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| FOREWORD

This technical report covers an investigation on unsteady supersonic

S e RO ERER YA

flutter carried out, starting on January 1, 1974 and ending on December
‘31, 1977. The research was sponsored by the Air Force Office of Scientific
Research under Contract F 44620-74-C-0040.

For most of the contract period, the research was carried out at the
Contractor's site, General Electric Corporate Research and Development,
Schenectady, New York; due to the unexpected departure of the principal
investigator, M. Kurosaka, from the General Electric Company to the Univer-

sity of Tennessee Space Institute on September 1, 1977, it was then sub-

+ contracted to UTSI, where it was continued and completed.

- Aiding the principval investigator, I. H. Edelfelt of the General
Electric CRD performed most of the computational task and C. E. Danforth,
then chief consulting engineer of aeromechanics of G. E. Aircraft Engine
Business Group, Evendale, Ohio, served as a consultant to the program;

{ ' J. Q. Chu of UTSI, a graduate research assistant, also helped the

l principal investigator.

The contract was monitored by Lt. Colonel R. C. Smith, Program

Manager, Directorate of Aerospace Sciences, Air Force Office of Scientific
Research, United States Air Force, Bolling Air Force Base, D. C.
This final report supersedes all the previous interim reports

and includes all the technical papers, both published and under preparation,

i R v -

i which were written under the research contract.
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OBJECTIVES OF RESEARCH

Overall objective was to develop an analytical tool which enables
one to define instability boundaries for supersonic unstalled flutter of
alrcraft engine fans and compressors and also to provide insights into its
prevention.

The region of the supersonic instability often falls on the operating
line of a high speed fan; consequently, the existence of such flutter pre-
sents itself as a barrier problem for the design of high Mach number fans.
In order to overcome this serious obstacle, it is necessary to improve at
an accelerated pace our capability to define and, at the same time, to
minimize the region of blade instability.

The present program was comprised of three phases. 1In Phase 1, a
simplified model of flat-plate airfoils was adopted and its objective
was directed to extending our previous low frequency analysis to a higher
frequency of practical interest so as to predict oscillatory forces
acting on unsteady supersonic airfoils in a cascade subject to subsonic
axial velocity. Phase 2 was conducted so as to remove the restriction of
flat-plate airfoils; this extension 1s necessitated because there are
substantial experimental data which indicate the importance of airfoil
shape. Phase 3 addressed the effect of flow three-dimensionality,
particularly the influence of radial velocity gradient in steady base
flow and the means of flutter suppression by the provision of liners on

outer casing walls.
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SUMMARY OF SIGNIFICANT RESULTS

Since all seven technical papers, which are either already
published or under preparation for publication, are attached in this
report, we relegate the necessary details to them and here summarize
only the important results and conclusions.

In Phase 1, airfoils were assumed to be flat plates. An expres-
sion of unsteady pressure distribution valid for the range of frequency
parameter of practical interest was derived in closed form which is
applicable to any cascade geometry and arbitrary motion of airfoils;
this was an extension of our previous low frequency analysis (ASME

Transactions, Journal of Engineering for Power, 1974, Vol. 95, January,

pp. 13-31). When the unsteady pressure distribution was used as input

to flutter prediction, the following two major conclusions were establish-
ed: the zone of torsional instability tends to shrink as the frequency
parameter increases, and at the value of frequency parameter of convention-
al design, the bending instability is predicted, the latter being in
agreement with the experimental data. The details of these were

presented at the IUTAM Symposium on Aercelasticity in Turbomachinery,

Paris, October, 1976, and published in Revue Francaise de Mecﬁnigue,
Numéro Spécial, 1976, pp. 57-64, appended here as Appendix 1. 1In
addition, our discussion on the issue of 'resonance' in a supersonic l

cascade has been published in the AIAA Journal, vol. 13, No. 11,

November, 1975, pp. 1514~1516 (attached as Appendix 2).
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In Phase 2, the restriction of flat plate was removed. The effect
of airfoil shape was examined first for an isolated airfoil and the
cumulative effects of nonlinearity on the unsteady pressure in the far
field was studied. For an oscillating airfoil whose contour is of para-
bolic arcs, an analytical expression of unsteady flow field was obtained.
The results clearly indicate that the effect of airfoil shape deeply
affects the unsteady flow in the far field. This was published in the

Journal of Fluid Mechanics, vol. 83, part 4, pp. 751-773, 1977, appearing here

as Appendix 3. The obvious implication of this result for a single airfoil
was indeed borne out in the subsequent extension to the cascaded airfoils
where the importance of the airfoils shape was in fact confirmed, the
details of which are described in Appendix 4.

In Phase 3 the effect of the flow three-dimensionality on flutter
boundary was examined. The objective here was not so much on the precise
prediction of the three-dimensional unsteady flow field, which would
amount to an extremely complicated task; rather it was deemed more bene-
ficial to focus attention on the effect of the surrounding casing walls
and specifically to examine whether the use of sound absorbing material for
the wall might significantly relieve the fluctuation of pressure on the
airfoils. Since the critical section of the fluttering airfoils in super-
sonic flutter is located near the very tip of the airfoils, the provision
of the acoustically treated wall on the adjacent outer casing would be
directly effective in relieving the unsteady fluctuation and eventually
reduce the level of unsteady pressure acting on the airfoil surface.

Based on this idea, an analysis was carried out for a model problem




where an isolated, three-dimensional airfoil is placed in a duct

whose upper wall is acoustically treated. The flow in the duct is super-
sonic and inicially assumed to be uniform; the airfoil is oscillating in

the transverse direction. The solution indicates, as expected, the un-
steady pressure field produced by the motion of the airfoil is significantly
affected by the presence of the acoustically treated "soft" wall, as
described in Appendix 5. During this phase, an additional analysis was

made to examine the effect of the spanwise variation of the incoming

steady flow. This was done in order to assess the refraction effect of

the acoustic signal due to its interaction with the non-uniform

steady velocity field where the fans/compressors bladings are immersed.

This presented a challenging task of investigating the nature of the
acoustic wave propagating through non-uniform flow, which is mathematically
described by governing equations with varying coefficients. From our

effort to surmount this difficulty evolved a powerful but simple technique
which was found to be highly effective in solving a general class of problems
involving unsteady disturbances propagating through non-uniform media;

this is reported in Appendix 6. This general technique was then applied

to examine specifically the effect of velocity gradient upon the unsteady
pressure on supersonic airfoils, where, as shown in Appendix 7, the

three-dimensional effect was quantified.




APPENDIX 1

Some Recent Developments in Unsteady Aerodynamics of a Supersonic Cascade.”

presented at the Symposiun of Intermational Union of Theoretical and Applied

Mechanics on Aeroelasticity in Turbomachines; published in Revue Francaise de
Meéanique, Numéro Spécial, 1976, pp. 57-64.



SOME RECENT DEVELOPMENTS IN UNSTEADY AERODYNAMICS
OF A SUPERSONIC CASCADE

by
M. KUROSAKA and I. H. EDELFELT

1. INTRODUCTION

Quite unexpectedly, the advent of high speed turbo-fan aircraft engines unfolded a generically
new type of blading instability -- supersonic unstalled flutter. The instability, which until re-
cently had been virtually unheard of, is found to occur when the tip speed exceeds sonic velocity;
since the unstable regions spread over the operating line where the incidence is small, the flow
over the bladings is not stalled. In order to develop a consistently reliable means of averting
this trouble, the unsteady aerodynamic forces acting on the oscillating airfoils in a fan must be
accurately predicted. In the present paper, we shall attempt to present recent developq:nts of the
unsteady aerodynamics of supersonic cascades carried out for the past several years at the Research
and Development Center, General Electric Company; this is essentially an extension of our previous
work. [1]. The other related works in this area which have appeared until now are [2]) to [10).

While it will be attempted to make the paper as self-contained as possible starting from the descrip-
tion of the relevant background, prevailing emphasis will be focused on the recent and hitherto un-
published analytical results, which we hope to be of both sufficient interest and practical importance.

2. CHARACTERISTICS AND PHYSICAL MECHANISM OF SUPERSONIC UNSTALLED FLUTTER

When in flutter, the bladings vibrate sinusoidally at their natural frequencies; both predomi-
nantly bending (or flexural) and torsional motion of the airfoil tip section have been observed in
unstalled supersonic flutter. The contour of the airfoil is known to introduce a significant, first-
order effect on the flutter boundary. As an example, for an airfoil which had experienced unstalled
supersonic flutter, apparently minor modifications in the airfoil shape succeeded in removing the
instability. The back pressure also affects the unstable region but lowering the back pressure it-
self does not cure the flutter problem.

As regards the physical mechanism of the unstalled supersonic flutter, the first obvious cause
that comes to mind is the self-sustained shock-boundary layer oscillation. The shocks impinging on
the boundary layer often cause its separation. For an isolated airfoil in the transonic range where
a shock appears over the airfoil surface, such shock-boundary layer interaction has often asserted
to be capable of sustaining self-induced oscillation. If this is indeed true, similar phenomenon
can certainly be expected even in a cascade. In fact, visualization studies of the fluttering air-
foils in a supersonic cascade apparently show such oscillatory movement of the shock-boundary layer.
Since the shock-boundary oscillation is the phenomenon most conspicuously visible in such a study,
one is irresistably tempted to conclude that this is the driving mechanism of the supersonic unstalled
flutter, where the oscillatory movement of large pressure rise associated with the impingement of the
shock may be directly responsible. However, before one hastily jumps to the conclusion, we have to
address the question of whether the shock-boundary layer oscillation is the real cause of the flutter
or the aftereffect of the flutter, which itself is initiated by some other mechanism. Indeed, a
careful review of the issue leads to what appears to be an inescapable conclusion -- the self-
sustained oscfllation between the shock and the boundary layer does not play a major role in the
present instability. For example, in [11], Liepmann and Ashkenas found that, although the oscilla-
tion of a shock was observed for a transonic airfofl placed in a wind tunnel, the removal of the
sources of disturbance, which otherwise always exist in any wind tunnel, virtually eliminated the
oscillation of the shock. Other available experimental evidences tend to support the similar con-
:}usion :hat the self-sustained oscillation between the shock and the boundary layer is a weak

uctuation.

Then, what is the predominent cause of the supersonic unstalled flutter? It is well-known that
for an isolated airfoil in supersonic flow where the shocks are attached to both the leading and
trailing edges and do not appear on the airfoil surface, the motion of the airfoil could become un-
stable under certain circumstances. Such an instability, which occurs in the obvious absence of
self-sustained shock-boundary layer oscillation, is caused by the phased lag response of the unsteady
flow outside of the boundary layer to the motion of the airfoil. At the debut of supersonic un-
stalled flutter in the late sixties, we identified this inviscid mechanism as the primary cause of
th:dlnstability and the validity of the diagnosis has been increasingly buttressed by supporting
evidences.
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3. DIFFICULTIES ASSOCIATED WITH THE ANALYSIS

For the reason just stated, in the analytical formulation, we assume the flow to be inviscid.
Also the flutter tends to become more severe as the pressure ratio is lowered. Hence we examine the
situation of the Tow pressure ratio where the flow can be approximately taken to be purely supersonic
from inlet to discharge.” In addition, in this first attempt, the flow {s assumed to be two-dimensional.
Even after these idealization, the analysis of the problem on hand 1s a difficult one. One source of
the difficulties results from the fact that in a current design of the fan, the axfal velocity s sub-
sonic even when the relative velocity is supersonic. This axfal subsonic velocity implies that the
Mach waves emanating from the leading edges extend upstream of the cascade front line, Figure (1),
and there, in what is called preinterference zone, one has to take the mutual interference into ac-
count. Were the axial velocity supersonic, the Mach waves would be confined within the blade passage

[ and consequently there would be no region of mutual interference upstream of the cascade front line.

} Furthermore, 1f one looks at the wake region off the airfoil, Figure (1), we note that the wake velo-
city between Q and R does influence the trailing edge section of the adjacent blade between points S
and T. Since one does not & priori know the wake velocity, it must be sought as a part of the solu-
tfon. (Again for supersonic axial flow, the wake velocity does not influence the pressure distri-
bution on the airfoil surface.)

Another source of difficulty is masked in delicate subtlety and more fundamentally hard to
! overcome -- the breakdown of the acoustic theory in the far field. As is well-known, acoustic theory
in a moving medium is based on two major underlying assumptions: a disturbance propagates at a
uniform acoustic velocity and is swept downstream at a constant freestream speed. Although this
approximation is sufficiently accurate in the vicinity of the body, the acoustic theory for a super-
sonic flow is manifestly unfit for the description of the far field; it fails, for example, to re-
praduce the fanning out or coalescence of Mach waves. The reasons for the breakdown have long been
understood: as a wavelet spreads out, two nonlinear effects ignored in the acoustic theory -- the
nonuniform acoustic and flow velocities which vary with both place and time -- emerge to exert their -
influence over a large distance. The nonlinear effects are locally small everywhere, including the
far field. However, not only is the disturbance at a given point influenced by the localized,
slightly perturbed flow properties but it has been undergoing a continual distortion while propaga-
ting through a nonuniform flow field. It is this cumulative distortion or "memory" content of the
signal, which encroaches upon the result of the acoustic theory and eventually alters it in the far i
field. The breakdown of the acoustic theory raises a serious concern for a supersonic cascade if one
takes the approach along the same line as adopted in the subsonic cascade aerodynamics where the up-
wash generated from all the airfoils are summed up within the framework of the acoustic theory.

4. PASSAGE APPROACH

The complication arising from the breakdown of the acoustic theory in the far field can be cir-
cumvented by resorting to a simple stratagem of what we call the passage approach. In the passage
approach, we focus our attention to a strip of the flow field, the L-shaped region bounded by y, X1s
x2 and y axes of Figure (2). Then, the infinite cascade arrangement is replaced by a physical}y
equivalent requirement of flow periodicity. In the case of subsonic flow, this approach would not
offer any additional advantage. However, in the present supersonic situation where the range of in-
fluence of a given point in the flow is limited within its Mach cone, the attractive feature of the
passage approach is that it enables one to formulate the problem involving only those points close to
the reference airfoil; for example, the Mach cone emanating from a point along the y1 axis of Figure
(2) and located far from the leading edge completely misses the flow passage between the first and
second airfoil and consequently in this formulation the pressure distribution upon the airfoil fs
unaffected by 1t. Since the formulation involves only the near field, the flow field of interest can
be closely approximated by the acoustic theory, provided the thickness of the airfoil is sufficiently
thin and can be neglected. (We will later see that for supersonic airfoils of conventional design,
although their contour is relatively thin, it is not quite slender enough to be described adequately
by the acoustic theory. Nevertheless, even under such a circumstance, the passage approach still
extends 1ts convenience in circumventing the trouble of summing up all the upwash.) Restricting our
attention for the time being to flat-plate airfoils, let us examine how we can apply the passage ap-
proach to determine, within the Tramework of the acoustic theory, the flow in the preinterference zone.

If we focus our attention on the flow entering the passage, it is of course not equal to the up-
stream flow and must be determined as a part of the solution. If the initial conditions along the
y1 axis of Figure (2) are assumed to be known as

=0, 9) = fly) 5 58 (x =0, y) = g(x) (1)
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where 3' is the spatial amplitude of the perturbed velocity potential, then along.the boundary condi-
tions, it is quite straightforward to determine the flow downstream of it. The solution of the acous-
tic equation subject to the initial conditions and the boundary condition for the first airfoils is
given by equation (3.4) of [1]. The expression of ¢' given therein is applicable to the preinter-
ference zone where the effect of the second airfoil is not felt (the shaded region of Figure (2))

and it obviously involves the initial conditions, f and g, where are unknown. However, the unknown
initia) conditions must be equal to the velocity potential, ¢', at the corresponding point on the y;
axis, with the exception of the phase lag. Consequently the initial conditions may be replaced by
the velocity potential ¢' and we obtain the following equation for the velocity potential:

X - my
#(x, y) = %I V(1) expl- % (x - t)lJo["—"; =T - myfld
0 @

+ %exp(-fk %)Ei” [3'(51. %x +y+2)+ 3‘(51. % X -y+4))
Leoy
+ g-exp(-ik %)é“‘ (l (@ (sgs T +2)+ i—c"-;'(sl. T+ L)1y, yi 1)

- ""—c 3'(51. T+ 2, (x, ¥; t)}dr

LI §
(s T+ 0) + s, c e g0 i 0)

+
O ——3 |

- g #(spe T4 0900 —y; D) (2)

where V(x) is the norma) component of the fluid velocity on the reference airfoil, m = (M2 - 1)'i
where M_ is the freestream Mach number, c {s the chord, k is wc M2/U_(MZ - 1) where w 1s the fre-
quency of oscillation and U  is the freestream velocity, jo and Jl are given by

Jolxe ¥s ) = "o[W:? 21,3,(x, y, 1) = -}Jllé 2 ATy W

where Jg and J; are Bessel functions of zeroth and first order, respectively, u is the interblade
phase angle and s; and ¢ are parameters defining cascade geometry as given in Figure (2). (Strictly
speaking, the above equation (2) is valid only for points belonging to the doubly hatched region of
Figure ?3) of [1) but this restriction is not essential.) We note that in (2), the first term on the
right hand corresponds to the solution for an isolated airfoil and known. The bracketed expression
in the second term involves ¢' in difference form, while the third term contains ¢' under the inte-
gral sign. Thus we call the equation (2) as the integro-difference equation. We also observe that
the integro-di fference equation is 'two-dimensional’ in the sense that there are two independent
varfables, x and y. We have to solve (2) for the unknown ¢' to determine the preinterference zone.

§. LOW _FRE Y SOLUTION

In our earlier investigation, (1], it was found that by confining our attention to the low fre-
Tnncy solution, 1t was possible to obtain a solution of the integro-difference equation in closed-
orm. According to the scheme, we expand all the varfables in terms of the frequency parameter and
retain only terms linear to frequency. Thus, for instance,

POy CHRPSRTIPY €3 PSRRI Y () IPOPP R )

where 8 = wc/U,. Then the 1? ro-ditf’mce equation (2) becomes considerably simplified; the
equations correspondin and ¢!} are given as equation (3.17) and (3.18) of [1], respectively.
The solution for the simplified integro-difference equation is given by equation (3.26) of the same
paper, where the first term corresponds to an 1solated airfoil solution and the other term repre-
sents the correction due to cascade arrangement. For the 1imit of sonic leading edge, the second
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term is reduced to zero, leaving only the term corresponding to an isolated airfoil solution. This
is what should be expected because of the lack of any preinterference in the sonic leading edge limit.

Pursuant to this determination of the preinterference zone, a solution for the flow downstream
of it can be obtained, including those regions affected by the wake. The complete expression for the
unsteady pressure distfibution is given in closed form by the equations (4.6) and (4.7) of Part 2,
11). (There is a typographical error in the equation (4.6) and the last term in the bracket should
read J H(xl - 2n fm) instead of [ o H(x1 - 2n &m).) The unsteady pressure given there is in

n=1 n=
general form and applicable to any cascade geometry. For cascade geometries of practical interest,
nowever, it can be reduced to considerably simpler form. For instance, if one chooses the cascade
geometry of Figure (3), which is characterized by the requirement that the bow shock emanating from
the leading edge of the airfoil misses the preceding airfoil, the unsteady pressure distribution {s
given in the following form: 1if we express the pressure distribution as

4h 4a
Acp = ig —ﬁzg-e‘mt cé‘) (bending) ; Acp = "TFQ etut [c£°) + %? c{‘)] (torsion)

where hg and ag are the amplitude of bending and torsional motion, respectively, then for 0 < x <
C - 5) *+im,
(1) . siv . (o) . g .
cbl 1-e" 3 ¢ 1-e

M- 2 qu Syt g M-2 M2.- 2
) exgoyxg - T g s g 2 )

and for ¢ - Sy +m<xc<c,

M2 -2 sfu sy - am
1) ¢ 1 - o) . (1) o, = o . _® 1

cé) 1; cg) 1, o x——z——nw_l X5 1-51“w—rm‘ , (3)
where x, is the position of the torsional axis measured from the leading edge. The point x = ¢ -
s1 + im corresponds to a point on the pressure surface where the shock emanating from the trailing
eége of the preceding airfoils impinges (point P of Figure (3)). For the other cascade configura-
tions, once the shock pattern is specified, the pressure distribution of (1] can be reduced to
similarly simple form. Applying the pressure distributions to stability calculation based on a two-
dimensional model, the flutter is shown to occur at the torsional motion and the flutter boundary is
strongly affected by cascade parameters (see Figures (4), (5) and (6) of Part 2, [1]); bending motion
is always predicted to be stable according to low frequency analysis.

For the purpose of practical applications, however, an extension of the analysis was called for,
because the frequency parameters of the aircraft engine fan is of the order of unity and cannot be
categorized as belonging to the low frequency case.

