in D.2.3 would yield a weighted sum
of exponential (or exponential-cosine) autocovariance
functions to represent the noise autocovariance functions.

Another approach , developed specifically for
beam noise by Goldman [1974] assumes that ships cross
beams according to a shot—process , which in turn induces
temporal correlation properties for beam noise. Result-
ing autocovariance functions depending on ship arrival
densities and the beam pattern , but not on the details
of TL, range from exponential to linear .

D- 17
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Appendix E
STOCHASTIC FLUCTUATION MODELS USED

IN OPERATIONS ANALYSIS

This Appendix describes some of the random—process
fluctuation models in common use for performance and engage-
ment modeling , their properties , and the rationale for selec-
ting certain ones for testing in this study .

E.1 General Types and Properties

Nearly every performance and engagement model in
current use simulates detections on signal—to—noise ratio
(SNR) or the closely—related signal excess (SE), and hence
focuses on modeling fluctuations for one of these variables.
There are two basically different approaches :

(a) T tal SE. Here the SE fluctuations are assumed
to have a composite statistical description rep-
resenting the sum of the components. An example
is the classical surveillance model in which the
single—glimpse detection probability and false
alarm probability are found from ROC curves
parameterized on SE or SNB and based on assump-
tions about the fluctuation distributions and
processor performance. With the single—glimpse
model there is an associated time between inde-
pendent glimpses. Then both instantaneous and
cumulative detection probabilities can be cal-
culated as functions of mean values of SE or
SNR directly.

(b) Components. In this case , fluctuations of the
components of the sonar equation are modeled
individually, and then combined to yield the
total description (SNR or SE).

These two approaches may be mathematically equivalent , but

suggest different levels of modeling detail. In t~- e first ,

E-l
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no attempt is made to determine the dominant contributors
to the fluctuating SE, while the opposite is presumably
true for the second .

Given a random process model for fluctuations in
SE(t) of either type , the next consideration concerns the
estimation of system performance. As mentioned in Appendix

B, the primary MOE ’s are related to level crossings of SE(t),
e.g.,

• P[SE(t) > 0], the instantaneous detection
probabil i ty at t ime t

• P(SE(s) > 0 for some s < T) , the cumulative
detection probability

• P(SE(s) > ~ over some interval of length T1or SE(s) > B over interval of length T2]

Calculation of such quantities requires the joint probability

distribution functions of SECt) of all orders* :

P(SE(t1) < A~ , SE(t2) < A2, ... , SE(tk) ~~. 
A~] (E—l)

for every k and all sets of .t~) and ~A~)

Even when these are explicitly known , level—crossing statis-

tics can be difficult to evaluate , and numerical integration

or Monte—Carlo simulations must be employed . The description

of the random process models below will concentrate on prop-

erties which affect the calculation of (E-1) and level—crossings.

*Cases can be contrived where even this is insufficient .

E—2



E.2 Some Popular Stochastic—Process Models

The stochastic models to be described here have ,
for the most part , no basis in the physics of signals or
no ise , and thus have been used in an all-purpose mode - to
simulate SE as well as the component signal and noise . Hence ,
in this appendix Z(t) will denote the quantity to be simulated
and X(t) the random-process fluctuation model for Z. In
particular , we follow the usual approach in specifying Z(t)

as

Z(t) = Z(t) + X(t) (E—2)

where Z(t) is the “deterministic part” of Z (some kind of
averaged value) and X(t) is the “random part” or fluctua-
tion term appropriate to the choice of ~~~~. These quantities
are in dB units , but the sum is as indicated (i.e., not a

power sum).

X(t) is usually modeled as a zero—mean process ,

implying that

E[Z(t)] — Z(t) (E—3)

However , in a few cases ~ is derived from a power average .

i.e.

Z(t) 10 log 1(t)

Z(t) — 10 log [!(I(t))]

E-3
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so that

X(t) a 10 log (I(t)/E(I(t)))

may have a non-zero, t-dependent mean .

As a final note , the ultimate use of these models
is to determine detection performance. In view of the MOE ’s
mentioned above in E . l , the probabili t ies of interest are of
the type :

P[Z(t0) > M ]

P(Z(t) > M for 0 < t < T]

P [Z(t) > M for some interval length T0 in 0 < T0 < T]

P [Z ( t )  > M for  some t in (O , T ) j .

But these constant threshold—crossing probabil i t ies  for  Z ( t )
become , f rom ( E — 2 ) ,  variable threshold problem s for X ( t )
whenever Z ( t )  is non—constant , i. e . ,

P [ X ( t ) > M  — Z ( t )  for t . . . ]  P ( X ( t ) > M ( t )  for  t...]. (E—4 )

E.2.l Stationary, Continuous—Parameter Gauss—Markov
Process (GM Process)

The definitions of Appendix A and the title fully
describe the GM random process. Additional properties are
discussed in References E—l through E—5 , and are summarized
below :

• Sample functions are continuous , but nowhere
differentiable .

E-4 

-~~~~~- •  - - • - ..~~~~~~~~~~~-- --- -~~~~~~~~~~~~ -- - • -- -  
--- ---__



-~ • -~~~~-

• Since the process is Markov , all distribution
functions can be determined from the second
order density f-unction for the zero—mean process:

f ( x ,y ; t  , t+A )

a 
2 — exp -(x

2—2wxy + ~2)

27ra (l—w)~ 2c (l—w ) (E—5)

where

w = EIX (t)X(t+t~))/c~
2 

=

and

= E(X2(t)].

Hence , the process is determined uniquely by
three parameters:

E (X(t)], (.~2 > o , and X > 0.

• The conditional density function for the zero-
mean process is normal :

f ( y ; t +~Jx;t) 
a 

_ _ _ _ _ _  
exp (E-6)

2c (.
~
.)  

/

with 
~(~~) 

a xe~~~ and c
2(~~) a (l_e 2

~~).a
2.

• The marginal density of X(t) for fixed t is

f (x;t) - ~~~~ ex~ (_~~~
;
~~~2)

E-5
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• The autocovariance function is

C(t1,t1+~) ~~~~~~~ E C(t~),

while the autocorrelation function is

R(t1,t1+L~) = e~~
j
~~ c2 +

• The process is stationary in the strict (and

hence also wide) sense.

• If X(t) is a zero—mean process and X > 0, then

it is ergodic, since

f~ R(t)~dt = c2 fe
_
~~

t
~dt a

[or , see Eq. (E-.6)).

• For E(X)0, the power spectrum of X(t) is

S(w) = f R(t)e~~
tdt 

w : X 2 (E-7)

S(w)

2: 2 / A 

- w

E-G



The power in the band 0 < w < L is then

2.

and hence the power over -x < w < x is
while that over all frequencies is a2 E(X2(t)3.

It is usual to define r 1/A as the decorrela—

tion time or relaxation time of the process.

Notice that half of the power corresponds to

periods of 271/A = 271t or greater and 90% of

the power corresponds to periods of T or greater .

Of course , “power” here may have no relation—

ship with  physical power.

Note that  the shor t—time average of a GM process
is not a GM process. In fact , if ~ > 0 and

t +~
Y(t) a .

