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TIME SERIES DETERMINATION OF TRANSFER FUNCTIONS
IN RANDOM FATIGUE

T. C. iluang, Vinod Nagpal and K. S. Shen
Department of Engineering Mechanics
University of Wisconsin—Madison

Madison, Wisconsin 53706

Abstract

Time series determination of the transfer function which relates the

input random excitation and the output response in random fatigue experi—

ment is established. This process involves determination of univariate

time series of input and output, transfer function and noise models, and

the transfer function—noise model.
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INTRODUCTION

In the investigation of random fatigue and design of random fatigue

experiments a transfer function which relates the input random excitation

and the output random response is involved. Time series technique has been

chosen for the transfer function estimation, which requires first, the

identification of univariate time series models for the random excitation

and the random response, and second, the estimation of the transfer function—

noise model.

There are three different types of univariate time series models,

namely, autoregressive, moving average, and mixed models. Estimates and

plot of autocorrelations and partial autocorrelations of the digital signal

are used for the identification and initial estimation of parameters of a

univariate time series model. Final estimation of parameters is done by

regression analysis. Adequacy of the model is checked by the following

tests on residuals: (a) test of autocorrelations at all lags, and

(b) x—square test on sum of square of residuals.

The transfer function—noise model consists of two parts, transfer

function and noise. Impulse response function is obtained from the

estimates of cross—correlations between the digital input and digitized

response. The order and initial estimates of parameters of the transfer

function are obtained from impulse response weights. These initial

estimates are used to identify the univariate time series model for noise

(and in the same operation improved estimates of parameters of the transfer

function are obtained). Initial estimates of parameters of the noise model

are obtained as in univariate time series models. Estimates of parameters

of the transfer function—noise model are obtained by using the estimates

_ _ _ _  _ _
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of transfer function and noise model parameters. Adequacy of the transfer

function—noise model is checked by following tests on residuals: (a) tests

of autocorrelations and partial autocorrelations at all lags, and (b) x—

square test on the sum of squares of autocorre]ations and cross—correlations.

A single reference [1] is involved in this report. Particular pages

are referred to whenever necessary.

I. SIGNAL

The input signal, the white noise, was generated from normally dis-

tributed random numbers. This digital signal was recorded on the tape and

was converted to an analog signal by a D to A converter. The analog

signal was transmitted to the shaker in the vibration lab. The response

signal of the specimen mounted on the shaker was transmitted to the A

to D converter, digitized and recorded on the same tape on which the

digital input signal was recorded. The sampling interval of digitization

was chosen at 2.60 millisec., which is the minimum sampling interval

capability of the machine. The same sampling interval was used to convert

the random numbers to the analog input signal. Several complete runs were

tried to assure that the system would perform properly. One of the inputs

and its corresponding response was arbitarily chosen for transfer function

analysis.

II. UNIVARIATE TIME SERIES MODELS — BASICS

• 1. Model

A univariate time series model of order (p,q) is expressed as

— q lxt . . — +2x~_2 — ... — ~~~~~~ = a
~ 

— 01a~_1 
— O2

a
~~~ 

— ...
— eqat_q (1)

or
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(l—$1B—4)2
B2 - ... - $~,

B
~

)x t (1— 61B-62B2 
- ... — 0

q
fl~)~~ (2)

where B is backshift operator (Bx
~ 

xe_i). x~ is the observation at

any time t , a~ is white noise at any time t, and 4) and 0 are

parameters of autoregressive and moving average, respectively.

The above equation can be written symbolically as

= O(B)a
~

in which

4)(B) = 1 — 4)1B 
— 4)2B

2 
— ... —

0(B) = 1 — 0
1

B — 02B
2 

— ... — oqB~

For a stationarity condition of the process, the roots of the characteristic

equation ~~B) 0 must lie outside the unit circle. Similarly, the roots

of 0(B) 0 must lie outside the unit circle if the process is to be

invertible.

In general the univariate time series model is represented by ARIMA

(p,d,q). AR stands for autoregressive, I for integrated and MA for

• moving average; p in the parentheses stands for the order of autoregres-

sive, d for the order of differencing and q for the order of moving

average. The sum of p and q gives the total number of parameters in

the model. There are three special cases of ARINA models, AR(p) , MA(q)

and ARNA(p,q) as simplified forms of ARI}IA(p,O ,O), ARIMA(0 0,q) and

ARIMA(p,O,q) , respectively.

• 2. Identification of Model

The type and order of a model is identified by the shapes of auto—

correlations (ACF) and partial autocorrelations (PACP). When ACF and

PACF are plotted, there are two basic groups of shapes, the damped out
group and the cutoff group as listed in Tables 1 and 2. Fig. 1 shows
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the decaying exponontial , the damped H1n (~ wave, and the mixture of two

decaying exponentials; Fig. 2 shows cutoffs after lag 1 and after lag 2.

For the complex shapes of ACF and PACF, the models and orders will have

to be guessed. The guessed model would be a higher order of AR or MA.

The only hint of the guess may be obtained from the physical system in-

volved as each dominant natural frequency of the system indicates an

order 2 of AR.

3. Initial Estimates of Parameters

Once the order of the model is identified the number of parameters

is known. Initial estimates of parameters is computed using the magni-

tudes of autocorrelations. The equations used to compute the initial

estimates are derived [2] as follows.

Let the univariate model be expressed as equation (1). Premultiplylng

by xe_k and taking expectations give

E[x
~....k

x
~
] — 4)l

E[x
~~k

x
~~l
] — ... — 4)E[Xt kXt ]

= E[x
~...ka~

]_ Ol
E[x

~ k
a
~ li 

~~
... — o

q
E[x t_kat_q l

or

y(k) — 4)1y(k—l ) — ... — 4)~y(k—p) — Yxa (k) — 0iYxa~~~’~ 
—

_ O qY~~(k_~) (3)

where y(k) is the auto—covariance at lag k and ‘
~
‘xa~~~ 

is the cross

covariance at lag k. An investigation of y (k) for various values of

lags shows

k > O

Yxa(0)
uII k 0
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k < O

By definition

Note also that can be expressed in terms of multiplied by a

function of 4) and 0.

Depending on the values of lag k, the estimation of parameters 4)

and 0 falls into the following two cases.

Case 1. k > q + 1 In this case all 1xa on the right side of

equation (3) vanish. Therefore

y(k) — 
4)1
y(k—l) — 4)2y(k—2) 

— ... = 0

The autocorrelation at lag k is p(k) — y(k)/y(0) which implies

• p(0) — 1. Then the above equation, af ter dividing by y(0) , becomes

p(k) — 4)1p(k—l) 
— 4)2p(k—2) 

— ... = 0 (4)

from which the parameters 4) can be solved.

Case 2. k < q In this case the cross—covariances y~~(—l), 
~xa~~

2
~ ’

., ~,~~(— q) will have to be evaluated successively. To evaluate

postmultiply equation (1) by a
~_1 

and take expectations. This results in

— 4)1x~ l
at i  

— ... — 4 ) x
~~~

at 1]

