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TIME SERIES DETERMINATION OF TRANSFER FUNCTIONS
IN RANDOM FATIGUE

T. C. Huang, Vinod Nagpal and K. S. Shen
Department of Engineering Mechanics
University of Wisconsin-Madison

Madison, Wisconsin 53706

Abstract

Time series determination of the transfer function which relates the

. input random excitation and the output response in random fatigue experi-

ment is established. This process involves determination of univariate

time series of input and output, transfer function and noise models, and

the transfer function-noise model.
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INTRODUCTION

In the investigation of random fatigue and design of random fatigue
experiments a transfer function which relates the input random excitation
and the output random response is invclved. Time series technique has been
chosen for the transfer function estimation, which requires first, the
identification of univariate time series models for the random excitation
and the random response, and second, the estimation of the transfer function-
noise model.

There are three different types of univariate time series models,
namely, autoregressive, moving average, and mixed models. Estimates and
plot of autocorrelations and partial autocorrelations of the digital signal
are used for the identification and initial estimation of parameters of a
univariate time series model. Final estimation of parameters is done by
regression analysis. Adequacy of the model is checked by the following
tests on residuals: (a) test of autocorrelations at all lags, and
(b) X~square test on sum of square of residuals.

The transfer function-noise model consists of two parts, transfer
function and noise. Impulse response function is obtained from the
estimates of cross-correlations between the digital input and digitized
response. The order and initial estimates of parameters of the transfer
function are obtained from impulse response weights. These initial
estimates are used to identify the univariate time series model for noise
(and in the same operation improved estimates of parameters of the transfer
function are obtained). Initial estimates of parameters of the noise model
are obtained as in univariate time series models. Estimates of parameters

of the transfer function-noise model are obtained by using the estimates
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of transfer function and noise model parameters. Adequacy of the transfer
function-noise model is checked by following tests on residuals: (a) tests
of autocorrelations and partial autocorrelations at all lags, and (b) X~
square test on the sum of squares of autocorrelations and cross-correlations.

A single reference [1] is involved in this report. Particular pages
are referred to whenever necessary.
I. SIGNAL

The input signal, the white noise, was generated from normally dis-
tributed random numbers. This digital signal was recorded on the tape and
was converted to an analog signal by a D to A converter. The analog
signal was transmitted to the shaker in the vibration lab. The response
signal of the specimen mounted on the shaker was transmitted to the A
to D converter, digitized and recorded on the same tape on which the
digital input signal was recorded. The sampling interval of digitization
was chosen at 2.60 millisec., which is the minimum sampling interval
capability of the machine. The same sampling interval was used to convert
the random numbers to the analog input signal. Several complete runs were
tried to assure that the system would perform properly. One of the inputs

and its corresponding response was arbitarily chosen for transfer function

analysis.

II. UNIVARIATE TIME SERIES MODELS - BASICS

1. Model

A univariate time series model of order (p,q) is expressed as

0,a

X = Op%eny " O%pp < eee - OpXep = 8¢ ~ 813 g = 0,8 5 = ..

- eqat_q (1)

or
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where B 1is backshift operator (th = xt-l)’ x, 1s the observation at
any time t, a, is white noise at any time t, and ¢ and O are
parameters of autoregressive and moving average, respectively.
The above equation can be written symbolically as
$(B)x, = 8(B)a,
in which

.
1-6:8-0¢,8" - ... - ¢po

¢(B)

e < 39 < q
8(B) =1 - 6B - 6,8 - ...-0B

For a stationarity condition of the process, the roots of the characteristic
equation ¢(B) = 0 must lie outside the unit circle. Similarly, the roots
of 6(B) = 0 must lie outside the unit circle if the process is to be
invertible.

In general the univariate time series model is represented by ARIMA
(p,d,q). AR stands for autoregressive, I for integrated and MA for
moving average; p in the parentheses stands for the order of autoregres-
sive, d for the order of differencing and q for the order of moving
average. The sum of p and q gives the total number of parameters in
the model. There are three special cases of ARIMA models, AR(p), MA(q)
and ARMA(p,q) as simplified forms of ARIMA(p,0,0), ARIMA(0,0,q) and
ARIMA(p,0,q), respectively.

2. Identification of Model

The type and order of a model is identified by the shapes of auto-
correlations (ACF) and partial autocorrelations (PACF). When ACF and
PACF are plotted, there are two basic groups of shapes, the damped out

group and the cutoff group as listed in Tables 1 and 2. Fig. 1 shows




the decaying exponontial, the damped sine wave, and the mixture of two
decaying exponentials; Fig. 2 shows cutoffs after lag 1 and after lag 2.
For the complex shapes of ACF and PACF, the models and orders will have
to be guessed. The guessed model would be a higher order of AR or MA.
The only hint of the guess may be obtained from the physical system in-
volved as each dominant natural frequency of the system indicates an

order 2 of AR.

3. Initial Estimates of Parameters

Once the order of the model is identified the number of parameters
is known. Initial estimates of parameters is computed using the magni-
tudes of autocorrelations. The equations used to compute the initial
estimates are derived [2] as follows.

Let the univariate model be expressed as equation (1). Premultiplying

by Xk and taking expectations give

E[xt-kxt] = ¢1E[xt_kxt_1] = o= ¢pE[x ]

t-k t-p

= E[xt_kat]— GlE[x

e qu[x ]

t-k%¢-1) t-k?t-q

or
Y(K) = 01¥(k=1) = o = @ Y(k=p) = Y, (k) = By, (k1) - ...

—Gqua(k-q) 3

where Y(k) 1is the auto-covariance at lag k and Yxa(k) is the cross

covariance at lag k. An investigation of Yxa(k) for various values of

lags shows

Yxa(k) =0 k>0

2
Yxa(o) - k=0
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Y yq (K $0 k <0

By definition

2
Y(0) = oL

Note also that oi can be expressed in terms of ci multiplied by a

function of ¢ and 6.

Depending on the values of lag k, the estimation of parameters ¢

and 6 falls into the following two cases.

