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PROBABILISTIC FACTORS IN RANDOM FATIGUE

T. C. Huang, K. S. Shen and Vinod K. Nagpal
Department of Engineering Mechanics
University of Wisconsin-Madison
Madison, Wisconsin 53706

Abstract
To predict random fatigue life, the popular cumulative damage
criterion, which is based on constant amplitude sinusoidal fatigue

tests, is known to be inaccurate. Therefore, actual random fatigue

experiments are proposed to establish new and reliable damage criterion.
In this report, all conceivable probabilistic factors which affect random

fatigue life are explored and mathematically analyzed. Based on these
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factors the random fatigue experiments will be planned and conducted.

ACCESSION for d/
NTIS G S

pDC B.i Ss.ien O
UNANNATHSTD =]
I R A

BY

DISTRIBLTAONAVAT A8 TV F'""ES__
[T e S

fl |
78 06 21 1p6




INTRODUCTION
" There are two major approaches for investigating random fatigue: the

cumulative damage approach and the phenomelogical approach. The main concept

of cumulative damage criterion, proposed by Miner [1] is based on the results
of constant amplitude sinusiodal fatigue tests. His hypothesis is charac-
terized by the following equation

Z (n,/N,) <c
i e

in which n, represents the actual number of cycles at a given stress
level, Ni the fatigue life at that same stress level, and ¢ 1s a constant.
3 Miner proposed that ¢ should have a value of 1.0. It is shown [2] that the
limited experimental results which have been used to evaluate this hypothesis
show a range for c¢ from 0.3 to about 3.0. Since sinusoidal fatigue results
are readily available this criterion became very popular even though it was
repeatedly proved [3-6] inaccurate to predict failure.

The phenomelogical approach involves actual random fatigue experiments.
Some of them use statistical experiment design for both deterministic and
random factors and most of them use statistical and variance analyses of }
results [7-11]. The present report explores all conceivable random factors
which affect random fatigue life. These factors are then mathematically
analyzed. The mathematical expressions of these factors facilitate the |
design of random excitation signals and data processing of random responses.

The final purpose is to establish new and reliable damage criteria for

random fatigue.

ELASTIC AND PLASTIC RANDOM FATIGUE

A The stress-strain curvesof tensile tests and the SN-curves of fatigue

tests indicate three stress levels that may be significant to random fatigue.
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They are fatigue run-out stress, the yield point stress, and ultimate stress,
represented by of, oy, and cu respectively. The corresponding strain
levels are denoted by ef, ey, and eu. The yield point divides the elastic
and plastic regions. The ultimate stre-3, not rupture stress, is used for
both brittle and ductile materials. In the case of brittle materials the
ultimate and rupture stresses are the same. Although ductile materials
have distinct ultimate and rupture stresses, they behave like brittle
materials under dynamic loadings. Unless all the peaks of strain signals
of random response are under ef, three types of failure problems can occur.
The first two types are random fatigue problems.

If all the peaks of random strain signals are below € _, and there are
peaks between ef and ey, the corresponding fatigue is elastic random
fatigue. If all the peaks are below e“, and there are peaks between €

and eu, the corresponding fatigue is plastic random fatigue. Once the

strain is beyond eu, this is a single dangerous state of first excursion

failure.

PROBABILISTIC FACTORS

Based on the discussion of elastic and plastic random fatigue,

probabilistic factors conceived to affect elastic and plastic fatigue are

listed as follows.
(1) mean strain
(2) variance of strain
(3) zero strain upcrossings
(4) €¢ and ey level upcrossings
(5) duration of excursion between zero crossings

(6) duration of excursion beyond €¢ and ey levels




(7) peak strain probability density functions - band width

(8) average peak strain amplitude beyond €¢ and ey levels.

MATHEMATICAL ANALYSIS OF PROBABILISTIC FACTORS

For each random signal the probabilistic factors will be mathematically
analyzed prior to the random fatigue experiments. The statistical expres-
sions of these factors other than mean and variance are derived according
to Rice [12]. The derived equations are general and applicable to random
variables and random processes under the conditions prescribed in the
derivation; and they will be applied to our random strain signals.

1. Mean Strain
The mean or expected value of a continuous variable X of a random

process X(t), expressed as E[X], is defined as
o <]

E[X] = xpx(x) dx . (1)

00 { K
where px(x) is the probability density function. It is assumed that the
integral does exist. In other words |x|px(x) may be integrated in the
interval (-~,»). E[X] 1is also denoted by ux. The mean value represents

the steady part of a random signal which consists of steady and fluctuating

components.

