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PROBABILISTIC FACTORS IN RANDOM FATIGUE

T. C. Huang, K. S. Shen and Vinod K. Nagpal
Department of Engineering Mechanics
University of Wisconsin—Madison

Madison, Wisconsin 53706

Abstract

To predict random fatigue life, the popular cumulative damage

criterion, which is based on constant amplitude sinusoidal fatigue

tests, is known to be inaccurate. Therefore, actual random fatigue

experiments are proposed to establish new and reliable damage criterion.

In this report, all conceivable probabilistic fac tors which affect random

fatigue life are explored and mathematically analyzed. Based on these

factors the random fatigue experiments will be planned and conducted.
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2.

INTRODUCTION

There are two major approaches for investigating random fatigue: the

cumulative damage approach and the phenomelogical approach. The main concept

of cumulative damage criterion, proposed by Miner (1] is based on the results

of constant amplitude sinusiodal fatigue tests. His hypothesis is charac-

terized by the following equation

~ 
(ni/Ni) <

i

in which n
1 

represents the actual number of cycles at a given stress

level, N~ the fatigue life at that same stress level, and c is a constant.

Miner proposed that c should have a value of 1.0. It is shown [21 that the

limited experimental results which have been used to evaluate this hypothesis

show a range for c from 0.3 to about 3.0. Since sinusoidal fatigue results

are readily available this criterion became very popular even though it was

repeatedly proved [3—6] inaccurate to predict failure.

The phenomelogical approach involves actual random fatigue experiments.

Some of them use statistical experiment design for both deterministic and

random factors and most of them use statistical and variance analyses of

results (7—li]. The present report explores all conceivable random factors

which affect random fatigue life. These factors are then mathematically

analyzed . The mathematical expressions of these factors facilitate the

design of random excitation signals and data processing of random responses.

The final purpose is to establish new and reliable damage criteria for

random fatigue.

ELASTIC AND PLASTIC RANDOM FATIGUE

The stress—strain curves of tensile tests and the SN—curves of fatigue

tests indicate three stress levels that may be significant to random fatigue.

L
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3.

They are fatigue run—out stress, the yield point stress, and ultimate stress,

• represented by a
f~ 

a , and a respectively. The corresponding strain

levels are denoted by E
f~ 

C3, , 
and C .  The yield point divides the elastic

• and plastic regions. The ultimate stre a, not rupture stress, is used for

both brittle and ductile materials. In the case of brittle materials the

ultimate and rupture stresses are the same. Although ductile materials
I

have distinct ultimate and rupture stresses, they behave like brittle

materials under dynamic loadings. Unless all the peaks of strain signals

of random response are under c1~, three types of failure problems can occur.

The first two types are random fatigue problems .

If all the peaks of random strain signals are below Ca, , and there are

peaks between C
f 

and c , the corresponding fatigue is elastic random

• f atigue. If all the peaks are below e , and there are peaks between £

and C , the corresponding fatigue is plastic random fatigue. Once the

strain is beyond C , this is a single dangerous state of first excursion

failure.

PROBABILISTIC FACTORS

Based on the discussion of elastic and plastic random fatigue,

probabilistic factors conceived to affect elastic and plastic fatigue are

listed as follows.

(1) mean strain

(2) variance of strain

(3) zero strain upcrossings

(4) and C), level upcroaaings

(5) duration of excursion between zero crossings

(6) duration of excursion beyond C
f 

and £~ levels

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  - -~~~~~~~ -~~~-~~~— -~~~~~



~~-~~~.— -—.~-- ,- - .

4.

(7) peak strain probability density functions — band width

• (8) average peak strain amplitude beyond C~ and £~ levels.

MATHEMATICAL ANALYSIS OF PROBABILISTIC FACTORS

For each random signal the probabilistic factors will be mathematically

analyzed prior to the random fatigue experiments. The statistical expres—

sions of these factors other than mean and variance are derived according

to Rice [12]. The derived equations are general and applicable to random

variables and random processes under the conditions prescribed in the

derivation; and they will be applied to our random strain signals.

