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FOREWORD

This technical report covers an investigation on unsteady supersonic

flutter carried out, starting on January 1, 1974 and ending on December

31, 1977. The research was sponsored by the Air Force Office of Scientific

Research under Contract F 44620-74-C-0040.

For most of the contract period, the research was carried out at the

Contractor's site, General Electric Corporate Research and Development,

Schenectady, New York; due to the unexpected departure of the principal

investigator, M. Kurosaka, from the General Electric Company to the Univer-

sity of Tennessee Space Institute on September 1, 1977, it was then sub-

contracted to UTSI, where it was continued and completed.

Aidine the principal investigator, I. H. Edelfelt of the General

Electric CRD performed most of the computational task and C. E. Danforth,

then chief consulting engineer of acromechanics of G. E. Aircraft Engine

Business Group, Evendale, Ohio, served as a consultant to the program;

J. Q. Chu of UTSI, a graduate research assistant, also helped the

principal investigator.

The contract was monitored by Lt. Colonel R. C. Smith, Program

Manager, Directorate of Aerospace Sciences, Air Force Office of Scientific

Research, United States Air Force, Bolling Air Force Base, D. C.

This final report supersedes all the previous interim reports

and includes all the technical papers, both published and under preparation,

which were written under the research contract.
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OBJECTIVES OF RPSEARCH

Overall objective was to develop an analytical tool which enables

one to define instability boundaries for supersonic unstalled flutter of

aircraft engine fans and compressors and also to provide insights into its

prevention.

The region of the supersonic instability often falls on the operating

line of a high speed fan; consequently, the existence of such flutter pre-

sents itself as a barrier problem for the design of high Mach number fans.

In order to overcome this serious obstacle, it is necessary to improve at

an accelerated pace our capability to define and, at the same time, to

minimize the region of blade instability.

The present program was comprised of three phases. In Phase 1, a

simplified model of flat-plate airfoils was adopted and its objective

was directed to extending our previous low frequency analysis to a higher

frequency of practical interest so as to predict oscillatory forces

acting on unsteady supersonic airfoils in a cascade subject to subsonic

axial velocity. Phase 2 was conducted so as to remove the restriction of

flat-plate airfoils; this extension is necessitated because there are

substantial experimental data which indicate the importance of airfoil

shape. Phase 3 addressed the effect of flow three-dimensionality,

particularly the influence of radial velocity gradient in steady base

flow and the means of flutter suppression by the provision of liners on

outer casing walls.
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r
SUMAARY OF SIGNIFICANT RESULTS

Since all seven technical papers, which are either already

published or under preparation for publication, are attached in this

report, we relegate the necessary details to them and here summarize

only the important results and conclusions.

In Phase 1, airfoils were assumed to be flat plates. An expres-

sion of unsteady pressure distribution valid for the range of frequency

parameter of practical interest was derived in closed form which is

applicable to any cascade geometry and arbitrary motion of airfoils;

this was an extension of our previous low frequency analysis (ASME

Transactions, Journal of Engineering for Power, 1974, Vol. 95, January,

pp. 13-31). When the unsteady pressure distribution was used as input

to flutter prediction, the following two major conclusions were establish-

ed: the zone of torsional instability tends to shrink as the frequency

parameter Increases, and at the value of frequency parameter of convention-

al design, the bending instability is predicted, the latter being in

agreement with the experimental data. The details of these were

presented at the IUTAM Smposium on Aeroelasticity in Turbomachinery,

Paris, October, 1976, and published in Revue Francaise de Mec9nique,

Numgro Special, 1976, pp. 57-64, appended here as Appendix 1. In

addition, our discussion on the issue of 'resonance' in a supersonic

cascade has been published in the AIAA Journal, vol. 13, No. 11,

November, 1975, pp. 1514-1516 (attached as Appendix 2).
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In Phase 2, the restriction of flat plate was removed. The effect

of airfoil shape was examined first for an isolated airfoil and the

cumulative effects of nonlinearity on the unsteady pressure in the far

field was studied. For an oscillating airfoil whose contour is of para-

bolic arcs, an analytical expression of unsteady flow field was obtained.

The results clearly indicate that the effect of airfoil shape deeply

affects the unsteady flow in the far field. This was published in the

Journal of Fluid Mechanics, vol. 83, part 4, pp. 751-773, 1977, appearing here

as Appendix 3. The obvious implication of this result for a single airfoil

was indeed borne out in the subsequent extension to the cascaded airfoils

where the importance of the airfoils shape was in fact confirmed, the

details of which are described in Appendix 4.

In Phase 3 the effect of the flow three-dimensionality on flutter

boundary was examined. The objective here was not so much on the precise

prediction of the three-dimensional unsteady flow field, which would

amount to an extremely complicated task; rather it was deemed more bene-

ficial to focus attention on the effect of the surrounding casing walls

and specifically to examine whether the use of sound absorbing material for

the wall might significantly relieve the fluctuation of pressure on the

airfoils. Since the critical section of the fluttering airfoils in super-

sonic flutter is located near the very tip of the airfoils, the provision

of the acoustically treated wall on the adjacent outer casing would be

directly effective in relieving the unsteady fluctuation and eventually

reduce the level of unsteady pressure acting on the airfoil surface.

Based on this idea, an analysis was carried out for a model problem
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where an isolated, three-dimensional airfoil is placed in a duct

whose upper wall is acoustically treated. The flow in the duct is super-

sonic and initially assumed to be uniform; the airfoil is oscillating in

the transverse direction. The molution indicates, as expected, the un-

steady pressure field produced by the motion of the airfoil is significantly

affected by the presence of the acoustically treated "soft" wall, as

described in Appendix 5. During this phase, an additional analysis was

made to examine the effect of the spanwise variation of the incoming

steady flow. This was done in order to assess the refraction effect of

the acoustic signal due to its interaction with the non-uniform

steady velocity field where the fans/compressors bladings are immersed.

This presented a challenging task of investigating the nature of the

acoustic wave propagating through non-uniform flow, which is mathematically

described by governing equations with varying coefficients. From our

effort to surmount this difficulty evolved a powerful but simple technique

which was found to be highly effective in solving a general class of problems

involving unsteady disturbances propagating through non-uniform media;

this is reported in Appendix 6. This general technique was then applied

to examine specifically the effect of velocity gradient upon the unsteady

pressure on supersonic airfoils, where, as shown in Appendix 7, the

three-dimensional effect was quantified.
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APPENDIX 1

"Some Recent Devetopments in Unsteady Aerodynaics of a Supersonic Cascade."
presented at the Symposiun of International Union of Theoretical and Applied
MVechanics on Aeroeasticity in Turbomachines; published in Revue Francaise de

Me6anique, Nrwno Spicial, 1976, pp. 57-64.



SOME RECENT DEVELOPMENTS IN UNSTEADY AERODYNAMICS
OF A SUPERSONIC CASCADE

by

M. KUROSAIKA and 1. H. EDELFELT

1. INTRODUCTION

Quite unexpectedly, the advent of high speed turbo-fan aircraft engines unfolded a generically
new type of blading instability -- supersonic unstalled flutter. The instability, which until re-
cently had been virtually unheard of, is found to occur when the tip speed exceeds sonic velocity;
since the unstable regions spread over the operating line where the incidence is small, the flow
over the bladings is not stalled. In order to develop a consistently reliable means of averting
this trouble, the unsteady aerodynamic forces acting on the oscillating airfoils in a fan must be
accurately predicted. In the present paper, we shall attempt to present recent develop ents of the
unsteady aerodynamics of supersonic cascades carried out for the past several years at the Research
and Development Center, General Electric Company; this is essentially an extension of our previous
work. [1]. The other related works in this area which have appeared until now are [2] to 1101.
While it will be attempted to make the paper as self-contained as possible starting from the descrip-
tion of the relevant background, prevailing emphasis will be focused on the recent and hitherto un-
published analytical results, which we hope to be of both sufficient interest and practical importance.

2. CHARACTERISTICS AND PHYSICAL MECHANISM OF SUPERSONIC UNSTALLED FLUTTER

When in flutter, the bladings vibrate sinusoidally at their natural frequencies; both predomi-
nantly bending (or flexural) and torsional motion of the airfoil tip section have been observed in
unstalled supersonic flutter. The contour of the airfoil is known to introduce a significant, first-
order effect on the flutter boundary. As an example, for an airfoil which had experienced unstalled
supersonic flutter, apparently minor modifications in the airfoil shape succeeded in removing the
instability. The back pressure also affects the unstable region but lowering the back pressure it-
self does not cure the flutter problem.

As regards the physical mechanism of the unstalled supersonic flutter, the first obvious cause
that comes to mind is the self-sustained shock-boundary layer oscillation. The shocks impinging on
the boundary layer often cause its separation. For an isolated airfoil in the transonic range where
a shock appears over the airfoil surface, such shock-boundary layer interaction has often asserted
to be capable of sustaining self-induced oscillation. If this is indeed true, similar phenomenon
can certainly be expected even in a cascade. In fact, visualization studies of the fluttering air-
foils in a supersonic cascade apparently show such oscillatory movement of the shock-boundary layer.
Since the shock-boundary oscillation is the phenomenon most conspicuously visible in such a study,
one is irresistably tempted to conclude that this is the driving mechanism of the supersonic unstalled
flutter, where the oscillatory movement of large pressure rise associated with the impingement of the
shock may be directly responsible. However, before one hastily jumps to the conclusion, we have to
address the question of whether the shock-boundary layer oscillation is the real cause of the flutter
or the aftereffect of the flutter, which itself is initiated by some other mechanism. Indeed, a
careful review of the issue leads to what appears to be an inescapable conclusion -- the self-
sustained oscillation between the shock and the boundary layer does not play a major role in the
present instability. For example, in (11], Liepmann and Ashkenas found that, although the oscilla-
tion of a shock wa observed for a transonic airfoil placed in a wind tunnel, the removal of the
sources of disturbance, which otherwise always exist in any wind tunnel, virtually eliminated the
oscillation of the shock. Other available experimental evidences tend to support the similar con-
clusion that the self-sustained oscillation between the shock and the boundary layer is a weak
fluctuation.

Then, what is the predominent cause of the supersonic unstalled flutter? It is well-known that
for an isolated airfoil in supersonic flow where the shocks are attached to both the leading and
trailing edges and do not appear on the airfoil surface, the motion of the airfoil could become un-
stable under certain circumstances. Such an instability, which occurs in the obvious absence of
self-sustained shock-boundary layer oscillation, is caused by the phased lag response of the unsteady
flow outside of the boundary layer to the motion of the airfoil. At the debut of supersonic un-
stalled flutter in the late sixties, we identified this inviscid mechanism as the primary cause of
the instability and the validity of the diagnosis has been increasingly buttressed by supporting
evidences.
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3. DIFFICULTIES ASSOCIAED WITH TME ANALYSIS

For the reason Just stated, in the analytical formulation, we assume the flow to be inviscid.
Also the flutter tends to become more severe as the pressure ratio is lowered. Hence we examine the
situation of the low pressure ratio where the flow can be approximately taken to be purely supersonic
from inlet to discharge. In addition, in this first attempt, the flow is assumed to be two-dimensional.
Even after these idealization, the analysis of the problem on hand is a difficult one. One source of
the difficulties results from the fact that in a current design of the fan, the axial velocity is sub-
sonic even when the relative velocity is supersonic. This axial subsonic velocity implies that the
Mach waves emanating from the leading edges extend upstream of the cascade front line, Figure (1),
and there, in what is called preinterference zone, one has to take the mutual interference into ac-
count. Were the axial velocity supersonic, the Mach waves would be confined within the blade passage
and consequently there would be no region of mutual interference upstream of the cascade front line.
Furthermore, if one looks at the wake region off the airfoil, Figure (1), we note that the wake velo-
city between Q and R does influence the trailing edge section of the adjacent blade between points S
and T. Since one does not I priori know the wake velocity, it must be sought as a part of the solu-
tion. (Again for supersonic axial flow, the wake velocity does not influence the pressure distri-
bution on the airfoil surface.)

Another source of difficulty is masked in delicate subtlety and more fundamentally hard to
overcome -- the breakdown of the acoustic theory in the far field. As is well-known, acoustic theory
in a moving medium is based on two major underlying assumptions: a disturbance propagates at a
uniform acoustic velocity and is swept downstream at a constant freestream speed. Although this
approximation Is sufficiently accurate in the vicinity -f the body, the acoustic theory for a super-
sonic flow is manifestly unfit for the description of the far field; it fails, for example, to re-
produce the fanning out or coalescence of Mach waves. The reasons for the breakdown have long been
understood: as a wavelet spreads out, two nonlinear effects ignored in the acoustic theory -- the
nonuniform acoustic and flow velocities which vary with both place and time -- emerge to exert their
influence over a large distance. The nonlinear effects are locally small everywhere, including the
far field. However, not only is the disturbance at a given point influenced by the localized,
slightly perturbed flow properties but it has been undergoing a continual distortion while propaga-
ting through a nonuniform flow field. It is this cumulative distortion or "memory" content of the
signal, which encroaches upon the result of the acoustic theory and eventually alters it in the far
field. The breakdown of the acoustic theory raises a serious concern for a supersonic cascade if one
takes the approach along the same line as adopted in the subsonic cascade aerodynamics where the up-
wash generated from all the airfoils are summed up within the framework of the acoustic theory.