2. Variance of Strain

oon

The expected value of the square of the difference between random

variable X and mean ux is defined as variance which is denoted by

o;. Therefore
2 2
Ox E[(X-ux) ]

The above equation, after expansion, can be written as

s o Sy ool
ox E[X"] ux




In the derivation of equation (2) the following expression
0

px(x) dx = 1

-00

is used. The variance is a measure of dispersion and is always greater than

zero. The dispersion can be measured by taking the positive square root of

2

cx. ox is referred to as the standard deviation, or root mean square value

(r.m.s.).

3. Zero Strain Upcrossings

Strain reversal is considered as an important factor which affects
fatigue. Whereas in sinusoidal fatigue it is represented by the number of
cycles, in random fatigue it is represented by the number of zero strain
crossings.

To investigate the expected number of crossings of a Gaussian random
process x(t) with realizations xl(t) at an arbitrary level x, in the
time interval At = tz-tl, it is necessary to construct a counting functional
n. The unit step function u(t) 1s used for this purpose.

Let a realization of a new random process Y(t) be defined as

Y, (¢) = u{xl(t)-xo}
Differentiating with respect to time gives

T (t) = %, () 8{x, (£)-x,}

which vanishes everywhere except when xl(t) = Xy at which point there
exists a spike of unit area directed upward or downward depending on whether
il(t) is positive or negative. The counting functional, i.e., the number
of crossings per unit time at t, for this typical realization of the random

process x(t), given by Middleton [13] as

n(xo’t) -~ l*l(t)l G{xl(t)-:o}
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includes both upward and downward crossings. The total number of crossings
in the interval (tl,tz) is therefore
t2
N(xy,t;,t,) = |%, (&) | &{x,(e)-x,} de
t
1
The expected number of crossings in this typical realization xl(t) of the

Gaussian random process x(t) is given by

t
2
E[N(x,,t;,t,)] = Jt E[|%(¢)| 6{x(t)-x,}1dt
1
t2 oo oo
- ; %] 8Cx-x )P, (x,%) dx di dt
1 =00 -00

= (£,t,) ‘J k|p;(xn%) ak

where pxi(x,i) is the joint probability density function. Since each

upcrossing is followed by a downcrossing the expected number of upcrossings

per unit time is given by

1 E[N(xottlitz)]

E[N+(x0)] =2

L Bt

©o

-1 |%|p_. (x_,%) dx
2 xx 0’

-0

From the definition of probability density function, we have

2 L] .2
. 1 -1 X 2
P . (x,%) = exp [——5— - B, X
. 2n/n0-2(1-p2) G 2(1-p%) o am, ‘2)]

in which

o= E[x(t)k(t)]

agm,




7.

= E[x%(t)]

%

m, = E[Z2(0)]
In the frequency domain, o, and m, are defined as the moments of spectral

density function expressed as
[+ ]

m = wRQxx(w) dw n=0,1,2,....
0

where w 1is the angular frequency and Qxx(w) is the one sided spectral j
density function.

For ergordic process the expectations are equal to the corresponding
temporal averages. Thus

E[x(t)x(t+1)] = ka(r) = <x(t)x(t+t1)>

where Rxx(T) is the autocorrelation function and < > indicates the
temporal average. We also have

Rx(D =R_(-T)
Let the dot be used to indicate differentiation with respect to T. Then

R_ (1) = R (1) = R (-T)

For 1T =0 1
in(O) = <x(t)x(t)>
Rix(O) = <-x(t)x(t)>
Therefore
R*x(O) = in(O) = Rix(o) = 0
Since
E[x(t)x(t)] = in(O) =0
then

p=0




Therefore
2 02
1 1 % X
P :(x,%) =—————— ap[-5 C—+=)]
xx an/am P72 7m m,

and the equation for E[N41x0)] becomes

2
0 e
RE ol =l

When X, = 0 the expected number of zero upcrossings per unit time is
obtained as

m
EIN,(0)] = > 7_% )

4. = and AEY Level Upcrossings

The expected number of upcrossings at the level X, as derived above,

is 2/
m -(x./2m )
EIN,(x))] = 5 ;(2—) TR

Therefore the equations for the expected number of upcrossings of a random

strain signal at the levels ef and ey per unit time are obtained,

respectively, as follows.

ki 2
m -(e2/2m.) (4a)
E[N (ep)] "21"“/ e 0

o

s 2
1 m, -(ey/Zmo)
E[N+(ey)] - q e (4b)

5. Duration of Excursion Between Zero Crossings

The duration of the excursion is the time interval during which the
oscillation exceeds a specific level. A particular case is the duration
of excursion between zero crossings.