Case 1. k >2q+1 In this case all Yxa on the right side of

equation (3) vanish. Therefore
Y(k) - ¢1Y(k-1) = ¢2Y(k-2) = e =00
The autocorrelation at lag k is p(k) = Y(k)/Y(0) which implies

p(0) = 1. Then the above equation, after dividing by Y(0), becomes

pk) = ¢,p(k-1) = $,0(k=2) = ... = 0 ) |
from which the parameters ¢ can be solved.
Case 2. k< gq In this case the cross-covariances Yxa(-l)’ Yxa(-Z),

iy Yxa(-q) will have to be evaluated successively. To evaluate Yxa(-l),

postmultiply equation (1) by a1 and take expectations. This results in

Bi%leo = M %et®eay = o0 - L Y

= E[ata 6

=1 = "1%1%e-1 T v = 9%eigteat!

from which

2 2
Yxa( b ¢loa -eloa

or

Yeal1) = (6,802




This procedure can be continued to obtain Yxa(—Z), Yxa(-3), e Yxa(-q)
successively. Now 7Y(0) and all Yxa are expressed in terms of functions
of ¢ and 6 multiplied by 0:. Dividing equation (3) by vY(0) gives

p(k) - ¢,0(k-1) - ... - ¢ p(k-p)

Yyeq (K) = Yyeq (k-1) i e Yxa(k-Q)
v(0) 1 Y(0) q Y(0)

(6)

In the above equation all p are known and all the terms of Yxa/Y(O)

are expressed in terms of ¢ and O, 0: being cancelled. In general this
equation is nonlinear, therefore ¢ and 6 will have to be solved by an
approximation method. Procedures to estimate ¢ and 6 for a simple
ARMA(1,1) model is illustrated in [3].

4. Final Estimates of Parameters

From the initial estimates of ¢ and 6 parameters, estimates of
observation, residuals and sum of squares of residuals can be computed.
Final estimates of ¢ and 6 parameters are obtained by regression analysis
based on minimizing the sum of squares of residuals.

5. Diagnostic Checking

In order to check the adequacy of the model which has been identified
and estimated, diagnostic checking is required. For a univariate model,
diagnostic checking consists of following two checks:

a. ACF and PACF checks The autocorrelations and partial auto-

correlations of the residuals at all lags should le statistically insignifi-
cant, i.e. they should be less than two standard deviations.

b. xz—test The x2 value is computed as follows:

xi =n I r,(8) (7
i=1

N




where d is the degree of freedom, n is the number of observations,

ri(ﬁ) is the autocorrelation of estimated residuals & at lag i, and m

is the number of autocorrelations used. d is related to m as
d=n-=-p=-4q (8)

The x2 value should be less than the value obtained from the x2 table

for the same degree of freedom.

The fitted model which meets the above two diagnostic checkings is
considered adequate. Otherwise the whole process should be repeated, i.e.,
to reidentify the model and to estimate its parameters.

For two adequate models, the one which has less number of parameters
is preferred.

III. TRANSFER FUNCTION-NOISE MODEL ~ BASICS

1. Models
A transfer function model of the order (r,s) in the form of a differ-

ence equation is expressed as

L AR RN TR S R

r t-r e < Bl T Nl s

= oo =W X . 9

in which Xt and Yt are deviations from the equilibrium of the system
input and response, § and w are the transfer function parameters, and

b 1is the lag factor. The above equation can be simply written as
r P ST s
(1 613 v GrB )Yt (wo wlB ...—wsB )xt-b (10)
or simply as

-1
Yt = § (B)uo(l!)xt._B

where B 1is the back shift operator (BYt = Yt-l)’ and

§(B) =1 GIB 623 “o GrB




2 s
w(B) = wg = mlB - mZB - apa ™ wsB

In practice the system will be infected by disturbances or noise whose net
effect is to corrupt the response predicted by the transfer function model
by an amount Nt' The combined transfer function-noise model are then

written as

o a1
Y =8 TBL@BX _ + N (11)

The noise Nt can be further modeled as a univariate time series model ARIMA

(p,d,q),
N PR T T e T
(1-¢,B-¢,B"-. .. ¢pB N, = (1-6,B-6,B"-... qu da (12)
or

$(BIN_ = 6(B)a,

The order of combined transfer function-noise model is usually represented
by (r,s,b). The total number of parameters in the combined model is the sum
of r,s,p and q.

2. Transfer Function Model

The difference equation of the transfer function of a discrete
dynamic system may be written in the form which coxresponds to the convolu-
tion integral, as

Yt . v(B)Xt (13)

in which the impulse response weights v(B) can be expanded in the form

+v.B+v Bz +v B3 * e

V(B = vy + vy 2 3

Substituting Yt = v(B)xt with v(B) 1in expanded form into equation (10)

and equating the coefficients of xt, we obtain

!
|
j
!
!
|
1
3
i
7
;
p
|
£
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r 2
(1 - GlB L GrB )(v0 + le + sz + oes)

S\.b
= (mo - wlB - ee. = wSB )B

On equating coefficients of B, we find the following four sets of

equations [4]:

<
[
(o]
<
1
o
<
+
+
(5]
<
+
E
w
]
o

= - = H2, wnny )
vj lej-l + 62vj—2 + ... + Grvj—r mj—b 3 b+1, b+2, ’
b+s
= sow j > b+
vj lej_l + 52vj—2 + érvj—r ji>b+s

Therefore the impulse response weights can be divided into four groups

as follows.

Group Impulse Response Weight Number
1 VO’ vl, vz, ey vb-l b
2 vb 1
3 vb+1, Vigo? ttes Ve s
4 > r

Vbts+1’ Vbist2’ T -

The parameters § and « can be estimated by the use of the four sets

of equations (14) provided all the impulse response weights are known and
the model (r,s,b) is identified. A minimum number of (b+l+s+r) known
impulse response weights is needed in the estimation.

a. Identification In order to identify the model, i.e., to obtain

the values of r, s and b, it is necessary to compute the impulse
response weights: Vor Vis Vos cees Vier ee and plot v vs k, k being

the lag. The impulse response weight with lag k is computed by
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P
e et (15)

where paB(k) is the cross-correlation between input and output at lag k
and oa, CB are the standard deviations of input and output, respectively,
provided the input is white noise. Otherwise the prewhitened input and
ocutput should be used.

The first set of equations (14) indicates that there are initially
b number of zero values of impulse response weights, i.e., vo, Vis eees
vb-l are zero. From the v-k plot the value of b can be obtained by
counting the number of initial zero weights.

The third set of equations (14) indicates that there are s-r+l

number of impulse response weights, i.e., v which

b’ Vb+1’ 7 Vbis-r+l

follow no fixed pattern in the v-k plot. Let this number be n then
s-r+1=n

n 1is now being counted on the v-k plot between Vi1

zero value of v, and the first v, which starts the pattern and is

, which is the last

usually the highest v. There is no such n when s < r.