6. EXTENSION TO HIGHER FREQUENCY RANGE

Hence, subsequent to this lTow frequency analysis, we embarked on the extension of the anmalysis
to the frequency range of practical interest. It was found that the best way to solve the integro-
difference equation, (2), fs to write ¢' as

X - my

: v g I V() expi- 1 (x - T)lJo[ﬁEg Ax=1)7 - my71dr + A + Bx + Cx* + Dy® + Ex* + Fxy? Gy
0

where the first term corresponds to an isolated airfoil solutfon and the rest of the terms represents
the cascade correction. We note that the odd terms of y, like y, xy and x’y are missing in the cas-
cade correction term and this is due to the asymmetry of the integro-difference equation with respect
to y. The coefficients, A, B, ..., can be determined by substituting them into the integro-difference
equation. It turns out that due to the very nature of the difference form involved, one cannot
determine coefficients in a successive way; they have to be determined simultaneously by solving an
infinite number of linear algebraic equations. For all practical purposes it is sufficient, however,
to retain the coefficients up to F and they have been solved in explicit form; numerical checks show
that such a solutfon can satisfy the integro-difference equation quite closely for the frequency para-
meters of practical interest. As an example of such approximate solution, A, of equation (4) can be
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written out as
s, - m

1
%E“’l V(1) expl- 1?" (s - t)lJo[ﬁ- As -7 - Umldr + ...

A= (5)

=Ty Tk o - aluyctu o kya 2 T sl
2(1-e)+4slc(l e’)e E(c) sle(l+e)+...

This new solution reveals nonuniformity associated with the previous scheme of frequency ex-
pansion discussed in Section 5. If we once g?ain look at the equation (3), we note that the low
frequency expression possesses a factor 1 - e'M as its denominator and hence becomes singular at
zero interblade phase angle (u = 0). As pointed out in (1], from this singular behavior the unique-
incidence effect can be recovered in the steady 1imit. However, the existence of the singularity at
any frequency implies that even in the unsteady case, the pressure distribution would become infini-
tely large at this zero interblade phase angle. The reason for this anomaly of the previous, low-
frequency solution can readily be observed if we inspect the expression of the denominator of (5).
Namely, as long as the interblade phase angle, u, is sufficiently far from the value of zero, one can
legitimately expand the expression in the power series of the, frequency parameter, k. In such an
expression, the denominator becomes the leading term, 2(1 - el1)2 "and one can show that the expres-
sion in fact agrees with the corresponding one obtained by the low frequency analysis. However, the
leading term (and also the next term) of the denominator of (5) vanishes at zero interblade phase
angle and consequently the formal expansion in the frequency parameter breaks down at this point; in
other words, the regular perturbation scheme in the frequency is not uniformly valid (though in
practical flutter calculation, this particular situation of zero interblade phase angle is of little
significance). The present improved solution such as (5) removes this nonuniformity, in addition to
extending its range of applicability to the practical frequency. The expression of (5) becomes
singular only 1f both u and k simultaneously become zero and from this, one can again obtain the
unique-incidence effect as the steady 1imit in exactly the same manner as described in Section 4 of
(1]. Except for this condition, there fs no other singular point in (5) (see [12]).

The wake velocity can be determined likewise by expanding it in a Taylor series of x about the
trailing edge and we obtained a closed-form expression for the pressure distribution now valid up to
and including the frequency parameter of practical interest.

Figure (4) shows an example of the unsteady pressure distribution for a cascade arrangement
corresponding to Figure (3); the airfoils (M_= 1.3, solidity = 1.0, stagger angle = 60°) are exe-
cuting torsional motion at its mid-chord with interblade phase angle of 90° (a) and 180° (b). The
solid 1ines correspond to the solution obtained by the present scheme and the dashed lines to the
Tow-frequency solution, equation (3). It is of interest to observe that, at these interblade phase
angles, the low-frequency solution holds up remarkably well in comparison with the more exact present
solution. The stability analysis shows that the region of torsional instability tends to shrink as
the value of the frequency parameter increases, but even at the frequency parameter of unity where
the isolated airfoil becomes completely stable, there still remains a considerable region of in- °
stability for cascaded airfofls. As a matter of considerable interest, the flutter analysis for the
bending motion shows that although at low frequency the bending motion {s always predicted to be
stable, at the frequency parameter of practical interest, 'islands' of bending instability emerge.
We feel that the results are encouraging, because, as mentioned 1n Sectfon 2, the bending mode in-
:ltabﬂity as well as the torsional one was observed for the actual fans in supersonic unstalled

utter.

?. CUMULATIVE, NONLINEAR EFFECT OF AIRPOIL SHAPE

We here recall a remark made earlier in Section 2 on the first-order effect of airfoil shape
upon supersonic unstalled flutter. As mentioned in Section 3, the acoustic theory does not take
into account the nonuniform fluid and acoustic velocity produced by the very presence of the airfoil
with thickness. Consequently one has to depart from the conventional acoustic theory in order to
capture the quintessential feature of the effects.

Prior to embarking on the description of the analysis, we first consider what one can anticipate,
from the physical reasoning, as the consequence of nonuniform flow field. Let us first assume that
only a sin?le point on the airfoil {s sinusoidally oscillating. When one plots at a given point in
flow the time-trace of the disturbance emitted, the departure of the nonuniform acoustic and con-
vective velocity from the uniform ones (acoustic theory) would be graphically revealed, mainly, as
the phase difference between the actual signal and the one predicted by the acoustic theory. The

se lag depends on the position and the more one moves away from the source, the wore the phase
ag would increase. Suppose now that the airfoil, as a whole, {s oscillating. Then the above phase
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for an individual disturbance, which differs from one signal to another, and that alone -- to say
nothing of the modification in the amplitude of each signal -- could introduce, when signals are
vectorially added, a significant correction to both the amplitude and phase of the unsteady flow in
the far field. Thus the nonuniform flow field associated with the airfoll shape would introduce a
change in the very substance of the fluctuating pressure (in addition to the usual alteration to be
made to the direction of the characteristics). The modification induced to the far field signal has
the following implication, which appears to warrant sufficient emphasis: contrary to the situation
in the near field, the unsteady signal at a large distance -- even to the first order of small per-
turbation -- can by no means be separated from such effect. as the airfoil shape, camber and angle
of attack, which cause the properties of propagation nonuniform. If this {s the case, no doubt this
appears to explain the significance of the airfoil shape in the flutter boundary of cascaded airfofls.

We intend to confirm these physical expectations and for that purpose we first obtained the un-
steady flow off the surface of an isolated oscillating airfoil with thickness, [13]. The upper and
lower surfaces of the airfoil are assumed .to consist of parabolic arcs. (Since the bow shock is
assumed to be attached, the supersonic flow above the upper surface of the airfoil is independent of
one below and consequently the analysis can treat the effect of camber as well as thickness.) The
governing equation includes the second-order terms which amount, in the far field, to first-order
unsteady term; this can be accomplished by the use of the strained coordinate technique of Lighthill,
Whitham and Lin. We relegate the details of the analysis to {13] and at present it suffices to point
out that in the final result, the unsteady velocity potential can be given, to the first-order of
small perturbation, by the following integral representation:

H
;- "%J V(T)eik(f - X)exp“ .ﬁlN . 2ny ¢'(l)($)] x exp{i a_k ((N - l)w(l)(s) - ¢(l)(‘t))
o o o

s (s - 1) o 0N (s)1) xmpy - g 1, LEkAN (ol e (6)

where 0(‘) is the steady velocity potential, the shape of the airfoil (in the mean position of
oscillation) is given by

el a x* + Bx)

and where N = (v + 1)M3/2(m)?, s and p are characteristic coordinates based on the steady velocity,
and M is the confluent hypergeometric function. Contrary to the acoustic solution which breaks down
in the far field, the present solutfon is uniformly valid in the entire flow. When reduced to various
limits, it agrees with such known solution as the Whitham's rule at the steady limit, oscillating

flat plate and the wedge solution of Carrier and Van Dyke. More importantly, the above solutfion for
a parabolic airfoil reveals many physical features relevant to the propagation of unsteady distur-
bance through nonuniform flow.

The numerical results are presented in Figure (5), where the unsteady pressure distribution for
a parabolic afrfofl (thickness to chord ratio = 2.5%), computed from equation (6), is shown in com-
parison with the result for a flat-plate airfoil at two different frequencies of oscillation --
wc/U_ = 0.1 in Figure (5a) and wc/U_= 1 in Figure (5b). There, both the amplitude and phase are
plot¥ed as functions of s, or the dfstance of the root of a straight Mach wave and at three different
locations of y. We observed that - though for wc/U_ = 0.1 the effect of the airfoil shape does not
become prominent at these locations -- for wc/U_ = 1. except for the close vicinity of the leading
edge;d:t 1?deed alters the pressure distribution significantly, as anticipated by the physical
considerations.

This result for an isolated airfoi) appears to explain the importance of airfoil shape in super-
sonic unstalled flutter and currently efforts are under way to include the above results into cascade
analysis. Though evident from the foregoing analysis, it appears worthwhile to asize that, in
all phases of the present study, efforts are focused on deriving the solution in closed-form or at
least retaining its analytical structure in order to facilitate the examination of the roles played
bylth: ::r1ous parameters and also to minimize the computational time expended for repeated flutter
calculations.
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On the Issue of Resonance in an
Unsteady Supersonic Cascade

M. Kurosaka*
General Electric Company, Schenectady, N.Y.

N a recent paper, Verdon and McCune' presented a

inearized analysis of an unsleady supersonic cascade with
subsonic axial velocity. It is an interesting advancement on
Verdon’s previous paper.’ To achieve its objective of com-
puting the pressure distribution, the analysis of Ref. 1 starts
out to add the contributions from unsteady disturbances
generated at all the oscillating airfoils below the reference air-
foil in the cascade. The partial sums of the series were found
to oscillate about apparent limiting values in general but, un-
fortunately, convergence was not proved. Aside from the
problem of convergence, Ref. 1 also reports that under certain
circumstances the numerical scheme broke down rather inex-
plicably. Thus it states in the concluding remarks that further
work is needed to resolve these questions,

Several vears ago, the author of the present Note ¢n-
countered essentially the same series and found that it
diverges at a certain number of discrete points, although these
results were never published. The appearance of Ref. ),
therefore, seems a fitting opportunity to point out the
divergence of the series, to offer it as a possible explanation
for the aforementioned breakdown of the numerical scheme
and to discuss its physical implications in regard to resonance
and other salient points.

Consider, for example, the following kernel function K (x),
which appears in the integral equation (23) of Ref. 1:

K(x)==(1/))S(x)

where S(x) is given by

N
Stxy=- Y, kulnyem™

AL L P R TP AN "
[ (x~nx ) = (uny ) )"
where x, and y, are the spatial distances between the ad-
jacent airfoils in the cascade defined in Ref. 1, u= (M2 ~1) "
where M is the Mach number, x, —uy, 20 (subsonic axial
velocity). & is a frequency parameter, and 1 is refated to the
interblade phase lag ¢. The nth term in the sum represents the
influence of disturbances generated at the nth (n<0) below
the first airfoil. We replace n by —n, rewrite J, in terms of the
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under contract F44620-C-0040. The author is grateful 1o J. Verdon for
sending him an adunce copy of Ref. 1, before it« publication.
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derivative of J,, and obtain

< s (W)
= n} Plnh A S 2
S(x) "Z;Ie [ 2 .—]‘d )
where
Wx,p) =kl (x+nx,)’ ~ul(y+ny, )’ 1" 3)

We will show that S(x) is divergent for certain combinations
of parameters. For this, rewrite W(x,v) as

Wi(x,»)
=127 (n) ~22(m Z(x,y)cos (X, ¥} + 22 (x, ) ]"* ()]
where

) =nk(xi— plyl) "
Z(x.p) =k(x?—ply?)': (5a)
o(x,v) = —i[tanh ! (uy/x)
—tanh ‘(uv4/x,)] -7 5%
This transformation, Eq. (5) may be conveniently achieved by
introducing a set of auxiliary variables defined by x =p cosh

v, uv=psinh v, x, =p, cosh vy, and uy, =p, sinh »,. Now
from Neumann’s addition formula,* J, can be expressed as

x
Jo(W) = ¥ 60 do (2) ), (2)c0s Mo

w0
where
=1 for m=0 (6a)
tn=2for m=1.2,... (6b)

for any complex values of Z, z, and ¢. Substituting Eq. (6) in-
to Eq. (2) and assuming the validity of the interchange of the
order of differentiation and summation, we obtain

S = Y e,

m: 0

/1 Z(x,¥) cos mod(x,y
xl (I 1 1d(x.v) ] -a, ™
a ven
wherea,, is given by
L4
= Y My, [nk(xd—pivi) ) ®
n-t

In deriving Eq. (7)., we have made explicit use of the fact that
z(n) =nk (x4~ p’y3)'* which appears in Eq. (8), is in-
dependent of x and v, while Z and ¢ are independent of n. The
series of a,, is called a Schiomlich series. Here we want to
single out @, and examine its real part, which is given by

[}
Relay)= 3, cos (n)Jolnk(xh—ulyi)'"] ®
n=1?

Y
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Now from Ref. 4, for any 7 and x between 0 and «, the series

o«
2 cos (nt)J,(nx)
n=1
is divergent at r=x and therefore Eq. (9) diverges at
Q=& (= piyl)
1t is easy to observe that Eq. (9) has another singularity at
Q= —k(x4—p2y)"
or more in general has an infinite number of simgularities at
Q= xk(x4—p?¥3) " +2xn n=0, =1, =2,...
If we express Q2 by the interblade phase angle o, this becomes
o+kMx, = 2 k(xi—plyy
+2xn n=0, =1, £2,.... (10)
At these points the series S(x) diverges. We take special note
that the divergent condition for S(x) is independent of the
value of x.

One can check the divergent condition, Eq. (10), more
directly by the numerical evaluation of the original series Eq.
(1) in the vicinity of divergence. Let the departure from the
divergence be A, i.e.,

o+ kMx, £k (xX—p?yl) —2xn=A
where A =0 corresponds to the divergent condition, Eq. (10).

The partial sum of Eq. (1) can then be written, after replacing
nby —A,as

.
Su(x)=kp? Y expt —iAl 2 k(xi—~uiyi)' + A) Vv,
A=

Skl Ceiin g} = (uiy)°1 )
[(x+7x,)° — (pAy)?]"

(n

A number of numerical checks have been performed and they
in fact confirm the divergence of the series at A =0. For exam-
ple, for the cascade A of Ref. 1, the real and imaginary part of
Sy (x) (divided by ku’) at x =0.5 are shown in Fig. 1 as func-
tions of A for the various values of N [ where the positive sign
in the argument of the exponential function of Eq. (11) is
chosen}. As can be observed immediately, the series tends to
diverge at A =0. In addition, we note the following important
points;

a) The divergence does not appear when N
is § or 20. It starts to emerge at N=200 and becomes
prominent at N=2000. In other words, the cause of the
divergence is not the effect of the nearby airfoils but the
cumulative influence of those airfoils located far from the
reference airfoil.

b) As A increases, the effect of x on the Ath term in the
series, Eq. (11), becomes insignificant.t When we combine
this with a), it becomes evident why the divergent condition of
Eq. (10) for S(x) is independent of x.

¢) For a given value of A away from the divergence con-
dition, the partial sum Sy (x) appears to oscillate as N in-
creases. This behavior is in agreement with what was reported
inRef. 1.

Other series in Ref. | can also be shown to diverge. For in-
stance, Eq. (20) of Ref. | contains a series, which, in the

+This cnables one to check the disergent condition directly by using
the asympiotic formula of /, in Eq. (11).
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region downstream of the Mach wave emanating from the
leading edge of the first airfoil, becomes

T(xny)= Y, e "o lk{ (x—n+nx,)?
=1}
—piy+ny )1y 12

By a method exactly identical to that used for S(x), we can
readily show that 7(x,n,y) again becomes divergent at the
condition, Eq. {(10).

For the cascade A of Ref. 1, the linear relationship between
o and K as indicated in the divergent condition, Eq. (10) is
plotted in Fig. 2 for several values of n. As mentioned, break-
down of the numerical scheme was reported in Ref. 1 for cer-
tain combinations of parameters; in Fig. 7 of Ref. I, for a
given value of x, o was continuously increased starting from 0
and the failure occurred at a certain value of 0. When we add
such combinations of o and & closest to the breakdown
situation to the present Fig. 2, where they are designated by
circled points, breakdown is observed to occur near the
divergent condition.

The present divergent criteria, Eq. (10), are identical with
those obtained by Samoilovich.® He obtained it under the
restricted condition corresponding to x=n=y =0 in Eq. (12).
In such a case, the argument of J, becomes proportional to n
and the use of the Poisson summation formula readily enables
the series to be transformed into another series represen-
tation, which possesses the singular points at Eq. (10). In the
present derivation, the divergent condition has been obtained
for the more general case of any finite values of x, 9, and y.

It is a matter of considerable interest to observe that Eq.
(10} is formally the same as the resonance condition in a sub-
sonic cascade,® and therefore it may be given the physical
meaning similar to that discussed in Ref. 7. Thus, for the
present divergence of the series associated with the supersonic
cascade, Samoilovich also gave the physical interpretation of
‘‘resonance.”’ Contrary to the subsonic cascade, it is,
however, highly unlikely that resonance at these conditions
could indeed occur for a supersonic cascade. The reason is as
follows. We have found that the divergence is the direct con-
sequence of the cumulative contribution of those airfoils
located far from the reference airfoil; in Fig. 1, the peak does -
not appear when the number of the preceding airfoils Nis 5 or
20, and it starts to emerge only at N=200. Needless to say,
such an effect is computed within the framework of linearized
formulation. It is well known, however, that the linearized
treatment of a supersonic flow breaks down in the field far
from an airfoil. According to the linear theory, disturbances
created by the airfoil would propagate unattenuated, even to
infinity, for both the low- and high-frequency limits (for high-
frequency behavior, see Ref. 8.) Although in the near field the
linearized theory is a good approximation, the contribution of
the nonlinear terms become no longer negligible in the far
field and there it encroaches on and modifies the effect predic-
ted by the linear theory. Physically, this follows from the fact
that, by the time disturbance reaches the far field, two
nonlinear effects ignored in the acoustic theory—the con-
vection of disturbance by the local and instantaneous fluid
velocity and its propagation at the nonuniform spced of
sound-—have cumulatively taken their toll and distorted the
shape of the wavelet given by the lincarized theory. Thus, as
Lighthill® puts it: **... the failure of linearized theory ... is ex-
plained by the fact that ... while yielding adequate results in a
limited region, may yield a worse and worse approximation to
the solution farther and farther from where the boundary
conditions determining the solution were applied.”’ Con-
sequently, only the influence of a limited numbers of airfoils
(N=35, say, for a typical cascade) in the neighborhood of the
reference airfoils can accurately be predicted by the linearized
theory. As the distance from the reference airfoils increases,
the nonlinear effect would rapidly alter the linearized con-
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tribution whose pro forma sum over a !aige number of air-
foils is responsible for ‘‘resonance.”” These considerations
therefore cast a serious doubt on the prospect of resonance at
the present divergent condition in an actual supersonic
cascade, unless evidence to the contrary is found. (When the
Mach number is increased in the present subsonic leading edge
problem, the solution, including the behavior at ‘resonance,
should approach the lowest limit of the supersonic leading
edge problem of Ref. 10. Since the latter does not possess any
such ‘resonance,’ this appears to provide additional cvidence
to the contrary.)

Even when the sum isv convergent, the aforementioned
failure of the supersonic linearized theory in the far field
raises the obvious question on the very scheme of the sum-
mation over an infinite array of cascaded airfoils within the
framework of linearized analysis. We hasten to add, however,
that this does nor mean that one cannot solve the supersonic
cascade problem by linearized analysis. It is indeed feasible to
accomplish this by using a different formulation adopted in
Ref. 11. The formulation may be called a ‘‘passage ap-
proach’” and attention is focused on the reference passage be-
tween two  blades. In place of the infinite cascade
arrangement, we impost an cquivalent periodicity re-
quirement that the flow at any given point in the reference
passage be the same as the flow at the corresponding point in
the adjacent passage (with the exception of an interblade
phase lag). Since the problem is set up within the blade
passage and, furthermore, because of the limited domain of
dependence of a point in a supersonic flow, it turns out that
the formulation involves only the near field where the
linearized theory is valid. This approach leads 10 a closed-
form expression for the pressure distribution, correct to the
linear order of the frequency. The analysis yields the so-called
unique incidence cffect as the steady limit, agrees with the
sonic limit of the supersonic leading edge analysis, and
correctly reflects the effect of the back pressure. The ex-
pression does not suffer breakdown at Eq. (10) and this is one
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more reason to preclude resonance under these conditions} in
a supersonic cascade.
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In this paper we examine how the unsteady flow field radiated from an oscillating
body is altered from the result of acoustic theory as the direct consequence of dis-
turbances propagating through the non-uniform flow produced by the presence of
the body. Taking the specific example of an oscillating airfoil placed in supersonic
flow and having the contour of a parabolic arc, we derive a closed-form representation
for the unsteady flow field in terms of the confluent hypergeometric function. The
analytical expression reveals explicitly that, though the body shape has a negligible
effect in the near field, it inextricably affects the unsteady flow at a large distance,
both in its amplitude and phase, and substantially modifies the results of acoustic
theory. In addition, we display the relation of this solution to the ‘fundamental
solution’ and the other salient physical features connected with disturbances propa-
gating through non-uniform flow. The present results recover Whitham’s rule in the
limit of zero frequency of oscillation and also include, as another special case, the
unsteady solution for a wedge obtained by Carrier and Van Dyke.

