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20. “Implementation of a control system based on such analysis is not straightforward,Q
however, since impractical amounts of computation or memory may be called for.
We propose a new method that balances the trade-off between computation and
storage costs. The actuator torques required to move a manipulator along a tra-
jectory are calculated using coefficients found in a look-up table indexed by the
configuration of the manipulator. Feedback plays only an indirect role in correcting
for small differences between the state of the actual device and that of a dynamic

model.
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MOTIVATION.

The application of industrial manipulators to parts transfer is still
l1imited by their high cost. A useful figure of merit for such a device is
the ratio of the number of operations it can perform per unit time to its
cost. The more cycles the manipulator performs per unit time, the
more rapidly it will pay back the investment. There is, we believe, a
threshold for this figure of merit above which the application of
machine manipulation to a wide variety of tasks becomes economically
feasible. If the figure of merit were to rise above this threshold, the
increase in feasibility would make mass production of manipulators
possible, resulting in further drops in unit cost and yef wider application.

It is unlikely that this revolutionary sequence of events will be
triggered by a reduction in the cost of manipulators, since the technology
for building reliable devices in the numbers now used appears fairly stable.
It is possible, however, to decrease task cycle times with equally dramatic
results. Decreasing cycle time means increasing the rate of manipulation --
the speed the arm moves during transfer and during manipulation.

Presently, many mechanical manipulators are 1imited by their controllers.
Such systems typically employ simple, fixed analog servozloops closed
separately around each degree of freedom. Though suitable for control of
a set of independent second-order systems with fixed inertias and damping,
such control is not appropriate for devices with non-1inear, time-varying
behavior. Performance is adequate at low speeds provided the actuators are
strong enough and the properties of the devices do not change too dramatically
with configuration. At higher speeds, however, problems are caused by:

i
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(1) Varying effective moments of inertia,
(2) Torque coupling between degrees of freedom, and
(3) Coriclis forces proportional to velocity product terms.

Naturally, other factors, such as the mechanical strength of the device

and the power available from the actuators, also limit ultimate performance.

Far many manipulators, however, these are not the Vimiting factors.
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BACKGROUND.

Mechanical manipulators used for parts transfer typically consist of
rigid components, called 1inks, attached to each other at joints, each joint
being powered by an actuator (see for example figure 1). Measurements of
Joint position and velocity are available to the control system that
supplies commands to the actuators. Most commonly, manipulators are attached
g to a fixed base at one end and carry a terminal device or tool at the other.

The time-varying actuator commands are intended to cause this terminal device
to follow a given trajectory through space.

Many arrangements of 1inks and joints are possible; in this paper, we
concentrate on a kinematic chain arranged in a popular serial or cascaded

-~ structure using rotary joints. This choice allows us to be concrete and
to avoid repeated use of phrases such as "joint-angle or joint-extension"
and "actuator torque or actuator force". Similar methods apply to devices
with linear motions and to those with parallel degrees of freedom.

'_l'he particular device shown in figure 1 was designed and built by
Victor Scheimman for the Artificial Intelligence Laboratory [1]. It has
six degrees of freedom, the minimum necessary to reach points in the work
space with arbitrary orientation of the terminal device. This manipulator
is driven by six direct current torque motors, and has potentiometers for
Joint-angle measurement and tachometers for joint-angle-rates or angular

vetocities. The supporting electronics permit direct control of motor currents

and, consequently, actuator torques.




|
l ‘We designate 8, the angle of the 1th Joint, and e1 the angular velocity |
of this joint. Similarly, 91 is the angular acceleration and T1 the torque
applied by the ith actuator. Frequently it is helpful to group values for
all degrees of freedom using vector notation. Thus for a system with n

degrees of freedom, we call 6 the configuration, where:
9 " (9], 92: 93' ceee eﬂ)
Similarly, we refer to the combination of 8 and é as the state, where:

9 = (e]! 929 93. LR eﬂ)

The torque vector is similariy defined as

THv T g - N

With this notation we see that the function of the control system is to

produce appropriate actuator torques I(t), so that the actual joint

angles, g‘(t), follow a given trajectory of desired joint angles, gd(t)

(see figure 2). We will see later that this task may at times be simplified
g if the control system also has access to both actual angular velocities,

éa(t). as well as desired angular velocities, éd(t).
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A SYSTEM WITH ONE DEGREE OF FREEDOM.

