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20. Implementation of a control system based on such analysis is not stratghtforward,~~~however , since impractical amounts of computation or memory may be called for.
We propose a new method that balances the trade-off between computation and
s.torage costs. The actuator torques required to move a manipulator along a tra-
jectory are calculate l using coefficients found in a look-up table indexed by the
configuration of the manipulator. Feedback plays only an indirect role in correcting
for small differences between the state of the actual device and that of a dynamic
model.
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I
MOTIVATION.

The application of industrial manipulators to parts transfer is still

l imited by their high cost. A useful figure of merit for such a device Is

the ratio of the number of operations it can perform per unit time to its

cost. The more cycles the manipulator performs per unit time, the

more rapidly it will pay back the investment. There is, we believe, a

threshold for this figure of merit above which the appl ication of

machine manipulation to a wide variety of tasks becomes economically

feasible. If the figure of merit were to rise above this threshold, the

increase in feasibility would make mass production of manipulators

possible, resulting in further drops in unit cost and yet wider application.

—~ It is unl ikely that this revolutionary sequence of events will be

~ J triggered by a reduction in the cost of manipulators, since the technology

for building reliable devices in the numbers now used appears fairly stable.

It is possible, however, to decrease task cycle times with equally dramatic
results. Decreasing cycle time means increasing the rate of manipulation --
the speed the ann moves during transfer and during manipulation. -

Presently, many mechanical manipulators are l imited by their controllers.

Such systens typically employ simple, fixed analog servo loops closed

separately around each degree of freedom. Though suitable for control of

a set of independent second-order systems with fixed inertias and damping.

such control is not appropriate for devices with non-linear, time—varying

behavior. Performance Is adequate at low speeds provided the actuators are

strong enough and the properties of the devices do not change too dramatical ly

‘7 with configuration. At higher speeds , however, problems are caused by:
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(1) VaryIng effective moments of Inertia,

(2) Torque coupling between degrees of freedom, and
(3) Con ch s forces proportional to v.locIty product terms.

Naturally, other factors, such as the mechanical strength of the device
and the power available from the actuators, also limit ultimate performance.
For many manipulators! however, these are hot the limiting factors.
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BACKGROUND.

Mechanical manipulators used for parts transfer typically consist of
rigid components, called links, attached to each other at joints, each joint
being powered by an actuator (see for example fIgure 1). Measurements of
joint position and velocity are available to the control system that
supplies conunands to the actuators. Most co only, manipulators are attached
to a fixed base at one end and carry a terminal device or tool at the other.
The time-varying actuator coeunands are intended to cause this terminal device
to follow a given trajectory through space.

Many arrangements of links and joints are possible; in this paper, we

concentrate on a kinematic chain arranged in a popular serial or cascaded
— structure using rotary joints. This choice allows us to be concrete and
4 to avoid repeated use of phrases such as “joint-angl, or Joint_extension I

and “actuator torque or actuator force”. Similar methods apply to devices

with linear motions and to those with parallel digress of freedom.
The particular device shown In figure 1 was designed and built by

Victor Scheimuan for the Artificial Intelligence Laboratory (13. It has

six degrees of freedom, the minimum necessary to reach points in the work
space with arbitrary orientation of the terminal devi ce. This manip ulator
is driven by six direct current torque motors, and has potentiometers for

joint-angle measurement and tachometers for joint-angle-rates or angular
velocities. The supporting electronics permit direct control of motor currents
and, consequently, actuator torques.
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We designate e
~ 
the angle of the 1th joint, and the angular velocity

of this joint. Similarly, e~ is the angular acceleration and T.~ the torque

applied by the ith actuator. Frequently it is helpful to group values for

al l degrees of freedom using vector notation. Thus for a sys tem wi th n

degrees of freedom, we call 0 the configuration, where:

= (01, 02~ 
03~ .... o~)

Similarly, we refer to the combination of 0 and 0 as the state, where:

o (01, 02~ 
03~ .... e~)

The torque vector is similarly defined as

• (T1, T2, T3, .... T~)

With this notation we see that the function of the control system is to

produce appropriate actuator torques 1(t) , so that the actual joint

angles, Oa(t), follow a given trajectory of desired joint angles,

(see figure 2). We will see later that this task may at times be simpl ified

if the control system also has access to both actual angular velocities,

as well as desired angular velocities, Od(t).

