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EFFECTS OF FINITE REACTION RATE

AND MOLECULAR TRANSPORT

IN PREMIXED T U R B U L E N T  COMBUSTION

Paul A. Libby
University of Californ ia -San Diego , La Tolla , California , U.S.A.

and

K. N. C. Bray and J. B. Moss
The Universi ty,  Southampton S09 5NH, Eng land

ABSTRACT

Previous application of the Bray-Moss model for premixed

turbulent combustion to plana r , oblique and normal flames is extended

to inc lude the effect of large but f inite values of the two dominant

cha racteristic numbers , a turbulenc e Reynolds number providing a

measure of the intensity of the turbul enc e and a Damkó hler numbe r

relating a turbulenc e time to a chemical time. A classical perturba t ion

analysis involving two small parameters proportional to the inverse

of these two numbers is carried out to account separately for the effects

of molecular transport and of altered scalar dissipation and for the

• effects of finite chemical reaction rates. Two limiting cases corres-

ponding to highly oblique confined flames and normal or unconfined

oblique flames are treated. Of particula r interest In the former case

is the effect of the perturbat ion! of the predicted orientation of the

LI~ _ _ _  _ _ _ _ _  _  _
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turbulent reaction zone. For the unconfined flames attent ion focuses

on the effect of the perturbations on the turbulent flame speed and on

the change in turbulent kinetic energy ac ross the reaction zone. The

characteristic s of the related larninr .r flame are introduced so that the

theory can conform to the practice of experimentalists in correlating

their results for turbulent flame behavior in terms of such laminar

flame characteristics. With respect to unconfined flames , for which

considerable but often contradictory experimental data are available,

the pe rturbation analysis appears to yield qualitative agreement with

a recent correlation of experimental data showing the effect of turbulence

Reynolds number. However, a comparison wit h result s of individual

experiments is inconclusive .
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1. INTROI )UCTION

Numerous experimental studies of the propagation of tu rbu len t

flames in to premixed combustible gas mixtures emp loy the prope rt ies

of lamina r flames to correla te  the observed turbulent  flame

speeds. For example, Abdel-Ga yed and Bradley [I ]  recentl y

p resented a correla t ion of a large amount of expe r imental data,

involving many dif ferent combus t ible mixtures , in w hic h the ratio

of turbulent to laminar flame speed is presented as a function of the

ratio of lami nar flame speed to turbulence in tens i ty  and of a turbulenc e

Reynolds number.  Othe r experimental data , for example, that of

Wri ght and Zukoski [21 , a re  insensi t ive  to fac tors whic h are known

to influence the lamina r flame speed. However , it is beyond dispute

tha t a regime exists in whic h the turbulent flame speed is strong ly

in fluenced by the corresponding laminar flame speed. 
.

A successful model of turbulent  flames, having any claim to

generality,  must be able to predict these effects , and mus t therefore

include the relevant fluid mechanical and chemical phenomena. On

the other hand , existing models (Borg hi and Moreau [3 ] ,  Pope [4]

and Bray and Moss [5 , 6 ] )  generally neglect molecular t ransport

and effects of fi nite rates of combustion reactions , and t reat only the

limi ting case where the time-average rate of heat release is controlled

by turbulent mixing. Because the properties of a lamina r flame depend

• 
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upon a balance between finite rates of molecular transport

a nd chemical reac t ion , it follow s that comparison between

predic t ions from suc h theories and experiment is at best inadequate

ari d incomplete.

Anothe r problem, of co nsiderable prac t ical impor tance , is the

prediction oi the limits of stable combustion. These limits are know n

to be strong ly influenced by chemical kinetic factors , and may also be

dependent on Reynolds number, providing a furthe r incentive to improve

current  combustion models to include these effects.

The objective of the present work is to extend the model of p remixed

tu rbulent  combustion , develo ped and exploited b y the present  authors

(Bray and Moss [5 , 6), Bray a nd Libb y [7) and Libby and Bray [8]), in

orde r to include effects of a finite reaction rate and of molecular

t ranspor t , and to compare predicted trends with those observed

• experimentally. The Bray-Libby and Libby- Bray references will be

ci t ed repea tedly and are therefore denoted I and II.

Our presentat ion is organized as follows: we f i r s t  review brief l y

the Bray-Moss model and then discuss the fundamentals requ ir ed

for the inclusion of f in i te hut large value s of the two cha rac t e r i z ing

pa rameters , a turbulence Reynold s number and a Damk~ h Ier number ;

the se a re  taken to be in f in i t e  in previous applications of the model

and accordingl y lead to a f i r s t - o r der  theory .  Sections 4 and 5 describe

~~~~~~~~~~~~ •L
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a per turba t ion anal ysis for the two l imiting cases of plana r flames

we co nside r seminal: hi g hl y obliqu e confined flames and normal or

unco nfined oblique flames. In the numerical  computation of these

case s, values for cer tain parameters are needed. h ere we employ

t he values suggested by a compar ison of the predictions of the f i rs t

order theo ry with experiment. Section 6 relates the application of

the per t urba t ion anal ysi s to c u r r e n t  methods of presentat ion of

experimental data and incorporates the relevant lamina r flame theory

in order to provide estimates for several of the parameters  which  are

thereby encountered. Finally, conclusions are draw n from the anal ysis .

2. BRIEF DISC USSION OF THE EXISTING MODEL

For completeness arid to provide the requis i te  back ground for

the developments presented here we discuss the general features  of

the Bray-Moss model of premixed turbulent  reactions and its application

to plane flames. Details are  in Bray arid Moss [5 , 6]

: ~~~~~~~~~~~~~~~~~~ . • • . • • ~~... _ _ _ _ _
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and in I. The model utilizes a series of assumptions; some relate

to the aerothermochemist ry  of the flow and are standard in the

combustion l i tera ture .  Of central importance in this regard is the

result tha t the instantaneous thermodynamic state of the reacting

mixture depends solely on a reaction progress  variable c , in

particula r

T T(c ) = T ( l  + Tc) (2 . 1 )

p =~~~(c) = p ( l  +r c)~~ (2 .2 )

where  T is the temperature , p is the mixture mass density arid the

subscr ip t  “ o ” deno tes conditions upstream of the reaction zone where

c 0 .  The quan t i ty  T plays an importa nt role in the description of

the phenomena ; from Eq. ( 2 . 1 )  we note that r (T /T ) - 1 , wi th

• T the tempe ra tu re  downst ream of the react ion zone where  c I

Values of r of practical  interest  a re  from 4 to 9. The progress  va r iable

• c can be considered to be the mass f rac t ion  of the produc t of the one-step

reaction normalized by its value when reaction is complete; thus c

will usually be loosely termed the product concentration.

A consequenc e of the dependenc e of the instantaneous state of the

gas mixture  on the value of c is that the rate of production of product ,

i. e. , the sou rce te rm in the conservation equation of produc t , is also

a funct ion of c alone , denoted w ( c ) ,  with a maximum value w

• - 

max



The Bray-Moss model is based on considerat ions of the

probabil i ty densi ty  funct ion for the concent ration c • At a given

spatial location wi th in  the react ion zone th is  pdf will involve

a par t i t ion  among u n b u r n t  (c = 0 ) ,  b u r n i n g  (0 < c < 1 ),

and all burn t  (c I)  mixtures .  Strengths of a , V .  and ~3 are

at t r ibuted  to eac h of these respectively. The assumption that the rate

of chemical reaction is fast  and thus  that the rate of heat release is

determined by turbulent  mixing implies that V << 1 . According ly, the

pdf of the concentrat ion c is dominated by delta funct ions at c = 0, 1.

The combinat ion of the dependenc e of thermochemical quantities on

c alone , together  w i t h  a model for  the  p robab i l i t y dens i t y f u n c t i o n  for  c

permits  quant i t ies  of fluid mec hanical in teres t  to be readily expressed

in terms of the mean product concentrat ion , C , with correct ions of

order V depending on integrals of the pdf denoted f(c)  wi th in  the

inter ior  range 0 < c < 1. Because it only appears wi th in  suc h integrals,

details of f (c)  are  inessential.  Similar considerat ions  apply to the

function describing the chemical reaction w ( c ) .

In I and II Favre-ave raging is employed (cf. Favre [91)

because of the result ing formal simplification of the describing equations.

Thus , for example, we have

p c’c M /p =~~ (l - c )  - y ( l  + r c ) M  (2 .3 )

w = w  V I (2 .4)max 3

c~’w = Y w  (I —~~
‘ I ) (2 . 5)max 4 3
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where M and t
k 

denote integrals of the sort alluded to, namely

M = c(l - c)(l +~~c)~~ f(c) dc (2.6)

1
= ~ c

k
w(c) w f(c) dc , k 0, 1 (2.7)

k+3 max

and where (
~ ) and ( ) ‘ denote mass averaged and f luc tua t ing

q u a n t i t i e s  respect ivel y.

In fo rmal iz ing the assumption of fast  chemis t ry ,  it is convenient

to introduce a Darr k~ hler number , Da , defined as a ratio of a tu rbu lenc e

time scale to a chemical  kinet ic  time scale, in part icula r

D a 1  w i / P  ~~

‘ (2 .8)3 max o o o

where  t is a length scale character iz ing the large eddies and 
~ 

is

the Favre-averaged turbulent  kinetic energy,  i .e. , ~ = ~~ pu ” u ” . Now

for fast  chemis t ry  Da >> 1 but YDa = 0(1)

The formulat ion of the conservat ion equations based on these

assumptions focuses on the equations for turbulent  kinetic energy,  q

the mean product  concentration, ~~; and the intensi ty of the product

fluctuations , ~~c ” c ” . A closure problem exists so that some terms

must be modelled. At the present  t ime a gradient  approximation wi th

an eddy t ransport  coef f ic ien t  based on the Prandtl-Kolmogoroff model

In the cour se  of the ana l ysis  the t i lde  is also introduced to denote

severa l new va r iables. No confusion should result.
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is employed wi th  a modification to account , at least roughl y, for var iab le

densi ty  effects .  We have (cf.  [8])

VT = a q t
1 (p /p ) ( 2 . 9 )

where  a is a constant , L
1 is a scale of the large eddies within  the

reaction zone , and p is an exponent to be ass igned.  With Eq. (2. 9)

a typical flux term becom es

p u .” g” /p = - LJT (
~~~~~x .) (2. 10)

In the calculations of 1 arid ii molecula r t ranspor t  is neg lected ,

imply ing considerat ion of an inf in i te  tu rbulence  Reynolds  number ,

R
T q~~t / V  (2.11 )

where 11 is t he  molecu la r  kinematic v i scos i t y .