To introduce some of the notions used later on, let us consider a very
simple system illustrated in figure 3 -- a one degree-of-freedom
“manipulator". Here a motor produceé a torque, T, whichdrives a shaft. The shaft
carries arod of mass mand length 2. The angular departure from vertical, 6,
is measured by a potentiometer, while a tachometer measures the angular

velocity, 6. Clearly the system is governed by an equation of the form
T = 16 - ksin(e)

where | = mzz/a. g is the acceleration due to gravity and k = (me/2)g.
A typical control system for such a second-order system is shown in figure 4.
Here,

T = g (e9- 6% +a (o9 - 6%

where the superscripts denote desired and actual values, while a and B
are parameters yet to be determined. Combining the two equations we find

d d

1e®+86%+ (a6®-ksine)) = ged+ae

d closely, a > k.

If the actual angle, 6%, is to follow the desired angle 8
In this case, the poles of the system are approximately at the roots of the

polynomial

1s2 + gs +a = 0




That is,

-BtJBE-4aI

21

The speed of reiponse of the overall system depends on Vo« / I ; so, for
rapid response, o sipuld be large.

To obtain good damping of transient oscillations, we choose 8 so that
B = 2/ a I. The details of this are not very important other than to
show that such feedback systems can achieve adequate control of simple
second-order mechanical systems and that the parameters of the feedback

system must be chosen by considering the parameters of the system itself.

When system parameters change, a different set of feedback parameters
is used to provide best performance.

If the parameters of the system vary greatly and the control system
is not altered, unsatisfactory performance can be anticipated. This may
take the form of sluggish response, excessive overshoot, or undamped

oscillations.




INVERSE SYSTEMS.

Analysis of the dynamics of a system often leads to equations that can
be used to implement an “inverse" system. The system originally analyzed
can be viewed as an analog computer for calculating position (and its
derivatives) given actuator outputs, while the inverse system computes
actuator outputs from position (and its derivatives). A simple 11lustration
will make this clear. '

A one degree-of-freedom system was shown in figure 3, governed by the
equation i

16 - ksin(e) = T

This system can be viewed as an analog computer solving this differential
equation for 6(t), given the input T(t). If the constants in the equation
are known, one can turn this analysis around and calculate the values of
torque, T(t), needed to achieve the desired joint-angle varfations with
time, 8(t). This inverse procedure is important in solving the control
problem. An open-loop control system based on this notion is shown in




g

figure 5a. We will take up later the question of errors in trajectory
which result from small differences between the actual system and the
model used in deriving the inverse system. For now, note that in view
of this possibility the actual state of the system should be used in
the inverse calculation rather than the desired state (see figure 5b).
With this modification, the inverse system takes as its prime input the
angular acceleration, and produces actuator torque as its output.

The straightforward kind of control based on an inverse system and il-
lustrated here applied to a linear, time-invariant, one degree-of-freedom
system, will now be extended to control of more complex systems such as
manipulators. Before we can do this, we have to understand the dynamics
of these devices. Considerable work has been done in this area as can be

seen from references [2, 3, 4, 5, 6, 7, 8] for example.




DYNAMICS OF MANIPULATORS.

The most direct route leading to a detailed understanding of the'dynam1CS~

of a complex mechanical system Such as a manipulator is an analysis based on the

Euler-Lagrange equations [8],

Here the q; represents generalized coordinates, 01 generalized forces and L is

the Lagrangian, or "kinetic potential",
L=K-P

where K {s the kinetic energy and P the potential energy of the whole system.»
In our case the most convenient generalized coordinates are the joint-angles,
8;s and then the generalized forces become the actuator torques T1. Further-
more, since the potential energy is a function of joint-angles only, it is con-
venient to separate the calculation of torques required to compensate for gravi-

tational forces,

P
Ti'ToT

from the calculation of torques required to support the motion if gravity were

not present
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Also, since the total kinetic energy is the sum of the kinetic energies of
each of the 1inks, it 1s helpful to separate the calculation into components

of the form,

o K K
Ty " 0 R

where T1j is the torque required of the 1th actuator to support the motion of
the jth l1ink. The total torque required at each actuator is then obtained by
summation of these terms.

