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\Ev Abstract

A general labelled tree structure is introduced for a class of non-
uniform two-dimensional finite element meshes. The theoretical basis of
the structure and the fundamental access algorithms on the tree are pre-
sented in a manner which lends itself to extensions to higher dimensions.
For use in finite element computations, the tree is truncated considerably
and then the principal, relevant algorithms are discussed, including the
refinement of the mesh, the computation of the elemental stiffness matrices,
and the assembly and decomposition of the global stiffness matrices based
on nested dissection techniques. An outlook to various possible extensions
of the structure is also given.
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1. Introduction

Currently an experimental software system is under development at the
University of Maryland which has the following design properties:

(i) The system constitutes an applications-independent finite
element solver for a certain class of two-dimensional, linear,
elliptic boundary value problems defined by a weak mathematical
formulation.

(1.1) (ii) Adaptive approaches are employed extensively. The a-posteriori
estimates developed in [1 ]-[ 5] are used to control the adaptive
processes and to provide a solution with near optimal error
within a prescribed cost range.

(iii) In the systems design advantage was taken of the natural paral-

lelism and modularity of the finite element method.

The general design of the system has been described in [6]. Since
it represents an experimental prototype rather than a production system,
extensive provisions for evaluating the performance are incorporated.

A principal feature of (J..1)(ii) is an adaptive mesh refinement algo-
rithm. Briefly, after a solution has been obtained on some mesh error
indicators are evaluated on the individual elements and from these a very
reliable estimate of the error in the energy norm is composed. The error
is (asymptotically)optimal for the degrees of freedom used if all indica-
tors are essentially equal. This provides the basis for the refinement
algorithm which in essence divides certain elements so as to achieve a more

equal distribution of the error indicators (see, e.g., [Q{).
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The efficiency of such a refinement strategy depends critically on
the design of the data structure for the meshes. This is the topic of
the present paper. More specifically, we present here a tree structure
for the class of meshes considered in [6]. Chapter 2 outlines the general '
definition of the meshes and introduces the theoretical basis of the tree
structure for them and the fundamental access algorithms on the tree. This
structure is not restricted to two-dimensional meshes, but the extension
shall not be considered here. For the finite element computations 'uder
discussion the tree can be truncated considerably. This is discussed in
Chapter 3 together with the principal algorithms needed, namely, the refine-
ment of the mesh, the computation of the elemental stiffness matrices, and

the assembly and decomposition of the global stiffness matrix. Finally,

in Chapter 4 we indicate some possible extensions of the structure.




2. The Basic Data Structure

2.1 Domain and Mesh Definition

The parallelism of the design property’ (1.1) (iii) is on the procedural

level rather than the instructional level. It is specified in terms of

e —
-

processes which are autonomous units with their own programs and data.

e

These processes run in parallel and communicate asynchronously in a {
: limited and highly structured manner. \ {
A natural parallel process structure for the system derives from the }

3 = 2
E § familiar substructure analysis in engineering design. The domain & ¢ R®

is defined as the union ¢ = él MGt i éN of finitely many closed,

7

bounded subsets éi ¢ R” which have nonempty interiors 2 such that

2; N 2 = fp, i # j. On each subdomain ﬁi a finite element mesh is

introduced and, to a considerable extent, the computations on the different

§ subdomains are performed in parallel (see [6]).
; For the design of a reasonably efficient mesh refinement algorithm
: some restrictions on the choice of the subdomains are desirable. It is
assumed that each éi is a diffeomorphic image of somé fundamental figure
’ F in R? on which a simple hierarchy of subdivisions can be defined. On
. the intersections of the subdomains these diffeomorphisms have to satisfy

appropriate compatibility conditions. The finite element meshes on each I

Qi consist of curvilinear elements which are first defined on F and then
mapped into éi‘ Thus the mesh construction takes place in F and for the

discussion of the data structures it suffices to restrict the attention to F.
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From a practical viewpoint there are essentially only two types of
fundamental figures F that should be considered here, namely, a square
or an equilateral triangle. In order to keep the data structures manage-
able, it is advantageous to require that the subdivisions of the chosen
figure F consist solely of the same type. For instance, if F is the

closure QO of the open unit square
(2.1) Q0={x€R2|0<xi<1,i=1,2},

then admissible meshes on QO may be defined as collections M of closed
squares in Qo which are generated by recursive application of the two

rules: |

(i) The mesh M consisting only of QO itself is admissible
(ii) If M is an admissible mesh on QO, then the mesh M' is
(2.2) admissible that is obtained from M by subdividing any one
closed square Q of M into four congruent squares of half

the side length of Q.

A typical mesh on QO generated

in this way is shown in Figure 1. C(Clearly,

the refinement introduces 'irregular' points l

--marked by small circles--which are not |1 9

corners of all the squares incident with

Ol
O\
*

them. If conforming elements are used,

the solution at these points is specified

by continuity conditions; this results in Figure 1




certain complications in the solution process.
If instead of QO an equilateral triangle is used, then thc analogous
algorithm (2.2) leads to meshes of the
form shown in Figure 2. Here irregular
points appear even more frequently. But
we might '"regularize'" them by introducing
"irregular' lines--marked by dashes. Then
the triangles are no longer similar to each

other and, worse yet, the refinement algo-

rithm must be modified considerably to

F'gyre 2

avoid a proliferation of triangles of
various shapes. In particular "lengthy'' triangles with small angles are
numerically very undesirable.