4. PASSAGE APPROACH

The complication arising from the breakdown of the acoustic theory in the far field can be cir-
cumvented by resorting to a simple stratagem of what we call the passage approach. In the passage
approach, we focus our attention to a strip of the flow field, the L-shaped region bounded by y1 , x1 ,
x2 and Y2 axes of Figure (2). Then, the infinite cascade arrangement is replaced by a physically
equivalent requirement of flow periodicity. In the case of subsonic flow, this approach would not
offer any additional advantage. However, in the present supersonic situation where the range of in-
fluence of a given point in the flow is limited within its Mach cone, the attractive feature of the
passage approach is that it enables one to formulate the problem involving only those points close to
the reference airfoil; for example, the Mach cone emanating from a point along the yl axis of Figure
(2) and located far from the leading edge completely misses the flow passage between the first and
second airfoil and consequently in this formulation the pressure distribution upon the airfoil is
unaffected by It. Since the formulation involves only the near field, the flow field of interest can
be closely approximated by the acoustic theory, provided the thickness of the airfoil is sufficiently
thin and can be neglected. (We will later see that for supersonic airfoils of conventional design,
although their contour is relatively thin, it is not quite slender enough to be described adequately
by the acoustic theory. Nevertheless, even under such a circumstance, the passage approach still
extends its convenience in circumventing the trouble of summing up all the upwash.) Restricting our
attention for the time being to flat-plate airfoils, let us examine how we can apply the passage ap-
proach to determine, within the framework of the acoustic theory, the flow in the preinterference zone.

If we focus our attention on the flow entering the passage, it is of course not equal to the up-
stream flow and must be determined as a part of the solution. If the initial conditions along the
yl axis of Figure (2) are assumed to be known as

ay)f(y) ; (x 0, y)-g(x) (1)
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where ' is the spatial amplitude of the perturbed velocity potential, then along-the boundary condi-
tions, it is quite straightforward to determine the flow downstream of it. The solution of the acous-
tic equation subject to the initial conditions and the boundary condition for the first airfoils is
given by equation (3.4) of [11. The expression of j' given therein is applicable to the preinter-
ference zone where the effect of the second airfoil Is not felt (the shaded region of Figure (2))
and it obviously involves the initial conditions. f and g, where are unknown. However, the unknown
initial conditions must be equal to the velocity potential, i', at the corresponding point on the y2
axis, with the exception of the phase lag. Consequently the Initial conditions my be replaced by
the velocity potential ;' and we obtain the following equation for the velocity potential:

x- r
;'(x, y)= 1 J V(T) exp[- i (x - T)]JO ((x - T) - mly']dT

0
+ 1 exp(-ik x.-tp ['s Ix+y+1 ~
2 c Im

*+ mexp(-ik )O " ( [j(SI  T + E) + Lk j'(S1 , T + L)1J0(X, Y; T)

k -j-i(s 19 T + E)J (x. Y; r)}dT

+I

11

- x - y

( + Lk j'(5 1 , + 1)J (, -Y; T)

k p_ s1, T + I)JI(x, -y; T)}dl (2)

where V(x) is the normal component of the fli elct on the reference airfoilm 04(2  
0%1)

where %, is the freestream Mach numb~er, c isth chord, k is wc V' U,,(N2, 1) w is the fre-
quency of oscillation and U. is the freestream velocity, Jo and J, are given by

JOx Y )- JO) +. + 14.y+ i {[x(l k + tkk

where JO and J1are Bessel functions of zeroth and first order. respectively, Pi is the interbiade
phase angle and sl and I are parameters defining cascade geometry as given in Figure (2). (Strictly
speakin?, the above equation (2) is valid only for points belonging to the doubly hatched region of
Figure 3of (11 but this restriction is not essential.) We note that in (2), the first term on the

right hnd cor esod to the solution for an isolated airfoil and known. The bracketed expression
in the second term involves 4' in difference form, while the third term contains *j' under the inte-
gral sign. Thus we call the equation (2) as the integro-difference equation. We also observe that
the integro-difference equation is 'two-dimensional' in the sense that there are two Indeedn
variables, x and y. We have to solve (2) for the unknown ;j' to determine the preinterference zone.

Ss , . it was found that by confining our attention to the low fre-

equency solution, it was possible to obtain a solution of the integro-difference equation in closed-
form. According to the scheme, we expand all the variables in term of the frequency parameter and
retain only terms linear to frequency. Thus, for instance,

7' *,) iB(€+.

Wore 0 a c/U Then the i ro-diffrence equation (2) becomes considerably simplified; the
equations corresponding to *9 and 40 are given as equation (3.17) and (3.18) Of 11, respectively.
!hp solution for the simplified integro-differen ce equation is given by equation (3.26) of the sam
paper, where the first term corresponds to an isolated airfoil solution and the other term repreo
sents the correction due to cascade arrangen t. For the limit of sonic leading edge, the second

grl ig.Ths ec01 h euaio 2)aste ntge-ifeene quton H ls osrv5ta



term is reduced to zero. leaving only the term corresponding to an isolated airfoil solution. This
is what should be expected because of the lack of any preinterference in the sonic leading edge limit.

Pursuant to this determination of the preinterference zone, a solution for the flow downstream
of it can be obtained, including those regions affected by the wake. The complete expression for the
unsteady pressure distfibution is given in closed form by the equations (4.6) and (4.7) of Part 2,
[1). (There is a typographical error in the equation (4.6) and the last term in the bracket should

read H(x1 - 2n tin) instead of H(x1 - 2n W).) The unsteady pressure given there is in
n- I n 0

general form and applicable to any cascade geometry. For cascade geometries of practical interest,
however, it can be reduced to considerably simpler form. For instance, if one chooses the cascade
geometry of Figure (3), which is characterized by the requirement that the bow shock emanating from
the leading edge of the airfoil misses the preceding airfoil, the unsteady pressure distribution is
given in the following form: if we express the pressure distribution as

4i ho e t cb( ) (bending) ; ACp 
4  )e. t (cI) + ' c l (torsion)

where h0 and a0 are the amplitude of bending and torsional motion, respectively, then for 0 < x <
C - Sl +Im,

c ) - i ; C(O) i ,

,, M2  2 Ms-m 2~ 2 M2._-2
c 2'J -xx 0  se - [px + S, - 2 I- x0)

and for c - s1 + a < x < c
M2 - 2 ip st - Im

where x0 is the position of the torsional axis measured from the leading edge. The point x - c -
sl + Im corresponds to a point on the pressure surface where the shock emanating from the trailing
edge of the preceding airfoils impinges (point P of Figure (3)). For the other cascade configura-
tions, once the shock pattern is specified, the pressure distribution of [1] can be reduced to
similarly simple form. Applying the pressure distributions to stability calculation based on a two-
dimensional model, the flutter is shown to occur at the torsional motion and the flutter boundary is
strongly affected by cascade parameters (see Figures (4). (5) and (6) of Part 2, I1); bending motion
is always predicted to be stable according to low frequency analysis.

For the purpose of practical applications, however, an extension of the analysis was called for,
because the frequency parameters of the aircraft engine fan is of the order of unity and cannot be
categorized as belonging to the low frequency case.

6. EX"ENSION TO HIGHER FREQUENCY RANGE

Hence, subsequent to this low frequency analysis, we embarked on the extension of the analysis
to the frequency range of practical interest. It was found that the best way to solve the integro-
difference equation. (2). is to write il as

x - my

,V(=) exp[- L (x - T)jj 0 [.k .Vx - T)' - my7]dT + A + Ox + Cx2 + Dy2 + EX2 + Fxy 2 +
m cR. (4)

where the first term corresponds to an isolated airfoil solution and the rest of the terms represents
the cascade correction. We note that the odd terms of y, like y. xy and x2y are missing in the cas-
cade correction term and this is due to the asymmetry of the integro-difference equation with respect
to y. The coefficients. A. B, ..., can be determined by substituting them into the integro-difference
equation. It turns out that due to the very nature of the difference form involved, one cannot
determine coefficients in a successive way; they have to be determined simultaneously by solving an
infinite number of linear algebraic equations. For all practical purposes it is sufficient, however,
to retain the coefficients up to F and they have been solved in explicit form; nummrical checks show
that such a solution can satisfy the integro-difference equation quite closely for the frequency para-
meters of practical interest. As an example of such approximate solution. A, of equation (4) can be
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written out as

li ~ ~ ~ pj Ik k _______

V() exp[- -(s - T)]Jo[ ,/(s1 - - £.m..d +

A uP2 i Ijl~i ml N (!L)2 S2e ji(j+jil) +*M
2(1' + 4s a i

This new solution reveals nonuniformity associated with the previous scheme of frequency ex-
pansion discussed in Section 5. If we once again look at the equation (3), we note that the low
frequency expression possesses a factor 1 -Ie1 as its denominator and hence becomes singular at
zero Interblade phase angle (p - 0). As pointed out in [1], from this singular behavior the unique-
incidence effect can be recovered in the steady limit. However, the existence of the singularity at
any frequency implies that even in the unsteady case, the pressure distribution would become infini-
tely large at this zero interblade phase angle. The reason for this anomaly of the previous, low-
frequency solution can readily be observed if we inspect the expression of the denominator of (5).
Namely, as long as the interblade phase angle, u, is sufficiently far from the value of zero, one can
legitimately expand the expression in the power series of the frequency parameter, k. In such an
expression, the denominator becomes the leading term, 2(1 - ji

T
)2, and one can show that the expres-

sion in fact agrees with the corresponding one obtained by the low frequency analysis. However, the
leading term (and also the next term) of the denominator of (5) vanishes at zero interblade phase
angle and consequently the formal expansion in the frequency parameter breaks down at this point; in
other words, the regular perturbation scheme in the frequency is not uniformly valid (though in
practical flutter calculation, this particular situation of zero interblade phase angle is of little
significance). The present improved solution such as (5) removes this nonuniformity, in addition to
extending its range of applicability to the practical frequency. The expression of (5) becomes
singular only if both p and k simultaneously become zero and from this, one can again obtain the
unique-incidence effect as the steady limit in exactly the same manner as described in Section 4 of
(1]. Except for this condition, there is no other singular point in (5) (see (12]).

The wake velocity can be determined likewise by expanding it in a Taylor series of x about the
trailing edge and we obtained a closed-form expression for the pressure distribution now valid up to
and including the frequency parameter of practical interest.

Figure (4) shows an example of the unsteady pressure distribution for a cascade arrangement
corresponding to Figure (3); the airfoils (M - 1.3, solidity a 1.0, stagger angle - 600) are exe-
cuting torsional motion at its mid-chord wit interblade phase angle of 900 (a) and 1800 (b). The
solid lines correspond to the solution obtained by the present scheme and the dashed lines to the
low-frequency solution, equation (3). It is of interest to observe that, at these interblade phase
angles, the low-frequency solution holds up remarkably well in comparison with the more exact present
solution. The stability analysis shows that the region of torsional instability tends to shrink as
the value of the frequency parameter increases, but even at the frequency parameter of unity where
the isolated airfoil becomes completely stable, there still remains a considerable region of in- " .$
stability for cascaded airfoils. As a matter of considerable interest, the flutter analysis for the
bending motion shows that although at low frequency the bending motion is always predicted to be
stable, at the frequency parameter of practical interest, 'islands' of bending instability emerge.
We feel that the results are encouraging, because, as mentioned in Section 2, the bending mode In-
stability as well as the torsional one was observed for the actual fans in supersonic unstalled
flutter.

7. CLMULWVS. NONLINMR EFFECT OF AIRFOIL SHAPE

We here recall a remark made earlier in Section 2 on the first-order effect of airfoil shape
upon supersonic unstalled flutter. As mentioned In Section 3, the acoustic theory does not take
into account the nonuniform fluid and acoustic velocity produced by the very presence of the aIrfoil
with thickness. Consequently one has to depart from the conventional acoustic theory in order to
captwe the quintessential feature, of the effects.

Prior to embarking on the description of the analysis, we first consider what one can anticipate,
from the physical reasoning, as the consequence of nonuniform flow field. Let us first assume that
only a single point on the airfoil is sinusoidelly oscillating. When one plots at a given point in
flow the tm-trace of the disturbance emitted, the departure of the nonuniform acoustic and con-
vective velocity from the uniform ones (acoustic theory) would be graphically revealed, mainly, as
the phase difference between the actual signal and the one predicted by the acoustic theory. The
phase lag depends on the position and the more one oves away from the source, the more the phase
ag would increase. Suppose now that the airfoil, as a whole, is oscillating. Then the above phase
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for an individual disturbance, which differs from one signal to another, and that alone -- to say
nothing of the modification in the amplitude of each signal -- could introduce, when signals are
vectorially added, a significant correction to both the amlitude and phase of the unsteady flow in
the far field. Thus the nonuniform flow field associated with the airflshape would introduce a
change in the very substance of the fluctuating pressure (in addition to the usual alteration to be
made to the direction of the characteristics). The modification induced to the far field signal has
the following implication, which appears to warrant sufficient emphasis: contrary to the situation
in the near field, the unsteady signal at a large distance -- even to the first order of small per-
turbation -- can by no means be separated from such effect; as the airfoil shape, camber and angle
of attack, which cause the properties of propagation nonuniform. If this is the case, no doubt this
appears to explain the significance of the airfoil shape in the flutter boundary of cascaded airfoils.

