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Abstract

A general labelled tree structure is introduced for a class of non-
uniform two-dimensional finite element ~ieshes. The theoretical basis of
the structure and the fundamental access algorithms on the tree are pre-
sented in a manner which lends itself to extensions to higher dimensions .
For use in finite element computations , the tree is truncated considerably
and then the principal , relevant algorithms are discussed , including the
refinement of the mesh , the computation of the elemental stiffness matrices ,
and the assembly and decomposition of the global stiffness matrices based
on nested dissection techniques . An outlook to various possible extensions
of the structure is also given.
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1. Introduction

Currently an experimental software system is under development at the

University of Maryland which has the following desi gn properties:

(i) The system constitutes an applications-independent finite

element solver for a certain class of two-dimensional, linear,

elliptic boundary value problems defined by a weak mathematical

formulation.

(1.1) (ii) Adaptive approaches are employed extensively. The a-posteriori

estimates developed in [1 ]- [  5] are used to control the adaptive

processes and to provide a solution with near optimal error

within a prescribed cost range.

(iii) In the systems design advantage was taken of the natural paral-

lelism and modularity of the finite element method.

The general design of the system has been described in [6 1. Since

it represents an experimental prototype rather than a production system ,

extensive provisions for evaluating the performance are incorporated.

A principal feature of (3.. 1) (ii) is an adaptive mesh refinement algo-

rithm. Briefly, after a solution has been obtained on some mesh error

indicators are evaluated on the individual elements and from these a very

reliable estimate of the error in the energy norm is composed. The error

is (asymptotically)optiina l for the degrees of freedom used if all indica-

tors are essentially equal . This provides the basis for the refinement

algorithm which in essence divides certain elements so as to achieve a more

equal distribution of the error indicators (see, e.g., [5 ).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  

L
________________________ — 

~~~~~~~~~ 

‘ I



F.-. - .  — -.-~r” —...-—~ --— --- ~~~~~~~ - .-. .~—.~~~~S.~ S.—-——— ~~~~~~ 
•_~~

__
~_~

_., ~~~~~~ —---—~~~~~ -~~ — ~~~

- 2 -

The efficiency of such a refinement strategy depends critically on

H the design of the data structure for the meshes. This is the topic of

the present paper. Mere specifically, we present here a tree structure

for the class of meshes considered in [6). Chapter 2 outlines the general

definition of the meshes and introduces the theoretical basis of the tree

structure for them and the fundamental access algorithms on the tree. This

structure is not restricted to two-dimensional meshes, but the extension

shall not be considered here. For the finite element computations ‘i~der

discussion the tree can be truncated considerably. This is discussed in

Chapter 3 together with the principal algorithms needed, namely, the refine-

inent of the mesh, the computation of the elemental stiffness matrices, and

the assembly and decomposition of the global stiffness matrix. Finally,

in Chapter 4 we indicate some possible extensions of the structure.

I I  
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2. The Basic Data Structure

2.1 Domain and Mesh Definition

The parallelism of the design property’ (l.l)(iii) is on the procedural

- I level rather than the instructional level. It is specified in terms of

processes which are autonomous units with their own programs and data.

These processes run in parallel and coninunicate asynchronously in a

limited and highly structured manner.

A natural parallel process structure for the system derives from the

familiar substructure analysis in engineering design. The doma in S~ c~
is defined as the union ~ = U U ... U 2N of finitely many closed,

bounded subsets c R2 which have nonetnpty interiors such that

fl 0, i 
~ 
j. On each subdomain S~. a finite element mesh is

introduced and, to a considerable extent, the computations on the different L
subdomains are performed in parallel (see [6 J ) .

For the design of a reasonably efficient mesh refinement algorithm

some restrictions on the choice of the subdomains are desirable. It is

assumed that each s~. is a diffeomorphic image of some fundamental figure

F in R2 on which a simple hierarchy of subdivisions can be defined. On

the intersections of the subdomains these diffeomorphisms have to satisfy

appropriate compatibility conditions. The finite element meshes on each

s~. consist of curvilinear elements which are first defined on F and then

mapped into 
~~

. Thus the mesh construction takes place in F and for the

discussion of the data structures it suffices to restrict the attention to F.

.1

J 
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From a practical viewpoint there are essentially only two types of

fundamental figures F that should be considered here, namely, a square

or an equilateral triangle. In order to keep the data structures manage-

able, it is advantageous to require that the subdivisions of the chosen

figure F consist solely of the sante type. For instance, if F is the

closure of the open unit square

(2.1) Q0 
= {x E R2 I 0 < x~ < 1, i = l,2}

then admissible meshes on may be defined as collections N of closed

squares in which are generated by recursive application of the two

rules:

(i) The mesh N consisting only of itself is admissible

(ii) If N is an admissible mesh on (
~~, then the mesh N’ is

(2.2) admissible that is obtained from N by subdividing any one

closed square ~ of N into four congruent squares of half

the side length of Q.
P

A typical mesh °~ ~o generated

in this way is shown in Figure 1. Clearly, -

the refinement introduces “irregular” points 
7~ ‘

- -marked by small circles- -which are not

corners of all the squares incident with —0~
them. if conforming elements are used,

the solution at these points is specified

by continuity conditions; this results in Figure 1
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certain complications in the solution process.

If instead of an equilateral triangle is used, then the ana]ogous

algorithm (2.2) leads to meshes of the

form shown in Figure 2. Here irregular

points appear even more frequently. But

we might “regularize” them by introducing

“irregular” lines- -marked by dashes. Then

the triangles are no longer similar to each

other and, worse yet, the refinement algo- ..‘

rithm mu,t be modified considerably to
Figure 2

avoid a proliferation of triangles of

various shapes. In particular “lengthy” triangles with small angles are

numerically very undesirable.

There are other schemes that can be considered each with its particular

advantages and disadvantages. At the same t ime , the types of meshes pro-

duced by the various schemes are not at all equivalent when it comes to our

design obj ective of generating near opt imal meshes . No halving procedure

such as (2.2) can be expected to equalize the error indicators. But it

appears that, in general, for the meshes generated by (2.2) on the

indicators tend to be closer together than for meshes generated by other

schemes, e.g., the “regularized” meshes of Figure 2.

For this reason, in our systems design we chose the mesh generation

scheme (2.2) on the unit square Q0 as fundamental figure F. Suitable

finite elements are used which have the squares of the admissible meshes

- , —~~. . .  .- -
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as carriers. For simplicity of the presentation we restrict ourselves to

Hermitian elements for which all degrees of freedom are concentrated in

the corners of the squares . Lagrangian elements requiring additiona l nodes

could be used as well; they increase only slightly the level of complexity
- i of the algorithms .

2.2  The Basic Tree Structure

A widely used data structur e for finite element computations is

based on a list of the nodes each pointing to the elements to which it

belongs, and of a list of the elements which in turn point to the nodes

incident with them. This essentially static structure is not very effi-

cient when mesh refinements are introduced. Instead, the recursive defini-

tion (2.2) of the admissible meshes suggests the use of a tree structure

that corresponds to the refinement process and has several obvious advan-

tages.

Evidently, the subdivision of a square in some mesh requires only a

simple extension of the tree while in the node/element list structure

various changes are needed in widely dispersed places. When the tree
becomes too large, it is easily partitioned into logically coherent parts

for storage on secondary devices. Since the tree structure reflects the

refinement process, it provides for an efficient decomposition of the global

stiffness matrix corresponding to the well-known nested dissection tech-

nique (see, e.g., [7 1).  The tree structure also allows for a rather

efficient treatment of the irregular points discussed above in connection
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with Figure 1. In particular, it turns out that it suffices to represent

only the regular points on the tree.

In this section we introduce a formal definition of the basic tree

structure which will then be simplified in Chapter 3.

Let B = (e~,e
2} be the set of the standard basic vectors e’ = (1,0)T

1 2and e = (0,1) of R . For any one of the four subsets F c B the cardinality

is denoted by I E { .  In the I El -dimensional plane u+span F the open “square”
Q with center u and side length h> 0 is defined by

(2.3) Q = sq(u,h,E) = (x E R2 J Ik-uj i < 4 h, xTe] = u1, v e ~ E}

We write dim Q = ~Ef . In particular, sq(4(e
1+e2),l,B) is the open unit

square (2.1) and for any u E R2 and h > 0, sq(u,h,O) is the point u.

Now let A be the set of nine vectors

(2.4) A = (a E R 2 a1 
= -1,0,+l; i = l,2}

and set

(2.5) AB 
= ja E A I a~ = 0 if e1 

~ E}, V E C B

(2.6) E[aJ = {e’ E E a
~ 

= O}, V a E A .

Then the faces of any open square Q = sq(u,h,E), F C B , are the squares

(2 .7)  P = sq(u + 4 ha, h, E[aJ), V a E AB
Note that Q itself is the unique El-dimensional face of itself.

¶ 

