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EFFECTS OF FINITE REACTION RATE
AND MOLECULAR TRANSPORT

IN PREMIXED TURBULENT COMBUSTION
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Paul A. Libby : ‘
University of California - San Diego, La Jolla, California, U.S. A. 1‘

and

K. N. C. Bray and J. B. Moss
The University, Southampton SO9 5NH, England

ABSTRACT

Previous application of the Bray-Moss model for premixed
turbulent combustion to planar, oblique and normal flames is extended
to include the effect of large but finite values of the two dominant
characteristic numbers, a turbulence Reynolds number providing a
measure of the intensity of the turbulence and a Damkohler number
relating a turbulence time to a chemical time. A classical perturbation
analysis involving two small parameters proportional to the inverse

of these two numbers is carried out to account separately for the effects

Al e i

of molecular transport and of altered scalar dissipation and for the

effects of finite chemical reaction rates. Two limiting cases corres-

ponding to highly oblique confined flames and normal or unconfined
oblique flames are treated. Of particular interest in the former case

is the effect of the perturbations of the predicted orientation of the




turbulent reaction zone. For the unconfined flames attention focuses

on the effect of the perturbations on the turbulent flame speed and on

the change in turbulent kinetic energy across the reaction zone. The

‘ characteristics of the related lamin~.r flame are introduced so that the
theory can conform to the practice of experimentalists in correlating
their results for turbulent flame behavior in terms of such laminar
flame characteristics. With respect to unconfined flames, for which
considerable but often contradictory experimental data are available,

the perturbation analysis appears to yield qualitative agreement with

a recent correlation of experimental data showing the effect of turbulence
Reynolds number. However, a comparison with results of individual

experiments is inconclusive.
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1. INTRODUCTION
Numerous experimental studics of the propagation of turbulent
flames into premixed combustible gas mixtures employ the properties
of laminar flames to correlate the observed turbulent flame
speeds. For example, Abdel-Gayed and Bradley [1] recently
presented a correlation of a large amount of experimental data,
involving many different combustible mixtures, in which the ratio
of turbulent to laminar flame speed is presented as a function of the
ratio of laminar flame speed to turbulence intensity and of a turbulence
Reynolds number. Other experimental data, for example, that of
Wright and Zukoski [2], areinsensitive to factors which are known
to influence the laminar flame speed. Howevgr. it is beyond dispute
that a regime exists in which the turbulent flame speed is strongly
influenced by the corresponding laminar flame speed. “.}
A successful model of turbulent flames, having any claim t; : ‘3
generality, must be able to predict these effects, and must thergfore
include the relevant fluid mechanical and chemical phenomena. On
the other hand, existing models (Borghi and Moreau [3], Pope [4]
and Bray and Moss [5, 6]) generally neglect molecular trélnsport
and effects of finite rates of combustion reactions, and treat only the
limiting case where the time-average rate of heat release is controlled

by turbulent mixing. Because the properties of a laminar flame depend




upon a balance between finite rates of molecular transport

and chemical reaction, it follows that comparison between
predictions from such theories and experiment is at best inadequate
and incomplete.

Another problem, of considerable practical importance, is the
prediction of the limits of stable combustion. These limits are known
to be strongly influenced by chemical kinetic factors, and may also be
dependent on Reynolds number, providing a further incentive to improve
current combustion models to include these effects.

The objective of the present work is to extend the model of premixed
turbulent combustion, developed and exploited by the present authors
(Bray and Moss [5, 6], Bray and Libby [7] and Libby and Bray [8]), in
order to include effects of a finite reaction rate and of molecular
transport, and to compare predicted trends with those observed
experimentally. The Bray-Libby and Libby-Bray references will be
cited repeatedly and are therefore denoted I and II.

Our presentation is organized as follows: we first revie;.w briefly

the Bray-Moss model and then discuss the fundamentals required

for the inclusion of f{inite but large values of the two characterizing
parameters, a turbulence Reynolds number and a Damkohler number;
these are taken to be infinite in previous applications of the model

: and accordingly lead to a first-order theory. Sections 4 and 5 describe
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a perturbation analysis for the two limiting cases of planar flames

we consider seminal: highly oblique confined flames and normal or
unconfined oblique flames. In the numerical computation of these
cases, values for certain parameters are needed. [ere we employ
the values suggested by a comparison of the predictions of the first
order theory with experiment. Section 6 relates the application of
the perturbation analysis to current methods of presentation of
experimental data and incorporates the relevant laminar flame theory
in order to provide estimates for several of the parameters which are

thereby encountered. Finally, conclusions are drawn from the analysis.

2. BRIEF DISCUSSION OF THE EXISTING MODEL
For completeness and to provide the requisite background for
the developments presented here we discuss the general features of
the Bray-Moss model of premixed turbulent reactions and its application

to plane flames. Details are in Bray and Moss [5, 6]
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and in I. The model utilizes a series of assumptions; some relate
to the aerothermochemistry of the flow and are standard in the
combustion literature. Of central importance in this regard is the
result that the instantaneous thermodynamic state of the reacting

mixture depends solely on a reaction progress variable c, in

particular
= Flc) = To(l + Tc) (2.1)
-1
P=P(C)=p°(l+f<:) (2.2)

where T is the temperature, P is the mixture mass density and the

subscript "

o' denotes conditions upstream of the reaction zone where
¢ 0. The quantity T plays an important role in the description of
the phenomena; from Eq. (2.1) we note that 7 = (Tm/To) -1, with
T_ the temperature downstream of the reaction zone where c = 1.
Values of T of practical interest are from 4 to 9. The progress variable
¢ can be considered to be the mass fraction of the product of the one-step
reaction normalized by its value when reaction is complete; thus ¢
will usually be loosely termed the product concentration.

A consequence of the dependence of the instantaneous state of the
gas mixture on the value of ¢ is that the rate of production of product.l

i.e., the source term in the conservation equation of product, is also

a function of ¢ alone, denoted w(c), with a maximum value wmax .
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The Bray-Moss model is based on considerations of the
probability density function for the concentration c. Ata given
spatial location within the reaction zone this pdf will involve
a partition among unburnt (c = 0), burning (0<c¢< 1),
and all burnt (c = 1) mixtures. Strengths of o, ¥, and B are
attributed to each of these respectively. The assumption that the rate
of chemical reaction is fast and thus that the ratevof heat release is
determined by turbulent mixing implies that ¥ << 1, Accordingly, the
pdf of the concentration ¢ is dominated by delta functions at c = 0, 1.
The combination of the dependence of thermochemical quantities on
c alone, together with a model for the probability density function for ¢,
permits quantities of fluid mechanical interest to be readily expressed
in terms of the mean product concentration, g, with corrections of
order Y depending on integrals of the pdf denoted f(c) within the
interior range 0<c < 1. Because it only appears within such integrals,
details of f(c) are inessential, Similar considerations apply to the
function describing the chemical reaction wi(c).
In I and II Favre-averaging is employed (cf. Favre [9])
because of the resulting formal simplification of the describing equations.

Thus, for example, we have

Pe’e" Ip =T =C)ay(l 1) M (2.3)

w=w y 1 (2.4)
max 3

” - P <5

cw ywmaxu‘} c 13) (2.5)

e —— e —— e —




where M and I denote integrals of the sort alluded to, namely

k

! -1
M = S c(l =c)(l +1c) f£(c) dc (2.6)

0

1 k 1
I = Q c wic)w f(c)de, k=0, 1 (2.7)
k+3 Y0 max
and where () and ( )" denote mass averaged and fluctuating

quantities respectively.
In formalizing the assumption of fast chemistry, it is convenient
to introduce a Damkohler number, Da, defined as a ratio of a turbulence

time scale to a chemical kinetic time scale, in particular

~%
Da = I, P !'o/poqo (2.8)

where Lo is a length scale characterizing the large eddies and ao is

the Favre-averaged turbulent kinetic energy, i.e., E = ¢ pu; uc'; . Now
for fast chemistry Da >> 1 but ¥ Da = 0(1) .
The formulation of the conservation equations based on these

assumptions focuses on the equations for turbulent kinetic energy, ?1' ;

the mean product concentration, :: and the intensity of the product

fluctuations, Pc’c’. A closure problem exists so that some terms
must be modelled. At the present time a gradient approximation with

an eddy transport coefficient based on the Prandtl-Kolmogoroff model

"In the course of the analysis the tilde is also introduced to denote

several new variables. No confusion should result.
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is employed with a modification to account, at least roughly, for variable

density effects. We have (cf. [8])
o, =, p
ve=2aq £,(p /po) (2.9)

where a is a constant, 11 is a scale of the large eddies within the
reaction zone, and p is an exponent to be assigned. With Eq. (2.9)

a typical flux term becomes

pu’g lp=s UT(Bg/Bxi) ' (2.10)

In the calculations of I and II molecular transport is neglected,

implying consideration of an infinite turbulence Reynolds number,

H

=a s 2,11
RT qo o/vo ( )

where V is the molecular kinematic viscosity,

There remain to be considered the dissipation of turbulent kinetic
energy and of the concentration fluctuations. With respect to the former,
denoted 5 , the nature of the equations indicates that within the thickness
of the reaction zone the dissipation of turbuient kinetic energy must be
negligible as is found to be the case when turbulence undergoes rapid
distortion (cf., e.g., Batchelor [10]). On the contrary the annihilation
of concentration fluctuations by molecular processes is found to be
important and is modeled close to the usual fashion, but with variable
density effects included, at least roughly; we take

- = k~f——
X =C(p/p°) qipc c /!-2 (2.12)

-
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where zz is another length scale attributed to scalar dissipation and
where k is another exponent to be assigned.