We intend to confirm these physical expectations and for that purpose we first obtained the un-
steady flow off the surface of an isolated oscillating airfoil with thickness, [131. The upper and
lower surfaces of the airfoil are assumed .to consist of parabolic arcs. (Since the bow shock is
assumed to be attached, the supersonic flow above the upper surface of the airfoil is independent of
one below and consequently the analysis can treat the effect of camber as well as thickness.) The
governing equation includes the second-order terms which amount, in the far field, to first-order
unsteady term; this can be accomplished by the use of the strained coordinate technique of Lighthill,
Whitham and Lin. We relegate the details of the analysis to [131 and at present it suffices to point
out that in the final result, the unsteady velocity potential can be given,.to the first-order of
swell perturbation, by the following integral representation:

sF" j V(-r)eik(T - x)exp[i jj- N - 2nmy 0'(1)(s)] x exp{i L [(N - 1)(0(')(s) -

0

+ N(s - T) 010)(s)]} x M[s k i c k a N (s - T)(p - ")]dT (6)41 c a N ' m
where ) s the steady velocity potential, the shape of the airfoil (in the mean position of

oscillation) is given by

C(N a x2 + ex)

and where N a (y + l)I1V/2(m) 2, s and p are characteristic coordinates based on the steady velocity,
and M is the confluent hypergeometric function. Contrary to the acoustic solution which breaks down
in the far field, the present solution is uniformly valid in the entire flow. When reduced to various
limits, it agrees with such known solution as the Whitham's rule at the steady limit, oscillating
flat plate and the wedge solution of Carrier and Van Dyke. More importantly, the above solution for
a parabolic airfoil reveals many physical features relevant to the propagation of unsteady distur-
bance through nonuniform flow.

The numerical results are presented in Figure (5), where the unsteady pressure distribution for
a parabolic airfoil (thickness to chord ratio - 2.5%), computed from equation (6), is shown in com-
parison with the result for a flat-plate airfoil at two different frequencies of oscillation --
wc/U - 0.1 in Figure (5a) and wc/U - 1 in Figure (5b). There, both the amplitude and phase are
plotted as functions of s, or the dTstance of the root of a straight Mach wave and at three different
locations of y. We observed that - though for wc/U - 0.1 the effect of the airfoil shape does not
become prominent at these locations -- for wc/U, - 1, except for the close vicinity of the leading
edge, it indeed alters the pressure distribution significantly, as anticipated by the physical
considerations.

This result for an isolated airfoil appears to explain the importance of airfoil shape in super-
sonic unstalled flutter and currently efforts are under way to include the above results into cascade
analysis. Though evident from the foregoing analysis, it appears worthwhile to emphasize that, in
all phases of the present study, efforts are focused on deriving the solution in closed-form or at
least rotaIning its analytical structure in order to facilitate the examination of the roles played
by the various parameters and also to minimize the computational time expended for repeated flutter
calculations.
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On the Issue of Resonance in an derivative of J,, and obtain

Unsteady Supersonic Cascade 3 (WSW , -a: v---_ j (2)

M. Kurosaka where
General Electric Company. Schenectady, N. Y.

W(xjy)=k I(x +nx.,)iI (y + nyA ) ]  (3)

I N a recent paper, Verdon and McCune' presented a We will show that S(x) is divergent for certain combinations
inearized analysis of an unsteady supersonic cascade with of parameters. For this, rewrite W(x,v) as

subsonic axial velocity. It is an interesting advancement on
Verdon's previous paper.' To achieve its objective of com- W(x,y)
puting the pressure distribution, the analysis of Ref. I starts
out to add the contributions from unsteady disturbances = Iz(n) -2z(n)Z(x.y)cos O(x.v)+Z 2

(x,y)I'
,  

(4)
generated at all the oscillating airfoils below the reference air-
foil in the cascade. The partial sums of the series were found % here
to oscillate about apparent limiting values in general but, un-
fortunately, convergence was not proved. Aside from the z (n) nk (xl- 142y'l)
problem of convergence. Ref. I also reports that under certain
circumstances the numerical scheme broke down rather inex- Z (xy) k (x2 -p 2

y
2
), (Sa)

plicably. Thus it states in the concluding remarks that further
work is needed to resolve these questions. O(x,.v) = -iFtanh -/(py/x)

Several years ago, the author of the present Note en-
countered essentially the same series and found that it - tanh '(.vA Ix) ] - r  (Sb)
diverges at a certain number of discrete points, although these
results were never published. The appearance of Ref. I. 1his transformation. Eq. (5) may be conveniently achieved by
therefore, seems a fitting opportunity to point out the introducing a set of auxiliary variables defined by x=p cosh
divergence of the series, to offer it as a possible explanation s,, y= p sinh P. x 4 =p 4 cosh P 4 , and sYA =PA sinh a.4. Now
for the aforementioned breakdown of the numerical scheme from Neumann's addition formula,' J0 can be expressed as
and to discuss its physical implications in regard to resonance
and other salient points. J( 14") = e,,J,, (Z)J,(z)cos m0
Consider, for example, the following kernel function K(x). , -

which appears in the integral equation (23) of Ref. I:
where

K(X) = - (I/gS(x)
t., =1 for m=O (6a)

where S(x) is given by
,, =2 for m=1,2.... (6b)

S(x) = - E k 4 lYny
e ' n  

for any complex values of Z. z, and o. Substituting Eq. (6) in-
to Eq. (2) and assuming the validity of the interchange of the

J, I k 1_(x - nx,., ) 2 - (P1fl, 4 " I order of differentiation and summation, we obtain

I(x-nx4, l:-( nn.)- S~x) = a*

where x 4 and y. are the spatial distances between the ad-
jacent airfoils in the cascade defined in Ref. I, p = (M 2 

- I)"
where M is the Mach number. x4 -. y4 20 (subsonic axial x -_ z - -_ -es. (7)
velocity). k is a frequency parameter, and 11 is related to the X-(
interblade phase lag o. The nth term in the sum represents the 0
influence of disturbances generated at the nth (n<0) below where a,,. is given by
the first airfoil. We replace n by - n. rewrite Jin terms of the

a",. = e I
t1
J [nk(x" - " (8)

Recived January 3. 1975: revision receised June .10. 1975. This In deriving Eq. (7), we have made explicit use of the fact that
work was in part supported by Air Force Office of Scientific Research z(n)=nk(x2-p'y?)

'
1 which appears in Eq. (8). is in-

under contract F44620.C-O00O. The author is graleful to J. Verdon for dependent of x andY. while Z and 4 are independent of n. The
sending him an advance copy of Ref. 1, before its publication. series of a,, is called a Schlomlich series. Here we want to

Index categories: Notsteady Aerodynamics; Supersonic and Hyper- single out a, and examine its real part, which is given by
sonic Flow: Airbreathing Propulsion. Subsonic and .personic. _

*Fluid Mechanics Engineer. Research and Development Center. Rel ao l= cos (nO)Js Iik(X r-iJA '
,  

(9)
Member AIAA. 4)
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Now from Ref. 4, for any t and x between 0 and r, the series region downstream of the Mach wave emanating from the
leading edge of the first airfoil, becomes

cos (n)Jo(nx) T(x, iy)= e - Jlk[(x-,I+nxA)

is divergent at t=x and therefore Eq. (9) diverges at
-A2 (Y+ nyA ) ] 211 (12)

kI WA - .v?)"

By a method exactly identical to that used for S(x), we can
It is easy to observe that Eq. (9) has another singularity at readily show that T(xq,y) again becomes divergent at the

condition, Eq. (10).
Q--k (x

2 - WY2) For the cascade A of Ref. I, the linear relationship betweena and k as indicated in the divergent condition, Eq. (10) is
or more in general has an infinite number of singularities at plotted in Fig. 2 for several values of n. As mentioned, break-

down of the numerical scheme was reported in Ref. I for cer-
f= *k(x2-p'2y2)" +2Tn n=O, *1, *2.... tain combinations of parameters; in Fig. 7 of Ref. I, for agiven value of k, a was continuously increased starting from 0

If we express 0 by the interblade phase angle a, this becomes and the failure occurred at a certain value of a. When we add
such combinations of a and k closest to the breakdown

a + kMA = : k(X2 _ A2y2) , situation to the present Fig. 2, where they are designated by
circled points, breakdown is observed to occur near the

+21n n=O, *1. *2.... (10) divergent condition.
The present divergent criteria. Eq. (10), are identical with

At these points the series S(x) diverges. We take special note those obtained by Samoilovich.
5 He obtained it under the

that the divergent condition for S(x) is independent of the restricted condition corresponding to x= v=y=0 in Eq. (12).
value of x. In such a case, the argument of J0 becomes proportional to n

One can check the divergent condition. Eq. (10). more and the use of the Poisson summation formula readily enables
directly by the numerical evaluation of the original series Eq. the series to be transformed into another series represen-
(I) in the vicinity of divergence. Let the departure from the tation, which possesses the singular points at Eq. (10). In the
divergence be A, i.e., present derivation, the divergent condition has been obtained

for the more general case of any finite values of x,,q, andy.
a+ kMx4 *k(x2-#y-)" -2wn=a It is a matter of considerable interest to observe that Eq.(10) is formally the same as the resonance condition in a sub-

where A=0 corresponds to the divergent condition, Eq. (10). sonic cascade,
6 and therefore it may be given the physical

The partial sum of Eq. (1) can then be written, after replacing meaning similar to that discussed in Ref. 7. Thus, for the
n by -A, as present divergence of the series associated with the supersonic

cascade, Samoilovich also gave the physical interpretation of
V "resonance." Contrary to the subsonic cascade, it is,

S, (x) =kp , expl -if[*k(x1-,2y2)'+,j1i I Y however, highly unlikely that resonance at these conditions
41 could indeed occur for a supersonic cascade. The reason is as

follows. We have found that the divergence is the direct con-
J11k[Ix+niX4)- (lnY)0(I1) sequence of the cumulative contribution of those airfoils

(X +f i4 ): - ] ,located far from the reference airfoil; in Fig. I, the peak does
not appear when the number of the preceding airfoils N is 5 or

A number of numerical checks have been performed and they 20, and it starts to emerge only at N = 200. Needless to say,
in fact confirm the divergence of the series at 4 = 0. For exam- such an effect is computed within the framework of linearized
pie, for the cascade A of Ref. I, the real and imaginary part of formulation. It is well known, however, that the linearized
S,. (x) (divided by kl,2 ) at x = 0.5 are shown in Fig. I as func- treatment of a supersonic flow breaks down in the field far
tions of A for the various values of N [ where the positive sign from an airfoil. According to the linear theory, disturbances
in the argument of the exponential function of Eq. (11) is created by the airfoil would propagate unattenuated, even to
chosen 1. As can be observed immediately, the series tends to infinity, for both the low- and high-frequency limits (for high-
diverge at A = 0. In addition, we note the following important frequency behavior, see Ref. 8.) Although in the near field the
points; linearized theory is a good approximation, the contribution of

a) The divergence does not appear when N the nonlinear terms become no longer negligible in the far
is 5 or 20. It starts to emerge at N=200 and becomes field and there it encroaches on and modifies the effect predic-
prominent at N=2000. In other words, the cause of the ted by the linear theory. Physically, this follows from the fact
divergence is not the effect of the nearby airfoils but the that, by the time disturbance reaches the far field, two
cumulative influence of those airfoils located far from the nonlinear effects ignored in the acoustic theory-the con-
reference airfoil, vection of disturbance by the local and instantaneous fluid

b) As A increases, the effect of x on the Ath term in the velocity and its propagation at the nonuniform speed of
series, Eq. (11), becomes insignificant.J When we combine sound-have cumulatively taken their toll and distorted the
this with a), it becomes evident why the divergent condition of shape of the wavelet given by the linearized theory. Thus, as
Eq. (10) for S(x) is independent of x. Lighthill 9 puts it: ". .. the failure of linearized theory ... is ex-

c) For a given value of A away from the divergence con- plained by the fact that ... while yielding adequate results in a
dition, the partial sum S5 (x) appears to oscillate as N in- limited region, may yield a worse and worse approximation to
creases. This behavior is in agreement with what was reported the solution farther and farther from where the boundary
in Ref. I. conditions determining the solution were applied." Con-

Other series in Ref. I can also be shown to diverge. For in- sequently, only the influence of a limited numbers of airfoils
stance, Eq. (20) of Ref. I contains a series, which, in the (N- 5, say, for a typical cascade) in the neighborhood of the

reference airfoils can accurately be predicted by the linearized
fThi enable one to check the dierten condition directly by using theory. As the distance from the reference airfoils increases,

theasymptotic formula ofJ, in Eq. (1I). the nonlinear effect would rapidly alter the linearized con-
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Cumulative nonlinear distortion of an acoustic wave
propagating through non-uniform flow
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In this paper we examine how the unsteady flow field radiated from an oscillating
body is altered from the result of acoustic theory as the direct consequence of dis-
turbances propagating through the non-uniform flow produced by the presence of
the body. Taking the specific example of an oscillating airfoil placed in, supersonic
flow and having the contour of a parabolic arc, we derive a closed-form representation
for the unsteady flow field in terms of the confluent hypergeometric function. The
analytical expression reveals explicitly that, though the body shape has a negligible
effect in the near field, it inextricably affects the unsteady flow at a large distance,
both in its amplitude and phase, and substantially modifies the results of acoustic
theory. In addition, we display the relation of this solution to the 'fundamental
solution' and the other salient physical features connected with disturbances propa-
gating through non-uniform flow. The present results recover Whitham's rule in the
limit of zero frequency of oscillation and also include, as another special case, the
unsteady solution for a wedge obtained by Carrier and Van Dyke.