~~~~~ f 

X (T)dT ,

t—c

then Y is Gaussian (since a linear transform of X) but has
spectrum

S~(w) - 
(A

2
2
~
2

W2)(
~~:~~;)

The limited analytic level—crossing results for

GM are summarized in Ref. E-6. Various zero—crossing and

density-of-maximum formulae can be found in Ref . E—3. A
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method for generating simulated GM sample functions (at
discrete points in time) is derived from Eq. (E—5) and
described in Appendix H.

In addition to its mathematically convenient descrip-
tion , the GM process is attractive as a model of fluctuations
for reasons related to physical processes . The Gaussian proc-
ess has seen many applications , from particle physics (see
Ref. E—2) to communications engineering . On the latter , Rice
(Ref. E—5) defines white Gaussian noise in terms of simple
oscillations and notes that a stationary Gaussian process can
be viewed as the output of a linear system receiving such
noise . A stationary GM process is the result of passing white
noise through an RC filter (Ref. E-3).

E.2.2 Poisson Step or Jump Process

A step or Jump process is defined as

X(t) = YN(t) for t > 0,

where Y0, Y1, . . .  are independent random variables with a
common distribution and the index function N(t) is a Poisson

process for t > 0, A > 0:

P(N(t)—k] = e
_A t 

~~~~~~~~~~~~ , k 0 ,l ,...

with E[N(t)] = At and Var (N(t)] — At. Then N(t) is the number

of steps or jumps in the process X(t), and t E 1/A , called the

relaxation or decorrelation time of X , is the mean time between

steps .

E-8
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Without any further constraints on Y1, a number of
properties of X(t) can be stated (see Refs. E—l , E-3, E—4,
and E-7). -

• The sample functions are step functions , dis-
continuous at the time of a step .

• X(t) is strict-sense stationary and Markov.

• X(t) has autocovariance function C(t) a a2e~~~
t
~

with E[X(-t)] E(Y1) ~ and E(X
2(t)] E(Y~)

a2. Its ~pectrum is then the same as that of
the GM process for uaO .

• The conditional (transition) density is

f(y;t+~ Jx;t ) = e~~~~(y—x ) + (l_e _ ’
~
á )fy(Y) (E—8)

where ~ is the Dirac function and f~ is the
density function for Y1.

• The ,j~int density function is

~~~~~~~~~~~~~~~~~~~~~~~~~~ + (l_e
~~~

)fy(y)f~
(x). (E 9)

• From Ref. E-3, Eq. (E—9) shows that X is

gg~~c in the distribution function .

The step process is probably used more widely in
sonar analysis than any other. The usual distribution for

• is the normal with ~ — 0, so that X(t) is determined

E- 9
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from two parameters (A and a), and then X is called a (~~~
)

Jump process. Note however that X is not a normal process
since its second order density (E-9) is not normal , although
its marginal distribution is. Even though the GM and (X ,a)
processes have the same one-dimensional distribution and auto-

correlation function , the two processes can give quite
different resu1t~s in level-crossing problems (see Ref . E-8).

Like the GM process , the Poisson step process has
- 
_ seen numerous applications in physics and elsewhere - the

reason being that waiting times (for- something to happen) are
reasonably Poisson—distributed . In addition , the process is
easy to simulate , and there are a number of analytical
solutions to level—crossing problems, including time to
f i rs t  passage above a general time—dependent level and time
spent above a constant level (see Ref. E—7).

E.2.3 Combination GM—Step Process

Belkin and McCabe (Ref. E-l) introduced a family

of processes

X~(t) 
a PX~(t) + Il—p2 XG(t), 0 < p 1

which linearly combines the GM process (XG) and the Jump
process (X~). It is argued that  this mixture has the advan-
tage of simulating both smooth and discontinuous fluctuations,

and yet requires no more calculations to generate sample func-

tions than the two component processes . Unfortunately, few

analytical results have been discovered . Moreover , has

the popular exponential autocorrelation function only when

E—10
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X~ and XG have the same A and a. The factors p and
were chosen so that if X and X are zero—mean and independent ,
than E(X~ )a0~ E(X~)a , and E [X~(t)X~(t+t)] a e . —

E.2.4 Ebrenfest Random Walk

The Ehrenfest process is substantially different
from the GM or Step , but is used in sonar performance analyses
(Ref . E—9) because it has properties similar to theirs.

The fluctuation variable X(t) is generated at dis—
crete time steps ~~~~~~~~~~~~~~ from

X(kt~ t) 
(Y(1~~t)_n/2~ ~ (E-lO)

where Y is an Ehrenfest  random walk . X is usually interpolated
or held constant between time steps. The rest of X ’s prop-

erties are derived from those of Y.

The Ebrenfest random walk Y is a Markov chain ,

i.e., a discrete parameter Markov process with range equal
to the set of integers ~0,l ,2,... ,n)- . At each time step Y

F 
either increases one step or decreases one step from its

last value , m , according to probabilities (1 - rn/n) and (rn/n)
respectively. If Y(0) is chosen at random from a binomial

distribution

P[Y(0) a k] =(

~
)(
~

) ,  k 0,1 , ... ,n , (E—ll)

E-ll



then Y is a stationary ergodic process with E(Y) — n/2 ,
Var(Y) — n/4, a binomial one—dimensional density (E—ll), and
normalized autocovariance function (1—2/n)~~, where s is the

number of steps. Thus, the variable in parentheses in (E—lO)
is a stationary , Markov chain with mean 0, variance 1, and
autocorrelation function (l~ 2 / n ) 5. When the time step is

given by

= _ ln( l  —

then the decorrelation time is 1.

It is also important to note that Y’s limited range
implies that X is truncated at ± v’~~ . Moreover , since X has
a binomial distribution , it approaches a normal variable for
large values of n. Thus X approximates a truncated GM or
Jump process in the sense that it has the same autocorrelation
function , a one—dimensional- distribution approaching Gaussian .
and is an ergodic Markov process . On the other hand , it is
unlike the other processes in that it has the sometimes
desirable properties of being truncated and taking only a
small jump at a time .

The Ehrenfest model was originally developed in
connection with diffusion and heat exchange problems (see

Ref. E-lO). It is now used in the APSTJRV model (Ref. E-9),
both for short—term and for long-term fluctuations.

E.2.5 Irrlependent—Glimpse Model

The “independent-glimpse ” model is nothing more

than a set of probabilities of detection PD(~~~
,t), defined

at discrete time steps t11 t2,..., for a fixed false—alarm

E- 12



probability and mean signal excess (
~~~). It is then assumed

that the probabilities can be accumulated according to the
rule:

Probability of at least one detection during

time interval [T1,T2)

a 1 — it [1 —

with product over all t1 in [T1,T2].

The values of 
~D 

are derived from hypothesized ROC curves

and the time intervals (t
~+1 

— t~ ) from experience. ~~(t1)
is the average signal excess over the detection “glimpse ,”
predicted with models of mean TL, noise , etc. and the sonar
equation.