- - -  - - -  •----— --- - - - •~~~~~~~-- ----~~•-• - -_
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A SYSTEM WITH ONE DEGREE OF FREEDOM.

To introduce some of the notions used later on, let us consider a very

simple system illustrated in figure 3 -- a one degree-of-freedom

“manipulator”. Here a motor produces a torque, T, which drives a shaft. The shaft

carries a rod of mass m and length 2.. The angular departure from vertical, 0,

is measured by a potentiometer, whIle a tachometer measures the angular

velocity, e. Clearly the system is governed by an equation of the form

T — 1 0  - k sin(O)

where I • 52.
2/3, g is the acceleration due to gravity and k • (ml./2)g.

A typical control system for such a second-order system is shown in figure 4.

Here,
~ •1

T •

where the superscripts denote desired and actual values, while a and B

are parameters yet to be determined. Combining the two equations we find

I O a + B O a +( U Oa _ k S i f l ( Oa)) • B O
d + e d

If the actual angle, 0a, Is to follow the desired angle ciose~y, a ~ k.

In this case, the poles of the system are approximately at the roots of the

polynomial

I s 2 + ~~~ + a • 0

______  - - -~~- -- - -—____________
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That is,

S .
21

The speed of response of the overall system depends on / a / I ; so, for
rapid response, a s1~o~ld be large.

To obtain good damping of transient oscillations, we choose B so that

a • 2 / & 1. The details of this are not very important other than to

show that such feedback systems can achieve adequate control of simple

second-order mechanical systems and that the perame~ers of the feedback

system must be chosen by considering the parameters of the system Itself.

When system parameters change, a different set of feedback parameters

is used to provide best performance.

If the parameters of the sy s tem va ry greatly and the control system

is not altered, unsatisfactory performance can be anticipated. This may

take the form-of sluggish response, excessive overshoot, or undamped

oscillations.

— I’ _-_ 
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INVERSE SYSTEMS.

Analysis of the dynamics of a system often leads to equations that can

be used to implement an “ invers e” system. The sys tem origin al ly analyzed
can be viewed as an analog computer for calculating position (and its

derivatives) given actuator outputs, while the inverse system computes
actuator outputs from position (and Its derivatives). A simple Illustration

will make this clear. -

A one degree-of-freedom system was shown in fIgure 3, governed by the

equation

10  — k sin(e) • I

This system can be viewed as an analog computer solving this differential

equation for e(t), given the input 1(t). If the constants In the equation

are known, one can turn this analysis around and calculate the values of

torque, 1(t), needed to achieve the desired joint-angle variations with

time, e(t). This Inverse procedure is important in solving the control

problem. An open-loop control system based on this notion is shown In 
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figure 5a. We will take up later the question of errors in trajectory

which result from small differences between the actual system and the

model used in deriving the inverse system. For now, note that in view —

of this possibility the actual state of the system should be used in

the inverse calculation rather than the desired state (see figure 5b).

With this modification, the Inverse system takes as Its prime input the

angular acceleration, and produces actuator torque as its output.

The straightforward kind of control based on an inverse system and ii-

lustrated here applied to a linear, time-invariant, one degree-of-freedom
system, will now be extended to control of more complex systems such as

manipulators. Before we can do this, we have to understand the dynamics

of these devices. Considerable work has been done in this area as can be

seen from references (2, 3, 4, 5, 6, 7, 8] for example.
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DYNAMICS OF MANIPULATORS.

The most direct route leading to a detailed understanding of the dynamics

of a complex mechanical system Such as a manipulator is an analysis based on the

Euler-Lagrange equations (8],

d ,aI. aL
i~~~ t ’~ç iç

Here the q1 represents generalized coordinates, Q1 generalized forces and L is
the Lagranglan, or “kinetic potential”,

L • K - P

where K Is the kinetic energy and P the potential energy of the whole system.

In our case the most convenient generalized coordinates are the joint-angles,

and then the generalized forces become the actuator torques T1. Further-

more, since the potential energy Is a function of joint-angles only, it is con-

venient to separate the calculation of torques required to compensate for gravi-

tational forces, -

T~ -~~—

from the calculation of torques required to support the motion if gravity were

not present

( d ak aX

L -— ~~ -— -~~~~~~~~~~ —~~ —~~~~~ - -~ 
- - 

- - - 
—- -



- -  - -  -

-10-

Also, since the total kinetic energy is the sum of the kinetic energies of

each of the links, it is helpful to separate the calculation into components

of the fonn, -

ij ~t ao~ ae 1

where l~~ Is the torque required of the 1th actuator to support the motion of

the ,1th link. The total torque required at each actuator Is then obtained by

sunination of these terms.