The ecuations which result from these considerations are specialized
and subsequently applied to planar turbulent flames. In the case of
normal flames and unconfined oblique flames no additional assumptions
are required; in the case of confined, oblique flames of specified
orientation identified with the angle 6, 6= 90° for normal flames, an
additional approximation, namely that the mean streamline is undeflected,
results in significant simplification and yet is physically reasonable for
confined turbulent flames, e.g., as in Wright and Zukoski [2] A con-
sequence of this assumption is that there results an explicit expression
for the Reynolds stress, i.e., m in Favre-averaging, in terms
of the mean product concentration. An important physical implication
which derives from this consideration is that the acceleration through the
reaction zone of a confined oblique flame is due to the gradient of Reynolds
stress, an implication not based on a gradient assumption but rather on
the assumed kinematics of the flow. This contrasts with a normal
flame in which the pressure gradient, although thermodynamically
negligible, accelerates the gas. The difference in mechanism in the
two cases suggests that the appropriate models of the laminar flame
within the turbulent reaction zone used to estimate f(c) may likewise
be different.

Although for brevity we characterize flames as either oblique
or normal, these two cases are considered to correspond respectively

to those with constrained and unconstrained mean streamlines, since an

A G S  y eee S A MBET ¥ et S e et
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oblique flame involving a constant tangential velocity and thus a curved
mean streamline corresponds exactly to a normal flame insofar as our
analysis is concerned.

The orientation of the confined flame determines the relative
importance of two competing effects related to the interaction of the

turbulence and the heat release associated with chemical reaction,

If the flame is nearly normal, dilatation dominates and the turbulent
kinetic energy downstream of the reaction zone is less than that in ;

the oncoming stream. On the contrary, for oblique flames the generation

of turbulent kinetic energy by interaction of the Reynolds stress and
the gradient of the mean velocity dominates and the turbulent kinetic
downstream exceeds that upstream. This situation leads to an important
special case, termed strong interaction, in which the downstream
kinetic energy overwhelms that in the oncoming stream.

The resultant mathematical formulation leads to a double eigenvalue
problem; the turbulent flame speed in the form :o/a‘f and the ratio
of two turbulent kinetic energies, Q= Em/a’o , are predicted for

normal flames. In the strong interaction case the ratio of the turbulent

flame speed to the turbulent kinetic energy downstream of the flame, §
'Jo/?ff, and the orientation of the flame 6 are given as part of the
solution. Thus the mathematical formulation corresponds to a more

complex version of that arising in laminar flame theory in which a

single eigenvalue, involving chemical kinetic and fluid mechanical

quantities, is predicted.
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In I and II considerable attention is devoted to comparison
between prediction and appropriate experimental results. As indicated
earlier this comparison is limited for a variety of reasons including
the limitations of the theory. Nevertheless, in Il a comparison between
the orientation of flames in the strong interaction limit suggests that
the two exponents incorporating at least roughly variable density effects
in the modelling in the form (p + k) should equal two; the implication
from this result is that the usual modelling should be altered when

significant density variations occur.

3. INCLUSION OF FINITE DAMKOHLER AND REYNOLDS NUMBERS

We now consider the extension of the previous application of the
1 Bray-Moss model to planar turbulent flames so as to include finite
values for the two characteristic parameters, the Damkohler and
Reynolds numbers. The flow we consider is shown schematically in
Fig. 1. The Favre-averaged balance equations incorporating the

assumptions discussed earlier are as follows:

Continuity:

- A~ p~
ua = u
P o o

Species:

BRSPS B
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Species fluctuation:

"o e
" o dc "

—~ d (e_c c
e S =4 = —_— 5
Pu s = } 2pPc u e 2c¢cw

L orrd 2L (oo 2 ) %
- (pc’c"u) 425 (pDe ax>'x (3.3)
Turbulence kinetic energy:

—“’_dE:-—// Ilgg-_—md_’;

P u e pu u o pu v i

d n " " d " T
-— + = - 3.4
S B pu'y e N oty e ) -0 (3.4)
To complete these equations the modelling of the turbulence
terms alluded to earlier must be incorporated. In addition, for present
considerations the terms associated with the molecular transport

coefficient, pD, and with the viscous stress tensor

2 ava (dva BVB\

f zaZu— b6 +ul=— + — (3.5)
9 d Ox
opf 3 xB af xp Xy

and the effect of finite Reynolds numbers on the scalar dissipation must

be incorporated. In doing so and in anticipation of a perturbation treat-

3

(o]

a1 il
lo/vo) =(aR_)

ment we introduce a small parameter € = (a E T

a second perturbation parameter will be

=1
é)

6 =(a I3Wmax lo/Poq o (3.6)
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To treat the extra terms we make several additional assumptions:
i) The molecular Schmidt number is taken as unity so that pD=p .
ii) The product pp is taken as constant so that pp = po“o'
v=v_(1+ Tc)z, and V= v, ((1 P R 'c‘)) +O(Y).
iii) The scalar dissipation is modified to include a Reynolds number

correction go that (cf. Eq. (2.12))

- =, k~ T/ N T
X -C(p/po) q pcc I +(ClU/aq zl)//ll2 (3.7)

iv) The correlation c”(dc”/3x) is replaced by #d/dx(pc”c”/p) with

the consequence that

~

e .py 4 4 (pe'e”
pDax i dx +c:lx pve’ %pvonx( 3 >

Bat pvc’ = pv_<(1-3)T(T+2) +00), pc’c”/p = S(1-23)+0()

so that

~%,
: D=7y Lo 1+
| pa’pT\T/( re)
%1

Pl L
v,

T(((I-ZE)-Cl-cT)(T+2)-§(l-2:)(l+rg)) &

1+7c -
- pu¢RE, £ (3.8)

%

where R = (Eo "o/ai‘l) and where E, = El(:) is implicitly
defined. Two contributions to this mean molecular transport

term can be identified; the first is associated with the mean

A R v e S ———
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viscosity coefficient, the second with fluctuations in that coefficient.
Both can be readily incorporated with the single reasonable

assumption cited here.

i\ G S -
v) The correlation c”c”(dc’/3x) is replaced with (1/3)d/dx (pc” /p)

with the consequence that

/I3
» 9C o ,, dC i v l _g_"Pc \
phe x e dx+%dxpuc -6pouo‘rdx\ ; )
— ~ ~ ~ 3 "'a
But ch”Z PV c(l-c) '<l +2T+1'2- 1'(1'+2)c>+0(7). pc’ 7 /p =

c(1-2)(1-22) + O(Y) so that

pDc” g—x pv ER(1+TC)p(C(1-c)T %(r+2)

3 Lter +72--r('r +2) ¢

te +r€;> g&
(I +7c)

————

v/ ~ l ~ ~ / 5
+%a_1+2~r+72-'r('r+2) c-;(l +rc)(1-2c)>di -L°—>)

)
pv cREzg—:- (3.9)

where EZ(E) is implicitly defined. Note again that we are able to
incorporate without difficulty the molecular transport of fluctuations
in concentration due to the mean and fluctuating viscosity coefficient.

vi) The description of the flux of turbulent kinetic energy due to

molecular processes as contained in the term vo:fal is more
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. 3 . . *
difficult to rationalize. However, we incorporate both the effect
of fluctuations in the viscosity coefficient and the transport of

turbulent kinetic energy by the mean molecular coefficient.

Without full justification we take at least provisionally

r 4 «» da T 7 dv  —~ d ~
i — — — .1
v £ 1 3 pvu dx + pVv +pVv q (3.10)

The effective transport coefficients pvu”’ and pvv' can be

computed by application of the approach in II involving self-

consistent estimates for the velocity components of packets
of unburned and fully burned gases within the reaction zone.

We find

” s d:
pvu = - vavo‘r(1'+ 2) e + O(7)

vavor(1+2) ~ i

" _ dc
e R tan 8 dx o \
so that
2 |
e - 4 1 \ ~ 2 dc !
= - = ™ (r+ £
o1 vatR((3 gL (£)
v_ dq ~ p
- — + 3.11
Vo dx) (1 +7c) ( )

Y
In order to treat the flux of turbulent kinetic energy as thoroughly
as that of mean concentration and mean intensity we would need
an extension of the Bray-Moss model to a joint velocity-concentration

probability density function. '
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vii) The viscous dissipation @ is neglected even at finite Reynolds
numbers.

With these preliminaries we are prepared to proceed with the

treatment of the effects of finite Damkohler and Reynolds numbers.

4. APPLICATION TO THE CASE OF STRONG INTERACTION

We apply the equations which result from imposition of the
several considerations discussed earlier to the case of oblique, pﬁlanar
turbulent flames under conditions such that the turbulent kinetic energy
generated by shear within the reaction zone overwhelms that in the approach-
ing stream. In this case, which is termed strong interaction, it is convenient
to replace q by Q=(Q- Q_)/(1-Q), where Q= E/Ho . The two
eigenvalues which are to be determined as part of the solution and which

provide predictions of physical interest are

-

ﬁ:(ac_zl/((zcm-l)zz)) @ /3% (4. 1)

k=T2/5_ tan’ o (4.2)

where cm — 14/13 . These two eigenvalues determine the turbulent flame
speed as a multiple of the turbulent kinetic energy downstream of the
flame and the orientation of the flame with respect to the oncoming flow.