There are a number of possible underlying stochastic
processes which would yield the above results. The most obvious
approach assumes that signal and noise are random processes
which give rise to the ROC curves (usually the standard
Gaussian or Rayleigh curves ) and which are independent at
times t~, ,t2,... (see Appendix F).

This type of model has been used extensively in
surveillance-system performance analyses , but seems to be
giving way to others as more is learned about the properties
of acoustic signals and noise. It should be noted , however ,

that it does not presume a SNR detector and , in its use of
ROC’s, attempts to correctly arrive at single—glimpse detec-
tion probabilities.

E-13
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E. 3 Summary

Of the five random-process models listed above,
only three are addressed directly in this study : GM , (X ,a)—
Jump, and Ebrenfest. There are, of course , many other pos-
sibilities : the sum of several Ebrenfest processes or Jump
processes, log-Rice processes , Jump models with other than

Gaussian one—dimensional distributions , etc. Some of these
and others based on acoustics considerations are cited in

Appendix D as candidates for better simulations of signal or

noise . However , the scope of this study is limited and it
was decided that tests would be performed on the most popular

and commonly—used approaches . The analysis of the acoustically

modeled data , in Volume I , indirectly gives evidence for or

against the validity of other processes.

E-14
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Appendix F
SIGNAL PROCESSOR AND DETECTOR SIMULATION

This Appendix discusses sonar-system detection
models in general and gives rationale for the automatic
SNR detector used in this study .

F.l Detection of Narrowband Signals

Modern , low-frequency sonar systems have sig-
nal processors and displays geared to the detection of
narrowband signals. In particular , the design is usually
based on the assumption of white , Gaussian noise and slow

*
Rayleigh— fading signals.

Signal — The signal pressure (or voltage ) is
represented as a stationary random process

s(t) = A cos (~~t +

where the amplitude (A) is Rayleigh distributed ,
the phase (

~~
) is uniformly distributed over

(0,271] , ~ and A are indepen den t , and the an gular
frequency (~~) is constant. These conditions
are assumed to hold over a time interval of
length T1, which depends on the details of the
source , geometry , and transmission medium .

Over a second time scale of length T2 the sig-

nal is assumed to have the special property

*See, e.z., Ref. F-l or F-2 or F-3 for more rigorous defi-
nitions and analysis.
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that • and A are nearly constant and are inde-
pendent from interval to interval , with
T2 < T1 and T2 > 2711w. This describes the
slow Rayleigh-fading , narrowband signal.

Noise — The noise pressure is assumed to be
white and Gaussian .

The optimal detector is then one which performs the follow-
ing operations:

(1) The input voltage v(t) is processed by a
quadrat ure receiver (or matched-filter
plus envelope detector) over n time inter-
vals of length T2 to yield q. , i = 1 , 2,

n. Here nT2 < T1 and each q~ has 
-

form

I \2
q2 = ( f V(t) cos ~t dt )

\ T2

/+ ( f  V(t) sin Ut dt . (F-i)

\T 2 /

(ii) An estimate of the noise at the quadra-

ture receiver output is made and a thresh-
old (TB) set for a given false alarm

probability.

F- 2 
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(iii) A detection is called if

n -

q1 >TH ,
i—i

and dismissed otherwise.

Notice that for A and ~ constant over the
time interval , the quadrature receiver operating on signal
alone gives q2 A2/2. Hence q2 is proportional to the
average power or intensity of the signal. On the other
hand , q2/T2 is an approximation to the mean of the power
spectral density:

T/2 2
lim 4 f  v(t) (coswt + isinUt)dt~T-~~ -T/2

so that (q2/T2)~~(~.w/271) approximates the power in the band
(
~ , w + ~~

) and is again proportional to the acoustic in-
tensity in that band. In most of what follows , q2 will
be associated with the intensity of the signal—pius—
noise or noise at the processor output .

As an alternative to the quadrature receiver ,
a filter matched to the narrowband signal over interval
(O,T23 gives

fv(t). Sifl(w(T2 
- t + t)] dt ,

P-3
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which has envelope equal to q. In practice , either an
analog bandpass filter or a digital transform is used to

estimate q. Many other variations for more complicated

signals are possible, including adaptive filters or line
trackers.

The estimate of q for the received pressure is
derived from coherent processing. The phase of the signal
pressure is important over the time period T2 required
to perform the integration . These coherent integration

times may range from fractions of a second to several
minutes , with the choice of time derived from best experi-
ence about the stability of the received signal , the bandwidth
of the signal , and the accuracy requirements for the measure-
ment . [On this last point , note that a rule of thumb based
on the assumption that the spectrum is flat and that the

time series of voltage can be represented by a random pro-
cess with one—dimensional Gaussian distributions is that
the power spectrum estimate is distributed as the multiple
of a chi—square variable with Ic a 2.- (Integration Time).
(Bandwidth) E 2TB degrees of freedom. Hence , the variance
of the estimate is about (2/k)~ (expected power).)

For step (ii), the threshold is set to limit the
frequency of false alarms , i.e. , to bound at some level the
probability of calling a detection when signal is not present.

Hen ce , an estimate of the noise level in the band of interest
must be made . This could be accomplished in a number of
ways , such as averaging the levels in neighboring frequency

• bands or time periods or directions , in essence assuming
that these averages are of noise only rather than of signal-

plus—noise . The thresbolding rule then amounts to calling

F-4
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a detection when the measured input exceeds the noise esti-
mate by a certain amount .

Finally, in step (iii), the samples of q are
incoherently averaged in time and then thresholded . The
number of samples to be averaged will depend upon the time

and subinterval time T2. According to the rule of thumb
given above , for T fixed , the performance of the detector
improves as coherent integration time T2 is increased , pro-
vided of course that the signal stability assumptions hold.

The sequence described above leads to an optimal

detector for the conditions stated. In practice , enhance-
ment of performance or a requirement for more than instan-
taneous detection (e.g., holding , tracking) may call for

more complicated rules , such as:

• call detection if the intensity exceeds a
threshold for a given time period ,

• call detection if m out of n samples exceed
the threshold ,

• reduce the threshold if a detection has
occurred recently.

These might model the performance of a human operator view-
ing displays of narrowband filter output. Note that there
may even be additional levels at which candidates (already
detected by one of the above methods ) are screened . For
example , a detection might incorporate the classification

1-5
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process, and hence require that certain lines already de-.
tected be correlated with known submarine signature charac- • 

-

teristics .

The point to be made here is that proper simu-
lation of the detection process is often nontrivial , in-
volving human operator response , complex signal processing,
and complicated detection rules . Some of the decision

rules require information which cannot be modeled with

confidence today , e.g., the frequency—bin—to—bin correla-
tion of sea noise. Nonetheless , the coherent/incoherent
processing sequence (i) - (iii) described above is viewed
as a basic component of the processor algorithm .