There are other schemes that can be considered each with its particular
advantages and disadvantages. At the same time, the types of meshes pro-
duced by the various schemes are not at all equivalent when it comes to our
design objective of generating near optimal meshes. No halving procedure
such as (2.2) can be expected to equalize the error indicators. But it
appears that, in general, for the meshes generated by (2.2) on Q, the
indicators tend to be closer together than for meshes generated by other
schemes, e.g., the 'regularized'" meshes of Figure 2.

For this reason, in our systems design we chose the mesh generation
scheme (2.2) on the unit square QO as fundamental figure F. Suitable

finite elements are used which have the squares of the admissible meshes




as carriers. For simplicity of the presentation we restrict ourselves to
Hermitian elements for which all degrees of freedom are concentrated in

the corners of the squares. Lagrangian elements requiring additional nodes
could be used as well; they increase only slightly the level of complexity
of the algorithms.

2.2 The Basic Tree Structure

A widely used data structure for finite element computations is

based on a list of the nodes each pointing to the elements to which it
belongs, and of a list of the elements which in turn point to the nodes
incident with them. This essentially static structure is not very effi-
cient when mesh refinements are introduced. Instead, the recursive defini-
tion (2.2) of the admissible meshes suggests the use of a tree structure
that corresponds to the refinement process and has several obvious advan-
tages.

Evidently, the subdivision of a square in some mesh requires only a
simple extension of the tree while in the node/element list structure
various changes are needed in widely dispersed places. When the tree

becomes too large, it is easily partitioned into logically coherent parts

for storage on secondary devices. Since the tree structure reflects the
refinement process, it provides for an efficient decomposition of the global |
stiffness matrix corresponding to the well-known nested dissection tech-

nique (see, e.g., [7]). The tree structure also allows for a rather f

efficient treatment of the irregular points discussed above in connection !




with Figure 1. In particular, it turns out that it suffices to represent
only the regular points on the tree.

In this section we introduce a formal definition of the basic tree
structure which will then be simplified in Chapter 3.

Let B = {el,ez} be the set of the standard basic vectors e1 = (1,0)T
and e2 = (0,1)T of RZ. For any one of the four subsets E ¢ B the cardinality
is denoted by |E|. In the |E|-dimensional plane utspan E the open ''square’

Q with center u and side length h > 0 is defined by
(2.3) Q = sq(u,h,E) = {x € R2 | Ix-ull < %-h, xTei =u;, Ve £ E}

We write dim Q = |E|. In particular, sq(%(e1+e2),1,B) is the open unit
square (2.1) and for any u ¢ R2 and h > 0, sq(u,h,f) is the point u.

Now let A be the set of nine vectors

(2.4) A= {a €R | a, =-1,041; i=1,2)

and set

(2.5) AE={aeA|ai=Oife1£E},VECB,
(2.6) Efa] = {e* ¢E|a, =0}, VacA.

1

Then the faces of any open square Q = sq(u,h,E), E c B, are the ﬁdan squares

(2.7) P = sq(u + %-ha, h, E[a]), V¥ a € AE .

Note that Q itself is the unique |E|-dimensional face of itself.
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In line with the refinement rule (2.2)(ii), we introduce a subdivision
operator o which associates with any open square Q = sq(u,h,I'), E ¢ B,
3dimQ

the set o(Q) consisting of the squares

1 1 .
(2.8) sq(u + g ha, 5 h, E~ E[a]), V a ¢ AI:' .

Note that o(Q) contains exactly one point, namely, sq(u, % h, #j. for E = §
this is the point (Q itself; otherwise, it is the center of Q.

In order to formalize the refinement algorithm (2.2) on the closed unit
square QO’ we imbed QO in the larger open square Q_2 = Sq(el+02.4,B).

Now we establish a fixed rudimentary tree T0 as follows:

(1) The root of TO represents the square Q_z.
(i1) The successors of the root are four nodes corresponding to the
(2.9) squares sq((e1+e2)+a,2,B~E[a]) of °(Q-2) with a € AB’ as 0.*)
(111) Any node constructed in (ii) representing, say, Q = sq(u,2,E),
has Zdimf{ successor nodes representing the squares of o(Q)
with a ¢ Ap» a2 0.
It is easily seen that the resulting rudimentary tree T0 has exactly
nine terminal nodes representing thz open unit square Q0 and its eight one-
and zero-dimensional faces.

Now all admissible subdivision trees T are obtained recursively by

application of the two rules:

x
We use here the standard partial ordering on R2 defined by x > 0 when-

ever x, > 0, 1= 1,2,




(1) T0 is an admissible tree.
(ii) Let T be an admissible tree and consider any terminal
node of T corresponding to a two-dimensional square Q.
(2.10) Then a new admissible tree T' 1is obtained if we attach
to each terminal node of T that represents a face P
SdimP

of Q exactly successor nodes corresponding to

the squares (2.8) of o(P).

For any such tree T the terminal nodes representing two-dimensional
squares correspond exactly to the interiors of the undivided, closed squares
of an admissible mesh defined by (2.2).

Clearly, these admissible trees grow rapidly very large; hence, for the
implementation they have to be reduced. This will be discussed in Chapter 3

below where also some illustrative examples are given.