For this case Eq. (3.2) becomes

PV ~ Tw
- S el de\ max_ 3

-

PESFORPIFES S




which will prove useful for subsidiary calculations.

used to eliminate the term involving w
max

we have the equation

{/ p

\

._qt

-
dx

Equation (3.4) becomes
4P 45

dx \ _ ~ dx

p

o O

If Eq. (4.3) is
from Eq. (3.3),
de d /"1 de
e (dx'dx\ dx /
pu
(o o)
Bu (1-Q)c(l-c) ‘ A
& \ -~ ~ d
v (l+1'c)l+m c(l-c)/
4
N d T de )
b ))”(2 (—=rE, &)
o pu
O O
PV ~
~ d T dc \
-3l -c)dx( L RE, dx)) (4.4)
P u
o o
3
(€1 -Q)1 2~ de
\ sl -KT C/dx
1+7c
J
PV kv_ti(r+2)
dx ~ 3 ~
P u u
O o o
R (o P
(= & E-x-)(lﬂ'c) (4.5)
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where P =%(1 +7c)M;

m=p +k; and

- SR
€=%pu"“/pQ

~
We now introduce new dependent variables and consider c as

the independent variable; let

(va/pouo) (dc/dx) i

9]
"

G

h

(va/pouo) (dQ/dx) (4.6)

D = (pUT/pouo) (dP/dx)

The treatment of ¢ as the independent variable implies that the spatial
distributions which prevail within the reaction zone may be found
a posteriori by quadrature from the first of Eqs. (4.6) to yield x = x(¢).

Equations (4.4) and (4.5) become the following first order equations:

dD D ds f(1l-B s -2
i e et Voo ~ 24
de s de S(1+70)
rb
: (1 o st } {1 208 R —"-/)
| : -~ ~ /N l 174
- s o |
|
+t(2—d-(RE e dfe. ~o)-S (REIS)> 4.7)
~ 2 m ~
dec dc
& =§ (4.8)
de
|
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86 G, (Ru-Br 27 (L R((gmzen/n.
& * 1 +71¢ dc

721 +2) (1 +7¢) §° +;‘-’- G)(l + TP (4.9)

g

8._¢ (4. 10)
a ¥

The perturbation equations

Equations (4.7) - (4. 10) are in a form suitable for a perturbation

£ 3

analysis. The appropriate expansions are as follows: £

Q=Q +€Q 5
S=So+€Sl +652 teoe

= +C.'
G=G_ +eG, +6G,

P=6(Po+nao )

D=6(D +--0)
o

™>
1]

Bo+¢ﬁl+652+... (4.11)

=
]

K +€K, +06K_ +...
o 2

1

7=6(7°+.-.)

e e S ..

C =C +¢.l |
m mo

M=M +.¢.
o

R =R L
o

4'-Although not required at this stage in the analysis, the x-coordinate

must also be considered expanded according to x(T) = xo((‘:’l + (xi(?') 4

ze(é') I
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Note that not all of these expansions are independent but they are

formally consistent as shown.

When Eqs. (4.11) are substituted into Eqs. (4.7)-(4.10),

the terms independent of € and 6 yield:

dso ﬁo(l -Qo)c(l -c)

el st (4.12)
& g (Larnttm
o

e ¢ €1-0)7

~° -§—°=- —°—-n0122'> (4.13)
dc o l1+7Tc
dQ  G_

sl e
dc o

which are the equations for the strong interaction case treated in I and
Il when ¢ is taken as the independent variable. The solutions are

subject to boundary conditions which we shall (.scuss subsequently

~

and yield as eigenvalues Bo and Ky

Collection of the first order terms in € and 6 in Eqs. (4.7) -
(4.10) yields the following equations, in which for compactness we

employ the Kronecker delta bij , with j =1 corresponding to the

€ -perturbation and j = 2 to the §-perturbation:

dD D dS, ds
8 (=P -52) = - e, ‘”("" e
dc o dc dc

d ~ d N
+6 — - Q) — .
il (2 ~ (RoEzso) 8 (cmo € ~ (RoElso) /
dc dc
(4.15)
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dPo D.:>
soptll v (4.16)
dc o
=l v e o
~ i .\ = i ~ \
dc So C‘o So 1 +71¢ e Ko
-0, - R (itanze +1\|c ;
il ~ o 3 o J "o
dc
rirr2) vroyst s L g )(1 +1O)P
o V o
o
(4.17)
a6 &6 s
~t. 2. =) (4.18)
dc o o o’

For the perturbation solutions corresponding to finite Reynolds numbers,
i.e., to €, i=1, Eqs. (4.15), (4.17), and (4.18) are three equations

for 8., G

, and Q.. For the perturbation solutions corresponding
1 1 1

to finite Damkohler numbers, i.e., to 6, i = 2, we must evaluate Po
and Do . Equation (4.3) and the definition of P lead to
M q

—=) (4.19)

=(1 -Q)c(l-c) g
%

P
o

R, (

(1 +79)"

where @ = (aCl /(2c _=1)4 ), taken to be constant. The parameter
1 mo 2
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® appears in1and II and contains several empirical constants
evaluated from the phenomenology of turbulence for constant density
flows. Equations (4.19) and Eq. (4.16) determine Do so that the
left side of Eq. (4.15) can be expressed in terms of the first order
solution. Thus again Eqs. (4.15), (4.17) and (4.18) become three
equations, in this case, for SZ’ GZ' and 52.

Note that the last factor in Eq. (4.19) involves explicitly the
ratio of the turbulent kinetic energies downstream and upstream of
the reaction zone, a ratio large compared to unity in the strong interaction
case being considered here. However, we avoid specifying this ratio

a priori by introducing a new parameter, 7720 = (‘l’MoEm /Eo) .

The boundary conditions

In terms of the spatial coordinate x, boundary conditions are

imposed at £~ which correspond in terms of ¢ to 0, 1. In addition
our basic formulation involves the well-known 'cold boundary problem"

which requires for its resolution specification of a value of ¢ = W

~

for ¢ < c, no chemical reaction occurs.” In the present context this
condition corresponds to specification of a mean ignition temperature.
In T it is shown that for the highly oblique flames associated

with the strong interaction case, the characteristics of the

flame are essentially independent of Zo » a physically satisfying result.

“This condition implies that at ¢ = go the dependent variables

are continuous but with 'jumps'' in their derivatives.

T
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Since the describing equations both for the first order and
perturbed solutions can be readily solved for 0 s ¢ < :o <<'1l, our
boundary conditions effectively apply at :o' 1.

Consider the solutions in the range 0<7¢ < E‘o << 1; if the

right side of Eq. (4.3) is set to zero, we find

S =¢ (4.20)
o]

and subsequently from Eq. (4.15)

2 2 33\ )~ .
“s2r4T -Zcmo(l+1'(‘r+5)) SNae 1) (4.21)

9]
]

S, =0 (4.22)
Furthermore, Eqs. (4.13) and (4. 14), simplified as appropriate for

c~0, Qo~ 1, yield

G =-(1- 50) (4.23)

Similarly, if Eqs. (4.17) and (4. 18) are combined, quadrature leads

to the result

G, =Q.2-6G, i=1 (4.24)
=0, i=2 (4.25)
provided it is recognized that Ro ~1,.

Equations (4.20) and (4.23),applied at ¢ = go’ provide the boundary

conditions for the first order solutions already presented in I and II and
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determine the eigenvalues {‘Ain and Ko . Likewise, as we shall sce,
the pairs of equations, Fqs. (4.21) and (4.24) and (4.22) and (4.25),
determine the perturbation eigenvalues.

The boundary conditions to be imposed at the other end of the
range of E', i.e., in the neighborhood of < = 1, are more complex;
their detailed consideration is discussed in Appendix 1. For preser;t
purposes it is sufficient to note that the asymptotic behavior of the first
order and perturbation solutions as ¢ ~ 1 is such that no arbitrariness
is involved. Accordingly, a numerical integration initiated in the
neighborhood of C =1 can be carried out for decreasing ¢ with
the boundary conditions at <= go satisfied by appropriate selection
of the eigenvalues. The numerical analysis of the first order solutions
requires iteration since the asymptotic solutions as ¢ ~ 1
involve the eigenvalues. However, the perturbation solutions
can be generated in a form such that only a single integration
from the neighborhood of < ~ 1 to ¢~ Elo is required.

Treatment of the perturbation equations involves specification
of a form for the quantity Ro which is the ratio of products of a
length scale and the square root of the turbulent kinetic energy. This
situation is in contrast to that prevailing for the first order solutions;
in terms of the mean product concentration these can be determined
without specification of a length scale model. Here for simplicity
and with the expectation that our conclusions will not be affected by

more complex models,we take Ro = 1 which implies that the length
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scale is inversely proportional to the esquare root of the turbulent

kinetic energy.

The form of the perturbation solutions

In addition to the parameters which determine the first order
solutions, namely T, €, m, and ?:'o, we must specify for the
perturbation solutions the individual contributions to m, i.e., p and
k , the parameters ¢ and Cmo , and the coefficients Cl and mo .
However, it is possible to carry out the numerical analysis of the
perturbation solutions so that for given first order solutions only one
integration is required without a priori specification of Cl and mo .