F.2 Detecting With Signal-to-Noise Ratios

As mentioned in Appendix E, most system per-
formance and engagement simulations model the detector as
one which thresholds on time series of signal-to—noise
ratio (SNR). In the last subsection , the actual detector
operation was described in terms of the measurable quanti-
ties : signal—plus—noise and noise pressure . Specifically,
if S + N and N are the sigual—plus—noise and noise only

outputs of the quadrature receiver , then the simplest

realistic detector

(a) Estimates noise N ,

A
(b) Sets a threshold, TN , based on N so that N > TN

is unlikely,

1-6
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(c) Compares received signal X with the threshold:

X > (TH) ~ conclude that X — S + N and
DETECT

X < TN • conclude that X — N and
NO DETECT

A related detector compares S + N with N In place of (b)
and (c):

(
~~

) Select TN so that N > (TH)~ (N) is unlikely,

(s’ ) X > (TH)~~ — DETECT

X < (TH)~~ 
-
~~ NO DETECT

Now , the only direct way to associate a SNR detector with
one of these is to mak e the assumption that the signal-plus-
noise intensity (S + N) can be separated into two additive
terms , S and N , and that N is a good estimate of N. In

that case ,

5 + N > (TH)N

is nearly equivalent to

S/N > (TH - 1), with N/N 1.

The same goes for the reverse inequality. But now a false

alarm is impossible , i.e ., a false alarm occurs if N > (TH)N,
but we have assumed N ~ N. Conditions under which the SNR
detector makes sense in this context are :

F-7
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(i) If S/N is very large and N is good , then
S + N S, and false alarms are relatively
unimportant for reasonable thresholds.
This is an uninteresting case.

(ii) If S/N is not large , then under “*o class of
conditions will coherent processing yield an
intensity estimate of (S + N) which is like
the sum of the intensities. However , if the
signal and noise bandwidths are not comparable ,
then it is possible that incoherent averaging
of the filter outputs will resemble a sum of
signal and noise intensities .* It is not
clear however that false alarms can be properly
accounted for even in this case .

Condition (ii) is assumed to hold for this study , i.e.
incoherent averaging follows the coherent integration . To
illustrate the validity, consider Figures F—i and 1-2 which
show ROC curves corr€sponding to the quadrature receiver
performance for a slow Rayleigh—fading signal in white
noise — first with no incoherent integration and then with
much incoherent integration . In the first case , at any

t
Let s(t) — A cos 6 cos Wt + A sin 8 sin wt and n(t) =
B cos 6 cos wt + B sin 6 sin wt be the signal and noise
pressures , where A , B, 8 and § are nearly constant over
the filter integrat ion t ime . Then the quadrat ure receiver
outputs q2 are

2 2 2 2 2 A2+B2
~ A /2 , ~~ ~ B /2 , and q5~~ ~ ~~~ 

+ AB(cos( 8-8)]

If the fluctuation rates of (A,6) and (B,8) are not comparable ,
then the average of the cross terms over time can vanish.

1-8
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~FA’ S/N 0 must change by many dB for ~~ to rise from 0.1
to 0.9. In the second , at of i0 10, 

~D changes from 0.05
to 0.8 as S/N0 is increased from —8 to —6 dB. Hence , as
a rough approximation , the SNR could be thresholded at -7 dB ,
with detection if SNR > —7 and dismissal if SNR < —7. Thu s ,
in essence , (S+N) has been separated into S and N.

1.3 Detector Models Used in This Study

Throughout this study an idealized detector is
assumed . It correctly detects whenever the received signal-
to—noise ratio (SNR) exceeds the fixed threshold for a
prescribed time period and correctly dismisses otherwise.
Here SNR represents the incoherently (time) averaged ratio
of output signal power in the frequency band of interest
to output noise power in that band .

With this detector as a basis , multi—level
detectors of increasing complexity can be constructed :

• SNR must exceed one of several levels

for an associated prescribed time period
In order that a detection occur .

and/or

• Time-averaged SNR replaces SNR .

and/or

• Detection is delayed until the threshold

is crossed m out of n times .

F-b 1
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There are a number of reasons for selecting
these detectors. First , they are “deterministic ,” so
that all randomness is found in the inputs and the study
can concentrate on the effects of various character iza-
tions of acoustic fluctuations. Detection histories and
associated statistics are easy to generate and reflect
the details of the simulated SNR . Moreover , these al-
gorithms mimic the performance of automatic detectors ,
as well as some aspects of human behavior . As mentioned
above , multiple frequencies or classificaticn questions

are not considered — so these detectors may be viewed
as the first stage ’of a higher level system . Finally,
this set of detectors is a representative sample from
the class of detectors currently used in performance/engage-

ment analyses (see, e.g., Refs. F-3 through F—B). The
single detector type which would round out the sample is
one with variable threshold (either random or deterministic);
but its study would complicate the extraction of detector
sensitivity to the acoustic variables .

1-12
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Appendix G
SOME ESTIMA TES OF THE EFFECT OF THE

ARRAY RESPONSE ON FLUCTUATIONS

This Appendix provides the justification for certain
estimates used in Volume I of the effect of the array beam
pattern on the fluctuations in signal and noise.

G.l Effect of Array Response on Signal Fluctuations

Under the conditions of this study , the signal
from a source moving across an array beam has fluctuations
associated with

(i) the detailed transmission loss, TL(R), where
R is radial range ,

(ii) the array response , BP(~~) in dB’s, where ~
is azimuthal angle.

For the geometry shown below ,

Arr~y Bean

- -

R I  .

Target

r

I’
Receiver

-



consider two extreme cases:

• The target moves across the beam at con-
stant range (

~ = 0), and hence there are
V 

minimal TL fluctuations. The signal fluc-
tuations are driven by BP(fl.

• The target moves in a radial direction from
the receiver (~p=± 9O

0) and the signal fluc-
tuations are those of TL(R).

At intermediate values of ti,, the two fluctuation mechanisms
compete and it is desirable to know a priori which are impor-
tant. The approach will be intuitive , relying on fluctuation 

V

periods and scales rather than on a rigorous treatment of
the properties of TL(R) + BP(~~).

The array response function is of form (sin X/X)2

on the main beam , as described in Appendix H. Within the
6—dB—down beamwidth (t~~), the beam pattern function has range
(spatial) period of about

and a variance of about 4 dB. Then , as a target crosses the
beam at angle ~P, the beam pattern function BP(~~) will vary
with range along the target track and have period approximately

equal to

A$ R/cos~P.

G-2



If the target speed is v , this converts to a temporal period
of

~~‘R/v•cos*

Typical examples for the test case of Volume I show
TL with important spectral components at periods near 20-30
nm and 1—5 nm. Along the target track these convert to range
periods (in nm) of

2O/sin~ to 30/siwp and 5/sin~p to l/sin~p.

The “power” of each component depends on how the TL fluctua-
tions are calculated , i.e., on the range-averaged ~t which is
removed and on the total range over which the TL is observed .