2.3 Labels

Let T be an admissible tree as defined by (2.10). We label the nodes

of T as follows: !

(i) The root of T is labelled X(root) = (1,1)T.

(i1) For any nonterminal node of T representing the square
(2.11)
Q = sq(u,h,E) each successor node p corresponds to a
square P = squ + %-ha, %-h, EE[a]), a € AE, of o(Q).

This node p is labelled A (p) = a.
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These labels allow for an easy reconstruction of the square Q = sq(u,h,F)

corresponding to a node q of T. In fact let

(2.12) n = path (q,root) = <p],p2,...,pn>, p1 = q, pn = root, n>1,

be the unique path from the node q to the root. Suppose that pk

corresponds to the square Pk = sq(uk,hk,Ek), k=1,...,n. Then we have

by construction

' hn =4, ot = X(pn) = e1 + e2
1 k- 1
by =70 w2 oK e RGN, k= nnel,.,2
and hence
2+k-n _k n, %55 o3-(0-1)
(2.13) hk =2 W =xp)F ) AR WEE X T T ey SN
j=k
Moreover, by (2.8) we have
(2.14) E, = E~ EREN], k= n,n-1,...,1 .

The labelled tree T allows also a simple reconstruction of the faces
and neighboring squares of a given square. For this it is useful to intro-
duce some notation.

Note first that the set A of (2.4) is a multiplicative, commutative

semigroup under the product ;

(albl
azb2 .

a b
(2.15) (‘é) ® (‘é)
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With the members of A we form strings of finite length

(2.16) e = wfl]a[2)...aln}), afi] €A, 4= 1,...,n .

For such strings the following three operations are well defined:

1A

substring: a[i:j] = a[i]a[i+l])...a[j], 1 =i
afl]...an]g[1]...B[m]

multiplication: a ® a = (a*a[l]) (a%a[2])... (axa[n]), V a € A .

j=n

1]

(2.17)  concatenation: a °* B

Now suppose that on the subdivision tree T the node q represents

the two-dimensional square Q = sq(u,ZS'n,B) with side length h = 23-n’

n > 3. We wish to find the nodes

of T corresponding to the corner S
S
ints P.., i,j = t1, the sides
I 1) J ?-l ‘ Tes P"
Tij’ i=+1,j=0,0ri=20,3j=t¢1, 4
and the neighboring squares of the ¢t Tk Q 1o S
e S )
same size sij’ i=4¢%1, j =20, or e Jt
i=0,j=+1, if they exist (see e LA Pe )
Figure 3.) S, .
Since u = u(Q) is the center of Q, Figure 3

it is obvious that the centers of these various ''squares' are given by

uP;) = u@ ¢ 25 ), 4= u
(2.18) u(T;) = u(@ + 4R (J?) i=tl,j=0
. and
L) = u@ + 22 ) | i=0, 5=
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Let n be the path (2.12) from q to the root and a(q) = string(n) the
corresponding label string with a[k] = \(pk) = (xf,xg)T, k=1,...,n.
For ease of notation we denote by « any one of the components of u(Q).

By (2.13) we then have

v e -
wedl2ZB 355, a2 00l 0

2-n

An addition or subtraction of 2 evidently generates a carry. More

specifi’cally, assume that

A ande, ank? gkl k2 o5
then it follows readily that
P e TN R
o+ a2 L kk0) g0
(2.19) w- A5 L 12 3230, 0

Py O L A

w + 212 e kned’ Xk—lzk-n

2

In order to translate this into label strings we introduce for any
node q with label string a = string(n) the indices
N
PR .
(2.20) ki = k(@) =1+ min(klxi = -Aj)y &= 1,2 afj] =

j
5

i << AN A




Since always x? =1, x?'l

indices ki is guaranteed for any node q for which n = path(q,root)

= -1, \?-2 =1, i = 1,2, the existence of these

has at least length n = 2. FEvidently the nodes with n = 0,1 are nonterminal

nodes of the rudimentary tree and have no direct bearing on our subdivision

process.
Now let pij’tij’ and Sij denote the nodes of T (if they exist)
corresponding to the ''squares" pij’ Tij’ and Sij’ respectively. Moreover,

assume that \(q) = (XI,XZ)T. Then we obtain from (2.19) the following

formulas for the label strings B(pij) ¥ string(path(pij,root)):
B( ) = af2:n]
Papsoh
PE.s 00 fe'%a(2:ky"113 * a[ky:n]
Py 0 - te%wa[2:k 1]} + alk:n]

~

{elﬁa(kl:kz-l]} s alkyn] if Ky < k,

(2.21)

B(pxl,kz) = { afkyn] if k; = k,

{e%aa[kz:kl-l]} ©alkyn] if k> k,
\

Similarly it follows for B(tij) = string (path(tij,root)) that

B(tO’-XZ) = klel + a[2:n]
B(t_x ’0) - )\232 . a[Z:n]
(2.22) 1

B(to,)\z) - {616«1(1:1(2'1]} L a[kzzn]

Pty ,0) * te®a(l:k;-1]} + afky:n]
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and for B(sij) = string(path(sij,root)) that
Ay

pis, 4 J* (_ ) * al2:n]

0,-%, L7

< ) = . 2:n
B(Q-XI’XZ XZ a[

E(So’x’) - l(_})”a[l:kz-l]} + a[kyin] ‘ j%

-1 L
sy o) = L) ymlLiky 11} - alkyin)

Figure 4 shows the nodes pij’ tij’ and sij on the tree and the

paths represented by the various label strings. In order to find the
different nodes, we need only follow the indicated paths in T given by
the label sequences written besides them.