— E [a
~
a

~..1 
— 

~~~~~~~~~~ 
— ... — e

q
at_qat_i]

from which

— —

or -

— 

~~~~~~~~~ 
(5)
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This procedure can be continued to obtain 
~xa~~

2
~ ’ ~~~~~~~ 

.~~~~~

successively. Now y(O) and all 1xa are expressed in terms of functions

of 4) and 8 multiplied by ~
2
. Dividing equation (3) by y(0) gives

p(k) — 4)1
p (k—l) — ... — 4,~p (k—p)

y (k) y (k—l) y (k—q)
= 

y(O) 
— 01 y(O) — — 0q y(O) (6)

In the above equation all p are known and all the terms of

are expressed in terms of 4) and 0, being cancelled. In general this

equation is nonlinear, therefore 4) and 0 will have to be solved by an

approximation method. Procedures to estimate 4) and 0 for a simple

ARNA(1 ,1.) model is illustrated in (3].

4. Final Estimates of Parameters

From the initial estimates of 4i and 0 parameters, estimates of

observation, residuals and sum of squares of residuals can be computed.

Final estimates of 4) and 0 parameters are obtained by regression analysis

based on minimizing the sum of squares of residuals.

5. Diagnostic Checking

In order to check the adequacy of the model which has been identified

and estimated, diagnostic checking is required. For a univariate model,

diagnostic checking consists of following two checks :

a. ACF and PACF checks The autocorrelations and partial auto—

correlations of the residuals at all lags should Le statistically insignif 1—

cant , i.e. they should be less than two standard deviations.

b. x
2
—test The value is computed as follows:

— n E r~(a) (7)
i—i

- -- ~~~—
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where d is the degree of freedom , n is the number of observations,

r
1
(a) is the autocorrelation of estimated residuals ~ at lag i, and m

is the number of autocorrelations used. d is related to m as

d m — p — q  (8)

The value should be less than the value obtained from the x
2 table

for the same degree of freedom.

The fitted model which meets the above two diag-~ostic checkings is

considered adequate. Otherwise the whole process should be repeated , i.e.,

to reidentify the model and to estimate its parameters.

For two adequate models, the one which has less number of parameters

is preferred.

III. TRANSFER FUNCTION—NOISE MODEL — BASICS

1. Models

A transfer function model of the order (r,s) in the form of a differ-

ence equation is expressed as

— 6
1
Y
t—i 

— 

~2
Y
t~2 

— ... — — 

~r~t—r 
= WoXt_b — WlXt_b_l 

— W2Xt_b_ 2

— . . .  — w5X~_~, 5

in which and Y~ are deviations front the equilibrium of the system

input and response, S and w are the transfer function parameters, and

b is the lag factor. The above equation can be simply written as

(1 — 6
1B 

— ... — 8 B Z•)Y — (
~o~~i

B_ ..._(*J B5)X b (10)

or simply as

= 
~~
‘(B) o(B)X t_B

where B is the back shift operator (BY
t 

— and

t S ( B ) — l — ô B — ~ S B 2 — ... _ 6 B r1 2 r
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- — — ... —

In practice the system will be infected by disturbances or noise whose net

effect is to corrupt the response predicted by the transfer function model

by an amount N
~
. The combined transfer function—noise model are then

written as

= 
~ 
1(B)w(B)Xt_b + Nt (11)

The noise N t can be further modeled as a univariate time series model ARIMA

(p,d ,q) ,

(1—4)1B—4)2
B2— . ..—4)

~
B’
~
)N
~ 

= (l—01B—02
B
2
—. . ~~0qB~)~~ 

(12)

or

= O(B)a
~

The order of combined transfer function—noise model is usually represented

by (r,s b). The total number of parameters in the combined model is the sum

of r,s,p and q.

2. Transfer Function Model

The difference equation of the transfer function of a discrete

dynamic system may be written in the form which co~responds to the convolu-

tion integral, as

= v(B)X
~ 

(13)

in which the impulse response weights v(B) can be expanded in the form

v(B) = v
0 + v1B + v2B

2 + v3B
3 +

Substituting Y~ v(B)X
~ 

with v(B) in expanded form into equation (10)

and equating the coefficients of X~ , we obtain

•- —.•— ---—.-- •---——--.——--- - --— _____,..-4•. •_ • -• •- -~~~~~~_ • _ • ~~~
_ ’__

~
_ 

--~~~~~~--.-- “--- --~~~ - - - - - • --- ---—~~~--—
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(1 - 6
1
B - ... - ~rB

r)(v
O + v1B + v

2
B2 + . . . )

s b
= (~~~~ 

— w~B 
— . . .  — w~B )B

On equating coefficients of B, we find the following four sets of

equations [4]:

v~~~~O j < b

vj 
= )5

1
V~~...1 + t52v3 2  

+ ... + (S
rVj_r + i = b

V
j 

= tS
1Vj....1 + ô2V~...2 + ... + 

~r
”j—r 

— ‘nj—b j = b-I-1, b+2, • . .,  (14)

v
j 

= )S
1

V
j_ 1 + )S2

v~ ..2 + + 
~r
’
~j—r 

i > b + s

Therefore the impulse response weights can be divided into four groups

as follows.

Group Impulse Response Weight Number

1 v
0
, v1, v2, . . . ,  V

b l  b

2 V
b 1

3 Vb+l~ 
Vb+2~ 

• . . ,  Vb+ S

4 V
b÷ +l

, Vb+ +2 , . . .  > r

The parameters tS and c~ can be estimated by the use of the four sets

of equations (14) provided all the impulse response weights are known and

the model (r,s,b) is identified. A minimum number of (b+l+s+r) known

impulse response weights is needed in the estimation.

a. Identification In order to identify the model, i.e., to obtain

the values of r , s and b , it is necessary to compute the impulse

response weights: v0, v1, v2, . . .,  v
k

, . . .  and plot v vs k, k being

• the lag. The impulse response weight with lag k is computed by

--• -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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p (k)ci
vk 

= (15)

where p~~(k) is the cross—correlation between input and output at lag k

and a , are the standard deviations of input and output , respectively,

provided the input is white noise. Otherwise the prewhitened input and

output should be used.

The first set of equations (14) indicates that there are initially

b number of zero values of impulse response weights, i.e., v0, v1, . .. ,

Vb l  are zero. From the v—k plot the value of b can be obtained by

counting the number of initial zero weights.