1. Mean Strain

The mean or expected value of a continuous variable X of a random

process X(t), expressed as E[X], is defined as

EfXJ — J xp
~ (x) dx (1)

where p
~
(x) is the probability density function. It is assumed that the

• integral does exist. In other words IxIp~
(x) may be integrated in the

interval (_co co) . E(X] is also denoted by The mean value represents

the steady part of a random signal which consists of steady and fluctuating

components.

2. Variance of Strain

The expected value of the square of the difference between random

variable X and mean I5~ is defined as variance which is denoted by
0~~. Therefore

4
The above equation, af ter expansion, can be written as

4 — E[X 2 ] — (2)
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In the derivation of equation (2) the following expression

Px )th
~~~

l

J~~~~o3

is used. The variance is a measure of dispersion and is always greater than

zero. The dispersion can be measured by taking the positive square root of

4. a~ is referred to as the standard deviation, or root mean square value

(r.m.s.)

3. Zero Strain Upcrossings

Strain reversal is considered as an important factor which affects

fatigue. Whereas in sinusoidal fatigue it is represented by the number of

cycles, in random fatigue it is represented by the number of zero strain

crossings.

• To investigate the expected number of crossings of a Gaussian random

process x(t) with realizations x1(t) at an arbitrary level x
0 in the

time interval ~t — t2—t1, it is necessary to construct a counting functional

n. The unit step function u(t) is used for this purpose.

Let a realization of a new random process Y(t) be defined as

Y1(t) — u{x1(t)—x0
}

Differentiating with respect to time gives

— k1(t) S(x1(t)—x0}

which vanishes everywhere except when x1(t) — x0, at which point there

exists a spike of unit area directed upward or downward depending on whether

is positive or negative. The counting functional, i.e., the number

of crossings per unit time at t, for this typical realization of the random

process x(t), given by Middleton (13] as

n(x0,t) — 1k1(t) I 6(z1(t)—x0}

—- — ~~~~—- - -~~~~~~~~~~~~~~~~~~~~~~~~ -—“-~~~~~~ _ _ _ _ _ _  _ _ _ _ _
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6.

includes both upward and downward crossings. The total number of crossings

in the interval (t1,t2) is therefore

r t 2
N(x0,t1,t2) — 

J 

i~(t),~ 6{x1(t)—x0}tl

The expected number of crossings in this typical realization x1(t) of the

Gaussian random process x(t) is given by

f t~
E[N(x0,t1,t2)] — J E [~ *(t)~ ó{x(t)—x0}]dtti

1t 2 I~ 1~~
— I I j Iii 5(x—x0)p~~(x,i) dx di dt

) tl ) _co -~~

— (t
2

—t
1

) IxIp .(x0,x) di

where p.(x,i) is the joint probability density function. Since each

upcrossing is followed by a downcrosaing the expected number of upcrossings

per unit time is given by

~ 
E(N(x ,t1,t2

)]
E[N~(x0)] — ____________

1

- 

~ J 
i~p .(x~,i) dk

From the definition of probability density function, we have

p_.(x,i) — 
1 

exp ~ 
—l 

(!._ — 
____ 

+
2ir/a

0
m2(1— pZ) 2(l— p

2
) 

m0 
~~O”2 ~2

in which

— 
E [x(t) *(t)]

L _ _  
___________________
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2m0 
— E(x ( t )]

.2m2 E[x (t)]

• In the frequency domain, m
0 

and m2 are defined as the moments of spectral

density function expressed as

I nm = L w ~ (w) dw n — 0,1,2n I
J o

where w is the angular frequency and •~~(w) is the one sided spectral

density function.

For ergordic process the expectations are equal to the corresponding

temporal averages. Thus

E[x(t)x(t+r)] — R (t) — <x(t)x(t+r)>
• where R (t) is the autocorrelation function and < > indicates the

temporal average. We also have

R~~~(t) R~~~(—t)

Let the dot be used to indicate differentiation with respect to r . Then

— R~~(r) — R. (—t)

For t — O

R.(O) — <x(t ) i(t)>

R~~(0) —

Therefore

R~~(O) — R~~(O) — R~~~~(O) — 0

Since

E(x(t ) i(t) ] — R,~~(O) — 0

then

P .O

_ _ __ _ __ _ __ _ _ _  _ _ _  --~~~~-~~~~~~~~ - —~~~~~~~~~~~~~~~~~~~~ - - ~~~~~-
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8.

Therefore

2 .21 l x  xp~~ (x ,x) - 
____ exp [- ~ (~~ + I

2iWm0m2 0 2

• and the equation for E [N+(x0) I becomes

1 m
2 

—(x~ /2m
0
)

E[N~ (x0)] - -
~ j  

— e

When x0 — 0 the expected number of zero upcrossings per unit time is

obtained as

E [N~(O)] — ~~~~~~~~~~ ~~~~~ (3)

4. and C
), Level Upcrossings

‘ The expected number of upcrossings at the level x0, as derived above,

t 

- 

E[N~(x0)] - ~~~~~~ e 
-(x

~
/2m

~
)

Therefore the equations for the expected number of upcrossings of a random

• strain signal at the levels C
f and C~, per unit time are obtained,

respectively, as follows.

1 ~ 
m2 —(C~/2m0) (4a)

E[N~ (Cf )]  
~~~ 