1. Introduction

As is well known, acoustic theory in a moving medium is based on two major
assumptions: that a disturbance propagates at a uniform acoustic velocity and is
swept downstream at a constant free-stream speed. Although this approximation is
sufficiently accurate in the vicinity of the body, the acoustic theory for a supersonic
flow is manifestly unfit for the description of the far field; it fails, for example, to
reproduce the fanning out or coalescence of Mach waves. The reasons for the break-
down have long been understood (e.g. Lighthill 1854): as a wavelet spreads out, two
nonlinear effects ignored in the acoustic theory, i.e. the non-uniform acoustic and
flow velocities, which vary with both position and time, emerge and exert an influence
over a large distance. The nonlinear effects are locally small everywhere, including
the far field. However, not only is the disturbance at a given point influenced by the
slightly perturbed flow properties at that location but it has been undergoing a con-
tinual distortion while propagating through a non-uniform flow field. It is this cumu-
lative distortion or ‘memory’ content of the signal which encroaches upon the result
of acoustic theory and eventually alters it in the far field.

For a steady flow, the task of surmounting the shortcomings of acoustic theory has
drawn the attention of Friedrichs (1948), Lighthill (1949) and Whitham (1950, 1952),
to mention only a few. These efforts culminated in the following celebrated rule due

t Present address: University of Tennessee Space Institute, Tullahoma, Tennessee 37388.




752 M. Kurosaka

to Whithamt (1952): to a good approximation, the result of acoustic theory can be
amended if one replaces the linearized Mach wave by one revised using linearized
velocities but, along this improved Mach wave, retains the values of the fluid proper-
ties predicted by acoustic theory. Crudely speaking, then, the only visible consequence
of the nonlinearity is the directional change in the Mach waves; the fluid velocities
remain essentially unchanged. We reiterate here that the flow is steady in the frame
of reference fixed to the body.

In contrast to the above steady flow situation, relatively less attention appears to
have been paid to problems where the flow is unsteady, again with respect to the
co-ordinate system fixed to the body. To be sure, related studies have been published
but they seem mostly to be restricted to a one-dimensional problem and its diverse
variants (e.g. Lesser 1970; Romanova 1970; Nayfeh 1975). There have been very few
attempts, if any, to obtain, in the spirit of the above steady problems, a complete and
uniformly valid solution and then display the global behaviour of the unsteady flow
field in either two- or three-dimensional space. Yet there are many important practical
problems, like the unsteady aerodynamic interference between a multitude of oscil-
lating bodies in a flow, e.g. flutter of cascaded airfoils, and other similar phenomena,
where such an improved prediction of the unsteady flow valid even in the far field is
critically needed. Prompted by this, we address here the problem of obtaining a first-
order correction to the acoustic field radiated from an oscillating body, accounting for
the interaction with the non-uniform flow created by the body itself.

In the case of unsteady flow, the nonlinearity will have additional consequences,
as one can anticipate from the following physical reasoning. Let us first assume that
only a single point on the body is oscillating sinusoidally. When one plots at a given
point in the flow the time trace of the disturbance emitted, the departure of the non-
uniform acoustic and convective velocities from the uniform ones (from acoustic
theory) will be graphically revealed, mainly, as a phase difference between the actual
signal and the one predicted by the acoustic theory. The phase lag depends on the
position and, the more one moves away from the source, the more the phase lag will
increase. Suppose now that the whole body is oscillating. Then the above phase lag
for an individual disturbance, which differs from one signal to another, and that alone
(to say nothing of the modification in the amplitude of each signal) could introduce,
when signals are vectorially added, a pronounced correction to both the amplitude and
the phase of the unsteady flow in the far field. Thus the nonlinearity would cause, in
addition to the alteration to be made to the direction of the characteristics, a change
in the fluctuating pressure itself. The modification induced in the far-field signal has
the following implication, which appears to warrant emphasis: contrary to the situ-
ation in the near field, the unsteady signal at a large distance, even to first order in the
small perturbation, can by no means be separated from such effects as the body shape,
camber and angle of attack, which cause the properties of propagation to be non-
uniform. The effect of thickness, for example, would be inextricably embedded in the
far-field unsteady signal.

Our present aim is to confirm these expectations and we shall do so by investigating

t In early literature this was referred to as Whitham's hypothesis. Now that it has become
well established, it appears more appropriate to call it a rule instead. This rule should not, of
course, be confused with another rule, due also to Whitham, relevant to the propagation of a
shock through a region of varying croes-sectional area (e.g. Whitham 1974).
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S=constant

F10URE 1. Definition sketch.

the effects of a non-planar body, whose presence creates a non-uniform surrounding
environment, upon the unsteady flow field. We shall expressly limit our investigations
to the case of a two-dimensional slender body whose upper and lower surfaces consist
of parabolic convex arcs and which is oacillating sinusoidally in a supersonic flow
(figure 1). Though, by confining our attention to this particular shape, we shall
inevitably forfeit formal generality, the present approach will give a closed-form
solution which is amenable to detailed study ; from this we hope to glean the essential
featurcs of the flow non-uniformities. With regard to figure 1 again, the thickness of
the body is characterized by a parameter ¢ and the amplitude of oscillation by &,.
We shall examine the cumulative effects of the second-order terms, which ascend in
the far field to a first-order unsteady term O(6,). There are three second-order terms,
0(e8,), 0(63) and O(e?), of which only the first two are relevant for the present un-
steady problem. If one assumes ¢ » 6,, one can discard the term O(63), whose presence
would cause undesirable higher harmonics. With this assumption, we are now in a
position to focus attention on the remaining, 0(6, €) term, which represents the genuine
coupling effect of present interest. It should be remembered, however, that, as pointed
out by Hayes (1954) for steady flow, only a few selected second-order terms contribute
cumulatively to the first-order effects. Hence we shall pick out, by the use of the
strained co-ordinate technique, those terms 0(6,¢) whoee cumulative effects amount
to O(0,) in the far field. Thus our aim is clearly different from Van Dyke’s (1953a)
second-order theory for an oscillating airfoil including the effect of thickness. There,
becausge of his interest in the flow on the airfoil surface, combined with a situation
involving only slow oscillations, he used a regular perturbation scheme in 6, and ¢
and obtained a solution to O(f,¢); consequently, the hierarchical ascent of terms
of second order to first order in the far field was neither expected to take place nor was
his concern. On the contrary, our interest centres on just such an evolutionary,
ascending process. _

In the next section we shall begin with the governing equation and simplify it in
§3 by employing the strained co-ordinate technique. In §§4 and 5, we shall describe
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the procedure for solving this simplified equation. We set out to obtain the corre-
sponding Riemann function appropriate for a parabolic airfoil; the Riemann function
can be constructed explicitly and exactly in terms of the confluent hypergeometric
function.. With the Riemann function thus obtained, the solution, equation (5.4),
follows from it without much difficulty. In §86, before embarking on a physical
interpretation of the solution, we pause and confirm that the present results can be
reduced, through the limiting properties of the confluent hypergeometric function,
to some known results. In the limit of zero frequency of oscillation, we shall recover
Whitham'’s rule; for an oscillating wedge with small apex angle, the present result
will embrace, as a special case, the solution obtained by Carrier (1049) and Van Dyke
(1953b). We shall resume the discussion of the curved airfoil in § 7, where we observe
that Tricomi’s (1949) expansion formula for the confluent hypergeometric function
is ideally suited to the extraction of a physical interpretation; the gradual ascent of
second-order terms to alter the acoustic signal in the far field will become effortlessly
visible; and there the effect of body shape will be found to be tenaciously inseparable
from the unsteady flow field. This will be followed in §8 by further description of
salient physical features related to the disturbances propagating through the non-
uniform medium.

2. Problem formulation

The governing equation for the perturbed velocity potential ® is given to second
order, to which order the flow can still be regarded to be irrotational, by

Upq 1
Op Mo 27 O~ 7 By
M 1
=T {(7— 1) (°‘+U.Z°‘) (0..+9,,)+20,0,.+20,0,,
2
+E(®,04+0,0,0),  (2.1)

where the perturbed velocity components (u', ') are related to ® by
O, =u, O =17,

U, is the free-stream velocity, a., the speed of sound in the free stream, M, = U, /a,
m = (M% — 1)} and vy is the adiabatic exponent of the gas. We exprees, according to
Van Dyke (1853a), the co-ordinate of the moving upper surface as

y = f(z) - Oy g(z), (2.2)
where ¢f(z) (¢ € 1" “aignates the shape of the body in its mean position of oscillation
and the second t. 7. represents ite harmonic motion with frequency w. The two small
non-dimensional parameters ¢ and 8, characterize the slenderness of the body and the
amplitude of motion, respectively. As long as the shock remains attached, we need
consider only the flow above the upper surface. The boundary condition on the
surface of the airfoil, as given by Van Dyke (1953a) to second order, is

O, = (Up+ D,)(cf —Ogettg’) — swbyeig — (cf—Oye™g)D,, at y=0. (2.3)

Also, ® vanishes upstream of the bow shock, whose position moves in time. 8ince the
flow variables are discontinuous at the shock and, strictly speaking, do not possess

Y T
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Figure 2. Smoothing technique of Van Dyke.

derivatives there, the governing equation is not formally satisfied. Hence in principle
jump conditions across the shock, which is moving and whose temporal position is
unknown a priori, must be imposed to ensure the conservation of mass, momentum
and cnergy there; this would introduce complications. However, this knotty problem
can be completely circumvented by the smoothing technique, which was first devised
by Courant & Friedrichs (1948, p. 365) for steady flow and later extended to the
unsteady case by Van Dyke (1953a). We first imagine that an extension has been
added to the leading edge of the actual airfoil: a sufficiently smooth and flexible tip
of such a shape and moving in such a way as to prevent the formation of the shock
in the flow above the upper surface (figure 2). We then regard the desired solution as
the limit as the extension shrinks. Once this device has been employed, as here, the
need to impose jump conditions at the shock can be eliminated for the solutions up to
second order. (Also, whenever necessary, we shall hereafter regard the discontinuity
in the flow variables at the shock in the sense of the above limiting process.) The
smoothing technique provides, in effect, a formal justification for the following point
of view: the global behaviour of the unsteady flow downstream of the bow shock can,
to & good approximation, be determined essentially independently of the presence of
the shock and various complications arising from its motion (except in the close
vicinity of the shock, where such a solution fails); the situation is akin to the familiar
steady prcblem (Whitham 1952).

Following Van Dyke a little further, we separate the perturbed velocity potential
into a steady and time-dependent part by writing

® = ep(z,y:€) + By exp [i(wt — kz)] Yz, y: €, 6y), (2.4)

where k = M% w/m3U,,. The first term represents the steady base flow and ¥ in the
second term corresponds to the unsteady flow; our interest is focused on y. We sub-
stitute (2.4) into (2.1) and (2.3) and assume ¢ > 6,, as stated in the introduction. We
thus obtain the following two sets of equations: for ¢

e[—mid,, + @,y = (ML UL ) (m¥N —1)g2 + 3], (2.50)
with the boundary condition
édy = Unf +64B.f ~fByy) 86 y =0, (2.50)
and for
Ol — M3 oz + Yy — (km| MR Y] = 2(e0,Uy) {MEG[m¥N — 1), ¥+ Sy ¥, )
- 'k[(zN - ‘)m’ ¢z¢z + Nm? ¢¢u + ¢z V’y] - N(km/Mn).¢c¢}1 (2-00)

where N = }(y + 1) M%/m3, with the boundary condition
Oo¥ry = —Oo[Usg’ + (ik Uom¥ M3,)g)ett=
+e0[f (Yo —ikY) +(—@.9' +gdyy)e**~fif,,] at y=0. (2.6b)
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In obtaining the above equation, some simplification on the right-hand side has been
achieved by using the expressions for the left-hand side and neglecting terms of higher
than the second order. It should be noticed that, although (2.5a) is nonlinear in ¢,
equation (2.6a), the basis of this paper, is a linear} function of ¥ involving variable
coefficients. Both ¢ and ¥ vanish upstream of the bow shock.

3. Application of strained co-ordinate technique

The right-hand sides of (2.5a) and (2.6a)are of higher order than the left-hand sides.
Consequently, if one uses a regular perturbation scheme, they successively yield the
first- and second-order equations of Van Dyke with the right-hand sides either zero or
expressible in terms of the first-order velocities, respectively; the first-order equation
for ¥, in particular, is the (reduced) acoustic equation and it obviously precludes the
ascent of the terms on the right-hand side to first order. In order to achieve our stated
objective of examining such an evolutionary process, we shall employ the strained
co-ordinate technique instead: this is the point of departure of the present analysis.
Although the original strained co-ordinate technique developed by Lighthill and
Whitham involves only a single family of characteristics, the present unsteady prob-
lem requires two families of characteristics for adequate description of the flow field.
It is therefore convenient to use Lin’s (1954) extension of the strained co-ordinate
technique (see also Oswatitsch 1962) or the analytic method of characteristics, which
enables one to treat the case of two families of characteristics. According to this
method, the independent variables (z, y) as well as the dependent variables are to be
expanded, with the characteristic parameters s and p regarded as new independent

variables:

z = 29(s, p) +exP (8, p) + ..., (3.1a)
y=y20p)+eyV(s,p)+ ..., (3.1b)
€p = gV (s, p)+'9 (s, p) + ..., (3.2q)
O = 0,y (s, p) + €0,y (s, p) + T3y ¥ (s, p) + ..., (3.2d)

where s and p are constant along the corresponding characteristic curves, respectively.
With respect to the characteristic curve, we first observe that, comparing (2.5a)
and (2.6a), all the coefficients of the second derivatives in the steady equation are
the same as the corresponding ones in the unsteady part. This dictates, then, that
the characteristic curves for both the steady and the unsteady equations are identi-

cally the same and given by

dy 1 m ML
a—-x - = E[l_e-ﬁ: (N—l)¢z+€v:;¢,] F ey (3.3a)
dy t MY MLt

dz p-cout-_;n-[l—eT}: (N-l)¢=—e'(]:,‘,"¢v]+---- (3.3d)

1 Besides the usual shock emanating from the leading edge (and the one at the trailing edge,
which does not matter for the flow field upstream of it), no additional shock is created owing to
the motion of the sirfoil; consequently, the entire unsteady flow can be uniformly described

by the linearised equation.
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Into these we substitute (3.1a, b) and (3.2a) and equate the coefficients of equal powers
of ¢. We then determine successively, using the boundary condition (2.5b), the terms
in the series expansion; while the zeroth-order terms in (3.1), 2 and ¥, give the
expression for e characteristic parameters corresponding to acoustic theory, the
first-order ter. - 2 and W, give the desired nonlinear correction. We direct atten-
tion towards the fact that the procedure is dependent wholly on the steady flow
and excludes the unsteady part (3.2b). This process of co-ordinate stretching in
steady flow being familiar, it suffices here to write down the following results:

¢(” = —-H(s) (Uw/m)/(a)t (3.4)
8 = x—my—emyN(M%[U,)dg™ (s)/ds, (3.5a)
P = x+my—(6/2U,) (N — 2) MY, [$™(s) - ¢V (p)], (3.5b)

where H(s) is a unit step function. The above expressions for # and p liave been put
in the present form by rewriting the results corresponding to (3.1a,b). Geometrically,
s represents, as shown in figure 1, the root of the straight Mach wave passing through
a given point (z, y) and along this s remains constant (Van Dyke 1975); likewise, p re-
presents the root of the cross Mach wave, along which p remains constant. (As a matter
of fact, the constants of integration in (3.3), their choice being at our disposal, are so
adjusted that,aty = 0,2 = 8 = p.) Equation (3.4) indicates that thesteady, first-order
velocity potential is dependent on s only and it obviously embodies Whitham’s rule.
Having thus specified s and p, we then substitute the expansion for the unsteady
part (3.2b) into (2.6). In obtaining the equation for the leading term ¥V, we proceed
with caution and retain the terms associated with k on the right-hand side because,
for sufficiently high frequencies, they could become comparable with the terms on the
left-hand side; the terms not associated with k can be neglected. One thus obtains

B[~ 403+ 5 Nekg YD+ g (N = 1)ek g0y
o
+ [ - (M-f-) + -31 Nek¢'ﬂ>] w} =0, (3.6a)

where ¢'® designates the derivative of ¢ with respect to s; in differentiating ¢, we
recall and envisage the smoothing process described in §2 and discard the term asso-
ciated with the delta function. (When obtaining (3.6a), the term (k/M,)* in the braces
initially appears as (k/M,)*[1—2(N/U,)e¢'™] but the second term in the square
brackets is neglected.) The boundary condition (2.6b) becomes

Ofickf (8) YW —myP +myP + V(s)e*} =0 at s=p,
V(x) = Ung'(z) + (kU m¥ M%) g(2). (3.6b)

where

Also, the upstream condition becomes
yP=0 for 8<0. (3.6¢)
It is convenient at this point to introduce the function F defined by
Y0 = expli(ek/Us) N(p - 8) 'V (e)]) F. C))
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Then (3.6a) becomes, to the order consistent with the present approximation,

0u[Fy+ L L= (2N = 1)) + (- ) N0 F,
@ ' »
k) it wemols) o s
with the boundary conditions

0.,{@1: [-% f’(a)—-(%-o N¢'(1)(3)]F+F,—F,—% V() e“‘" =0 at s=p, (3.8))

and
F=0 for s<0. (3.8¢)

In (3.8a,b), the factor 8, is retained as a reminder that the equations are valid to order
0,, the higher-order terms such as those O(ef,) in (3.2b) being neglected. OQur aim is to
obtain the explicit solution for F and we shall do so for an airfoil whose shape consists
of parabolic arcs.

4, Construction of the Riemann function

If ¢'™(s) were either zero or & constant, (3.8a) would be reduced to the telegraph : |
equation. In the present case of a parabolic-arc airfoil, f(x) in (2.2) is quadratic in
and from (3.4) the derivative ¢'® is linear in s. Thus (3.8a) is a second-order linear
hyperbolic equation whose coefficients are variable (and linear in s). It is well known
that the solution of any second-order linear hyperbolic equation can be expressed in
the form of an integral representation, once the corresponding Riemann function has
been obtained (e.g. Courant & Hilbert 19062, p. 449). If, in general, u satisfies

£Lu] = upy +au, +bu, +cu =0,

where a, b and c are given functions of x and y, then » can be represented by an integral
along the boundary (where Cauchy data are assumed to be prescribed) whose integrand 1
involves the Riemann function R of the operator Z. R does not satisfy the operator :
equation Z(R) = 0 but rather satisfies the adjoint operator equation

£*(R] = R,,—(aR),~ (bR), +¢cR = 0.

For our purpose, it is convenient to derive first, instead of R, the Riemann function
R* of the adjoint operator which satisfies the operator equation for Zitself; then we
obtain R through the symmetry property of the Riemann functions. For the present
equation (3.8a), the Riemann function of the adjoint operator R*(£,7; s, p) satisfies
the following three conditions (Courant & Hilbert, ibid.):

(@) L4y [B] = B+ 5= ekl = (2N~ )§0(E) + (1- O N $ (1}

(b) along AC in figure 3,
1 oRe
R* &

=0 on {=g, (4.10)
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and along BC,

l 3R‘ 'v' ”"1) 1) .
3 =mek[(2N—l)¢ E)—(p—E)NP"V(E)] on p=p; (4.1¢)

(c) R%(s,p;8,p) = 1. (4.1d)
Integrating (4.1c) and determining the constant of integration from (4.1d), we obtain
R*(£,p; s, p) = expu®, (4.2)

#* = (3| Us)ek{(N — 1) [N (§) - 7 (8)] - N[p(¢"® (£) — $'V(a))
— (£ D) -2 D (a))]).

R*(£,9;0,p) = exp(s®) M(2), (4.3)

2 = ~(i|Ug) Nekt§ — s) (3 — p) 9", (4.4)

then for a parabolic-arc airfoil, for which ¢"® is a constant, (4.1g) is reduced to the
following ordinary differential equation:

sM* 4+ (1-3) M ~aM = 0, (4.5)
a = §+ Uq k(4ieN ML 4)1,

where

If we write

where

where
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This is known as Kummer’s equation and its only solution which satisfies (4.1d) is
the following confluent hypergeometric function (e.g. Slater 1960, p. 2):

M= M@ql1,z), (4.6)
defined by .
Gz Qg2 G, 2"
M(a,b,2) = 1+T+6-:—2—!+... +W+""
where
a, =al@+1)(@+2)...(a+n—-1), forn=1,2,...,
and
ay=1.
Hence (4.3) becomes j
R¥(£,7;8,p) = exp (4*) M(a, 1,2). (4.7)
Along § = s, R*(3,7;s,p) = 1 and this obviously satisfies the remaining requirement l

(4.1b) for the Riemann function.