The interaction of the BP and TL fluctuation mecha-
nisms can be observed in a number of ways . Consider here the
normalized autocovariance function C(r) for

-TL + BP

and assume that TL and BP are uncorrelated . Then ,

a2C(r) — 
~TLCTL(r) + CBPCBP(r), (G—l)

where r is range lag and a2 — aTL+aBp. The corresponding

Fourier transforms are:

a2S(w) — OTLSTL(W) + a~~S3~(w).

G-3
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Consider four cases :

Case 1: For * near 0, a~~ ~ 0 and the signal fluctuations
are driven by the BP variations.

Case 2: For J* I  near 900, a~p 0 and the signal fluctua—
tions are driven by the TL variations.

Case 3: When the 5 nm—average ‘ft is appropriate, i.e.,
fluctuation range periods are about 5/sin* nm ,
then the BP and TL fluctuation periods are nearly
equal for

5/sin~ ~$ R/cosip

or
tan* 5/A4~ R .

Then 
~TL 9 dB and the important components of

are at periods near 5/sin~ to l/sin*. The BP term
has ~~~ 4 dB and SBP(w) with dominant component
at t~~•R/cos~ . Hence, the TL fluctuations may
contribute significantly to the composite spectrum .

Case 4: When the radial change in target range is much

greater than 5 nm , the test case shows TL with

~ 25 or 30 dB and the 20-30 nm period dominates
the spectrum. The BP fluctuations cannot distort
the composite spectrum significantly.

For target speed v , the range periods mentioned

above become time periods. Hence, when I*~ << 900, the beam - 

V V V ~~~~~~~~~~~~~~~~~~
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response component has a variance of about 4 dB, a low fre-
quency spectral contribution with a period of about

T ~~~R/vcos*,

and decorrelation time

~$ R/2vcosib .

The TL fluctuations are typically characterized by

Conditions Target observed Target observed
over short radial over large radial
range interval range interval .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
(5 nm),_ but_*>O. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a2 9 d B  30 dB
Dominant Periods Power spread over Most of power at

periods 1 nm/vsin~i 20 nm/vsin~P to 30
_________________  to 5 nmJvsin~L’ nmJvsiwL~
Decorrelation 0.5 nm/vsini~ 5 nm/vsin~Times _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ______________________

The importance of the TL fluctuations compared to
the BP fluctuations can be estimated in terms of these spectral
components and powers.

The interaction of the two fluctuation mechanisms
can also be viewed in terms of decorrelation times. Assume
that TL and BP are independent , quadratic functions of range;
then their autocovariance functions are linear and (G—l)
becomes

c

G- 5
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a2 — a~~ + (G-2)

where t is the decorrelation time of the total process and
TTLP t~~~ are those for the components. As noted above ,

~
tBP ~$•R/2vcos*

and

tTL

V where is TL decorrelation range (e.g., 0.5 to 5 nm).
Equation (G-2) can then be used to estimate r and the rela-
tive importance of TL and BP. Take as an example the first
case in the table above , but suppose a

~L 
corresponds to a

shorter radial range interval and has value near that of
— 4. Then

l/T — .
~(l/~r + l/TBp)

and will affect t significantly when TTL << TBP or

tan 
~
ji >> 2T r /l~~ R — l/~~ ’R.

Thus , if ~~ — 8°, TL fluctuations will dominate BP fluctua-

tions for

* >> 4°, at R — 100 nm ,

and

* ‘> 10, at .R — 400 nm.

G-6



If , in this example, a
~L 

were 8 instead of 4, TL fluctuations
would dominate when

<< 2T~~~

or
‘V >>

These are very small angles for ranges of interest , and illus-
trate the importance of the detailed TL.

Such estimates are useful for obtaining order of
magnitude approximations and further tests of the data are
given in Volume I.