To illustrate consider the solutions for Gi in the form

B. K.
N O Y (T
di_bilo'lp+<i§ ) Qi +(xo) G, +6,,C,8; ¢
(6]
612 mo 013 s H=l,2 (4.26) J

where 5.m = ain(Z) , n=p, 1, 2, 3 provide the constituent parts of
the perturbation solution ai(:) . Similar expressions prevail for Si
and Gi' When these forms are substituted into Eqs. (4.21) and (4.24)
; for i=1 and into Eqs. (4.22) and (4.25) for i =2 with ¢ =¢_, we

obtain for each perturbation two algebraic equations for the two

pairs of eigenvalues in the form (éi/po) > (Ki/"o) . Values for Cl

and 7/(0 are required if specific values for the perturbation

eigenvalues are desired. However, the solutions to the algebraic

equations can be arranged to yield
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fil/ﬁ°=all+clb“ (4.27)
xl/x°=a12+clbl2 (4.28)
B,/B, =M b, (4.29)
"z/"o = b (4.30)

where the aij and bij coefficients are known and depend only on
the first order solution, on the parameters p and k, and on ¢
and c . It is thus possible to assess readily the sensitivity of

mo

the perturbation eigenvalues to the extra parameters Cl and 7/70 .
The form of Eqs. (4.:7) - (4.30) warrants comment. The

prreturbation eigenvalues corresponding to large but finite values

of the Reynolds number are due to two separate effects; the a

11

and a5 coefficients arise from the molecular transport terms in

the conservation equations. A second effect is contained in the b“
and b12 coefficients and is associated with the parameter Cl and thus
with the influence of Reynolds numbers on the scalar dissipation.

The situation regarding the influence of finite but large Damkohler
numbers is different and is seen to be associated with the parameter
7&0 alone. According to the present analysis Mo is proportional to
the ratio of turbulent kinetic energies, (3@/30) with the proportionality

factor depending on Mo » i.e., on an integral of the distribution of

product through the reacting surfaces in the form f(c).




28
The physical significance of the perturbation eigenvalues

Of primary interest from the numerical results is the effect of
large but finite values of the Reynolds and Damkohler numbers, on
the turbulent flame speed in the form (KO/EE) and on the orientation

of the flame, i.e., on 8. The definitions of B and K (cf. Eqs. (4.1)

and (4.2)) yield

(Eoliﬁ)i =-4 (G'O/Ef ) (B, /B) (4.31)
, tan® g K. ,B. K.
o =k o_ (Tl-+_l) ~ .4 (2 +L) @.32)
i 2 K o\~» K /
1 +tan” 6 6] o ! o
o o o

for i =1, 2.

Numerical Results

The first-order solutions require only values of the heat release
parameter T and of 'E'o, and m; we have assumed a range of values
for T but taken € =0.3 and m = 2 as in land II. For one case
several values for 'E‘o are assumed to demonstrate the relative
insensitivity of our results to the ''cold boundary'' condition. The
perturbation solutions on the other hand require specification of other
parameters; in addition to the eigenvalues éo and Ko the angle 90

appears and therefore a value for ® is required. Also required are

values for % i and for the individual components of m, i.e., for p

.':Equation (4.31) is bhased on the assumption that the factor
multiplying (a'm/'ﬁ'(z)) in Eq. (4.1) is invariant with respect to the

perturbation parameters and therefore equal to ®.
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and k. Subsequent applications of the perturbation solutions with these
quantities specified require values for Cl and 7)(0 .  Without

complete ratinnalization we take p = k = 1 while for ® we take the

strong interaction value given in Appendix 3: &= 0, 1. Generally we assume
e to be 0.833 but show with one calculation the effect associated with
el st 0.75. Note that in Appendix 2 we discuss the elements of laminar

flame theory used to establish these values which are close to the value

of B = 0.7 used in I and II,

The asymptotic approximations to the first order solutions in
the neighborhood of ¢ = 1 are applied at ¢ = 0,95, It is found necessary
to initiate the integration of the perturbation solutions closer to € 1
in order to achieve satisfactory accuracy; accordingly, we take ¢ = 0,98
as the starting-point for the perturbation solutions.

For purposes of exposition we consider the case T .= 55, ?:'0 = 0.02,
P 7 0.833 to be prototypical and display the results therefor. In
Fig. 2 we show the first order solutions. For this case Bo = 87.2,
Ko = 0.0897 and the angle 90 is found to be 6.45°, In Figs. 3 and 4
we show the perturbation solutions for Reynolds and Damkohler numbers
respectively, For the former we take Cl =1, an indicative value.

The perturbation eigenvalues provide the results of greatest
physical significance from this analysis. In Table 1 we show results
for several cases, i.e., for several values of 7 and ?:'o and )

Presented are the coefficients aij ,‘bij (cf. Eqs. (4.27)-(4.30)) from

which the ratios (ﬂi/ﬁo) and (Ki/Ko) may be computed. Also shown

SO I SS—
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t

are the ratios of the physically significant quantities (Eo/sg)i/(:olao)o

and Gi (cf. Eqs. (4.31) and (4.32)). For the €-perturbations we have
again taken Cl =1

Although we shall discuss the implications from these results in
detail in Section 6, it is perhaps appropriate to make several remarks.
Note that apparently the greatest sensitivity of the turbulent flame speed
and of the orientat‘ion of the flame is associated with the influence of
molecular transport, i.e., with the €-perturbations. The extent of
this influence depends on the heat release, decreasing as T decreases.
In fact for T =5 it appears that the first term in the series in €
cannot be continued beyond € = 10-2 without raising doubt as to the
validity of the perturbation analysis. A value of € = 10-2 corresponds
to RT Ea lO3 if our standard value of a, namely 0.09, is assumed.
Note that the effect of finite Damkohler numbers increases as T decreases
and that the perturbation results are relatively insensitive to the value
of ¢ .

The influence of finite Damkohler numbers on flame properties
depends directly on the magnitude of the parameter mo . However,
values thereof on the order of 104 appear to be required in order for
the influence of finite reaction rate to be comparable to that of finite
Reynolds numbers. In addition the Kz-eigenvaluea are exceedingly
small. Thus the changes in the orientation of the flame due to finite

Damkohler effects are due essentially to the éz-eigenvalues.

e
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5. '.APPLICATION TO NORMAL FLAMES

We now apply the same techniques used for flames undergoing
strong interaction to flames involving only dilatation due to heat release,
i.e., either to normal flames, or to unconfined, oblique flames.
Because the treatment closely follows that in the previous section, we
need only outline the steps in the analysis., In this case the turbulent
kinetic energy is conveniently replaced by Q where ’c‘irao ((l -Q) Q+ 6@ ,
while the two eigenvalues to be determined as part of the solution are

conveniently taken to be
~ 2
B=(act /2e_-1t,)@ /30 -0, (5.1)
d=0_/1-Q) (5.2)

The quantities B and Q determine the turbulent flame speed in the
form (Tx'o/af) and the ratio of the turbulent kinetic energies downstream
and upstream of the flame, i.e., Q_.

Equations (3.1) - (3.4) with the modelling and representation of the

molecular transport terms associated with Eqs. (3.6) -(3.8) provide

the starting point for the analysis. With 6= 90° and with the
alterations of the equations as a result of the different eigenvalues,
Eqs. (4.3)-(4.5) are changed in obvious ways. Finally, if the new
dependent variables given by Eqs. (4.6) are introduced and again T is
treated as the independent variable, we find the following first order

equations:
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| @D =(z<:m-1)(1-E'%-B‘Q"Ql"zﬂh;c2
F dc dc S(1+7Tc)
[ d-—2—) {1 +ec R—v-\)+t/2-9-(RE s) ]
-~/ N\ 1 v / < ~ 2
c(l=-c) o dc
? o d
f ——
| -2 -%) < RE;S) ) (5.3)
3 dc
.2 ' (5.4)
dc
-~ " ¢ ~~
O.¢. I @ioeed (n (420270
dc 1 +Tc dc E
rz(ﬁzssz-;'i- G)(l +TZ)P) (5.5)
°
g |
&.g (5.6) |
dc

The same perturbation parameters € and § are retained.

These equations are consistent with Eqs. (4.7) -(4.10) if kK =0 and if ;

Q_ becomes indefinitely large; note that Q~ -1 and E6~5 if Q ~=. { i

The perturbation equations
The expansions given by Iiqs. (4.11) are again employed with

those for f‘l and K replaced by

T5=3° +¢’51 +632 i
(5.7)

~ ~

Q=Q +€Q, +8Q, +...

b3 IT— , " e meee——
R ‘
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When all of the expansions are substituted into Eqs. (5.3)-(5.6),

the terms independent of € and 0§ yield

| s B@ +Q)c(-<)
; 0=1- PE + e (5.8)
| dc S (1 +71c)
| o
| dG G
2.2 i@, + ) —— o
dc o 1 +7c
dQ G,
e, e (5.10)
dc o

Equations (5.8) - (5. 10) are essentially those treated in I with the

changes due to redefined eigenvalues and to the introduction of variable

density effects via the exponent m.