The Riemann function R(£,7; s, p) may be immediately derived from R* through
the symmetry property of the Riemann function (Courant & Hilbert 1962, p. 454) by
replacing £ and 9 with s and p, respectively. Thus we obtain

R(g’ 7 8:?) = exp (/‘)M(a’ 1, z)’ (4'8) ]

# = ($Up)ek{(N — 1) [P (s) — g0 (£)] - N[n(¢'D(s) — $"V(£))
—(8g'V(8) - £V (N,
6 = §+ Up k(45N M3, 4"M)

2 = — (i|U,)ekN(s — £) (0 — 1) $"®.

where

and

5. An integral representation of the solution

Once the Riemann function has been thus derived, one is in a position to employ
Riemann’s formula (Courant & Hilbert, ibid.) to obtain the integral representation of
Fin (3.8a), provided that Cauchy data are prescribed on the boundary. Unfortunately,
the present boundary condition (3.85), which applies along the segment OA of figure 3
(this corresponds to the z axis of figure 1), is not Cauchy data. Rather, it expresses a
linear relationship between the function F and its derivatives; this induces some com-
plication. If one applies Riemann’sformula to the contour around the shaded region of
figure 3(0ACBO’), although the contributions from the line segments AC, CB, BO’ and
00’ vanish identically, one ends up with an integral along O4 ; since it turns out that
the integral involves the value of F, which is unknown as yet, one has to solve a
complicated integral equation to determine it.

The difficulty is by no means unique to the parabolic airfoil, and in fact the same
complication arises even in the more simplified situation of & flat-plate airfoil, where
¢’'® is zero. In such a case, (3.8a) is reduced to the telegraph equation and the corre-
sponding Riemann function is a Bessel function (e.g. Courant & Hilbert, ibid.):

R(E, 7;8,p) = Jo{(k/ M) [(s - §) (P —mH)}. (5.1)

To construct the flat-plate solution, Temple & Jahn (1845) used this and applied
Riemann's formula for a closed curve; the contour around the shaded region of figure 3

¢ ————— IR
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is none other than their path of integration. Their final result for F at a general point
in the flow was left in a somewhat awkward form involving, inside the integral along
the segment 04, the unknown values of F to be evaluated there, although the un-
desirable term vanishes from the integral for a point on the surface of airfoil, i.e. on
OA. It turns out, however, that one can advance a step further and eliminate the term
entirely. More specifically, by substituting the expression derived for F on the surface
of the airfoil into the integral representation for an arbitrary point and noting an
identity involving a product of Bessel functions, F can be written exactly as the
following integral of the Riemann function:

H(s)[*

F(a,p) ==~ . V(r)e* R( = 1,9 = 7;8,p)dr (6.2a)
= I—{"(l—a.)fo' V(T)ea".,o (MLQ [(J—'T)(p—-f)]‘)df_ (5.20)

This expression is, of course, the well-known flat-plate solution obtainable by a
number of other methods (e.g. Miles 1959, p. 50).
Motivated by (5.2a), in the present case of a parabolic airfoil we try

F(s,p) = I%J‘o. V(r)e*" R = 1,9 = 7;8,p)dr, (6.3)

where R is now given by (4.8) and this can be directly verified to satisfy the governing
equation (3.8a). Also, substituting this into the boundary condition (3.8b) and re-
calling that it is valid to O(§,), it can be shown by using some of the results obtained
by the present author (1974) that the boundary condition is indeed satisfied to the
same order, the details being given in appendix A. From (5.3), F obviously vanishes
for & < 0. Hence (3.8¢) is satisfied and (5.3) is in fact the solution sought. Before we
write down the final solution explicitly, we restore, in order to obtain Y in (3.7), the
exponential factor, which may be written to the present order of approximation as

exp [i (ej_lc N(p—s)¢’“’(a)] ~ exp [s‘ %k N 2my¢'ﬂ>(a)] .
When we collect all the results obtained so far, we have the following: if the airfoil
shape in the mean position is given by
ef (z) = e(jazt+ fx),

where a < 0 (& convex surface), and the co-ordinate of the moving upper surface is

given by
y = ef(x)~ Opeg(x),

where the amplitude of the motion g(z) is an arbitrary function of z, then the leading
term of the unsteady part of the velocity potential, y® in (3.2), becomes

vote.p) = 50 [ Vinyexpiitryexp [i 77 Namys o)
xexp i 77 WY — 1) (#96) = $0(r))+ Mo -7) ¢ )

x M %_ i mkﬂ,l'kl::N (‘_T)(p_r)]dr’ (5.4)
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where

V) = Vg + Ee g, k=g (52) ¥ =25 ()

¢(1) (8)=(~ Uao/m) (}M’ +ﬂ8)v

- N
a=" 11?_3/;5\’&;@, p=gz+my ‘2—;/: (N - 2) M [gV(s) - ¢ (D)),

l(efm) (s + 8] < 1.

This integral representation is the solution we have been seeking.t (The last inequality
is a restriction due to the assumption of a small perturbation.) Before attempting to
extract physical meanings, we pause in the next section to observe that the present
solution embraces the various known results as special limiting cases.

6. Limiting cases
6.1. Steady limit

In the limit w ~» 0 or k- 0, from the limiting form M(a,b, 0) = 1 of the confluent hyper-
b geometric function (e.g. Abramowitz & Stegun 1964, p. 108), (5.4) is immediately
reduced to

H) (*
Yo = “m fo V(r)dr

- He)

- Ungle), (6.1)

from (3.6b). This is Whitham’s rule for steady flow and becomes identical to (3.4) if
we replace f by —g. We wish to emphasize that g is an arbitrary function and that
we have recovered the above as the limit for zero frequency of oscillation.

6.2. Oscillating flat-plate airfosl
In the limit €+ 0, when we note that (Abramowitz & Stegun 1964, p. 506)

lim M(a, 1, —z/a) = Jo(224),

(5.4) becomes at once
g = H(z;my) J‘ :‘"’ Vir)etJ, (IVE [(x-f):_mny:]i) dr, (6.2)

which is precisely the well-known flat-plate solution; the physical meaning of this
integral representation was given by the present author (1974).
t In this connexion, it is of interest to note that Goldstein & Rioe (1973) found a solution

for sound propegating through a uniform shear flow in terms of the parabolic cylinder funetion,
which is intimately connected with the confluent hypergeometrio function.
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6.3. Oscillating wedge

The third case which invites comparison with the present result is that of an oscillating
1 wedge. In the limit & —» 0, with the aid of the limiting formula cited in §6.2 we obtain

Yo = HT‘") L’ V(r) et exp(— 2iNefky) exp [-% ek(2N — 1)(a—1)] (6.3)

x% (35 [ =7 (p=7)¥) ar,
where 8 = x—my+ M% Nefy,
p=x+my—(N-2)Myefy

and ef is the semi-vertex angle of the wedge.

In order to confirm the agreement of this formula with that obtained by previous
workers, we first restore the factor ¢~ to (6.3). It is convenient to rotate the co-
ordinate system from (z, y) to (x,, y;), where x, is parallel to the upper surface of the
wedge and y, normal to it. At the same time, we refer the flow properties to the mean
steady flow behind the shock instead of those upstream of the shock and designate
them by a subscript 2. Furthermore, we change the integration variable from 7 to
7 = 7(1+mqef). All this transforms the right-hand side of (6.3), upon discarding
negligible quantities, into the following expression:

1 Ty —Mqlls . N
G,e- =y ~ o%; H(xg—myy,) f \ V(n)exp (—ikyz,) exp (iky )

xdy (gl =)= (mgg ) . (64)

This is identical to the flat-plate solution (6.2) if the latter is expressed in terms of the
(%3, y,) co-ordinate system and the flow properties downstream of the shock. This
result is not unexpected, since it is known that, if one takes the second-order equation
for the unsteady component of the velocity potential to O(c6,) and expresses it in terms
of these co-ordinate systems and flow variables, then for a wedge it exactly reduces
to the acoustic equation. (The reason why the relationship (6.4) is approximate rather
than exact is obviously due to the fact that, in the course of applying the strained
co-ordinate technique, some non-essential second-order terms have been discarded.)
Carrier (1949) obtained a solution for a wedge oscillating at its apex; the solution
was derived in a more generalized way by including the rippling motion of the shock J
and, in addition to the irrotational component of the flow, rotational flow behind the
shock. His solution was later generalized to include the case of a moving vertex by
Van Dyke (1953b), who also corrected typographical errors in Carrier’s paper. The
solution was expressed in the form of a series involving Bessel functions. In order to
facilitate direct comparison, we recast the present solution (6.4) in the following
alternative form:

o [ Vinrexpl—ikea— 114 [ 5 22— - (g
- -6.0, E be ["'[z: (m.y.)*]*]exp(—'k.x.» (68.5a)
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where
tanh 8 = myy,/z,,
b, = (Myv[kymy) [t +(— )]+ bcos (ef) [ — (- t)~], (6.5b)
t = i(My+m,)
and where V(x,) = U; +iw(zy—b cosep), b being the pivotal position of the oscillating
wedge measured from the apex. The above identity is given in appendix B. Now

Carrier’'s solution for the irrotational component of the flow becomes, in the present
notation,
a®

0ya, .-E [a, cosh v + b, sinh 18] J, [;71’ [23—(m, y,)‘]l] exp( —ikyz,). (6.6)

=1
(The expression for b, given in (6.5b) is the corrected one given by Van Dyke 19853b.)
Carrier showed that as long as the shock is sufficiently weak

a, = "bwT

and in such a case (6.6) is indeed identical to the right-hand side of (6.5a). This agree-
ment naturally endorses the present viewpoint that the global behaviour of the
unsteady flow downstream of the weak bow shock can be determined essentially
independently of the presence and movement of the shock.

7. Alternative representation of the solution and interpretation

Returning now to the immediate subject of a parabolically curved airfoil, the
solution as given in (5.4) is not appropriate for extraeting its physical significance.
Such an interpretation will, however, be obvious once we recast (5.4) in a more reveal-
ing form by making use of the following Tricomi (1949) expansion formula for the
confluent hypergeometric function in a series of Bessel functions:

M(a5,2) = TO)aPexp(in) £ 4 (5)" " hosl2020] for Reb >0, (1.1

where A is the Whittaker parameter, given by A = { ~a, and,
4,=1, 4,=0, A,=14,
(m+2)Ays = (n+1)4,-224,,.
When we insert this into (5.4), we obtain

Yo (e, p) = 28 J’o V(r) e oxp(— icko)

x {J, (Mi,, [(s—7) (P~ -r)]l) +§’ A, [_ (NG:M“’)'(a-r)(p—r)]h
xJu (g7 (6= @-n)} ar (7.2a)

t Van Dyke (1953, also private communication) proved that for a small wedge angle
ay[b, = — 14 2id8,¢lb, + O(eY).
As for the rotational component of the flow, the first term of its series representation may be
shown to be O(0,eh).
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where
A] = i: A; = _il\. A4 = i, (7.2b)

(n+1)A,, =ndy_—2Ad,, A =mk(4iM2 Nex)-,
o = —2Nmy - $0(s)~ (N = 1) = ($2(6) - $0(1)] - N(s—7) - $)
~ 2 o-1p-7)
~ - (§0e) + 0]~ - (2N = 1Ig0(e) - 4V ()

(All three of the limiting cases of the preceding section are now directly derivable from
the present form: for example, when k is set equal to zero, the result (6.1) follows at
once.) Equation (7.2a) immediately surrenders itself to the following physical inter-
pretation. Let us first examine the flow field near the leading edge, where both y and &
are small. Then (7.2a) becomes, approximately,

oo = E('_;""l) J' o"”'" V(r)eitr J, (3% [z-1)*- (my)']*) dr.

This is the flat-plate solution (6.2), and in this region the effect of the body shape is
indiscernible as yet; the unsteady flow field is completely separated from the non-
uniform, steady flow. Physically the decoupling occurs because the unsteady dis-
turbance, having travelled only & short distance from the leading edge, has suffered
little distortion.

We now move away from the leading edge by increasing the value of y while keeping
the value of s constant (along the straight Mach wave) or penetrate downstream by
increasing the value of s while keeping y constant. In either case, if we look at the
integrand of (7.2a) or the signal emitted at a point 7 on the airfoil, the complex
exponential term, which can be written as

exp(—ieko) = exp :1;—]-‘ [(Nmy(d'V(s) + ¢’ V(1)) + (2N — 1) (P (s) — gV (-r))]} ,

immediately discloses the following key aspect: no matter how slender (¢ < 1) the
airfoil may be, this phase shift (induced by the presence of the body) will eventually
amount to an increasing delay at a large distance y or s. Moreover, it is also crucial
to recognize here that the phase lag of the signal received at a position s depends not
only on the local flow at that point, but also, through the very difference in the steady
velocity potential, i.e. ¢V (s) — ¢U(7), upon the entire flow field which the signal has
traversed; the disturbance ‘remembers’ its past. Thus we might call this exponential
factor the phase memory, & term commonly used in connexion with the propagation
of a radio wave through a stratified ionosphere (e.g. Budden 1961). As stated in the
introduction, the existence of phase memory, which differs from one signal to another,
is by itself quite sufficient to induce, upon superposition, a change in the amplitude
of the unsteady flow field. The change is, however, further enhanced because the shape
of the airfoil alters even the amplitude of the individual signal in the far field when the
contributions from the highér-order terms of (7.2a) in the series of Bessel functions
begin to surface. Thus, in the far field the airfoil shape, in its effect of causing non-
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F1eure 4. Amplitude and phase of unsteady pressure; — p’(p,, U% ew!)-! = Re*¢. The ordinate for
the left figure of each pair is the ratio of the amplitude R for a parabolic-arc airfoil to that for a

flat plate. The ordinate on the right is the difference in phase ¢; M, = 1-3, ¥y = 14, ¢ = 01,
&= ~1, f# =05 (max gjc = 0-0125) and the pivot axis is at the leading edge. jc =
e[fa(z/c)* + Blxfc)]. (@) we]U o= 0-1{kc = 0-245): —, yjc = 0(ky = 0);——,yJc = 0-82 (ky = 0-2);
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(ky = 0:6); ----, yle = 2:04 (ky = 1:5). (¢) we/Uy = 1 (ke = 2:45): ——, yle = 0 (ky = 0):
-—ylc = 082 (ky = 2); ----, yJc = 2:04 (ky = 5).

uniform surrounding flow, is inextricable from the unsteady flow field and deeply
affects both its phase and amplitude, as well as the directional change in the charac-
teristic curves.
This point is illustrated in figure 4, where the unsteady pressure distribution for a
parabolic airfoil (max F/c = 0-0125), computed from (7.2),t is compared with the
result for a flat-plate airfoil at three different frequencies of oscillation: we/U, = 0-1
in figure 4(a), wc/U, = 0-3 in figure 4 (b) and wec/U,, = 1 in figure 4(c). There, both the
amplitude R and phase ¢ are plotted as functions of &, i.e. the distance between the
root of a straight Mach wave and the leading edge, and at three different values of y.
(If the flow were steady then, regardless of y, the amplitude would remain the same
along the characteristics s = constant.) We observe that, though for we/U,, = 0-1 the
effect of the airfoil shape does not become prominent at these values of y, it begins

t+ For numerical computations, (7.2) is also more convenient than (5.4).
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to emerge at we/U, = 0-3; and for we/U,, = 1, except for the close vicinity of the lead-
ing edge, it indeed alters the pressure distribution substantially.

The profound modification of the unsteady linear theory displayed here raises an
obviously disquieting thought on the upshot of the acoustic theory when multi-body
aerodynamic interference is involved and deepens concern expressed (Kurosaka 1975) i
with regard to some of the consequences arising from a pro forma sum of linearized
unsteady upwashes.

8. Further interpretation

Pursuing the physical interpretation further, we seek the connexion between (7.2a)
and the ‘fundamental’ solution. We shall not, however, merely reconstruct (7.2a) by
the superposition of the fundamental solution. Rather, we shall reverse the usual
process and obtain the fundamental solution from (7.2a): that is to say, we regard
(7.2) as the spectrum at frequency w or the Fourier transform and take its inverse
transform so as to derive the transient response to an arbitrary time-dependent motion
of the airfoil. The ‘fundamental’ solution will arise naturally in the course of obtaining
the transient response (Miles 1959, p. 53). Let us go back to (2.4) and rewrite the
unsteady part in & more general way as

D =ed+6,Q(z,y:0).

Then the Fourier transform ((w) of Q (its leading part) is equal to e~y ®, Y being
given by (7.2a), provided that V is regarded as the Fourier transform ¥ of itself, i.e.

Qw) = ij. P(r)exp {— i wM.,; [(x—T1) +'ea'(r)]}

[ =)o -]

+ £ Aorend, [72 (0= o-n])ar,
NeaM,,

where Cp = [—( ) (s-7)(p—- ")]
f Taking the inverse transform

1 @
. 0= g Qe
E we obtain, by convolution,

eu =5 ar [ ve-or@dx (8.10)

Here

[6Q/0y)yms = V(z,t)

and P = '2:*,0 ¢ F., (8.1b)
where, for example,
Fo=r1Hb~|a|), F,=0, F,=—(2r)2H(b~|a|)cos 20,
F 1 H 8 2ht
= Nl e (b-|a|){-;oo.w-7+ }

Wdsicsuir, o v
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and where

M 1
® _ = - -t

o 3 (@—T+e€0,, b a s [(6—-7)(p-T7)I8,

cosf = afb, r= (b2—-a?)t

We note that Q(x,y,t) contains, through F, in (8.1b), the term 1/r, which can be
written as

a=§—

'1_ = a,,,m/{%; B-7)(p-71)~ [awmg-—% (a:—1+ea)]’}*. (8.2)

The meaning will become immediately recognizable if we note that at € = 0 the
denominator of (8.2) may be reduced, after some algebra, to

{(am g)’ - (x -T- Um g)’ - y’}l
This represents, when set equal to zero, & circular wave front of a disturbance which
was emitted at & source point (7, 0) and is propagating through uniform flow after a
time §. Thus the denominator of (8.2), when put equal to zero, i.e.

,.,l—,i (s—-1)(p-7)— [am,mg—-}%D (x—‘r+eo')]' =0, (8.3)

now describes the distorted wave front propagating in a non-uniform flow field. In fact,
we can directly show that the expression for £ obtained from (8.3) does satisfy, within
the approximation consistent with the present analysis, the appropriate eikonal
equation at large distances; (8.2) is indeed the fundamental solution. In general, for
a given point (z, y) in flow and for a given source point (7, 0), there are two values of £
satisfying (8.3): one corresponds to the time when the disturbance first arrives at
(z, y) and the other to the time when it departs from (, y). In the particular case when
the point (z, y) is located such that either

§=T or p=r,

there is only one such moment for £, which implies that the wave front is tangential
to either 8 = 7 or p = 7. 8 = 7 corresponds to the straight Mach wave, whose root is
located at (7,0); p = 7 is the cross Mach wave passing through the same point. Hence,
as expected, two families of Mach waves passing the source point form envelopes for
the disturbance emitted from the source. In particular, the time required for the signal
to arrive at a point on the straight Mach line s = 7 is given by

g.—.ﬁlT"'z l+e(as+ﬂ)N(—2—m—-M§°)]. (8.4)

It is of interest to note that this can be obtained in the following, more physical way.
The wave-front velocity c is in general the vectorial sum of the local acoustic speed
in the direction of the normal n to the front and the convective fluid velocity, i.e.
c = an+u. However, along the enveloping Mach waves, which are tangential to
the wave front, the acoustic speed does not contribute to the component of the wave-
front velocity in the direction paralle! to the Mach wave; only the fluid velocity con-
tributes. In particular, along the straight Mach line the component of the fluid
velocity or the wave-front velocity remains constant. If we divide the distance from
the source (r, 0) to the point (z,y) by the component of the flow velocity in the
direction of the straight Mach wave, we can directly derive (8.4), as the time elapsed.
26 riw 8y
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9. Concluding remarks

It has been our aim to find a uniformly valid solution for the unsteady flow field and
examine it in detail. We have shown, through an explicit solution obtained for the
specific case of a parabolic-arc airfoil oscillating in supersonic flow, that the prediction
of the unsteady signal in the far field demands the detailed description of the contour
of the moving boundary. The non-uniform surrounding flow produced by the very
presence of the body, no matter how slender it may be, cumulatively and inextricably
affects both the amplitude and the phase of the unsteady disturbance at a large
distance from the leading edge.

As a further related effort, it would appear to be worth while to pursue a study for
other airfoil shapes so as to enlarge our stock of particular solutions. With regard to
the question of similar cumulative, first-order effects of nonlinearity in subsonic flow,
we still remain uncertain. It is intriguing, however, to note that in a very recent paper
of Goldstein & Atassi (1976), where an exact second-order solution is obtained for an
airfoil subject to a convected gust, the incoming gust, in its nonlinear interaction with
the steady non-uniform flow field, is found to suffer distortion in wavelength in a
manner akin to the present supersonic result though the flow treated there is
incompressible.