~~~~~~~~~~~~~~~~~~~~~~~~~~
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in line with the refinement rule (2.2)(ii), we introduce a subdivision

operator a which associates with any open square Q = sq (u ,h , I ’) , F c H ,

the set ~(Q) consisting of the 3dmt Q squares

sq(u 4 ha , h , F F[a]), V a € A1.

Not e that o(Q) contains exactly one point, namely, sq(u , h, $~ . For F

this is the point Q i tself ;  otherwise , it is t.ie center of Q.

In order to formalize the refinement algorithm (2.2) on the closed unit

square ~~~~~, we iinbed in the larger open square Q 2  = sq(e1+c ,4,B).

Now we establish a fixed rudimentary tree as follows:

(i) The root of T0 represents the square Q,.

(ii) The successors of the root are four nodes corresponding to the
H i ’(2.9) squares sq((e +e~)+a,2,B~E[a]) of a(Q 2) with a E AB , a ~ 0.

(iii) Any node constructed in (ii) representing, say, Q = sq(u ,2,F),

luts 2thn~1~ successor nodes representing the squares of a(Q)

with a E a ~~ 0.

it is easily seen that the resulting rudimentary tree T0 has exactly

nine terminal nodes representing th~ open unit square Q0 and its eight one-

and zero-dimensional faces.

Now all admissible subdivision trees T are obtained recursively by

application of the two rules: —

- —  
. . 2We use here the standard partial ordering on R defined by x ~ 0 when-

ever x1 ~ 0, i 1,2.
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Ci) T0 is an admissible tree.

(ii) Let T be an admissible tree and consider any terminal

node of T corresponding to a two-dimensional square Q.

(2.10) Then a new admissible tree T’ is obtained if we attach

to each terminal node of T that represents a face P

of Q exactly 3djjn P 
successor nodes corresponding to

the squares (2.8) of a(P).

For any such tree T the terminal nodes representing two-dimensional

squares correspond exactly to the interiors of the undivided, closed squares

of an admissible mesh defined by (2.2) .

Clearly , these admissible trees grow rapidly very large; hence, for the

implementation they have to be reduced. This will be discussed in Chapter 3

below where also some illustrative examples are given.

2.3 Labels

Let T be an admissible tree as defined by (2.10) . We label the nodes

of T as follows :

(i) The root of T is labelled X(root) = (1,1) 1.

(ii) For any nonterminal node of T representing the square 
- -(2.11)

Q = sq(u,h,E) each successor node p corresponds to a

square P = sq(u + 4ha, 4h , B-~.E[a]), a E AF, of a(Q).

This node p is labelled X(p) = a.