Collection of the first order terms in € and 8 from Eqs. (5.3)-

r' . (5.6) yield the equations for the perturbation solutions, namely
dD D ; dSO \
W ROPURCE
g o dc c
. P
A S i2 ~ ~
e G c(l-¢)

6 L 5. 2.8
B e v, )) +o, (2 = (R, E,S,)

i ~ d
x -2e_ -T) - (RoElso)) |

(5.11)
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(5.12)

~

€T

-~

1 +71c¢

@ + 6i)

, 0 1) 7e(r + 2) 2
o

Lo Yot e
Sl 4 v )

[
o
(5.13)
Q. G G 8,
s SROR B WIS
gtk e (5.14)
dc o o o
F
where again we use the Kronecker delta for compactness: i = 1 for

the e-perturbations, i =2 for the 0-perturbations.
The considerations made previously regarding the determination of the

two sets of perturbation solutions by these equations apply in this case.

However, in place of Egq. (4.19) we find for the function Po

R (Q +Q)c(1-7)
p = 22 o _ (em -0, ) (5.15)
(1 +72) >

For convenience we introduce M =& Mo(l - Qwo) and consider it to be

a parameter in the perturbation solutions.

The boundary conditions
The previous comments concerning specification of boundary
conditions at ¢ = :o and in the neighborhood of c~ 1 apply here as

well. We should note, however, that as shown in I the results for first

O
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order solutions for normal flames depend somewhat on the value of

E'o; this is interpreted as indicating the dependence of turbulent flame
speed for normal flames on the method of flame stabilization. Accordingly,
we expect the perturbation eigenvalues to be somewhat dependent on :o .

The solutions for the range 0= cs ?:'o << 1 are given by Eqgs.

(4.20) - (4.22) but Eqs. (4.23) - (4.25) are replaced by

G o=-(1-8)+er(1+Q )z (5.16)
G ~8) =«C +Er 0. o, il (5.17)

1 1 o 1
= er éi?, f=2 (5.18)

These solutions for the first order equations applied at c= E'o
provide the boundary conditions which determine the first order eigen-

values, 30 and Qo . Similarly, those applicable to the perturbation

equations determine the perturbation eigenvalues 31 and Qi' i=1, 2.

The boundary conditions for the solutions in the neighborhood of
T =1 are developed in detail in Appendix 1 and involve no arbitrariness
if the solutions are to have acceptable behavior near T=1. Thus

integration of both the first order and perturbation solutions is initiated

5 at a value of ¢ suitably close to € =1. For simplicity we repeat our

earlier assumption and take the quantity Ro to be unity,

The form of the perturbation solutions and related matters
For normal flames the first order solutions require specification of

the parameters 7T, €, m and Zo' Again in this case we seek the
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perturbation solutions in a form requiring specification of a minimum
number of additional parameters until specific values for the perturbation
eigenvalues and until reconstituted perturbation solutions are desired.

Thus, for example, we determine the 5'1 solutions in the form

3.=6_38 +(Ei-\5 +916 +6.C.Q..+6._M3 (5.19)
Blbe e BB u R Tl - T e e .
o o

with similar forms for S.l and Gi (cf. Eq. (4.26) and comments
applying thereto). When these forms are substituted into Eqs. (4.21)

and (5.17) for 1 = 1 and into Eqs. (4.22) and (5.18) for i =2 with

¢ ¢ , we obtain two pairs of algebraic equations for the pairs of
O

eigenvalues in the form (Bi/ao) and (6i/60) « The results are con-

veniently arranged as in Eqs. (4.27) - (4.30), namely as

pl/.ﬁo =a,, +C) b, (5.20)
Ql/Qo oy, +Clb12 (5.21)

oA &
BZ/B'O = Mb,, (5.22)

QZ/Qo =Mb22 (5.23)

where the aij and bij coefficients depend only on the parameters determining
the first order solutions and indicate the sensitivity of the perturbation
eigenvalues to molecular transport and to the parameters C1 and M.

The physically interesting results from this analysis pertain to the

perturbed values for the turbulent flame speed and for the ratio of turbulent

kinetic energy downstream and upstream of the flame. These are found

T A S A A — £l
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expressible in terms of the perturbation eigenvalues as

37 |

from Eqs. (5.1), (5.2) and (5.7) with ¢ taken as a constant to be

u L Q. B
\:%) =‘§(?°,§) KQQO‘:‘L*J‘) (5.24)
qO i qo 5 Qo go
Q.
Q= _0-a9.) (—) (5. 25)
Q
(o]

Numerical Results

We have obtained numerical solutions for normal flames based on
our standard values of € = 0.3 , m =2 for a range of values of the heat
release parameter T. Generally, we take :o = 0.02 but for onc case
we show the influence of different values thereof. As in the strong
interaction case the perturbation solutions require specification of
additional parameters; generally, we assume 2 0.833 but again
for one case we show the effect of Er 0.75. The value of ® is assumed
to be 1.4 (cf. Appendix 3). Finally, we again take p=k =1,

The numerical solution of the equations for normal flames is
found to be increasingly difficult as T increases. With the standard
method for solving differential equations we use,the permitted step-size
becomes exceedingly small as T increases. Thus practical considerations ]
limit our results to T < 4 and to the requirement that the asymptotic
solutions in the neighborhood of ¢ ~ 1 be applied at ¢ = 0.95 for

both the first-order and perturbation solutions.
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~

We take the case of 7 = 4, =0.02 and ¢ = 0.833 to be
o mo
prototypical and show the results therefor in detail. In Fig. 5 the first-
order solutions are“given while Figs. 6 and 7 give the perturbation
solutions associated with finite Reynolds and Damkohler numbers
respectively. Again for the former we use the representative value,
Cl = 1. Note from Figs. 6 and 7 the dominance of the perturbed

turbulent kinetic energy, i.e., of 61 and 62, over the other

perturbation functions.

In Table 2 we present for a range of solutions the results for the
eigenvalues and for parameters of interest based thereon. The first
order eigenvalues, the coefficients aij and bij which permit the

perturbed eigenvalues to be computed, and the physically significant

quantities based on the perturbed eigenvalues are given. Again we

shall discuss these results in detail in Section 6 but certain general
remarks can be made here. As in the strong interaction case the
magnitude of the perturbations associated with large but finite Reynolds
numbers increase with heat release but decrease with corresponding
values for Damkdhler numbers. Moreover, the effect of the perturbations
on turbulent flame speed are of opposite sign but on the ratio of

turbulent kinetic energies are of the same sign. Finally, we note

the weak dependence of the predicted behavior with T and ¢
o

mo
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6. INTRODUCTION OF LAMINAR FILAME PARAMETERS AND

COMPARISON WITH EXPERIMENT

As indicated earlier the behavior of turbulent flames is frequently

correlated by experimcntalists in terms of the characteristics of the
classical laminar flame, determined either experimentally or theoretically,
with the same chemical and thermodynamic situation as prevails for
the turbulent flame in question. The implication from this practice
is that one or both of our perturbation parameters are expressible in
terms of laminar flame characteristics.

To pursue this implication further we consider the laminar flame

speed, u,, and a measure of the laminar flame thickness, £,; from

L'
[11, 12] we have

#
<75l Kl (Uowmax/po) {oe

4 %
LL i KZ (uopo/wmax) Koxd)

where Kl and K2 are non-dimensional quantities given by the
appropriate laminar flame solution. In the present coniext they should
be treated as functions of the heat release parameter T and as dependent
on the chemiéal kinetic model representing w/w .

max

The quantities u, and I.z given by Eqs. (6.1) and (6.2) can be

readily expressed in terms of our perturbation parameters; we find

from the definitions of € and §

ui =%, (K?/a13) (€/8) (6.3)

N
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2. 2.2 2
zz -I.O(Kza 13) €d (6.4)

Equation (6.3) indicates that a, is undefined in the first-order theory
since €, 8 = 0 while Eq. (6.4) is consistent with the basic notion of
the Bray-Moss model regarding a thin laminar flame provided both
the turbulent Reynolds and Damkohler numbers are large.

Alternatively, Eqs. (6.3) and (6.4) yield

L : ' (6.5)

’ \a’ 5
oy G el (6.6

which show that our perturbation parameters are expressible in terms

of the laminar flame characteristics.

Frequently only one of the two laminar flame characteristics

introduced here are used by experimentalists to correlate their results;

in this case only one of our perturbation parameters can be eliminated.

We shall illustrate this in detail later.

Strong Interaction

In the case of strong interaction the orientation of the reaction

zone is the predicted quantity most directly comparable with experiment.




41

From Eqs. (4.27)-(4.30) and (4.32) we find

tan9° / \
=0 -¢% (\\a +a. . )+C (b, . +b _) )¢
o 1+‘:anze S B | 12 J I 1) 127/
o
+(b21+b22)m06+.,. )
or for 8 << 1
o
\
gzeo(l-é(()€+()7}(06/+...) (6.7)

The results given in Table 1 can be used to evaluate the coefficients
in Eq. (6.7).