The author would like to extend his gratitude to Mr C. E. Danforth for calling his
attention to the problem, to Mr I. H. Edelfelt for assisting in numerical calculations,
to Dr 8.D.Savkar for his many helpful suggestions and to Dr M. E. Goldstein, Dr
L.J.Slater and Professor M. Van Dyke for answering his queries. He is especially
indebted to Professor Van Dyke for generously making available details of his earlier
notes. The work was supported by the Air Force Office of Scientific Research under
Contract No. F44620-74-C-0040.

Appendix A
In this appendix we shall show that the expression for F given by (5.3) does satisfy
the boundary condition (3.8b) to order 6,. We denote the left-hand side of (3.8b) by
) 1, 2 . 1
UF) = 0, fick [ - 2f'0) -7 N$w)| FeB-B=Z Ve, (A1)

and we shall prove that along s = p this vanishes, to order 8,. Substituting (5.8) into
the above, one obtains for s > 0

UF)= -:—:L' V(r)et*rexp (igf v)
x 'uk [-%f‘(a)—%¢"“+i}: (v,_v,)] M+(M.-M,)} dr, (A9
ve(N- l)[¢‘”(c)-¢‘”(r)]-—N(‘r—c)¢'°’(n),

M-M[';‘F——m?—;a) 1, -~ sL'N(l .,)l¢"ﬂ)]

where
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We observe that along s = p
V= (2N -1)¢'W(s)- N(r—38)¢"®, v, =0, M, =M, (A3)

Furthermore, by Tricomi’s expansion formula cited in §7, the confluent hyper-
geometric function M can be expressed as

M = exp [ - 5—5— tekN (s — -r)’¢"”]

<3 A, [w%"j N(s-r)¢"m]".r,, [M—"; (8—1)], (A4)

n=0
where

Ao=1, Al=o' A’=*

and the other, higher-order 4, are the same as those given in (7.2b). The leading term
of M is given by

M ~ exp [-— % i€kN(s—1)? ¢'("] Jo [1-5- (s— 1')] . (A5)
From (A 3) and (A 5), (A 2) becomes
UF) = Oy¢ek {;l_n f(: V*(r)exp (:K7)exp (i (e]i v) exp [—;ﬁk N(3_1)1¢~(1)]

x Jy [ﬁ_% (s—'r)] d'r} , (A6)
where
V¥(1) = - V(r)i UL N(r —8) g™V,

Equation (A 6) can contribute to O(f,) only when ¢k is such that, if properly non-
dimensionalized, O(ek) = 1 or k = O(1/e). For such large values of k, we apply the
following method of obtaining an asymptotic expansion (Kurosaka 1974): we first
express J, in terms of an integral involving an exponential and use the stationary-
phase method repeatedly. This yields

[i-ot):

I(F) = O(0,¢),

which is of higher order than O(6,); t!e other terms of (A 4) may similarly be shown to
be of higher order. Hence to O(6,), I(F) = 0.

and (A 6) becomes

Appendix B
In this appendix we shall prove the identity (6.5a):

v [ Vin)oxp Gan)oxp (= k) o (32 (5= 10— (magal) d

= ~as8, £ 0,60, (3} (e~ magW) exp(~ikiz),  (BY)
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where

MY, _ iy
Zy 2 Mmyy,, tanhf = z, b, Tym,

[+ (7] +boos(ef) [t (- 1)),

t =i(My+m,), V(zy) = Uy+iw(zy—bcosep). (B2)
First we write

VimexpGtyn) = 2 (8- 22 cosep) rexp(itan)| +(+2) r*expikam.

As suggested by Carrier (1949), we expand yexp(ik,7) and y%exp (ik,) in series of
Bessel functions, through the generating function of the Bessel functions, and obtain

hy) = -2 S k
Vinexp(iksn) = 2 5 b,m, (7).
Substitution of this into the left-hand side of (B 1) yields

—a50, .i b,vexp(—ikyzy) F(2,), (B3)

where
F) = [ Bt mn-11% [ 52 Cesm - |3 1 ()| ar. - @

If we take the Laplace transform #of F(z,), defined by

F= f ® exp (— 8x3) F(z,) dzx,,
0

then, by convolution, we obtain

- ans oo 5] o (oo )T

Inverting this gives (e.g. Erdélyi et al. 1954, p. 250)
1 k
Fiay) = 500, (32 [ (myya) ®5)
]

for zy 3 myy,. By substituting (B 5) into (B 3), one may establish the required identity
(B1).
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The Effect of Airfoil Contour upon the Unsteady

Aerodynamics of Supersonic Cascades

M. Kurosaka*
The University of Tennessee Space Institute
Tullahoma, Tennessee 37388
and
I. 4. E’delfelt+

General Electric Research and Development
Center, Schenectady, New York

1. Introduction.

It is now an indisputable fact that a subtle change in airfoil
contour induces significant modification upon the unsteady aerodynamics
of supersonic cascades and consequently results in substantial shift in
its flutter boundaries. 1Its phenomological description is briefly given
in Ref. 1 along with physical explanation based upon the concept of
'phase memory'; for an isolated airfoil of parabolic contour, a detailed
analysis substantiating this concept is presented in Ref. 2., where the
profound effect of airfoil contour upon the unsteady far field around an

oscillating airfoil is in fact quantified.
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i The objective of the present paper is to extend the isolated
airfoil analysis of Ref. 2 to cascade arrangement; in doing so, we shall
rely heavily on the formulation and results of Ref. 2, particularly in
the usage of Riemann function. More specifically, in analyzing the so- !
called pre-interference3zone, which is invariably the most difficult portion
of the problem on hand, we shall make exclusive use of Riemann's integral
representation of a solution for hyperbolic equationsa; applying it to an
appropriate contour near the entrance section of cascades adopting the o
passage approach2 and with the aid of cascade periodicity condition, we : ]
shall be able to determine the entire flow field in the pre-interference
Zone.

Based upon these analysis, our results indeed confirm the significant
effect of airfoil contour upon unsteady pressure distribution acting

on the surface of cascaded airfoils.




2. Formulation.
Consider oscillating airfoils in a cascade where the coordinate of
moving surface of the n-th airfoil is expressed by

eimt einug(x)

y = e€f(x) - 60 s 1)

and the coordinate system (x,y) is shown in Figure 1; in the above

ef(x) (€ « 1) designates the shape of the airfoil in its mean position

of oscillation and the second term represents its harmonic motion with
frequency, w and interblade phase angle, U ; here we shall restrict

ourselves to parabolically shaped airfoil where f(x) is a quadratic of x.
The two small non-dimensional parareters, € and 60 characterize the slender-
ness of the airfoil and tte amplitude of motion, respectively. Far
upstream of the cascade, the flow velocity is equal to u  and the Mach
number, M _. Following Ref. 2, we separate the perturbed velocity potential

into a steady and time-dependent part by writing

0 =coD) 4 8y exp [L(ut = kx)] v (2)

where k = szw/mzllm; the first term represents the steady, base flow

and the second term corresponds to the unsteady flow; our present interest
is, of course, focused on Y. It turns out to be convenient to introduce
the characteristic coordinate (s,p) defined by

8= x-my - emyN M2/0) a6’ (s)/as, ‘1
)

p=x+my - (e/20) (N -2) M2 (6P (a) - oV (p)lJ




r

N

2,2 2
where N = %‘(Y + 1) M /m, andm= (M~ - 1)° , y is the adiabatic
exponent of the gas; instead of the Cartesian coordinate system, we

shall hereafter use the above characteristic coordinates as the independent

variables. The steady part of the velocity potential, ¢(1), is given by
U
o -0 2 (o), )

where H 18 the step function. With regard to the unsteady part
w(l), upon introduction of the function F defined by,

(1)

v = exp [1(ek/U) N (o - &) o' Ps) 11, (5)

it is found to satisfy the following:

iek (1) - 1r (1)
Fp t v (- -1) ¢ () +(p-8s)N ¢ ()1 F,
+ L0 +§§“ ot D) =0, 6)

with the boundary conditions on the airfoil surface

tek -1 gre) - Fn o' Die)ir + R - F - Ly et*e

oo

=0, €))

where

V(x) = [Ug' () + (tk U /M ) gx)] e, (8)

The initial condition is that at any given point, say Ql’ of Figure 1

just upstream of the shock emanating from the leading edge of the reference
airfoil, the unsteady velocity potential there must be equal to the one

at the corresponding point, Q2, upstream of the leading edge shock of

the following airfoil, with the exception of the phase lag, ite.,




et Py -

_iu
Q

-ikx (1)
fe 77 ¥, e, 9

It is convenient at this point to separate F into the following two parts:

F=rd 4 p?

(10)

(1) (2)

0f course, both F
1)

and F should satisfy the governing equation; for

F( , we assign the full boundary condition of (7) and for F(z), we assign

the initial conditions corresponding to (9). Then, the initial condition

(1

for F is that it simply vanishes upstream of the leading edge bow

(2)

shock of the reference airfoil and the boundary condition for F takes

the form similar to (7) but with V(s) set equal to zero. Evidently, rl)

then corresponds to the one for an isolated airfoil and it is given

in Ref. 2 to be

FD . ﬂ%l [V(T) exp (1kT) exp { ZEE v - 1) 6P o) - 6Py

a0

0
+N (s - 1) o' D(e)

J

1ckoN (s - T)(p- T)]dt , (11)

xM[L-

mk 1
—"2_ ’ )
4ieq NM_

where M is the confluent hypergeometric function.




3. Solution.

(2)

Our present aim is to determine F » which satisfies the governing

equation (6) along with the following boundary condition

tek [- L £1¢s) - %N o Mgy 5D & FS(Z) - FP(Z) =0,  (12a)
and the initial condition
[elkx p(2)] | mikxp(D) | p(2)y, oM . (12b)
Q Q,

The governing equation (6) is hyperbolic; it is well known that the solution
of any second-order linear hyperbolic equation can be expressed in the form
of integral representation, once the corresponding Riemann function R is
obtaineda. More specifically, for any point C of Figure 1, whose character-
istic coordinates are given to be (s,p), the Riemann's integral representa-

tion can be expressed as

FP 6,0 =2 FP@ r @+ D @ & @)

+% [-Fn(Z)R + F(Z)Rn] dn + [F(_(Z) R - F(Z)RC + 20F )R] az
BO
+% [ [-Fn(z) R+ F(2 Rn] dn + [FC(Z)R -F(Z)RC+ 2bF(2)R]d‘?;

OA
(13a)

where, as shown in Figure 1, A and B are intercepts of the characteristics

passing the point C and the airfoil and the bow shock, respectively, and O

!ﬁwvliﬁi: ORI TP BRI T ol L




e e A e

is the origin; the line integrals should be carried out in the sense
indicated above, that is, in the first integral from point B to point O
and in the second integral, from point O to point A. Furthermore, in (13)

b is equal to

b= an-1n D@+ -0 neP o, (13b)
and R, the Riemann function, is given by

R(E, n,s, p) = expv* M (a,l,2), (13c)

where
v=idek g (@ -1 6P - 6P @) - 8 e Phor- o D))

>}

~s6 " (e) - 8P 21 )

(134)
and where
1 qu
a=+% + ’ (138)
2 413 NMwZ ¢l'(1)
z= -2 aw -8 -noe'D, (13£)

We rewrite the second integral appearing in (13a) with the aid of (12a)

and (13b) and, noting that along the path OA, L = n , (13a) becomes

PP s, = 2 FPw ra) + F P 3) re®)]

PROERRERRIIRRRR R o




8
1 o @, (2 ), _ (2 (2)
+ 2 [ Fn R+ F Rh] dn + [FC R~F Rc + 2bF'"’R] dC'
o |
s H
!‘- (2) - ﬁ - [ )
+2/ D@L om ol av-n re) e
0 (14)

We then replace, from (12b), those values of F(z) to be evaluated along the
path 0B located just upstream of the first shock by the ones at the

corresponding points just upstream of the second shock. By this, all

& appearing both sides of the equation become those )

(2)

the values of F
downstream of the first shock. Consequently F involved there does not

contain any discontinuity and regarding the resulting expression as an

integral equation, one solves it by the collation method. This determines

F(z) and hence we obtain the flow field in the pre-interference zone.

Pursuant to this, we obtain the flow field between the blade passage by

the enperposition principle.




T — A ———— e

4. Discussion on the Results.

The computed pressure distributions are shown in Figure 2 - 5.

In all of the figures. the shape of the airfoil. f(x) of (1) is as follows:
2
f(x) = -1.7633 (x" - xc¢) ,

where c is the airfoil chord; the airfoil is executing torsional motion

at its mid chord, i.e. g(x) in (1), is given by

g(x) = x - c/2.
In addition,

M, = 1.40

Stagger angle = 65°,

Solidity = 1.589

U,interblade phase angle = 180°
The trajectory of the shock locus at its steady position, which is needed
in solving (14), is computed according to the routine used in Ref. 5.

Figure 2 shows both the real and imaginary part of the pressure

coefficients, defined by Cp = (p - P) /% mewz, and compare the present
results obtained for € = O (the limits of zero thickness airfoil) with the
ones previously computed for flat plate airfoilsl; as expected, both results
agree completely. Figures 3 to 5 compare the present results for € = 0.1
with the ones for flat plate airfoils at three different values of k
and, as might be anticipated, the effect of airfoil contour indeed induces

significant modification.

]
}
}
i
|
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I. Introduction.

One of the treacherous flow-induced vibration problems in high-speed
aircraft engines is the so-called supersonic flutter, which, if allowed
to persist, may be capable of inflicting excessive damage to their structural
integrity. For more detailed information on this, we relegate to elsewherel.
Here we only remark that flutter takes place when the relative velocity at
the tip exceeds sonic speed and at the time it occurs near the operating
line, the flow remains unstalled. Because of its critical importance,
there have in recent years an accelerated activity in our effort to under-
stand and quantify the phenomenaz. However, due to the very complexity
of the problem on hand, past emphasis, in both theoretical and experimental

research, has been laid upon two-dimensional, cascade problem. Highly
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useful these approaches have been in contributing to our understanding

of the'éhenomena, there always been a nagging question upon the validity

of the two-dimensional approximation to what is in reality three-dimensional
flow through turbomachines. The question is certainly a legitimate one,
since even in the steady situation where bladings do not vibrate, it has
long been recognized that the three-dimensionality of flow induces sub-

3’4’5. If once the

stantial modification to cascade representation
compressor bladings start to oscillate, two extra factors introduce
additional deviation, both attributing to influence the propagation of
disturbances emanating from the airfoils oscillating with their natural
frequency.* Firstly, the encasing walls serve to reflect the incident
walls and thus affect the unsteady flow field; secondly, strong radial
gradient in steady, base flow causes refraction of transmitting waves.

The full detailed analysis of three-dimensional flow through turbomachinery
being dishearteningly difficult even for steady flow, the satisfactory
treatment incorporating the above features —-- in addition to retaining
other necessary constituents such as contour of individual airfoil and
geometry assoclated with the arrangement of bladings --- appears, in

spite of some recent attempts, to be formidable. Consequently, instead

of attacking the subject as such, we turn our present attention toward

*

Parentically, if the natural frequency of the airfoil is w_ and
the fundamental blade passing frequency is wy, it can be easily
shown that the frequency perceived by the stationary observer is equal to

w + (n - y/2m),

vhere n is an integer and i is the interblade phase lag.




the following problem, which seems to be more crucial in practical
applications: suppose one replaces outer casing of compressors with
material which is capable of absorbing unsteady fluctuations, what

would be its effect on compressor flutter boundary? The installation

of acoustic lining on casing walls of aircraft engines is, of course,
widely used practice to alleviate the aerocacoustic noise but its potential
benefit upon the flutter suppression does not appear to be exploited.
However, its obvious advantage appears to be worthy of exploration, since
owing to the very capacity of sound absorbing material to relieve the

flow fluctuation, the unsteady pressure acting upon the bladings would
directly be reduced. Moreover, in supersonic flutter the tip portion

of the bladings is the most critical region immersed in high supersonic
flow; therefore, the provision of acoustic liners on the surface of outer
casing appears -- due to its closest vicinity to bladings -~- to produce
an immediate beneficial effect upon the tip. Furthermore, since the
installation of lining material can be carried out entirely independent of
the aerodynamic performance of bladings, it does not interfere with or
compromise the other various design consideration of compressors.

To appraise this concept, in the present paper we formulate and
analyze a simplified model problem where an isolated oscillating airfoil
is placed in a supersonic duct whose upper wall is lined with sound
absorbent material. By evaluating the influence of wall liners upon
unsteady pressure received at points off the surface of the isolated
airfoil, we agsess its effect in turbomachines, whose individual blading
is, of course, subject to far-field upwash generated by the other

members of airfoils.




II. Model Problem Formulatiom.

Consider an isolated airfoil placed in a two-dimensional duct
(Figure 1) where the base, steady flow moves in the x direction with
supersonic velocity, U; U is assumed to be uniform across the duct and
there 1s no variation in other, steady-state flow variables. The air-
foll executes small-amplitude harmonic motion in the transverse z direction;
one surface wall of the duct located at y = h is provided with sound
absorbent material having specified impedance while the other wall of
the duct is untreated. If one represents the unsteady quantities by

primes, the linearized governing equations become

12, 2, oQul, oY, '
7 Ge YUY PGty te ) 0
', g2 _1 2p'
¥t + Ugg p 9x '’
\
AR VU R )
3 U ox p 9y’
', g 1 '
a T v ax p 23z ° _J

where c 1s the unperturbed speed of sound, p the amblent density;

u', v', w' are perturbed velocities in the x, y and z directions,

respectively; p' 1s the perturbed pressure and t is the time. From

all of these above perturbed quantities, we separate the time-dependent
—mt’ v - —Toiwt

factor by writing p' = p'e u' = y'e , etc. and (1) becomes




'\
1 w1 . dp' du' | ' . W',
2 WP Ut PGty ) T
e du' .- 1 3
iw u' + U 3% o ox °’ >> )
o ' -1 3p'
w! EEL = - 1 dp"
iw w' + U 3% 5 Bz ° J

The boundary condition on the airfoil is that the z-component of fluid

velocity is prescribed and equal to, say, W (x,y)

w' (x,y, z =0) = W (x,y) . 3)

The condition on the hard wall is

v' (x, y=0,2) =0, (4)

and on the soft-wall

-- £ (5)

where A is the specific acoustic admittance and is assumed to be constant.
The initial conditions are such that upstream of the leading edge Mach

cone, the flow remains unperturbed or equivalently

P

'eW' =V =y = 0. (6)




Because of the supersonic nature of the flow, we focus our attention
to the flow for z > 0 (above airfoil), which is uncoupled from the flow

for z < 0 (below airfoil). ;

ST TR T T e U T R
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III. Analytioal Solution.