~~
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These labels allow for an easy reconstruction of the square Q = sq(u ,h ,E)

corresponding to a node q of T. In fact let

(2.12) = path (q,root) = ~~~~~~~~~~~ p1 = q, p~ = root, n ~ 1

be the unique path from the node q to the root . Suppose that

corresponds to the square 
~k 

= sq (uk ,h~,E~) ,  k = 1,.. .n . Then we have

by construction

n n 1 2hn = 4
~ 

u = X ( p ) = e  ~~e

hk l  4 h~, ~
k-l 

= + 4 ~~X(pk) k n ,n-l ,...,2

and hence

(2.13) hk 
= 22+k-n ~

k 
= \(pfl) + 

~ X(p~)2~~~~~~ , k = n ,n-l ,...,1
j=k

~breover, by (2.8) we have

(2.14) Ek 
= E~~ E[X(p

k)], k = n,n-l ,...,1 .

The labelled tree T allows also a simple reconstruction of the faces

and neighboring squares of a given square. For this it is useful to intro-

duce some notation.

Note first that the set A of (2.4 ) is a multiplicative, coimnutative

selnigroup under the product

(2.15) (:~:) ~ 
(
~
) = (:~) .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~ 
—p-— - — -—- - 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~
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With the members of A we form strings of finite length

(2.16) a = a[lja[ 2 1. . .a[nJ , a[i ] E A , i = 1,... ,n

For such strings the following three operations are well defined:

substring: a[i:j] = a[ija[i+l]...a[j], I ~ i ~ 
j ~ n

(2.17) concatenation: a • = a[1]...a[n}~3[1J...~ [in}

multiplication: a ~ a = (a~a[lJ)(aoa[2])... (a~na[n]), V a E A

Now suppose that on the subdivision tree I the node q represents

the two-dimensional square Q = sq(u,23~~,B) with side length h = ~~~ - -

n ~ 3. We wish to find the nodes

of T correspond ing to the corner

points ~~~ i,j = ±1, the sides p p

~~~ i = ±1, j = 0, or i = 0, j = ±1, 
-_________

and the neighboring squares of the s —
‘.1,

same size S.., i = ± l , j = O , or

i =  0, j = ±1, if they exist (see ~~

Figure 3.)

Since u u(Q) is the center of Q, Figure 3

it is obvious that the centers of these various “squares” are given by

u(P.~) u(Q) + 22-n 
~~~ ~~ 

= ±1

(2.18) u(T1~) = u(Q) + 22n = ±1, ~ 
= 0

and
u(S1~) 

= u(Q) + ~~~ (
~
) J ~ = 0, ~ 

±1 . -

- 

~~~~~~~~~~~~~~~~~~~~~ 

.- —
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Let n be the path (2.12) from q to the root and a(q) = string(ti) the

corresponding label string with a[k] = X(pk) (xk,x~)
T k =

For ease of notation we denote by w any one of the components of u(Q).

By (2.13) we then have

~l22-n ~~~~~ + ... + + ~
n-l 

+ .

An addition or subtraction of 22~~ evidently generates a carry. Ibre

specifi’cally, ass~ine that

= ~2 _ — \k-2 ~
k-l 

~
k-2, k ~ 2

then it follows readily that

- ~l22-n = ~
Z23-n + •. .  +

~ 
+ ~k2k- (n-1) + +

(2.19) - ),~
123~~ = ~

122-n + ~Z23-n 
+ •~~~. +

~~ 
+ x 12~

-n 
= ~

l22-n - - ~
k-22k-n-l - ~

k-12k~
n

+ ~k2k-n+ l 
+ •..  + ~n

In order to translate this into label strings we introduce for any

node q with label string a string(n) the indices

(xj \
(2.20) k~ k~ (q) 1 + min(k~X~ -Xi), i = 1,2, a[j] = ) .

- .
~~~
- - ---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since always X~ = 1, — -1 , 1, i 1,2, the existence of these

indices k~ is guaranteed for any node q for which n = path(q,root)

has at least length n ~ 2. Evidently the nodes with n = 0,1 are nonterrnina l

nodes of the rudimentary tree and have no direct bearing on our subdivision

process.

Now let p13 ,t1, ,  and 
~~ 

denote the nodes of I (if they exist)

corresponding to the “squares” P~~, T.~~, and S~~, respectively. 7’breover,

assume that X(q) = (X1, X 2) T. Then we obtain from (2.19) the fo]]owing

formulas for the label strings ~(p~~) = ~~~~~~~~~~~~~~~~~~~~~

~ 
) = af2:n]

1’ 2

= {e~~a f2 :k 2-1j} • a f k 2 :nJ

~ 
) = {e2~a[2:k1-l1}.a[k1:n](2.21) 1’ 2

{e~~ia( k1:k 2- 1J } a[k 2 :nJ if k1 < k 2

= - a(k 2 :n } if k1

{e2®a [k 2 :k1- 1J } • a[ k 1:nl if k1 >

Similarly it follows for 
~ (t~~

) = string (~ath(t~~~root)) that

- L p(t o,~~~
) = X

1e
1
~ • a[2:n]

p (t_
~ ~~~ 

X2e
2 

• ci[2:n]
(2.22) 1

H 1p(t 0,~~) = {e ~i[l:k2-l}} • a[k 2 :n}

P (t~1, 0) = {e2
~a(1:k1-lJ }  a[k 1:nJ

_ _ _  — 
- --—- - —-  —U - -~~~- - 

-
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and for 
~
(s
~~
) string (path(s~~,root)) tha t

— . a [2 :n]

= ( 
~~~
. a[2:n]

2 ‘ 2’
(2.23)

~
(s0~~

) {(~~).ia[l:k2-1]} 
. a[k2 :n]

3(s
~~~o) {(~~)‘~a [l :k 1-l]} • a[k1:nJ

Figure 4 shows the nodes p
13
, t~~, and s~ . on the tree and the

paths represented by the various label strings. In order to find the

different nodes, we need only follow the indicated paths in T given by

the label sequences written besides them.