The derivation of the Euler-Lagrange equations requires difficult mathe-
matical arguments; however the use of these equations is straightforward.
Application of these equations to manipulator control was pioneered by Uicker
Pieper, Kahn and Paul [5, 6, 7, 8]. A practical difficulty is the potentially
explosive growth in algebraic manipulation that accompanies analysis of
systems with several degrees of freedom. A computer system such as MACSYMA
[9], able to carry out manipulations of symbolic mathematical expressions is
very helpful in these cases.

Much of the earlier work on this problem made use of a general representa-
tion, with a coordinate system erected 19 each link and matrices describing
the transformations between coordinate systems of connected links [6, 6, 7, 8].
While perfectly general, this kind of analysis leads to very complicated re-
sults and the need to perform thousands of arithmetic operations in order to
calculate required joint-torques. A1l hope of performing these calculations

in real-time was abandoned as a result.
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ILLUSTRATION USING THE SINGLE DEGREE-OF-FREEDOM SYSTEM.

For the system shown in figure 3, 1t is clear that K = %-Iéz and P = k cose,

sc that
L=d162 -k
'-2' - C0so
Consequently,
)
« d 3L al
T =5y - 20
gives us

T=16 - k sine

as before. Here, of course, little is gained by using this method. It is,
however, invaluable for complex devices.
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DYNAMICS OF A THREE-LINK DEVICE.

Recent work has shown that some devices can be analyzed easily if cal-
culations use joint-angles directly and if 1inks are modelled as thin rods [10,
11, 12, 13]. As an example, we present the results for a three-link device
with offsets shown in figure 6. This corresponds to the first three joints
of the arm discussed earlier, shown in figure 1.

15 L
= = 2¢2 — 2 N
Ty = (1) + my(s3 + 3% s3) + M3{ads + 2,045,555 + 3 535 + 63)1 6,

Mo "3 2
(3= 82%5¢, + 77 83(285¢, + 25¢)0)1 6, -

"3
[2— 63z3c23] 35 +

222 . 212
2 : 3 ’ o
[m, = s5¢; + my(203s,C) + Ryt(CoSp5 + $Cp3) *+ 5~ Sp3€p3] 846, +

m m
2 3 [y « °
(35 82255, * 7= 83(2 2,5, + 23573)] 63 + [m363255,,] 6,63 +

m " 2% g
[32 65255531 83 + [mgegcpaltys, + 2 5551 B38)
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"2 "3 K
Tp = ~{g" 6p80% * 37 852050, *+ 14p3)1 8 ¢

) 82
[m, 32 + my(23 + "2‘3"1;)]"’2 *
my 2&% 2
[7= (2503 + 570165 -
3 m 222
[m, 3—5 5,65 + 7> (2085,0, * 2yt3(CySp3 + S5Cp3) + > $23%93) 6 -

m .

[mgtyrs3loy8y - [ tpt551 63 -

o] Ay
[my 3= s, + my(e,s, + 5= 5,3)]9

I|l3 m3 2‘% Y ‘gluo
Ty = -l 832503) By + I77 (p2gcy + 5701 0y + [my 57065 -

mq 284 Z my g
(3= £36p3(258; + 57 5p3)00% * [3= 250555 ] 63 -

5
[mg 3= sp3) g

Here L1s Lps L3 are the lengths of the three links. The upright column is
modelled as a cylinder with inertia I1 about its axis, while the other two 1inks
are modelled as thin rods of mass m, and my respectively. An offset of 85
occurs between the long axis of the upright column and the plane in which the

second link rotates. A similar offset 63 separates the plahe in which 1ink 3
rotates from this vertical axis (see figure 6).
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A shorthand notation is used for trigonometric temms. That is,

¢y = cos(oi) sq = sin (ei)

and

cij = cos(ei + ej) Sij = sln(e1 + oj)

‘The terms containing 31. 32 or 33 are inertial torques (required to ac-
celerate the links), while terms containing angular velocity products of the
form 6153 are Coriolis force components. The third class of terms contain g,
the gravitational constant, and are thus the torques required to compensate
| for the gravitational load.