There remain to be considered the dissipation of turbulent kinetic

energy and of the concent ration f luc tua t ions .  Wi th  respec t to the f o r me r ,

• denoted fP , the nature of the equat ions  ind icates that w i t h i n  the th ickness

of the reaction zone the dissipation of tu rbu lent  k inet ic  energy must be

neg li g ible as is found to be the case when turbulenc e undergoes rapid

distortion (cf. , e. g. , Batchelor [101) . On the con t ra ry  the annihi la t ion

of concentration f luctuat ions by molecula r processes is found to be

important arid is modeled close to the usual  fash ion , but w i t h  var iab le

d e n s i t y ef fec ts  included , at least r oughl y ; we take

X C(p/p ) k
~~ Pc ” c ” / L 2 (2.12)

_ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where L2 
is anothe r length rcale attributed to scalar dissipation a n d

where k is anothe r exponent to be assigned.

The eouations which reøult f rom these considerations are  specialized

and subseque ntly applied to plana r turbulent flames . In the case of

normal flame s arid uncon.fined oblique flames no additional assumptions

are  required;  in the case of confined , oblique flames of specified

orientation identifie d with the ang le 9, 9= 90 0 for normal flames , an

additional approximation, namely that the mean streamline is undeflected ,

result s in significant s implification and yet is physically reasonable for

confined turbulent flames , e. g . ,  as in Wri ght and Zukoski [2]. A con-

sequence of this assumption is tha t there results an explicit expression

for the Reynolds s t ress , i . e . ,  pu ” v ” /p in Favre -averag ing, in terms

of the mea n prod uct concentrat ion.  An important physical implication

which derive s f rom this consideration is that the acceleration throug h the

reaction zone of a confined oblique flame is due to the gradient of Reynolds

s t ress , an implication not based on a gradient  assumption but rather on

the assumed kinematics of the flow . This contrasts with a normal

flame in which the pressure  gradient , althoug h thermodynamically

neg lig ible , accelerate s the gas. The d ifference in mechanism in the

two cases suggests that the appropriate models of the lamina r flame

within the turbulent reaction zone used to estimate f (c )  may likewise

he d i f f e ren t .

Althoug h for brevi ty  we character ize  flames as e ithe r oblique

or normal , these two cases are considered to correspond respectively

to those with constrained and unconstrained mean streamlines, since an
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obliq ue flame involving a constant tangential velocity and thus a curved

mean streamline corresponds exactly to a normal flame insofa r as our

ana lysis is concerned .

The orientation of the confined flame determines the relative

importance of two competing effects related to the interaction of the

turbulence and the heat release associated with chemical reaction.

If the flame is nearly normal, dilatation dominate s and the turbulent

kinetic energy downstream of the reaction zone is less than that in

the oncoming stream. On the contrary, for oblique flames the generation

of turbulent kinetic energy by interaction of the Reynolds stress and

the gradient of the mean velocity dominates and the turbulent kinetic

downstr eam exceeds that upstream. This situation leads to an important

special case, termed strong interact ion, in which the downstream

kinetic energy overwhelms that in the oncoming stream.

The resultant mathematical formulation leads to a double eigenvalue

problem; the turbulent flame speed in the form 1 I  and the ratio

of two turbulent kinetic energ ies , Q = q / ~~~, are  predic ted for

normal flames. In the strong in t e rac t ion  case the ra t io  of the t u r b u l e n t

flame speed to the tu rbu len t  k ine t ic  energy  downstream of the flame ,

and the o r ien ta t ion  of the flame 9 are  g iven as part of the

solution. Thus the mathematical formula t ion  corresponds to a more

complex vers ion  of that  a r i s i n g  in laminar  flame theory  in whic h a

sing le ei genvalue , involv ing  chemical k inet ic  and f lu id  mechanical

qua n t i ties, is predicted.

a- - -.
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In I and II considerable attention is devoted to comparison

between prediction and appropriate  experimental results.  As indicated

earlier t h i s  comparison is limited for a va r iet y of reasons inc luding

the  l i m i t a t i o n s  of the theory .  Never theless, in II a com parison between

the o r i en t a t i on  of flames in the strong in te rac t ion  l imi t  suggests  that

the  tw o exponents incor pora t ing at least roug hl y va r iable dens i ty  e f fec t s

in the modelling in the form (p + k) should equal two; the implication

from th is  resu l t  is tha t the usual  modell ing should be al tered when

si gni f icant  densi ty  var ia t ions  occur.

3. INC LUSION OF FINIT E DAMKOHLER AND REYNOLDS NUMBERS

We now cons ide r  the ex ten s ion  of the p rev ious  app licat ion of the

Bray -Moss  model to plana r t u r b u l e n t  flames so as to include  f i n i t e

va lues  for  the  two cha r a c t er i s t i c  pa ramete r s , the Damk~ h 1er and

Reyno lds  numbers .  The flow we cons ider  is show n schematically in

Fi g. 1. The Favre-averaged  bala nce equations incorpo ra t ing  the

assumpt ions  d iscussed  ear l ie r  are  as follows:

Cont inuity :

( 3.1)
0 0

Species:

~~~ 
~~~ (•. p c N

II
N 
+ ~~~~~~ ) 4 w  (3 .2)
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Species fl uctuat ion:

~~~~~ d (2.c
” c”

) - z p c u~~~ f~~ f z c ”w

_
~~~~~~~

- (p c ” c ” u” ) + 2 ~~~ (pDc~~
-
~
5--. ) - x  (3.3)

Turbulence kinetic energy :

___  I-
—- -

~~~~~~~~~ 
,, ,, du ~~~~~~~dvP u d,~~~

_ P u u T _ P u v~~~~

- (
~ p a” v ” v ” ) + ~~ (v ” f ~

) - (3 • 4)

To complete these equations the modelling of the turbulenc e

terms alluded to earlier must be incorporated. In addition, for present

considerations the terms associated with the molecula r t ransport

coeffic ient , pD, and with the viscous stress tensor

ày  ~ v2 ( a
~~~~~~~~~~~~~ ~~~~~~~~~~ +~~~~~~ .—

,
• (3. 5)

and the effec t of fini te R eynolds numbers on the scalar dissipation must

be inco rporated. In doing so arid in antic ipation of a perturbation treat-

ment we introduce a small parameter C = (a ~~~ L / v )~~ = (aR ) l

a second per turbat ion pa rameter  will  be

o = (a !  w L / p  ~~~
) ( 3 . b )3 max o o o

•_
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To treat the extra terms we make several additiona l assumptions:

i) The molecula r Schmidt numbe r is taken as unity so that pD =

ii) The produc t p~ is taken as consta nt so that p~i. =

2 / -~2 2-.
i i = i i (l  + Tc) , and V = ~~~~~(l +Tc ) + T  c ( 1  -~~

‘) )  + 0(y ) .

iii) The scalar dissipation is modified to include a Reynolds number

correction so that (cf. Eq. (2. 12))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +(C 1~~/a~
*t1))/L 2 

(3.7)

iv) The correlation c ”(~ c”/~ x) is replaced-b y *d/d x (p c” c” /P )  wi th

the consequence that

p D~~~~~ ~~~ ~~ 
+ •

~~~
- Pv’c” ~~~~p v T ~~~- (Pc

;
c” )

But QVc ” = p v c (l- )T (~r+2)+O(V) , pc ”c”/p ~~~
’(l -~~~ ) +  0(Y)

so that

_ _ _ _  /
— p i ll

pD
~~~~

_- P v T c
~~~j ~~~J ( l + r c )  I ~q 11

+ r(( ( l -2~ ) - ’~~~ 
-~~)r) (r +2 )  - ~~(l -2 ~ ) ( 1  +T~~

))) ~~~1-F Tc

P V T C R E I ~~ ( 3 .8)

where  R ~~ i0/~
’
~ L ~

) and w here = E 1(~
’) is implic itly

defined. Two contributions to this mea n molecula r transport

term can be identified; the first  is assoc iated with the mean



viscosit y coefficient , the second wi th  f luctuat ions in that coeff icient .

Both can be readily incorporated with the sing le reasonable

as sumption cited here.

v) The correlation c” c’(~c”/~ x) is replaced with (l/3)d/dx (pc ’ 3/p)

with the. consequenc e tha t

PDc ”~~~ = P Llc” 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

But pllc”2 
~ p v ~~~ (l  -

~~
) (i +2T + - r ( r +2) ~~) +O(Y) ,  pc ”3 /~ ~

• 
2~(l -2’) (1 - Zc) + 0(y) so that

PDc M
~~~~~~ P v T E R ( l +r2 ’) 1) (2 ~( 1.. 2~) r (’*(r + 2)

~ 1+ 2 T+r 2
- r ( ~~+ 2) 2 ’  +~~~( l +r2 ’;)  d2’

( I +Tc )

( 
~ I I , ,

+*~~1 + Z r + r
2

r( T ÷ 2 ) 2’ L ( 1+ r 2 ’ ) ( l Z2’)
) ...~... P C C) )

~! p l l (R E ~~~~. (3 . 9)

where E
2 (2’) is implicitly defined. Note again tha t we are able to

incorporate without difficulty the molecular transport of fluctuations

in concentration due to the mean and fluctuating viscosity coefficient.

vi) The description of the flux of turbulent kinetic energy due to

• molecula r processes as contained in the term v “ f is morea al
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difficult to rationalize. * However , we incorporate both the effect

of fluctuations in the viscosity coeffic ient and the transport of

turbulent kinetic energy by the mean molecula r coefficient.

Without full justification we take at least provisionally

v ’f 1~~~~~pVu ” du + p l l v” ~~ + P V ~~~~ q (3. 10)

The effective transport coeffic ients plIu ” and P2/ v 11 
ca n be

computed by application of the approach in I I  involving self-

consistent  estimates for the veloc ity components of packets

of unburned arid fully burned gases within the reaction zone.

We find

p llu” = _ p V
T 1•’o r (r + Z) dx + 0(Y)

rCr + 2) d’~p 2/v
TM 

= - 

ta
° 

~ 
+ 0(Y)

so that

va faI
_ _ P v

T c R( ( f + Z ) u o v T
r ( T + 2 ) (~~~)

_ .

~~~~

_. 

~
) (1 +72 ’)P ( 3.11)

* In order to treat the flux of turbulent kinetic energy as thoroug hly

as that of mean concentration and mean intensity we would need

an extension of the Bray-Moss model to a joint velocity-concentration

probability density function.

• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • •  • - - - - •
~~~~



v i i )  The viscous diss i pation ço is neg lected even at f in i t e  Reynolds

nu mbers.

W i t h  these p re l imina r i e s  we are  prepared to proceed with  the

t r e a t m e n t  of the effects  of f i n i t e  Damk~ h ler  and Reynolds  n u m be r s .

4. APPLICATION TO THE CASE OF STRONG INTERAC T ION

We apply the equations which result  from imposition of the

several considerations discussed earlier to the case of oblique, p~lana r

turbulent flames under conditions such that the turbulent  kinetic energy

generated by shear within the reaction zone overwhelms that in the approach-

ing stream. In this case , which is termed s t rong in te rac t ion, it is convenient

to replace ~ by Q E  (Q - Q )/ ( 1  - ~~~~~ 
where  Q =

~~~
/
~

‘

~ 
. The two

eigenvalues whic h are to be determined as part of the solution arid which

provide predictions of ph ysical interest  are

• (aCL 1/ç (2c~~~~
l ) L
2))

(~~~/~~
2
) (4.1)

• — 2~~ 2
C = u  /q tan 9 (4.2)o

where c I
4 /I 3~ These two ei genvalues determine the turbulent  flame

speed as a multiple of the turbulent  kinetic energy downstream of the

flame and the orientation of the flame with respect to the oncoming flow .