The third set of equations (14) indicates that there are s—r+l

number of impulse response weights, i.e., V
b~ 

V
H-].~ 

. . . ,  Vb+s_r+l 
4hich

follow no fixed pattern in the v—k plot. Let this number be n then

s — r + 1 n

n is now being counted on the v—k plot between Vb , .  which is the last

zero value of v, and the first v, which starts the pattern and is

usually the highest v. There is no such n when s < r.

The fourth set of equations (14) indicates that the values v
j 

with

j > b + s — r + 1 follow the pattern dictated by the rth order difference

• equation which has r starting values Vb+ , V
b~~_l~ 

. . .,

• For example r = 1 for decaying exponential, r = 2 for dampled sine wave.

For high order difference equation (r > 2) the pattern becomes complex and

it is difficult to identify both n and r.

For known n and r, s can be computed from

s n + r — l  (16)

The order (r,s,b) is now completely identified. When n and r can not

be identified from the pattern, r and s will have to be guessed.

• - • • • •~~~~~~~• - • -•- •~~~~~~~~~•- - • •- • •~~~~~~~~~~ • - - • - •--
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Depending on the types of input the guidance for the guess is described as

follows.

Case 1. Input—White noise. Let the input be white noise

• X
~~~~

a
~

The output in univariate and transfer function models is expressed as

= 4)
~~

(B)0(B)a
~ 

= 5 ’(B)w(B)x
~ 

(17)

The orders of 4)(B) and 0(B) are p and q while the orders of tS(B)

and ~i(B) are r and s, respectively. As a first guess, r = p and

S = q.

Case 2. Input—not white noise. If the input is not white noise the

univariate models for input and output are expressed as

4)a t  
=

=

When both input and output are prewhitened

0~~(B)4)(B)X = a
~

0 ’(B)4)b
(B)Y

t 
= a’

For the purpose of guess, assume a
~ ~ 

a~. Then

0
~~
(B)4)b

(B)Y
t 

=

Now the output can be expressed in both univariate and transfer function

models as

— 4);’(B)o;
1
(B)4) (B)O

b(B)xt 
= 

~~
‘(B)w(B)X

~ 
(18)

The orders of $b(B) and O
al
~~ 

are 
~b 

and q ,  the order of 4)(B) 
•

and O
b(B) are p and and the order of 5(B) and w(B) are r and

± 

a. ~~ a first ~~ess~~ r~~~ p~~+ q a n d s = p + q .  

•
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b. Estimation From 2r number of v: 
+1 

V
b+s_r+21

Vb+~~.r and r number of the fourth set of equations (14):

= 6f’b+s + ô2Vb+ 1 
+ + ‘5r”b+s~r+l

= 6
l
vb+ +l + ô

2
vb+ + ... + 6

r’~b+s—r+2

Vb+s+r 
= ô

l
Vb+++1  + 6

2”p+s+r-2 
+ +

ô
1~ 

62~ 
. . . ,  6 can be solved.

The first set of equations (14) gives v. = 0, if j < b. Then the

second equation of equations (14) gives

W

From (s+1) number of v: vb, Vb+ll . . .,  Vb+S, r number of 6 : 6
l~

621 
~~~~~~ 

6r’ and s number of third set of equations (14)

Vb+l = 6
l
V
b 

— W
i

V
b+2 

= 6
l”b+l + 62”b 

—

V
b+3 

= tS
lvb+2 + 62”b+l + tS3vb 

-

Vb+ 5
l”b+s l~~ 

62”b+s—2 + + 6s”b — (s < r)

or

V
b~~ 

= 6lvb+ l + 62”b+s—2 + + 6V
b + . . .  + 6r”b+s~r 

— (s > r)

w1, W2, • ,  w can be obtained.

• 3. Noise Model

From the transfer function—noise model we have

Nt — 6(B)Y
~ 

— w(B)X t_b (19)

• • • • • • • • • •~~~- •-- •—~~~~~~~~~~~~ - •--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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This equation can be used to generate a noise series with input and

response data series and estimates of transfer function parameters . Using

the procedure described previously the univariate time series model for

this noise series can be identified and the noise model parameters can be

estimated.

4. Transfer Function—Noise Model

The initial estimates of the parameters of the transfer function model

and the noise model are evaluated independently for each. These estimates

are used to compute the final estimates of all the parameters of transfer

function-noi8e model by regression analysis based on minimizing the sum

of squares of residuals.

5. Diagnostic Checking

The diagnostic checking required to ascertain the adequacy of transfer

function—noise model consist8 of four checks as follows.

a. ACF and PACF Checks The autocorrelations and partial auto—

correlations of the residuals at all lags should be statistically insig-

nificant, i.e., they should be less than two standard deviations.

b. x
2
— test The x

2 
value of autocorrelations of estimated residuals,

evaluated by equation (7) , should be less than the value obtained from the

table for the same degree of freedom.

c. Cross—correlation check The cross—correlations of the estimated

residuals and prewhitened input at all lags should be statistically insig-

nificant.

d. x~ -test The value of cross—correlation is computed as

follows:

— n E r~ (cza) (20)
i—0

_  _ _ _ _  

j
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in which d is the degree of freedom , n is the number of observation,

r
1

(c~a) is the cross—correlation of prewhltened input n and estimated

residuals a at lag i, and (m+l) is the number of cross—correlations

• used. d is related to in as

• d = (m+1) — (r+s+1)

or

• d = m—r—s (21)

The value of cross—correlations should be less than the value

obtained from the x
2 table for the same degree of freedom.

IV. UNIVARIATE TIME SERIES MODEL — APPLICATION

1. Input Model

The input signal generated from normally distributed random numbers

is white noise. The input series data, 496 in number, are given in Table 3,

and their plot is shown in Fig. 3.

a. Identification The autocorrelations of the input series up to

24 lags and their corresponding standard errors are given in Table 4. The

autocorrelations are also plotted as shown in Fig. 4. Partial autocorrela—

tions also estimated up to 24 lags are shown in Table 5 and plotted in

Fig. 5. The standard error for all the partial autocorrelations is approxi-

mated as i/i~ where n is the number of observations. In this case,

the number of observations is 496 , therefore the standard error is approxi-

mately .05.

• It can be seen that autocorrelations and partial autocorrelations at

all 24 lags are statistically insignificant (less than two standard errors) ;

consequently, there is no particular shape visible in either plot of auto—

correlations or partial autocorrelation. This implies that the input has

neither 4) nor 8 parameters in the model. In other words, the input is

I— __
~k - • - - -~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ -
--- — — — - - -

~~

,---
~~

• ----•

~

- - •
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white—noise as it Nhould be.

b. Estimation of parameters As the input series is white noise and

has no parameters in the model, the question of estimation of parameters

does not arise. Therefore, the model for the input series is

x~ = a~

c. Diagnostic chcckii~~ To assure the adequacy of the model the

following two checks were performed :

(1) The autocorrelations and partial autocorrelations given in

Table 4 and Table 5 and their corresponding plots in Fig. 4 and Pig. 5

were observed to be statistically insignificant at all 24 lags.