The following algorithm retrieves the nodes and their labels on the
path n = path(q,root) in the arrays p and «, respectively, It also
gives the length n of n and the two indices ki = ki(q), A=) 2

Algorithm Up-Path
Input (q)
n:=1; p(1] :=q
ki := 0, a[l]i = X(q)i, fori=1,2
r := father(q)
While r # nil do
begin n := n+1; p(n] :=r
For i = 1,2 do begin a[n]i 1= X(r)i; | 3
k¢ 4 (ki-O) and (a[n]ifx(r)i) then ki = n+l end
r := father(r) , J
end

Qu_EM (n,p,a,k) |
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Here father(r) returns the father node r if r is not the root, else it
returns ''nil".
Once the arrays p and a have been established in this way, the

following algorithm follows the portion of the down-path starting at the

k

node p(k] = p defined by the label sequence 3 .

j
1) 5 (alklalk-1]...a[e]}, k= ¢2=1.
J2

It returns the endpoint of the requested part of the down-path if that

point exists, else it returns ''nil".

Algorithm Down-Path
Input (p, a:k’&sjlnjz)
i:=k; r:= pfi]
While (r#nil) and (i>¢) do
begin i:= i-1;
T := son(r,jla[k]],jza[klz) end
Output (r)
Here son(r,kl,xz) returns the descendant of node r with label (XI,XZ)T

if it exists; else it returns ''nil".
In connection with the treatment of irregular nodes, we shall need
the smallest open squares Qij in the mesh which contain both the given

two-dimensional square Q and its open side Ti i=1+#1,3j=0,o0r

J"

i=0,j=4%1. If q is again the node of T corresponding to Q and

A(q) = (Xl,XZ)T, then--because of our halving strategy--the father pz

of q always represents the squares Q. " Q0 AL Moreover, it is geo-
Ky 1’ A

k) 2

metrically obvious that p and p correspond to Qx 0 and Q0 A
" re

respectively. Thus, these four cases are a simple byproduct of our algorithm.

e e e T S




3. Implementation Aspects

3.1 The Truncated Subdivision Tree

As indicated earlier, for the finite element computations considered
here it is unnecessary to implement the full subdivision tree T discussed
in Chapter 2. In fact, we may truncate T considerably by deleting
branches carrying information not needed in the calculations. This trunca-
tion is achieved in several steps.

When an open square Q = sq(u,2h,B) is subdivided, a node p represent-
ing the center point u = sq(u,h,f) is introduced in T. Thereafter, if one
of the squares incident with u is subdivided, p receives one descendant
node representing again the point u = sq(u,h/2,0). This repeats itself;
that is, a string of nodes with single descendants is generated, all of
which represent the center u of Q. A first truncation of T therefore
consists in deleting all nodes that represent a point u = sq(u,h,f#), h > 0.

This leaves us only with nodes on T that represent squares of
dimension one or two. Once such a square has been subdivided, it no longer
plays a direct role in the computation. Hence from now on any nonterminal
node of T corresponding to a subdivided square sq(u,h,E), {E| = 1,2, will
be considered to represent its center point u.

In general, undivided line segments S = sq(u,h,E), |E| = 1, do not carry
independent information. Thus, a second truncation of T consists in the
deletion of all terminal nodes that correspond to such line segments S.
With this, all terminal nodes of T represent undivided, two-dimensional

squares or points, and 11 nonterminal nodes correspond to points.

e e oo —
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Recall that in the admissible mesh defined by the given tree T, a
point in the open unit square Q0 is irregular if it is not a corner
point of all two-dimensional squares incident with it (the circled points
of Figure 1). If conforming elements are used, as discussed in Section 2.1,
then these irregular points carry no independent information. Obviously,
an irregular point P can only occur somewhere on a divided line segment
S = sq(v,h,E), |E| = 1, which is the side of some undivided square sq(u,h,B).
In other words, any other point on S must also be irregular. Thus, a node
of T corresponding to an irregular point can never have a descendant node
that represents a regular point. We may therefore truncate T a third time
by deleting all nodes that correspond to an irregular point. Clearly, this
third truncation cannot be applied when nonconforming elements are used.

By definition, all points on the boundary aQO of the unit square
are regular. This reflects the fact that on aQO other conditions have
to be taken into consideration. A side S of QO is either the image of
the intersection éi n éj of two of the subdomains mentioned in Section 2.1
or of a part of the boundary 3@ of & where some boundary condition may
or may not be specified. In the first case the points on S are represented
on the subdivision trees of either one of the subdomains. Here it appears
to be advantageous not to delete the corresponding nodes from these trees
even if they are irregular on the union of the subdomains. The second case
depends on the type of boundary condition. For instance, if the solution
is specified on the part of aQo corresponding to S then there is cer-

tainly no need to represent the points of S on the tree. We shall not

enter into the details of the various other possibilities.