The derivation of the Euler-Lagrange equations requires difficul t mathe-
matical arguments~ howe~ier the use of these equations is straightforward.
Application of these equations to manipulator control was pioneered by Ulcker

Pieper, Kahn and Paul (5, 6, 1, 81. A practicel difficulty is the potentially

explosive growth In algebraic manipulation that accompanies analysis of

systems with several degrees of freedom. A computer system such as MACSYMA

(9], able to carry out manipulations of symbolic mathematical expressions is

very helpful in these cases.

Much of the earlier work on this problem made use of a general representa-

tion, with a coordinate system erected in each link and matrices describing

the transformations between coordinate systems of connected links Eb, 6, 7, 8].

While perfectly general, this kind of analysis leads to very complicated re-

suits and the need to perform thousands of arittunetic operations In order to

calculate required joint-torques. All hope of performing these calculations

in real-time was abandoned as a result.
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ILLUSTRATION USING THE SINGLE DEGREE-OF-FREEDOM SYSTEM.

For the system shown In figure 3, It is clear that K — IÔ~ and P • k cose,

so that

L .~ .IÔ2
_ k CO5S

Consequently,

31
dt~i1’ 

- ae

gives us

I • I~ — k sine

as befo re. Here, of course , little is gained by usin g this method. It is,

however, invaluable for complex devi ces.

-: ---

~~~~~~~~~~ --- - - --~~~~~ - -
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DYNAMICS OF A THREE-LINK DEVICE.

Recent work has shown that some devices can be analyzed easily if cal-

culations use joint-angles directly and if links are modelled as thin rods [10,

11, 12, 13]. As an example, we present the results for a th ree-link device
with offsets shown in figure 6. This corresponds to the first three joints
of the arm discussed earlier, shown in figure 1.

q
= [I

l 
+ m2(q + r s~) + m3(qs~ + ~ &~s~s23 - + r S~~ + 6~ )] -

m m[
~ 62’t2 + r 63(2t2c2 + L3c23)] 

~2 -

[
~ 63L3C23] Y

3 
+

2L2 - 2q I

[m2 ~~~ 
s2c2 + rn3(2t~s2c2 + I2t3(c2s23 + s2c23) + —s-- s23c~~] 0102 +

621252 + ~•••• 63(2 1252 + ,.3s23)] ê~ + (m363L3$23] e2;3 +

m 2t
~~ 6313523] ~ 

+ (m3L3c23(t2s2 + r 523~1 e3e1

t

_  _ _ _  _ -~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~
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12 
_ (;g. 62&2C2 + ~~~ 63(2t~c~ + t3c23)] 01 +

.
(m2 ~~ 

+ m3(&~ + &2t3c~t~~)i’e2 +

m 212
(
~~ 

(
~~t~ 

+ —~ )]b’3 -

2 212
- [m2 ~~ s2c2 + r (2qs2c2 + i2&3(c2s23 + s2c23) + —s-- s2~c2~] J~ -

(m3L2s.3s3]ê2Ô3 - (1 ~~
2

~~~
3

~~~
3
) 

-

1 I.
(in2 ~~~ ~2 + m3(s 2s2 + ~~~~~ s23)]g 

-

212
13 ••t~ • 63L3C23) 

g1 + 
~~~

. 
~ 2~3c3 + 02 + (in

3 ~~~~~
T0

3 

-

m 2t in
(
~~
. L3C2~ (t~S~ + -r s~~)]j~ + 

~r ~2~3~3 ] e~ -

(m3~~~s23]g -

Here £1~ 
£2, £3 are the lengths of the three links. The upright column is

modelled as a cylinder with inertia I.~ about its axis, while the other two links

are modelled as thin rods of mass in
2 
and in

3 respectively. An offset of 62
occurs between the long axis of the upright column and the plane In which the

¶ second link rotates. A similar offset 63 separates the plane in which link 3
rotates from this vertical axis (see figure 6).