In order to derive an analytical solution, we take the Laplace
transform of all the perturbed quantities in the x direction, defined,

for example, by

o
5- /e-sx ;' (x,y,z) dx,
0
and obtain the following:
1 ~ 1 ~ ., OV, oW
zimp+ 2"‘P+°(s“+ay+az)’°’
c c
1 o les
wu +Us u = - E-s P
~ ~ 1 3
iw v + Us P p——
M p Iy’
> --1 3
iww + Us w 5 Bz °
with the following boundary conditions:
Vig=0" v,
u =0,
y =0
1 v ,
y=h y=h

(7a)

(7b)

(7¢)

(7d)

(8a)

(8b)

(8c)




Elimination of u, v, and w from the above equations at once yields the

following expression for p:

~ 2~ 2
9°p + op  _ [mgsz s s W 15=0
2 2 2 2 ’
dy 9z c c

with the boundary conditions,

%5 = -p (iw+ Us) W (y),
z=0
P =0,
y=0
5 - ,
y=h A(iw + Us) 9y y=h

The solution for p is immediately obtained to be

‘?1 1 oz
P = pP(lw+Us) o= e n ° Sn cos By,

n=0 n

where Bn is given as solutions of

. e - A(w + Us)h
Bnh tan Bnh c ’

and o, is related to Bn by

2
2 _ 2 _ 2.2 2iuUs Wy
o Bn n“ [ + —-:5— - czl 0,

(9a)

(9b)

(9¢c)

(9d)

(10a)

(10b)

(10¢)
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where l;'n are the coefficients associated with the expansion of Wy) in
the series of cos Bny, i.e.,
w-
Wy) = Y b cos B y (104d)
n n
[
n=0
or
h h
Sn - [ W (y) cos (Bny) dy)/[[(cos Bny)2 dy] . (10e)
0 0

-1
If we denote the inverse Laplace transform by L , the inverted form of

(10a) may be expressed as

i;' = Z P [iwl + Upz] ) (118)
n=0
where
P " fl [(mL e %?) (Sn cos Bn 1, (11b)
n
=1 l -0z ~
P, ~ L [(s-&—e n") (bn coany)]. (11c)
n

In order to evaluate (11b) through convolution, we have to invert the

following two transforms, respectively:

l -az
ane n and ’Gn cos By .




i " o » "
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(The other transform Blan e n® appearing in (llc) will be promptly
obtained, once llmn e %n? ig inverted, as described shortly.) The
inversion of the above obviously demands the explicit expression of
Bn and in order to obtain it, we assume that the specific acoustic
admittance, A, is small and then (10b) yields approximately
1
A(dw+ U 2
By = [ - {217, (12a)
m (iw + Yh
an gn—[l-Aiw ZUS ],n-l, 2 -—— (12b)
(2n1) “c
A. Inversion of I mom3,
%,

Using these expressions and with the aid of the following well-known

inversion fornmlae7 R

1

1 1
exp [-b (s + 0)2 (s + 3)2]

N

2 { e+l +8

1
B G-b e -2 @t ox 3 B @-n o -bHY,

where J, is the Bessel function, 1/a_ % 43 readily inverted to be

£t (L3
0
-%H(x-mz)exp [_.17‘”%..._..&‘%],(
c’m 2hcm

W A 2 2.2 %}
xJ [+ —12 (x" - m"2%) .
0 c2m4 hcnl‘

(13a)

o s o= T e e ———————— e s . |~ ———

o B - B




and

—.1 l—%‘lz
L ﬁ;— e ]
n
1 1wl AU
-;H(x-mz)exp [-7—2--0- 2]x
cm hem
1 1
2 2 2 2
[ 2iwA 2nm 2 2 2
xJp (gt Tt Gy 1 &0 -w)
cm hem

where n =1, 2, ~——~ .,

I1f we denote the right hand side of (13) as (x), i.e.,

11

(13b)

-1 _a z
L% "1=08®, n=0,1, -
n
ez
then the inversion of sx/at,n e appeared in (llc) is immediately given to
be8
-1 _ oz
L [Ze ")1= 0.
%a

B. Inversion of Sn co8 Bﬂy,

In order to invert Sncoany of (11b), we recognize that if the
normal fluid velocity W of (3) is independent of y, and is a function

of x only, for instance, equal to q (x), i.e.,

W(x,y, z = 0) = q (x),

- 4 7 i —se 7 %= 30 e Tt

(13c)




then

;,(Y) = an

where q is a constant, (10e) yields, to the present order of

approximation,

bo=-—2 [wi+usal,
2(nmM) ¢

where n =1, 2 -—- . Making use of these and noting

-1
L (s q) =q'(x) +q(0) 6§x),

where §(x) is the delta function, we obtain the inverse of Encoany as

-1 . 2
L[5y cos Byl = a@) + & o8 [a' (0 + 3% a4 (0],

and

-1 - -ha 201y
L ~ [b_ cosB y] = ———— cos ¢ )
» o Z(nﬂ)zc h

x [1wq(x) + U (q'(x) + q(0) S (x))],

where n = 1, 2, ~~-; the derivation of (15b) is straightforward, while
that of (15a) requires some consideration, and is therefore given in

Appendix.

12

(14a)

(14b)

(15a)

(15b)
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C. PFinal Solution.

With the aid of (13) and (15), (11a) becomes as follows:

X — mz
fo (mz) B (x - mz) +%[ 8o (x - t) B(t) dt
0

) .
p

B~

- € cos (ZL;’IY_) [iw q(x - m2) + U q' (x -~ mz)] fn (mz)

n=1

+U q(0) B (x - m2) g (x)

X - mz

+ [iw q(t) + U q'(¢)] gn(x -t) dt ) ,

(16)

-

where fo(x) = U exp (Yox) JO [60 (x2 -mzzz)2 .

1
2 —_—
iw AU 2 _ 222
So(x) = ( (- 7+ 2) o [Go(x n“z")
m 2hcm
-1 1
- U, x (x2 - mzzz) 2 3y [60("2 - mzzz)2 ] ) exp (YOX).
and where
2 1
- iw U AU w 1wA ;2
Y, = + 8, = 57 + 220°,
0 c m2 2hcm2 ’ 0 czml' hcml'
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2
Bx) = q (0 + L2 [q'() + 32 g1,

Ah

€ = —=
Z(n'lr)zcm
1
2 222
fn(x) = U exp (Yx) ‘IO [Gn(x mz7)"]
1
(= (- s 22,27
By lX 2 2’ Jg % \x —mz
m hem
- % 1
-0 x (x2 - w22d) 3, [6.(x% - 0%2D)?] ) exp (yx),
n 1 n
and where 2 1
2 2iwA . 2nm. 2
1wl AU w
Yn—22+ 7 6n [24"" 4+(hm)] .
c¢m hem cm hem

In the limist of zero acoustic admittance, one can immediately show that
the above expression will be reduced to a solution for two-dimensional,

oscillating airfoil immersed in supersonic flowg.
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IV. Discussion.

Figure 2 show the comparison of the unsteady pressure distribution
between treated and untreated walls; the ordinate is the absolute magnitude
of unsteady pressure and the abscissa is the distance measured from the
bow shock, x - mz, plotted at varous values of z. The additional parameters
are as follows:

airfoil chord = 1.0,
M, (Mach number) = 1.3,
h=1.5,

k

w/U .+« M_= 0.5,

-]

A =-1.140 + 0.5471i (for treated wall)

=0 (for untreated wall). i

The airfoil is executing bending motion and its instantaneous position
is given by z = eiwt; the unsteady pressure in the figure i1s evaluated
on the top surface, i.e., y = h.

It 1s clearly evident that the provision of acoustic liners

significantly attenuates the unsteady pressure fluctuation and tends

to suppress the occurrence of flutter.
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AFPPENDIX

Here we shall derive the inversion of (15a): we note that

cos Boy becomes, from (12a)

1
cos Boy = cos { yl- A ix:h+ Us)]2 .

Taking the inverse transform, we obtain

1
L [cos Boy] = exp (-i %’5) Lt cos [y(- 2—2)2 /sl

2
g wxy -1 y UA 2 _
exp (-1 ) L [1+2chs+0(A)+ ]

2
exp (-1 45 [5(x) + 72—2‘; §'(x) +0 (A% + —1].

From (l4a) and with the aid of convolution, one obtains (15a).
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Towards Simpler Representation of Wave Propagation

Through Non-Uniform Media

M. Kurosaka
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Tullahoma, Tennessee 37388

1. Introduction.

Pressing problems beset with unsteady flow phenomena in practical
applications appear to involve almost invariably the propagation
of disturbance through non-uniform media -- such as flow with velocity
and temperature gradients. Notable among them are: the flutter problems
in turbomachinery bladings where the imparted swirling motion induces
substantial radial gradient in steady base flow; the aeroacoustic noises
propagating through aircraft engine ducts whose contoured form and the
boundary layer growth over its inner surface result in pronounced
variation of velocity; and high-intensity sound generated in heat
exchangers, gas-cooled reactors and the like whose complicated interuals
inescapably produce considerable spatial distribution, both in velocity
and temperature.

Having been spurred by these compelling incentives, the last
decade has witnessed intensified activity in the study of acoustic
propagation through non-uniform flow field ; for extensive bibliography
in this area, the reader is referred to the recent survey articles by
Nayfeh, Kaiser and Telionis (1975) and Goldstein (1976). However,

but for few exceptions (e.g. Pridmore-Brown (1958), Shankar (1971),

1




Goldstein and Rice (1973)), the bulk of the work has leaned heavily on
entirely computational method. Though, needless to say, extremely useful
as these numerical methods are, they may still tend to fall short of
achieving the desired goal of revealing the explicit functional inter-
relationship between the assorted parameters and displaying the underlying
physical features. Even in the situations which are amenable to analytical
solutions, they appear to suffer from various rigid constraint imposed by
the particular choice of velocity profile or the geometry studied; for
example, the analytical expressions accrued for unbounded media may

not readily be applied to eigenvalue problems associated with ducted

flow and often they are altogether unwieldy for physical interpretations.

It therefore appears that what is genuinely needed is a simple, albeit
approximate, technique which enables one to cope effectively with the general
wave propagating problems. In this paper, we shall describe such a technique
which yields an analytical solution of disturbances propagating through arbitrary J

velocity profile in simple, closed form; and we shall present it from a

unified viewpoint where, once the free-space solution is derived, a slight
modification of the results will promptly furnish both a solution and physical
interpretation even for wave guide problems. The essential idea that we shall
promote is not unknown, and it is in fact a variant of 'slowly varying' method,
but somehow it does not appear to have been pursued in the way it will be
exploited here; with the assumption of small velocity (or temperature) gradient,

the technique to be employed here is strikingly simple yet appears to be

capable of exposing physical meaning in unmistakably transparent manner.
In the problem of sound propagation through non-uniform media,
the original governing equations are invariably reduced into a second-
order ordinary differential equation with varying coefficients, the
latter reflecting the non-uniformity of velocity (and temperature)

profile; the equation is sometimes called Pridmore~Brown's equation.
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According to the method suggested perhaps first by Jeffreys and Jeffreys
(1956, p. 522), we recast the second-order differential equation, via ex-
ponential transformation, into a first-order equation. The equation is of
Ricatti's type, nonlinear and inhomogeneous; the transformation is, of
course, the one sometimes used as the first step in deriving the WKB for-
mula. In the standard WKB method, one then proceeds to solve the nonlin-
ear first—order equation by iterative process. Here, instead, we seize
upon the explicit advantage that under the assumption of small velocity

gradient, the first order equation turns into the linear one with .onstant

coefficients; a closed form solution follows immediately from this, provid-
ing a free-space solution for sound propagation through non-uniform media.
In compact form, our solution (2.11) gives the expression for wave trans-
mission through any arbitrary shear profile; as a special case, we shall
prove that the solution, when applied to linearly sheared flow, recovers
the result corresponding to the exact solution of Goldstein and Rice (ibid.),
which they obtained in terms of Weber's parabolic cylinder function. The
present solution also includes, for another specific shear profile, a solu-
tion of Miles (1957) and Ribner (1957) for sound transmission through sudden
velocity discontinuity. These shall be discussed in the following section, 2.
Most significantly, from the wave-like behaviour of the solution
explicitly embodied in the exponential transformation and furthermore, ow-
ing to the simplification arising from the assumption of slightly sheared
flow, the present solution will conspicuously reveal the physical features
of the wave propagation in non-uniform media, which will be described in

section 3. For example, we shall readily recognize that for

s




disturbances propagating slightly but arbitrarily sheared profile,
the wave front advancing past a given point can simply be constructed
by replacing the role of convective velocity in uniform flow by the mean
velocity cumulatively averaged up to that point (as might.be antici-
pated from 'slowly varying' concept); this appears to provide the
approximate but simpler means than the ones where the wavefront has
to be successively constructed by chasing an instantaneous front surface
after surface. After these descriptions of physical implication, we
shall compare the present solution with the ones derived from WKB
formula; to obtain this, we transform the Pridmore-Brown equation
into one-dimensional Schrodiger's equation and apply the standard WKB
method; we shall observe that the present solution, when rendered into
alternative form of infinite series representation, is tantamount to providing
all the higher-order terms lacking in the solution based upon the standard
WKB method. In the final section 4, we shall show how these solutions ob-
tained for unbounded media can be utilized, with slight modification, to
waveguide problems, leading to closed-form solution (4.13). In additionmn,
we shall observe there that, with the aid of free-space solution, a certain
interesting phenomena associated with some class of velocity distribution
will become physically interpretable.

Our undeviating aim in this paper is to obtain a solution for waves

propagating through non-uniform media in a form as uncomplicated as possible

and in order to strive for this, it will inevitably be subject tu certain formal
limitations; nevertheless we shall find that the present approach appears to be
highly effective, both in providing a compact expression, from which one can

easily detect various trend, and in exposing physical features.




2. General Solution For Unbounded Medium.

Consider acoustic waves propagating in a two~-dimensional and
flowing medium; the base, steady flow is unidirectional, with velocity
U in the positive x direction and it varies in the transverse y direction
as shown in Figure 1, e.g. U = U(y). For the sake of simplicity, the
ambient density and temperature are assumed to be constant, although, if
necessary, the present technique can easily be employed for stratified
medium as well; the flow will be treated as inviscid. In this section,
we consider the medium to be unbounded and in order to fix our ideas,
we shall be interested in acoustic waves travelling from y = —®and
propagating through sheared flow in the positive y direction; at y = -,

U is assumed to be uniform. The governing equations are given in the

1 linearized form as
-
1 3" 3" du' L vty
cz (at +U(Y) 9x )+ p(ax +ay)-09
du’ Su! v dUGy) _ .1 3p'
. U S x TV dy p ox °* (2.1)
av' av' ._1 %'
e YU O 5 o 3y
.

where p and ¢ are unperturbed density and the speed of sound, respectively,

vhich are constant; u' and v' are the fluctuating part of the velocity
component in the x and y direction, respectively; p' is the perturbed

pressure and t is time. Eliminating u' and v' from (2.1), one obtains




6
2 2 259y 200, 2% L0 % 1 3%
X xdt 2 2
9x dy c c at
du (y) 3%p’
-2 dy 3%3y =0, 2.2)
where M (y) = U (y)/c 1s the usual Mach number. If one considers a
|
E sinusoidal wave with frequency wand travelling with wave constant &
E in the x direction, the fluctuating pressure takes the following form:
i -
p' = p (y) et 0O (2.3)

Parenthetically, this embodies a kinematical condition that the wave
number in the x direction, a/2T , remains always constant even though the
waves suffer refraction due to shear flow in the y direction. Into

(2.2), we substitute (2.3) and obtain

v 2aM(Gy) Ly, -1 al1p=0
M(y) - Kk p [(QM(Y) k) a’lp s (2.4)
where k = w/c and the primes denote the differentiation with respect to
y; the above ordinary equation involving variable coefficients is
sometimes called Pridmore-~Brown's equation (Pridmore-Brown, 1958).
For the extremely simple situation of M (y) = constant = MO’ say,

the solution is, of course, given by

pvexp [+1y V{aﬁo - k)2 - GZ] . (2.5)
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Now consider slightly sheared flow with arbitrary profile
' »
M(y) = M)+ eg (), (2.6)
where € is a small paraneter and the shear distribution g(y) is any
given function of y; we take MO to be the Mach number at y = - ®
(hence g (- ») = 0), Motivated by the form of (2.5) for uniform flow,
we write in the present case
y
/ 2 2
p=exp [+ 1y (uMO -k -a" + ¢ F (E) dg]. 2.7
-0

Substitution of (2.7) into (2.4) at once yields the following equation,

to the order of ¢, for F:

dF - F2iye'Q) 4.

dy + 241 yF+ [2 (GMO kK)ag (y) + O'Mo —” ] 0, (2.8a)
where

Yy = /(aMo - k)2 - ot . (2.8b)

It 1s crucial to recognize here that the above first order equation is

linear and the coefficients are constant; were the perturbation scheme

not explicitly introduced in (2.7), the exponential transformation would
have led to the nonlinear Ricatti's equation. In the above (2.8a), we

also call our attention to the fact that shear flow profile g (y), which

is a function of y, now appears only within the bracket or as non-homogeneous
term. With regard to the solution of (2.8a), the homogeneous solutions

is obviously equal to exp + 2 ivyy). But since this does not




contain any effect of shear, the solution is physically meaningless
and, therefore, is discarded; only the particular solution of (2.8a)
is relevant. In order to obtain the latter, we take the Fourier transform

of (2.8a) and obtain

10F+ 24YF = -2 (M - K ag+ N8 | (2.9)
* 0 oM - k

where F and g are Fourier transform of F and g, respectively, defined by

-] m.
" [Feioydv, E=— jsem"dy.
-00

- 00

Lo 14

N
N

Solving for F and inverting, we obtain

20

F'iiauo—? g ()
y
2 —
4o _ _ +21iv(y -§)
+ [#I 20 (GMO k)] / g (g) e dg * (2'10)

We substitute this into (2.7) and, restoring the dependence with respect

to x and t, obtain immediately

p' = l(ox - wt) + 1iyy
y
2
x exp ( + ieai;q_x.—i f g(g) dg (2.11a)
2 oy -
+el3R T - 2 alaMy - K1 dn | gy e 2LV - Dy

mo"k

- «00

e ALl et e B S an




Thus we have already attained the desired goal of obtaining an expression

for waves propagating through arbitrarily sheared flow in the positive y
L direction. (For waves propagation in the negative y direction, one only
has to change the lower limits of the integrals from — ® to +*.) If

the flow is uniform up to certain height, say, y = Yo? i.e.,

g (y) =0 fory<y,,

(2.11a) becomes 1

p' = ol(ox - wt) + ivy

2
xexp ( * 1&0—“_%; [s (&) dg (2.11b)

y
Yo

y n
2 —
+elgig -Za@Mo-k)l[ dn[ g(g) e 21V = 8) 4
0
y

Yo

Although the case of Yy = 0 or zero incidence angle is physically trivial
for the present free-space transmission problem, we record here, for
subsequent reference to be used in ducted wave analysis, that at y = 0

(2.11b) becomes

y n
p' = &M% 798 o [ 2ca(ay - K) [ dn [ g (§) dE ]. (2.11c0)

Yo Yo
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For given shear flow, the propagating wave at any point can be determined from

either of the above, once the integration involved is carried out. A

note of caution is, however, in order here. When the integration over g

is carried out for specified shear profile, sometimes the terms in the form

of exp (+ 21Yy) appear. Since they are of the same form as the afore-

mentioned homogeneous solution of (2.8a), these terms are parasitic in their na-

ture and therefore they should always be discarded for the reason already stated.
In what is to follow, we shall work out examples for three shear

distribution: (a) shear profile with exponentially decaying transition

(b) linear shear and (c¢) sudden velocity discontinuity (see Figure 2).

In (b) and (c), we shall observe that the present results agree

satisfactorily with the ones based on the available solution.

Example 1. Shear profile with exponential transition:

gy) =1-e¥ fory>0

and g(x) = 0, for y< 0.

Upon substitution of g(y) into (2.11b) where we take Yo < 0 and discarding
the terms of exp (+ 21Yy) after carrying out the integral, one obtains,

when Yy # 0

; p' = A e:l((!x - wt) et ivy

g @+t

X exp + i€ s

2
+e[£€-—i - 2a(aHo - k)]
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1 _ 1 1 -ay
x[iZiYy afFZiYae 10»
where
2
- — g e 20Y _bay” -
A = exp +iea(m40-k)+ [mo'k Za(aMO k)] (2.12)
1 1 - 1 |

*Gm2m. - @2iv? tGrzivInd |

This represents the transmitted wave in the region above y = 0 when the

incident wave for y < 0 is prescribed to be p' = ei(mx - wt)et vy,

Ve §
particularly emphasize here that the above expression provides even the

correct amount of the amplitude of the transmitted wave corresponding

to the amplitude of incident waves specified to be unity. (If other

than unity, the amplitude of the transmitted wave should, of course, be

adjusted propoftionately). This is the reason why the constant A 1is

deliberately retained in the above and there is no need to multiply

it by some other additional factor. One can directly confirm this point

by applying, at the interface of y = 0, the continuity of pressure and

the particle displacement condition between the expression of (2.12),

valid for y >0, and the expression for y < 0; the latter is given by the

following combination of plane incident and reflecting waves

p' = llox - wt) +diyy | p d(ox - wt) F 1YY, for y< 0

vhere R is the amplitude of the reflected wave to be determined in the process.
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Example 2. Linear Shear : g(y) =y for y > 0 and g(y) = 0

for y < 0.

In this case, where at y = 0 the base flow changes from uniform
distribution to linearly varying one, equation (2.11b) becomes as

follows:

' ei(ax - u)t)e_+_ iyy

P

(2.13)

€a (auo - k)
2y

a(aM, - k) o

2y2 +uuo-k]y ‘

X exp +1 yz + € [-
In obtaining this, the term in the form of exp (+ 21iyy) , which has arisen
in the course of integration, is again discarded. As before, (2.13) re-
presents the wave trmsmittgd in the region above y = 0 when the incident
wave impinging on y = 0 is specified to be p' = ei(m - mt)et iyy.

For linearly sheared profile, Goldstein and Rice (1973) obtained

the exact solution.of propagating waves in terms of the parabolic cylinder

function. In the present notation, their solution can be expressed as

i(ox - wt) 1
1

E+b

p' =e [U'(b, +E) +bE U (b, +8)], (2.14)

vhere U is the parabolic cylinder function (e.g. Abramowitz and Stegun

(1970), p. 686) defined by the following integral representation:

g? b-1
U (b,£) = —11—— e [ exp (- Et -%:2) t 24, (2.15)
rd + b

&=

0




21

b = and £ = (k -aM(y)) . (2.15b)
21 a a a
dy dy

When the gradient of shear, %% » 18 small, both b and £ defined
above tend to become large. In such a case, one may prove, as shown in
Appendix A, that, with the aid of the Darwin's formula (1949) for the
parabolic cylinder function, (2.14) 1s reduced to the present result,
equation (2.13). (In lieu of Darwin's formula, it might appear possible
to start with the integral representation of (2.15a) and apply the Laplace's
method for large values of b and £. It turns out that this approach
calls for the usage of the generalized Laplace's method and so-called
Faxén integral, both of which are discussed in Olver (1974, p. 331-332).
The method is, however, apparently somewhat too crude to serve the present
need, for, although this accurately reproduces y2 term in (2.13), it

fails to yleld the correct coefficients of y.)