The fourth set of equations (14) indicates that the values vj with

j>b+s-r+1 follow the pattern dictated by the rth order difference
equation which has r starting values vb+s’ vb+s-1’ sy vb+s-r+1'
For example r = 1 for decaying exponential, r = 2 for dampled sine wave.
For high order difference equation (r > 2) the pattern becomes complex and
it is difficult to identify both n and r.

For known n and r, s can be computed from

s=n+r-1 (16)

The order (r,s,b) is now completely identified. When n and r can not

be identified from the pattern, r and s will have to be guessed.

-—
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Depending on the types of input the guidance for the guess is described as
follows.

Case 1. Input-White noise. Let the input be white noise

The output in univariate and transfer function models is expressed as

Y, = ¢ e, - T Bumdx, an

The orders of ¢(B) and 6(B) are p and q while the orders of &(B)
and w(B) are r and s, respectively. As a first guess, r = p and
s = q.

Case 2. Input-not white noise. If the input is not white noise the

univariate models for input and output are expressed as

¢a(B)xt ea(B)at

¢b(B)Yt eb(B)aé

When both input and output are prewhitened

-1
6, (B9, (B)X,

"
()

a'

~1
6y (B)0, (B)Y, = a!

For the purpose of guess, assume a, = aé. Then

6, ()0, (B)Y, = 67 (B)o_(B)X,
Now the output can be expressed in both univariate and transfer function
models as

Y, = 6y (B)6, (B0, (D)6, (B)%, = 6 (Bhu(BX, (18)

The orders of ¢b(B) and ea(B) are p, and 9 the order of ¢a(B)
and eb(n) are p_ and 9y and the order of 6(B) and w(B) are r and

s. As a first guess, r = P + q, and s = P, *tq.
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b. Estimation From 2r number of v: ¥ tootl Thbo-ped® *oo0

vb+s+t and r number of the fourth set of equations (14):

Votstl - S1bts t SoVbas1 vt t S Vb4 rh1
VYoretz = %rait T Shee T o YO N e
Vbstr leb+s+r+1 I 62vp+s+r-2 st 6rvb+s

8

1 62, cete s Gr can be solved.

The first set of equations (14) gives v, = 0, if j < b. Then the

second equation of equations (14) gives

From (s+l) number of v: Ve Vpa1® *cc Vpas® T number of &: §

19
62, eeesy 6_, and s number of third set of equations (14)

r
v =8v, -w
b+1 1lb 1
Vigo ™ leb+1 + szb - W,
v =4 + 8. v S.v. - w

w3 - Y1V T V2% T 9% T 9y
Vits = Yobee * Yt Y - P g 2 )

or

$

v =4

e ™ Sty e+ 8V 4L+ 8

b r bts-r ws (s > 1)

2Vbts-2 t
wl, w2, iy ws can be obtained.

3. Noise Model

From the transfer function-noise model we have

Ne = 8(B)Y, - w(B)X,_, (19)
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This equation can be used to generate a noise series with input and
response data series and estimates of transfer function parameters. Using
the procedure described previously the univariate time series model for

this noise series can be identified and the noise model parameters can be

estimated.

4. Transfer Function-Noise Model

e it i e

The initial estimates of the parameters of the transfer function model
and the noise model are evaluated independently for each. These estimates
are used to compute the final estimates of all the parameters of transfer |
function-noise model by regression analysis based on minimizing the sum
of squares of residuals.

5. Diagnostic Checking

The diagnostic checking required to ascertain the adequacy of transfer
function-noise model consists of four checks as follows.

a. ACF and PACF Checks Tlie autocorrelations and partial auto-

correlations of the residuals at all lags should be statistically insig-
nificant, i.e., they should be less than two standard deviations.

b. XZ-Cest The x2 value of autocorrelations of estimated residuals,
evaluated by equation (7), should be less than the value obtained from the

x2 table for the same degree of freedom.

c. Cross-correlation check The cross-correlations of the estimated

residuals and prewhitened input at all lags should be statistically insig-

nificant.

| d. xz-test The x2 value of cross-correlation is computed as

follows:
m

Xi=n % r] (a)
i=0

(20)
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in which d is the degree of freedom, n 1is the number of observation,
ri(aﬁ) is the cross-correlation of prewhitened input o and estimated
residuals 4 at lag i, and (w+l) is the number of cross-correlations

used. d 1s related to m as

d (mtl) - (r+s+l)
or

d = m-r-s (21)
The x2 value of cross-correlations should be less than the value

obtained from the xz table for the same degree of freedom.

IV. UNIVARIATE TIME SERIES MODEL - APPLICATION

1. Input Model

The input signal generated from normally distributed random numbers
is white noise. The input series data, 496 in number, are given in Table 3,
and their plot is shown in Fig. 3.

a. Identification The autocorrelations of the input series up to
24 lags and their corresponding standard errors are given in Table 4. The
autocorrelations are also plotted as shown in Fig. 4. Partial autocorrela-
tions also estimated up to 24 lags are shown in Table 5 and plotted in
Fig. 5. The standard error for all the partial autocorrelations is approxi-
mated as 1//n where n is the number of observations. In this case,
the number of observations is 496, therefore the standard error is approxi-
mately .05.

It can be seen that autocorrelations and partial autocorrelations at
all 24 lags are statistically insignificant (less than two standard errors);
consequently, there is no particular shape visible in either plot of auto-
correlations or partial autocorrelation. This implies that the input has

neither ¢ nor 6 parameters in the model. In other words, the input is




white-noise as it should be.

b. Estimation of parameters As the input series is white noise and

has no parameters in the model, the question of estimation of parameters

does not arise. Therefore, the model for the input series is

c. Diagnostic checking To assure the adequacy of the model the

following two checks were performed:

(1) The autocorrelations and partial autocorrelations given in
Table 4 and Table 5 and their corresponding plots in Fig. 4 and Fig. 5
were observed to be statistically insignificant at all 24 lags.

(2) The X2 value based on 24 autocorrelations is 28.0 for 24
degrees of freedom and x2 value from the xz-table with 24 degrees of
freedom at .025 level is 39.4.

The above two checks indicate the fitted model is adequate.