— e

1 j m2 —( C /2m0
)

E[N (c )] - ~ — e y (4b)

5. Duration of Excursion Between Zero Crossings

The duration of the excursion is the time interval during which the
oscillation exceeds a specific level. A particular case is the duration

of excursion between zero crossings.

Let an ar bitrary level x0 be exceeded by the realiza tion x1(t) of
the stati onary random process x(t ) at an upcro ssing when the oscillation

I; 

________________________________________ ________________________________ 
____________________________ -— —- — - -~~~~~~~ -- - -~~~~~~~~~~~ -~~~~~~~~~ —~~~~~~~~~~~~~~~~ —— -
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has positive elope 1(t1) > 0 while at a downcrossing the oscillation has

negative slope 1(t 2) < 0. Define a realization of a new random process as

Y
1
(t11t2

) —

in which u is a step function. Differentiating Y
1(t11t2

) with respect

to t
1 

and then with respect to t
2 

gives four terms. One of these terms

is

*1(t1
) t~{x1(t1)—x0}u{i1(t1)—O}*1(t2)S{x1(t2)—x0}u{—jc1(t2)—O}

which represents a spike of unit area when x
1(t1

) x
1
(t
2

) x0, 11(t1
)> 0

and i
1(t2) < 0. It can be used as the counting functional representing the

number of crossings per unit time whenever x
1(t1

) — x1(t2) — x
0 

and

provided that 1
1
(t
1
) > 0 and 1

1(t2) < 0. Let this counting functional

be denoted as n(x0,x0,*1,12,t). Then

n(x0,x0,11,*2,t) —

For a zero mean valued Gaussian random process, let t
1 

= t and t
2 

t + T,

the total number of crossings for duration of excursion t at level x0
during time interval t

2 
— t .~ ~~

(t2
N(xO~xO,i,*T , t l, t 2 ) — — J t n(x0,x0,i,i1,t) dt

1

where * 1(t), *, — *(t+r). The expected number of the duration of

excursion at level x
0 for the time interval t

2 
— t

1 
or t is

I 
t
2

— — J 
~1 

E(i1(t1)11(t2)6{x1(t1
)_x

0}
u{j

1(t1)
...O}6{x

1(t2
)_~0

}u{_i (t2)-0)] dt



- — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

‘I 

10.

(0 (~~
— — ( t

2
—t

1
) ~ I 1~ p

~
(xø, xø, l,i~) di di~

)_coJo

• The expected number of excursion interval T per unit time is
(0 (~~E(N( t ) ] — — I * l~p (x0,x0 ,i,* )  di di~J — o ~ )O

In the above equation the four variable density function is given by

2
-ax / E~

Px O ~
X
O~~~

x
r
) — 

¶2 ~ 1/2 e 0 ~ exp [— -j-i--
~ 

[bxo(i_i
~) + dik

~4

e .2 .2
+ (x +x )]

where is a four variable variance—covariance matrix, expressed as

• 
- 

m
0 

m
0

(T) 0 m1(r)