For this case Eq. (3. 2) becomes

pv — Yw Id ( T 
( l + c R E 1) 4 ~~) = _  m a x  3 

(4 3)
p u  p u
0 0  0 0
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which will prove usefu l for subsidiary calc ulations. If Eq. (4. 3) is

used to eliminate the term involving w from Eq. (3. 3),max

we have the equat ion

d (~~
2/T dP~ dP / d2 ’  d , PllT d2 ’’,
,~~, ~;J~~~~~

= (zcm~~
l) 

~~~~~~ —p u  p u
0 0  0 0

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  •- — 1-Fm \1 — /
llT ( l + r c )  c (I-c)

(l +cc~ R - ) ) + E ( z ~~~(~~~ T R E Z~~~ )

_ z ( c _ 2 ~) .~~•~ ( T  R E 1~~~- ) )  ( 4.4)

0 0

Equation (3.4) becomes

d f ~~
2/T dQ’ d~~ f~~(l- ~~)r  2 — \ d 2 ’

dx~ — d x) dx ~~~~ 
- K r  c 1~~~

1 +T c
0 0 

~ E~~~
(p ;

T 
R ( (~~ tan2 9 + l )  

K V
T
r2(r+2)

(4. 5)
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where P = y ( l  + r2’) M ;

• m = p + k ;  arid

— ,2  —
~~~~(*P u /Pq

We now introduce new dependent variables and consider c as

the independen t variable; let

S =

G = /
T~

’Po~
bo

) (d~~/dx) (4. 6)

D = (PV T /PO~ O
) (dP/dx

The treatrrieri t of 2’ as the independent variable implies that the spatial

distributions which prevail within the reaction zone may be found

a poster ior i  by quad ra tu re  f rom the f i r s t  of Eqs. (4. 6) to y ield x x(~
’) .

Equations (4.4) and (4. 5) become the following first order equations:

dD D ( dS ~3 ( l -~~ ) 2 ’ ( 1  - 2 ’
— - ~~~- = (2c - ~ - 

d2’ 
- 

S (l

,
~1_ _ ~ ~H~l + ~ C 1 R ~))

c ( l - c )  °

+((2~~~(RE 2S)-2(c -c)-~
.- ( R E 1 S))  (4.7)

dc dc

(4.8)Sdc

• . _ _



dO C 
(~~(l )T  K 2_ )

dc l +Tc dc

2( +2)(l+r~ ) S Z +~~~ G)(1 + r2’)P )  
(4 9)

(4.10)

The perturbation equa t ions

Equations (4. 7) - (4 .  10) are in a form suitable for a perturbation

anal ysis.  The appropriate expansions are  as follows:

= Q  + ( ~~ + Ô Q  -F . . .o 1 2

S = S  + (S +6S + . . .o 1 2

G = G  + C G + Ô G  -F . . .o 1 2

P = O ( P  + . . .
0

D = o ( D + . . . )

(4. 11)

K 1 ç  + EIC + 6 K  1- ...o 1 2

Y = O ( Y  + .. . )
0

C = C  + . . .
in mo

M = M  + . . .
0

R — R  + . . .
0

A l t h o u g h  not r equ i red  at th i s  stage in the  anal ys is , the x -coord ina te

m u s t  also he considered expanded accord ing  to xe?) x ( ~’) + Cx~~~
’) 4

6x
2

(?) 4

-----— -~ 
. - --  •—• —---—— - -

- .-~
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Note that not all of these expansions are independent but they are

formally consistent  as shown.

When Eqs. (4. 11) a r e  subs t i tu ted  into Eqs. (4. 7 ) — ( 4 .  10),

the terms independent of E and 8 y ield:

—

dS ~3 ( l - Q  )2 ’( 1-2 ’)
0 1 . 0 0 0

- - 

d2’ S ( l + r 2 ’)Z+in

dG 0
- .2 .  

- ( °— - K T
2

C)  (4. 13)
dc 0 l +Tc

dQ G
(4.14)

which are the equations for the strong inte raction ca se treated in I and

II when 2’ is taken as the independent variable,  The solutions are

subject to bounda ry conditions which we shall ~~scuss subsequently

and yield as eigenvalues ~3 and K .

Collection of the f i rs t  order  terms in and 6 in Eqs. (4. 7) -

(4. 10) y ields the following equations , in whic h for compactness we

employ the Kronecker delta ~~~~ with j 1 corresponding to the

C -per turba t ion and j = 2 to the O -perturbation:

dD D dS . - dSa . ( _ ~~~~
‘
~~~ _ ( Z c  _ 1) (_ _ L + ( l _ ___2- ’\12 — S i  modc 0 dc dc

f9 . ~~~~. S. O P  —
~ -. ~~~~~~~~ : + o .1 c 1 R~~~~~))~3 l - Q  o c ( l - c )

0 0

+6~ (2-~- (r( E S  ) - 2 ( c  -2’) -~— ( R  E S  )

\
.11 — o Z o  mo — o l o ,

_  __ _
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dP D
= 2. (4. 16)

:, G
0 ,, 

G~ S
~ ~ 2— (

K .
-

~~~~~~~~~~ 

.\~~
- - S ) = (  — 

+ K t  c~~~~~~))
dc o o o 1+rc o

2 ( + 2 ) ( 1+ r ~~)S Z +~~ G ) ( 1+ r 2 ’)P)

(4. 17)

dQ. G 0. S.
(4. 18)

For the perturbation solutions corresponding to finite Reynolds numbers ,

i.e. , to C ,  i = 1 , Eqs. (4.15),  (4. 17), and (4. 18) are three equations

for 
~~~ 

G
~~

, and . For the perturbation solutions corresponding

to finite Damk~ihler numbers , i .e. ,  to 6 , i 2 , we must evaluate P

and D0 . Equation (4. 3) and the definition of P lead to

(1 - ~~ )2’(l  -2’) ,4 ’M q
P R ( ) (4.19 )

o ~~k o~~ — /( 1 + -rc) q0

where  ~ = (aCt / (Z c  - I )  L 
‘

~~, taken to be constant. The parameter
mo 2 ’

~~~~~~~~ ~~~ ~~=-‘ : ~~~~~~~~~~~~~ •
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appears in I and II and conta ins  several empir ical  constants

evaluated from the phenornenology of t u rbu l ence  for  constant  densi ty

flows. Equations (4. 19) and Eq. (4. 16) de te rmine  D so that the

left side of Eq. (4. 15) can be expressed in t e rms  of the f i r st  order

solution. Thus again Eqs. (4. 15), (4. 17) and (4. 18) become three

equations, in this case, for S2 , G2 ,  arid Q
2 .

Note tha t the last factor in Eq. (4. 19) involves explicitly the

ratio of the turbulent  kinetic energies downstream and upstream of

the reaction zone , a ratio large compared to un i ty  in the st rong interact ion

case being considered here.  However , we avoid specif y ing this ratio

a priori  by introducing a new pa rameter , =

The boundary condit ions

In terms of the spatial coordinate x , boundary  conditions are

imposed at ±~~~ which  correspond in terms of 2’ to 0 , 1 • In addition

our basic formulat ion involves the well-known “cold boundary problem ”

whic h requires  for its resolution specif icat ion of a value of 2’ c ;

for 2’ c no chemical reaction occur s. ’~ In the pre sent  context this0

condition corresponds to specification of a mean ignit ion temperature.

In I it is shown that for the highly oblique flames associated

with the strong interaction case , the cha rac te r i s t ics  of the

flame are essentiall y independent of 2’ , a physically sat isfy ing result.

“ This  condit ion implies tha t at 2’ 2’ the dependent  va r iables

are cont inuous  but wi th  “j umps ” in t he i r  der iva t ives .  

.- - . _ . — . - . — ,  . — — •_ __•_
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Sinc e the describing equations both for the f i r s t  order  and

per turbed  solutions can be readily solved for 0 � 2’ 2’ << 1 , our

bou ndary conditions effectively appl y at 2’ , 1 .

Consider the solutions in the range 0 � 2’ 2’ << 1;  if the
0

ri ght side of Eq. (4. 3) is set to zero , we find

s = 2 ’  (4.20)

and subsequent l y from Eq. (4. 15)

Sl~~~~~~ + 2 r + r 2 _ 2 c m o ( l f r ~ r + ~~~
)))

2’/(2c _ 1 )  ( 4 . 2 1)

S
2 = 0 (4. 22)

Fu r the rmore , Eqs. (4. 13) and (4. 14), simplified as appropriate for

2’ 0 , ~ —~ 1 , y ield
0

0 = - ( 1  - ~~
) (4 .23)

Simila rly, if Eqs. (4. 17) and (4. 18) are combined , quadrature  leads

to the result

G . - ~~~~~. = -G  , i = 1 (4.24)
0

= 0 , i = 2  (4.25)

provided it is recogni zed tha t R •~~ 1.

Equations (4. 20) and (4. 23), applied at 2’ = 2’ , provide the boundary

conditions for the f i r s t  orde r solutions already presented in I and II and



determine  the eigc’nvalues II and ~ . Likewise , as we sha l l  see ,

the pai rs  of equations , I~qs. ( 4 . 2 1 )  and (4. 24) and (4 .22)  and (4 .25) ,

determine the per turbat ion  eigenvalues.

The boundary conditions to be imposed at the other end of the

range of 2’, i. e., in the neighborhood of 2’ 1 , are  more complex;

their  detailed considerat ion is d iscussed  in Appendix  1. For p r e s e n t

purposes it is suffic ie nt to note that the asymptotic behavior of the f i r s t

order a~’id per turbat ion solutions as 2’ 1 is such that no a rbi t r a r ines s

is involved. Accordingly, a numerical  in tegrat ion init iated in the

nei ghborhood of 2’ 1 can be ca r r ied  out for decreas ing 2’ with

the boundary conditions at 2’ = 2’ satisfied by appropriate selection

of the eigenvalues . The numerical  analysis  of the f i r s t  order  solutions

requ i r e s  i t e ra t ion  sinc e the asymptot ic  so lu t ions  as 2 ’— ’ 1

involve the e igenvalues.  However , the p e r t u r b a t i o n  solut ions

can be generated in a form such that onl y a sing le in tegra t ion

from the nei ghborhood of c I to c — 2’ is r equ i red .