_ _ _ _  -- - -~~~ - - - -~~~~~~~~~~-- - —— -~~~~-~~~~~~ -~~~~—---- - - - - - - - - - -
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A shorthand notation Is used for trigonometric terms. That is ,

— cos(e1) s1 — sin (e 1)

and

C
ii 

cos(ei + O
j ) sU 

• sin(e~ + Oj )

The terms containing 
~~ 

or e3 are inertial torques (required to ac-
celerate the links), while terms containing angular velocity products of the

form are Coriolis force components. The third class of terms contain g,

the gravitational constant, and are thus the torques required to compensate

for the gravitational l~~d.

Roughly a hundred arittunetic Operations are required to calculate the re-

quired joint torques given Joint angles, 0, and angular rates, ~~, as well as

desired accelerations, ‘ó’
. Such a direct calculation might be used as the

basis of a control system. In fact, if 62 and 63 are zero, several terms

fall out and the calculation becomes simpler. If, on the other hand,

we consider a device with either more degrees of freedom or links that have to

be modelled by ful l inertia matrices, Instead of the diagonal form appropriate

to thin rods, then these calculations become quite intractable (For an example,
see appendix A In refer ence (1)) .
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WHY THE STRAI(*ITFORWARD CONTROL METHOD FAILS.

If we hook at the equations for the actuator to rques we see that they

have some characterIstics that make contrnl more complex than it is for a
simple one degree-of-freedom second-order sys tem. First of all , the

coefficients of in the expression for T.~ are not constant, indicating

variable effective Inertia. Ordinarily, as we have seen, the feedback

coefficients are constants tuned for proper operation at some fix ed inertia,

so control will not be good for inertias very different from this desi gn

value.

Next, one sees that there are terms containing in the expressions

for Ti~ 
when i ~ j. This cross-coupling, too, may produce problems since

accelerations of one joint require coordinated torques at all joints. Loops

closed separately around each joint cannot easily deal with this problem.

Finally one sees numerous Coriolis force terms , multiples of products

of Joint-angle-rates. At high speeds, these dominate the inertial and

gravitational torques, and actuator torques produced by traditional

control systems may not be appropriate for stable control. Such problems

become most significant for long movements, when velocities can build up

to a point where velocity product terms exceed acceleration terms.
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FORM OF THE EQUATIONS OF MOTION.

We now examine the form of the equations for the actuator torques in

an attempt to find a reasonable computing scheme for control of such a

device. Clearly each torque is a function of joint angles, 0, angular

rates e, and angular accelerations, 0. One approach then is to calculate

the required actuato r torques directl y from the equations ; techniques

used by Paul are similar to th is [8] . In most cases, however, this approach

involves an inordinate amount of computing time and drastic simpl ifications

have to be introduced to make th is at all feasibl e [8] .

The other extreme is based on a look-up table indexed on 0, Ô and 0.

Each of the dimensions is quantized into in intervals. No calculation is

required, but the look-up table has 3 n dimensions for a device with n

degrees of freedom and is thus quite umanageable even when each dimen-

sion is quantized coarsely, that is, when m is small. If we use the

convention that subscripts correspond to variables with discrete sets of

values, then we may reoresent this scheme by the equation

Ti —

where the values of F1 are pre-calculated for a discrete set of values of

0, ~ and 0, and stored in a table (l4J~ Albus’ manipulation scheme is

simi lar to this (15].

Fortunately, however, the torques are linear functions ‘~f the

accelerations, as we have seen, and the equation can be rewritten in the (

_______

~~~~~~~~
- -
~~~~~~~~

- -
~~~~~~

-- -- ----
~~~~~~~ )

_
~~~~~~~~

_ _
~~~~

_

~~~~~~~~~~~ 
- -

~~~~~~~
-
~~~~~~~
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4
form

I
1 
- K

1
(~~~~,ê) + 

~ 1 ~ j

This leads to a second Implementation, using one look-up table for K1 and one

for I~~, both indexed on ~ and ê. These tables are now only of dimension 2n.
The computation required after table look-up is simpla, namely n multiplications

- 
and additions per joint. Raibert’s manipulator control schemes are based on
a similar formulation of the problem (16,17]. He derives the table entries by

“learning TM rather than calculation from the model -- that Is, the manipulator

performs test motions to estimate experimentally the mul tipliers K1 and I~~.

In general the look-up tables are still too large to be useful. (In the

--
‘ equation above, the inertial terms I

~ 
are written as fu nctions of both angles

and angular rates to indicate the Indexing of look-up tables in this scheme.

In fact, the inertial terms do not depend on the angular rates, something we

will exploit next.)

JI
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CONFIGURATION SPACE CONTROL.

It turns out that the equations have a rather special form (8, 10] and can
be written as

~i ‘i(!) 
~~~~~ 

‘i~
1!