2. Output Model

The digitized response which consists of 496 observations is given
in Table 6 and plotted in Fig. 6.

a. Identification The autocorrelations of the response series
estimated up to 48 lags and their corresponding standard errors are
shown in Table 7. The autocorrelations are also plotted in Fig. 7.
Partial autocorrelations are also estimated up to 48 lags and the results
are shown in Table 8 and plotted in Fig. 8. The standard error of partial

autocorrelations is approximated as 1//n where n is the number of obser-

vations. 1In this case the number of observations is 496, therefore the

standard error is approximately .05.

It can be seen in Fig. 7 that the autocorrelations are a mixture of

exponential and sinusoidal decay and in Fig. 8, that six partial
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autocorrelations are nonzero. Assuming that the first two natural
frequencies of the system are dominant, the model was guessed to be at
least 4th order autoregressive or high order mixed models. AR models of
order 4 and higher, and ARMA models of order (3,2) were tried.

b. Initial estimates of parameters AR(4) model was tried first

and was found to be inadequate. AR(5) 1is a good fit but does not meet
the requirement of xz-test. AR(6) was found to be an adequate fit. On
the other hand ARMA(3,2) was also found to be an adequate model. Finally
ARMA(3,2) was preferred over AR(6) because it has less number of para-

meters.

The initial estimates of parameters for the ARMA(3,2) model can be

computed from the equations derived from equations (4) and (6) as follows:

Py = 619y + 00y + ¢4
Py = 9103 + 050y + 030
Ps = 810, + 9,05 + 650,

Py = d.p, + ¢, + ¢.p, - © oz/Y

2 11 2 3T 2a’'o

2
Py = &y + 0yp; + 050, - (8,46,0,%0,0,)0, /v,

where
i Y
Yo "0, -0, %
and
2
Ry = 01 + 6,(0,40,) + 6,0, (8,+55) + b0,
2




X =

8648, £ 8, - 8,04,76,)

1 - 0,-0,05 = 6,05(8;+03)

u

As can be seen, the above equations are nonlinear. In order to
avoid involved computations, several initial estimates were guessed. The
one set which is given in Table 9 leads to the solution.

c. Final estimates of parameters The above guessed initial

estimates were used to compute the final estimates of parameters by
regression analysis based on minimizing the sum of squares of residuals.
The final estimates of parameters with their 95% confidence interval are

given in Table 10. Therefore the model is

- 5 = -
x, - .98558 x _, + .21353 x__, - .14157 x__; = a, + 1.132 a__

1 2 t-3 t 1

G
2842 a_,
In the above equation all the roots on each side of the equation are

greater than one. Therefore the process is stationary and invertible.

d. Diagnostic checking To assure the adequacy of the model the

following two checks were performed:
(1) The autocorrelations and partial autocorrelations, given in
Table 11 and Table 12, and their corresponding plots shown in Fig. 9
and Fig. 10, were observed to be statistically insignificant at all 24 lags.
(2) The x2 value based on 24 autocorrelations with 19 degrees of
freedom is 21.8 and the xz value from the x2 table with 19 degrees
of freedom at .025 level is 32.9,

The above two checks indicate that the fitted model is adequate.

e
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V. TRANSFER FUNCTION-NOISE MODEL - APPLICATION

1. Transfer Function Model

a. Identification Since the input series is white-noise, it is

not necessary to prewhiten it. The cross correlations between the input
and the response calculated up to 24 lags were used to compute the impulse
response weights also up to 24 lags by applying equation (15). These
impulse response weights are shown in Table 13 and plotted in Fig. 11.

A dotted line at a distance equal to twice the standard error has been
drawn in Fig. 11 to find the number of impulse response weights which are
statistically insignificant from the left end of the plot. No particular
shape is identifiable in this plot. A guess of the order of the model

was made on the basis of previous knowledge of the univariate model of the

response series. The guessed order of the transfer function is (3,2).

The value of the lag factor b is 3, since the first three impulse

response weights are statistically insignificant. So the identified order

of the model is (3,2,3).

b. Estimation of Parameters The initial estimates of transfer

function parameters, computed with equations (14), are as follows:

.287 = Wy

<442 .28761 -w

1
.358

.44261 + .287<S2

.284

.35861 + .44262 + .28763

.254

.28461 + .35862 + .44263

Solving these equations gives the following estimates for the parameters:

61 = ,951 62 = ~,218 53 = .140

mo = ,287 wl = ~,169

bl
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2. Noise Model

a. Identification The noise series was generated using equation (19).

The autocorrelations of the noise series up to 24 lags and the standard
errors of the autocorrelations are given in Table 14, and the plot of
autocorrelations is shown in Fig. 12. Partial autocorrelations also
estimated up to 24 lags are shown in Table 15 and plotted in Fig. 13. The
approximate standard error of partial autocorrelations is .05. The decay
of autocorrelations is close to exponential in Fig. 12. 1In Fig. 13 the
partial autocorrelations appear to have a cutoff after 1 but those at
lags 5 and 8 are not insignificant. No particular model can be identified
[4]. Univariate models AR(2) and ARMA(1l,1) were taken as a first guess.

b. Initial Estimates of Parameters The initial estimates of para-

meters of both AR(2) and ARMA(1,1) identified as noise models were computed.

Using equation (4) for AR(2) we obtain

0.982 = ¢, - $,(0.967)

0.967 = ¢1(0.982) - ¢2
from which
¢1 = .908 ¢2 = ,075
From equation (6) for k = 0 and using equation (5), and from equation (6)
for k = 1 we obtain
2
1+ 61 - 2¢161

Py =

From equation (4) for k = 2 we obtain
Py = 917

Using the above two eﬁuations [5] for ARMA(1,1)
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(l-¢]0])(¢l-“l)

3
1+ 6] - 20,0,

.992 =

.967 = .982¢»1
from which

6, = 984 8, = -.101

3. Transfer Function-Noise Model

a. Final Estimates of Parameters The initial estimates of transfer

function and noise models obtained previously and listed in Table 16 were
used to compute the final estimates of the transfer function-noise model by
regression analysis based on minimizing the sum of the squares of residuals.
For the transfer function-noise model with ARMA(1,1) as the noise model,
the final estimates of the parameters and their 95% confidence intervals
are given in Table 17. The other transfer function-noise model with AR(2)
as the noise model was found inadequate. At the same time the autocorrela-
tions and partial autocorrelations both up to 24 lags and the standard
errors of autocorrelations of the residuals were also computed. The auto-
correlations and their standard errors up to 24 lags are shown in Table 18
and plotted in Fig. 14. Partial autocorrelations are shown in Table 19

and plotted in Fig. 15. 1In addition the cross-correlations between pre-
whitened input and the residuals were also computed and are shoyn in

Table 20. The standard error of cross-correlations, also approximated as
1//n, is approximatly equal to .05.

b. Fitted model Finally, the equation for the fitted model is

obtained as

Yo = 84679y, + .11578y ) - .14304 y,_, = .23697 x_,

+.18946 x,_, + (1-.982858) ' (1+.65979B)a,
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or

: A 1.82964 Yeo1 + .94805 y - .25683 y + .14059 Youii

t~-2 t-3

= .23697 x_, - .04344 x__, - .18621 x,_. + a_+ .65979 a __

3 4 5 L

4. Diagnostic Checking

To assure the adequacy of the transfer function-noise model, the
following four checks were performed.