The value of ® has been selected as discussed in Appendix 3 so
that the predictions of the first-order theory for 60 are in good agree-
ment with the results of Wright and Zukoski [2]. There are, however,
no data permitting assessment of the perturbation effects. In this
situation it may be useful to consider the counterpart for strong interaction
of the correlation of the properties of normal flames given in [1].
Accordingly, we introduce the laminar flame speed and eliminate the

Damkohler parameter; from Eq. (6.1) and the definition of mo we have

M _q

T B
77106-4'.1 ’R Kl‘

3 a,

so that Eq. (6.7) becomes




7
0= eo (1 - ip\(allmlz)ﬂ:l(bll +b,

2
+(b +b )i_N_IPi q_n\-+ (6 8)
21 22 I Pl e ‘
3 u,

We eliminate the turbulent kinetic energy downstream of the
flame from Eq. (6.8), since this is generally not measured. For this
purpose only the first-order estimate of Em is needed; from the ratio
’Jo/?;’m , the orientation of the flame and the resultant velocity upstream

of the flame, Vo’ we have for 60 << 1

~2 2

oy By Wy (6.9)
i g > :
Y )

Thus Eq. (6.8) becomes

/
88, (’ -#e (@), +a )+ C (b b )+ (b +b,y,)

(6.10)
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In Appendix 2 we employ laminar flame theory to provide inter
£
alia estimates for Kl and for the quotient (MO/I3) . To illustrate
the results given by Eq. (6.8) we take the exponent n =5, Cl = 1

and T =5 and the results for our prototypical case T =5, ?o = 0.02.

With these values Eq. (6.8) yields

/ua

onn
=N

99:90(1+€{:11.7-1.02(10—2)(V );+...) (6.11)

From Eq. (6.11) we see that for values of the velocity ratio Vo/uz of

30-40, corresponding to values of Tfo/u of 3-4, the term arising

L
from the replacement of the Damko6hler perturbation is comparable to
that due to the finite Reynolds number perturbation but of opposite sign
so that the insensitivity of the angle of the flame observed by Wright
and Zukoski [2] to a wide variety of conditions is perhaps explicable.
For a fixed value of the ratio Vo/uz less than 34 a decrease in the

turbulence Reynolds number leads to an increase in the angle of

orieatation; the opposite is true for values of the same velocity ratio

*It should be noted that two separate calculations of these quantities
can be envisaged. The origin of K1 via Eq. (6.1) implies that it is
determined by the solution for the classical laminar flame; on the contrary,
the quotient M0/13 relates to the distribution f(c) within a laminar flame
embedded in the turbulent reaction zone in question and thus in principle
involves a separate calculation. For simplicity and consistency with the
assumed insensitivity in the Bray-Moss model of the results to the details

of f(c), we use the same solution for both calculations.

e e
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greater than 34. Note that in general the validity of the perturbation

-2
analysis may be questioned for €2 10 , i.e., for R,I < 103,

Normal Flames

In considering the implications of our perturbation analysis for
normal flame‘s we focus on the recent correlation of [1] which
relates the ratio of turbulent to laminar flame speeds to the ratio of
initial turbulent intensity to laminar flame speed for a wide range of
experimental data and thus of turbulence Reynolds numbers. The absence
: in the correlation of heat release as a parameter implies that over the
range of T of practical interest, i.e., 4< T < 9, the variation of the
ratios in question is within the scatter of the experimental results.
Accordingly, we treat our results for T = 4 as being representative of
our predictions over the cntire range of T of interest and compare
these results with the data given in [1].

The present analysis can be recast to facilitate that comparison;

| Eqs. (5.1), (5.2), and (5.20)-(5.24) lead to

%
o (1-#(0@0(3. +C.b. )

0

PO T
= - u 12 1712
30‘”00) )

\ ~
+(a;+C b)) -"‘*‘mezz*bzl)M“‘”)
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Equation (6. 12) leads to the anomalous result that as Ei/u ~ 0,

Y

u /ul, ~ 0; this pathological behavior is associated with the assumption
o

of a high turbulence Reynolds number inherent in the Bray-Moss model

and can be removed by heuristically replacing the left side of Eq. (6.12)
and appropriate subsequent equations by (Tfo/uz) -1.
Equation (6. 12) with € =6 = 0 and with the left side altered provides
the basis on which the value of ® = 1.4 used here is selected in Appendix 3.
To investigate the effect of Reynolds number given by Eq. (6. 12) we
\ eliminate 1(;1 and introduce the laminar flame speed. From the definition

of M and & we find that

-~ 'E
1 / \ \
M6=@K2'—2"——1_- (.ﬂ)( (6.13)
e
o )
so that Eq. (6.12) becomes
~ 4 ~%
u X g (
(o} ‘b lo) S
R R o e —_ l-ﬁ'Q (a,,+C. b _)+(a,,+C. b )
L o l
a, Eo(l+Qo)/ u, Ve Dz TP ¢ Wl L

Z'Mo> 1 ao
+(wa +b_.) ®K —_— = —_ +...)
o 22 21 1(13 1+Q l12

(] £

i To evaluate the coefficients in Eq. (6.14) we use the results in

Appendix 2 and of our protypical case for normal flames; thus we let:

T =4, ’c"o =0.02, ® = 1.4, C, =1, andn =5, There results

- o i
u q q
<2 .1=1,14 =2 (1 4(11.3 - 0.750 —2)e+...) (6. 15
u u \ 2
£ L ut
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Equation (6. 15) displays the same opposing effects as shown in Eq. (6.11)

2

for the strong interaction case; thus, for 9,

/u‘c less than 3. 88 a decrease
in turbulence Reynolds number increases the turbulent flame speed
whereas for qg /uz greater than 3. 88 the opposite effect is predicted.

Figure 8 shows G‘o/u calculated from Eq. (6.15) for € =0,

2
3 (10'3) and 7 (10-3). In the region Ei'f/uz < 3, 88, the increase in the
ordinate resulting from these values of € is too small to show in this
figure. Consequently, the perturbation analysis predicts that, at a

fixed turbulence Reynolds number, the ratio of turbulent to laminar
flame speeds initially increases nearly linearly with increase in upstream
turbulence intensity. At higher turbulence intensities the finite Reynolds
number curves drop below this straight line. The curves for ¢ # 0

in Fig. 8 are continued until the perturbation reaches 20%.

We note that the predictions of the theory similar to Eq. (6.15) but
for different values of 7 and of the exponent n in the laminar flame
theory do not appear to differ significantly in a qualitative sense from
those given here,.

Figure 9 shows two sets of experimental data which approximately
define two extremes in the correlation of Abdel-Gayed and Bradley [1].
The upper band is from [14] and the lower band from [15], both being
interpreted in the manner of [1]. It has been assumed that the length
scale zo in our turbulence Reynolds number R_, is the same as that

T

used in [1] to define Rz =u’4/v, where u’ is the root mean square

O A AN 4 b

of the x-wise velocity component. In converting from the abscissa
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2 —~
u!'/u' of [1] it has been assumed that pu”~/pq = 0.3 and that
-3 o
RT = R!./O' 3t. Thus € =0, 3 (10 ) and 7 (10 3) corresponds to
2
Rll* © and Rz= 2 X 103, 8.8 x 10 , respectively.

If the two sets of data are given equal weight then, superficially
at least, a trend suggesting a reduction of turbulent flame speed at
lower turbulence Reynolds numbers might be discerned, as proposed
in [1]. Closer inspection of the data in Figure 9 argues however that
no convincing Reynolds number trend is evident in the data of either
[14] or [15]), considered separately, despite the fact that each covers
a significant Reynolds number range. There is clearly serious dis-
agreement between data from these sources at comparable Reynolds
numbers and the principal distinction would appear to relate to
experimental configuration and technique. The emphasis of these
remarks is not significantly changed if the other data from [1] is
incorporated in Figure 9.

A comparison between the perturbation solutions and experiment

is therefore not straightforward. If experimental data are chosen from

a particular source such as [14], then the predicted trend with Reynolds
number is not supported. The relatively narrow range of flame speeds
within which the perturbation is valid is comparable to the scatter in
the data [14]. On the other hand the trend predicted by the perturbation
analysis agrees with that reported in [1]. It is important to note that

the form of presentation of the experimental data adopted here is that
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suggested most naturally by the present analysis and not that of
Abdel-Gayed and Bradley [1]. Their abscissa, u‘/u' , is related
to the inverse of that introduced in Fig. 9 and leads to curves of
broadly hyperbolic character. In consequence, and in contrast to

the present approach, attention is focussed on modest values of

~é b
q /uz.
The Influence of the Perturbations on the Structure of the Normal Flame
It is of interest to consider the influence of the perturbations
on the structure of the turbulent reaction zone. To show this influence
I requires seclection of a length scale model. For consistency we take
ail to be constant. In this case the x-coordinate is given by
a Ni
b e Jo G/ Jl +(uo/qo)1 T \
2 Na A Ry anty P
o oo o ‘oo o ‘oo
|
J (@ /’5*)
/ 2 o ‘0’2 \
"6" + J + ° 0 (6.16)
"G&% GRY
o ‘oo o ‘oo !
whe re ‘
e !
C ~
Jo 2 Jo(z) - icH
G (1 +7c) Pg
o
] s, dc
J =3 (e)= \ . b2
i i > B 'rc)HPSz
o
p——— - - e
AR———




49

We see from Eq. (6. 16) that the predicted spatial distributions within
the reaction zone depend on both the perturbed eigenvalues via the ratios
(G'O/Ei'g)i, i=1, 2 and on the perturbed solutions themselves via Si(:).