~ ~ ~ j~~ 1 k~~ J 
CIJk(!)eJek~

This Is a consequence of the form of the expressions for the Lagranglan.
Here, is the gravity compensation, I~ are inertial tenns and Cij k are

CoriolIs force coefficients. Each of these Is a polynomial In the sines and
cosines of the joint-angles, the link len~ths and masses . Clearly these
could be pre-calculated and stored in lookup tables indexed on f. Such tables —

would be of dimension n and thus manageable In terms of storage space. A

little more calculation is required; namely, n(n + 1)12 + n multipl ications

and n(n+1)/2+n additions per joint. We call this method configuration: Space control,
since the look-up table is indexed on 0, the configuration of the manipulator.

We should iemediately add, that while nominally there are n dimensions

in configuration space, some economy of storage Is possible by noting that the

and Clik terms are not functions of the position of the first joint; that

connecting the manipulator to its base. If In addition the axis of this Joint

is parall el to the gravity vector (as is often the case), the G1 term is also
independent of the position of the first Joint. Furthermore, if the important

— masses in the last, or highest numbered link, the terminal device, are

symeetrically distributed, thin the equations of motion do not depend on the (Th

position of the last joint either. If both these conditions are true, the stored

— 
r~~~’ 

_______________ — _ ~~~
- - • 

~

_ . -
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- -

~~~~~~~~
— •

~
-
~
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C ,  tables need only be of dimension (n - 2), a considerable saving. Further

simpl ifications may apply to specific classes Of manipulators.

Similarly, the storage required per table entry can be economized

when it is realized that the inertia matrix is symetric, that only the

upper half of the Coriolis force coefficient matrix is needed, and that

there exist relationships between the coefficients CiJk and C~~i
(4]. It takesa

littl e more work to exploit the fact that for a given manipulator geometry

many of these coefficients are actually zero, or so small as to be negligible,

as can be seen from the equations we presented earlier for a three link

device (where only 10 of a possible 18 terms were non-zero).

We have now explored a spectrum of methods for computing the required

Joint torques (see figure 7). It is our contention that both ends of the

— spectri m~ represent techniques which are Impractical and that the configuration

space method provides a near optimum balance between storage and computational

costs . Note for example that state space control requires more storage capacity

than configuration space control for any system with n > 1 and in > 1.

The notions of the inverse system and configuration space look-up

can now be brought together in an overal l system- like that shown in figure 8.

If one does not take advantage of the economies mentioned above, then

about n2(n + 3)/2 multiplications and additions are required per calculation

cycle. If each dimension Is quantized Into m sections, then the look-up
table has a total of (n(n+l)(n+2) / 2] m’~nLmieric entries. These numbers are large,

but manageable, especially in view of recent trends in the cost of computer

storage.

~~~
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MISMATCHES BETWEEN THE DYNAMIC SYSTEM AND ThE MODEL.

Glancing at figure 8, one notices that the input to the system is the
angular acceleration, presumably supplied by a trajectory planner.

Intuition suggests that such a system is likely to suffer from the ill -

effects of approximate numerical differentiation and in general behave
in a fashion that has the actual joint-angles drifting away from the
desired joint angles. The rate of accumulation of errors will depend on

how accurate an inverse one can build to the dynamic system. For low
speed movement it appears that the limiting factor in this regard will

be friction, which tends to be both difficult to predict and not a

repea table function of Joint angles and angular velocities. This suggests

that we have to au9nent the elegant open-loop sys tem wi th sub-systems

capable of correcting for small departures of the actual trajectory from

the desired one.

Some form of negative feedback is needed. Note, however, that
feedback plays quite a different role here than it did In the simple

control system shown earlier for a second-order dynamical system. In

that situation, feedback produces the actuator forces; error signal are

in some sense the prime movers . Here feedback is added only to correct

for minor departures of the dynamical system from the model used in

deriving the inverse system, with the main component of actuator torque

coming from the open-loop calculation. For this reason the design of this

feedback system is much less cri tical , with small feedback gains acceptable
and consequently there need by little concern over stability.