(1) The autocorrelations and partial autocorrelations of the
residuals at all 24 lags shown in Figs. 14 and 15, respectively, were
observed to be statistically insignificant.

(2) The xz value based on 24 autocorrelations was computed as
24.1 using equation (7) and the x2 value is found to be 36.8 from the
table with 22 degrees of freedom at .025 level.

(3) The cross-correlations between the prewhitened input and the
residuals at all 24 lags are shown in Table 20 were observed to be
statistically insignificant.

(4) The x2 value based on 25 cross-correlations was computed as
23.07 wusing equation (20), and the x2 value was found to be 34.2 from
the table with 20 degrees of freedom at .025 level.

The above checks indicate that the fitted transfer function-noise

model (3,2,3) is adequate.
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Table 1. Identifiable Shapes of ACF and PACF

Damped Out Group Cutoff Group
1 Decaying exponential Cutoff after 1
2 Damped sine wave Cutoff after 2
3 Mixture of two decaying Cutoff after 2
exponentials

Table 2. Shapes of ACF and PACF of AR and MA Models

of Orders 1 and 2

Model ACF PACF
AR(1) Decaying exponential Cutoff after 1
MA(1) Cutoff after 1 Decaying exponential
AR(2) Damped sine wave or mixture Cutoff after 2

MA(2) Cutoff after 2 Dampled sine wave
or mixture of two

decaying exponentials

of two decaying exponentials
|
]
]
|




Table 3

-1.046546
-1.372380
1.222771
.002612
-.681643
-1.405111
=1.535732
-.983330
-1.186685
1.025974
-.377943
-.236139
-1.601100
-.392953
.828836
-1.947486
-.745205
-2.261000
-.854142
.194823
1.455679
-1.485437
-.021846
.215041
-1.324665
-1.292815
.283985
1.392524
-.910975
-2.041271
.441235
1.269315
-.217407
1.024560
=-.292655
1.002519
.471989
+970652
=-.716047
.461123
-.715913
-.483919
-.816020
-1.219898
1.624339
-.964186
«112529
=.212499
1.254740
-.078064
.277431
+399951
848500
.880612
«346235
-.113989
+246326
«149448
'0‘54523
=-.564072
1.303209
+153352

Normally Distributed Random Numbers
- White Noise lnput

.221081
-.525437
2.995062

.105822
1.747159

.321967
-.057828
1.612114
-.501218

.188285

-1.016304

.058035
-.941135
1.096481

-1.600185

.170427

.180846

.225527
-.962136
-.115663
-.723354
-.392869
1.830793

-1.366999
-.284668

.431176
3.217972

.228923
-.159615

-2.209217
1.261802

.145671

.092385
-.508623

-1.634627
.458075
1.708597
-.113213
-.314443
-.047895
-.883214
-2.094217
-.189206
-.356627
1.508373
-1.353808
-.449190
-.137747
-.608740
1.031868
-.456525
-.087023

.659264
-.639476
=.903109

.062959

.020254

.388739

«945280
~.523411

~1.195834
-.074327

-1,220517
-1,566574
-1.071704
. 278457
-.133825
-.790251
-1.173841
1.319080
-.975144
-1.348076
.403281
1.439927
-.430593
-.602868
1.358568
-.977069
-.961092
-.275420
-2.213133
.243622
-1.034075
.392745
.129945
1.424756
.611167
-.328516
-.946325
.072160
-.009383
624794
.914292
-.362281
-.508575
-2.353647
-.595100
1.139522
.663027
.212625
=-.515466
1.129200
.456815
=¢794957
-.241423
1.489502
1.187668
-.530056
.214705
.745819
«797991
-.802114
.782311
1.317954
-.376291
-.050963
-.546014
.078903
+339447
-1.129177
.033364
1.226922
~1.656535
1.008951

THE INPUT

-,062617
.400818
2447527

~-.721910

2.478115

-1.406858
.338153
.029119

-.816237

-.906177

1.179437
.202227

-.376879
.004302
.703734

-.334294

1.507648

-.352027

-.435148
.081380

-1.083040
-1.884397

-.494824
.480091

2.518418

-2.054695
.166830
-2.241863
.347327
-1.229084

1.462106

1.550978

-.335826

-.129360

-.558171

.628067
1.046897
-1.298591
.043463
-.562863
477152
.695382
.182079
1,028995
=.799501
.417669
.455958

1.300966

-.401811

1.040559
«531742

-.660961

2.161617
.888746

2.621722

-.687778
«194477

2.220796
.695612

-.248987
« 247365
.072706

SERIES

.419244
.601631
.486597
-1.310037
-1.052217
.529309
.153493
.570783
-.093542
.310981
-1.186292
-.983803
.033546
1.501597
.577659
-.967266
-.803578
-1.771070
-.517048
.384950
.124866
.074221
.862106
-.162888
-2.385473
.916340
-1.248310
.778013
.784512
.279338
-1.447334
-.902560
-.149413
-.861375
.030908
-1.232769
-.079510
-1.384673
.358157
.012492

290%ca
VLTV

.787646
2,.131296
437677
.217363
.580245
.236913
1.076571
-1.631252
-.560647
.150945
.141367
.535428
-.428594
-.630806
+284798
1.171626
-.485001
406317
-1.449371
-.695266
~1.305213