& o ek S sl i) g
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At any irregular point the solution is obtained by interpolation.
Hence special consideration must be given to the computation of the local
stiffness matrix of an element that has as carrier a square with some
irregular corners. This will be discussed in Section 3.3. To simplify
this computation, a regularity tag is assigned to each node of T repre-
senting a divided or undivided square Q = sq(u,h,B). It consists of a
triple (po,pl,pz) of single bit numbers Py which indicate the regularity
of three of the corners of Q. If the corner is regular, the bit P; is

one; otherwise, it is zero. The assignment of the tag proceeds recursively

as follows:
(i) The root of T has the tag (1,1,1).
(ii) If a nonterminal node represents the center u of a
divided square and q is a descendant node correspond-
(3.1)

ing to the square Q, then Po indicates the regularity
of the corner of Q opposite to u and p; that of

its corners in the xi-direction, i=1,2, from u.

VPN - A,
The scheme is illustrated in Figure 5. 7l
In Figure 6 we give an example of i
the truncated subdivision tree for the ‘a o
mesh shown there. The nodes correspond-
ing to divided or undivided squares are e i
marked by rectangular boxes. All others, Fiégre £
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of course, carry no regularity tags. In all nodes the first number is
the identifier, the pair of numbers below it the label, and--where
applicable--the triple below that the regularity tag. It may be noted
that the full tree for the same mesh would have more than a hundred
nodes.

3.2 Subdivision

Let q be a terminal node of T corresponding to an (undivided)
square Q = sq(u,h,B). When Q is subdivided the following steps have to
be taken:

(1) New nodes have to be created on the tree corresponding to the
new squares created from Q and to any points on the sides of
Q that become regular.

(2) Regularity tags have to be assigned to the newly created nodes
where needed; and if some points on the sides of Q have become
regular the regularity tags of all nodes have to be modified that
represent squares outside Q incident with these points.

The first part of the resulting algorithm creates the nodes for the

new squares and assigns their p, values:
for i,j = ¢1 do
begin
create nodes qij as son of q;
May;) = (3,3)3
pl(qij) - pz(qij) = 05
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_i_g (1’.]) x (’\1»')‘2) then pO(qu) = 1

l{ (lsJ) - (Xl))\z) then po(qlJ) = DO(Q);

A (1,3) = O,oY,) then py(d;;) o= by (@)

if (1,j) = (-}{»\,) then po(qij) = p,(a);
end;

Here (xl,xz) represents the label of q.

The second part of the algorithm needs the output of the up-path
algorithm of Section 2.3. Using it we can check whether the neighboring
square s = 531,0 or s = s ) exists and is divided in which case the
center of that side of Q becomes regular and a corresponding node

t = t+l 0 ort has to be created. Let v be the index of the
-

¢ t0,:1
coordinate direction X, V= 1,2, and set p = 1 if the neighboring square

-~

is in p2 and u = 2 if it is in p °. Then the down-path for a particular
s or t starts from the node pn where n =m withm, =2, m, =k,
LV 1v 2v v
v = 1,2, Here kl’ k2’ of course, are the indices (2.20) obtained by the
up-path algorithm. We also introduce the following label functions m,

of the labels XI’XZ of q and the indices u,v:

(5 v T]tlc)\lx)\z;l—h\')
1 1 (-Xl,tl)
1 2 (+1,-1,)
2 1 (Xl,tl)
2 2 (tl,XZ)

Then the next part of the subdivision algorithm has the generic form:




-

(n,p,a,k) := up-path (q)
for p,v = 1,2 do
begin m := ™
if m < n-1 then s := down-path (p,n,m,1,2v-3,3-2v)
if (mmn-1) or (s#terminal) then
for ¢ = +1 do begin (i,j) :=m, (A1, 2;50,v);
CHCH ) b
= down-path(p,n,m,2,v-1,2- v).
create node t as son of r;
A(t) := ((V'l))‘lt(z'\')kz);

if m< n-1 then set regularity tags for the squares in s
incident with t;

}g l

end;
end;
Here the condition m > n-1 indicates that the particular side of Q is
on the boundary aQO of Qo. Hence there is no neighboring square.
Moreover, since all points on aQo are treated here as regular points,
corresponding nodes are always created on the tree.

The statement requiring the setting of the regularity tags for the

squares in s incident with t has the form of the following algorithm:

for j = +1 do
begin for ¢ = t1 do
begin r := son of s with label ”a( xl, Z,u,v),
p,(r) = 1;

while (r#terminal) do
begin r := son of r with label n_z(-kl,-kz;u,v);
po(r) =1
end;
end;

e




The while-loop covers the case when there is a nested set of squares with

corners at t.

3.3 Elementary Stiffness Matrices :

As mentioned in Section 2.1, the appearance of irregular points

complicates the calculation of the elementary stiffness matrices when 4

conforming elements are used. We sketch here the algorithm for the simple

case of conforming, bilinear, square elements. It should be evident how

the approach extends to more general cases.