1. Introduction
As is well known, acoustic theory in a moving medium is based on two major

assumptions- that a disturbance propagates at a uniform acoustic velocity and is
swept downstream at a contant free-stream speed. Although this approximation is
sufficiently accurate in the vicinity of the body, the acoustic theory for a supersonic
flow is manifestly unfit for the description of the far field; it fails, for example, to
reproduce the fanning out or coalescence of Mach waves. The reasons for the break-
down have long been understood (e.g. Lighthill 1954): as a wavelet spreads out, two
nonlinear effects ignored in the acoustic theory, i.e. the non-uniform acoustic and
flow velocities, which vary with both position and time, emerge and exert an influence
over a large distance. The nonlinear effects are locally small everywhere, including
the far field. However, not only is the disturbance at a given point influenced by the
slightly perturbed flow properties at that location but it has been undergoing a con-
tinual distortion while propagating through a non-uniform flow field. It is this cumu-
lative distortion or 'memory' content of the signal which encroaches upon the result
of acoustic theory and eventually alters it in the far field.

For a steady flow, the task of surmounting the shortcomings of acoustic theory has
drawn the attention of Friedrichs (1948), Lighthill (1949) and Whitham (1950, 1952),
to mention only a few. These efforts culminated in the following celebrated rule due

t Prmt addim: Univeity of Tenneee Space Institute, Tuflahoma, Tennesee 3738.
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to Whithamt (1952): to a good approximation, the result of acoustic theory can be
amended if one replaces the linearized Mach wave by one revised using linearized
velocities but, along this improved Mach wave, retains the values of the fluid proper-
ties predicted by acoustic theory. Crudely speaking, then, the only visible consequence
of the nonlinearity is the directional change in the Mach waves; the fluid velocities
remain essentially unchanged. We reiterate here that the flow is steady in the frame
of reference fixed to the body.

In contrast to the above steady flow situation, relatively less attention appears to
have been paid to problems where the flow is unsteady, again with respect to the
co-ordinate system fixed to the body. To be sure, related studies have been published
but they seem mostly to be restricted to a one-dimensional problem and its diverse
variants (e.g. Lesser 1970; Romanova 1970; Nayfeh 1975). There have been very few
attempts, if any, to obtain, in the spirit of the above steady problems, a complete and
uniformly valid solution and then display the global behaviour of the unsteady flow
field in either two- or three-dimensional space. Yet there are many important practical
problems, like the unsteady aerodynamic interference between a multitude of oscil-
lating bodies in a flow, e.g. flutter of cascaded airfoils, and other similar phenomena,
where such an improved prediction of the unsteady flow valid even in the far field is
critically needed. Prompted by this, we address here the problem of obtaining a first-
order correction to the acoustic field radiated from an oscillating body, accounting for
the interaction with the non-uniform flow created by the body itself.

In the case of unsteady flow, the nonlinearity will have additional consequences,
as one can anticipate from the following physical reasoning. Let us first assume that
only a single point on the body is oscillating sinusoidally. When one plots at a given
point in the flow the time trace of the disturbance emitted, the departure of the non-
uniform acoustic and convective velocities from the uniform ones (from acoustic
theory) will be graphically revealed, mainly, as a phase difference between the actual
signal and the one predicted by the acoustic theory. The phase lag depends on the
position and, the more one moves away from the source, the more the phase lag will
increase. Suppose now that the whole body is oscillating. Then the above phase lag
for an individual disturbance, which differs from one signal to another, and that alone
(to say nothing of the modification in the amplitude of each signal) could introduce,
when signale are vectorially added, a pronounced correction to both the amplitude and
the phaae of the unsteady flow in the far field. Thus the nonlinearity would cause, in
addition to the alteration to be made to the direction of the characteristics, a change
in the fluctuating pressure itself. The modification induced in the far-field signal has
the following implication, which appears to warrant emphasis: contrary to the situ-
ation in the near field, the unsteady signal at a large distance, even to first order in the
small perturbation, can by no means be separated from such effects as the body shape,
camber and angle of attack, which cause the properties of propagation to be non-
uniform. The effect of thickness, for example, would be inextricably embedded in the
far-field unsteady signal.

Our present aim is to confirm these expectations and we shall do so by investigating

t In early literature this was referred to as Whithan's hypothesis. Now that it has beeome
well established, it appears more appropriate to call it a rule instead. This rule should not, of
course, be confused with another rule, due also to Whitham, relevant to the propagation of a
shock through a region of varying cros-seetional area (e.g. Whitham 1974).
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FIGURE 1. Definition sketch.

the effects of a non-planar body, whose presence creates a non-uniform surrounding
environment, upon the unsteady flow field. We shall expressly limit our investigations
to the case of a two-dimensional slender body whose upper and lower surfaces consist
of parabolic convex arcs and which is oscillating sinusoidally in a supersonic flow
(figure 1). Though, by confining our attention to this particular shape, we shall
inevitably forfeit formal generality, the present approach will give a closed-form
solution which is amenable to detailed study; from this we hope to glean the essential
featurcs of the flow non-uniformities. With regard to figure I again, the thickness of
the body is characterized by a parameter e and the amplitude of oscillation by 0,.
We shall examine the cumulative effects of the second-order terms, which ascend in
the far field to a first-order unsteady term 0(00). There are three second-order terms,
0(e 0o), 0(0) and 0(e), of which only the first two are relevant for the present un-
steady problem. If one assumes e ), 00, one can discard the term 0(60), whose presence
would cause undesirable higher harmonics. With this assumption, we are now in a
position to focus attention on the remaining, 0(0, e) term, which represents the genuine
coupling effect of present interest. It should be remembered, however, that, as pointed
out by Hayes (1954) for steady flow, only a few selected second-order terms contribute
cumulatively to the first-order effects. Hence we shall pick out, by the use of the
strained c(vordinate technique, those terms O(00e) whose cumulative effects amount
to 0(0) in the far field. Thus our aim is clearly different from Van Dyke's (1953q)
second-order theory for an oscillating airfoil including the effect of thickness. There,
because of his interest in the flow on the airfoil surface, combined with a situation
involving only slow oscillations, he used a regular perturbation scheme in 0, and e
and obtained a solution to 0(00e); consequently, the hierarchical ascent of terms
of second order to first order in the far field was neither expected to take place nor was
his concern. On the contrary, our interest centres on just such an evolutionary,
ascending process.

In the next section we Ahall begin with the governing equation and simplify it in
13 by employing the strained co-ordinate technique. In 1f4 and 5, we shall describe
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the procedure for solving this simplified equation. We set out to obtain the corre-
sponding Riemann function appropriate for a parabolic airfoil; the Riemann function
can be constructed explicitly and exactly in terms of the confluent hypergeometric
functior.. With the Riemann function thus obtained, the solution, equation (5.4),
follows from it without much difficulty. In § 6, before embarking on a physical
interpretation of the solution, we pause and confirm that the present results can be
reduced, through the limiting properties of the confluent hypergeometric function,
to some known results. In the limit of zero frequency of oscillation, we shall recover
Whitham's rule; for an oscillating wedge with small apex angle, the present result
will embrace, as a special case, the solution obtained by Carrier (1949) and Van Dyke
(1953 b). We shall resume the discussion of the curved airfoil in § 7, where we observe
that Tricomi's (1949) expansion formula for the confluent hypergeometric function
is ideally suited to the extraction of a physical interpretation; the gradual ascent of
second-order terms to alter the acoustic signal in the far field will become effortlessly
visible; and there the effect of body shape will be found to be tenaciously inseparable
from the unsteady flow field. This will be followed in § 8 by further description of
salient physical features related to the disturbances propagating through the non-
uniform medium.

2. Problem formulation

The governing equation for the perturbed velocity potential 0 is given to second
order, to which order the flow can still be regarded to be irrotational, by

0- U 14,-=24D -2 SE------"  ,a-! "et

a .
=~~ 1 (0, O')(+0V)20+~ + ~0,4, 4 (21

(2..

where the perturbed velocity components (u', v') are related to 0 by

U. is the free-stream velocity, a, the speed of sound in the free stream, f, -U.1a.,

m - (M. - I)i and y is the adiabatic exponent of the gas. We express, according to
Van Dyke (1953a), the co-ordinate of the moving upper surface as

Y - e614)-6e4g(), (2.2)
where ef(z) (e -4 4 signates the shape of the body in its mean position of oscillation
and the second t . represents its harmonic motion with frequency W. The two small
non-dimensional parameters and go characterize the slenderness of the body and the
amplitude of motion, respectively. As long as the shock remains attached, we need
consider only the flow above the upper surface. The boundary condition on the
surface of the airfoil, as given by Van Dyke (1953a) to second order, is

0,. at - 0. (2.3)
Also, 0 vanishes upstream of the bow shock, whose position moves in time. Since the
flow variables are discontinuous at the shock and, strictly speaking, do not posses



Nonlinear diatortion of an acotaic wave 755

-awr

FIGUi 2. Smoothing technique of Van Dyke.

derivatives there, the governing equation is not formally satisfied. Hence in principle
jump conditions across the shock, which is moving and whose temporal position is
unknown a priori, must be imposed to ensure the conservation of mass, momentum
and energy there; this would introduce complications. However, this knotty problem
can be completely circumvented by the smoothing technique, which was first devised
by Courant & Friedrichs (1948, p. 365) for steady flow and later extended to the
unsteady case by Van Dyke (1953a). We first imagine that an extension has been
added to the leading edge of the actual airfoil: a sufficiently smooth and flexible tip
of such a shape and moving in such a way as to prevent the formation of the shock
in the flow above the upper surface (figure 2). We then regard the desired solution as
the limit as the extension shrinks. Once this device has been employed, as here, the
need to impose jump conditions at the shock can be eliminated for the solutions up to
second order. (Also, whenever necessary, we shall hereafter regard the discontinuity
in the flow variables at the shock in the sense of the above limiting process.) The
smoothing technique provides, in effect, a formal justification for the following point
of view: the global behaviour of the unsteady flow downstream of the bow shock can,
to a good approximation, be determined essentially independently of the presence of
the shock and various complications arising from its motion (except in the close
vicinity of the shock, where such a solution fails); the situation is akin to the familiar

steady problem (Whitham 1952).
Following Van Dyke a little further, we separate the perturbed velocity potential

into a steady and time-dependent part by writing

0 = 6 (x, y: e) + 0 exp [i(wt - kx)] (x, y: e, 0o), (2.4)

where k = M2w/m'U.. The first term represents the steady base flow and 0 in the
second term corresponds to the unsteady flow; our interest is focused on 0. We sub-
stitute (2.4) into (2.1) and (2.3) and assume c > 00, as stated in the introduction. We
thus obtain the following two sets of equations: for

m~. Ov]= e'(MP14) ['(N - 1) 01+ 4]~, (2.5a)

with the boundary condition

e0 = eUf'+62(0.f'-fV,) at y = 0, (2.5b)
and for

09[ - m . + Ov- (km/M)'0] -2(e0 0/U) {M*[ms(N - 1) + If
- ik[(2N - 1)'~~ + Nm'lfr ,. + ~$&,]-N(knIM,)'0.*j, (2.6a)

where N - j(y + 1)M ®/m2, with the boundary condition

-at -0,U-g'+o(ikU.mI(M'.)gIz

at V -0. (2.6b)
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In obtaining the above equation, some simplification on the right-hand side has been
achieved by using the expressions for the left-hand side and neglecting terms of higher
than the second order. It should be noticed that, although (2.5 a) is nonlinear in if,
equation (2.6a), the basis of this paper, is a lineart function of i/f involving variable
coefficients. Both 0 and 0, vanish upstream of the bow shock.

3. Application of strained co-ordinate technique
The right-hand sides of (2.5a) and (2.6a) are of higher order than the left-hand sides.