Let an arbitrary level xo be exceeded by the realization xl(t) of

the stationary random process x(t) at an upcrossing when the oscillation

|
{




has positive slope i(tl) > 0 while at a downcrossing the oscillation has

negative slope i(tz) < 0. Define a realization of a new random process as
Y, (t),t,) = u{xl(tl)-xo}u{xl(tl)-o}u{xl(tz)—xo}u{-*l(tz)-O}

in which u 1s a step function. Differentiating Yl(tl,tz) with respect

to t, and then with respect to t

1 gives four terms. One of these terms

2
is

xl(tl)c{xl(:1)-x0}u{x1(cl)-o}xl(:.z)a{xl(cz)-xo}u{-xl(cz)-o}
which represents a spike of unit area when x,(t;) = x,(t,) = x;, %,(t))> 0
and il(tz) < 0. It can be used as the counting functional representing the
number of crossings per unit time whenever xl(tl) = xl(tz) = X, and

provided that il(tl) >0 and il(tz) < 0. Let this counting functional

be denoted as n(xo,xo,il,iz,t). Then
n(xo,xo,il,iz,t) = il(tl)il(tz)G{xl(tl)—xo}u{il(tl)-O}
6{x1(t2)-x0}u{-:':1(t2)-0}

For a zero mean valued Gaussian random process, let t. =t and tz =t + T,

1
the total number of crossings for duration of excursion T at level X,
during time interval t2 - Ll is
*2
N(xo’x(,’X,xT’tl'tz) sty ¢ n(xo,xo,x,xT,t) dt
1

where x = x(t), *T = %X(t+1). The expected number of the duration of

excursion at level xo for the time interval t2 - tl or T 1is
E[N(xO’XO’*’*T’cl' tz)]

t
2
i B[, (€))%, (t,)80x, (&))-xo Julk, (¢)-0}8(x, (¢ ) xghul=%, (t,)~0}] at
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0

0
x X px(xo,xo,x,xT) dx de
0

The expected number of excursion interval T per unit time is

0 ]
E[N(D)] = - J I

In the above equation the four variahle density function is given by

-Q0

X prx(xo,xo,x,xT) dx de
0

-00

, e 1 -axg/ |8 1 g ™
Py lXgsXgsX,X ) = Z;ETZ—TI7§ e exp[- TKZT [bxo(x-xT) + dick
4

@ ol .2
+3 (x +xT)]

where A4 is a four variable variance-covariance matrix, expressed as

[ my om0 0 m (D) ]
mo(r) o, -ml(r) 0
A, -
0 -ml(t) m, mz(T)
ml(r) 0 mz(r) ,
and
a = {m)m, (1)} {{my-m () Haytm,y ()} - ()]
b = my (1) [{mg-ny (1) Huytm, (1)} - m2(0)]

d = -m, () (m)-u3()} + m (Dul(x)
e= nz{-g~ng(1)} - loli(T)

lo(T) = E[x(t)x(t+1)] = RXx(T)
ll(T) = E[x(t)x(t+1)] = R*i(f)

m, (T) = E[k(t)k(t+1)] = Rep (D




11.

The determinant of A4 is expanded and simplified as

|A4| = [{mo-imo(‘t)}{mz—mz(r)} - mi(r)][{mo-mo(r)}{mzmz('r)} - mi(r)]
£ e2-d2

mg-mg(t)

The probability density function for the excursion interval T between

zero crossings for which x, = 0 is defined as

BN,
Po(D = (0]

0

where o
1 2
EIN (0] = 50 &
0
-00 oo

l . e l . o e '2 .2 . .
EIN(D], _ = ——— xk_exp [- {dix_ + < (x“4x)}] dx dx
x =0 4"2|A4|k . T Ta,) St T T

Rice has evaluated the above integral for E[N(T)]x ) and gives

0
- & .l
Lol a2 2.2 .20, 03 -1,
P, (1) 2 a, (e™=d") [m0 mo(T)] [1 + h cot "(-h)]
where _l
h = d(e?-a?) 2
Therefore
© T
max
E['r]x g * rpo(r)dt = Tpo(T)dT (5)
. 0 0

6. Duration of Excursion Beyond ef and ;y Levels

The probability density function for excursion interval T between

an upcrossing and a downcrossing at level x. is defined as

E[N(T
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L (7 -Cxg/omg)
EIN (x)] = 5= N 5=
0
0 @
E[N(T)] = - Xk P (XX, %,k ) dk dk_
—00 0
as obtained previously. Instead of a tedious numerical integration of the
above equation for E[N(t)], Tikhonov [14] derives an approximate expression
for the probability density function for the duration of excursion at an

arbitrary level x. as

0
p(0) = py(Dexp(-a’/4)

where

; : as= xolox

Then

Tnax
E[N(T)] = tp(T)dT = tp(t)dT (6)