Roughly a hundred arithmetic operations are required to calculate the re-
quired joint torques given joint 5ngles. 6, and angular rates, §. as well as
desired accelerations, 8. Such a direct calculation might be used as the
basis of a control system. In fact, if 6, and 65 are zero, several terms
fall out and the calculaticn becomes simpler. If, on the other hand,
we consider a device with either more degrees of freedom or 1inks that have to
be modelled by full inertia matrices, instead of the diagonal form appropriate
to thin rods, then these calculations become quite intractable (For an example,

see appendix A in reference [7]).

IIIIIIIi' T RO N
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* WHY THE STRAIGHTFORWARD CONTROL METHOD FAILS.

If we look at the equations for the actuator torques we see that they
have some characteristics thit make contrnl more complex than it is for a
simple one degree-of-freedom second-order system. First of all, the
coefficients of 31 in the expression for T1 are not constant, indicating
variable effective inertia. Ordinarily, as we have seen, the feedback
coefficients are constants tuned for proper operation at some fixed inertia,
so control will not be good for inertias very different from this design
value.

Next, one sees that there are terms containing ;j in the expressions
for Ti’ when i # j. This cross-coupling, too, may produce problems since
accelerations of one joint require coordinated torques at all joints. Loops
closed separately around each joint cannot easily deal with this problem.

Finally one sees numerous Coriolis force terms, multiples of products
of joint-angle-rates. At high speeds, these dominate the inertial and
gravitational torques, and actuator torques produced by traditional
control systems may not be appropriate for stable control. Such problems
become most significant for long movements, when velocities can build up

to a point where velocity product terms exceed acceleration terms.




FORM OF THE EQUATIONS OF MOTION.

We now examine the form of the equations for the actuator torques in
an attempt to find a reasonable computing scheme for control of such a
device. Clearly each torque is a function of joint angles, 6, angular

rates 6. and angular accelerations, §. One approach then is to calculate

the required actuator torques directly from the equations; techniques |
used by Paul are similar to this [8]. In most cases, however, this approach
involves an inordinate amount of computing time and drastic simplifications
have to be introduced to make this at all feasiblé [8].

Each of the dimensions is quantized into m intervals. No calculation is
required, but the look-up table has 3 n dimensions for a device with n §
f degrees of freedom and is thus quite unmanageable even when each dimen-
sion is quantized coarsely, that is, when m is small. If we use the
convention that subscripts correspond to variables with discrete sets of !

values, then we may renresent this scheme by the equation

17 Te.de)

where the values of Fi are pre-calculated for a discrete set of values of
8, é and é. and stored in a table [14]. Albus' manipulation scheme is
similar to this [15].

Fortunately, however, the torques are linear functions nf the

accelerations, as we have seen, and the equation can be rewritten in the

““i i ia' i.‘ i "‘ ii'“‘ TSR e
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form !

n
T'l * K1(9:§) * j% : I"J (.90.6) .63

This leads to a second implementation, using one look-up table for Ki and one
for Iij' both indexed on 9 and §. These tables are now only of dimension 2n.
The computation required after table look-up is simple, namely n multiplications

and additions per joint. Raibert's manipulator control schemes are based on
a similar formulation of the problem [16,17]. He derives the table entries by

“learning" rather than calculation from the model -- that is, the manipulator %‘
performs test motions to estimate experiﬁentally the multipliers K1 and Iij'
In general the look-up tables are still too large to be useful. (In the
equation above, the inertial temms I1J are written as functions of both angles
and angular rates to indicate the indexing of look-up tables in this scheme.

In fact, the inertial terms do not depend on the angular rates, something we
will exploit next.)
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CONFIGURATION SPACE CONTROL.