(2) The value based on 24 autocorrelations is 28.0 for 24

degrees of freedom and value from the X
2— table with 24 degrees of

freedom at .025 level is 39.4.

The above two checks indicate the fitted model is adequate.

2. Output Model

The digitized response which consists of 496 observations is given

in Table 6 and plotted in Fig. 6.

a. Identification The autocorrelatlons of the response series

estimated up to 48 lags and their corresponding standard errors are

shown in Table 7. The autocorrelations are also plotted in Fig. 7.

Partial autocorrelations are also estimated up to 48 lags and the results

are shown in Table 8 and plotted in Fig. 8. The standard error of partial

autocorrelations is approximated as i/4~ where n is the number of obser-

vations. In this case the number of observations is 496, therefore the

standard error is approx imately .05 .

It can be seen in Fig. 7 that the autocorrelationg are a mixture of

exponential and sinusoidal decay and in Fig. 8, that six partial



17.

autocorrelations are nonzero. Assuming that  the f i r s t  two natural

frequencies of the system are dominant , the model was guessed to be at

least 4th order autoregressive or high order mixed models. AR models of

order 4 and higher, and ARMA models of order (3,2) were tried.

b. Initial estimates of parameters AR(4) model was tried first

and was found to be inadequate. AR(5) is a good f i t  but does not meet

the requirement of x
2—t est . AR(6) was found to be an adequate fit. On

the other hand ARNA(3,2) was also found to be an adequate model. Finally

ARNA (3,2) was preferred over AR (6) because it has less number of para-

meters.

The initial estimates of parameters for the ARNA (3,2) model can be

computed from the equations derived from equations (4) and (6) as follows:

p
3 

= 4)1
p
2 
+ 
~2Pl +

p
4 

= •1
p
3 + 4)2p2 +

p
5 

= 4i1
p
4 
+ 4)2p3 +

= + 
~2 

+ 4)3
p
1 

—

+ 4)2
p
1 + 4)~

p
2 

— (0
1+024)2+8102)c~

2/y0

where r~. r-.
“1 — “2~ 2

and

— 1 — O
i(4)i

—Oi) 
— 02 ($2

_0
2_4)

~+4)10l) + 4)282 
— 4)14)203

— 
~1 + 2~~1~~3~ 

+ 4)~4)3(4)~+$3) + 
~2 3

— — — 
~3~~ l 2 ~~ 3~

— + 
2~~l~~3~ 

+ 4)~4)3(4)~~~3) + 2 3
I 

-• “ ~~~--~~~~~~ - - - •~~~~~~~~~-~~~~ _ _ _ _
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~1 
+ 
~~~~~~~~~~

1 — 

~~~~~~~~~~~~~~~~~

= 
~~~~~~~~~ 

+ 0~ —

1 — 

~2~~2~3 
— 

~~~~~~~~~~

As can be seen, the above equations are nonlinear. In order to

avoid involved computations, several initial estimates were guessed. The

one set which is given in Table 9 leads to the solution.

c. Final estimates of parameters The above guessed initial

estimates were used to compute the final estimates of parameters by

regression analysis based on minimizing the sum of squares of residuals.

The final estimates of parameters with their 95% confidence interval are

given in Table 10. Therefore the model is

— .98558 x~_1 + .21353 x~~2 
— .14157 x

~~3 
= a

~ 
+ 1.132 8 1

+ .2842

In the above equation all the roots on each side of the equation are

greater than one. Therefore the process is stationary and invertible.

d. Diagnostic checking To assure the adequacy of the model the

following two checks were performed :

(1) The autocorrelations and partial autocorrelations, given in

Table 11 and Table 12, and t~ieir corresponding plots shown in Pig. 9

and Fig. 10, were observed to be statistically insignificant at all 24 lags.

(2) The value based on 24 autocorrelations with 19 degrees of

freedom is 21.8 and the value from the table with 19 degrees

of freedom at .025 level is 32.9.