Consequently, if one uses a regular perturbation scheme, they successively yield the
first- and second-order equations of Van Dyke with the right-hand sides either zero or
expressible in terms of the first-order velocities, respectively; the first-order equation
for ik, in particular, is the (reduced) acoustic equation and it obviously precludes the
ascent of the terms on the right-hand side to first order. In order to achieve our stated
objective of examining such an evolutionary process, we shall employ the strained
co-ordinate technique instead: this is the point of departure of the present analysis.
Although the original strained co-ordinate technique developed by Lighthill and
Whitham involves only a single family of characteristics, the present unsteady prob-
lem requires two families of characteristics for adequate description of the flow field.
It is therefore convenient to use Lin's (1954) extension of the strained co-ordinate
technique (see also Oswatitsch 1962) or the analytic method of characteristics, which
enables one to treat the case of two families of characteristics. According to this
method, the independent variables (x, y) as well as the dependent variables are to be
expanded, with the characteristic parameters 8 and p regarded as new independent
variables:

- O(,p) +ey)(s,p) + .... (3.1a)

y = e1°)(,p)+6e0)(,p)+ ... (3. b)

o, = o (l)(, ) + 620(2 )(,, p)+oS)(a,p)+ ... (3.2a)

where 8 and p are constant along the corresponding characteristic curves, respectively.
With respect to the characteristic curve, we first observe that, comparing (2.5a)
and (2.6a), all the coefficients of the second derivatives in the steady equation are
the same as the corresponding ones in the unsteady part. This dictates, then, that
the characteristic curves for both the steady and the unsteady equations are identi-
cally the same and given by

.- IN ), +.... (3.3a)

-X-M U.- U),--. M ..

t Besides the usual shock emanating from the leading edge (and the one at the trading edge,
which dos not matter for the flow field upstream of it), no additional shock is created owing to
the motion of the airfoil; consequently, the entire unsteady flow can be umiformly d eribed
by the linearised equation.

r .,.:...w ,, .,', " " ... ..... .. .... ,A
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Into these we substitute (3.1 a, b) and (3.2a) and equate the coefficients of equal powers
of e. We then determine successively, using the boundary condition (2.56b), the terms
in the series expansion; while the zeroth-order terms in (3.1), x(") and j$), give the
expression for "he characteristic parameters corresponding to acoustic theory, the
first-order tex. x1) and y$l), give the desired nonlinear correction. We direct atten-
tion towards the fact that the procedure is dependent wholly on the steady flow
and excludes the unsteady part (3.2b). This process of co-ordinate stretching in
steady flow being familiar, it suffices here to write down the following results:

0(1) - - H() (U.Im)f(a), (3.4)

, - x-my- yvN(M'1U.=) d(')(8)/4, (3.5a)

p - x + my - (e/U.) (N - 2) Af.[01) (,) - 0( (p)], (3.5b)

where H(a) is a unit step function. The above expressions for 8 and p have been put
in the present form by rewriting the results corresponding to (3.1 a, b). Geometrically,
a represents, as shown in figure 1, the root of the straight Mach wave passing through
a given point (x, y) and along this 8 remains constant (Van Dyke 1975); likewise, p re-
presents the root of the cross Mach wave, along whichp remains constant. (As a matter
of fact, the constants of integration in (3.3), their choice being at our disposal, are so
adjusted that, at y = 0, x 8 = p.) Equation (3.4) indicates that the steady, first-order
velocity potential is dependent on 8 only and it obviously embodies Whitham's rule.

Having thus specified a and p, we then substitute the expansion for the unsteady
part (3.2b) into (2.6). In obtaining the equation for the leading term 0(l), we proceed
with caution and retain the terms associated with k on the right-hand side because,
for sufficiently high frequencies, they could become comparable with the terms on the
left-hand side; the terms not associated with k can be neglected. One thus obtains

+ (A- - + ~-Nek O(1)] VW) = 0, (3.6a)

where '(1) designates the derivative of 0(0) with respect to a; in differentiating 0(l), we
recall and envisage the smoothing process described in § 2 and discard the term asso-
ciated with the delta function. (When obtaining (3.6a), the term (k/M=)' in the braces
initially appears as (kIM,,)[1 - 2(NIU)eo'(11] but the second term in the square
brackets is neglected.) The boundary condition (2.6b) becomes

Oo{iekf'(a) 1bW)- mif' ) + mV ) + V() eiks} = o at a -,
where

V(x) = U. g'(z) + (ik U. m/M )g(X). (3.6b)

Also, the upstream condition becomes

01)=- 0 for 8<0. (3.6c)

It is convenient at this point to introduce the function F defined by

€1) - exp[i( k/U.) N(p - s) ] F. (3.7)
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Then (3.6a) becomes, to the order consistent with the present approximation,

+ !0' [ F2 )+ ( p -8 ' 1 ,9 ] P

+ 22N0()(8]P o , (3.8a)

with the boundary conditions

0o iek[--if'(sg)--!No '(1ls)]P+P,-F ,- V()eik' fi at 8=p, (3.8b)
and

F=O for 8<0. (3.8c)

In (3.8a, b), the factor 00 is retained as a reminder that the equations are valid to order
0, the higher-order terms such as those O(eO) in (3.2b) being neglected. Our aim is to
obtain the explicit solution for F and we shall do so for an airfoil whose shape consists
of parabolic arcs.

4. Construction of the Rlemann function

If 0'(1)(8) were either zero or a constant, (3.8a) would be reduced to the telegraph
equation. In the present case of a parabolic-arc airfoil, f(x) in (2.2) is quadratic in x
and from (3.4) the derivative 0'(1) is linear in 8. Thus (3.8 a) is a second-order linear
hyperbolic equation whose coefficients are variable (and linear in 8). It is well known
that the solution of any second-order linear hyperbolic equation can be expressed in
the form of an integral representation, once the correspbnding Riemann function has
been obtained (e.g. Courant & Hilbert 1962, p. 449). If, in general, u satisfies

[u] =- u.,+au_, +bu,+cu = 0,

where a, b and c are given functions of x and y, then u can be represented by an integral
along the boundary (where Cauchy data are assumed to be prescribed) whose integrand
involves the Riemann function R of the operator.?. R does not satisfy the operator
equation Y(R) = 0 but rather satisfies the adjoint operator equation

W*[B] R.-(aR).-(bR),+cR =0.

For our purpose, it is convenient to derive first, instead of R, the Riemann function
R* of the adjoint operator which satisfies the operator equation for Vitself; then we
obtain R through the symmetry property of the Riemann functions. For the present
equation (3.8a), the Riemann function of the adjoint operator R*(8, ; a,p) satisfies
the following three conditions (Courant & Hfilbert, ibid.):

(a) .,R1 = , +- ek[- (2N - 1)0'11(j) + (I- )-'W(f)] *

+ [(±-)+ -" e l(1)] R* - 0; (4.1a)
(b) &long AC in figure 3,

I OR*
on a, (4.1 b)

_______ -
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and along BC,

1 OR* i
~ Ej(2- )#'(C-(,~C)~"l)()]on 71- p; (4.1 c)

(c) R*(,p;, p) - 1. (4.1d)

Integrating (4.1 c) and determining the constant of integration from (4. 1 d), we obtain

R*(C,p;a,p) - exp/*, (4.2)
where

- ( (-))(C) - 00))]).

If we write

R(, ;8,p) - exp(p*) M(z), (4.3)where
z - - (i/U.) Nek( - 8) (V -_p)#-W, (4.4)

then for a parabolic-arc airfoil, for which OW is a constant, (4.1a) is reduced to the
following ordinary differential equation:

zF" + (I - ) 'aM 0, (4.5)
where

a j+U.k(4i .NNP '')-.



760 M. Kuromaka

This is known as Kummer's equation and its only solution which satisfies (4.1 d) is
the following confluent hypergeometric function (e.g. Slater 1960, p. 2):

M - M(a, 1,z), (4.6)
defined by

M (ab,z) = I+ + -z+... + -

where a. = a (a + 1) (a + 2 ) . . . (a + n - l ), fornffi1,2,....,

and
ao= 1.

Hence (4.3) becomes
R*(f,1 ;a,p) = exp (#*)M(a, 1,z). (4.7)

Along 8 - a, R*(8, i ; 8,p) = 1 and this obviously satisfies the remaining requirement
(4.1 b) for the Riemann function.

The Riemann function R(f, l; e, p) may be immediately derived from R* through
the symmetry property of the Riemann function (Courant & Hilbert 1962, p. 454) by
replacing f and ij with a and p, respectively. Thus we obtain

R(f, 71; 8,p) = exp (a) M(a, 1, z), (4.8)
where #= (ilU.) k{(N - 1) [OW)(8) - 0(f()] - v[,(0'() - 0'(1) (g))

a = +U (4ieNM') -

and z =-( IU.) ekNV(8 - 9) (p - TO 0%<).

5. An Integral representation of the solution

Once the Riemann function has been thus derived, one is in a position to employ
Riemann's formula (Courant & Hilbert, ibid.) to obtain the integral representation of
F in (3.8 a), provided that Cauchy data are prescribed on the boundary. Unfortunately,
the present boundary condition (3.8b), which applies along the segment OA of figure 3
(this corresponds to the x axis of figure 1), is not Cauchy data. Rather, it expresses a
linear relationship between the function F and its derivatives; this induces some com-
plication. If one applies Riemann's formula to the contour around the shaded region of
figure 3 (OACBO'), although the contributions from the line segments AC, CB, BO' and
00' vanish identically, one ends up with an integral along OA; since it turns out that
the integral involves the value of F, which is unknown as yet, one has to solve a
complicated integral equation to determine it.

The difficulty is by no means unique to the parabolic airfoil, and in fact the same
complication arises even in the more simplified situation of a filt-plate airfoil, where
0'(1) is zero. In such a case, (3.8a) is reduced to the telegraph equation and the corre-
sponding Riemann function is a Bessel function (e.g. Courant & Hilbert, ibid.):

R(,V ,p) - Jo((k/X-) [(8 - C) (Pv)} (5. 1)

To construct the fist-plate solution, Temple & Jahn (1945) used this and applied
Riemann's formula for a closed curve; the contour around the shaded region of figure 3
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is none other than their path of integration. Their final result for F at a general point
in the flow was left in a somewhat awkward form involving, inside the integral along
the segment OA, the unknown values of F to be evaluated there, although the un-
desirable term vanishes from the integral for a point on the surface of airfoil, i.e. on
O.. It turns out, however, that one can advance a step further and eliminate the term
entirely. More specifically, by substituting the expression derived for F on the surface
of the airfoil into the integral representation for an arbitrary point and noting an
identity involving a product of Bessel functions, F can be written exactly as the
following integral of the Riemann function:

F(8,p) - H5)f V(r)e ,'kR(f - T, fi= -r; a,p)dr (5.2a)

This expression is, of course, the well-known flat-plate solution obtainable by a
number of other methods (e.g. Miles 1959, p. 50).

Motivated by (5.2a), in the present case of a parabolic airfoil we try

f H),p) V(r)e'k'R( - r, , = r;a,p)d, (5.3)

where R is now given by (4.8) and this can be directly verified to satisfy the governing
equation (3.8a). Also, substituting this into the boundary condition (3.8b) and re-
calling that it is valid to 0(0.), it can be shown by using some of the results obtained
by the present author (1974) that the boundary condition is indeed satisfied to the
same order, the details being given in appendix A. From (5.3), F obviously vanishes
for a < 0. Hence (3.8c) is satisfied and (5.3) is in fact the solution sought. Before we
write down the final solution explicitly, we restore, in order to obtain *M in (3.7), the
exponential factor, which may be written to the present order of approximation as

exp [,-L' N(p -s) 011)(,)] =_ exp [/-6k N2myo'fl(,)].

When we collect all the results obtained so far, we have the following: if the airfoil
shape in the mean position is given by

ef(x) - e(W +px),

where a < 0 (a convex surface), and the co-ordinate of the moving upper surface is
given by y = ef(zr)- 00e"g(x),

where the amplitude of the motion g() is an arbitrary function of x, then the leading
term of the unsteady part of the velocity potential, 04) in (3.2b), becomes

(.,- f. V(r) exp(ikr) esp [i NLk- ,m'('(.)]

• k iek

x ,€ [ -~~ 4iaz". ,M (- )( - r) d,(.)
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where

0) (8) =- .(/m) (W + -)0

x -my+ Ms.Ney P = x+MY- - (N- -afi I-M2.Ney 2 U ~ Y--.(N )M [S()-a(),

j(e/m)(as+ )1 < 1.

This integral representation is the solution we have been seeking.t (The last inequality
is a restriction due to the assumption of a small perturbation.) Before attempting to
extract physical meanings, we pause in the next section to observe that the present
solution embraces the various known results as special limiting cases.

6. Limiting cases
6.1. Steady limit

In the limit w -* 0 or k -* 0, from the limiting form M(a, b, 0) = 1 of the confluent hyper-
geometric function (e.g. Abramowitz & Stegun 1964, p. 108), (5.4) is immediately
reduced to

= V(T)dT

H(8) U.N(,. (6.1)

from (3.6b). This is Whitham's rule for steady flow and becomes identical to (3.4) if
we replace f by - g. We wish to emphasize that g is an arbitrary function and that
we have recovered the above as the limit for zero frequency of oscillation.