In the spirit of our earlier considerations we eliminate the Damkdhler

perturbation in favor of the laminar flame speed; there results

r g (GO/Eé)I
iyt - (A B +——T° J
£ ~ o 1 ~ e~ (o]
e (ulq”) (u /qF)
o oo o o o

5 b b (u /q7)
q 4 X
+Ki—°}_° Ly, °;2 ;J)+. )
3N " s
3 uL M (uo/qo) M,

If we evaluate the coefficients in Eq. (6.17) on the basis of our

prototypical case for normal flames, we find

~

x 4 11 0.556 %o
2 = 0.0791(J_ - €(T, +11.27 +0.556 =2
o J
J
(== - 2.550 ) 4.0 ) (6. 18)
M o !
(o]

We again see the competing effects of the Reynolds and Damkohler
perturbations. In Fig.10 we show the distribution of the mean product

concentration according to the first-order theory and to Eq. (6.18) with

#

;o/u‘ = 10 which corresponds to the limit of validity of the perturbation

analysis for the assumed value of the perturbation parameter,

= 301073,
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Several remarks regarding Fig. 10 are indicated. First note
that the thickness of the reaction zone is on the order of the reference
length scale l.o; this is in accord with the resulte of I but we here
explicitly incorporate density effects in the modelling and therefore
have somewhat altered solutions. The effect of the combined Reynolds
and Damkdhler perturbations on the structure of the reaction zone
tends to reduce the thickness for the particular value of the ratio
?{g/u!‘ selected. For smaller values of this ratio the predicted reaction

zone would be thickened somewhat.

7. CONCLUDING REMARKS

Premixed turbulent combustion theory [5-8)] has been extended to
include effects of molecular transport and finite chemical reaction rates.
The corresponding premixed laminar flame properties then arise quite
naturally as parameters of the turbulent flame formulation, as already
found in experiments. It is the first time that this has been demonstrated
theoretically,

A perturbation analysis has been made, for large values of
turbulence Reynolds number and Damkohler number, and applied to
highly oblique confined flames, in the strong interaction limit, and
to normal or unconfined oblique flames. Numerical solutions have
been obtained using separate values of the important modelling parameter

® for these two cases.
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The strong interaction solution yields an expression (Eq. (6.11))
for the flame angle 6 as a function of RT and Vo/uz. It is observed
that, in the range of validity of the perturbation, the perturbation terms
arising from Da and RT are of similar magnitude but opposite sign.
The tendency for these terms to cancel each other is offered as a
tentative explanation of the experimentally observed [2] insensitivity
of the flame angle to large changes in the composition and teruperature
of the combustible mixture.

In the case of normal and unconfined oblique flames the turbulent

flame speed in the form ;f/u has been predicted as a function of

L
turbulence intensity, ’ag /uz, and turbulence Reynolds number, RT:
see Eq. (6.15). These are essentially the same variables as those
empioyed in an empirical correlation of experimental data by Abdel-
Gayed and Bradley [1]. The perturbation solution predicts that the
turbulent flame speed at finite RT falls below the high Reynolds
number limit by an amount which increases with increasing Eg/uz

and with decreasing R The analysis shows that this effect arises

Tt

because of the finite reaction rate terms in the equation, rather than

| the molecular transport terms, whose direct influence on G'o/ul is
negligible. Equation (6.15) then shows that the first-order approximation

to the flame speed is valid so long as

~ 2
> 8.
RT> 8.3 qO/uL
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Convincing support for the perturbation predictions for normal
flames is not found in the experimental data, Individual experiments
appear not to show a trend of :olu 4 variation with R, although the
scatter of data points is large. On the other hand the predicted trend
agrees qualitatively with that found by Abdel-Gayed and Bradley [1]

from their correlation of experimental data.




| &

ACKNOWLEDGMENT

o " v e

This research was supported in part by the Office of Naval Research
under Contract N00014-75-C-1143, USN Purdue Subcontract No. 8960-8 as
part of Project SQUID. Our international collaboration was facilitated
by a grant from the Science Research Council of Great Britain. An oral
presentation of this research was given at the International Colloquium
on the Gas Dynamics of Explosions and Reactive Systems, Stockholm,
August 1977.

REFERENCES

Abdel-Gayed, R. G. and Bradley, D., Dependence of turbulent
burning velocity on turbulent Reynolds number and ratio of laminar
burning velocity to R.M.S. turbulent velocity. Sixteenth Symposium
(International) on Combustion. The Combustion Institute (1977),

p. 1725,

Wright, . . and Zukoski, E. E., Flame spreading from bluff-
body flameholders. Eighth Symposium (International) on Combustion.

The Combustion Institute (1962), pp. 933-943,

Borghi, R. and Moreau, P., Turbulent combustica in a premixed

flow. Acta Astronautica 4, pp. 321-341 (1977).

Pope, S. B., The probability approach to the modelling of turbulent

reacting flows. Combustion anf Flame 27, 299-312 (1976).

Bray, K. N. C, and Moss, J. B., A unified statistical model
of the premixed turbulent flame. University of Southampton

AASU Report No. 335 (1974),




54

Bray, K. N. C. and Moss, J. B., A unified statistical model
of the premixed turbulent flame. Acta Astronautica 4, pp. 291-319

(1977).

Bray, K. N. C. and Libby, P. A., Interaction effects in turbulent

premixed flames. Phys. of Fluids 19, pp. 1687-1701 (1976).

Libby, P. A. and Bray, K. N. C., Variable density effects in

premixed turbulent flames. AIAA J. 15, pp. 1186-1193 (1977).

Favre, A., Statistical equations of turbulent gases. In Problems
of Hydrodynamics and Continuum Mechanics (Society for
Industrial and Applied Mathematics, Philadelphia, 1969),

pp. 231- |

Batchelor, G., The Theory of Homogeneous Turbulence.

Cambridge University Press, pp. 68-75, 1967.

Williams, F. A., Combustion Theory. Addison-Wesley,

Reading, Mass., 1965, pp. 95-136. ‘.
Williams, F. A., Theory of combustion in laminar flows.

Annual Review of Fluid Mechanics 3, pp. 171-188, 1971.

Spalding, D. B., One-dimensional laminar flame theory for

temperature-explicit reaction rates. Combustion and Flame 1,

296-307 (1957).

Kozachenko, L. S. and Kuznetsou, I. L., Comb. Expl. Shock

Waves 1, 22 (1965).

Petrov, E. A, and Talantov, A. V., Izv., Vyss. Uchebn. Zau.

(Aviat. Tekn.) 3 (1959), Candin ARS J1. 31, 408 (1961).




55

LIST OF FIGURES

ll

9.

Schematic representation and coordinate system for the analysis

of an infinite oblique flame.
The first-order solutions for strong interaction: 7 = 5, 'cvo = 0.02

The €-perturbation solutions for strong interaction: r =5,

c =0.02,®=0.1, Cc. =1
o 1

The §-perturbation solutions for strong interaction: T =5,

~

c =0,02, &=0.1
o
The first-order solutions for normal flame: + - 4, Eo =0.02

The € -perturbation solutions for normal flame: T = 4, 'Eo

]

0.02,

= 1.4, C, =1

The 6-perturbation solutions for normal flame: T = 4, BisE 0.02,
¢ =1.4
The variation of flame speed ratio with the ratio of turbulent

intensity to laminar flame speed: from Eq. (6.15)

The variation of flame speed ratio with the ratio of turbulent intensity
to laminar flame speed. Data from [14], [15] (open and full symbols
respectively) interpreted after [1]: ¥V 7000 < Rt < 10600,

0,0 1500 < R , < 2000, o.,n 750 < R , < 1000,

O 5000 = R‘ < 7000 (enlarged symbol denotes body of data in

this range), A , & 1000 < R, S 1500.




The spatial distribution of mean product mass fraction:

first-order theory, = — — Eq. (6.18): € = 0,003,

~i B
qolu‘- 10 ]




o~

APPENDIX 1., 'The Behavior as ¢ ~ |

We consider the behavior of the first order and perturbations
solutions in the neighborhood of T= 1, first for the case of strong inter-
action and subsequently for normal flames. If Eq. (4.12) is put in an

approximate form appropriate for P o 6°~0 , it may be solved to yield
s°=-)\(1-‘5‘) (Al. 1)

o 2+m & X .
where A =#(1 - (l + 460/(1 +7) ) < 0. Next the right side of
Eq. (4.13) can be similarly approximated so that with Eq. (Al.1)

integration leads to
G, = =aX(l -2)/(1 =) (A1.2)

where « =((E1'/(1 + T)) - TZ Ko). Next Eqs. (Al.1) and (Al.2) permit

Eq. (4.14) to be integrated so that
8 =-a(l-)/(1 -2 (Al.3)

Equations (Al) = (A3) applied at a value of ¢ in the neighborhood of

c =1 provide the boundary conditions for the first order solution and

are employed in I and [I. Note that these solutions are free of arbitrary
constants, the parameters A and o depending only on the eigenvalues
Bo and Ko . In the solution for So a second root of the secular equation

for A is discarded so that So ~ B ag C~ 1; furthermore, in the

integrations leading to Eqs. (Al.2) and (Al.3) complementary solutions

. - R it i z e




which have unacceptable behavior as T~ 1 must be suppressed,
leaving the particular solutions as the only valid ones. Similar
considerations arise with the perturbation solutions.

As a preliminary remark we recall that earlier we assumed the
parameter Ro to be unity; in addition we note that the quantities i
EI(E) and EZ(:) and the ratio (fflvo) will approach constant values
as ¢ ~ l; we shall denote these values with the subscript ®. Finally,
the asymptotic solutions for the first order functions given by Egs.
(Al.1)-(Al.3) are used in the analysis of the asymptotic behavior of the
perturbation solutions.