Let Q = sq(u,h,B) be a given square with corners Pl""’P4’ and

wj = w.(xl,xz;h) the usual bilinear shape functions with ws(Pi) = Gij’

J
i,j = 1,...,4. Then the desired solution y on Q has the form

4
(3.2) y(x),x)) = j£1 YWy (xpaxpih), x € Q.

and--if all corners are regular--the elementary stiffness matrix for Q is

(3.3) M= (B(wi,wa),i,j * 1ieiest)

where B = B(.,.) denotes the given bilinear form. In the case of irregu-

larity some of the values yj = y(Pj) are given as linear combinations of

some other values, say,

m ~
1 Cj4Ypr 0 (P

(3.4) y. =
J &.1

Then
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m [ 4 - #
.“ y = tzl le cjcwj )’8

calls for the introduction of the new functions

g

4
W, = Wz(xl,xz;h) = jgl Cjzwj(xl’xz;h)’ i3 0 SREEEE

and the corresponding elementary stiffness matrix of Q is given by

(3.5) M= @GE), 1) = 1.0 = cve

where C = (cj&, j=1,...,4, £ =1,...,)) is the interpolation matrix in
(3.4).

 ; The ?& are the solution values at certain regular points and our

| problem is to find these points and the interpolation coefficients ng‘

As an example, consider the square 4 of Figure 6. Here the ?8 are values
1 at the points 5, 13, 21, 22, and 33 and, if the corners of the square are

numbered counter-clockwise starting from 5, the interpolation matrix has

the form
5) (@13 (21) (22) (33)
. 1 0 0 0 0
0 1/2 0 3/8 1/8
(3.6) C= 0 1 0 0 0

1/2 0 1/4 1/4 0

Basically the desired algorithm is a modified version of the down-path
procedure of Section 2.3. Let (n,p,a,k) be the output of the up-path algo-

: rithm starting from q. If (xl,xz) is the label of q, then the corner




P_x Y (in the notation of Figure 3) must be regular, and the other !
1 ey |

potentially irregular corners of Q are found on the down-paths from

p[kV], v = 1,2, with label sequences given by (2.21). These three label

sequences have the general form
(3.7) {e” % afkyik 1]} + alk; ]

where, for instance, in the case of P_X we have v = 1, ¢, = k

l’XZ 1 2’
Ky = 2.

Let R be one of these corners and suppose that R is irregular.
Then it must be on a line S created by the subdivision of the square
Qe corresponding to p[Kl]. Then any regular point on S is on the

subtree rooted at p[KI] with labels that have a zero v-th component.

Figure 7 shows a typical situation.

r

\;:"
' ,' |
iL 7\
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The branches deleted from the full subdivision tree are marked by
dashed lines. Only the nonzero component of the label is shown at each
node. Briefly, we wish to find the nodes §+1 and 5_1 on the truncated

tree which correspond to the nearest regular points P,'1 and P_1

bracketing P.

The following algorithm for finding these nodes (if they exist) should
be self-explanatory. It starts from the node p[il], where initially
il = K and proceeds along the prescribed down-path. If the requested

endpoint r does not exist, then the nodes $,,,f_, are returned with the

Cne of these nodes may not exist--as for the point R' in Figure 7--in
which case the particular output node is nil.

Algorithm: Down-path interval

Input (p,u,il,iz,v)

for j = +1 do begin ﬁj := nil; d.j = 0 end
=i 1= pli]

while (i>i,) and (r#nil) do

begin i := i-1
n = afi]
ﬁ") i8.T

r := son of r with label (3:;) 2 a[i]
end
if r = nil then
begin v := 1/2; d := 0
while j = iz do begin d :=d +yu[i]v; J 1= J=]3 ¥ i= %Y end
Eﬂz_n = abs(d); dn =1 - d_,q

Output (r, P,;,d,;)

relative distances a_l,a+1, respectively, between the corresponding points and .

—_
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The distance calculation uses the fact that by (2.13)

a i 1 -
dist®R,2) = | § o) 27N
=1,
where j 1is the last index used in the while loop. Since R must be

in one half of the interval centered at ﬁv we have

dise 0Ly - T
and hence
dist(R,P ) i i
d= —a—xt— = 7| Jap) 27
dist(P, ;P ) j=i,

There are three cases for the output of this algorithm, namely,

(i) r # nil, (ii) r = nil, and no ﬁv is nil, (iii) r = nil, and one ﬁv is
nil. In the first case the corresponding row of the interpolation matrix
has a one in the column corresponding to r and zeroes elsewhere. In the
second case, there are the values d;1 in the colums for 631 and zeroes
elsewhere. In the third case, we have the situation of the point R' in
Figure 7, that is, in the search for one of the points ﬁv we reached one
of the endpoints of S. Then we have to apply our algorithm to the line
perpendicular to S centered at that endpoint. The following algorithm
covers these three cases. The output consists of the number m of nonzero

elements in the particular row of C. These elements are identified by

pairs (r[jl,c(3]), j = 1,...,m, where c(j] is the element of C' in that
row and the colum identified by the node r(j].