G.2 Multi~p~th Beam Splitting

The response of the generic horizontal line array
treated in this study and described in Appendix H is subject
to distortion by multipath beam splitting when the array is
steered away from broadside. The question then is: for
signals arriving between vertical angles e— o and e—emax and
for a fixed azimuthal beainwidth 

~~~~~~~ 
how far off broadside

can an array be steered and yet have the signal appear
on only one azimuthal beam?

On the main beam (Appendix H), the array intensity
response is

— (si~~
)

2

G- 7 
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where

I y — ~(cos6cos* — cos~0)

I ( l . 4)/ s in (~~~/2 )

— main beamwidth (to half—power points) at
broadside

steering angle , measured from endf ire

— signal azimuthal arrival angle , measured
from endf ire

1 8 — signal vertical arrival angle , measured
from the horizontal

I If the array is steered toj~~, then the arrival (e ,~ 0)
will fall within the main beam (half—power points) if

jsiny~
2 

> 1/2,

~ 
3 7 /

or equivalently,

Ict (cosOcos~0 
— cos~0)j — y

~ 
< 1.4.

I’I A little arithmetic gives

I cose — ii  < [sin(~ $/2)]/cos~0.

V ~~~~~~ V



or

I2sin2(e/ 2 ) I  < [sin(~~ /2)]/cos~0. (G—3)

Values of 8max > 0 such that equality holds in (G-3) are
plotted as a function of ~~ and in Figure G—l.

For the cases studied here, ~~ — 4
0 and 80, all

arrivals within 300 of the horizontal appear on the same
beam as long as bearing angles are within about 350 of
broadside.

G.3 Array Shading and Beam Noise

The choice for this study of a shaded horizontal
line array with 30 dB sidelobe suppression is based on
several considerations, one of which is the minimization of

fluctuations in noise caused by sidelobe contributions
(except , of course when the noise on the main lobes is
extraordinarily low). The very simple rationale for selec-
ting 30 dB is given below.

Suppose that the array noise output consists of

two independent , normally distributed components (in dB’s):

• the main-lobe contribut ion , N1, with mean

and var iance

• the total minor—lobe contribution , N2, with
2

~2’ 
a2.

G-9
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To estimate the chances that the sidelobe noise contributes
significantly to the total noise fluctuation , the probability
that

N2 > N 1 — T H,

V - 
must be estimated . Here TH is a “threshold” which determines
the relative contribution of N2. Since N2 and N1 add on an
intensity basis (denoted “ @ “ ) ,  N~ ~~N2 < (N1 + 1) dB will

hold if N2 < N1 
— 6, or TB ~ 6 d.B.

Experience with noise fluctuation distributicns
suggests 6 dB as an upper bound for and a2. Furthermore ,

the mean levels are assumed to behave in the way expected
of isotropic noise:

IL 2 
— + lolog((l80—W)/W) — S,

where (W/l80) is the fractional beaznwidth for the main lobe
and its ambiguous beam and S is the sidelobe suppression

(in dB’s). Letting BW — lOlog (l80—W )/W , N2—N1 is a normal
variable with variance a2 72 and mean

IL — U2 
- U 1 — BW — S.

Under these conditons , P(N2—N1 > —TB) can be calculated , as

shown in Table G—l.

The choice of S — 30 and use of 80 beams in most

of the study should then result in minimal noise fluctuation

contributions from the sidelobes . Test results given in

Volume I verify this. 

G.11
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TB BW W S P(N2-N1 > -TB)

6 13 8° 35 0.02
6 16 4~ 38 0.02

6 13 8° 32 0.05
6 16 4~ 35 0.05

6 13 8° 29 0.10

6 16 4~ 32 0.10

• Table G-1

Probabilities that Sidelobe Noise Exceeds
Main Beam Noise

G- 12
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Appendix H
COMPUTER PACKAGES

A significant amount of computer software has
been developed or exploited in pursuit of the objectives
of this study . The various acoustic models , random—
process models , and statistical analysis packages are
described in this Appendix . No attempt is made to docu-
ment the software in the usual sense; instead , the general
capabilities , mechanics , and limitations of the packages ,
as well as their potential for further applications , are
outlined here . All programs are coded in FORTRAN IV and
are easily adapted to run on any large scale computer .
The present version operates on CDC 6000 series machines .

11.1 Acoustic Models

The “acoustic” simulation of the beamformer-
ouput time series consists of five distinct submodels:
environment , receiving array, target , transmission loss ,
and surface ships. These components are combined accord-
ing to the schematics of Figures H—l and H-2 to simulate
the time series of signal and noise as produced by the
array beamformer . The signal and noise models , with each

of their components , are examined below .

H.l.1 Signal , Noise Simulation Model (DSBN)

From Figures H-l and H—2 it should be clear
that the calculations for signal and noise time series
are essentially the same, and are in fact both performed

H-l
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Figure H-i. Acoustic Signal Model
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Depth ..— -~~~~~~~ TRANSMISSION LOSS 

_ _ _ _ _ _ _ _  
Dep~ths -

Beam Pat tern 1~ ____  
Ranges vs time

or I I
Response ,~ ~ - 

Bearings vs time
I-

• 
- 

Transmission Loss vs Source Levels vs time
Range for Source/ 

____  -Receiver Depths
—

p

4

ransmissio’F Loss and
Bear ing vs time for

each Surface Ship

Noise Level m d  Bearing
vs Tin e for each Sur face
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— Before rrai Prbcessing
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Total Noise Level vs Time
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Figure H-2. Acoustic Noise Model
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by the same routine called the “Discrete Shipping Beam—
Noise” (DSBN) Model . The only difference between the sig-
nal and noise algorithms is that for signal there is a
single target , while for noise there are many sources
(targets) whose “signals” are su~~ed incoherently. Two
simple equations are the basis:

(Signal Level at Time t]
— (Target Source Level at t3
+ (Array Signal Gain for Target Bearing at t]
- [Transmission Loss for Target Range

and Bearing at t) (H—i)

and

[Noise Level at Time t)

— 
E{ISbIP Source Level at t)

+ (Array Signal Gain for Ship Bearing at t
- [Transmission ~Loss for Ship Range and

Bearing at t] (H-2)

V Figure H—3 shows the computer-program flow.
The noise or signal is computed at discrete time steps
for each of ten (or fewer) array response func tions .
Readings are taken at prespecified time points (e.g.,
every minute) for a selectable time span (e.g., 30 hours).
Now , the ship submodel provides the ship positions and

• L source levels , the target submodel provides the target

5—4
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positions and source levels, the environment and TL submodels
• provide the transmission loss from each source to the recei-
• ver , and the array submodel gives the response to a signal

as a function of bearing. Hence , the outputs of these com-
ponent submodels can be viewed as inputs to the main model ,
which in turn does no more than perform the simple geometry
calculations and combine all the data according to equations
(H—i) and (H—2). 

V

The accuracy and quality of DSBN predictions
are of course directly related to the quality of the
inputs and component submodels. In addition , there are
a few limitations associated with the DSBN Model Struc-
ture:

• The receiver array locations and source
levels do not change with time .

• Only discrete point sources are allowed .
Distributed sources could be simulated by
many correlated point sources , but com-
puter time would be prohibitive .

• There are dimension constraints , e.g., at
most ten array response functions are
allowed.

• Once the surface ship levels and courses

are generated , all variables are~deter—
ministic.

5-6
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• Only source positions change with time;
other quantities (e.g. , TL) depend on
time only as induced by source motion.

Removal of these limitations requires a straightforward
revision of the computer code.

H.l.2 Environmental Submodel

The environmental model (sound speed , bathymetry ,
bottom reflectivity , etc.) affects only the transmission
loss portion of the acoustic simulation . Since the pre-
sent version utilizes a time—independent TL, there is
no provision for medium—induced fluctuations . The use
of a time-varying environment may be of interest at some
future date , but would require a significant expansion
of the DSBN Model to accommodate a time—dependent TL.

B.l.3 Transmission Loss (TL) Submodel

DSBN requires from the transmission loss sub—
model the TL as a function of range from the receiver
for all source/receiver locations and frequencies of the
case under consideration. The present configuration of
DSBN allows for the use of the vertical arrival struc-
ture (i.e., the loss as a function of range and vertical

angle at the receiver) in order to model the three—dimen-

sional response of an array . On the other hand , DSBN
cannot utilize a TL function which depends on either

bearing or time. The incorporation of such features

amounts to a bookkeeping problem which could be solved
directly if the detail were warranted .

5—7
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Although a special TL submodel was used for
this study (the Parabolic Equation model modified by
inclusion of FACT—like bottom-bounce paths*), nearly any
model which yields a table of transmission loss as a
function of range will work . Of course , the TL function
should exhibit detailed range-dependent structure if
fluctuations are to be studied , and it should show proper
source/receiver depth dependence.

For studies of source—motion-induced fluctua-
tions caused by multipath interference , the range reso-
lution in the TL model output depends on acoustic fre-
quency , processor integration time , and the speed of
the sources (i.e., the velocity component radial to the
receiver). In the studies reported in Volume I, the TL
sampling rate appropriate to 25 Hz, 2-minute integration
times , and 15—20 knot speeds was found to be about 0.2
miles . The maximum range for ship contributions in

the basin was assumed to be 500 miles . Thus, a typical
TL table for low acoustic frequencies and open ocean
has 500 x 5 — 2500 entries for each of the two or three
source/receiver depth combinations . It should be clear
that to incorporate time or bearing-dependent TL would
require tables with perhaps 7500 x 10 to 7500 x 1000

V 
entries . If arrival structure were included , multiply

these figures by 10—100.

‘See the discussion in Appendix C.

1)
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H.l.4 Array Submodel

For the present configuration of the DSBN Mod-

el, the array module is simply a functional giving the
intensity response of the array to plane wave arrivals
(i.e., a beam pattern). Since the test problem deals
with a horizontal line array , the response is usually
given in terms of azimuthal arrival angles. However , to
investigate the effects of the horizontal array ’s verti-
cal directivity away from broadside , the simulation mo—
del can accommodate a response function which depends on

• both azimuthal and vertical arrival angles.

• For computation purposes , the user specifies