6.2. Oacillating flat-plate air/oil

In the limit e -)0, when we note that (Abramowitz & Stegun 1964, p. 506)

lim M(a, 1, -z/a) = J(W),

(5.4) becomes at once

=H(x -my "-my V(r) elko(~ [(x7.)'-.m'v]i) dr, (6.2)

which is precisely the well-known flat-plate solution; the physical meaning of this
integral representation was given by the present author (1974).

t In this oonnexion, it is of interest to note that Goldstein & Rice (1973) found a solution
for sound propagating through a uniform shear flow in terms of the parabolic cylinder inetion,
which is intimately connected with the oonfluent hypergeometrio fimtion.
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6.3. Oscillating wedge

The third case which invites comparison with the present result is that of an oscillating
wedge. In the limit a - 0, with the aid of the limiting formula cited in 1 6.2 we obtain

11) T-f: V(r) eik? exp (-2iNeflky) exp [_i eflk(2N - 1) (a -,)] (6.3)

x Jo (-L [(8-i) (P - T)]') dT,

where 8 - x- my + P Nefly,

p = x+ my -(N -2) M.efly

and e. is the semi-vertex angle of the wedge.
In order to confirm the agreement of this formula with that obtained -by previous

workers, we first restore the factor e- 'kz to (6.3). It is convenient to rotate the co-
ordinate system from (x, y) to (x2, y2), where x2 is parallel to the upper surface of the
wedge and y2 normal to it. At the same time, we refer the flow properties to the mean
steady flow behind the shock instead of those upstream of the shock and designate
them by a subscript 2. Furthermore, we change the integration variable from T to

I (1 +mlefl). All this transforms the right-hand side of (6.3), upon discarding
negligible quantities, into the following expression:

60eikz) ~- Om1 H(x2 -m 2 Y2 ) fo V(i)exp (-iktx)exp(ikij)

× J N (X 0 (M2 y2)2]') d. (6.4)

This is identical to the flat-plate solution (6.2) if the latter is expressed in terms of the
(x,, y2) co-ordinate system and the flow properties downstream of the shock. This
result is not unexpected, since it is known that, if one takes the second-order equation
for the unsteady component of the velocity potential to O(cO) and expresses it in terms
of these co-ordinate systems and flow variables, then for a wedge it exactly reduces
to the acoustic equation. (The reason why the relationship (6.4) is approximate rather
than exact is obviously due to the fact that, in the course of applying the strained
co-ordinate technique, some non-essential second-order terms have been discarded.)

Carrier (1949) obtained a solution for a wedge oscillating at its apex; the solution
was derived in a more generalized way by including the rippling motion of the shock
and, in addition to the irrotational component of the flow, rotational flow behind the
shock. His solution was later generalized to include the case of a moving vertex by
Van Dyke (1953b), who also corrected typographical errors in Carrier's paper. The
solution was expressed in the form of a series involving Bessel functions. In order to
facilitate direct comparison, we recast the present solution (6.4) in the following
alternative form:

. f V() exp[ - ik.. .x. .I)] J. -) - ]d

-8.Ga. Z be-Oj[j.t[xi - (myv3)21] exp (-ikx,), (6.5a)
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where
tanh 0 = m2Y2/x.,

b,= (iMzv/ktr) [t" + (- t)-I] + b cos (ef) [t - 9)-'], (6.5b)

9 = i(M + m2)

and where V(xs) = U, + iw(x, - b cos ef), b being the pivotal position of the oscillating
wedge measured from the apex. The above identity is given in appendix B. Now
Carrier's solution for the irrotational component of the flow becomes, in the present
notation,

O0a. [a, cosh YO +bsinh v8] JAI -21 [A2 -(my)2I] exp (- ik~xs). (6.6)

(The expression for b, given in (6.56) is the corrected one given by Van Dyke 1953b.)
Carrier showed that as long as the shock is sufficiently weak

a., b,,t

and in such a case (6.6) is indeed identical to the right-hand side of (6.5a). This agree-
ment naturally endorsee the present viewpoint that the global behaviour of the
unsteady flow downstream of the weak bow shock can be determined essentially
independently of the presence and movement of the shock.

7. Alternative representation of the solution and Interpretation
Returning now to the immediate subject of a parabolically curved airfoil, the

solution as given in (5.4) is not appropriate for extracting its physical significance.
Such an interpretation will, however, be obvious once we recast (5.4) in a more reveal-
ing form by making use of the following Tricomi (1949) expansion formula for the
confluent hypergeometric function in a series of Bessel functions:

M(a,b,x) = i(b)(Ax)P-1 )exp( Q)- 1 A. ( J)ia.J +b - [2(Ax )i] for Reb> 0, (7.1)

where A is the Whittaker parameter, given by A f - a, and.

A0 1, A,=0, A,= ,

(n +2)An+2 = (n+ I)A-2AA,- .

When we insert this into (5.4), we obtain

00)(8,p) - V(7)e"k exp(-ie6kr)
m fo

x {J. (- [(8 -7) (p - r)I)) d7", -- )(-)(7.a)l

t Van Dyke (1953b, also private comrtmication) proved that for a small wedge angle
aJb = -1+2W@/b+O(e').

Am for the rotational component of the flow, the first term of its eerie. representation may be
Ahwn to be o(0,0).

I
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where
As- = , A3 = -IA, A4 =, (7.2b)

(n+1)A,+ f hA,_a- 2AA,._,, A = mk(4iMNNc)- 1,

o, 2Nmr/4 '(8) .- (N -171) (8) - W (r)] -N(8 -r) 1 0(1

-- (8-r)P-T
t12N2m-my 40'i,) (8 +N 0-1 (7) 4 () --L (2N -1 -01)(0

(All three of the limiting cases of the preceding section are now directly derivable from
the present form: for example, when k is set equal to zero, the result (6.1) follows at
once.) Equation (7.2a) immediately surrenders itself to the following physical inter-
pretation. Let us first examine the flow field near the leading edge, where both y and a
are small. Then (7.2a) becomes, approximately,

-H(x -my) fox-my V(7) eik, j -.L (,r)2 - (my)21f) dr.

This is the flat-plate solution (6.2), and in this region the effect of the body shape is
indiscernible as yet; the unsteady flow field is completely separated from the non-
uniform, steady flow. Physically the decoupling occurs because the unsteady dis-
turbance, having travelled only a short distance from the leading edge, has suffered
little distortion.

We now move away from the leading edge by increasing the value of y while keeping
the value of 8 constant (along the straight Mach wave) or penetrate downstream by
increasing the value of a while keeping y constant. In either case, if we look at the
integrand of (7.2a) or the signal emitted at a point r on the airfoil, the complex
exponential term, which can be written as

exp ( - icko ) = exp [Nmy( '(1) (a) + 0'(11 (7)) + (2N - 1) (O(1) (s) - O (,0)]

immediately discloses the following key aspect: no matter how slender (e < 1) the
airfoil may be, this phase shift (induced by the presence of the body) will eventually
amount to an increasing delay at a large distance y or a. Moreover, it is also crucial
to recognize here that the phase lag of the signal received at a position a depends not
only on the local flow at that point, but also, through the very difference in the steady
velocity potential, i.e. 0") (8) - 0l) (r), upon the entire flow field which the signal has
traversed; the disturbance 'remembers' its past. Thus we might call this exponential
factor the phase memory, a term commonly used in connexion with the propagation
of a radio wave through a stratified ionosphere (e.g. Budden 1961). As stated in the
introduction, the existence of phase memory, which differs from one signal to another,
is by itself quite sufficient to induce, upon superposition, a change in the amplitude
of the unsteady flow field. The change is, however, further enhanced because the shape
of the airfoil alters even the amplitude of the individual signal in the far field when the
contributions from the higher-order terms of (7.2a) in the series of Bessel functions
begin to surface. Thus, in the far field the airfoil shape, in its effect of causing non-
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Fimulz 4. Amplitude and phase of unsteady pressure; - p'(p U' ell)- R Rel#. The ordinate for
the left figure of each pair is the ratio of the amplitude R for a parabolic-arc airfoil to that for a
flat plate. The ordinate on the right is the difference in phase 0b; M. = 1.3, y = 1.4, 6 = 0.1,
a, = -1, j8 = 0.5 (max Yt/c =0.0125) and the pivot axis is at the leading edge. V]e =
e[taIxlc)' +,8(xlc) ]. (a) wlUo 0= 1 (kc = 0.245): -, ylc = 0 (ky =f 0); -- , y/c = 0-82 (ky = 0.2);
... - , ylc = 2..04 (ky = 0.5). (b) wIC,' = 0.3 (kc = 0-735):-, ylc =f O(ky =f 0);--, ylc = 0.82
(ky = 0-6); ... - , yle = 2.04 (ky 1.5). (c) wlU® = I (kc = 2-45): -, ylc = 0 (ky =f 0):
--, ylc = 0-82 (ky = 2); -....-, ylc =2.04 (ky = 5).

uniform surrounding flow, is inextricable from the unsteady flow field and deeply
affects both its phase and amplitude, as well as the directional change in the charac-
teristic curves.

This point is illustrated in figure 4, where the unsteady pressure distribution for a
parabolic airfoil (max Y/c =f 0.0125), computed from (7.2), t is compared with the
result for a flat-plate airfoil at three different frequencies of oscillation: w1cU. - 0.1
in figure 4 (a), oxclU =f 0.3 in figure 4 (b) and owlU,. =f I in figure 4 (c). There, both the
amplitude R and phase 0b are plotted as functions of 8, i.e. the distance between the
root of a straight Mach wave and the leading edge, and at three different values of Y.
(If the flow were steady then, regardless of y, the amplitude would remain the same
along the characteristics 8 -f constant.) We observe that, though for &vlU.o - 0.1 the
effect of the airfoil shape d~es not become prominent at these values of y, it begins

i t For numerical computations, (7.2) in also more convenient than (5.4).



768 M. Kurosaka

to emerge at w/U® f 0.3; and for ox/U. - 1, except for the close vicinity of the lead-
ing edge, it indeed alters the pressure distribution substantially.

The profound modification of the unsteady linear theory displayed here raises an
obviously disquieting thought on the upshot of the acoustic theory when multi-body
aerodynamic interference is involved and deepens concern expressed (Kurosaka 1975)
with regard to some of the consequences arising from a pro forma sum of linearized
unsteady upwashes.

8. Further interpretation
Pursuing the physical interpretation further, we seek the connexion between (7.2a)

and the 'fundamental' solution. We shall not, however, merely reconstruct (7.2a) by
the superposition of the fundamental solution. Rather, we shall reverse the usual
process and obtain the fundamental solution from (7.2a): that is to say, we regard
(7.2) as the spectrum at frequency w or the Fourier transform and take its inverse
transform so as to derive the transient response to an arbitrary time-dependent motion
of the airfoil. The 'fundamental'solution will arise naturally in the course of obtaining
the transient response (Miles 1959, p. 53). Let us go back to (2.4) and rewrite the
unsteady part in a more general way as

ffi e= + 0o(z,y:t).
Then the Fourier transform 0(w) of Q (its leading part) is equal to e-ikx z), 00a ) being
given by (7.2a), provided that V is regarded as the Fourier transform P of itself, i.e.

where ( [(eaM ,)S-7 ]if

Taking the inverse transform
Q= (-e _ fut"dw,

we obtain, by convolution,

(XY,)- !f' drf V(' ,-)F(j)d. (8.1a)

Here
[-/00, - V(x, t)

and F(C).= _ c,,.I, (8.Ib)
where, for example,

PamS ijR- H(b -ai)-. oo 0- L
- ,.a.mbl -o -. .
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and where
a = g-a--. (x-i+e ,, b =f [(-)P-,i

a~amm
cos 0 = a/b, r = (b'-a)1.

We note that C)(x, y, t) contains, through F, in (8.1 b), the term 1/r, which can be
written as

a M/(ra M (xr+col)] (8.2)
2 (8 'r) ( - T)- a.(g8-2!

The meaning will become immediately recognizable if we note that at e = 0 the
denominator of (8.2) may be reduced, after some algebra, to

{(a. 9)2 - (x -r - U. 6)2 - Y 2P.

This represents, when set equal to zero, a circular wave front of a disturbance which
was emitted at a source point (T, 0) and is propagating through uniform flow after a
time C. Thus the denominator of (8.2), when put equal to zero, i.e.

ot (a -r) (P-'r) - a. mg - M -- (x -,r+co-) =0, (8.3)

now describes the distorted wave front propagating in a non-uniform flow field. In fact,
we can directly show that the expression for f obtained from (8.3) does satisfy, within
the approximation consistent with the present analysis, the appropriate eikonal
equation at large distances; (8.2) is indeed the fundamental solution. In general, for
a given point (x, y) in flow and for a given source point (7, 0), there are two values ofJ
satisfying (8.3): one corresponds to the time when the disturbance first arrives at
(x, y) and the other to the time when it departs from (x, y). In the particular case when
the point (x, y) is located such that either

8=7 or p=7,

there is only one such moment for g, which implies that the wave front is tangential
to either 8 = r or p = T. 8 = 7 corresponds to the straight Mach wave, whose root is
located at (T, 0); p = r is the cross Mach wave passing through the same point. Hence,
as expected, two families of Mach waves passing the source point form envelopes for
the disturbance emitted from the source. In particular, the time required for the signal
to arrive at a point on the straight Mach line a = 7 is given by

I - [l +(a+fl)N( 2  (8.4)

It is of interest to note that this can be obtained in the following, more physical way.
The wave-front velocity c is in general the vectorial sum of the local acoustic speed
in the direction of the normal n to the front and the convective fluid velocity, i.e.
c - an + u. However, along the enveloping Mach waves, which are tangential to
the wave front, the acoustic speed does not contribute to the component af the wave-
front velocity in the direction parallel to the Mach wave; only the fluid velocity con-
tributes. In particular, along the straight Mach line the component of the fluid
velocity or the wave-front velocity remains constant. If we divide the distance from
the source (r, 0) to the point (x, y) by the component of the flow velocity in the
direction of the straight Mach wave, we can directly derive (8.4), as the time elapsed.