The above two checks indicate that the fitted model is adequate.

~~~~~~~~~~ ~~~~— • — 
_ _ _ _ _  • • j - - —_



F

19.

V. TRANSFER FUNC TTON-NO ~ SE MOI)EL - APPL I CAT [ON

1. Transfer Function Model

a. Identification Since the input series is white—noise, it is

not necessary to prewhiten it. The cross correlations between the input

and the response calculated up to 24 lags were used to compute the impulse

response weights also up to 24 lags by applying equation (15). These

impulse response weights are shown in Table 13 and plotted in Fig. 11.

A dotted line at a distance equal to twice the standard error has been

drawn in Fig. 11 to find the number of impulse response weights which are

statistically insignificant from the left end of the plot. No particular

shape is identifiable in this plot. A guess of the order of the model

was made on the basis of previous knowledge of the univariate model of the

response series. The guessed order of the transfer function is (3,2).

The value of the lag factor b is 3, since the first three impulse

response weights are statistically insignificant. So the identified order

of the model is (3,2,3).

b. Estimation of Parameters The initial estimates of transfer

function parameters, computed with equations (14), are as follows:

.287

.442 — .2876
i 

—

.358 — .4426
i 
+ .2876

2

.284 = .3586 i + .4426 2 + .28763

.254 .2846 i + .35862 + .4426 3

Solving these equations gives the following estimates for the parameters:

— .951 62 — — .218 63 — .140

— .287 Wi — .169

_,rr— ~~~~~~ —
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2. Noise Model

a. Identification The noise series was generated using equation (19).

The autocorrelations of the noise series up to 24 lags and the standard

errors of the autocorrelations are given in Table 14, and the plot of

autocorrelations is shown in Fig. 12. Partial autocorrelations also

estimated up to 24 lags are shown in Table 15 and plotted in Fig. 13. The

approximate standard error of partial autocorrelations is .05. The decay

of autocorrelations is close to exponential in Fig. 12. In Fig. 13 the

partial autocorrelations appear to have a cutoff after 1 but those at

lags 5 and 8 are not insignificant. No particular model can be identified

[4]. Univariate models AR(2) and ABMA(l,l) were taken as a first guess.

b. Initial Estimates of Parameters The initial estimates of para-

meters of both AR(2) and ARMA(1,l) identified as noise models were computed.

Using equation (4) for AR(2) we obtain

0.982 = — 4)2(0.967)

0.967 = 4)i(0.982) 
—

from which

— .908 
~2 

= .075

From equation (6) for k = 0 and using equation (5), and from equation (6)

• for k 1 we obtain

— 

(l—4)iei) (4)l 0l)
L —

From equation (4) for k — 2 we obtain

Using the above two equations (5] for ABMA (1,1)

I.— •& • • • • . • ~~~~~ . •
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~~~~~
1 + — 24)101

.967 — .9824)i

from which

— .984 81 
= — .101

3. Transfer Function—Noise Model

a. Final Estimates of Parameters The initial estimates of transfer

function and noise models obtained previously and listed in Table 16 were

used to compute the final estimates of the transfer function—noise model by

regression analysis based on minimizing the sum of the squares of residuals.

For the transfer function—noise model with ARNA(l,l) as the noise model,

the final estimates of the parameters and their 95% confidence intervals

are given in Table 17. The other transfer function—noise model with AR(2)

as the noise model was found inadequate. At the same time the autocorrela—

tions and partial autocorrelations both up to 24 lags and the standard

errors of autocorrelations of the residuals were also computed. The auto—

correlations and their standard errors up to 24 lags are shown in Table 18

and plotted in Fig. 14. Partial autocorrelations are shown in Table 19

and plotted in Fig. 15. In addition the cross—correlations between pre—

whitened input and the residuals were also computed and are shown In

Table 20. The standard error of cross—correlations , also approximated as

l//~, is approximatly equal to .05.

b. Fitted model Finally, the equation for the fitted model is

obtained as

— .84679 + .11578 
~
‘t—2 

— .14304 
~‘t—3 — .23697

+ .18946 x~~4 
+ (1_ .98285B)

~~
(1+.65979B)a

~
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or

— 1.82964 y
~

_
~ 
+ .94805 

~‘t— 2 
— .25683 

~‘t—3 + .14059

— .23697 x~_ 3 — .04344 x~~4 
— .18621 x

~~5 
+ at + .65979 a

~....i

4. Diagnostic Checking

To assure the adequacy of the transfer function—noise model, the

following four checks were performed.

(1) The autocorrelations and partial autocorrelations of the

residuals at all 24 lags shown in Figs. 14 and 15, respectively , were

observed to be statistically insignificant.

(2) The value based on 24 autocorrelations was computed as

24.1 using equation (7) and the x
2 value is found to be 36.8 from the

table with 22 degrees of freedom at .025 level.

(3) The cross—correlations between the prewhitened input and the

residuals at all 24 lags are shown in Table 20 were observed to be

statistically insignificant.

(4) The value based on 25 cross—correlations was computed as

23.07 using equation (20), and the value was found to be 34.2 from

the table with 20 degrees of freedom at .025 level.

The above checks indicate that the fitted transfer function—noise

model (3,2,3) is adequate.

_ _ _ _ _ _  ____ 
.
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Table 1.’ Identif iable Shapes of ACF and PACF

Damped Out Group Cutoff Group

1 Decaying exponential Cutoff after 1

2 Damped sine wave Cutoff after 2

3 Mixture of two decaying Cutoff after 2

exponentlals

Table 2. Shapes of ACF and PACF of AR and MA Models

of Orders 1 and 2

Model ACF PACF

AR(1) Decaying exponential Cutoff after 1

MA (l) Cutoff after 1 Decaying exponential

AR(2) Damped sine wave or mixture C-itoff after 2

of two decaying exponentials

MA(2) Cutoff after 2 Dampled sine wave

4 or mixture of two

decaying exponentials
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Table 3 N orw al ly  Distributed Rnndom Numb eru

— White Noise ]nput

THE INPUT SERIES

—1.046546 .221081 —1.220517 — .062617 .419244 .517110 .207772 3.190364
—1.372380 — .525437 —1.566574 .400818 .601631 — .149277 — .531703 — .737412
1.222771 2.995062 —1.071704 .447527 .486597 .225984 —1.856653 — .492462
.002612 .105822 .278457 — .721910 —1.310037 .931443 .649336 — .219367

—.681643 1.747159 — .133825 2.478115 —1 .052217 .415038 — .982722 1.169277
—1.405111 .321967 — .790251 —1.406858 .529309 .385378 —1.264836 — .174614
—1.535732 — .057828 —1.173841 .338153 .153493 — .497639 .309967 — .164509
— .983330 1.612114 1.319080 .029119 .570783 —1.948571 .407847 — .908672
—1.186685 — .501218 — .975144 — .816237 — .093542 1.920960 — .833932 .469804
1.025974 .188285 —1.348076 — .906177 .310981 — .701083 .552288 —1.397470
— .377943 —1.016304 .403281 1.179437 — 1.186292 .248971 — .497587 1.4 87987
— .236139 .058035 1.439927 .202227 — .983803 — .443505 — .290767 —1.309843
—1.601100 — .941135 — .430593 — .376879 .033546 .661411 1.563016 2.012849
—.392953 1.096481 — .602868 .004302 1.501597 1.365850 .153138 — .272796
.828836 —1.600185 1.358568 .703734 .577659 1.057526 .145625 —1.768834

—1.947486 .170427 — .977069 — .334294 — .967266 — .231678 .047810 — .611720
— .745205 .180846 — .961092 1.507648 — .803578 — .014031 — .488516 .211016
—2.261000 .225527 — .275420 — .352027 —1.771070 — .008921 .042778 .161614
—.854142 — .962136 —2.213133 — .435148 — .517048 .585949 .781386 — .102295
.194823 — .115663 .243622 .081380 .384950 — .021842 1.932486 — .355421
1.455679 — .723354 —1.034075 —1.083040 .124866 1.131668 —1.057096 .519001

—1.485437 — .392869 .392745 — 1.884397 .074221 .435253 .235725 1.451772
—.021846 1.830793 .129945 — .494824 .862106 .818285 — .488821 — .261612
.215041 —1.366999 1.424756 .480091 — .162888 .324680 .165318 — .314863

—1.324665 — .284668 .611167 2.518418 —2.385473 — .545316 —1.254997 1.400122
—1.292815 .431176 — .328516 —2.054695 .916340 .818566 — .816758 —.706588
.283985 3.217972 — .946325 .166830 —1.248310 — .544560 .715443 .642469
1.392524 .228923 .072160 —2.241863 .778013 — .601280 — .218413 .244239