Example 3. Sudden Velocity Discontinuity:

g (y) = MM fory >0

and g (y) =0 for y< O.

When the steady velocity increases suddenly by AM at y = 0,

(2.11b) yields

Ny

exp [+ 1ca (o - k) —%—1 , (2.16a)

p' = A el(ox - wt)  + iyy




al2y’ - (o, - K)’]
cAM (2.16b)
2y2 (att - k)

Once again, this is the wave transmitted in the region above the
interface y = 0, upon which the incident wave impinges.

The exact solution for sound transmission through a flow velocity
discontinuity was obtained by Miles (1957) and, independently, by

Ribner (1957). According to them, the transmitted wave is given by

p' = 1 el(x - wt) day tan ¢, , (2.17a)

2 gin (2 ¢1)
sin (2 ¢1) + sin (2 ¢2) '

In the above, ¢1, and ¢2 are incident and refracted wave angle,

respectively, measured from the positive x direction. ¢1 is given by

and ¢2 is related to ¢1 by the following law of refraction analogous

to the Snell's law:

S |
e, " e + €AM. (2.17d)
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When the amount of velocity jump is small, one can readily prove
that (2.17) becomes identical to (2.16), the details of which are shown
in Appendix B. Additional numerical comparison between the Miles~Ribner's
exact solution and the present approximate solution is shown in Table 1,
where the transmission coefficient, A of (2.16b) for the present solution,
are compared with T of (2.17b) for various incident angles, ¢1; they
are given both for positive and negative velocity discontinuity. It is
clear that the present formula provides sufficiently accurate values
for a wide range of incident angles, except for the vicinity of either
critical incidence (corresponding to total reflection for positive
velocity jump) or the zero incidence in the case of negative velocity jump.
(The local discrepancy near these two incidence angles is not quite
unexpected, since both correspond to the turning point of (2.4), about
which we shall discuss more in section 3; for AM > 0, the turning point

occurs in the region where y > 0 and for AM< 0, in y < 0.)




3. Alternative Representation and Physical Interpretation.

We now return to the general solution, (2.11), representing waves
propagating through arbitrary shear profile; theugh convenient for
obtaining compact expression of such waves, it is not appropriately
suitable for exposing physical features. Therefore, in order to pave the way
for extracting physical interpretation, we recast it in alternative form.
Taking the case of shear distribution where the flow remains uniform up
to y = 0 and wvhose solution is given by (2.11b), we apply the integration
by parts to its double integral appearing in the argument of exponential

and obtain :

p' = ei(ax - wt)et iyy g

Y
a@M, - k) :
x exp [ tie ———MOY [ g () dn

0

2
te [2 . 20 (M - ©)]

0
1 . 1 (4)
x ([ gly) - g''(y) + g (y) —-]
2v)? 2n? 2n®
+ 158 - Lo P —n),
2v) (2v) 2y)

(3.1)

where, as before, the terms in the form of exp (+ 21ivyy) originated from
the lower limits of the integral are discarded. The above expression, (3.1),
is a series expansion of (2.11b) in terms of Y. Though, in general, it is

less expedient for computational purpose, on the other hand it readily
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. surrenders to the physical interpretation, whose term-by-term
description will be given below; pursuant te this, we shall compare
(3.1) with the other series solution, which we derive by applying the

standard WKB method.

y
3.1 Term Associated with [ g (&) dg.
0

Before we consider the first term in the exponential

y

a(auo - k)
+1 E—y g(n) dn , (3.2)

0

we note that for uniform flow (€ = 0), the surfaces of crests and troughs or

of constant phase are given by
ox + Yy = constant, (3.3a)

and the surfaces move as time changes. For the present case of
€4 0, the term (3.2), which is the leading correction term for large

values of yor at higher frequency, modifies the above into the following:

o - k)
a.x_-t’ w+ € —aig—-— [ g(n) dn = constant . (3.3b)
0

The integral form indicates that phase change is dependent on the

entire flow field over which the wave has traversed; hence, the term

embodies cumulative, memory content and might be called "phase memory". (Though
more popularly found in electromagnetic propagation, this phase memory recently

surfaced in the context of unsteady flow field radiated by an oscillating
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body (Kurosaka, 1977).) In order to appreciate the meaning contained
in (3.3b) more fully, we replace the uniform velocity Mo appearing

in the following definition of Y,

02

Y -v/(aMO-k)z-

¢v the mean velocity averaged up to the vertical position, y, i.e.,

b/

y
M- L M(n)dn =M, + < g(n) dn.
y 0 vy
0

0

1/2

2] , this becomes,

Then, 1f we define Y to be [(oM - k)? - a

to the present order, as

y
- ea(aMO - k)
Y= v+ 1 d
Y v gn) dn ,
1]
and (3.3b) becomes
ax + §§ = constant . (3.4)

Comparison of the above with the expression for uniform flow, (3.3a),

immediately reveals the following: the surfaces of constant phase for

waves propagating through shear flow passing a vertical point, y, may be

given (as a good approximation for shortwave length in the y direction or at
- high frequency) by replacing the role of uniform velocity by the mean

one cumulatively averaged up to that point, y. From the intimate

relationship between the behaviour of the waves at high frequency and the

wave front (e.g. Whitham, 1974, p. 236), one is naturally led to
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expect that the same replacement might take place for wave fronts.
In order to obtain the direct confirmation of this, we regard the
solution, correct to the present order and expressed in terms of the

above Y, as the Fourier transform, F, with respect to & and w: that is

etYY = F , (3.5a)

where
1/2

25 (3.5b)

- — 2

Y = [(M-Kk)" - a
The expression for the wavefront will accrue naturally when one
takes the inverse transform so as to derive the transient response,

(Miles, 1959, p. 53; Kurosaka, 1977). Taking the inverse transform

of (3.5a) with regard to o and w,

F= /;_1_[ Ida f 52_" llox - wt)  + 1y 4 (3.6a)
we obtain
F=7 % 2 [c2(e? - cl—z ¥ - (x - i:)z_lm
xH [c (2 - —%yz)m - (x-T0)] ), (3.6b)
c

where U 1s the averaged shear velocity defined by
y

U= %<[U(y) dy , (3.7)

0
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and H is the step function; the derivationof this is relegated to ‘

Appendix C. From (3.6b), it is clecar that the wave front is given by

c2t2 = y2 + (x - ﬁf)z. (3.8)

Comparison with the one for uniform flow, cztz = y2 + (x - th)z,
readily shows that the wave front propagating through non-uniform flow
can easily be obtained by replacing the role of uniform velocity by the
cumulatively averaged one, as might be anticipated from 'slowly-varying'
notion. We emphasize the point that the above approximate

but analytical expression offers a simpler way to construct wavefronts

than the general method where it has to be successively constructed from the
initial surface by the vectorial addition of acoustic velocity, which

is in the direction of normal to the surface, and fluid velocity. 1

3.2 Term Associated with g(y).

With respect to the term associated with g(y) in the argument of

the exponential in (3.1),

2
4oy 1
e [ — - 20 (oM, - k)] —, g(y), (3.9)
aM.O k 0 (2Y)2

ve observe that this is wholly real and comsequently represents the
primary change of wave amplitude due to the presence of shear. It
may be of interest to note its following implication: when we
express the amplitude corresponding to the above by A, i.e.,

r

2
A = exp t:[ai%—i - 20 (GMO - k)] (Zi g(y)1l ),

)2




%_A;q, A-g'(y) . ' (3.10)

Therefore, to the first order of short wavelength in y direction or at
high frequency, the rate of the change of the amplitude 1is proportional
to the product of velocity gradient at that position and the amplitude
itself. (It satisfies the equation analogous to the one for radioactive

decay.)

3.3 Terms Associated with derivatives of gly)

The remainder of the terms in the argument of exponential in (3.1),

2
_4ay”  _ -
o e 20 (M - k)]

0
x (- L7 8  + L5 W
2y) 2y)
1 ' 1 e (5)
+1i 38 (y) - 5 8 (y) + 7 8 y-—1),
(2v) (2y) (2y)

(3.11)
obviously provides the higher-order correction to both amplitude
and phase. If we consider a shear profile where at some point y = Yy»
all of its derivatives vanish (see Figure 1 again), i.e., g'(yl) =
g"(yl) ® ——= = 0, the wave transmitting through y does not perceive
any local change in steady velocity; and therefore, both the amplitude
and phase should remain unaltered while traversing past ¥y This

fact is indeed accounted for in the present solution, since in such
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an instance, (3.11) vanishes completely while (3.2) and (3.9) retain

the same value just before and just after leaving Y1

3.4 Comparison with the Series Solution Obtainable

by the Standard WKB Method.

We now compare the alternative series representation, (3.1),
with the other series solution derivable from the standard WKB formula.
For this, we transform the Pridmore-Brown's equation (2.4), into the
Schrodinger's equation for one-dimensional quantum-mechanical motion
where the standard form of WKB solution is readily available. First,
we remove, in (2.4), the term in first derivative by the following

standard transformation:

p = 2Y,
where
z= M(y) -k

This, together with (2.6), changes (2.4) into

Y+ [y - eUmlY=0,

where

. ) g
u(y) 2 a(oMy - k) g (y) oM - k + aeg(y)

2 ' 2
vef-o? g () + LW
() - k + acgly))

TRERRER o e =~ - e

(3.12a)

(3.12b)

(3.13a)

(3.13b)
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This is the Schrsdinger's equation where U (y) corresponds to potential

and so far no approximation has been made. The standard WKB formula
(e.g. Morse and Feshbach, 1953, p. 1092 et seq.) is applied here and

the approximate solution of (3.13a) is immediately found to be

y,
Y vexp [ii[ q dy - %— log q] , (3.14a)
0

A2 '
where q = v¥" - eU(y) . If we now assume €<< 1, (3.14a) becomes,

to the order of €, as

y
oze(oMo-k)
Y Vv exp + iyy ii—’—Y———- g (n) dn

0

e'2a(uM0-k);zg(y)

(2y) |
2
4o Y i '
te - g' (y)
My -k 5T
r
- say? L g (» (3.15)
My =k (ap?

To this, we restore the factor z of (3.12b), which we recognize to be equivalent,

to the order of the present approximation,. to

z (M) - k) exp [ﬁ:‘;ﬁ?{-] :




24

i(ox - wt)

Multiplying the result by e , we obtain p' as

p' = ei(ax - wt)et ivy

y
ica(oM, ~ k)
X exp i_Y_O_.._ g (n) dn
0
2
4 1
+e [ - 20 (a4, - k)] g (y)
aMo k 0 (ZY)Z
+e “‘“z.~ [+ g' (y) - —1—g'' (»1). (.16)
aMy =k = (oy)3 2’

We take a special note that the argument of the above exponential function
consists of finite terms, in contrast to the infinite series appeared in
(3.1). PFurther scrutiny between the above WKB solution, (3.16), and our
series representation, (3.1), revealsthat the terms associated with [ g (n) dn
and g (y) agree; the other terms associated with g'(y) and g''(y) arg not
quite the same; g'''(y) and other higher derivatives are completely missing
in the WKB solution. One can show that whereas the present series solution
(3.1), or more precisely its y-dependent portion corresponding to p(y)

of (2.3), satisfies the original differential equation (2.4) to the order

of €, the WKB solution (3.16) fails, - not surprisingly, to do so even

to 0 (¢). Indeed, it 1is straightforward to prove that if the iteration
procedure described by Morse and Feshbach (ibid.), which leads to the standard
form of WKB solution of (3.14a), had been repeatedly continued, the resulting

higher order terms would, to the order of €, contribute to recover the entire

terms missing in (3.16). Consequently, the present infinite series representationm,
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(3.1), does offer the terms of higher order which would be lacking in
the WKB solution; the primary expression obtained in the preceding section
2, (2.11), amounts to the summation of these terms into a concise form
convenient for arbitrary shear profile. Observe also that without the
assumption of € <<1, the solution (3.1l4a) directly derived from the
standard WKB formula would not be amenable to the physical interpretation
described previously.
Before concluding this section, we wish to dissipate a potential

gsource of misconception about gummation formula, (2.11): on the face
of it,this solution might appear to be valid even in the neighborhood of

- Y = 0, which is a singular point in the series representation of (3.1)
or WKB solution (3.16). (The turning point of (3.14b) is q = YZ -eU(y) =0
but the expansion for € << 1 has transferred the singular point to y = 0,
instead). However, except for the case where Y haépens to be exactly
equal to zero, this is not so; for once the integration for (2.11) is carried

out, the terms like 1/Y reappears. For example, one can immediately recognize

this from (2.12), which -- although of compact form than the one that would

be cbtained from the infinite series representation corresponding to (3.1) --

is still singular; in example 3 of section 2, we also have observed the

similar behaviour. To avoid undue complication, we defer any attempt to improve
this limitation obviously associated with the regular perturbation scheme to
elsewhere, but in the next section we shall observe that even in the present
form, the expression for vy = 0, (2.1lc), will be found to be valid and of

physical significance in ducted acoustic waves.




4. Application to Ducted Shear Flow Problem.

Let us turn our attention toward the problem of acoustic wave
propagation through shear flow in ducts; here we shall find that the results
of the previous sections obtained for unbounded media can be applied to
channel flow with minor modification -- in particular, without any change in

the case of the fundamental mode.

The coordinate system is shown in Figure 3 where the duct walls are
placed at y = + £ . Assuming that the walls are rigid or hard, the boundary

conditions on the walls are given by

3B .y aty= + % . (4.1)

In order to ascribe definite meaning, the steady, base velocity, M,, of (2.6), is

now taken, without loss of generality, to be the one averaged across the duct, i.e.,

L
My = % fM(y) dy, (4.2)
')

and accordingly
L

g{y) dy = 0 . (4.3)
-2

If the flow inside the duct is uniform, it is of course elementary

to show that the wave constant in the y direction, Y of (2.8b), takes

the following eigenvalues determined from the wall boundary condition:

e e Aty o e a2




Y, - %T-T vhere n=0, +1, +2, ~—- (4.4)

and correspondingly inverting (2.8b),qa is given by

/2 2, nm2
ot V- a-uh &
a = forn=0, +1, + 2, ——, (4.5)
n 2 - -
0o " 1

M

where we assign suffix n to a. In the above, the positive sign corresponds ;
to the waves propagating in the upstream direction and the negative sign
to the one in the downstream direction.

In the particular case of the fundamental mode of plane wave =
where n = 0, Yy for uniform flow becomes zero from (4.4). If we return to
the present subject of sheared flow, then for y = 0 the solution has
previously been obtained as (2.1lc) and, when one takes the lower limit of

the integrals to be equal to -{, we obtain the following:
y

)expl-2¢ea (oM - k) an | g 4t . (4.6)
LR

p'=

e:l.(ux - wt
Upon differentiation with respect to y, it is immediately apparent from

(4.3) that this does satisfy the boundary condition, (4.1); comsequently

this is in fact the lowest mode for waves propagating in duct; the

underlying physical reason why in this case the free-space solution also

becomes a ducted wave will be given subsequently. For now, from the expression of

o corresponding ton = O in (4.5), one obtains

y/L n
Pn' = e-:l‘wt exp (+ 1 k —=—) exp [+ € Zk—z!'z-— d s(E)d(E)]
0 = T MF 1 (1 ¥ )’ v |

-1 -1 !
.7
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where suffix 0 attached to p' denotes the fundamental mode and upper signs
inside the exponential correspond to the upstream propagation and the lower ) E
signs to the downstream propagation. During the course of the present work,
it was communicated by Dr. Savkar that the essentially same expression was
previously obtained by him in hitherto unpublished memo (1972), which is
now being prepared for publication, by using an entirely different method

where a technique akin to PLK method was employed along with certain ortho-

gonality condition for various duct modes; on the other hand, as we have just 2
seen, the present derivation is directly obtained from the free-space sol-
ution and not dependent upon the latter requirement.

Of interest here is the comparison of the present expression, (4.7),
with Shankar's solution (1971) for initial value problem. He posed and - )
solved a problem where a harmonic plane wave disturbance is suddenly switched
; on at x = 0 in an initially quiescent medium with slightly sheared flow. For

the initial condition
p'(0,y,t) = A e_ith(t)

where A is constant (plane wave) and H is the step function, his solution

for large time is given, according to the present definition of Mo, to be

pl(x,y,t) _ - X ‘

A exp) - (t - TFF Mo)) ’

3 o ‘
. 4 2 2 * —du 5
+ € 2 B p k* cos ARSI g

ﬂ2(1 + M )2 n2 b !

n=1 0 i
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|
1 l
M 2 22 5
x [ exp X 7 (- 1w TO +i[9—2'—9—12r—(1-M02)]2)
1- MO c b
-e 1 —9X__ )40 (h (4.8)
xp c(1+M0) ’ ‘

where b = 24 , y* = y + £ and a is the Fourfer coefficient of shear

1
profile g(y) = M( ) (y*) defined by

b
: ()] 2:11(
’ a = [M (E)cos(b)di.
1 - 0

We combine the first term of (4.8) and the terms of the same exponential

form appearing inside of the series, 1i.e.,

X

’ exp ( - iw (t - L+ MO))

- .
) 4 a 2 afy*, -iwt fwx -

- ez ——— 2bk° cos L e exp [ “ii+x v ) - i
w2+ “0)2 o2 b c(1 + My) j
n=1 :
F (4.9) :

Upon differentiating twice with respect to y, it is straightforward to show that,
from the Fourier series formula, the sum is indeed equal to the present result of
(4.7) for downstream propagation, correct to the order of €. ( The other

terms in the series of (4.8) obviously correspond to higher modes associated
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with the particular choice of the initial condition which is assumed
to be a plane wave in Shankar's paper.)
The present expression for the fundamental modes, (4.7), reveals
explicitly various features of the ghear flow effect. For example,
for a parabolic shear flow satisfying the requirement of (4.3), i.e.
g(y) = 1/3 -~ (y/0)*
' -iwt X kzl!,2 Y. 2 Y. 2
P'g v e exp (j-_iW) exp temﬁa)z @ e -2]
(4.10)
where the upper and lower signs correspond to upstream and downstream
propagation, respectively. Not only the role of amount of shear (£), frequency
(k) and mean Mach number is transparently obvious, but also, when we note
that [(y/l)2 - 2] always remains negative across ducts, it is plainly visible
that shear layers refract the fundamental mode wave toward the wall for
downatream propagation and away from the wall for upstream propagation.
The effect has been known from the various results based upon numerically
computational scheme (see Nayfeh et al. for full references.); the magnified
effect of refraction at higher frequency and greater shear has likewise
been recognized. We feel, however, that the present analytical expression
displays these effects, perhaps more conspicuously and compactly. The
numerical comparison of (4.7) with the results obtained by wholly computational
scheme (e.g. Mungur and Gladwell (1969)) for prescribed shear profile such
as linear distribution shows the satisfactory agreement,even when the values

of ekzlz appearing inside the exponential of (4.7) become moderate;
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therefore in this paper, in the interest of retaining simplicity, we

shall not attempt to improve the, formal limitation at large values

of ekzlz through the obvious application of singular perturbation procedure.
For higher modes in ducted flow, the free-space solution obtained

previously, requires some modification. Since, for uniform flow, the

wave constants in the x directionm, o of (4.5), are dependent upon the

uniform velocity, Mo, we expect that for sheared flow, it is dependent

on shear; accordingly, we express
L
a*=a + ex (4.11)

wvhere Xh is the correction factor due to shear. In general, Xa has to be
evaluated from the boundary condition. However, as in the previous case of
fundamental mode of n = 0, which in the present notation corresponds to
X - 0, one can show that even for higher mode xn vanishes for a certain shear
profile; that is, for odd component of velocity distribution in the y
direction, Xh = 0 or the wave number in the x direction remains unaffected by
the presence of shear. This fact appears to be first recognized by Savkar
in the aforementioned unpublished memo based upon the duct-mode analysis;
in what is to follow, we shall instead show this from physical comsideration
based upon free-space solution.

The sound field in ducts may in general by regarded in the following,
two different ways: 1in the first interpretation, it can be visualized as
the superposition of two sets of free-space waves, one propagating in the
positive y direction and the other in the negative y direction; alternatively,
it can be viewed that these waves are continually reflected back and forth

between two rigid walls. Let us at first adopt the first viewpoint and
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consider these two waves generated by the initial pressure specified

at x = 0; for the n~th mode in uniform flow, the wavelength in the

y direction is equal to 2%/n, (shown in Figure 4(a) for n = 1 ) with the
pressure oscillating at frequency,w . The wave constant, &, in the x
direction is proportional to the number of crests (or troughs) in unit
length in that direcgion. Let us poge the following question: what is

the change in the number of crests due to the non-uniform velocity
distribution? In order to answer this, we extend the shear profile,
originally defined inside the duct, to its outside in periodic, repeated
manner in order to cover the entire unbounded space, as shown in

Figure 4(b). (For odd component of velocity disttibution, the profile in
the neighborhood of y = j:l, 1_22, --- may, 1f necessary, be envisioned

to be slightly modified so that the velocity distribution becomes continu-
ously smooth; this is to avoid the unnecessary complication arising from the
refraction which would otherwise occur at the interface between velocity
discontinuity.) We note that, for any modes, the lines of constant phase

in the free space may be given by the curves along which the imaginary

part of (3.1) remains constant, i.e.,

. eu(moy— k)

ox + Yy g(n) dn

5

2
+ e[—ﬂz—--ZG( -w] 8'(y)-—1—s"'(y)+ 1
2 - M, 3 n° Y ]

x s(s) (y) ——-] = constant.