Algorithm: Interpolation Row

IEEUt (p:a”(lr'czvv)
m:=1; r[1! = nil; c[1] :=1
vo T V5 ilz- St i2 =Ky
while r[m] = nil do
begin (ro,ﬁﬂ,dﬂ) := down-path interval (p,a,i,,1,,v()
if r # nil then r[m] :=r,
else begin
_i£f>_1 = nil then j := 1 else j := -1;
r[m] := Pj» r(m+l] :=p_.;
c[m+l] := c[m]d_j; c[m] := c[m]dj;
m := mtl
if r[m] = nil then
begin i2 1= il; vp = 3-vo; m:= a[illvo; il = i1+2;
while a[il-l] =mdo i, := i,+1;
s Vo — 1 1

end
end
end
Output (m,r,C)

In the case of r(m] = nil we must continue the search on the line

perpendicular to the current search direction. This is reflected by

the statement vg T -l vo* To find the needed endpoint of S is equi-

valent to determining the centerpoint T of one of the sides of Qg (see
Figure 3). Thus, we need to construct on the up-path from qg correspond-
ing to QS the node from where the new line containing the desired endpoint

is branching off. This is the content of the loop ''while a[i1~1]v = m do".
0

With these algorithms the interpolation matrix C of (3.4) is constructed

row by row. The calculation of the transformed elementary stiffness matrix

1:4 of (3.5) is then straightforward.

g R ) O M T, P ) R Sy O IR s .21 P17
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3.4 Matrix Assembly and Decomposition

The assembled global stiffness matrix r ' A g9 ‘
¢ ! O (]
has the bordered block-diagonal structure A I ‘ c
p 2
shown in Figure 8. The matrices Ai Lt 7 "
¢
correspond to the finite element nodes in O 4
A |C
the open subdomains 2, i = 1,...,N, wil) B4
s r 7 B |
; \ C |G- |€. N ‘
and the border represents the points on

j’ i’j -l’uol’Nc F. 8
igure
In general, the size of B is much

the intersections s'zi ne

smaller than that of the other diagonal blocks; moreover, B is often not
very sparse, especially when N is small.

The form of the matrix calls for the use of block decomposition. Since
the Ai-blocks are independent of each other, it suffices to consider only

one block at a time. The triangular factorization

g
(3.8) A; = U;D,U;

of one of these blocks introduces the following partial decomposition of
the overall matrix

'r ~
" AN (ni o)(ui ci) . (o o)
c; B '(':I o/\o o/\o o o B

where

Bep- g, CoUD
(3.9) (ii) B =B - (DC;y Gy = U;DiC,
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Accordingly, for each suhdomain Q; our procedure consists of the four
steps:

(1) Generate the matrices Ai and Ci;

(ii) Generate the contributions to the matrix B and send them to

a separate solution process;

(3.10) (iii) Compute the decomposition (3.8) of Ai and the corresponding
modified matrix C;;
(iv) Compute the modification EiDiti and send it to the solver
for B.
When these steps have been completed for all subdomains, the solver for B
can complete the decomposition of that matrix.

The structure of the solution routine for B is standard and needs no

discussion. Instead we consider only the implementation of the steps (3.10)
in the setting of our particular storage structure. As mentioned before,
the tree structure allows for a natural use of the nested dissection tech-
nique [ 7] in the execution of step (iii). It also provides for an effi-
cient segmentation of the block-row (A i’Ci) into groups of rows for storage

on secondary devices. The steps (i) and (ii) are combined with step (iii); | 4

that is, the generation of the coefficients of Ai’ci (and B) from the |
corresponding elementary stiffness matrices is incorporated into the decom-

position process. In other words, an elementary stiffness matrix is

generated (see Section 3.3) only when it is needed in the decomposition

step (iii).
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Any subdomain 2; is the image of the unit square Q0 and the

mesh on 2, is defined by the mesh on QO' Let T be the (truncated)
subdivision tree corresponding to this mesh. With any node q of T

we associate the first nonterminal node Tq with regularity tag (1,1,1)

on the path from q to the root. For any nonterminal node q of T with
p-tag (1,1,1) we may then define the node set q* = {p | p node of T with
T, . q}. By construction, this set specifies a subtree of T which shall : l ‘
be denoted by T(q*). Moreover, in the usual manner we derive from T 4
the contracted tree T* with the sets q* as nodes. Figure 9 shows T*

and one of the subtrees T(q*) for the tree of Figure 6.

@ T(22%)
o O
S OO

/
/

(= @ i




Note that in T the three nodes Q_5:9_1,99 corresponding to the
squares Q_, = sq(e+e?,4,B), Q_; = 5q(0,2,B), and Q, have p-tag (1,1,1).
Hence in each case T* begins with the succession of the three nodes
qu,qfl,qa before multiple branching sets in. Of course, T(q‘_‘z) and
T(qfl) contain the nodes corresponding to the faces of QO'

Let N* be the node set of T* and Nj = N* ~ {q*,,q*}. For any
q* € N* let P(q*) and E(q*) be the sets of nodes of T(q*) which in

the mesh correspond to points or undivided squares, respectively. Because

of q € P(q*) the set P(q) is never empty; on the other hand, E(q*) may
well be empty as, for instance, for q* = qu,qfl. The nodes of the union '
U{P(q*) |q* ¢ Na} correspond exactly to the rows and colums of the matrix
block Ai for our particular subdomain 2; and those of P(qu) U P(q'_‘l)
to those colums of ¢4 which are related to ..

In order to define the pivoting sequence on A; reflecting nested
dissection, we introduce bottom-up, left-to-right orderings (end-order

traversals, see [8, p. 334]) on all nodes of T* and on the nodes of T(q*)

belonging to P(q*):

n*: N§ = (1,2,..., N8}
(3.11)
gt P - {1,2,...,|P@")|}, ¥ q* € N3
In the example of Figure 10, n* and ng, give the orderings

18%,20*%,22%,23*,27* and 17,19,21,22 .