the fixed location of the array and provides up to ten
array-response functions corresponding to different
steering angle orientations , shading , physical deforma—

• tions , or whatever . The DSBN Model simulates beamformer
output for each response function or beam pattern by
modifying the intensity arrivals from ship sources or
the target accordingly . The code also records the nuin-
ber of sources on the “main beam” defined below .

• Two array functionals for DSBN have been pro-

grammed for this study and , because of their general

applicability , are described next .

(a) Shaded Horizontal Line Array — Azimuthal
Response Only

Intensity response at azimuthal angle • is
C given by:



_________________________
p .. 

• •
•‘ V . —

~ / f o r x < x
~

I($; 0,a) —

((b
_Du o) (sin x)2 for x > x~

where x — ~(cos $ — cos

w(1 —

is “steering angle” , measured from endfire

— 1.4/sin (~ /2)
V 

— broadside beamwidth (to half power points)
D — “sidelobe suppression factor”

This funotion approximates the response of a shaded hori-
zontal line array with main beamwidth ~ at broadside and
with uniform sidelobe suppression (D dB down) with struc-
ture . X

c is constructed so that there Is a smooth tran-
sition from the main lobe to the sidelobes .

(b) Shaded Horizontal Line Array - V e r t i c a l

and Azimuthal Response
r

Here , the sidebobes are completely suppressed
and the intensity response for azimuthal angle • and
vertical angle 0 (re horizontal) is

• (s in ~)2 for y < iT,

0 f o r y > i i ,

•

~

_ _
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• with y a(cos 0 cos $ - cos and 

~~
, $~ as above.

• Given that undistorted plane-wave response
suff ices , the primary limitation of the program is that
the response function and array location cannot change
with time. Such features can be added with minimal modi-
fications to simulate , for example , the response of a
transiting towed array which is changing orientation and
suffering from physical deformation (wiggles).

A more basic limitation is that this array sub—
model does not apply directly to a predicted acoustic
field which has not been decomposed into plane waves
(e.g., output of the PE model in the vertical). The
most efficient way to deal with this is to include the
array response in the transmission loss by, in essence ,
inserting the array elements into the field and com-
puting the beamformer algorithm directly.

H.l.5 Target Submodel

This module accepts as input a constant tar-
get source level , depth , course , and speed . It then
tracks the target range and bearing to the receiving
array as functions of time .

A straightforward modification to the program
would allow for time—varying source level , course , and
speed. Elimination of the constant—depth limitation
would require significant changes in the way the TL
model is used .

H-il

— . . . . V



5.1.6 Surface Ship Submodel

The module which constructs surface ship posi-
tions and parameters can be viewed as having two parts.
In the first part , the source levels, courses, and speeds
are initialized as realizations of random variables.
The second part simply tracks each ship ’s position and
computes bearing and range to the array as functions of
time , exactly as in the case of the target model. This
tracking function is subject to the limitations listed
in Section H.l.5.

Initialization of the ships and their param-
eters proceeds as follows. The user supplies constraints:

• Shipping “lanes” are specified by the dis-
tributions of speed and course and m i —
tial position , as well as an inter—arrival

time interval (expected time between arri-
vals of ships across a line perpendicular
to the mean lane courses).

• Source levels depend on the random speed ,
but also on another random variable (thought

of as “length”).

The present version of the DSBN model uses Poisson—dis-
tributed arrival times , so that the lane is expected to
have an approximately uniform distribution of ships in

range (i.e., constant density). The program uses a ran—
dom number generator and the distribution functions to

5—12
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produce a single replication of the shipping field with
speeds, courses , locations , and source levels for each
ship.

As In the target submodel , once the course,
speed and level of a ship are selected , they remain
constant for the duration of the replication time (e.g.,
10 hours). For each subsequent replication , the ini-
tialization process is repeated.

There are , of course , other methods for gener-
ating ship distributions and tracks in the ocean . The
one used.here is very much like that of Ref. H—i and
not dissimilar from Ref. H—2.

H.2 Random—Process Models

One of the principal tasks of this study is
the comparison of “acoustically—modeled” fluctuations
with “stochastically modeled” fluctuations . Hence ,
time series of signal , noise , and SNR are generated first
with the acoustic models described above , and then w:~th
some of the more popular random—process models . Sel~.c-
tion of the random—process parameters mimics the proce-

dures used in practice for engagement modeling (see
Appendix E and Reference H-3). This subsection first
discusses these procedures , and then describes some of
the random-process simulation programs.

5-13
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5.2.1 Procedures for Determining Random—Process Param-

eters

There are two different , but nearly equivalent ,
approaches: one for time series and the other for trans-
mission loss.

5.2.1.1 Time series

The given time series is first subjected to a
linear or other regression analysis to determine long—
term trends . Note that this is usually performed in dB
(log intensity) units , an important detail. If X(t)
denotes the time series and ~(t) the trend (or “deter-
ministic ” part), then the “detrended” series is given
by

Y(t) = X(t) —

and the average in time should be zero :

E(Y(t)) — 0.

A statistical analysis package (described in the next
subsection ) is applied to Y(t) to determine the sample

distribution functions , moments , percentiles , autocorre—
lation functions , etc. These results are used to select
a promising random—process model and to determine the
parameters , e.g., a Gauss-Markov process , the variance , V

and the decorrelation time .

--- -V 
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For the random process Z(t), a stochastic simu-
lation of X(t) would be:

X(t) — X(t) + Z(t).

Notice that since

X(t) = X(t) +

the statistical properties of X and X will agree to the
extent that those of Z and Y agree.

The rationale for this parameter selection is
based on the fact that in typical engagement—model analyses
the mean and other statistics of the time series to be
simulated are estimated from measured data or acoustic
models

5.2.1.2 Transmission loss

In some applications , the transmission loss
fluctuations themselves are simulated as random processes
prior to the calculation of the signal time series. In
this study , the dominant mechanism for fluctuation in
time is assumed to be the movement of the source through
static interference patterns . Hence , it is consistent
to model the TL fluctuations in range (vice time) at .the

outset , and then to map these fluctuation properties
into the time series via the target motion function . The
procedure is the same as that given above, except that
there is a range series instead of a time series. If TL(r)
has “trend” ~L(r), then the fluctuation series is

5-15
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Y(r) TL(r) — ~t(r).

For a random process Z(r) based on the properties of Y ,
the simulated TL is

TL(r) — ~t(r) + Z(r) .

Now , for a given target with range r(t) and source level

SL(t), the signal (before array beamforming or averaging)
is

S(t) — SL(t) — TL(r(t)) — SL(t~ — {~t(r(t)) + Y(r(t))}

The simulated signal is then

S(t) — SL(t) — {~t(r(t)) + Z(r(t))).

H.2.2 Some Random—Process Models Used in This Study

Four random-process simulations which have been

coded for this study are described next . See Appendix E

j for the statistical properties of each process.

5.2.2.1 Ehrenfest process 
V

Replications are generated from

~(t) — 
1(t) — n/2

/i7~
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at discrete time steps O ,At ,2At ,... ,NAt , where At — —in(l—2/n)
and n is the number of “states. ” For a given initial time ,
say t—O , 1(0) is drawn from a binominal distribution

P(i(O)—k) (fl)(*)n k—O ,1,. . .,n.

Then 1 is calculated recursively at steps kAt from

1 if Y > i(t)/n
i(t+ t) — 1(t) + 

—

—l if Y ~ i(t)/n

where Y is a uniform variable in [0,1), selected at each
step.

The zero—mean fluctuation process Z(t) with variance c,2

and relaxation time t is found at the discrete time point
k~At ’r by

Z(kAt’r) — Z(k~t)•c.

5.2.2.2 Gauss-Markov process

Begin with an initial sample Z(O) from a normal
distribution with (~~,o) (0,1), and then calculate recur-
sively

Z(t + At) — Z(t).e~~
t 

+ ye0

where y is a random sample from a normal variable with

mean 0 and var iance 1, and

5—17
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— (1 — e 2AT)h/2.

IC 
Then

Z (k ’A t ’r )  Z(kAt).o , k—O ,1,...

is a Gauss—Markov realization at discrete time points, with
relaxation time t , variance a2, and mean 0.

5.2.2.3 Jump process

The Jump process yields sample paths which are
V-V 

piecewise constant between random “jump” times . Its mar-
ginal (1—dimensional) distribution is selectable. A reali-
zation from the process is formed as follows :

(1) Select an initial value Z(0), from the Mar-
ginal distribution.

(2) Sample n independent values t1, t2,
tn from a Poisson-distributed variable with
parameter lIT

(3) Sample n independent values from the Mar-
ginal distribution : y1, y2, . . .,

(4) Set Z(0) for 0 < t < t1
for t1 < t < t 2

• y2 for t2 < t < t 3
Z(t)—

for t~~< t

0 V
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Then Z(t) has relaxation time r and the correct marginal
distribution .

5.2.2.4 Combination Gauss-Markov and Gauss-Jump

I
Consider next a simple, linear combination of

two random processes. In particular , let

Z (t) 
~~G

(t) + -.6 — a2 Z~(t)~

where ZG and Z~ are Gauss-Markov and Gauss-Jump processes ,
respectively. If ZG and Z,~ have the same variance and
relaxation time , i, then Z has an. exponential autocorre—
lation function : e

5.3 Analysis Packages

Two points of view are taken in comparing the
signal , noise or signal—to—noise ratio (SNR) time series
generated by the acoustic and random—process models. First ,
the properties of the time series themselves (their Statis-
tical distributions , autocorrelation functions , spectra ,
etc.) are of interest. But secondly, the usefulness of
the simulations is in the prediction and analysis of sonar
per formance , usually detection capability. Hence compari-
sons are made of “detection histories” for the two types
of models. Computer packages for performing each of these
comparisons have been developed or applied in this study
and are described below.
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5.3.1 Statistical Analyses of Time Series Data

A general statistical package has been constructed
to study array time—series data. It operates on the matrix

{N($1, f~ , t~ )}

where 
~~~~~~~~~ 