— 

m
0
(t) m

0 —m1(t) 0

0 —m1(t) m
2 m

2(t)

m
1(r) 0 m2(t)

and

a - {m
2
-m

2
(T)} [{m

0
-m

0
(T)){m

2
ii~2

(t)} -

b — m
1ft)[{m0—m (T)}{m -fm Cr )) — m~Cr)]

d — 
~~2
(T)(m~—a~(T)} + m0(r)1n~(r)

e — m2{m0—a0(t) } — m0m~(r)

ii0(r) — E [x(t )x(t-i- r ) ] — R (t)

• m
1(r) — E[x(t)k (t+r)J — R (r)

m
2
(-r) — E(*(t)k(t4-r) J —

,

~ 

i__•_•_••••_ _ 

_________ _____________  

-~~~~~~~

-~ — ----- --~~ --- - -~~ - - --~~~~~~~~~ - - - - —-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •. - ~~--- --. -~~~
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The determinant of A
4 

is expanded and simplified as

1A 4 1 
I 

~~~~fmo 
r) m

2
_m
2
(T)} — m~(T)][(m0—m0(T)}{m 2+in2Cr)} 

—

(t)

The probability density function for the excursion interval t between

zero crossings for which x0 = 0 is def ined as

E[N(r)] 
—O

= E[N~ (O) ]

where

E(N~(:)] :*~
E[N(T)]

x=0
= 
~~~~~~~ J ~~~k* exp (- j-~

--
~
{dii

~ 
+~~~ (*2+i~) }]  di

Rice has evaluated the above integral for E[N ( r ) ]  and gives
0

— (e2—d~)~ [m~—m~(r)]
2 [1 + h coC1(—h)]

where

h — d(e2—d 2) 2

Therefore
I

EE t I x _ ø  — 

J Tp
0~r)dr — J tp

0
(t)dr (5)

6. Duration of Excursion Beyond C
f 

and C Levels

The probability density function for excursion interval t between

an upcrossing and a downcrossing at level x
0 

is def ined as

( 
~ 
• 

EEN (r)]p t E(N~(x0)]

- ---------- --

~

-_- - - -  —.--— ----~~ —- -  —-~~~-- -~~-- - - -~~~~~~~ -- ___
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— - -

where

1 r~ 
_ (x

~
/2m

~
)

E (N~.(x0)] —~1;-- e

c o r ~
— — I ~~tPx~~o,

xo,*,*.r) di d11
)~~~~co 0

as obtained previously. Instead of a tedious numerical integration of the

above equation for E[N(r)], Tikhonov (14] derives an approximate expression

for the probability density function for the duration of excursion at an

arbitrary level x
0 

as

2p(r) p0(r)exp(—a /4)

where

a .x
0/a~

Then

E[N(T) ] — tp(-r)d’r — rpCr)dt (6)

)0

7. Peak Strain Probability Density Function — Band Width

A maximum of a typical realization x1(t) of the Gaussian random process

x(t) occurs provided that the realization 11(t) of the random process 1(t)

is zero and the realization ~1
(t) of the random process i~(t) is negative,

i.e. 11(t) — 0, i~1(t) < 0.

Define the counting functional as

• n(x0,O,t) - -~1(t) 6(11(t) - 0}u{x1(t) - x0}

which represents a spike of unit area whenever x1(t) > x0, *1(t) 
— 0, and

< 0. The total number of peaks in the time interval At — t2 — t
1 

is
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• 
N(x0,O,t1,t2) - J ~~~(t) 6{~~(t) - 0}u{x1(t) - x0} dt

1

Then the expected number of peaks in this typical realization x1(t) of the

Gaussian process x(t) is given by

f t 2
E[N(x0,O,t1,t2)]  — j 

~ 

E[~ 1(t) M11(t) 
— O}u{x

1(t) — x0}] dt

1

The expected number of peaks greater than x
0 per unit time for a zero

mean valued Gaussian random process x(t) is

E(N(x0,O)] — — J —

~~~ dx J di J i~5{i-O}u{x—x0}p (x,*,g) dx

— — dx xp
~~~

(x,0,x) dx

)xO

In the above equation, the probability density function is derived as

p ...(x,0,x) — 

(2w) 3u’2
/jj~~~j 

exp [— 2I~3 I (m
2
m
4
x
2 
+ 2i4u

+

in which A3 is a three variable variance—covariance matrix, expressed as

150

A3 - 0 0

0 154

and

1A 31 —

m0 ” E[z2(t)J

- - • — - • —--- - • -  — -~~ -----
---— ——--

~~- - - • —-—-~~~~~~———-- - - -- • - - .- • • —--—•- - _____ _ _ _ _ _ _ _
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• m2 
— E(12(t)]