The following algorithm retrieves the nodes and their labels on the

path i~ = path(q,root) in the arrays p and a, respectively . It also

gives the length n of u and the two indices k1 = k~(q), i = 1, 2.

Algorithm ~~-Path
Input (q)
n:= 1; p[1} :=q
k~ := 0; a(l }~ := X (q) 1, for i = 1, 2
r :- father (q)
While r~~~ni1 do
begin n := nil; pfnJ := r

For i = 1,2 do begin a [n]~ := X (r)~ ;
if (k1—0) and (a (nJ~~X(r) .)  then k~ 

: n+l end
r :- father(r)

end
Output (n,p,a,k)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~- - - ~~~~~~~~~~~~~~~~~~ -~~ - 
- 

- ~~~~~~~~~~
- - -:-

~~~~~~-
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Here father(r) returns the father node r if r is not the root, else it

returns “nil” .

Once the arrays p and a have been established in this way, the

following algorithm follows the portion of the down-path starting at the

node p [kJ = defined by the label sequence

/ j 1\( I •~~ {a[k ]a (k- l ] . . .a ( t J },  k 1
\i2/

It returns the endpoint of the requested part of the down-path if that

point exists, else it returns “nil”.

A~gorithm Down-Path
I~put (p, a,k ,e ,j 1,j 2)
i := k; r := p [iJ
While (r~nil) arid (b.t ) do
begin i: i-i;
r := son(r,j1a[k]1,j2a[k]2) end

Output (r)

Here son(r,X1,X2) returns the descendant of node r with label (X1,X2)
T

if it exists; else it returns “nil”.

In connection with the treatment of irregular nodes, we shall need

the smallest open squares in the mesh which contain both the given

two-dimensional square Q and its open side T13 , i = ±1 , j = 0, or

i = 0, j = ±1. If q is again the node of T corresponding to Q and

X(q) = (X ,X ) T then- -because of our halving strategy- - the father p2

of q always represents the squares Q-~ ~ 
Qo ~ 

?‘breover , it is geo-
k k 1’ ‘ 2

metrically obvious that p 1 and p 2 correspond to 
~~ 0 and Q0 >~ 

,

1’ ‘ 2
respectively. Thus, these four cases are a simple byproduct of our algorithm . 

- _ - __— -~ ---~~~~~ -~~~~~~~~ --- -
- ~~~ - -  ~~- -

, -~~c ~~~~~~~
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3. Implementation Aspects

3.1 The Truncated Subdivision Tree

As indicated earlier, for the finite element computations considered

here it is unnecessary to implement the full subdivision tree T discussed

in Chapter 2. In fact, we may truncate I considerably by deleting

branches carrying information not needed in the calculations. This trunca-

tion is achieved in several steps.

When an open square Q = sq (u,2h ,B) is subdivided, a node p represent-

ing the center point u = sq (u ,h ,Ø) is introduced in I. Thereafter , if one

of the squares incident with u is subdivided , p receives one descen dant

node representing again the point u sq(u ,h12 ,Ø) . This repeats itself;

that is, a string of nodes with single descendants is generated , all of

which represent the center u of Q. A first truncation of T therefore

consists in deleting all nodes that represent a point u = sq (u ,h ,ø) , h > 0.

This leaves us only with nodes on I that represent squares of

dimension one or two. Once such a square has been subdivided , it no longer

plays a direct role in the computation . Hence from now on any nonterminal

node of I corresponding to a subdivided square sq(u,h,E), ~EI 1,2, will

be considered to represent its center point u.

In general, undivided line segments S = sq(u,h,E), )EI 1, do not carry

independent information. Thus, a second truncation of T consists in the

deletion of all terminal nodes that correspond to such line segments S.

With this, all terminal nodes of I represent undivided , two-dimensiona l

squares or points, and all nonterminal nodes correspond to points.

I
-- - -~~~~~~ 

~~~~~

-
- -
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Recall that in the admissible mesh defined by the given tree I, a

point in the open unit square Q0 is irregular if it is not a corner

point of all two-dimensional squares incident with it (the circled points

of Figure 1). If conforming elements are used, as discussed in Section 2.1,

then these irregular points carry no independent information. Obviously,

an irregular point P can only occur somewhere on a divided line segment

S = sq(v,h,E), (E~ = 1, which is the side of some undivided square sq(u,h,B).

In other words, any other point on S must also be irregular. Thus, a node

of I corresponding to an irregular point can never have a descendant node

that represents a regular point . We may therefore truncate I a third time

by deleting all nodes that correspond to an irregular point . Clearly, this

third truncat ion cannot be applied when nonconf orming elements are used .

By def inition , all points on the boundary aQ 0 of the unit square

are regular. This reflects the fact that on aQ0 other conditions have

to be taken into consideration. A side S of is either the image of

the intersection fl S~. of two of the subdomains mentioned in Section 2.1

or of a part of the boundary a~ of ~ where some boundary condition may

or may not be specified. In the first case the points on S are represented

on the subdivision trees of either one of the subdomains. Here it appears

to be advantageous not to delete the corresponding nodes from these trees

even if they are irregular on the union of the subdomains. The second case

depends on the type of boundary condition. For instance, if the solut ion

is specified on the part of 8
~0 

corresponding to S then there is cer-

tainly no need to represent the points of S on the tree. We shall not

enter into the details of the various other possibilities.