26 IFLU 83
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9. Concluding remarks
It has been our aim to find a uniformly valid solution for the unsteady flow field and

examine it in detail. We have shown, through an explicit solution obtained for the
specific case of a parabolic-arc airfoil oscillating in supersonic flow, that the prediction
of the unsteady signal in the far field demands the detailed description of the contour
of the moving boundary. The non-uniform surrounding flow produced by the very
presence of the body, no matter how slender it may be, cumulatively and inextricably
affects both the amplitude and the phase of the unsteady disturbance at a large
distance from the leading edge.

As a further related effort, it would appear to be worth while to pursue a study for
other airfoil shapes so as to enlarge our stock of particular solutions. With regard to
the question of similar cumulative, first-order effects of nonlinearity in subsonic flow,
we still remain uncertain. It is intriguing, however, to note that in a very recent paper
of Goldstein & Atassi (1976), where an exact second-order solution is obtained for an
airfoil subject to a convected gust, the incoming gust, in its nonlinear interaction with
the steady non-uniform flow field, is found to suffer distortion in wavelength in a
manner akin to the present supersonic result though the flow treated there is
incompressible.

The author would like to extend his gratitude to Mr C. E. Danforth for calling his
attention to the problem, to Mr I. H. Edelfelt for assisting in numerical calculations,
to Dr S. D. Savkar for his many helpful suggestions and to Dr M. E. Goldstein, Dr
L. J. Slater and Professor M. Van Dyke for answering his queries. He is especially
indebted to Professor Van Dyke for generously making available details of his earlier
notes. The work was supported by the Air Force Office of Scientific Research under
Contract No. F44620-74-C-0040.

Appendix A
In this appendix we shall show that the expression for F given by (5.3) does satisfy

the boundary condition (3.8b) to order o. We denote the left-hand side of (3.8b) by

() s. 00 ick '()-- NO'W ()I+ F - ,v V(a) eonj (Al1)
,0.

ad we shall prove that along s - p this vanishes, to order 10. Substituting (5.3) into
the above, one obtains for a > 0

5(F) - 'V(r)e I'exp ( U i

lc' .2N 1 U

when.
v - +

2 . e~r rtU.
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We observe that along 8 = p

v--(2N-1)6'm(s)-N(7-s)'('), 1,p = O, M= iM. (A3)

Furthermore, by Tricomi's expansion formula cited in § 7, the confluent hyper-
geometric function M can be expressed as

M = exp - j iekN(s - r)z0"(1)

U-Z0 . M Ns-)'"' . -(-).(

where
A8=, A,=0, A2=j

and the other, higher-order A. are the same as those given in (7.2b). The leading term
of M is given by

M.- exp--U. iekN(s -,r)2 [1' (s-r)]. (AS)

From (A 3) and (A 5), (A 2) becomes

l(F) =Ook l fV*(r)exp(iK)exp(i . v)exp[ 2k N(8-7)2 0(1)

XJ[,L( -)]d}, (A6)

where
V*(r) = - V(r)i Uj N(r-8)$"(.

Equation (A 6) can contribute to 0(00) only when ck is such that, if properly non-
dimensionalized, O(ek) = 1 or k = O(l/c). For such large values of k, we apply the
following method of obtaining an asymptotic expansion (Kurosaka 1974): we first
express J. in terms of an integral involving an exponential and use the stationary-
phase method repeatedly. This yields

and (A 6) becomes
I(F) - O(Oe),

which is of higher order than O(O); t!,e other terms of (A 4) may similarly be shown to
be of higher order. Hence to 0(0o), (F) - 0.

Appendix B
In this appendix we shall prove the identity (6.5a):

e* _L - V(V) exp (ik.,) exp ( - ikix.) JO ( V[ (.x - i)s - (mS.,)1i) dV

b- el~ J, O's-([4 - 0( in exp( -ikx 3 ), (B1l)

I - u6-2
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where

x.,; mty., tanh0-m!Y! b. = ["+(- )]+bcos(ef)[t -(-t)'],

i f i(M 3+m2), V(x,) - U+i(x,-bcoec8). (B2)
First we write

V(j) exp (ik, V) = 5- co!!! efi) [exp (ikdli)] + (i !) [li' exp (ik,lI)].

As suggested by Carrier (1949), we expand t exp(ikli) and t2exp (ikli) in series of
Bessel functions, through the generating function of the Bessel functions, and obtain

V(Vl)exp(ik, l)= - m b, nJ(L V)
liV-1 M,

Substitution of this into the left-hand side of (B 1) yields
- a.0. 2' b. vexp ( -ikax,) F(x,). (B 3)

where

Fx) f H[x, - a - V] J[-k.[(xs -')-(ma")2IijJ(! ( )li. (B 4)

If we take the Laplace transform .9of F(x,), defined by

F fJ exp ( - ax,) F(x,) dx,

then, by convolution, we obtain
)2/k\]- (8+ [9+2

,=k ' [+(at [ M+ exp { I ()]

Inverting this gives (e.g. Erd6lyi et al. 1954, p. 250)

F(x,) = ,eJ (V, [W2- (m .)']i) (B5)

for x. ;o my2. By substituting (B 5) into (B 3), one may establish the required identity
(B 1).
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The Effect of Airfoil Contour upon the Unsteady

Aerodynamics of Supersonic Cascades
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and

I. H. Edelfeltt

General Electric Research and Development
Center, Schenectady, New York

1. Introduction.

It is now an indisputable fact that a subtle change in airfoil

contour induces significant modification upon the unsteady aerodynamics

of supersonic cascades and consequently results in substantial shift in

its flutter boundaries. Its phenomological description is briefly given

in Ref. 1 along with physical explanation based upon the concept of

'phase memory'; for an isolated airfoil of parabolic contour, a detailed

analysis substantiating this concept is presented in Ref. 2., where the

profound effect of airfoil contour upon the unsteady far field around an

oscillating airfoil is in fact quantified.
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2

The objective of the present paper is to extend the isolated

airfoil analysis of Ref. 2 to cascade arrangement; in doing so, we shall

rely heavily on the formulation and results of Ref. 2, particularly in

the usage of Riemann function. More specifically, in analyzing the so-

3called pre-interference zone, which is invariably the most difficult portion

of the problem on hand, we shall make exclusive use of Riemann's integral

4representation of a solution for hyperbolic equations ; applying it to an

appropriate contour near the entrance section of cascades adopting the

passage approach2 and with the aid of cascade periodicity condition, we

shall be able to determine the entire flow field in the pre-interference

zone.

Based upon these analysis, our results indeed confirm the significant

effect of airfoil contour upon unsteady pressure distribution acting

on the surface of cascaded airfoils.

. A
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2. Formulation.

Consider oscillating airfoils in a cascade where the coordinate of

moving surface of the n-th airfoil is expressed by

y = Ef(x) - 0 ei t e ing(x) , (1)

and the coordinate system (x,y) is shown in Figure 1; in the above

ef(x) (e << 1) designates the shape of the airfoil in its mean position

of oscillation and the second term represents its harmonic motion with

frequency, W and interblade phase angle, U ; here we shall restrict

ourselves to parabolically shaped airfoil where f(x) is a quadratic of x.

The two small non-dimensional parareters, E and 00 characterize the slender-

ness of the airfoil and tle amplitude of motion, respectively. Far

upstream of the cascade, the flow velocity is equal to % and the Mach

number,M. Following Ref. 2, we separate the perturbed velocity potential

into a steady and time-dependent part by writing

(1) + 0 exp [i(wt - kx)] (2)

where k =  2 W/m2U; the first term represents the steady, base flow

and the second term corresponds to the unsteady flow; our present interest

is, of course, focused on *. It turns out to be convenient to introduce

the characteristic coordinate (s,p) defined by

s - x - my - £myN (H 2UO) do( 1 )(s)/ds, )
p - x + my - ( 012U ) (N - 2) M2 [(l) (s) - (1 ) ,
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1

whN (Y+ 1)M. 2/m2 d, - 1)2 , Y is the adiabatic

exponent of the gas; instead of the Cartesian coordinate system, we

shall hereafter use the above characteristic coordinates as the independent

variables. The steady part of the velocity potential, 4(i) is given by

U
M(l) . -H (s) f (s) , (4)

where H is the step function. With regard to the unsteady part

(1), upon introduction of the function F defined by,

(1) = exp [i(ek/U ) N (p - s) *'(1)(s) F], (5)

it is found to satisfy the following:

Fsp + [- (2N - 1) *'l(s) + (p - s) N *' (l)(a)] Fsp U0  p

+ (k) 2 + ic N * ((s)] F - 0, (6)

with the boundary conditions on the airfoil surface

ick I (s) - 2 N ' 1)()]F + F - F - -- V(s) e =kf 0 , (7)m Us p m

where

* (k 00
2  2 mup

V(x) -Ung'(x) + (ik Up /Mm2 ) g(x)] e (8)

The initial condition is that at any given point, say Ql, of Figure 1

just upstream of the shock emanating from the leading edge of the reference

airfoil, the unsteady velocity potential there must be equal to the one

*at the corresponding point, Q2' upstream of the leading edge shock of

the following airfoil, with the exception of the phase lag, i.e.,
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[e-ikx * (i)] i [e-ikx P( ) ]  e-iP"(9

It is convenient at this point to separate F into the following two parts:

F - F(1) + F 2 )  (10)

Of course, both FMI ) and F(2 ) should satisfy the governing equation; for

F , we assign the full boundary condition of (7) and for F we assign

the initial conditions corresponding to (9). Then, the initial condition

for F( 1 ) is that it simply vanishes upstream of the leading edge bow

shock of the reference airfoil and the boundary condition for F (2) takes

the form similar to (7) but with V(s) set equal to zero. Evidently, FM

then corresponds to the one for an isolated airfoil and it is given

in Ref. 2 to be

F(1) . H(s) fv ( ) exp (ikT) exp [4 (N - 1) ( (1)(s-- () ) (T))

+ (S- T) )(1)

J
1 mk iEkaNxM 2 1, - (- T)(p- T) dT (11)ZEINM.' '

4ict Nh m

where H is the confluent hypergeometric function.
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3. Solution.

Our present aim is to determine F ( 2 ) , which satisfies the governing

equation (6) along with the following boundary condition

ick [- fV(s) - N 0'(1)(s)] F( 2 ) + F (2) - F (2) 0 , (12a)

and the initial condition

[ex 2)-ikX (( )  F(2)  e-ill

[e-  Fr I Qi[ F + F ) . (12b)

The governing equation (6) is hyperbolic; it is well known that the solution

of any second-order linear hyperbolic equation can be expressed in the form

of integral representation, once the corresponding Riemann function R is

obtained4 . More specifically, for any pointC of Figure 1, whose character-

istic coordinates are given to be (s,p), the Riemann's integral representa-

tion can be expressed as

F(2)(sp) - [F(2)(A) R (A) + F(2) (B) R (B)l

+ f [-F(2) R + F(2)R I dn + [F,-2, R - F(2)R + 2bF(2)R] d

2- f R + TI fl~

OA
(13a)

where, as shown in Figure 1, A and B are intercepts of the characteristics

passing the point C and the airfoil and the bow shock, respectively, and 0
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is the origin; the line integrals should be carried out in the sense

indicated above, that is, in the first integral from point B to point 0

and in the second integral, from point 0 to point A. Furthermore, in (13)

b is equal to

b = - - C2N - 1) + (T - ) N ()(13b)

and R, the Riemann function, is given by

R(E, T, s, p) = exp v M (a,l,z), (13c)

where

-- ik 1 N - 1) (4(l)(s)- 4(11( )) _ N (l)(s) -  ))

-(So(1)'(S) - 4 (1)' (13d)

and where

uk
a = + 2 (13e)

Z = - ckN (s - ) (p-n) "(l) (13f)

We rewrite the second integral appearing in (13a) with the aid of (12a)

and (13b) and, noting that along the path OA, C - n , (13a) becomes

F(2)(s,p) -.1 [F 2 (A) R(A) + p(2)(B) R(B)]

1*2
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+F + F (2) ] dn + [F (2)R - F(2) R + 2bF(2)R] d3

BO -

s

+ F (2 )  )R - R + - (2N - 1) f'() d.
2 j m C m )( 4

0 (14)

We then replace, from (12b), those values of F(2 ) to be evaluated along the

path OB located just upstream of the first shock by the ones at the

corresponding points just upstream of the second shock. By this, all

the values of F(2) appearing both sides of the equation become those

downstream of the first shock. Consequently F(2 ) involved there does not

contain any discontinuity and regarding the resulting expression as an

integral equation, one solves it by the collation method. This determines

F(2 ) and hence we obtain the flow field in the pre-interference zone.