(4.12)

SIS MBI s o~ o o =~ - - . - ———— o e e = ——————a——
. ‘
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We observe that because of the periodic extension of the shear profile
throughout the entire space and with the aid of (4.3), the integral

involved may be reduced to the following:

y y

g(n) dn = g(n) dn.

Zoo '}

We at once recognize that at the points corresponding to walls, y = + &,

the integral vanishes. Furthermore, for odd component of velocity
distribution, the odd derivatives take the same value at these points:

g'(2) = g'(-2), g'""(L) = g"""(-%) and so on. Consequently, these promptly
lead to the following: in (4.12), all tﬁe terms associated with € or .

shear take the same value at the points corresponding to walls. Therefore
lines of constant phase appear, as shown in Figure (4c), where,

for the sake of illustration, the lines are adjusted so that the lines

of constant phase for uniform and for non-uniform flow cross each other
initially at y = - L. When we now switch to the second viewpoint of
regarding the duct wave system as being reflected repeatedly back and

forth between the walls, one can immediately recognize that for odd component
of velocity distribution, the number of wave crests remains unaffected

by the presence of shear; and therefore, in such a case Xa of (4.11) vanishes.
(It is apparent that this does not hold for even component of velocity.)

A similar argument can also be used to provide the physical explanation of
x0 = 0 for n = 0 or the lowest mode, for in the corresponding free-space
solution of (2.11lc), the shear effect appears only as the real part of

the argument of the exponential function, leaving the phase surface unaltered.
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For general, arbitrary shear profile, the solution for higher
mode may be obtained by enforcing the boundary condition (4.1), upon
the linear combination of the solutions, which can be obtained, in a manner
similar to the one used for free space; in the course of this we naturally have
to keep in mind the correction of a as expressed in (4.11). The final solution
for the n-th mode is as follows:

.1 - ia + x) x - iwt
2 (exp z + exp zn) e ' n a

Py ,n=1, 2 ——- (4.13a)
where ;; is the complex conjugate of z, defined by
y
Zap Yn
z =iy y+iegy—xk g(n) dn
noO
-2
4any.n2
E[—2__. - -
+ [aM —" Zun (anMO k)1
n 0
y n
-2 -
x [[ an / g(g) ¢ MM = By
-2 s
r—togr - —E g + ]
(2v,) (2y,)

ie -
+ Y X, 0 =0 My My~ k) -a,l, (4.13b)
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) and where
e 2
oY
1 n'n
X = z[Mo(anMO- k) - an] luhMO — 1a (anno - k)]
[ 3
| x [g'(R) - g' (-2)] - 1 7 (8" () - g""'" (- H+ — ). {
F (ZY ) (zYn) |
(4.13c)

It is quite apparent that for odd velocity distribution, xn = 0, as we
expected before. Needless to say, in the above, as in the free space

. solution, the parasitic terms of e— F 2y n’

, which may arise in_the course
of carrying out the integration for specific velocity distribution, have
again to be discarded.

Although the above results are obtained for hard-walled ducts,

one can obtain, in similar manner, the expressions for the ones with soft

or treated wall as well.

MR I I LN A 7 5 b 1 P A T A e A S




36

5. Concluding Remark.

In summary, it has been our intent to demonstrate that the present
method provides a simple and effective means to obtain a solution for
waves propagating through aribtrarily sheared flow. Our main results,
accrued in closed form for both unbounded media (2.11) and ducted flow
(4.13), involve only quadratures of any given shear profile; as special
cases, they are found to embrace other known solutions and besides, they
can be rendered into forms particularly convenient for the extraction
of various physical features. The method appears to be easily applicable
to other problems involving disturbance propagation through non-uniform
media. (For example, the method is now being found to be particularly
instrumental in assessing the effect of spanwise flow variation upon
flutter in turbomachinery bladings.)

The author owes his sincere gratitude to his former colleagues,
Drs. Shankar and Savkar for arousing his early interest to the problem.

The work was in part supported by the Air Force Office of Scientific

Research under Contract No. F 44620~-74-C-0040.
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APPENDIX A

We shall show that, under the assumption of small velocity
gradient, (2.14) expressed in terms of the parabolic cylinder function
becomes equal to (2.13). For this we make use of the following formula

of the parabolic cylinder function, due to Darwin (1949):

1
7 2 £, L s —
Y Y
1 (F-1a) 1
vhere Y = (x2 - 4a)2 . (A~-1b)
x+Y
¢ = 4 xY - a log 2 /7, (a-1c)
a = -ib, (A-14)
1
2
x =1 E, (A-1le)

and the expression for g, %,. . . etc. are given in Darwin's paper.
Since in the present case of Example 2 of Section 2, g(y) of (2.6) is equal
to y, it follows

o,

dy

and from (2.15b), (A-1d) and (A-le) become

a=s = _2—5- ’ (A-Zl)
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-

x =1 (é)2 (k - aMO - agy) . (A-2b)

Into (A~lc), we substitute the above and, after expanding and discarding

a certain constant which is disposable, we obtain

g k- oM,

Y +0 (EZ) , (A-3)

1
¢ =Yy -5 oey
where Y is defined in (2.8b). Likewise

acy(k - Mo)

1
2 1
- 2 -2 e€y

Y-1v) S+ 1. (a-4)

By substituting (A-3) and (A-4) into (A-la), it is found that the

terms associated with g, , . . . etc. become negligible and we obtain

-1 i T oMy - k
U, + E) v exp (+ 1yy) exp [+ 5 foey” —— - 5 aey ———

(A-5)
Upon substituting the above into (2.14) and noting that the factor

bf associated with the second term within the bracket can be expressed as

bE = exp [log (bE)]

1
o 24,2 . oey
71c (o) (k- aMy) exp | log (1 - = “"o)
1
-2y’ [- 2 — + 0 ()]
2ic ‘ae o’ VP T L ’
0

it follows that, due to this factor, the second term dominates for

small €; from this, (2.14) takes the same form as (2.13).

. - L A RRAGRRAND R
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APPENDIX B

Here, we shall find that for small velocity discontinuity,

\~-17) becomes (2.16). From (2.17d), we obtain

coszcb1

sin ¢1 ‘

¢2 = ¢1 = em : (B-l)

From (2.17c) and the definition of Y given in (2.8b), a tan ¢2 appearing

in (2.17a) becomes

M
o tan¢2 =Y+ €a (oM0 - k) Y - (B~2)
With the aid of (B-1), T of (2.17b) becomes
a(ZYZ - (oM, - k)zl
T=1+ eM . (B-3)

2Y2 (aMo - k)
which, to the order of € , is equal to (2.16b). Thus, (2.17) becomes

(2.16), to the present order of approximation.
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APPENDIX C
E
E
We prove that (3.6a) is identical to (3.6b). For this, we
rewrite (3.6a) as
[ -]
1 iox
F = e I(a) do (C-1a)
vam J( ’
. . }
where
w —
I (o) =L 10t HYW 4y . (C-1b)
v 2n
-00 -
From the definition of Y given by (3.5b), (C-1b) becomes .
oo
1
I(a) = —— e exp { +1¥[(w- acl - 1w - ac® + 102 ) do.
Yam ¢
—-00 (C"2)
Now from Campbell and Foster (1961, p. 109, No. 860.0), one notes ]
7 1
_ _ --2" _ iwt
[(W=-cM+ 1))w-cM-1))] “e
-00
1
X exp -_0-_1% [(w= cM - 1))w - ac(M + 1))]2 dw
1
-1 - 2 1 232
=-2mi H(t+ cy) exp (-1 ca Mt)Jg[eca (t° - S5y 1,
c |
(c-3)
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where H is the step function and JO is the Bessel function. Differentiating

both sides with respect to y, we obtain

I () =% /21 - c exp (-1coMt)

1

2
] = 1 2 1 2
X -5; H(t + Py y) JO [eca (t° - cz y )1 . (C-4)

Into (C-1a), we substitute (C-4); with the aid of the following identity

1
[Jo(bs) 18 gr w202 - D o - |xD),

=00

which is found in Erdélyi, et al (1954, vol. 1, p. 43), and with the

definition of U given in (3.7), we obtain (3.6b).
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TABLE 1

COMPARISON OF TRANSMISSION COEFFICIENT

AM = 0.05

incidence angle

transmission coefficient

transmission coefficient

¢l(degrees) T (Miles-Ribner) A (present)
90 1.000 1.000
80 .996 .996
70 .992 .993
60 .992 .992
50 .996 .995
40 1.011 1.008
30 1.059 1,044
20 1.324 1.166
17.75% 2.000 1.232

*critical incidence

AM = -0.05

incidence angle

transmission coefficient

transmission coefficient

¢1 (degrees) T (Miles-Ribner) A (present)
90 1.000 1.000
80 1.004 1.004
70 1.007 1.007
60 1.008 1.008
50 1.005 1.005
40 . 994 .992
30 .967 .958
20 .896 .857
10 .691 464
0 0 0
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FPigure Captions

) Figure 1. Definition Sketch.
Figure 2. Examples of Shear Profile.
Figure 3. Coordinate in Ducts.

Figure 4. Lines of Constant Phase.
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Three-Dimensional, Refraction Effect Upon Unsteady

Oscillating Airfoils in Supersonic Flow

M. Kurosaka*

The University of Tennessee Space Institute
Tullahoma, Termessee 37388

I. Introduction.

On the subject of three-dimensional effect upon the supersonic
flutter in aircraft engines, Ref. 1 identified the following, two key
issues which could significantly modify the results based upon two-
dimensional approximation: (1) reflection of waves from the eacasing
walls and (2) refraction arising from the propagation of disturbances
through steady flow with strong velocity gradient in the radial direction
existing in turbomachines. Of these two, Ref. 1 specifically restricted
itself to the first problem or its variant of practical significance where
the sound absorbent material is installed upon the wall surface.

In the present paper, we turn our attention towards the second
one and examine to what extent the unsteady pressure on the airfoils will

be affected by the non-uniformity of surrounding, steady flow. As is

Work supported by Air Force Office of Scientific Rescarch under
Contract No. F 44620-74-C-0040.

*
Assoclate Professor, Mechanical and Aerospace Engineering.
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well known, the sheared velocity distribution always refracts the sound
waves; for example, according to a geometrical acoustics picture convenient
for high frequencies, the rays of sound will be bent while propagating
through any stratified media. The refraction of disturbances traversing

a flow field with steep radial velocity gradient present in turbomachinery
environment may considerably alter the unsteady pressure signals, when
compared to analysis based upon two-dimensional approximations. In order
to focus our attention solely on the refractive aspect of the problem,

we shall attempt to extricate ourselves from the other unneccessary
complications. Therefore we pose and study a model problem, which seems

to capture the central nature of the problem, and consider an isolated
oscillating airfoil which is placed in a supersonic duct with non-uniform
velocity. The steady, sheared velocity is in the postive x direction (Figure
1) and is function of y only, i.e. U(y). The walls of the walls located

at y = £ and y = -L are rigid and the airfoil is harmonically oscillating
with small amplitude in the z direction.

Our aim is to compare the effect of sheared flow upon the unsteady
pressure acting on the surface of the airfoil with the uniform flow. 1In
analyzing the problem, we rely exclusively on the results of Ref. 2, where
a simplified representation of unsteady disturbance propagatiag through

non-uniform flow is obtained.




II.

Formulation.

The linearized governing equations can be written

1

2
a

3 U(y) =—

3 T U

.9.’,2?
+
(=4
~~
“«
-4

where p and a are

and primes denote

3y

+v'—mu ® -
dy
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constant ambient density and acoustic speed, respectively

perturbed quantities with conventionally defined meanings.

As usual, in the above we write all the perturbed quantities as the product

of two factors, one for the spatially dependent amplitude and the other

for time-dependent factor such as p' = p' R

1w u' + U(y)
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The boundary condition on walls is that the normal velocities are equal
: to zero, 1i.e.,
]
: v'(x,y =42 , z) = 0. (3)
|
: On the airfoil, the velocity normal to it is prescribed by the given E
movement of the airfoil and if its amplitude is equal to W(x,y), then %
w'(x,y, z=0) =W (x,y) . (4)

Upstream of the initial Mach cone, the flow is quiescent. Because of the
supersonic nature of the flow, the flow fields above and below the airfoil
is unrelated and hereafter we consider only the flow above the airfoil,

z >0.

el a o e




III. Solutionm.

In order to obtain a solution of (2), we first eliminate the x
dependence by taking the Fourier transform in that direction; next, the
application of the Fourier cosine transform in the z direction removes the
z dependence and the resultant equation involving only y is solved with J
the aid of the results obtained in Ref. 2; the description of these

successive steps will be given below.

A. Fourier transform in the x direction.

We take the Fourier transform of (2) defined, for example, by

and eliminating the resulting u, Vv and w, one obtains the following

equations in terms of p:

2~ 2. ~
3p L3P _ 2a dM(y) 3p -2 -a1 5 -
y 9z
where k = % and with the boundary conditions
gy = 0 s (Sb)
y=*14
-g% = 4p(w - U(x)a) W (y) . (5¢)
z=0




B. Fourier cosine transform in the a direction.

Taking the Fouriler cosine transform of p defined by

- 2 -
Fc () '\/'."T [ p cos Bzdz,
0

(5) becomes

2. -~ .
4°F (P dF_(p)

(4 20 dM [ 2 2 2 -
T " #MG) -k a dy MG -7 - @+ BI]F ()

dy

= 1pa [aM(y) - k]V%- OB (6a)

with the boundary condition

dF_(p)

dy =0. (6b)

In order to solve this inhomogeneous equation, we first consider, according
to the standard method, eigenfunctions of a corresponding homogeneous equation

given by

2
d°F 20 dM dF + [(w(y) - k)z - (a2 + 82)] F =0, (7a)
dy

2~ oM(y)-k dy dy

with the boundary condition

drF

dy =0. (7b)

y=+14%




To solve (7), one assumes that the non-uniformity of. the flow inside

the duct is small, {i.e.,

M(y) = M, + eg(y), (8a)

where Ho is the averaged velocity in the duct defined by
£

My = 37 [ M(y) dy, (8b)

-2

and € << 1. According to (8a) and (8b), it immediately follows that
L

.[8()') dy = 0 . (8c)

-2

Under this assumption, the eigenfunctions of (7) are derived in Ref. 2 and

they are given by

Yy n

Y, (o, y) = exp [-2 ea(ddo - k) [ dn fg(g) dE 1, (9a)
(] -2

u (a,y) = % (exp z + exp ;n)’ n=1, 2, - ()

where z 2 is the complex conjugate of z, defined by

y
2ayn2
z =1 yy+ie a‘a—_—g g(n) dn
3

Aayzn

"'”alo-k -2a(ano-k)]




y n
x[ | an fg(;) MO =8 e L gy - g 4 o)
A A (2v) (Zyn)
ie
+Y_n X, (v = 2) My(aMy - k) - a], (9¢)
and where
Yn - 'nz_" s D=1, 2, === (94)

1 a2
% " M (@, - X - a) [aMo -

1

x{(—L 18" - g0 - 2, "W - g0+ —- Y,
(ZYh) (th)
(9e)
. and (aMo - k)2 - az - 32 takes the following eigenvalues:
@ -0f-a® - =@ k2 e (@ - ) - al (9£)
0 ) X p& Yo % @l .

(Fontrary to the situation of Ref. 2, where the eigenvalues are assigned only
to a, here we ascribe it to the constant consisting of combination of

a, B, HO and k, which appears on the left hand side.) Since (7) is a
Sturm-Liouville equation, the eigenfunctions u, are orthogonal and they

are indeed complete. Hence we expand Fc(ﬁ) of the inhomogeneous equation

of (6a) and also its right hand side into series of eigenfunctions, i.e.,
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’ F (p) = Z a,u (a,y, (10a)
n=0
and
W)= Z B @, By @,y (10b)
n=20
gly) W (y) = Z ¢, (@, B u @,y (10¢)
n=20
L
and where .
wiy) un(a’ 8, y) dy
B (a, 0 = : (104)
. ]}un(a, B,y)]2 dy
4}
2
and [s(y) W(y) u (a, B,y) dy
3 (@ B = 5 10e)
2
[un(a’ B,Y)] dy
-£
Substituting these into (6a) and making use of the fact that u,
satisfies the homogeneous equation (7a), one can determine a of (10a) 1
and Fc(ﬁ) becomes
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(0140 - k) Bn

X
2 2
oy - 1) - ol - 8% - @D - 2 el (o - k) o]

¢
n

+ ae un(ar ’ B).
@) - 12 - o - g%~ @&H?
0 L
(11)
If the velocity om the surface of the airfoil, (4) is such that
Wxy) = BOX® v+ ) 3 (12)
where H is a step function and ¢ is the amplitude of oscillation and for
linear duct flow distribution represented by
8(y) = Ay , (13)

then Xn™ 0 and (10d) and (10e) become
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(¢)
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x L A gk -
X537 [0+ 35 Al'ae () - W],

boacid ACDT 2D e )12, — (14a)
n 2%, 4 oM. - k 0 ’ 24»

@&n 0

[}
RS I Gy
co X 20 3 AL

n
¢ =% 59,: 4sa02 Sll-)—-z- n=1, 2, — (14b)
n (am)
Inverting (11), we obtain
1

pP= pal‘(uMo - k) B'o +acc uy (@, y)

]
0
\F(ouo - k)2 - az

X i-8in [z %ouo - k)2 - 0,2]

1
= u (a, y)
Y (M, - 0% o - q_u)z n

+ Z pa[(omo—k)'b?n+ac-:'én]

n=1

2
x 1 sin [z-\/(ano - k)2 - az - (%) 1. (15)

One can show that if one replaces i:sine of (15) by cosine, it also satisfies

(5a and b); and (5¢) becomes, in such a case
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Hence the solution is a sum of these two expressions, i.e.

B = pa [ty - k) By + ae ] e Y, (o, Y)

V(-ano-k)I-a

2

X exp [121V4GM0 - k)2 -a]

. 1
+ S_ pa [(mu0 - k) Sn +0€ cn] - - — un(u, y)
a1 (at, - ©° - o - &
x exp [1iz 1V/(GMO -w?-d?- (%g)zl .
(16)
C. Inversion of Fourier Transform.
Inverting (16) with respect to o and by deforming the contour
of integration, we obtain the pressure on the airfoil, z = 0, as
P o= -%/;?—% X (x) [a,(0) + a,"(0) + &, (0)]
X' (x) [ (0) + 2a,"(0)]
+X''(x) a, (0)
x
+[ X (x) ay(x - t) de), (17a)

0
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ay(x) = -k& eo(x) + uieo'(X)

+ \)6 ' (x) --—E 18 "(x)

_n° am2 _ g2 '
Z vl LS SR UL
2

- L 2 tee
4kM0 en (x)+21M° GA x)),

al(x) = ui eo(x)

+ 2 60'(x) - &1 90"(x)

n
+ €A Z ) g (%)Z-Zkzlien(x)

n=1 (n—")l'

-8k My 0 ' (x) + 61 u02 '’ (x)) ,

az(x) = veo(x) - Eieo'<x)

n
+eA Z —ﬂl‘L -4knoe(x)+6iu 8" (x)

n=1 ED
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(17b)

(17¢)

(174)
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83(X) - - Ei eo(x)
n
+ €A Z ?Sr—l),‘— 21 u02 6, , (17e)

where

W= MR +— agt ek“+-3- asd

8 4
v-ls Af ekuo,

£ -% u‘euoz ,

and where
-2 Mok
6 (x) = exp (-ix —7 )

mﬁ m

LJ

x [ cos h (mknz s8inf) exp (-i)(kt_l cosf) vn(e, y) do ,

(17£)
1/2

Vn(e,y) = un (a’ Y) 9

which is given in (9) and where

Mok
o -Ancose+—2-— .
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If the amount of shear, €, is equal to zero, one can readily
show that the above expression is reduced to the standard solution of

two-dimensional airfoil oscillating in uniform supersonic flow.
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IV. Discussion of Results.

1
Figure 2 and 3 compare cp = p'/2 Duz, computed from (17) and

evaluated on the surface of airfoils placed in a linearly sheared duct
with the one corresponding to uniform flow. The pressure is calculated
at the top of the duct and the airfoil is oscillating in torsional motion

at mid-chord with unit amplitude. Additional parameters are as follows:

%- 1.5, where £ is half-duct height, ¢ is airfoil chord,

w
—a‘i=o.7 R

and

M= 1.3 +0.0666 (1) .

It clear that the spanwise velocity distribution corresponding to the

three dimensional, radial velocity gradient indeed induces significant

modification to the one for radially uniform or two-dimensional approximation.

s i ¢ A il ;4 e S

U
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