liii .
~~~~~ _ .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ——
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At any irregular point the solution is obtained by interpolation.

Hence special consideration must be given to the computation of the local

stiffness matrix of an element that has as carrier a square with some

irregular corners. This will be discussed in Section 3.3. To simplify

this computation , a regularity tag is assigned to each node of I repre-

sen-ting a divided or undivided square Q = sq (u ,h ,B). It consists of a

triple (p0,p1,p2) of single bit numbers p~ which indicate the regularity

of three of the corners of Q. If the corner is regular , the bit p1 
is

one; otherwise, it is zero . The assignment of the tag proceeds recursively

as follows:

(i) The root of I has the tag (1,1,1).

(ii) If a nonterminal node represents the center u of a

divided square and q is a descendant node correspond-
(3.1)

ing to the square Q, then p
0 

indicates the regularity

of the corner of Q opposite to u and p~ that of

its corners in the x~-direction~ i = 1, 2 , from u.
F)

The scheme is illustrated in Figure 5. - -

• 
1 1

In Figure 6 we give an example of

the truncated subdivision tree for the -
- . 

-

mesh shown there. The nodes correspond- 
______ ______-

ing to divided or undivided squares are ~~
-

A

marked by rectangular boxes. All others , Figure

H

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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of course , carry no regularity tags . In all nodes the first number is

the identifier , the pair of numbers below it the label , and--where

applicable- -the triple below that the regularity tag. It may be noted

that the full tree for the same mesh would have more than a hundred

nodes.

3.2 Subdivision

Let q be a terminal node of I corresponding to an (undivided)

square Q = sq(u,h,B). When Q is subdivided the following steps have to

be taken:

(1) New nodes have to be created on the tree corresponding to the

new squares created from Q and to any points on the sides of

Q that become regular.

(2) Regularity tags have to be assigned to the newly created nodes

where needed; and if some points on the sides of Q have become

regular the regularity tags of all nodes have to be modified that

represent squares outside Q incident with these points. I -

The first part of the resulting algorithm creates the nodes for the

new squares and assigns their p0 values:

for i ,j = ±l do
begin
create nodes q~ as son of q;
X(q13) : (i,j);

: 0;

t 
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if (i , j)  = ( X 1, X 2) then p0 (q~~) := 1;
if (i , j )  = (X ,X ,) then p0 (q . . )  := p0 (q) ;
— 1 ~ 13

!fi (i , j )  = (X 1,-X2) ~~~ 
P~C~ljJ) 

:= p1(q) ;
if (i ,j) = ( 1,X~ then p0 (q1~) := p2 (q) ;

end;

Here (X 1, k2 ) represents the label of q.

The second part of the algorithm needs the output of the up-path •

algorithm of Section 2.3. Using it we can check whether the neighboring

square s = s~10  or s = 

~O~~l 
exists and is div ided in which case the

center of that side of Q becomes regular and a corresponding node

t = t÷ 10 or t = t0~~1 has to be created . Let v be the index of the

coord inate direction x , v = 1,2, and set ~ = 1 if the neighboring square - -

is in p 2 and ~ = 2 if  it is in p “. Then the doi~~-path for a particular

s or t starts from the node pfl where n = m with m = 2 , m = klv 2v 
~
‘

v = 1,2. Here k1, k2, of course, are the indices (2.20) obtained by the

up-path algorithm. We also introduce the following label functions ~~

of the labels X1, X 2 of q and the indices ~ ,v :

v

1 1 (-X 1,±l)
1 2 (±l ,-X 2)
2 1 (X 1,±1)
2 2 (±l,X 2)

Then the next part of the subdivision algorithm has the gene’~ic form :

____  —-------.-- - — ~~- -——
- . • - -

.- ~~~~~ z—::-~ ___
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(n,p,a,k) := up-path (q)
for ~ ,v = 1,2 do

begin i~~: a m
- 

li_ v 
-

if m n-i then s := down-path (p,n,m,l,2v-3,3-2v)
if (i~~ -l) or (s~terminal) then
begjn for £ = ± 1 do beg in (i , j)  := r)

~
(X l, X 2 ;

~
i_ ,v);

: 1 end;
r a down-path(p,n,ñ~,2,v-l ,2-v);
create node t as son of r;
X(t) := ((v-l)X 1,(2-v)X 2);

if ii~ < n-l then set regularity tags for the squares ir~ s
incident with t;

Here the condition ñ~ ~ n-i indicates that the particular side of Q is

on the boundary 
~~~ 

of Hence there is no neighboring square .

!breover , since all points on are treated here as regular points ,

corresponding nodes are alway s created on the tree.

The statement requiring the setting of the regularity tags for the

squares in s incident with t has the form of the following algorithm :

forj=± l do H
begin for ± 1 do
begin r a son of s with label

p (r)  :— 1;
while (rj~terminal) do
begin r : son of r with label 11 e (~

X i,~ X
2;it ,v);

p0(r) := 1;
end;

end;
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The while- loop covers the case when there is a nested set of squares with

corners at t.

3.3 Elementa ry Stiffness Matrices

As ment ioned in Sect ion 2.1 , the appearance of irregular points 
-

- 
• complicates the calculation of the elementary stiffness matrices when

conforming elements are used . We sketch here the algorithm for the simple

case of conlormi.ng, bilinear, square elements. It should be evident how

the approach extends to more general cases. 
- -

Let Q = sq(u,h,B) be a given square with corners P1,. . . ,P 4,  and

= w~(x1~x2;h) the usual bilinear shape functions with w~(P~) 
=

i ,j  = 1,... 4. Then the desired solution y on Q has the form

(3.2) y(x1,x2) = 

j~l 
y~w~(x1,x2;h), x K Q

and- - if all corners are regular- -the elementary stiffness matrix for Q is

(3 3) M = 
~~~~~~~~~ 

= 1,.. .,4)

where S = 8(.,.) denotes the given bilinear form. In the case of irregu—

larity some of the values y
~ 

= ~(P~) are given as linear combinations of 
‘

some other values, say,

(3.4) = 

~~~~~~~ 

cje~~ j  = l,...,4 . 
I

;

Then •

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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m / 4

~ 
( ~t=i \j=l ~ 3

/

calls for the introduction of the new functions

-

• 

. 