.517110
-.149277
.225984
+931443
.415038
.385378
-.497639
-1.948571
1.920960
-.701083
.248971
-.443505
.661411
1.365850
1.057526
-.231678
-.014031
-.008921
.585949
-.021842
1.131668
.435253
.818285
.324680
-.545316
.818566
-.544560
-.601280
-1.977219
-1.538204
-2.508337
-1.300198
-.128590
.051400
-1.236767
.247055
-1.154816
.249679
1.088251
-1.457430

10
.865515

< 713429
-.504185
-.609051
-.699820

.227057
-.499035

.185054
-.521834

-1.006463
1.005575
.658650
-1.053767
-1.626727
-.484731
-1.967381
-.157970
-.206734

«115773

=1.474013

410157

«598454

.207772
-.531703
-1.856653
.649336
-.982722
-1.264836
.309967
.407847
-.833932
.552288
-.497587
-.290767
1.563016
.153138
.145625
.047810
-.488516
.042778
.781386
1.932486
-1.057096
«235725
-.488821
.165318
-1.254997
-.816758
715443
-.218413
-.642408
-.512677
.511058
2.331706
-1.203881
-.406976
.150707
-.721322
-.765337
-.878330
.850927

. 440508
1.242504
-.506425
-.120386
1.264824
-.647126
-.848685
-.490270
-.655627
-.559468
-.946873
.055225
-.012045
-.914700
-1.508158
-1.629762
=-.124529
«650401
1.661626
=2.532266
.095373
1.051289
1.086163
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3.190364
-.737412
-.492462
-.219367
1.169277
-.174614
-.164509
-.908672
.469804
-1.397470
1.487987
-1.309843
2.012849
-.272796
-1.768834
-.611720
.211016
.161614
-.102295
-.355421
.519001
1.451772
-.261612
-.314863
1.400122
-.706588
.642469
.244239
.792880
-.532991
.457034
2.031753
.149891
.781941
-.535260
.542069
-.006592
.249074
-1.142201
2.500768
-.432897
-1.646217
-.803267
-1.217023
.195685
-1.479222
-.255954
1.439015
-.650567
-.273291
.279342
-1.425726
.525694
-1.276869
.868658
-1.023695
-.399325
1.225031
-.198552
.813966
-2.037500
«534422
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Table 4. Autocorrelation Function of Input Series

Mean of the series = -.056198
Standard deviation of series = .98367
Number of observations = 496

Lag  ACF St Er Lag  ACF St Er
1 .02 .04 13 -.03 .05
2 .00 .04 14 .03 .05
3 -.08 .04 15 -.01 .05
4 -.01 .05 16 .03 .05
5 -.02 .05 17 -.08 .05
6 .05 .05 18 -.00 .05
7 .05 .05 19 -.11 .05
8 -.03 .05 20 -.06 .05
9 -.01 .05 21 .00 .05

10 -.07 .05 22 -.03 .05

11 -.10 .05 23 .00 .05

12 -.01 .05 24 -.05 .05

Table 5. Partial Autocorrelation Function of Input Series

Standard error of all partial autocorrelations = .05
Lag PACF Lag PACF
1 .01 13 -.05
2 .00 14 .02
3 -.08 15 -.02
4 -.01 16 .02
5 -.02 17 -.06
6 .05 18 .00
7 .05 19 -.11
8 -.03 20 -.08
9 .00 21 -.02
10 -.06 22 -.07
11 -.10 23 -.02
12 -.01 24 -.06

26,
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Table 6 Digitized Response
THE RESPONSE SERIES