—.910975 — .159615 — .009383 .347327 .784512 —1.977219 — .642408 .792880

—2.041271 —2.209217 .624794 —1.229084 .279338 —1.538204 — .512677 — .532991
.441235 1.261802 .914292 1.462106 —1.447334 —2.508337 .511058 .457034
1.269315 .145671 — .362281 1.550978 — .902560 —1.300198 2.331706 2.031753
—.217407 .092385 —.508575 — .335826 — .149413 — .128590 —1.203881 .149891
1.024560 — .508623 —2.353647 — .129360 — .861375 .051400 — .406976 .781941
—.292655 —1.634627 — .595100 — .558171 .030908 —1.236767 .150707 — .535260
1.002519 .458075 1.139522 .628067 —1.232769 .247055 — .721322 .542069
.471989 1.708597 .663027 1.046897 — .079510 —1.154816 — .765337 — .006592
.970652 — .113213 .212625 —1.293591 —1.384673 .249679 — .878330 .249074

—.716047 — .314443 — .515466 .043463 .358157 1.088251 .850927 —1.142201
.461123 — .047895 1.129200 — .562863 .012492 —1.457430 .440508 2.500768

—.715911 — •R~321’~ .456815 .477152 .829269 .869519 1.242504 — .432897
— .483919 —2.094217 — .794957 .695382 .787646 .713429 — .506425 —1.646217
—.816020 — .189206 — .241423 .182079 2.131296 — .504185 — .120386 — .803267

—1.219898 — .356627 1.489502 1,028995 .437677 — .609051 1.264824 —1.2170231.624339 1.508373 1.187668 — .799501 .217363 — .699820 — .647126 .195685
—.964186 —1.353808 — .530056 .417669 .580245 .227057 — .848685 —1.479222
.112529 —.449190 .214705 .455958 .236913 — .499035 — .490270 — .255954

—.212499 — .137747 .745819 1.300966 1.076571 .185054 — .655627 1.439015
1.254740 — .608740 .797991 — .401811 —1.631252 — .521834 — .559468 — .650567
— .078064 1.031868 — .802114 1.040559 — .560647 —1.006463 — .946873 — .273291.277431 — .456525 .782311 .531742 .150945 1.005575 .055225 .279342
.599951 — .087023 1.317954 — .660961 .141367 .658650 — .012045 —1.425726
.848500 .659264 — .376291 2.161617 .535428 —1.053767 — .914700 .525694
.880612 — .639476 — .050963 .888746 — .428594 —1.626727 —1.508158 —1.276869
.346235 — .903109 — .546014 2.621722 — .630806 — .484731 —1.629762 .868658

—.113989 .062959 .078903 — .687778 .284798 —1.967381 — .124529 —1.023695.246326 .020254 .339447 .194477 1.171626 — .157970 .650401 — .399325.149448 .388739 —1.129177 2.220796 — .485001 — .206734 1.661626 1.225031
—.454523 .945280 .033364 .695612 .406317 .115773 —2.532266 — .198552—.564072 — .523411 1.226922 — .248987 —1.449371 —1.474013 .095373 .8139661.303209 —1.195834 —1.656535 .247365 — .693266 .410157 1.051289 —2.037500.153352 — .074327 1.008951 .072706 —1.305213 .598454 1.086163 .534422

I.. - ••
• - -- • •. -•• —- —
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Table 4. Autocorrelation Function of Input SerieR

Mean of the series — .056198
Standard deviation of series .98367
Number of observations = 496

j
~~ 

ACF St Er ~~~ ACF St Er

1 .02 .04 13 — .03 .05
2 .00 .04 14 .03 .05
3 — .08 .04 15 — .01 .05
4 — .01 .05 16 .03 .05
5 — .02 .05 17 — .08 .05
6 .05 .05 18 — .00 .05

7 .05 .05 19 — .11 .05
8 — .03 .05 20 — .06 .05
9 — .01 .05 21 .00 .05
10 — .07 .05 22 — .03 .05
11 — .10 .05 23 .00 .05
12 — .01 .05 24 — .05 .05

Table 5. Partial Autocorrelatlon Function of Input Series

Standard error of all partial autocorrelations = .05

PACF PACF

1 .01 13 — .05
2 .00 14 .02
3 — .08 15 — .02
4 — .01 16 .02
5 — .02 17 — .06
6 .05 18 .00

7 .05 19 — .11
8 — .03 20 — .08
9 .00 21 — .02

10 — .06 22 — .07
11 — .10 23 — .02
12 - .01 24 — .06
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Table 6 Digitized Reaponse

THE RESPONSE SERIES

— 2.588975 —2.108417 —1.594259 — 1.705228 — 1.995290 — 2.3044 62 —2 .42683 7 —2.155579
— 1.784448 — 1.262892 — .323 352 — .28 1122 —1. 033247 —1.623542 — 1.617686 —1 .266283
— 1.240390 — 1.541240 — 1.715400 — 1.045886 .111894 .290986 .073979 .266326

.199436 — .507993 — 1.049276 —1.030781 — .890220 — .848607 —1.139285 — 1.566517
—1 .344270 — .857238 — .858471 — .974372 — .490731 .073979 .620503 .660576
.354793 .180017 .217007 .009863 — .256771 — .542825 —1.045577 —1.040029

— .808843 —1 .123564 — 1.524287 — 1.924084 —2.189794 — 2.367345 —2.269014 — 1.997756
— 1.943504 —1.800169 —1.722490 — 1.741601 —1. 105069 — .193888 .138095 .078911

— .367740 — .616804 — .808843 — 1.277380 — 1.593026 — 1.848564 —2.058480 — 1.790613
—1.010745 — .685544 — .518165 .049011 .282355 — .165221 — .562246 — .478709

— .370514 — .330750 — .549915 — .882822 — 1.001190 — .682461 — .118675 — .075829
— .149500 .072438 .581048 .845833 .771545 1.220354 1.513806 1.222820
.938307 .784183 .456207 — .088467 — .45 0042 — .503677 — .426615 — .176626
.378220 1.124181 1.833151 2.147872 2.239114 2.259766 2.264698 2.766526
3.378399 3.491834 3.354663 3.2967 13 3.052889 3.130567 3.555641 3.809628
4.008148 3.886700 3.067685 2.101019 1.738211 1.548330 1.259810 .977763
.808843 .818399 .689551 .423533 .384694 .409358 .687085 .77 1565
.598926 .510459 .394557 — .019727 — .2 96226 — .158131 — .34 2772 — .848299

— .994716 — .710512 — .537898 — .764455 — 1.30204 0 —2.031971 —2 .333129 —2 . 165443
—1.648819 — 1.029548 — .696024 — .513233 — .315954 — .081685 .152891 .397948

.669823 1.025541 1.414550 1.657450 1.578230 1.043111 .604166 .692633
1.096130 1.067463 .892686 .595535 .337532 .450042 .241666 .049011
.408737 .778943 1.079793 1.464795 1.952751 2.192260 2.051699 2.194110

2.505132 2.379058 2.089922 1.933023 1.666389 1.846714 2.204282 2.179930
2.133076 2.115815 1.831302 1.267208 .985777 1.380643 2.006078 1.548638
.720376 .426307 .673214 .680612 .450042 .321811 — .155357 — .145493
.345238 .177551 — .200053 .127923 1.084725 1.203400 .632525 .291911
.065040 .288520 .721300 1.072087 1.212956 .936766 .268792 .054251
.241666 .053943 — .029900 — .282355 — .498129 — .458673 — .248756 — .118675

— .710203 —1.203400 — 1.203400 —1.78 5373 —2 .781939 —2 .925582 —2.863008 — 2 .988773
—3.304727 —3.580918 —3.521734 —3.063986 —2.238806 —1.392356 — .832578 —1.257652
—2.262541 —2.313093 —1.620460 — .947246 —.633450 — .540667 — .157823 — .236734
— .587213 .157515 1.217888 1.203400 .855080 .699107 .496896 .384077
.296226 .049319 — .010172 .382228 .221939 — .651020 —1.138977 —1.227135

—1.249021 —1.184905 — .897618 — .907482 —1.469727 —1.885245 —1.935798 —1.919152
—2.099477 —2.130919 —1.928708 —1.430579 — .801753 — .180325 .176010 — .044387

— .221939 — .217007 — .015104 .455899 1.003964 1.348277 1.646045 1.585628
1.085341 .647321 .664583 1.014753 1.159013 .991017 .510459 .034523
—.022810 — .071821 — .128539 — 231803 — .405654 — .512925 — .428157 — .069355
.4C~4530 .816241 .586904 .423225 .660576 .934300 .927210 .631292
.256462 .413977 1.208024 1.309438 .757057 .757057 1.109385 1.458321
1.802018 2.130610 1.993748 1.410235 .583822 .100181 .413977 .891762
1.119249 .810692 .123299 —.313180 — .404421 — .385002 — .110353 .557004

.741645 .389626 — .027434 — .513233 — .622353 — .012021 .646088 .784183

.581664 .615263 .606940 .879123 1.572990 1.957992 1.677178 1.321768

.996258 .616804 .483025 .268792 — .372364 — .720067 — .528029 — .197587
— .143027 — .581972 —1.232992 —1.446608 —1.414859 —1.292792 —1.014753 — .850765

—1.014444 —1.292484 —1.420715 —1.450615 —1.385883 — .943547 — .207451 .373597
.453741 .288520 .570875 1.024925 .939540 .789115 .631292 .061341

— .438020 — .690476 — .942006 — .949404 — .642697 — .582281 — .490731 — .567176
—1.104761 —1.605664 —1.706769 —1.568674 —1.484523 —1.188604 — .780792 — .513233
— .166762 .049319 .160289 .337532 .483025 .688318 .651020 .493197
.620195 .537276 .092474 .117134 .496896 .631292 .946630 1.274606
.789115 .217007 .289753 .645780 .500595 .330750 .498129 .368356

— .364041 — 1.292484 —1.847022 —1. 923468 —2.076359 —2.054473 — 1.233300 — .887754
—1.385883 — 1.903740 — 1.785681 — 1.474 967 — 1.417016 —1 .40067 9 — 1.496852 — 1.652210
—2.131227 —2.513455 —2 .613943 —2.513146 —2.209830 — 1.900041 — 1.504867 — .995025

— .680612 — .498437 — .435246 — .364041 — .266326 — .264169 .196970 .46792 1
.394537 .733666 1.306972 1.327624 1.358757 1.538466 1.689199 1.803559

1.341240 .691709 .141178 .221939 .149500 .421375 .475935 — .172619
— .853231 — .853231 — .276498 .215465 — .093707 — .843367 —1.019068 — .957110
— .711436 — .399489 — .758290 —1.052975 — .782025 — .315954 — .167687 — .464838
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Table 7. Autocorz-t’J.at[on Function of Response to White Noise

Mean of the series — — .06102
Standard deviation of series — 1.2854
Number of observations — 496