4 
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INTRODUCTION OF CORRECTIVE FEEDBACK

There are a number of alternate ways of introducing feedback to

correct for the departures of actual position discussed in the previous

section. Perhaps the most obvious has corrections proportional to the
errors applied to the Inputs of the dynamic system (see figure 9). That
is, the actuator torque now is the sum of the calculated open-loop torque
required to follow the trajectory and terms proportional to errors in

position and velocity. Such a system would differ from the traditional

control system in that the input is first passed through the inverse sys-

tem and that the feedback gains would be much smaller. To some extent,

this kind of system would however suffer from some of the short-comings

of the traditiona l system, unless these feedback gains were at least ad-
justed according to the current conf~~uration. -

If suitable costs can be associated wi th departures from the correct

trajectory and if costs can be assigned to control Inputs, then optimal

time-varying feedback gains can be determined using the techniques of modern

control theory (18] . In a system wi th more than one degree of freedom, one

has to use a feed-back matrix. This too could be conventionally obtained
from a look-up table indexed on the configuration.

A different system can be obtained by applying the error sIgnals to the

inputs to the inverse system instead (see figure 10). This has several ad-

vantages. First, the input to the overall system from the trajectory plan-

ner is now composed of the joint angles and the angular velocities Instead

of the angular accelerations . Secondly, this system can be analyzed more
( readIly. For example, if the inverse system really Is an exact inverse for

_ _ _ _ _ _  - -—
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the dynamic system, then their cascade connection is simply an Identity

system. In this case, the overall system degenerates Into an ordinary

linear, time-invariant second-order system. The designer can now freely

choose the response by picking the gains ~ and ~ — that is, the poles

can be arbItrari ly assigned.

Noteworthy Is the linearization and decoupling of degrees of free-

dom obtained In this fashIon (19). In a system with more than one degree

of freedom, feedback can now be applied separately to Individual degrees

of freedom, that is, a feedback matrix is not requIred. Furthermore, the

feedback gains do not depend on the configuration and can be fixed. A re-

maining analytic difficulty is the determination of the effects of smal l

differences between the actual device and the dynamic model used in the

derivation of the inverse system.

SUPWRY AND CONCLUSIONS 
- -

Straightforward feedbac k control is unable to deal correctly with

varying effective inertias, joint torque coupling and Coriolis forces

encountered In high-speed movements of mechanical manipulators. The pre-

cisIon of manipulation for slower movement is similarly limi ted. Analysis

of the dyna ics of the kinematIc chain leads to equations representing an

Inverse system, able to compute required Joint torques from desired joint

accelerations given the state of the device. Unfortunately this computa- 
F

tion is quite unwieldy and essentially useless for real time control of

devices wi th more than two or three degrees of freedom. On the other hand,
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performing the computation completely by look-up in a table indexed on
the state of the device leads to a requirement for excessive amounts
of memory.

A compromise on this space-time trade-off is a method based on
configuration-space look-up tables. These precomputed tables are of
manageable size and the computations performed using the entries found

there are relatively straightforward. Each computational cycle requires

about n2(n + 3 ) / 2  arithmetic operations for a device wi th n degrees of
freedom. The total size of the look-up table for this computation is
less than (n (n+l) (n +2)/ 2 ] m’~ if each dimension is quantized into
m segnents.
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1. Outline drawing of the MIT.AI-VICARM electri c manipul ator . This is a
typical computer controlled dev ice with six degrees of freedom, X
torque motor actuators, potentiometers for position readout and

( taChometers for the dete rmination of angular velocities .

~

- - -

~

- -~~~~~~-  -~~~~---



~

I

. ’
.

.

- . 

.

I 

~~~~ POTENT1O~~~ u tR

~~~~~~2#4~~~~$OMETER

3. Simple one degree-of-freedom mechanical system used to illustrate
control scL~~~. The control sys tem has access to the angle of rotation
of the shaft as well as the angular velocity and in turn controls the
motor torque.
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5.. Block-diagram of open-loop control using an inverse system.
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Sb. Block-diagram of modified open-loop control using actual state rather
• than predicted state in the calculation of the inverse.
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6. Geometry of a three degree-of-freedom manipulator. This could be a
diagr&m of the first three degrees of freedom of the device shown in
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figure 1, or the drawing for a “ l eg” on a locomotory device .
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7. Table of features of the four methods for calculating actuator torque.
The two extremes of the spectrum do not represent viable computational
techniques because of excessive computation or storage requirement. —

Configuration space control appears to provide the optimal balance.
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