Note that for the root r of T(q*) we always have nq.(r) = |[P(q®)].
The pivotal sequence for Ai is now defined by the lexicographic

ordering of the pairs

np) = Cn*(p).nq*(p)). Vp €P(g"), q* € N3 .

We segment the rows of the block row (Ai’ci) into groups of rows

with the same n*-value

A(a}) C(a}

(Ai’ci) - . ) y N = |~8| .
A@Y) C@)

For clarity the index i was suppressed on the right side.

For any q* € Na the corresponding node a, of T represents an
open square Qﬂ with boundary lines Ttl,O'To,tl and corners Ptl,tl’
as shown in Figure 3 for Q = Qn' Let tzl,O’ to,:l and Pyq,+1 be the
corresponding nodes of T (if they exist). We denote by O(ttl’o) and
G(to’tl) the sets of nodes of the subtrees of T rooted at the indicated
nodes. If the particular node does not exist, the corresponding set is
empty. All (potentially) nonzero entries in the upper triangular part
of the block row (A(qa),C(q;)) then consist of a |P(q%)|-dimensiona1

upper triangular matrix and off-diagonal blocks as shown in Figure 10.

7.3 5
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Figure 10

k k
Here (xl,)z) is the label of qn, and the nodes pz,p 1, and p 2 are

defined by the up-path algorithm for qn (see Figure 4). The node
p,‘l'k2 belongs to the set P((q:)*) for « = min(k;,k,). Under the
ordering (3.11) the nodes of any set 9(t) # # are always consecutively
numbered from some index by to £y =241+ [9(t)|. Here ¢y is carried
by the left-most, lowest descendant of t and &1 by t itself. This
allows for a simple determination of the size of the particular matrix
block.

The algorithm for assembling and decomposing the block row (Ai’ci)

now has the following schematic form:

1. Clear save file.

2. Establish the nodes of T* and their ordering n*.

3. For each q* ¢ ”8 establish the numbering nq,(p) of the nodes
of P(q%).
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4. For q* ¢ Na in order of n* do

4.1 Establish storage map for the block row of P(g*) as
shown in Figure 10 with sizes determined as indicated
above and clear the matrix area.

4.2 If q* is not terminal in T* then read previously
generated updates for the coefficients of the row P (a%*)
and delete them from the save file.

4.3 For all p € E(q*) do
4.3.1 generate the elementary stiffness matrix M for

p (see Section 3.3)

4.3.2 update the row P(q*) with those coefficients of
M for which at least one of the two index nodes
belongs to P(q%*)

4.3.3 add the coefficients of M to the save file Eor
which Roth index nodes are in P((p ¥&) U P((p )*)
UP(p H%

4.4 Decompose matrix row of P(q*) and during the decomposi-
tion add updates to the save file corresponglng to
coef£1c1ents in the rows of P((p )*) P((p )*), and
P O)%.

4.5 Output decomposed row for P(q*).

In the save file (in secondary memory) we retain triplets consisting of a
value and two index nodes which represent needed updates for matrix rows to
be decomposed later. At the end the save file contains the updates for the

matrix B of (3.9)(ii). In step 3 the nodes P(qu),P(qfl) are not num-

bered. We assume here that this numbering is done outside of this algorithm;

it depends on the given domain @ and the boundary conditions. The storage
map for the row of P(q*) establishes the (one-to-one) correspondence
between the index nodes of the rows and colums indicated in Figure 10 and

the customary indexing of the matrix storage used here.
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The above algorithm uses the save file for the full segmentation
given in (3.13). In practice, several of the block rows may be taken

together using subtrees of T* for the control of the loop of step 4.

A
B b




4. Outlook
The general tree structure introduced here is not restricted to the
particular meshes under discussion. For example, an extension to analogous

meshes on the closure Qo of the d-dimensional open unit cube

Qq = ix € R4 o< %y <0y 3% Lowsiadls dim )

is rather straightforward. Here we consider subsets E c B = {el,...,ed}

of the set of standard basis vectors of RS and define the |E| -dimensional

open square Q with center u and side length h > 0 by

Q = sq(u,h,E) = {x € Rd [ flx-ull <<% h, X o = ug, Y e' ¢ E} . ;

If now the definition (2.4) of the ''label'" set A is changed to
- d = gl
A={a €R | a; = -1,0,+1, i = 1,...,d},

then with the same notations (2.5),(2.6) as before the formulas (2.7) and
(2.8) for the faces of Q and for the subdivision operator o, respectively,
remain exactly the same. With this, the tree can be defined as before and
the labelling rule carries over verbatim. Thus also the up-path and down-
path algorithms extend to this case.

With this generalization it becomes possible to combine trees for
meshes of different dimensionality. For the practical implementation of
finite element computations, the trees may again be truncated. However, in
higher dimensions the irregularity problem becomes more complex since not

only points but also faces may be irregular. Thus, the corresponding
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truncation of the tree and the interpolation algorithms need further
analysis. The matrix assembly and decomposition algorithm, however, does
not change in principle.

The tree structure can also be defined for meshes on equilateral
triangles of the form of Figure 2 (without the irregular lines). Basically
we need to change the basis vectors in the set B and take into account
that now the center point and side length only define the triangle up to
a rotation of size w. Clearly, with this an extension to meshes on higher
dimensional simplices is also possible.
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