~2.588975 -2.108417 -1.594259 -1.705228 -1.995290 -2.304462 -2.426837 -2.155579
~1.784448 -1.262892 -,323352 -.281122 -1.033247 -1.623542 -1.617686 -1.266283
-1.240390 -1.541240 -1.715400 -1.045886 .111894 .290986 .073979 .266326
.199436 -.507993 -1.049276 -1.030781 -.890220 -.848607 -1.139285 =-1.566517
-1.344270 -.857238 -.858471 -.974372 -.490731 .073979 .620503 .660576
«354793 .180017 .217007 .009863 -.256771 -.542825 -1.045577 -1.040029
-.808843 -1.123564 -1.524287 -1.924084 -2.189794 -2.367345 -2.269014 -1.997756
-1.943504 -1.800169 -1.722490 -1.741601 -1.105069 -.193888 .138095 .078911
-.367740 -.616804 -.808843 -1.277380 -1.593026 -1.848564 -2.058480 -1.790613
-1.010745 -.685544 -.518165 .049011 .282355 -.165221 -.562244 -.478709
-.370514 -.330750 -.549915 -.882822 -1.001190 -.682461 -.118675 -.075829
-.149500 .072438 .581048 .845833 .771545 1,220354 1.513806 1.222820
.938307 .784183 .456207 -.088467 -.450042 -.503677 -.426615 -.176626
.378220 1.124181  1.833151 2.147872  2.239114  2.259766 2.264698 2.766526
3.378399  3.491834 3.354663 3.296713 3.052889 3.130567 3.555641 3.809628
4.008148 3.886700 3.067685 2.101019 1.738211 1.548330 1.259810 .977763
.808843 .818399 .689551 .423533 .384694 .409358 .687085 .771545
«598926 .510459 .394557 -.019727 -.296226 -.158131 -.342772 -.848299
-.994716 -.710512 -.537898 -.764455 -1.302040 -2.031971 -2.333129 -2.165443
-1.648819 -1.029548 -.696024 -.513233 -.315954 -.081685 .152891 .397948
.669823 1.025541  1.414550 1.657450 1.578230 1.043111 .604166 .692633
1.096130 1.067463 .892686 .595535 .337532 .450042 .241666 .049011
.408737 .778943  1.079793  1.464795 1.952751 2.192260 2.051699 2.194110
2.505132  2.379058 2.089922 1.933023 1.666389 1.846714  2.204282 2.179930
2.133076 2.115815 1.831302 1.267208 .985777 1.380643 2.006078 1.548638
.720376 .426307 .673214 .680612 .450042 .321811 -.155357 -.145493
.345238 .177551 -.200053 127923 1.084725 1.203400 .632525 .291911
«065040 .288520 .721300 1.072087 1.212956 .936766 .268792 .054251
«241666 .053943  -.029900 -.282355 ~-.498129 -.458673 -.248756 -.118675
-.710203 -1.203400 -1.203400 -1.785373 -2.781939 -2.925582 -2.863008 -2.988773
=-3.304727 -3.580918 -3.521734 -3.063986 -2.238806 -1.392356 -.832578 -1.257652
=2.262541 -2.313093 -1.620460 -.947246 -.633450 -.540667 -.157823 -.236734
-.587213 .157515 1.217888  1.203400 .855080 .699107 .496896 .384077
«296226 .049319 -.010172 .382228 .221939 -.651020 -1.138977 -1.227135
-1.249021 -1.184905 -.897618 =-.907482 -1.469727 -1.885245 =-1.935798 -1.919152
-2.099477 -2.130919 -1.928708 -1.430579 -.801753 -.180325 .176010 -.044387
=-.221939 -.217007 -.015104 .455899 1.003964  1.348277 1.646045 1.585628
1.085341 «647321 .664583 1,014753 1.159013 .991017 «510459 .034523
-.022810 -.071821 -.128539 -,231803 -.405654 =-.512925 -.428157 ~.069355
.454530 .816241 .586904 423225 .660576 .934300 .927210 .631292
» 256462 .413977 1.208024 1.309438 .757057 .757057 1.109385 1.458321
1.802018 2.130610 1.993748 1.410235 .583822 .100181 .413977 .891762
1.119249 .810692 .123299 -.313180 -,404421 -.385002 -.110353 .557004
« 741645 .389626 -.027434 -~,513233 -,622353 -.012021 .646088 .784183
«581664 .615263 .606940 «879123 1.572990 1.957992 1.677178 1.321768
«996258 .616804 .483025 +268792 -.372364 -.720067 -.528029 ~.197587
=.143027 -.581972 -1.232992 -1.446608 -1.414859 =-1.292792 -1.014753 ~.850765
=1.014444 -1.292484 =-1.420715 -1.450615 =-1.385883 =-.943547 -.207451 .373597
453741 .288520 .570875  1.024925 . 939540 . 789115 .631292 .061341
-.438020 -.690476 -.942006 ~.949404 -.642697 -.582281 -.490731 ~.567176
=1.104761 -1.605664 =-1.706769 =-1.568674 -1.484523 -1.188604 =-.780792 =~.513233
-.166762 .049319 .160289 +337532 .483025 .688318 .651020 .493197
«620195 «537276 092474 +117134 .496896 .631292 .946630 1.274606
.789115 .217007 .289753 +645780 «500595 +330750 .498129 .368356
=+364041 -1.292484 -1.847022 -1.923468 =-2.076359 -2.054473 =-1.233300 ~.887754
=1.385883 -1.903740 =-1.785681 =-1.474967 -1.417016 <-1.400679 -1.496852 =-1.652210
=2.131227 ~-2.513455 =-2.613943 -2,513146 -2.209830 =-1.900041 =-1.504867 ~.995025
=.680612 -.498437 -.435246 -.364041 -.266326 ~-.264169 .196970 467921
« 394557 «753666  1.306972 1,327624 1.358757 1.538466 1.689199  1.803559
1.541240 .691709 .141178 +221939 +149500 .421375 475935 ~.172619
-.853231 -.853231 -,276498 +215465 -.093707 ~-.843367 -1.019068 ~.957110
=.711436  -.399489 -.758290 -1.052975 -.782025 ~-.315954 =-.167687 ~.464838

e L e e e e e e e e
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Table 7. Autocorrelation Function of Response to White Noise

Mean of the series = -.06102
Standard deviation of series = 1.2854%
Number of observations = 496

Lag ACF St Er  lag ACF St Er  Lag ACF St Er  Lag ACF St Er
1 .95 .04 13 .23 .14 25 .04 .15 37 -.01 .15
2 .87 .08 14 .19 .14 26 .05 .15 38 -.01 .15
3 .79 .09 15 .15 .14 27 .06 .15 39 -.01 .15
4 .73 .11 16 12 .14 28 .06 .15 40 -.01 .15
5 .67 «12 17 .08 .15 29 .05 .15 41 -.02 .15
6 .61 a2 18 .05 .15 30 .05 .15 42 -.04 15
7 Eo s .13 19 .03 .15 31 .05 .15 43 -.05 .15 |
8 .48 .13 20 .01 .15 32 .05 .15 44 -.06 .15 §
9 .41 .14 21 .01 .15 33 .04 .15 45 -.07 .15 |
10 34 .14 22 .02 .15 34 .02 .15 46 -.08 .15
11 .30 14 23 .02 .15 35 .00 A ks 47 -.09 .15
12 .26 14 24 .03 .15 36 -.01 o I 48 -.10 19

Table 8. Partial Autocorrelations of Response to White Noise

Standard error of all partial autocorrelations = .05

Lag PACF Lag PACF Lag PACF Lag  PACF ;
|
1 .95 13 -.01 25 .01 37 -.00 :
2 -.50 14 -.03 26 -.02 38 .03
3 .36 15 -, 02 27 -.07 39 .02 |
4 -.16 16 -.02 28 -.06 40 -.08 |
5 .05 17 -.03 29 .02 41 .00 .
6 -.08 18 -.02 30 .05 42 -.02 g
7 -.09 19 .02 31 -.02 43 -.01 |
8 -.04 20 «13 32 -.03 44 -.04
9 -.03 21 .03 33 -.04 45 .00
10 .01 22 -.02 34 -.06 46 -.01
11 .09 23 .07 35 .02 47 .00 |
12 -.03 24 .00 36 .05 48 .04
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Table 9. Guessed Estimate of Parameters
Parameter Parameter Parameter Beginning
Number Type Order Value
1 Autoregressive 1 .92
2 Autoregressive 2 -.21
3 Autoregressive 3 .22
4 Mean 0 -.061
5 Moving average 1 .19
6 Moving average 2 -.13
Initial residual sum of squares = 86.75
Table 10. Final Estimates of ARMA(3,2) Model for Response
Parameter Parameter Parameter Estimated 95 Percent
Number Type Order Value Lower Limit Upper Limit
1 Autoregressive 1 .98558 0.57209 1.3991
2 Autoregressive 2 -0.21353 -0.7153 0.28823
3 Autoregressive 3 0.14157 -0.011436 0.29457
4 Mean 0 -0.06368 -0.64548 0.51812
5 Moving average 1 -1.13200 -1.5526 -0.71140
6 Moving average 2 -0.28420 -0.67322 0.10483

Final residual sum of squares 26.237

-




30,

Table 11. Autocorrelation of Residuals and Standard Error

Mean of the series = -0.00134
Standard deviation of series = 0.23092
Number of observations = 493