{f~ }~ and {tk} are interpreted as the discrete
beam pattern indices , frequencies , and time steps, respec-
tively. N can be signal or noise or SNR (in dB). The
following calculations are performed.

(a) Histograms are constructed and plotted for
any range of i, j and k to specified reso-
lution . Likewise, the mean , variance , skew—
ness, kurtosis , and deciles are found (esti-
mated). .

(b) For two of the three independent variables
fixed :

• The series is plotted

• A “stationarity ” test is performed by
dividing the series into any number of
equal parts and then applying (a) to
each part

• 
• The sample autocovariance function is

computed and plotted

V 
• The autocorrelation function is estimated

• An FFT is applied to the autocorrelation
function to estimate the power spectral
density

5.20 
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(c) For one independent variable fixed, the
two—dimensional autocorrelation function
is estimated and output in matrix form.

(d) For separation (lag) in one variable , en-
sembling over the second and for the third
fixed , the cross—correlation function is
found.

(e) For one variable fixed , one separa ted , and
one lagged , the joint density function for
the separated variables is estimated . The
histogram is found and multivariate moments
calculated .

(f) A Lilliefors Test (see, e.g., Ref. H—4)
for goodness—of-fit can be applied to the
sample histogram to find best Gaussian fit
and test at confidence levels of 0.95 and
0.99.

(g) The logarithmic transformation of the Log-
Normal , Non-Central Chi—Square , Chi—Square ,
Rice , and Rayleigh distributions (see
Appendix D) are tested against the sample
distribution at levels of 0.95 and 0.99
with the Kolmogorov Test for Fit (see
Reference 5-4). Graphs of the sample and
fitted functions are plotted . Parameter
selection is based on the median and other
percentile points.
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(h) A simplified test for ergodicity calculates
ensemble statistics in two directions (e.g.,
in t and then in replicas for f and • fixed)
and compares sample distribution functions
at the 0.95 and 0.99 levels with the Smirnov
Test (Ref. 5—4).

Not all options in the package have been used in H
this study , but most have proved valuable (especially (a),
(b), (d), (f), (g), and (b)) and the remainder should be

V useful for beam-to-beam or buoy—to-buoy correlation prob-
V lems. Examples of the application and output of the package

can be found in Volume I.

5.3.2 Detector Models

A computer package has been designed to model
several types of detectors relevant to this study . Input
consists of a time series (ordinarily signal—to—noise ratio)
plus relevant parameters . The input time series is con-
verted to a time history of detect/no—detect states accord-
ing to the following algorithms .

U

(a) Continuous Threshold detector
Given a time series (X(t)}, a threshold
TH , and a time interval T (holding time),
score a detection at time to if X(t) 

> TH
continuously for to 

- T < t < t
o

(b) Union of Continuous Threshold detector
This is a generalization of (a) except

fl
V 

- 
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that a sequence of thresholds and asso-
ciated holding periods (TB1, T~} comprises
the input . Then detection occurs if the
signal X(t) has continuously exceeded a
given threshold for the associated holding
period for any member of the sequence
{TH1, T1}.

(C) Intensity Average detector
Given a time series (X(t)}, a threshold TB,
and an averaging time T, construct

• S(t0) 
~ ~~~1oX(tj)/lO i

V 

where the sum extends over all times t,~ such
that t0 — T < t,~ 

< t0. Score a detect at
time t0 if tiV~e intensity average (S(t0)) ex-
ceeds the threshold (TB).

(d) Union of Intensity Average detector
This generalizes (C). The input consists
of a sequence of tht~esholds and associated
averaging intervals (TB1, T1}. A detection
occurs at time t0 if the intensity average 

V

over any one of the averag ing periods , T1,
exceeds the associated threshold , TH~ .
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(e) N Out of M detector
Given a time—history record {X(t)}, a

V 

threshold TB , and integers N and U , a
detection occurs if X(t) has exceeded TB
for at least N out of H time points in!nedi-
ately preceding and including t0.

- Any one of these detector yields a time history of detect/

no—detect . Various statistics are then calculated and dis—
• played , including the distribution of detect (holding)

times , no— detect times , associated moments , and order sta—
- tistics. Again , examples can be found in Volume I.

1-V~
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