= ~~(x1,x2;h) = 
j~ l ~~~~~~~~~~~~ 

£ = 1,... ,4

and the corresponding elementary stiffness matrix of Q is given by

(3.5) M = ~~~~~~~ i,j = l ,..., i~) = CTMC

where C = (C.  
~~~
, j = 1,. . . ,4 , ~ 1,. .. ,I~~) is the interpolation matrix in

(3.4) .

The are the solution values at certain regular points and our

F t problem is to find these points and the interpolation coefficients c~~.

As an example, consider the square 4 of Figure 6. Here the are values

at the points 5, 13, 21, 22 , and 33 and, if the corners of the square are

numbered counter-clockwise starting from 5, the interpolation matrix has

the form

(5) (13) (21) (22) (33)

j l 0 0 0 0 \
• ( 0 1/2 0 3/8 l/8 \

(3.6) C = t O  1 0 0 o J
\ 1/2 0 1/4 1/4 0 /

Basically the desired algorithm is a modified version of the down-path

procedure of Section 2.3. Let (n,p,a,k) be the output of the up-path algo-

rithm starting f rom q. If (X1,X 2) is the label of q, then the corner

~ 

-

~~ ~~~~~~~~~~~~~~~~ 
- •
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~ 
(in the notation of Figure 3) must be regular, and the other

l ’ 2
potentially irregular corners of Q are found on the down-paths from

v a 1,2, with label sequences given by (2.21). These three label

sequences have the general form

(3.7) {eV 
~o a[K2:K 1-1]} • a [ic1:nJ

where, for instance, in the case of P we have v = 1, = k ,1 2
K , 2.

4.

Let R be one of these corners and suppose that R is irregular.

Then it must he on a line S created by the subdivision of the square I -

Q~. corresponding to p[K1]. Then any regular point on S is on the

subtree rooted at p[K
1
] with labels that have a zero v-th component.

Figure 7 shows a typical situation.

Ap&.J : p~

—S +1
I-

0

j
~ I — •~ 

-
‘

Figure 7 

-. :
~~~~~~~~~ -- -
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The branches deleted from the full subdivision tree are marked by

dashed lines. Only the nonzero component of the label is shown at each

node. Briefly, we wish to find the nodes and on the truncated

tree which correspond to the nearest regular points P~~ and P 1
bracketing P.

The following algorithm for finding these nodes (if they exist) should

be self-explanatory. It starts from the node p[i1], where initially

and proceeds along the prescribed down-path. If the requested

endpoint r does not exist, then the nodes ~~~~ 
are returned with the

relative distances a 1,a~1, respectively, between the corresponding points and r~
One of these nodes may not exist--as for the point R’ in Figure 7--in

which case the particular output node is nil.

Algorithm: Down-path interval

Input (p,a,i1,i2,v)
for j - ±1 do begin~~ := nil; d~ O end
j = i1; r := p[i1J
while (i>i2) and (r~nil) do
begin i := i-i

~ := a [j ]

2-r := son of r with label 
~v-1) 

~ a[iJ
end
i f r — n i l then
begi n y : — l/2; d :— 0

while j ~ i2 do bej~ d : d +.
~
.a[i]

~~; j := i-i; ~~ :

- abs(d) ; d
1 

- 1 - d
1

Output (r, ~~1,d~1)

L



• . - - -c--— —~-—- — — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.:;pIJ
~~~_IlJuI-t 

~
_

~
•.____

~___.__ ._.~
__ •— 

_I____ •_ ______ __ _ —~~~~~~~ — - 
~~‘~~~~~~•~~~~- : -  — - • - - - - ‘— ~~~~~~~~~ - — — - —- --. -— .— — _ .  _ _ ___ .-.,t- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -• — -

- 28 -

The distance calculation uses the fact that by (2.13)

dist(R,
~~
) — 

L~~
. a( j ] 2j -N+l

1
~ ‘2

where j is the last index used in the while loop. Since R must be

in one half of the interval centered at P we have
V

- * ~ 2+i-ndist (P~1,P_1) 2

and hence

dist(R,P ) i . 
-
.

d a - -- — 
~ 
a[j] 23 ~

dist(P~1,P_1) j i 2

There are three cases for the output of this algorithm, namely,

(i) r ~ nil, (ii) r — nil, and no j~ is nil, (iii) r = nil, and one is

nil. In the fIrst case the corresponding row of the interpolation matrix

has a one in the coltDmi corresponding to r and zeroes elsewhere. In the

second case, there are the values d~1 in the columns for and zeroes

elsewhere. In the third case, we have the situation of the point R’ in

Figure 7, that is, in the search for one of the points P,~, we reached one

of the endpoints of S. Then we have to apply our algorithm to the line

perpendicular to S centered at that endpoint. The following algorithm

covers these three cases. The output consists of the number m of nonzero

elements in the particular row of C. These elements are identified by

pairs (r[j],c(j]), j — 1,...,m, where c(j] is the element of C’ in that

row and the coli.rni identified by the node r(j]. - •
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Algorithm: Interpolation Row -

Input (p,a,K1,1c2,v)
m :— 1; r[l 1 ‘ nil; c[l] a

V
0 

v; i
1
:— 1(

1
; i

2 
:—

while r (mJ — nil do
begj.n (r0,~~1,d41) :— down-path interval (p,a,i1, i2,v0)

• ifr~~ nil then r[m) := r 0
else begin

~~~ ‘-1 = nil then j := 1 else j  := -1;
r [m] := p

3
, r[m+l] := p . ;

c[rn+l) :— c [m]d _~ ; c Ern ] : c [m)d~;
m a rn+l
if r [m] — nil then

begin i2 := i1; v0 := 3-v
0
; m := a[i1] ; i1 =

while a[i1-l] m ~~, 1 : i + l ~ 
0

end
end

Output (m,r c )

In the case of r[m] = nil we must continue the search on the line

perpendicular to the current search direct ion. This is reflected by

the statement := 3 - v0. To find the needed endpoint of S is equi-

valent to determining the centerpoint T of one of the sides of Q5 (see

Figure 3). Thus, we need to construct on the up-path from q5 correspond-

ing to the node from where the new line containing the desired endpoint

is branching off . This is the content of the loop “while a[ii.l]~ m do”.