It turns out that the equations have a rather special form [ 8, 10] and can
be written as

n
2, Cugledighy

n n
T, =6 + I [

J=1 k

This is a consequence of the form of the expressions for the Lagrangian.
Here, G.1 is the gravity compensation, I“ are inertial terms and cijk are
Coriolis force coefficients. Each of these 1s a polynomial in the sines and
cosines of the joint-angles, the 1ink len‘ths and masses. CIearl,y these
could be pre-calculated and stored in lookup tables indexed on @. Such tables
would be of dimension n and thus manageable in terms of storage space. A
little more calculation is required; namely, n(n + 1)/2 + n multiplications
and n(n+1)/2+n additions per joint. We call this method configuration: space control,
since the look-up table is indexed on 6, the configuration of the manipulator.
We should immediately add, that while nominally there are n dimensions
in configuration space, some economy of storage is possible by noting that the
I1J and ciJk terms are not functions of the position of the first joint; that
connecting the manipulator to its base. If in addition the axis of this joint
is parallel to the gravity vector (as is often the case), the 61 term is also
independent of the position of the first joint. Furthermore, if the important
masses in the jast, or highest numbered 1ink, the terminal device, are
symmetrically distributed, then the equations of motion do not depend on the
position of the last joint either. If both these conditions are true, the stored
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tables need only be of dimension (n - 2), a considerable saving. Further
simplifications may apply to specific classes of manipulators.

Similarly, the storage required per table entry can be economized
when it is realized that the inertia matrix is symmetric, that only the
upper half of the Coriolis force coefficient matrix is needed, and that
there exist relationships between the coefficients C,,, and ck31[4].lttakesa
little more work to exploit the fact that for a given manipulator geometry
many of these coefficients are actually zero, or so small as to be negligible,
as can be seen from the equations we presented earlier for a three link
device (where only 10 of a possible 18 terms were non-zero).

We have now explored a spectrum of methods for computing the required
joint torques (see figure 7). It is our contention that both ends of the
spectrum represent techniques which are impractical and that the configuration
space method provides a near optimum balance between storage and computational
costs. Note for example that state space control requires more storage capacity

than configuration space control for any system withn > 1 andm > 1.

The notions of the inverse syétem and configuration space look-up
can now be brought together in an overall system 1ike that shown in figure 8.
If one does not take advantage of the economies mentioned above, then
about nz(n + 3)/2 multiplications and additions are required per calculation
cycle. If each dimension is quantized into m sections, then the look-up
table has a total of [n(n+1)(n+2) / 2] m" numeric entries. These mumbers are large,
but manageable, especially in view of recent trends in the cost of computer
storage.

S L A M B o e e A
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MISMATCHES BETWEEN THE DYNAMIC SYSTEM AND THE MODEL.

Glancing at figure 8, one notices that the input to the system is the
angular acceleration, presumably supplied by a trajectory planner.
Intuition suggests that such a system is likely to suffer from the il11.
effects of approximate numerical differentiation and in general behave
in a fashion that has the-actual joint-angles drifting away from the
desired joint angles. The rate of accumulation of errors will depend on
how accurate an inverse one can build to the dynamic system. For low
speed movement it appears that the limiting factor in this regard will
be friction, which tends to be both difficult to predict and not a
repeatable function of joint angles and angutar velocities. This suggests g
that we have to augment the elegant open-loop system with sub-systems
capable of correcting for small departures of the actual trajectory from
the desired one.

Some form of negative feedback is needed. Note, however, that
feedback plays quite a different role here than it did in the simple

control system shown earlier for a second-order dynamical system. In
that situation, feedback produces the actuator forces; error signal are
in some sense the prime movers. Here feedback is added only to correct

for minor departures of the dynamical system from the model used in

deriving the inverse system, with the main component of actuator torque
coming from the open-loop calculation. For this reason the design of this
feedba’ck system is much less critical, with small feédback gains acceptable
and coﬁsequently there need by 11ttle concern over stability.
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INTRODUCTION OF CORRECTIVE FEEDBACK

There are a number of alternate ways of introducing feedback to
correct for the departures of actual position discussed in the previous
section. Perhaps the most obvious has corrections proportional to the
errors applied to the inputs of the dynamic system (see figure 9). That
is, the actuator torque now is the sum of the calculated open-loop torque
required to follow the trajectory and terms proportional to errors in
position and velocity. Such a system would differ from the traditional
control system in that the input is first passed through the inverse sys-
tem and that the feedback gains would be much smaller. To some extent,
this kind of system would however suffer from some of the short-comings
of the traditional system, unless these feedback gains were at least ad-
justed according to the current confiusuration.