~~~ AC! St Er ~~~ ACF St Er ~~~ AC! St Er ~~~ ACF St Er

1 .95 .04 13 .23 .14 25 .04 .15 37 — .01 .15
2 .87 .08 14 .19 .14 26 .05 .15 38 — .01 .15
3 .79 .09 15 .15 .14 27 .06 .15 39 — .01 .15
4 .73 .11 16 .12 .14 28 .06 .15 40 — .01 .15
5 .67 .12 17 .08 .15 29 .05 .15 41 — .02 .15
6 .61 .12 18 .05 .15 30 .05 .15 42 — .04 .15

7 .55 .13 19 .03 .15 31 .05 .15 43 — .05 .15
8 .48 .13 20 .01 .15 32 .05 .15 44 — .06 .15
9 .41 .14 21 .01 .15 33 .04 .15 45 — .07 .15
10 .34 .14 22 .02 .15 34 .02 .15 46 — .08 .15
11 .30 .14 23 .02 .15 35 .00 .15 47 — .09 .15
12 .26 .14 24 .03 .15 36 — .01 .15 48 — .10 .15

Table 8. Partial Autocorrelations of Response to White Noise

Standard error of all partial autocorrelations .05

~~~ PACF PACF j~~~ 
PACF ~~~ PACF

1 .95 13 — .01 25 .01 37 — .00
2 — .50 14 — .03 26 — .02 38 .03
3 .36 15 — .02 27 — .07 39 .02
4 — .16 16 — .02 28 — .06 40 — .08
5 .05 17 — .03 29 .02 41 .00
6 — .08 18 — .02 30 .05 42 — .02

7 — .09 19 .02 31 — .02 43 — .01
8 — .04 20 .12 32 — .03 44 — .04
9 — .03 21 .03 33 — .04 45 .00

10 .01 22 — .02 34 — .06 46 — .01
11 .09 23 .07 35 .02 47 .00
12 — .03 24 .00 36 .05 48 .04

ii ~-- -~ .- ~~.~~~TTTI~
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Table 9. Guessed Estimate of Parameters

Parameter Parameter Parameter Beginning
Number ~ ype Order Value

1 Autoregressive 1 .92
2 Autoregressive 2 — .21
3 Autoregressive 3 .22
4 Mean 0 — .061
5 Moving average 1 .19
6 Moving average 2 — .13

Initial residual sum of squares — 86.75

Table 10. Final Estimates of ARNA(3,2) Model for Response

Parameter Parameter Parameter Estimated 95 Percent
Number Type Order Value Lower Limit Upper Limit

1 Autoregressive 1 .98558 0.57209 1.3991
2 Autoregressive 2 —0.21353 —0.7153 0.28823
3 Autoregressive 3 0.14157 —0.011436 0.29457
4 Mean 0 —0.06368 —0.64548 0.51812
5 Moving average 1 —1.13200 —1.5526 —0.71140
6 Moving average 2 —0.28420 —0.67322 0.10483

Final residual sum of squares 26.237

I
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Table 11. Autocorrelation of Residuals and Standard Error

Mean of the series — —0.00134
Standard deviation of series — 0.23092
Number of observations 493