With these algorithms the interpolation matrix C of (3.4) is constructed

row by row , The calculation of the transformed elementary stiffness matrix
II M of (3.5) is then straightforward . - 

-
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3.4 t~ trix Assembly and Decomposition

- • • The assembled global stiffness matrix 1 

1 15% 1
has the bordered block-diagonal structure 1 0 —

. . L~shown in Figure 8. The matrices A~
correspond to the finite element nodes in 0

AN C,,,
the open subdomains 2~, i - 1,. ..,N, - 

—

and the border represents the points on t k I ~~ I 3

the intersections fl ~ ., i,j — l,...,N.
~~gure 8

In general , the size of B is much

smaller than that of the other diagonal blocks ; moreover , B is often not

very sparse, especially when N is small.

The form oC the matrix calls for the use of block decomposition. Since

the A1-blocks are independent of each other, it suffices to consider only

one block at a time. The triangular factorization

(3.8) A1 - UIDiUi

of one of these blocks introduces the following partial decomposition of

the overall matrix

(3.9) ~~ (
~ 

c~
) 

- (
~ ~

) (Di :) (:‘ ~i) + (0 0)

where

(3.9) (ii) B — B - 
ZI~Di~i. C~ — U~D~~

-- -- - -
— T ~~~~~
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Accordingly, for each subdomain our procedure consists of the four

steps:

(i) Generate the matrices and

(ii) Generate the contributions to the matrix B and send them to

a separate solution process;

(3.10) (iii) Compute the decomposition (3.8) of A
~ 

and the corresponding

modified matrix ~~;

(iv) Compute the modification and send it to the solver

for B.

When these steps have been completed for all subdoniains, the solver for B

can complete the decomposition of that matrix.

The structure of the solution routine for B is standard and needs no

discussion. Instead we consider only the implementation of the steps (3.10)

in the setting of our particular storage structure. As mentioned before,

the tree structure allows for a natural use of the nested dissection tech-

nique [7] in the execution of step (iii). It also provides for an effi-

cient seWnentation of the block-row (A1,C1) into groups of rows for storage

on secondary devices. The steps (i) and (ii) are combined with step (iii);

that is, the generation of the coefficients of A1,C1 (and B) from the f

corresponding elementary stiffness matrices is incorporated into the decom— •

position process. In other ~~rds, an elementary stiffness matrix is

generated (see Section 3.3) only when it is needed in the decomposition

step (iii). 

-
~~~~~~~~~~~~~~~ 
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My subdomamn is the image of the imit square Q0 and the
mesh on is defined by the mesh on Q0. Let T be the (truncated)

subdivision tree corresponding to this mesh. With any node q of T

we associate the first nonterminal node Tq with regularity tag (1,1,1)

on the path from q to the root. For any nonterininal node q of T with 
- 

-

p-tag (1,1,1) we may then define the node set q* {p 1 p node of T with

- q). By construction , this set specifies a subtree of I which shall

be denoted by T(q*). !~breover , in the usual manner we derive from I

the contracted tree I~ with the sets q* as nodes. Figure 9 shows 1*

and one of the subtrees T(q*) for the tree of Figure 6.

T(22 *)

22

//
/ 

~~~~

Figure 9/

____ -
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Note that in I the three nodes q 2,q 1,q 0 correspond ing to the

squares Q_ 2 a sq (e1+e2 4 ,B) , Q~~ — sq(0,2 ,B), and Q0 have p-tag (1,1,1).

Hence in each case T~ begins with the succession of the three nodes

q~2,q~1,q~ before multiple branching sets in. Of course, T(q*2) and

T(q*1) contain the nodes corresponding to the faces of Q0.
Let N* be the node set of 1* and N*0 - N * {q *2,q*1}. For any

q* E N* let P(q *) ~4 E(q~) be the sets of nodes of T(q *) which in

the mesh correspond to points or undivided squares, respectively. Because

of q E P(q*) the set P(q)  is never empty; on the other hand, E(q*) may

well be empty as, for instance, f or q* a q*2 q*1. The nodes of the union

tJ (P(q*)~q* ~ W~} correspond exactly to the rows and columns of the matrix 
- 

-

block A1 for our particular subdomain and those of P(q*2) U P (q*1)

to those colunns of C1 which are related to
• In order to define the pivoting sequence on A~ reflecting nested

dissection, we introduce bottom-up, left-to-right orderings (end-order

traversals, see (8, p. 334]) on all nodes of T~ and on the nodes of T(q *)

belonging to p(q *):

1*: N*0 
-

~~ 
{l,2,...,It-4~I}- 

(3. 11)
P(q*) -+ (l ,2,...,~P(q*)j}, y q* E N~

In the example of Figure 10, ~~ and ~~~ give the orderings - -

l8*,20*,22*,23*,27* and 17,19,21,22

ii I -

- - - - - - --- - -~~~~~~~ - - ~~~~~~~~~~~
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Note that for the root r of T(q *) we always have T~q*(r) a JP(q *) f .
The pivotal sequence for A1 is now defined by the lexicographic

ordering of the pairs

a (1*(p),rlq*(p) ) , V p E P(q*), qA (

We segment the rows of the block row (A
~
,C1) into groups of rows

with the same n*~Jalue

A(q~) C(q~)

(A1, C~
) , fl — I~1~I

A(q~) C(q~)

• For clarity the index i was suppressed on the right side .