Treatment of the per turba t ion  equations involves specif icat ion

of a form for  the quant i ty  R which is the ratio of products of a

length scale and the square root of the turbulent  kinetic energy.  This

situation is in cont ras t  to that prevailing for the f i rs t  order solutions;

in terms of the mean product concentrat ion these can be determined

without  specification ~ f a length scale model. Here for  simplicity

and with the expectation tha t our conclusions will not be affected by

more complex models,we take R 1 which implies that the length

I
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scale is inversel y pro portiona l to the square root of the turbulent

kinet ic  e n e r g y .

The form of the per turba t ion solutions

In addi t ion to the pa rameters which determine the f i r s t  order

solutions , namely r ,  ~~, in , and 2’ , we must  specif y for the

pe r tu rba t ion  solut ions the individual contr ibut ions  to m , i. e.,  p and

• k , the pa rame te r s  4’ and c , and the coeff ic ients  C and ~mo 1 0

However , it is possible to c a r r y  out the numerical  ana lysis  of the

pe r tu rba t ion  so lu t ions  so that for g iven f i r s t  order solutions onl y one

in t eg ra t i on  is r equ i red  wi thou t  a pr io r i  spec if icat ion of C 1 and~~~~.

• To i l lustrat e consider  the solutions for 
~~~~

. in the form

K .
~~~~~~ +(.~.i-) Q~ 1 ~~~~~~~~~~~ ~ i2 

+ 6~1 c 1~;3 
+

6. ~ Q. , 1, 2 (4. 26)t2 o t3

where  
~~in ~~~~(2’) n = p, 1, 2, 3 provide the const i tuent  parts of

the per turbat ion solution Q.(2 ’) . Simila r expressions prevail  for S.

• and G~ . When these forms are substi tuted into Eqs. (4 .2 !)  and (4. 24)

for i 1 and into Eqs. (4 .22 )  and (4 .25)  for i = 2 with 2’ 2’ , we

• - 
obtai n for each perturbation two al gebraic equations for th e two

pairs of eigenvalues in the form (~~/~~) ,  (uç
1/K0) . Values for C 1

and are  requ ir ed if specific values for the pertu rbation

eigenvalues are desired. However , the solutions to the algebraic

equations can he ar ranged to yield

~

-- - --

~
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~ 1/~~~~~ a 11 + C 1 b 11 (4 .27)

= a 12 + C 1 
1)

12 (4 .28)

~2~~ o = ?)1 b
21 ( 4 .29)

1C 2 1K =~~~ b22 (4. 30)

where  the a • .  and h .. coeff ic ients a r e  known and depend onl y on13 1j

the  f i r s t  order  solut ion , on the parameters  p and k , and on

and c . It is thus  possible to assess  readily the sens i t iv i ty  of

the pe r tu rba t ion  ei genvalues to the ext ra pa rameters  C 1 and 7/~
The form of Eqs. (4. ;‘7) - (4. 30) w a r r a n t s  comment.  The

p ’ r cu rba t i on  ei genvalues  c o rr e s p o n d i ng  to large  but f i n i t e  values

of the R eyno lds  n u m be r  •~ re due to two separate e f fec ts ;  the  a 1
and a

12 c o e f f i c i e n t s  a r i s e  f rom the mo lecu la r  t r a n s p o r t  t e r m s  in

t h e  ‘:onserva t ion  equa t ions .  A second e ffec t  is con ta ined  in the  h
1

• 

• and b
12 coe f f i c i en t s  and is associated w i t h  the parameter  C and t h u s

w i t h  the inf luence  of Reyno lds  numbers  on the scala r d i s s i pat ion.

The s i t u at i o n  r ega rd ing  the influenc e of f in i t e  but large Damk~ hler

numbers  is d i f fe r en t  and is seen to be associated with the parameter

alone. Accord ing  to the present  analysis  
~~ 

is proportiona l to

the ratio of t u r b u l e n t  k ine t ic  ene rg ies , (‘~
‘
~~I~~~) with the propor t ional ity

facto r depending on M , i. e., on an integra l  of the d i s t r ib u t i o n  of

produc t th roug h the reac t ing  surfaces  in the fo rm f(c) .
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The physical  s ign i f i canc e of the per turbat ion  ei genvalues

Of p rimary interes t from the numerical results is the effect of

large but f in i te  values of the Reynolds  and Damkohle r numbers , on

the t u rbu l en t  flame speed in the form (~~~/‘
~~~) and on the or ienta t ion

of the flame , i.e., on e. The def in i t ions  of ~3 and K (cf.  Eqs. (4. 1)

and ( 4 . 2 ) )  y ield

~~~~~~ = -
~~ ~~~~~~~~ ~ ‘~~ )  

(4 .31)

tan O ~~~. K . ~ . K.

e . = -* (— ) 
~~~~~ 

+ -~~e (—
~ 

+ (4 .32)
l + t a n S  o .- 0

0 0 0

for i 1, 2 .

Numerical Results

The first-order solutions require only values of the heat re lease

parameter r and of 2’ , and rn; we have assumed a range of values

for r but taken ~ 0. 3 and m - 2 as in I and II. For one case

several values for 2’ are assumed to demonstra te  the relative
0

i n s e n s i t i v i t y  of our results  to the “cold boundary ” condit ion.  The

per turbat ion solutions on the other hand requ i re  specif icat ion of othe r

parameters;  in addi t ion to the ei genvalues 
~ 

and K the ang le 0

appears and there fore  a value for • is required.  Also requ i red  are

valu es  for  C and for the  ind iv idua l components of m , i. e . ,  for p

‘ E quat ion (4. 31) is based on the assumption that the factor

mult ipl y ing (
~~/ )  in Eq. (4. I )  is i n v a ri a n t  wi th  respect to the

pe rturbation parameters and therefore equal to •. 

—- -.~~-- - — —• -——•-~~~~~- -~~~--- -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and k .  Subsequent  appl ica t ions  of th e  p e r t u r b a t ion ao lu t i ons  w i t h  these

quan t i t i e s  specified require  values for C 1 and • Without

complete rati e, nal izat ion we take p k 1 wh i l e  for  • we take  the

s t rong interact ion value g iven in A ppendix 3: ~ ‘ = 0. 1. Generally we assunw

c to be 0.833 but show wi th  one calculat ion the e ffect assoc iated wi thn-io

c 0. 75 . Note tha t in Appendix 2 we discuss  the elements of lamina r

flame theory  used to establ ish these  values which  a re  close to the value

of c = 0. 7 used in I and II.

The asymptot ic  approximat ions  to the f i r s t  o rder  solut ions  in

the nei ghborhood of 2’ = are app lied at 2’ 0.95.  It is found necessa ry

to in i t i a t e  the in t eg ra t ion  of the pe r turba t ion  solut ions  closer to 2’ -~ i

in orde r to achieve  sa t is fac to ry  a c c u r a c y ;  accord ing l y, we take  2’ = 0.98

as the s ta r t ing -p o int for the pe r tu rba t i on  so lu t ions .

For purposes of exposition we consider the case r ~~~~‘ 2’
O 

0.02 ,

c 0.833 to be prototypical  and display the results therefor.  In

Fig. 2 we show the first order solu t ions .  For t h i s  case I~ 87.2 .

K 0.0897 and the angle is found to be 6.45°. In Figs. 3 and 4

we show the pe r t u r b a t i o n  so lu t ions  for Reynolds and Damk6hler numbers

respectively. For the former  we take C
1 1 , an ind ica tive  value.

The per tu rba tion  ei genvalues provide the resul ts  of greatest

ph ys ica l  si gnif icanc e f rom th i s  anal ys is .  In Table 1 we show resul ts

for several  cases, i .e . , for several values of ‘r and 2’ and c

Presented are the coeff ic ients  a .. , 
- 

b . .  (cf. Eqs. (4. 27) -(4.  30) ) 1:om

which  the ratios (13 ./~3 )  and (K . / K ) may be computed. Also shown
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are the ratios of the physically si gnif icant  quantities

and R . ( cf .  Eqs. (4.31) and ( 4 . 3 2 ) ) .  For the u-per turbat ions  we have

again  taken C 1 = 1.

Althoug h we shall discuss the implications from these results in

detail in Section 6, it is perhaps appropriate to make several remarks.

Note that apparently the greatest  sens i t iv i ty  of the turbulent  flame speed

and of the or ien ta t ion  of the flame is assoc iated w ith the influence of

molecular t r anspor t , i. e .,  with  the f-pe r turba t ions .  The extent of

th i s  inf luenc e depends on the heat release, decreas ing as ~ decreases .

• In fact for  ‘r = S it appears that the f i r s t  term in the ser ies  in (

• cannot be cont inued  beyond € = 10
2 

without  ra is ing doubt as to the

val idi ty of the pe r tu rba t ion  analys is .  A value of C = 10 2 corresponds

to R
T 

l0~ if our standard value of a , namely 0.09 , is assumed.

Note tha t the ef fec t  of f i n i t e  Damk~6h1er numbers  inc reases as r dec reases

and that  t he  p e r t u r b a t i o n  resu l t s  are  re la t ivel y insens i t ive  to the value

of c
mo

The inf luence  of f in i te  Damk~3h1er numbers  on flame propert ies

depends d i rec t l y on the magnitude of the parameter  
~~~~ 

However ,

values thereof  on t he  order of l0~ appea r to be requi red  in order  for

the influence of finite reaction rate to be comparable to that of finite

Reynolds numbers.  In addition the K 2-ei genvalues are exceedingl y

small .  T h u s  the changes  in the or ienta t ion of the flame due to finite

Da mkohler  ef fec ts  a re  due essential ly to the 32 —e i genvalues.

_ _  _ _ _ _ _ _
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• 5.  • APPLICATION TO NORMA L FLAMES

We now apply the same techn i ques used for flames undergoing

strong interaction to flames involving onl y d i la ta t ion due to heat release,

i.e., either to normal flames, or to unconfined , oblique flames.

Because the t rea tment  closel y follow s tha t  in the previous  sect ion , we

need onl y out l ine the steps in the ana lysis .  In th i s  case the turbulent

kine t ic  ene rgy  is convenien t l y rep laced by ~ w h e r e  ‘
~~4~~

’( l  - Q ) ~~~+~~~

while the two ei genvalues  to be determined as part of the so lu t ion  are

convenient ly taken to be

= ( a C L 1/ (2c - l ) L 2 ) ( ~ /7~
2

) ( l  - Q )  (5 .1 )

a = Q /( l  - Q )  ( 5 . 2 )

The quantities ~ and Ô determine the turbulent flame speed in the

form (u /q~~) and the ratio of the turbulent kinetic energies downstream

and upstream of the flame , i. e., 
~~~~~~~~~

Equations (3. 1) - ( 3 . 4 )  with the modelling and representation of the

molecular transpo rt terms associated with Eqs. (3.6) - (3.8) provide

• the starting point for the analysis. With 9 = 90° and with the

alterations of the equations as a result of the different eigenvalues ,

Eqs. (4. 3) - (4. 5) are changed in obvious ways. Finally, if the new

dependent variables given by Eqs. (4.6)  are introduced and again ~ is

treated as the independent variable, we find the following first  order

equations:
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- (2 ‘1 
~~~~~~~ 

+ ~ )2 ’(1 -2 ’)  
.