7. Peak Strain Probability Density Function ~ Band Width

A maximum of a typical realization xl(t) of the Gaussian random process

x(t) occurs provided that the realization il(t) of the random process x(t)

| is zero and the realization il(t) of the random process x(t) is negative,

i.e. X (t) =0, ¥(t) <0.
Define the counting functional as
n(xo,O,t) = -il(t) B{il(t) - O}u{xl(t) - xo}

which represents a spike of unit area whenever xl(t) > g il(t) = 0, and

P

il(t) < 0. The total number of peaks in the time interval At = t, -t

2 is

1
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t

2

N(xO’o’tl’tZ) - J . il(t) G{kl(t) = O}U{xl(t) - xo} dt
1

Then the expected number of peaks in this typical realization xl(t) of the
Gaussian process x(t) is given by

ty

E[iil(t:) G{il(t) - O}u{xl(t) - xo}] dt
t

E[N(xo)oitlitz)] e J
1

The expected number of peaks greater than x, per unit time for a zero

mean valued Gaussian random process x(t) 1is

r o ® ©
E[N(xo,O)] - = dx J dx iEG{i—O}u{x-xo}pﬁ(x,i,i) dx

J = - =00
r® 0
= - dx ipxﬂ(x,o,i) dii
J % i

In the above equation, the probability density function is derived as

P ..(x,0,%) = W;’—— exp [- ?I—z—l- (mzu\l.x2 + ngxx
. (2m) /V |A3| 3

+ i)
in which A3 is a three variable variance-covariance matrix, expressed as

—

i
A3- 0 m, 0

L "% " -

2
1831 = my(agm, =)
my = Elx’(0))
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m, = E[x%(t)]

m, = B[ (0)]
In the derivation of probability density function the following relations

are used:

E[x(t)x(t)] = E[x(t)%X(t)] = 0

E[x(0)%(t)] = -E[x’(6)] = -m,

Previously, mys My, M, have been defined in the frequency domain as the
moments of spectral density function.
Let Xg = -», than the expected total number of maximum per unit time

of all the peaks regardless of their amplitude is obtained by
o 0
E[N(-=,0)] = - dx Xp

-0 -00

xii(x,o,i) dx

Substituting the expression of pxii(x’o’*) in terms of moments into the
above equation and integrating we obtain

E[N(-=,0)] = 5= =
2

The expected number of maximum per unit time in the range (y,y+Sy) is

i y+6y 0
E[N(y,0)] = - dx §pxi*(x,0,i) dx
a y —o
:‘ 0
ﬂ - sty | S (v,08) d&
-

From definition, the probability that a peak lies in the range (y,y+ Sy) 1s

Ply < peaks < y + §y] = p (y)éy = -:-%g.%

from which




B o
Py(y) = -2m m, ¥P 55 (7,0,%) dx

-00

Substituting the probability density function Peg= and integrating gives

the following probability density function
1

2 = iR
& -y2/2moe ;1_6222 y /Zm0
pY(y) = e + - y e [0.5 +
IVZwmo . 0
2 —
erf (X d=5%)
€ 'm
0
where
m2
& =to
04
y -22/2
erf(y) = e dz

1
N 2w 0
From integration table
0 0
erf =
L 0.5

The quantity € which can be used as a factor to classify the probability

density functions and evaluated by

€))

is referred to as the band width.

8. Average Peak Amplitude Beyond € and ey Levels

Let N be the total number of signal peaks in a given time interval
and n, be the number of peaks with magnitude greater than a given level

xo in the same time interval. Then the number n 1is defined as

15.




The probability that the peaks exceed an amplitude X, is given by

[ ]
-ia
P[X > xol . px(x) dx
x
0
As the peak distribution of a random process is described by the Rayleigh

probability density function, so that

& -xz / Zmo
‘ dx

8=
]

X
e

X, 0

from which n 1is obtained after integration as

2

::0/21110

n"=e

The average value of the % th highest peaks, denoted as x, is

1
=
expressed as
[ o
:-:1 =qn xpx(x)dx
—3 J x
n o0 2
[ <2 -x /Zm0
= qn — e dx
x III0
J 70
After integration
1 1
- 1 2
xl =n 4211:0 {; (&n n)” + v m™ [0.5-erf(2fn n)2]}
n
where
1 » -y2/2
erf x = fl_ e dy
27 0
Finally
2 2 1
x./2m -x./2m = 1
e 00, — 070, 2 2 2 2
x = N, [e (xg/2mp)* +fn {0.5-ert (xg/m )’} (8)
n A

for average peak amplitude beyond ef and e’ levels provided x, is

0
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equal to €¢ and ey’ respectively.

CONCLUSION

After defining elastic and plastic random fatigue in this report, all
probabilistic factors which are conceived to affect random fatigue are
analytically studied. In addition to the mathematical definitions of mean
and variance all other factors are mathematically analyzed and expressed
in terms of moments of spectral density functions. Based on some or all of
these probabilistic factors random fatigue experiments will be planned and

conducted.
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