For any q* ( the corresponding node q~ of T represents an

open square with boundary lines T~1 o~ o + 1 and corners P41 ~l’
as shown in Figure 3 for Q Q~. Let t÷1 0, t0,~1 and p41~~1 be the

corresponding nodes of I (if they exist) . We denote by t~(t÷1 o~ 
and

the sets of nodes of the subtrees of T rooted at the indicated

nodes. If the particular node does not exist , the corresponding set is

empty. All (potentially) nonzero entries in the upper triangular part 
- 

-

of the block row (A(q~) ,C(q~)) then consist of a ~P(q~) I -dimensional
upper triangular matrix and off-diagonal blocks as shown in Figure 10.

I 

- 

- - ~ _ _~_ _ - ~~~~~~~ 4S _~ - S~~~~~~U*A1 .l&.
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Figure 10

kHere (X1,) 2) is the label of q~, and the nodes p ,p ~, and ~ 
2 are

defined by the up-path algorithm for (see Figure 4). The node

~ 
belongs to the set P((q~)*) for ~ = min (k1, k2). Under the

l ’2
ordering (3.11) the nodes of any set ~(t) ~1 0 are always consecutively
numbered from some index L 0 to Li = 

~o-
~ 

+ f~ (t ) l .  Here £0 is carried

by the left-most , lowest descendant of t and £1 by t itself. This
allows for a simple determination of the size of the particular matrix
block.

The algorithm for assembling and decomposing the block row (A
~
,C
~)

- . 
now has the following schematic form:

1. Clear save file.
2. Establish the nodes of T* and their ordering r~*.
3. For each q* E N~ establish the numbering lq*(P) of the nodes

of P(q*) .

_ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _
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4. For q* N~ in order of r)* ~~

4.1 Establish storage map for the block row of P(q*) as
shown in Figure 10 with sizes determined as indicated
above and clear the matrix area.

4.2 If q* is not terminal in 1* then read previously
generated updates for the coefficients of the row P(o*)
and delete them from the save file.

4.3 For allpEE(q *)do
4.3.1 generate the elementary stiffness matrix M for

p (see Section 3.3)
4.3.2 update the row P(q *) with those coefficients of

1i for which at least one of the two index nodes
belongs to P(q *)

4.3.3 add the coefficients of ~ to the save file for
-) Ic

which ~oth index nodes are in P ( ( p ’) *)  U P((p )*)
U P( (p 2)*)

4.4 Decompose matrix row of P(q*) and during the decomposi-
tion add updates to the save file correspon~ing to
coefficients in the rows of P((p ) *) , P ( ( p  ) *) , and
I’((p 2)*)~

4.5 Output decomposed row for P(q *).

In the save file (in secondary memory) we retain triplets consisting of a 
•

value and two index nodes which represent needed updates for matrix rows to

be decomposed later. At the end the save file contains the updates for the

matrix B of (3.9)(ii). In step 3 the nodes P(q*2),P(q*1) are not ntun-

bered. We assune here that this numbering is done outside of this algorithm;
- 

- 

it depends on the given domain Q and the boundary conditions. The storage

map for the row of P(q*) establishes the (one-to-one) correspo~1dcnce

between the index nodes of the rows and columns indicated in Figure 10 and

the customary indexing of the matrix storage used here . 

— 
-~~~~~~ -~~~~~~
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The above algorithm uses the save file for the full segmentation

given in (3.13) . In practice , several of the block rows may be taken

together using subtrees of 1* for the control of the loop of step 4 .

_ _• ----  
- - - — -~~~~~~ ~~~

--- - -
~~~ 

-
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4. Outlook

The general tree structure introduced here is not restricted to the

particular meshes under discussion. For example, an extension to analogous

meshes on the closure of the d-dimens ional open unit cube

Q0 = {x E Rd 0 < x1 < 1, i = 1,.. ., d}, d ~ 1

is rather straightforward. Here we consider subsets E c B = { e
1,.. . ,ed}

of the set of standard basis vectors of Rd and define the ~EJ -dimensional

open square Q with center u and side length h ~ 0 by

Q = sq(u,h,E) = {x E Rd I lix-ulL. < h , xTe1 
= u~, V e1 

~ E}

If now the definition (2.4) of the “label” set A is changed to

A {a E Rd I a~ 
= -1,0 ,41, i =

then with the same notations (2.5),(2.6) as before the formulas (2.7) and

(2.8) for the faces of Q and for the subdivision operator ~, respectively,

remain exactly the same. With this, the tree can be defined as before and

the labelling rule carries over verbatim. Thus also the up-path and down-

path algorithms extend to this case. . 

• 

—

With this generalization it becomes possible to combine trees for

meshes of different dimensionality. For the practical implementation of 
- 

-

finite element computations , the trees may again be truncated. However, in

higher dimensions the irregularity problem becomes more complex since not

only points but also faces may be irregular. Thus, the corresponding

-=
~
- -~

_ 
— 

-• - - 
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truncation of the tree and the interpolation algorithms need further

analysis. The matrix assembly and decomposition algorithm, however, does

not change in principle.

The tree structure can also be defined for meshes on equilateral

triangles of the form of Figure 2 (without the irregular lines). Basica]ly

we need to change the basis vectors in the set B and take into account

that now the center point and side length only define the triangle up to

a rotation of size n. Clearly , with this an extension to meshcs on higher

dimensional simplices is also possible.
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