Lag  ACF St Er Lag ACF St Er
1 .00 .05 13 -.00 .05
2 .00 .05 14 .03 .05
3 -.03 .05 15 .02 .05
4 .00 .05 16 .03 .05
5 .00 .05 17 -.07 .05
6 .05 .05 18 .01 .05
7 .10 .05 19 -.09 .05
8 -.04 .05 20 -.08 .05
9 .02 .05 21 .02 .05

10 -.06 .05 22 -.03 .05

11 -.07 .05 23 .00 .05

12 -.00 .05 24 .00 .05

Table 12. Partial Autocorrelations of Residuals

Standard error for all partial autocorrelations = .05

Lag PACF Lag PACF
1 .00 13 -.02 '
2 .00 14 .02 ‘%
3 -.03 15 - 01 4,
4 .00 16 .03
5 .00 17 -.05 i
6 .05 18 .02 1
7 .10 19 -.09 !
8 -.04 20 -.08 i
9 .03 21 .01 {
10 -.06 22 -.04 {
11 -.07 23 -.00 ;é
12 .00 24 -.00 !




Table 13.

Impulse Response Weights

Standard error for all impulse response weights = .05

=

Weight

-.111
-.115
-.013
.287
442
.358
.284

.254
.238
.235
<243
.223
.185

Lag

13
14
15
16
17
18

19
20
21
22
23
24

31.

Weight

<144
.091
.067
.064
.061
.053

.040
.014
.013
-.046
-.082
-.090

2 L, I I A Y TP

S e —————




Table 14.

Mean of the series = 0.19121

Standard deviation of series = 0.82270

Number of observations = 492

Lag ACF St Er
1 .98 .05
2 .97 .08
3 .96 .10
4 .94 .12
5 .93 .13
6 .92 .14
7 .90 .15
8 .88 o
9 .86 .17

10 .84 .18

11 .82 .19

12 .81 .20

Table 15.

Standard error of all partial autocorrelations

PACF

.98
.06
.09
=-,11
.14
-.05

-.07
-.15
.02
-.10
.06
-.02

Lag

13
14
15
16
17
18

19
20
21
22
23
24

Autocorrelation Function of Noise

ACF

.79
77
.75
.73
.71
.69

.67
.65
.63
.61
.59
.57

Partial Autocorrelations of Noise

Lag

13
14
15
16
17
18

19
20
21
22
23
24

St Er
.20
«21
s 22
.22
.23
.23
<23
.24
.24
.25
.25
.25
.05
PACF
.01
-.08
.01
.00
-.03
-.01
-.01
.04
-.04
-.03
.01
.00

o
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Table 16. Transfer Function and Noise Models - Initial Estimates
Parameter Parameter Beginning
Type Order Value
Transfer Output lag 1 .92
Function Output lag 2 -.21
Parameters Output lag 3 .22
Input lag 0 .19
Input lag 1 -.13
Noise Autoregressive 1 .98
Model Mean 0 -.061
Parameters Moving average 1 -.54
Estimation for b = 3
Initial residual sum of squares = 6.766
Table 17. Final Estimates of Transfer Function - Noise Model
Parameter Parameter Estimated 95 Percent
Type Order Value Lower Limit Upper Limit
(Transfer dunction parameters)
Output lag 1 .87679 .79763 .89595
Output lag 2 -.11578 -.18265 -.04890
Output lag 3 .14304 .10028 .18580
Input lag 0 .23697 .22360 .25034
Input lag 1 -.18946 ~.20091 -.17802
(Noise model parameters)
Autoregressive 1 .98285 . 96507 1.00600
Mean 0 .34838 ~.53963 1.23600
Moving Average 1 -.65979 ~.78014 -.53944

Optimum value of b = 3
Final residual sum of squares = 4,7425
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Table 18. Autocorrelation Function of Residuals
- Transfer Function - Noise Model

Mean of the series = 0.00026
Standard deviation of the series = 0.09838
Number of observations = 491

Lag  ACF St Er Leg ACF St Er
1 .02 .05 13 .06 .05
2 .06 .05 14 .00 .05
3 .03 .05 15 -.01 .05
4 .03 .05 16 -.02 .05
5 .06 .05 17 -.05 .05
6 .03 .05 18 .01 .05
7 .09 .05 19 -.10 .05
8 -.03 .05 20 -.04 .05
9 .04 .05 21 -.01 .05

10 -.05 .05 22 -.04 .05

11 -.05 .05 23 .01 .05

12 -.02 .05 24 -.02 .05

Table 19. Partial Autocorrelations of Residuals
- Transfer Function - Noise Model

Standard error for all partial autocorrelations is .05

Lag PACF Lag PACF
1 .02 13 .07
2 .06 14 .00
3 .03 15 -.00
4 .02 16 -.02
5 .06 17 -.03
6 .02 18 .01
7 .09 19 -.10
8 -.04 20 -.05
9 .03 21 -.00

10 -.06 22 -.04

11 -.06 23 .03

R —
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Table 20. Cross Correlations of Input White Noise and
Estimated Residuals

Standard error of all cross-correlations = .05

Lag Cross Lag Cross
S Correlation Eenle Correlation
0 -.014
1 .048 13 -.045
2 -.032 14 -.009
3 .069 15 .057
4 -.075 16 -.008
5 .011 17 .006
6 -.029 18 -.031
7 .063 19 -.011
8 -.011 20 .057
9 .028 21 -.053
10 -.051 22 .067
11 -.015 23 -.057
12 -.022 24 .063
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(a) (b) (c)

Fig. 1 Three basic damped out ACF and PACF with lag: (a) Decaying exponential,
(b) Damped sine wave, and (c) Mixture of two decaying exponentials.
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(a) (b :

Fig. 2 Two basic cutoffs of the ACF and PACF with lag: (a) Cutoff after 1, and
(b) Cutoff after 2.
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Fig. 4 Autocorrelation Function of Input White Noise
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Fig. 5 Partial Autocorrelation Function of Input White Noise
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Fig. 7 Autocorrelation Function of Response to White Noise
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Fig. 8 Partial Autocorrelation Function of Response to White Noise
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Fig. 9 Autocorrelation Function of Estimated Residuals
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Fig. 10 Partial Autocorrelations of Estimated Residuals
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Fig. 12  Autocorrelation Function of Noise
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Fig. 13 Partial Autocorrelations of Noise
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