15
4 

— E(i~
2(t)]

• In the derivation of probability density function the following relations

are used:

E[x(t)i(t)J — E(*(t)i~(t)] = 0

E[x(t)i~(t)J — —E[12(t)] — _m
2

Previously, m
~
, m2, m4 have been defined in the frequency domain as the

moments of spectral density function.

Let x0 
— —~~, than the expected total number of maximum per unit time

of aLi. the peaks regardless of their amplitude is obtained by
0

E[N(—~°,0)] = — 
J —~ dx 

J 
xp..(x,0,ic) di~

Substituting the expression of p
~~~

(x ,O,x) in terms of moments into the

above equation and integrating we obtain

E(N(—oo,O)]

The expected number of maximum per unit time in the range (y,y+6y) is

(y+6y 10
E(N(y,0)] — — dx J ip

~~~ (x ,0,x) dx
• ) y  —~

- _6y

J 
~P~~~ (y, O ,~ ) di~

From definition, the probability that a peak lies in the range (y y+ 6y) is

p (y < peaks c y + 6y] — p~ (y) 5y — _________ •

• from which

- -  •
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- 

~~~~~ — -2w 
~
P
~~~

(y,0,x) dx

Substituting the probability density function 
~xh 

and integrating gives

• 

- the following probability density function
1

______ 

—y212m0
C
2 

1— 
2 2 —y2/2m0p (y) — ____ e + ( 

m
C ) y e (0.5 +

2iTm 0
0 

2!
erf {~~ (

1_C 
)2}]

where
2

2 
____C l— m
0m4

( ~
‘ 

—z~ /~
erf(y) a 1 e dz

From integration table

• 1 0 )  1°erf~~• 

- ~~~o o J  k 0.5

The quantity C which can be used as a factor to classify the probability

density functions and evaluated by

I m2
• (7)

0 4
• is referred to as the band width.

8. Average Peak Amplitude Beyond Cf and c,~ Levels

Let N be the total number of signal peaks in a given time interval

- 
and n

0 be the number of peaks with magnitude greater than a given level

x0 in the same time interval. Then the number n is defined as

• N
U0
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The probability that the peaks exceed an amplitude x0 is given by

• P ( X > x 0] . * _ f P~
(x) dx

• As the peak distribution of a random process is described by the Rayleigh

probability density function, so that

2
I —x /2m~

~~ - —  I en I ii
j  x0 0

from which n is obtained after integration as

x~/2m0
n e

The average value of the th highest peaks, denoted as is

• expressed as

x
1 .n j  ~~~ (x)~~• x0

I 
~ ~2 -x2/2m0— e dx

) 
x0

After integration
1

— n~j~~ {~ - (&n )2 + ~7[O.5—erf(2Ln )
2]}

where
X —y2/2

e r f x _
,j .J e  

dy

Finally
• 

~~~~ _x2,2. I A
— e 0 ~~~~ Ic 0 °(x~/2m0)

2 +~c {0.5—srf(4fm0)2}1 (8)

for aver age peak amplitude beyond Cf and C
y 

levels provided is

• -• - -- — - ••__— -_~~~~~~~~~ - ~~~~~~~~~~~~~~ --- -~~~~~~~
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equal to C
f 

and C~ , respectively.

CONCLUSION

After defining elastic and plastic random fatigue in this report, all

probabilistic factors which are conceived to affect random fatigue are

analytically studied. In addition to the mathematical definitions of mean

and variance all other factors are mathematically analyzed and expressed

in terms of moments of spectral density functions. Based on some or all of

these probabilistic factors random fatigue experiments will be planned and

conducted.
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