If suitable costs can be associated with departures from the correct
trajectory and if costs can be assigned to control inputs, then optimal
time-varying feedback gains can be determined using the techniques‘of modern
control theory [18]). In a system with more than one degree of freedom, one
has to use a feed-back matrix. This too could be conventionally obtained
from a look-up table indexed on the configuration.

A different system can be obtained by applying the error signals to the
inputs to the inverse system instead (see figure 10). This has several ad-
vantages. First, the input to the overall system from the trajectory plan-
ner is now composed of the joint angles and the angular velocities instead
of the angular accelerations. Secondly, this system can be analyzed more

readily. For example, if the inverse system really is an exact inverse for
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the dynamic system, then their cascade connection is simply an identity
system. In this case, the overall system degenerates into an ordinary
linear, time-invariant second-order sysiem. The designer can now freely
choose the response by picking the gains a and g8 — that is, the poles
can be arbitrarily assigned.

Noteworthy is the linearization and decoupling of degrees of free-
dom obtained in this fashion [19]. In a system with more than one degree
of freedom, feedback can now be applied separately to individual degrees
of freedom, that is, a feedback matrix is not required. Furthermore, the
feedback gains do not depem! on the configuration and can be fixed. A re-
maining analytic difficulty is the determination of ihe effects of small
differences between the actual device and the dynamic model used in the

derivation of the inverse system.

SUMMARY AND CONCLUSIONS

Straightforward feedback control is unable to deal correctly with
varying effective inertias, joint torque coupling and Coriolis forces
encountered in high-speed movements of mechanical manipulators. The pre-
cision of manipulation for slower movement is similarly limited. Analysis
of the dynamics of the kinematic chain leads to equations representing an
inverse system, able to compute required joint torques from desired joint
accelerations given the state of the device. Unfortunately this computa-
tion is quite unwieldy and essentially useless for real time control of

devices with more than two or three degrees of freedom. On the other hand,

P A L e e
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performing the computation completely by look-up in a table indexed on
the state of the device leads to a requirement for excessive amounts
of memory.

A compromise on this space-time trade-off is a method based on
configuration-space look-up tables. These precomputed tables are of
manageable size and the computations performed using the entries found
there are relatively straightfoniard. Each computational cycle requires
ab‘out‘nz(n+3) / 2 arithmetic operations for a device with n degrees of
freedom. The total size of the look-up table for this computation is

less than [n (n+1) (n+2)/2]m" 1f each dimension is quantized into
m segments.
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| : 1. Outline drawing of the MIT-AI-VICARM electric manipulator. This is a
E | typical computer controlled device with six degrees of freedom, DC
torque motor actuators, potentiometers for position readout and
tachometers for the determination of angular velocities.

!
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Simple one degree-of-freedom mechanical system used to illustrate
control schemes. The control system has access to the angle of rotation
of the shaft as well as the angular velocity and in turn controls the

motor torque.
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5a. Block-diagram of open-loop control using an inverse system.

é Sb. Block-diagram of modified open-loop control using actual state rather
than predicted state in the calculation of the inverse.




SIDE - VIEW

6. Geometry of a three degree-of-freedom manipulator. This could be a
diagrim of the first three degrees of freedom of the device shown in

figure 1, or the drawing for a "l1eg" on a Tocomotory device.




Table of features of the four methods for calculating actuator torque.
The two extremes of the spectrum do not represent viable computational
techniques because of excessive computation or storage requirement.
Configuration space control appears to provide the optimal balance.
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