• d2’ s - C -  

‘ d2’ 
- 

S( 1 + ’r2’) 2
~~~

‘~ ) (i +cc 1R~~
_ )) +~~ (2 A. ( R E

2
S)

c ( 1 -c )  o dc

- Z ( c  -2 ’ )  £ ( R E 1 S) )  (5 3)

(5.4)
dc

~~~~~~~~~-~~~~~~~~ = 
cT (~~

• + a ) + ( i( R ( ± ~~
( l + T c )

dc l + Tc dc

T
2

( +  Z ) S
2 

- -
~~
- 

G~~~~~~(l + .r2’)~~) (5 .5)

(5.6)
dc

4 The same perturbation pa rameters C and 6 are retained.

These equations are consistent with Eqs. (4. 7) - (4. 10) if = 0 and if

• 
Q becomes indefi nitely larg e; note that Q—. -l and ~ Q..... 13 if Q, ..~~~.

The perturbation equations

The expansions g iven by Eqs. (4. i i )  a re  again employed with

~ those for f3 and K replaced by

• 

- ~~~~~~~~~~~~ 
+ ( ~ +6 ~ + . . .o I a

• 
• • ( 5 . 7)

Q = Q + ( Q 1 +6 Q 2 +. ,.

— -—-— • •— • —--- —
- -

~~
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When all of the expansions are substituted into Eq s. (5. 3)-  (5 .6),

the terms independent of C and 6 y ield

dS ‘

~~~(
‘

~~ + Q ) 2 ’ ( 1 - 2 ’ )
0 0  ~ (5 .8)

d2’ S ( 1 + -r2’) 2
~~ ’

0

dG C
O O ~~~~~~~~~

(
~~~ + Q )  T _ (5.9)

—. S 0 0 —~dc o l + T c

d~~ G
(5. 10)

dc 0

Equat ions  (5 .8)  - (5. 10) ar e essent ial ly those t reated in I w i t h  the

changes due to redefined eigenvalues and to the introduction of variable

densi ty effects via the exponent m .

Collection of the f i rs t  order  terms in C and 6 from Eqs. (5. 3) -

(5 .6)  y ield the equations for the per turbat ion solutions, namely

o
.2(~~~~

0 
-

~~~~~~~~
) - (Zc - l ) (_ _ ~

_ + ( i  _
~~~~

)

~~
. ~~~. + a . s. p

~~~~~~~~

+ 6 ~~ ( z — ~- (R 0 E2 S )

• - 2(c -2 ’ )  —~~
- (R E S )) (5.11)m o  —. o t odc
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dP D
0 0

(5 .12)
dc o

dG. G G. S.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~dc 0 0 o 1 + T c

o

(5. 13)

dQ. G G. S.
—

~~~~~ 

=
~~~

-
~ ~ - i-)  (5.14)

dc o o o

where  again we use the Kronecke r  delta for compactness:  i = I for

the E-pe r tu rba t ion s , i = 2 for the ö-per tu rba t ions .

The considera tions made previously regarding the determinat ion of the

two sets of per turbat ion solutions by these equations apply in this case.

However, in place of Eq. (4. 19) we find for the function P

R (~ + â ) 2 ’ ( 1- .2 ’ )
= 

0 0 

+ r2’)k (~~M0 (l - Q ))  ( 5 . 1 5 )

For convenience we introduce M • M ( 1  - Q ) and consider it to be
0 (00

a para mete r in the per turbat ion solutions.

The boun dar y conditions

The previous comments concerning spec ification of boundary

conditions at 2’ = 2 ’ and in the neighborhood of 2’-’~ I apply here as

~~~ ±~T1 We should note, howeveZ that~~~ I lii T L
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order solutions for no rmal flames depend somew hat on the value of

this is interpreted as indicating the dependence of turbulent flame

speed for no rmal flames on the method of flame stabilization. Accordingly,

we expect the perturbation eigenvalues to be somewha t dependent on

The solutiona for the range 0 ~ c ~ c << 1 are  g iven by Eqs.

(4. 20) - (4. 22) but Eqs. (4. 23) - (4. 25) are  rep laced by

C = — (1 — ~ ) +~~r ( 1  + Q  ) 2’ (5 .16)
0 0 0

C. —~~~~~ — G  + c r Q . 2’, i = 1  (5.17)
1 1 0 1

z ~‘r ~�. 2’, i 2 (5. 18)

These solutions for the f i r s t  order  equations applied at 2’ 2’

provide the boundary conditions which determine the f irst  order eigen-

values, 
~ 

and Q .  Similarly, those applicable to the perturbation

equations determine the perturbatio n eigenval ues 3~. and Q . ,  i 1, 2.

The boundary conditions for the solutions in the neighborhood of

2’ = I are developed in detail in App endix  1 and involve no arbi t rar iness

if the solutions are to have acceptable behavio r nea r 2’= 1 • Thus

integration of both the f i r s t  order and perturbation solutions is initiated

• at a value of 2’ suitabl y close to 2’ = 1. For simplic ity we repeat our

earlie r assumption and take the quantity R to be unity.

The form of the perturbation solutions and related matters

For normal flames the f irs t  orde r solutions require specification of

the pa rameters r, ~, m and c .  Again in this case we seek the
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pe r t u r b a t i o n  solut ions in a form re qu i r ing  specification of a min imum

number  of additional parameters un t i l  specific values for the p e r t u rb a t i o n

ei genvalues and unt i l  recons t i tu ted  per tu rba t ion  solut ions are desired.

Thus , for  example , we de termine  the Q. solut ions in the form

a.
Q. + (—) 

~ il + ~ iZ + 6
i1 C 1 

Q~3 ÷ 8.2M~~.3 ( 5. 19)

w i t h  s imi lar  forms for S
i and (cf. Eq. (4. 26 )  and comments

app ly ing t h e r e t o ) .  W h e n  these  fo rms  are  subs t i tu ted  into Eqs. ( 4 . 2 1 )

and ( S . 17) fo r  i - 1 and into Eqs. (4. 22 ) and (5 . 18) for  i = 2 w i t h

c • we o b t a i n  two p a i r s  of al g el ) r a ic  eq u a t i o n s  for  t he  pa i r s  of

eigenvalues in the form ~~~~~ ) and (Q./Q ) .  The results are  con-- 1 0 1 0

venien t ly a r ranged as ~n Eqs. (4. 27) - (4. 30),  namely as

a 11 + C 1 b 11 (5 .20)

Q
i h’Qo a 12 + C 1 b 12 ( 5 . 2 1)

= M b 21 (5 .22)

Ô2 /Ô0 = M b
22 (5 .23)

where  the a . . and b .. coefficients depend only on the parameters  d e t e r m i n i n g

the f i r s t  order  solutions and ind icate the sens i t i v i ty  of the pert ur bation

elgenvalues to molec ular transpor t  and to the parameter s  C 1 and M .

The p hysically interest ing results f rom this analysis pertain to the

perturbed va lues for the turbulent flame speed and for the ratio of turbulent

kinetic energy downstream and upstream of the flame. These are found 
-
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from Eqs. (5. 1), (5. 2) and (5. 7) wi th  4~ taken as a constant to be

expressible in terms of the per turbat ion eigenvalues as

u u \ Q .  
~~

‘
.

= -*  (~~~ o ~~~ 
+ ( 5 . 2 4 )

Q~
Q .  = Q ( I  — Q~,0 ) (-

~~
— )  ( 5 . 2 5 )

0

Numer ica l  Resu l t s

We have obta ined numerica l  solut ions for normal f lames based on

our s tandard  values of C 0.  3 • m 2 for  a range of values of the heat

release pa rameter  r . Generall y, we take 0. 02 but for one case

we show the  i n f l uence  of d i f f e r e n t  values t he reo f .  As in  the s t rong

in te rac t ion  case the pe r t u r b a t i o n  so lu t ions  r equ i r e  s p e ci f i c a t i o n  of

addi t iona l  pa r ame te r s;  gene ra l l y, we a s s u m e  c 0. H33 hut a g a i n

for one case we show the e ffect  of c 0. 75. The value of ~ is as s umedm 0

to be 1. 4 (cf. Appendix 3). Finally, we again take p = k = 1.

The numer ica l  solution of the equat ions for normal flames is

found to be inc reas ing ly d iff icult  as 7 increases .  With the s tandard

method for solving d i f fe ren t i a l  equations we use , the permit ted  s tep-s ize

becomes exceedingly small as ‘r inc reases. Thus  prac t ica l  cons idera t ions

l imit  our results to 7 � 4 and to the requi rement  that the asymptotic

solut ions in the nei ghborhood of 2’..... 1 be applied at 2’ 0.95 for

both the f i r s t - o r d e r  and per turbat ion solutions. 

- _~~~~~~~~~~~~ --~~~~~~~~~~ •--~~~~~~~— _ --~~~ 
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We take the case of r 4 , ~~

‘ = 0.02 and c = 0.833 to be
0 mo

prototypical and show the results therefor in detail. In Fig. 5 the f i r s t -

order  solutions a re  g iven while Figs. 6 and 7 give the perturbation

solut ions assoc iated wi th  f in i te  Reynolds and Damk~ hler n u m b e r s

respectively. A gain for the former we use the representa t ive  value ,

C 1 I . Note from Fi gs. 6 and 7 the dominanc e of the per turbed

tu rbu len t  kinet ic  energy,  i. e. , of Q and 
~~ 

over the other

p e r t u r b a t i o n  func t ions .

In Table 2 we present  for a range of solutions the results for the

ei genvalues  and for parameters  of in te res t  based the reon .  The f i r s t

order  ei genva lues , the coef f i c i en t s  a .. and h .. whic h permi t  the

pe r tu rbed  ei genvalues  to he computed , and the ph ys ica l l y si g n i f i c a n t

qua ntities based on the pe rturbed elgenvalues are given. A gain we

shall discuss these re sult s in detail in Section 6 but certain general

remarks can be made here. As in the strong interaction case the

magnitude of the perturbations associated with large but finite Reynolds

numbers increase with heat release but decrease with corresponding

values for Damk~ h1er numbers. Moreover, the effect of the perturbations

on turbule nt flame speed are of opposite sign but on the ratio of

turbulent kinetic energies are of the same si gn. Finally, we note

the weak dependence of the predicted behavior with 2’ and co mo

I

I 
_ _ _ _ _
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6. INT R ODUC J ION OF LAMINAR FLAME PARAMETERS AN !)

COMPARISON WIT H EXPERIMENT

As indicated earl ie r  the behavior  of t u r b u l e n t  f lames  is f r equen t l y

correla ted by expenrn .~n ta l i s t s  in te rms of the c h a r a c te r i s t i c s  of the

classical laminar flame , de termined e i ther  expe r iment al l y or theoret ical ly,

w i t h  the same chemica l  and thermodynamic s i tua t ion  as prevai ls  for

the t u r b u l e n t  f lame in ques t ion .  The implicat ion f rom th i s  pract ice

is that one or both of our p e r t u r b a t i o n  parameters  are  expressible in

te rms  of lamina r flame cha rac te r i s t i c s .

To pursue  th is  implicat ion fu r the r we cons ider  the laminar flame

speed , uL ,  and a measure  of the laminar  flame th ickness , L
L ; from

[ i i , 12] we have

u K (i’ w /p )~ (6. 1)
£ i o max o

L = K (v p /w )~ 
(6. 2)

£ 2 o o max

w h e r e  K 1 and K 2 
are non-d imensiona l  quant i t i es  g iven by the

appropriate laminar flame solution. In the present  con~ext they  should

be t rea ted  as funct ions  of the heat release parameter  7 and as dependent

• on the chemical  kinet ic  model r ep resen t ing  w/w

The quant i ties  u~ and L L g iven by Eqs. (6. 1) and (6. 2) can be

readil y expressed in terms of our per tu rba t ion  parameters ;  we find

from the definitions of C and 6

u~ 
‘
~~~(K~~/aI 3