~~~~ ACF St Er ~~~ AC! St Er

1 .00 .05 13 — .00 .05
2 .00 .05 14 .03 .05
3 — .03 .05 15 .02 .05
4 .00 .05 16 .03 .05
5 .00 .05 17 — .07 .05
6 .05 .05 18 .01 .05

7 .10 .05 19 — .09 .05
8 — .04 .05 20 — .08 .05
9 .02 .05 21 .02 .05
10 — .06 .05 22 — .03 .05
11 — .07 .05 23 .00 .05
12 — .00 .05 24 .00 .05

Table 12. Partial Autocorrelations of Residuals

Standard error for all partial autocorrelations — .05

PACF

1 .00 13 — .02
2 .00 14 .02
3 — .03 15 — .01
4 .00 16 .03
5 .00 17 — .05
6 .05 18 .02

7 .10 19 — .09
8 — .04 20 — .08
9 .03 21 .01
10 — .06 22 — .04
11 — .07 23 — .00
12 .00 24 — .00

I 
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Table 13. Impulse Response Weights

Standard error for all impulse response weights .05

Weight Weight

0 — .111
1 — .115 13 .144
2 — .013 14 .091
3 .287 15 .067
4 .442 16 .064
5 .358 17 .061
6 .284 18 .053

7 .254 19 .040
8 .238 20 .014
9 .235 21 .013
10 .243 22 — .046
11 .223 23 — .082
12 .185 24 — .090
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Table 14. Autocorre].ation Function of Noise

Mean of the series — 0.19121
Standard deviation of series = 0.82270
Number of observations — 492

Lag AC! St Er Lag AC! St Er

1 .98 .05 13 .79 .20
2 .97 .08 14 .77 .21
3 .96 .10 15 .75 .22
4 .94 .12 16 .73 .22
5 .93 .13 17 .71 .23
6 .92 .14 18 .69 .23

7 .90 .15 19 .67 .23
8 .88 .17 20 .65 .24
9 .86 .17 21 .63 .24
10 .84 .18 22 .61 .25
11 .82 .19 23 .59 .25
12 .81 .20 24 .57 .25

Table 15. Partial Autocorrelations of Noise

Standard error of all partial autocorrelations .05

PACF PACF

1 .98 13 .01
2 .06 14 — .08
3 .09 15 .01
4 — .11 16 .00
5 .14 17 — .03
6 — .05 18 — .01

7 — .07 19 — .01
8 — .15 20 .04
9 .02 21 — .04
10 — .10 22 — .03
11 .06 23 .01
12 — .02 24 .00
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Table 16. Transfer Function and Noise Models — Initial Estimates

Parameter Parameter Beginning
Type Order Value

Transfer Output lag 1 .92
Function Output lag 2 — .21
Parameters Output lag 3 .22

Input lag 0 .19
Input lag 1 - — .13

Noise Autoregressive 1 .98
Model Mean 0 — .061
Parameters Moving average 1 — .54

Estimation for b = 3
Initial residual sum of squares — 6.766

Table 17. Final Estimates of Transfer Function — Noise Model

Parameter Parameter Estimated 95 Percent
Type Order - Value Lower Limit Upper Limit

(Transfer dunction parameters)
Output lag 1 .87679 .79763 .89595
Output lag 2 — .11578 —.18265 — .04890
Output lag 3 .14304 .10028 .18580
Input lag 0 .23697 .22360 .25034
Input lag 1 — .18946 — .20091 — .17802

(Noise model parameters)
Antoregreesive 1 .98285 .96507 1.00600
Mean 0 .34838 — .53963 1.23600
Moving Average 1 — .65979 — .78014 —.53944

Optimum value of b — 3
Final residual sum of squares — 4.7425
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Table 18. Autocorrelation Function of Residuals
— Transfer Function — Noise Model

Mean of the series 0.00026
Standard deviation of the series — 0.09838
Number of observations — 491

~~~ AC! St Er ~~~ AC! St Er

1 .02 .05 13 .06 .05
2 .06 .05 14 .00 .05
3 .03 .05 15 — .01 .05
4 .03 .05 16 — .02 .05
5 .06 .05 17 — .05 .05
6 .03 .05 18 .01 .05

7 .09 .05 19 — .10 .05
8 — .03 .05 20 —.04 .05
9 .04 .05 21 — .01 .05
10 — .05 .05 22 — .04 .05
11 — .05 .05 23 .01 .05
12 — .02 .05 24 — .02 .05

Table 19. Partial Autocorrelatiotis of Residuals
— Transfer Function — Noise Model

Standard error for all partial autocorrelations is .05

PAC! PAC!

1 .02 13 .07
2 .06 14 .00
3 .03 15 — .00
4 .02 16 — .02
5 .06 17 — .03
6 .02 18 .01

7 .09 19 — .10
8 — .04 20 — .05
9 .03 21 — .00
10 — .06 22 — .04
11 —.06 23 .03
12 — .02 24 .01

Jill_il 
- - 
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Table 20. Cross Correlations of Input White Noise and
Estimated Residuals

Standard error of all cross—correlations .05

Lag Cross Lag Cross
— 

Correlation 
— 

Correlation

0 —.014
1 .048 13 — .045
2 — .032 14 — .009
3 .069 15 .057
4 — .075 16 — .008
5 .011 17 .006
6 — .029 18 — .031

7 .063 19 — .011
8 — .011 20 .057
9 .028 21 — .053
10 — .051 22 .067
11 — .015 23 — .057
12 — .022 24 .063
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(a) (b) (c)

Fig. 1 Three basic damped out ACF and PACF with lag: (a) Decaying exponential,
(b) Damped sine wave, and Cc) Mixture of two decaying exponentials.
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;

(a) (b)

Fig. 2 Two basic cutoffs of the ACF and PACF with lag: (a) Cutoff after 1 , and
(b) Cutoff after 2.
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Fig. 4 Autocorrelation Function of Input White Noise
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Fig. 5 Partial Autocorrelation Function of Input White Noise
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Fig. 7 Autocorrelation Function of Response to White Noise
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Fig. 8 Partial Autocorrelation Function of Response to White Noise
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Fig. 9 Autocorrelation Function of Estimated Residuals
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Fig. 10 Partial Autocorrelations of Estimated Residuals
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Fig. 12 Autocorrelation Function of Noise
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Fig. 13 Partial Autocorrelationg of Noise
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Fig. 14 Autocorrelations of Residuals
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