Equation (4.15) takes on the following form as T~ 1:

s '~=-(1 - N K, (Al.4)

Bi 2(cmo = 1 ?’; :
K. = —-8§ R P C =
i ﬂo i2 Zcmo -1 (1 +T)k o il 'l v, |
-1
6 A ( ZEZ° ¥ z(cmo ) E )
e T TR AR R TR le
mo mo

We note that again the complementary solution must be suppressed;

thus the solution to Eq. (Al.4) is




A - -

(1 -2) K, (1 - Q)
e ] = 2% (Al.5)

With Si determined, the asymptotic approximation to Eq. (4.17) yields

ke b G = bl Syt (K—‘> g 2 (1+7)2%P
SRR el TR, U (e B T ey
dc l -c¢ o

= L, (Al.6)

with the solution

AL (1 = 9)
l ——

i (et

Finally, a convenient form for the boundary conditions for the
ﬁi functions is obtained by substitution of Eq. (4.18) into Eq. (4.17),
by applying the approximations appropriate for ¢ ~ 1, and by

quadrature; the result is

Cay

3 =G 7 (Ko)(l -T) +6,, 141 *Pg, (Al.8)

Equations (A1.5), (Al.7), and (Al.8) applied at a value of ¢ in the

neighborhood of ¢ = 1 provide the appropriate boundary conditions to

initiate an integration in the direction of ¢ = E'O for the strong interaction

case.




Equations (Al.1)~(Al.3) apply for the first order equations for

normal flames provided
r=#(1-(1+4B8 0 /0 +r>2+m)ﬁ) ' (AL.9)
% e o o %

:-31-60/(1 +T) (Al.10)

In addition the solutions for the perturbation functions Si and Gi

given by Eqs. (Al.5) and (Al.7) are retained with

(S He, =1 R v
K,:—-‘-+-ﬁ-6_2 RS = M+6 C ;‘1
1 ’B Q 1 C (l+T) 1§ o
o o
8 { 2= -2(Cm°-l) £ (Al.11)
it I <X “2e -1 2¢ | lo /
mo mo
K., €1Q Q"
_ 1 o/ i \ 2+p @l §, i
i Bl e e Ké } =9yt 2 1 %A e e

Finally, a relation for the 6i perturbations convenient for numerical
analysis and completely analogous to Eq. (Al.8) is obtained from Eqs.

(5.13) and (5. 14) with approximations appropriate for ¢ ~ 1, i.e.,

trQ Q.

B s () a-d s a+n?P g (AL 13)
&
(o]

We note that these results for the asymptotic behavior of the

perturbation solutions as ¢ ~ 1 for normal flames are consistent with

e 5 5 = 35 AR T

sl




those for the strong interaction case if Eo bo ~ Bo g f)o =iy

K~ 0, éo M~ mo , replacements which correspond to 6 ~ 9o° and

Q_ becoming indefinitely large.

ik




APPENDIX 2. Determination of Perturbation Parameters by
Laminar Flame Theory

In earlier studies, Bray and Moss [5, 6] evaluate the integrals

1
7 k (c)
Ik+3 = S c f(c) dec,

w
w
0 m

0, 1 (A2.1)
ax

which arise in the closure of the chemical source term, on an ad hoc
basis. The burning mode pdf, f(c), is taken to be a simple battlement
shape, broadly characteristic of a laminar premixed flame, while

the reaction rate employs an Arrhenius form. The requirements of
the perturbation analysis for similar information are greater and

invite a more rational approach.

The species balance equation for ¢ in a one-dimensional laminar

flame may be written in the form

dc d dc
— D — =
pu I I (p 1 ) w(c)

while continuity assumes the form

Pu = m = constant

If we assume the Schmidt Number to be unity and introduce the

simplifying thermodynamic description of Section 2, then

pD




whence Eq. (A2.2) becomes

. dec d

m oG- - {p.o(l +1'c)g?c:'} = wic)

If we introduce

(1 +71c) de

S=p'0 m dx

and treat c as the independent variable, then Eq. (A2.6) may be

written as

a5

Mo
S(1 - dc) = {n—z- (1 +7c) wi(c) (A2.7)

Following Bray and Moss [5, 6], we have

1 o
st
fc) = (dx So {de/ax) ) (A2.8)
or, from Eq. (A2.6),
flc) = - 1ile (A2.9)
s & ((1 +7c)/S ) de
0

We note that the integrals indicated in Eqs. (A2.8) and (A2.9) have been
implicitly taken to be convergent. In general this is not the case and a
concept analogous to that used in experimental turbulence, namely gating,
must be introduced. The consequence is that f(c) is defined only for

the range € < c< 1 -€ where 0<¢€ << 1; entries for 0sc=s¢
8 g & 8

S — e _—_—
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ﬂ and for 1 - (g “c % 1 are attributed to the Dirac delta functions at
c =0, l. However, we shall see that when f(c) is used in evaluating
the various integrals of interest, the integrals are convergent, the
integral in the denominator of Eq. (A2.9) is inessential, and €
can be allowed to vanish. Accordingly, the determination of S(c)
for a specified reaction rate expression, w(c), permits an entirely
self-consistent determination of the moments L and’of other quantities
required in the perturbation analysis.

Spalding [14] identifies certain reaction rate expressions which are
both plausible and permit analytical solution of Eq. (A2.7) subject to

the appropriate boundary conditions. It is thus convenient and sufficient

for present purposes to let

wiel 2 tiw . et th e ML el a2 (A2. 10)
max

where o is a numerical constant introduced to normalize w(c)/wma -

Then Eq. (A2.7) may be recast as

S(1 -Q) = Ac™(1 - c“'l) (A2.11)
dc

where A= (apow x/r'nz) is the eigenvalue, reconciling the first order

ma

equation with the two boundary conditions

S(0) = S(1) = 0. (A2.12)
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By inspection the solution is found to be especially simple, namely

e

S ultae™h
(A2.13)
1
XA =n
-1
so that Eq. (A2.9) becomes

f(C) W l +Tc : ,

1-€ -1 5

n-1 g n-1_° g
c(l - ¢ ) (l+‘rc)(c(l-c ), dc 3 3

€ |

8

P (A2.14)

g g i

where we explicitly introduce the gating parameter, (g . 1

We now use these solutions to obtain with Gg ~ 0 the parameters ,

1
+1 3
S cn dc 1
i 0 A n g
Cmo = 1 . N (A2.15)
q ¢ dc (
0
and
i
M 1 .
o n WL e
T = a S —_n:_l_ ! dc (A2.16)
3 0 1«c¢ y

Note that € is independent of T but that (MO/I3) does depend on
T via o#. In general a numerical evaluation of Eq. (A2.16) is

required. In addition the parameters Kl and K2 arising in Section 6




can be evaluated. First, by comparison of the definitions of uz.

and A (cf. Eqs. (6.1) and (A2.11)) we find
2
Kl =a/n (A2.17)

Next, if we define £ = 1/(dc/dx) , Egs. (6.2) and (A2.6) lead to
y max

s (2\,i }ﬂ>

2 al v 8
max
o A It Te
= (\a e (A2.18)
c(l -¢ ) max

We show in Table 3 the values of the various parameters of intercst

for ranges of T and for n =3 and 5, values considered representative.




APPENDIX 3. Numerical Values of ¢
The parameter

aC l.l
® = (A3.1)
(Zcmo -1 LZ

must be specified before the perturbation solutions can be calculated
and before comparison with experiment can be carried out. In the
strong interaction case, ¢ is estimated from the experiments of
Wright and Zukoski [2] by matching the measured flame angle to that
predicted by the first-order solution. The relevant equation is (see

Eq. (4.1), (4.2))

tan” § = =2 (A3.2)
o B X

o O

If we use our prototypical case for strong interaction to select a value
for &, we find with Eo 2 87.2, Ko = 0.0897 and @ = 0.1 that

90 = 6.45°% in satisfactory agreement with [2]. Accordingly, we
adopted this value of ® for all calculations of the limiting case of
strong interaction.

For normal flames and unconfined oblique flames, & is

estimated from the experimental data of [14,, Using the first-order
solution, we obtain ® from Eq. (6.12) as

i"'i

9




With B =0.413 and Q_=1.62, it is found that & = 1.4. In Fig. 9,

the line € = 0, representing the first-order solution with & = 1.4,
is seen to compare well with experimental data from [14].
It is evident from (A3. 1) that the parameter ¢ incorporates

uncertain features of both the thermochemical and fluid mechanical

modelling. The significantly different values of @ necessary to

admit quantitative comparison in both the unconfined and strong

interaction cases suggest major differences, either in local structure,
f(c) (and hence cm), or in the ''universal'' parameters, for example.
On the other hand, in the light of earlier discussions, the experimental

data are also not without ambiguity. Further investigation is indicated.
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Parameters Given by Laminar Flame Theory

MO/I3 Kl K2

0.376 1.34 1.94
1 0.213 1.78 2.25
2 0. 149 2. 12 2.50
3 0.115 2.42 2.70
4 0.0937 2.68 2.89
5 0.0790 2.92 3.05
6 0.0683 3.14 3.21
7 0.0602 3.35 3.35
8 0.0538 3.54 3.49
9 0.0486 3.72 3.63
0 0.600 0.969 1.93
1 0.323 1.32 2.32
2 0.231 1.59 2.64
3 0.168 1.83 2.90
4 0.135 2.02 3. 16
5 0.113 2v22 3.36
6 0.0930 2.40 3.56
7 0.0859 2.56 3.75
8 0.0766 2.71 3.93
9 0.0691 2.85 4,10
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