) ( (/ ô )  ( 6 . 3 )
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= L 2 (K~~a
2 13

) CO (6 .4 )

Equation (6. 3) indicates that u2 is undefined in the f i r s t -order  theory

sinc e C , 6 0 while Eq. (6.4)  is consistent  with the basic notion of

the Bray-Moss  model regarding a thin  laminar flame provided both

the turbulent  Reynolds  and Damk~6hler numbers are  large.

Al te rna t ive ly, Eqs. (6 .3 )  and (6 .4)  y ield

,L L UL 1
E~~~~~~~~~~~~

—

,
, —.

~~~ 
(6. 5)

o q K K a
0 1 2

6 = (
~~~

) 
~~~ K

2

1::3/2 

( 6 . 6 )

whic h show that  our pe r tu rba t ion  paramete r s  are expressible in terms

of the lamina r flame cha rac t e r i s t i c s .

Frequent l y onl y one of the two laminar flame character is t ics

in t roduced  here  a re  used by exper imental is ts  to corre la te  thei r  resul t s ;

in this  case onl y one of our per tu rba t ion  pa rameters  can be eliminated.

We shall illustrate this in detail later.

Strong Interaction

In the case of s t rong in terac t ion  the or ienta t ion of the react ion

zone is the predic ted  quanti ty  most d i rec tl y comparable wi th  experiment.
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From Eqs. (4. 27) -(4.  30) and (4. 32) we find

tan 9 /
9 = 9 -1 ~

1+ t a n 9
0

+ ( b 21 ÷ b 22 ) m o + ... )
or for 9 << 1

( 6 . 7 )

The resul ts  g iven in Table 1 can be used to evaluate the coeff ic ient s

in Eq. (6 .7) .

The value of I~ has been selected -as discussed in Appendix 3 sO

that the predictions of the f i rs t -order  theory for 9 are in good agree-

• ment with the results of Wright  and Zukoski [2]. There are , however ,

no data permitting assessment of the perturbation effects. In this

situa tion it may be useful to consider the counterpart for strong interaction

of the correlation of the properties of normal flames given in [1].

Accordingly, we introduce the laminar flame speed and eliminate the

Damk~hler parameter; from Eq. (6. 1) and the definition of we have

M~~~~~
~~ 

(~~_2.
)  

.—
~ K 1 C

3

so that Eq. (6. 7) becomes
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~ (~ 
- è €  

t
(a

11 +a 12
) + C

1
(b 11 + b 12

)

• M K  ~~o 1 ~~~~~ \

+ (b
21 + b 22

) 
~ 

—r .~ + (6 .8)
3

We el iminate the turbulent  kinetic energy  downstream of the

flame from Eq. (6. 8), since th is  is generally not measured.  For this

purpose onl y the f i r s t - o r d e r  es t i m ate of is needed; from the ratio

the or ien ta t ion  of the flame and the resultant  veloc ity upstream

of the flame, V , we have for 9 << 1
0 0

— P 2
q I~~ 9 V

° ° (6 9)
2 0 2

Thus  Eq. (6 .8 )  becomes

= e~(i - I C  t
(a 11 +a 12 ) + C 1 (b 11 + b 12

) + (b 2 1 + b 22 )

• M K ~~~3 9 2 
V

2

° ° —f. ~, 
+ . .. ) (6. 10)

3 U
t

~~~~~~ ~~~~~~~~~~~~~~~ - - _ _  _ _ _



-
~

------ -- -

43 - •

In Appendix 2 we employ laminar flame theory to provide inter

alia estimates for K 1 and for the quotient ( M u 3) .~~ To il lustrate

the results given by Eq. (6. 8) we take the exponent n ~~. C = 1

and r = 5 and the resul ts  for our prototyp ical case 7 5 . c = 0.02.

With these values Eq. (6. 8) y ields

~ ~~~~~~ 
(~ + C ~l 1 .7  - 1.02(10 2 ) ( V 2

/u~~) -  + ... ) (6. 11)

From E q. ( 6 . 1 1 )  we see that for values of the veloc it y ratio V / u i of

30-40, corresponding to values of ii~ /u~ of 3-4 , the t e rm a r i s i n g

from the replacement of the Damkóhler pe r tu rba t i on -  is comparable to

that due to the f in i t e  Reynolds  number  per tu rba t ion  but of opposite s ign

so that the in sens i t i v i ty  of the ang le of the flame observed by Wrig ht

and Zukoski  [2 1 to a wide va r i e ty  of cond i t ions  is perhaps explicable.

For a fixed value of the  rat io V /u  less tha n 34 a decrease in the
• o L

t u r b u l e n c e  Reynolds  number  leads to an increase  in the ang le of

orientation; the opposite is true for values of the same velocity ratio

*It should be noted that two separate calculat ions  of these quantitie s

can be envisaged.  The o r ig in  of K 1 via Eq. (6. 1) implies that it is

de termined by the solution for the classical laminar flame; on the contrary ,

the  quot ient  M u 3 relates to the dis t r ibut ion f (c )  wi th in  a laminar flame

embedded in the tu rbule nt reac t ion zone in quest ion and thus in pr inc iple

involves a sepa rate calculation. For simplic ity and consis tency wi th  the

assumed insensitivity in the Bray-Moss model of the results to the details

• of f ( c ) ,  we use the same solution for both calculations.
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greater tha n 34. Note that in general the validity of the pe rturbat ion

analysis may be questioned for C~~ 10 2
, i.e., for R T ~ l0~ .

Normal Flames

In considering the implications of our perturbation ana lysis  for

normal flames we focus on the recent correlation of [1] which

relates the ratio of turbulent  to laminar flame speeds to the ratio of

init ial  tu rbu len t  in tensi t y to laminar flame speed for a wide range of

experimental data and thus of turbulence Reynolds numbers.  The absence

in the correla t ion of heat release as a parameter  implies that over the

range of r of pract ical  interest , i. e., 4 ~~ 7 ~ 9 , the var ia t ion of the

ratios in question is wi th in  the scatter of the experime ntal results.

Accord ing l y, we t rea t  our r esults  for  T = 4 as being representa t ive  of

our  pred ic t ions  over the en t i re  range of 1 of interest  and compare

these resul ts  wi th  the data g iven in [11.

The present  anal ys i s  can be recast  to faci l i ta te  that comparison;

Eqs. (5. 1), ( 5 .2) ,  and ( 5 . 20 ) - ( 5 . 2 4 )  lead to

= 

~~O
” Q O

) 

~~~~ ( 1 -I ( Q ~ o(a i2 +c i b i2 )

(6 .12)  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

_
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Equation (6. 12) leads to the anomalous r e su l t  tha t  as ~~
*/u t —~ 0 ,

Ct / u -~~ 0 ;  th is  patholog ical behav io r  is assoc iated w i t h  th e  ass l in ip !  ion
0 £

of a hi gh t u rbu lenc e Reynolds  number  i n h e ren t  in the Bray-Moss  model

and can be removed by heuris t ical ly replacing the left side of Eq. (6. 12)

and appropriate subsequent equations by 6T /u 2
) -

Equation (6. 12) wi th  C = 6 = 0 and wi th  the left side altered provides

the basis on which the value of ‘1 = 1. 4 used here is selected in Appendix 3.

To investigate the effect of Reynolds number given by Eq. (6. 12) we

eliminate M and introduce the laminar flame speed. From the definition

of M and 6 we find that

M
M6 =~~ K~~ 1_ ~2 )  ‘ 

( 6 . 1 3)

3 ’ l + Q

so that Eq. (6. 12) becomes

- 1  
~~~ 

)t 
~~ ( 1 -* (Q (a 12 +C 1 b 12 ) + ( a i i +C 1b 11 )

+ (Q~~~b22 +b 21
) ~~~~ (

~~~~
) 

1 
+

3 l+Q
• (6. 14)

To evaluate the coeff icients  in Eq. (6. 14) we use the results in

Append ix 2 and of our protypical case for normal flames; thus  we let:

r 4, 2’ 0. 02 , • = 1.4, C 1 = 1 , and n = 5. There results

— - 1 = 1 .14 ~~~ (i +(1l .3-O.750 — ) E+ .. .)  ( 6 . 15U
t u~

• - • • -- • - ---- ----
• ----~~-
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Equa tion (6. 15) displays the same opposing effects as shown in Eq. (6. 11)

for the strong interaction case; thus, for q1 /u2 less than 3. 88 a decrease

in turbulence Reynolds number increases the turbulent flame speed

wher eas for q1 /u L greater than 3. 88 the opposite effect is predicted.

Figure 8 shows u / u i calculated from Eq. (6. 15) for C = 0 ,

3 (l0~~~) and 7 (l0~~~). In the reg ion /u~ < 3. 88 , the increase in the

ordinate resulting from these values of C is too small to show in this

figure. Consequently, the perturbation analysis predicts that, at a

fixed turbulence Reynolds number, the ratio of turbulent to laminar

flame speeds initially increases nearly linearly with increase in upstream

turbulence intensity. At higher turbulence intensities the finite Reynolds

number curves drop below this straight line. The curves for C # 0

in Fig. 8 are continued until the perturbation reache s 20%.

We note that the predictions of the theory similar to Eq. (6. 15) but

• for different values of r and of the exponent n in the laminar flame

theory do not appear to differ significantly in a qualitative sense from

those given here.

Figure 9 shows two sets of experimenta l data which approximately

define two extreme s in the correlation of Abdel-Gayed and Bradley [11.

The upper band is from [14] and the lower band from [15], both being

interpreted in the manner of [1]. It has been assumed that the length

scale L in our turbulence Reynolds number R
T 

is the same as that

used in [ ii  to define = u ’ L/v , where u ’ is the root mean square

of the x-wise velocity component. In converting from the abscissa

t 
- -- -—---—- - 

• -- - •

~~
- -

---

~~~~~~~~~~
---

~-.- • •‘.—- ---
•
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u~ /u ’ of[ 1]  it has been assumed that p u~
2
/p q =  0. 3 and that

R
T 

= R
t

/O. 31• Thus f = 0, 3 (10~~ ) and 7 ( 1O~~ ) corresponds to

R t
—4-

~~ 
and R t = 2 x ~~~ 8.8 X 10

2
, respectively.

If the two sets of data are given equal weight then , superficially

at least , a trend suggesting a reduction of tur bulent flame speed at

lower turbulence R eynold s number s might be discerned , as proposed

in [1]. Closer inspection of the data in Figure 9 argues however that

no convincing Reynolds number trend is evident in the data of either

[14) or [15], consid ered separa tely , des pite the fact that each covers

a significant Reynolds number range. There is clearly serious dis-

agreement between data from these sources at comparable Reynold s

numbers and the principal distinction would appear to relate to

experimental configuration and technique. The emphasis of these

remarks is not significantly changed if the other data from [1] is

incorporated in Figure 9.

A comparison between the perturbation solutions and experiment

is therefore not straightforward. If experimental data are chosen from

a particular source such as [14], then the predicted trend with Reynolds

number is not supported. The relatively narrow range of flame speeds

within which the perturbation is valid is comparable to the scatter in

the data [14]. On the other hand the trend predicted by the perturbation

analysis agrees with that reported in [1]. It is important to note that

the form of presentation of the experime ntal data adopted her e is that

- -~~~~~~~~~~- 
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suggested most naturally by the present analysis and not that of

Abdel-Gayed and Bradley (i]. Their abscissa, u i/u ’ , is related

to the inverse of that introduced in Fig. 9 and leads to curves of

broadly hyperbolic character. In consequence, and in contrast to

the present approach, attention is focussed on modest values of

/ u L .

The Influence of the Perturbat ions on the S t ruc tu re  of the Norma l Flame

It is of i n t e r e s t  to cons ider  the influenc e of the p e r t u r b a t i o n s

on the  s t r u c t u re  of the t u r b u l e n t  reac t ion  zone. To show t h i s  in f luence

requires selection of a length scale model. For cons i s t ency  We take

~ £ to be cons tan t .  In th i s  case the x-coordinate is g iven  b y

x ,
‘ 

~~ •~~
_______ _________= a j- - 

~~ 

~~-~~-I 0

‘ ~2 ~~o~
’
~~o~2 ‘- 

+ 
~~ 

J 
- 

+ ... 1 (6 .16)
‘ —  ~~ —, ,— y 2  o;( u / q ) (u iq )

0 0 0  0 00

• where

~ = J ( 2 ’ ) = c d2’
0 ~~ ( 1 +

J i J~(2’) = 

~~ 
~~

‘
~~~ 1+p ~~2 1 = 1, 2 

— ‘.——~--- - - - — --— - -~ - - - - — -~~~-
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We see from Eq. (6. 16) that the predicted spatial distributions within

the reaction zone depend on both the perturbed eigenvalues via the ratios

(Z~~ / ~~*) . ,  i = 1, 2 and on the perturbed solutions themselves via S.(c).

In the spirit of our earlier considerations we eliminate the Damköhler

perturbation in favor of the laminar flame speed; there results

x 
= 

a 
(J~~~E(J 1 + °~~;~ ~o (u /q ) (u /q )

0 0 0  0 0 0

+1( 2 
~~~~~~~ ~~~~~~ + + . .1 13 ! ~~ ~~ C i~~~~) i~~ 

I 0/ 
/L 0 0 0 0

( 6 .  1 7 )  •

If we evaluate the coeffic ients in Eq. (6. 17) on the  basis of our

prototyp ical case for normal  f lames , we f ind

I
O.O79l~ J0 - + 1 1 .Z J  + 0 .556 —

0 £

J
2( -

~
— - 2 . S SJ  )~ + ... ) ( 6 .  1 8 )

M ° I
0

• We again see the competing effects  of the Reynolds  and Damk~ hler

pe r tu rba t ion s .  In Fi g.lO we show the d i s t r ibu t ion  of the mean product

concent ra t ion  acco rd ing  to the f i rs t - o r d e r  theory  and to Eq. (6. 18) wi th

10 whic h corresponds  to the l imit  of va l id i ty  of the pe r tu rba t ion

anal ys i s  for  the assumed value of the per turba t ion  parameter ,

-J ~11T~ • •~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



______________

50

Several remarks regarding Fig. 10 are indicated. Fir st note

that the thickness of the reaction zone is on the order of the reference

length scale L ;  this is in accord with the results of I but we here

explicitly incorporate density effects in the modelling and therefore

have somewhat altered solutions. The effect of the combined Reynolds

and Damköhler perturbations on the structure of the reaction zone

tends to reduce the thickness for the particula r value of the ratio

q /u~ selected. For smaller values of thi s ratio the predicted reaction

zone would be thickened somewhat.

7. CONCLUDIN G REMARKS

Premixed turbulent combustion theory (5-8] has been extended to

include eff ect s of molecular transpor t and f inite chemical r eact ion ra tes .

The corresponding premixed laminar flame propertie s the n arise quit e

naturally as parameters of the turbulent flame formulation, as alread y

found in experiments. It is the first time that this has been demonstrated

theoretically.

A perturbation analysis ha s been made , for large values of

turbulence Reynold s number and Damk~ hler number , and applied to

highly oblique confined flames , in the strong interaction limit, and

to normal or urtconfined oblique flames. Numerical solutions have

been obtained using separate values of the importa nt modelling parameter

• for these two cases .

-••- ~~~~~~~~~~~~~~~~~~~ - --~~~ _ _
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The strong interaction solution yields an expression (Eq. (6. 11))

for the flame angle e as a function of R and V In . It is observed
T o L

that, in the range of valid ity of the perturbation, the perturbation terms

arising from Da and RT 
are of similar magnitude but opposite sign.

The tendency for these terms to cancel each other is offered as a

tentative explanation of the experimentally observed [2] insensitivity

of the flame angle to large changes in the composition and ter iperature

of the combustible mixture.

In the case of normal and unconfined oblique flames the turbulent

flame speed in the form u
~~/u L has been predicted as a function of

turbulence intensity, q* /U
L
, and turbulence Reynolds number , R T

;

see Eq. (6. 15). These are essentially the same variables as those

empioyed in an empirical correlation of experimental data by Abdel-

Gayed and Bradley [1]. The perturbation solution predicts that the

turbulent flame speed at finite R T 
falls below the high Reynolds

number limit by an amount which increases with increasing

and with decreasing R T
. The analysis show s that this effect arises

because of the finite reaction rate terms in the equatioc~, rather than

the molecular transport terms, whose direct in.fluence on U / U
L 

~~

negligible. Equation (6. 15) then shows that the f irs t-order approximation

to the flame speed is valid so long as

R
T

>> 8. 3 q / u ~ 

- ---~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ • • - --
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Convincing support for the perturbation predictions for normal

flames is not found in the experimental data. Individual experiments

appear not to show a trend of 
~o

/U
L var iation with R

T 
although the

scatter of data points is large. On the other hand the predicted trend

agrees qualitatively with that found by Abdel-Gayed and Bradley [1]

from their correlation of experimental data.

-- - - - -_ _
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A PPEN DIX I • The Re im v i o r  as  t I

We consider  the behavior  of thc f i r s t  o rder  and pe r turba t ions

solutions in the neighborhood of c =  1 , f i r s t  fqr  tbe case of s t rong inter-

action and subsequently for normal flames. If Eq. (4. 12) is put in an

approximate form appropriate for ~~~~~~~ 1 , Q~~~O , it may be solved to y ield

S = - A ( l  —~~ ) 
(Al .1)

where  A =~~ (l ~~(1 + 4 ~~~/( l + T ) Z+m
) ) <  0 .  Next the ri ght side of

Eq. (4. 13) can be similarly approximated so tha t with Eq. (Al.  1)

int egra t ion leads to

G = — a A ( l  - ~ ) / ( l  - A) (Al .2)

where  a =((~~r / ( l  + r ) )  - r2 

~
). Next Eqs. ( A l .  1) and (A l .2 )  permit

Eq. (4. 14) to be integrated so tha t

• 
= - a( l  - 2’) / ( l  - A) (A 1 .3 )

Equations (Al )  — (A3) applied at a value of ~~

‘ in the neighborhood of

= 1 provide the boundar’~ conditions for the f i rs t  order  solution and

are employed in I and II. Note that these solutions are free of a rb i t r a ry

constants , the parameters A and a depending only on the elgenvalues

and • In the solution for S a second roo t of t he secular equa t ion

for A is discarded so that S 0 as c— ~ 1; furthermore, in the

in t egra t ion s leading to Eqs. (A 1.2)  and (A 1.3) complementary solutions

_ _  U 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “—~--~~~~~~~~.
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I
;

which have unacceptable behavior as ~~~—. 1 must be suppres.ed,

leaving the particula r eolutionø as the only valid ones. Similar

considerations arise with the perturbation solutions.

As a preliminary remark we recaU tha t earlier we assumed the

parameter R0 to be unity; in addition we note that the quantities

and E
2
(~) and the ratio (17/i’) will approach constant values

as -~~ 1 ; we shall denote these values with the subsc r ipt ~~ . Finally,

the asymptotic solutions for the f i rs t  order functions given by Eqs.

( A l .  1) -  ( A l . 3)  a re  used in the analysis of the asymptotic behavior of the

perturbation solutions.

Equation (4. 15) takes on the following form as ~~~~~~~~ 1:

dS. 1 A 
S.

+ - (1 - A ) K . (Al.4)
dc i - c

where K.

2(c
0 

- 1) 
1 ~ co -

7?~ + 6 . C —

L Z Z c - l  k o i l l t ~mo (l + r)

ZE 2(c -1)
A I ________ 

mo
°il 1- ) .. ~~Zc - l  Zc - 1  E1mo mo

We note that again the complementary solution must be suppressed;

thus the solution to Eq. (A 1.4) is



_ _ _ _ _ _  ~~~~~~~~~~~~ - -

X ( l  - A ) K (l  -
~~~

‘
)

l - 2 X  (Al.5)

With S. determined, the asymptotic approximation to Eq. (4. 17) y ields

dG. G. aK.z 1 ~ 1 Z f i \  aX 2+p
~~~~~~~~~~~~~~~~~~~~ ~ I C ) Oi l i _ A U + T)

dc i - c  o

= L. (Al.6)
I

with the solution

AL .( l  -
~~~~~)

— ( Al .7 )1 1 - A

Finally, a convenient form for the boundary conditions for the

~~~~

. functions is obtained by substitution of Eq. (4. 18) into Eq. (4. 17),

by apply ing the app roximations appropriate for a— . 1 , and by

quadrature; the result is

= G. + K T ~~~ (~~~~~~~) ( 1  - ~~ ~
8 il ~ +r)

2
~~G (Al.8)

Equations (A1 .5),  (Al .  7), and ( A l .8 )  applied at a value of ~ in the

neighborhood of 2’ = 1 provide the appropriate boundary conditions to

initiate an integration in the direction of 2’ = 2’ for the strong interaction

case.

_____________ 
_ _ _ _ _  -~~~~~ - -~~~~~~~~~ 



Equations (Al. 1)-(A1. 3) apply for the f i rs t  order equations for

nor mal flames provided

A =~~ (1 -(1 +4~~~~~~/ (1 +T)2+m)
) 

- (A1.9)

a — ir~~~/ ( l  + r )  ( A l . 10 )

In addition the solutions for the perturbation funct ions S. and G.

given by Eqs. ( A l .  5) and (Al .  7) are retained with

~~~ . O. 2(c - 1 )  Q V
i t maK.= — +— -6 . M + 6 . C —

tZ 2c - 1 k ti 1 V
~ Q mo (i + r) o
0 0

2E 2(c - 1 )A / 2~ mo
-6 . - E ( A l . l l )

i i  I —~~~~ ~2c — l  Zc — I  i~~ ’mo mo

‘xK. ~~~~~~ Q • -

L. = - 

~~~~~~~~~~~ 

+ i + r ° ~_.L) _ 6 .i ( 1 + r ) Z+ P 
~~~ ( A l . i 2 )

Finally, a rela tion for the 
~~~~~

. perturbat ions convenient for numerical

analysis and completely analogous to Eq. ( A l .  8) is obtained from Eqs.

(5. 13) and (5. 14) with approximations appropriate for 2 ’—~ 1 , i .e. ,

G. + ~ (~~~)(l -2’) + 6 .~ (1 + ~~)
2+P 

G (Al.  13)
Q o

We note tha t these re sul ts  for the asymptotic behavior  of the

per turbat ion solutions as ~~

‘ I for normal flames are consistent with
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t hose for the strong interaction case if 
~~ ~~ 

- 1 ,

K 0 , Q M — ~~~~~~‘ 
replacements whic h correspond to e — 900 and

Q becoming indef ini te ly large.  -



APPENDIX 2. De te rmina t ion  of Per turbat ion Pa rameters by

Lamina r Flame Theory

In earl ier  stud ies , Bra y and Moss [5 , 6J evaluate the in tegra ls

1k+3 = C 
W

maX 

f(c) dc , k = 0, 1 (A2. 1)

which arise in the closure of the chemical source term, on an ad hoc

basis. The burning mode pdf , f(c) , ,  is taken to be a simple battlement

shape, broadly cha racter is t ic  of a lamina r premixed flame, while

the reaction rate employs an Ar rhen iu s  form. The requirements  of

the perturbation analysis for similar informat ion are greater and

invite a more rational approach.

The specie. bala nce equation for c in a one-dimensional laminar

flame may be written in the form

~~ U ~~ _
~~~~~~~~ ( p D ~~~~ ) w(c) (A2.2)

whil e continuity assumes the fo rm

pu = th constant (A2.3)

If we assume the Schmidt Number to be unity and introduce the

simplif y ing thermod ynamic description of Section 2, then

~~=p D

= p~~(l + rc) (A2.4)
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whence Eq. (AZ. 2) becomes

in ~~~~~ ~~~~~~~~~ (1 +~~c )4 ~~} = w(c) ( AZ . 5 )

If we introduce

— (1 + T c )  dcS =~~ (A2.6)

and treat c as the independent variable, then Eq. (A2.6) may be

written as

dSS(l -~~~~~~ ) = ( 1 + T c ) w(c)  (A2 . 7)

Follow in g Bray and Moss [5 , 6J, we have

f(c ) 
(~~~~~ S

0 
(dc/dx) )~~

‘ 
(AZ. 8)

or , from Eq. (A2.6) ,

f(c) = 
1 

1 +rc 
(A2.9)

S 
~~ 

-f Ir c)/S ) dc

We note that the integrals indicated in Eqs. (AZ. 8) and (AZ. 9) have been

implic itl y taken to be convergent .  In general this is not the case and a

conce pt analogous to that used in experimenta l turbulenc e, namely gattng,

must be introduced. The consequenc e is that f(c)  is defined onl y for

the range £ ~ c ~ 1 - £ where 0 < < 1;  entries for 0 ~ c ~ I
g g g g

u~
uI.

- _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _
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and for 1 - e ~ C 1 a re  a t t r i b u t e d  to the Dirac delta func t ions  atg

c = 0, 1. However , we shall see that  when f (c )  is used in evaluat ing

the va r ious  in tegrals  of in te res t , the integrals  are  convergent , the

integ ral in the denominator  of Eq. (AZ.  9) is inessential , and

can be allowed to vanish.  According ly, the de te rmina t ion  of S(c)

for a spec ified reaction rate expression , w ( c ) ,  permits  an ent i re l y

se l f -cons is ten t  determinat ion of the moments 1k and _of o ther  quant i t ies

required in the pe r tu rba t ion  anal ys i s .

Spalding [14] iden t i f i e s  ce r t a in  react ion rate express ions  w h i c h  are

both plausible and permi t  anal y tical solution of Eq. (AZ. 7) subject  to

the appropr ia te  boundary condi t ions .  It is thus convenient  and su f f i c i en t

for p resen t  purposes to let

w ( c )  = C
n (l  - c ’

~~~)/ ( l  + t c ) ,  ri~~ 2 (A2. lO)max

where  a is a numer ica l  cons tant  introduced to normalize  w ( c )/ w
max

Then Eq. (A2 . 7) may be recast as

S( 1 - 
~~~~~) A c° (1 - c° ’ ) (AZ. 11)

whe re  A (a~i w / . Z ) is the ei genvalue , reconc iling the f i r s t  order
0 max

equation wi th  the two boundary condit ions

S(0) = S(1)  = 0 .  (AZ .  12)

________________________ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

- _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~ —-- ----~ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-,

By inspection the solution is found to be especially simple , namely

n - iS c ( i - c  )
(AZ. 13)

A n

so that Eq. (AZ. 9) becomes

1 + T cf (c )

c ( l  - C )  
S( 

g 
(1 +~~c) (c ( i - c~~~

1) dc

I c~ 1 - E  ( A Z . i 4 )g g

where  we explic itl y i n t roduce  the gat ing parameter, 1g~
We now use these  solut ions  to obta in  wi th  0 the parameters

C n + 1
c dc

c = 
0 ( A 2 . 15 )mo 1 n + i

c c dc

~ 0

and

~~
o ~ i ~~~~~~ • 

dc (A2 . 16)

Note that C is independent  of 
~r hut tha t  ( M u 3 ) does depe nd on

r via a. In genera l  a numer ica l  evaluat ion of Eq. (AZ. 16) is

requi red .  In addition the parameters K 1 and K
2 a r i s i ng  in Section 6

_ _  

t
L ________ -—— ~-— --- - - ~-— ~~~~- _ _- ——----—

~~
=——-— -- - —--~~~~~- _ - _~~..~_~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
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can be evaluated. F i rs t , by comparison of the de f in i t ions  of

and A (cf .  Eqs. (6. i )  and (AZ.  1 1 ) )  we f ind

( A2 . 1 7 )

Next , if we def ine  L 1 / ( d c / d x )  , Eqs. (6. 2) and (AZ. 6) lead tomax

K — (!~ ‘ 1 + T c
2 \ ai ‘ S

max

= !
‘

~~~~ 
1 + T c  

( A 2 . 18)n - ic ( i  - c  ) max

We show in Table 3 the values of the va r ious  p a r a m e t e r s  of in te res t

for ranges of r and for n 3 and 5 , values cons ide red  r ep resen ta t ive .

_______ 
______ 

I

-_
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APPENDIX 3. Numerical Values of 1’

The parameter

- 

a C L 1— (Zc - 1) L  
( A 3. 1)

mo 2

must be specified before the perturbation solutions can be calculated

and before comparison with experiment can be carried out. In the

strong interaction case, ~ is estimated from the experi nents of

Wright and Zukoski [2] by matching the measured flame angle to that

predicted by the first-order solution. The relevant equation is (see

Eq. (4. 1), (4. 2 ) )

2 
_ _tan 9 = (A3 . 2)

°

0 0

If we use our prototypical case for str ong in teraction to select a value

for ~ , we find with fi = 87. Z , K 0.0897 and • 0. 1 that
0 0

9 = 6. 45° in satisfactory agreement with [2]. Accordingly, we

adopted this value of • for all calculations of the limiting case of

strong interaction.

For normal flames and unconfined oblique flames , • is

estimated from the experimental data of [i~~ . Us ing the first-orde r

solution, we obtain ~ from Eq. (6. 12) a.

u q
= I I ~~ (A3. 3)

U L ’s’ J U
L ~~ (1- ~Q )  L

H 

_ _
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Wit h = 0. 413 and = 1.62 , it is found that • = 1.4. In Fig. 9,

the line I = 0, representing the f i rs t -order  solution with e~ ~ 4,

is seen to compare well with experimental data from [14].

It is evident from (A3 . 1) that the parameter c1 incorporates

uncertain f eatures of both the thermochemical and fluid mechanical

modelling. The significantly different values of d l  necessary to

admit quantitative comparison in bot h the unconfined and strong

interaction ca ses suggest major differences , either in local structure,

f(c)  (and hence c ) ,  or in the 11 universa1~ parameters, for example.

On the other hand , in the light of earlier discussions, the experimental

data are also not without ambiguity. Further investigation is indicated.

I
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Table 3. Pa rameters  Given by Lamina r Flame Theory

n c r M u  K Kmo 0 3 1 2

3 0 .750  0 0.376 1.34 1.94

1 0 .2 13  1.78 2 . 2 5

2 0 .149 2. 12 2 .50

3 0.1 15 Z .4Z  2 .70

- 4 0 . 093 7  2 . 6 8  2 . 8 9

5 0.0790 2.92 3 . 0 5

6 0.0683 3. 14 3 .2 1

7 0.0602 3.35 3 .35

8 0.0538 3.54 3 .49

9 0 . 0 4 8 6  3 . 7 2  3 . 6 3

5 0. 833 0 0.600 0 .969  1.93

1 0.323 1.32 2.32

2 0 .231 1.59 2 .64

3 0. 168 1 . 8 3  2 . 9 0

4 0.135 2 .02  3. 15

5 0 .113  2 .22  3 .36

6 0.0930 2.40 3 .56

7 0.0859 2 .56  3.75

8 0.0766 2.71 3.93

9 0.0691 2 .85 4 .10
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