Pursuant to this, we obtain the flow field between the blade passage by

the enperposition principle.

- -
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4. Discusion on the Resulta.

The computed pressure distributions are shown in Figure 2 - 5.

In all of the figures. the shape of the airfoil. f(x) of (1) is as follows:

f(x) - -1.7633 (x - xc) ,

where c is the airfoil chord; the airfoil is executing torsional motion

at its mid chord, i.e. g(x) in (1), is given by

g(x) = x - c/2.

In addition,

- 1.40

Stagger angle - 65,

Solidity = 1.589

I,interblade phase angle - 1800

The trajectory of the shock locus at its steady position, which is needed

in solving (14), is computed according to the routine used in Ref. 5.

Figure 2 shows both the real and imaginary part of the pressure
=1 2

coefficients, defined by Cp (p-p)/ 0U 2 , and compare thep
p (p- Pli OD . ,andcomarethepresent

results obtained for E - 0 (the limits of zero thickness airfoil) with the

ones previously computed for flat plate airfoils; as expected, both results

agree completely. Figures 3 to 5 compare the Present results for E - 0.1

with the ones for flat Plate airfoils at three different values of k

and, as might be anticipated, the effect of airfoil contour indeed induces

significant modification.

I.
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I. Introduction.

One of the treacherous flow-induced vibration problems in high-speed

aircraft engines is the so-called supersonic flutter, which, if allowed

to persist, may be capable of inflicting excessive damage to their structural

integrity. For more detailed information on this, we relegate to elsewhere

Here we only remark that flutter takes place when the relative velocity at

the tip exceeds sonic speed and at the time it occurs near the operating

line, the flow remains unstalled. Because of its critical importance,

there have in recent years an accelerated activity in our effort to under-

stand and quantify the phenomena 2 . However, due to the very complexity

of the problem on hand, past emphasis, in both theoretical and experimental

research, has been laid upon two-dimensional, cascade problem. Highly

Work supported by Air Force Office of Scientific Research under
Contract No. F44620-74-C-0040.

Associate Professor, Mechanical and Aerospace Engineering. Associate
Fellow AIAA. Also consultant, General Electric Company.

t Fluid Mechanics Engineer.
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useful these approaches have been in contributing to our understanding

of the phenomena, there always been a nagging question upon the validity

of the two-dimensional approximation to what is in reality three-dimensional

flow through turbomachines. The question is certainly a legitimate one,

since even in the steady situation where bladings do not vibrate, it has

long been recognized that the three-dimensionality of flow induces sub-
.. 3,4,5

stantial modification to cascade representation . If once the

compressor bladings start to oscillate, two extra factors introduce

additional deviation, both attributing to influence the propagation of

disturbances emanating from the airfoils oscillating with their natural

frequency. Firstly, the encasing walls serve to reflect the incident

walls and thus affect the unsteady flow field; secondly, strong radial

gradient in steady, base flow causes refraction of transmitting waves.

The full detailed analysis of three-dimensional flow through turbomachinery

being dishearteningly difficult even for steady flow, the satisfactory

treatment incorporating the above features --- in addition to retaining

other necessary constituents such as contour of individual airfoil and

geometry associated with the arrangement of bladings --- appears, in

6spite of some recent attempt , to be formidable. Consequently, instead

of attacking the subject as such, we turn our present attention toward

Parentically, if the natural frequency of the airfoil is w and
the fundamental blade passing frequency is wb, it can be easily n

shown that the frequency perceived by the stationary observer is equal to

W n + w (n - U/2w),

where n is an integer and P. is the interblade phase lag.
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the following problem, which seems to be more crucial in practical

applications: suppose one replaces outer casing of compressors with

material which is capable of absorbing unsteady fluctuations, what

would be its effect on compressor flutter boundary? The installation

of acoustic lining on casing walls of aircraft engines is, of course,

widely used practice to alleviate the aeroacoustic noise but its potential

benefit upon the flutter suppression does not appear to be exploited.

However, its obvious advantage appears to be worthy of exploration, since

owing to the very capacity of sound absorbing material to relieve the

flow fluctuation, the unsteady pressure acting upon the bladings would

directly be reduced. Moreover, in supersonic flutter the tip portion

of the bladings is the most critical region immersed in high supersonic

flow; therefore, the provision of acoustic liners on the surface of outer

casing appears -- due to its closest vicinity to bladings -- to produce

an immediate beneficial effect upon the tip. Furthermore, since the

installation of lining material can be carried out entirely independent of

the aerodynamic performance of bladings, it does not interfere with or

compromise the other various design consideration of compressors.

To appraise this concept, in the present paper we formulate and

analyze a simplified model problem where an isolated oscillating airfoil

is placed in a supersonic duct whose upper wall is lined with sound

absorbent material. By evaluating the influence of wall liners upon

unsteady pressure received at points off the surface of the isolated

airfoil, we assess its effect in turbomachines, whose individual blading

is, of course, subject to far-field upwash generated by the other

members of airfoils.
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II. Model Problem Formu7ation.

Consider an isolated airfoil placed in a two-dimensional duct

(Figure 1) where the base, steady flow moves in the x direction with

supersonic velocity, U; U is assumed to be uniform across the duct and

there is no variation in other, steady-state flow variables. The air-

foil executes small-amplitude harmonic motion in the transverse z direction;

one surface wall of the duct located at y - h is provided with sound

absorbent material having specified impedance while the other wall of

the duct is untreated. If one represents the unsteady quantities by

primes, the linearized governing equations become

(,p'. u' 3v' 3w'
2 3 U JT (~+ - + o'I~c y 3

(t + U -x p y ax'

3v ' __1 p
-+ U-

at ax p ayx

~+ U 3  p 3

where c is the unperturbed speed of sound, p the ambient density;

u', v', w' are perturbed velocities in the x, y and z directions,

respectively; p' is the perturbed pressure and t is the time. From

all of these above perturbed quantities, we separate the time-dependent

factor by writing p' - p's t , u' -ue wt, etc. and (1) becomes
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2 iw 2 Bx P (i + + -i---) -0,

iWU"+ U
C C

ax p ax ' (2)

ax P ay
iW W, + u -6

ax P z J

The boundary condition on the airfoil is that the z-component of fluid

velocity is prescribed and equal to, say, W (x,y)

v' (xy, z = 0) = w (xy) . (3)

The condition on the hard wall is

v' (x, y 0, z) - , (4)

and on the soft-wall

iLJ I - krz (5)

Vi yh A

where A is the specific acoustic admittance and is assumed to be constant.

The initial conditions are such that upstream of the leading edge Mach

cone, the flow remains unperturbed or equivalently

- u'- vt' W '-0. (6)
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Because of the supersonic nature of the flow, we focus our attention

to the flow for z > 0 (above airfoil), which is uncoupled from the flow

for z < 0 (below airfoil).



7

III. AnaZ.ticaZ Solution.

In order to derive an analytical solution, we take the Laplace

transform of all the perturbed quantities in the x direction, defined,

for example, by
00

f e - x p' (x,y,z) dx,

0

and obtain the following:

1- + Us + + p (s i+ 2i + 0, (7a)

C 
C

iWu +us 1 s , (7b)P

piW~ +us M 2 i (7c)

iWw + Us 1 ?i (7d)p Bz'

with the following boundary conditions:

I=o - . - - (8a)

y 0, 
(Sb)

yih A y-h (8c)

il h P
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Elimination of u, v, and W from the above equations at once yields the

following expression for p:

___2 ___ 2iWs

92i +Mz 2  2" 2 L] = 0  
(9a)ay2 

2  c 2 c2

with the boundary conditions,

=-P (iW + Us) (y), (9b)

z 0

0 (9c)
y= 0

- c + a (9d)

y ih A(iw+Us) aY y = h

The solution for j is immediately obtained to be

OD

V p (iw +Us) aL n% co n, (10a)

n=0 
a n

where n is given as solutions of

0nh * tan Onh - - A(iw + Us)h , (10b)

and an is related to On by

2 2
S- 2 22 2iUs

- 8~ -u [s +-~- -- ]O ec

_ _ _ _
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where b are the coefficients associated with the expansion of i(y) inn

the series of cos Bny, i.e.,

or
hh

S ( = T (y (os y) y (lOe)

n J (y) cos (ny) dy)/[ (cos any)2 dy] (10e)

0 0

-1
If we denote the inverse Laplace transform by L , the inverted form of

(lOa) may be expressed as

p- (la)
P [i&V + UP 2 ]

where

P" e-Z cosB y) I (1b)
n

p 1 ((s -1 e- nz) (6 cosa y) ]. (lic)P2 a n [ns -
nn

In order to evaluate (11b) through convolution, we have to invert the

following two transforms, respectively:

1 - zcs_ y1 e n and cos y
n& n
n
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(The other transform s/a n eanz appearing in (lc) will be promptly

obtained, once 1/ n e - Lnz is inverted, as described shortly.) The

inversion of the above obviously demands the explicit expression of

8n and in order to obtain it, we assume that the specific acoustic

admittance, A, is small and then (10b) yields approximately

1A(iw+ Us) ]
0  = [ , (12a)

2n A~i +Us~h]8 n [ A(iw + [1],-n 1, 2-- (12b)n h(2n) 2c

A. Inversion of -L eflz.
'n

Using these expressions and with the aid of the following well-known

inversion formulae

-__ 1 1 1

(s + a) (s + 0) exp [-b (s + a) (s +812]

1 i2 2]

(x - b) exp [- -(a + B)x J(x -b) 2 ] ,

where J0 is the Bessel function, 1/ an - z is readily inverted to be

l n

ao

1, 1 H (x m-) exp - -U +A
xmc 2m 2hca 2

xJ £ 2m 412 (x 2 2 m2 2)

(13a)
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and

Lj [ e "nct

n n 1 L iw U AU ]x

H (x -mz) exp - + x
m hcm J

2  2iwA .2nT 2 22

(13b)

where n 1 1, 2,

If we denote the right hand side of (13) as (x), i.e.,

-1 1-

L [-e a e (x) , n - 0, 1,---
n

az
then the inversion of s/an e appeared in (lc) is immediately given to

be8

L [ e n] '().(130)

n

B. Invers ion of c-os8ag

In order to invert b nCOSny of (lib), we recognize that if the

normal fluid velocity W of (3) is independent of y, and is a function

of x only, for instance, equal to q (x), i.e.,

W(x,y, z -0) q (x),
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then

W (y) q

where q is a constant, (10e) yields, to the present order of

approximation,

so " q- (14a)

Ah- AhIT [iw + Us ] , (14b)V
gn 2 (n1T) 2 c O +u 1b

where n -1, 2 --- aking use of these and noting

-1

L (s ) = q'(x) + q(O) 6(x),

where S(x) is the delta function, we obtain the inverse of nCOS6ny as
n n

-1 2
- Cos Boy] q(x) + [q'(x) + !- q (x)], (15a)

L b0  2 ch +U (x]

and

L-1 [b cosay] -hA cos (3I2)

2(n7r) C h

x [iwq(x) + U (q'(x) + q(0)6 (x))], (15b)

where n a 1, 2, ---; the derivation of (15b) is straightforward, while

that of (15a) requires some consideration, and is therefore given in

Appendix.
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C. Pinal Solution.

With the aid of (13) and (15), (11a) becomes as follows:

x - mz
n -- 1/

L..n1 f (mz) B (x -mz) + go(x-t)B(t)dt
p m0

0

e cos (2nh) [iw q(x - mz) + U q' (x- mz)] f (mz)

n-i

+U q(O) H (x - mz) gn (x)

X - taz

+ iw q(t) + U q'(t)] gn(x - t) dt

0

(16)

1

where f0(x) - U exp (y0x) Jo [0 (x 2 -m2 z 2

go(x) - 2 +2hc Jo [60 (x
2 

- 2z2)2

- U 60 x (x2 -mz) 2 1 0(x2 - 2z2 2 exp (yox),

and where

- 22
- 2W u U  W + iw0 2 ___

c m 2hcm2  c m hcm4

!I
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B(x) - q (x) + 2  [q'(x) +2 ch q

Ah
2 (nr) 2cm

22
1

n(x) -U exp (yx) J0 [(n(
x2 - z22

gn(X) = ( ( m + -) Jo [6n(x 2 -2z2)2]

-U6 n x (x - mz) [(X - m2z) 2  exp (yx),

and where

iWU AU 6- 2  2iwA +2n) 2

cm hcm2  n c m hcm4

In the limist of zero acoustic admittance, one can immediately show that

the above expression will be reduced to a solution for two-dimensional,

9oscillating airfoil immersed in supersonic flow
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IV. Discussion.

Figure 2 show the comparison of the unsteady pressure distribution

between treated and untreated walls; the ordinate is the absolute magnitude

of unsteady pressure and the abscissa is the distance measured from the

bow shock, x - mz, plotted at varous values of z. The additional parameters

are as follows:

airfoil chord = 1.0,

M1 (Mach number) = 1.3,

h - 1.5,

k - w/U Mo = 0.5,

A = -1.140 + 0.547i (for treated wall)

= 0 (for untreated wall).

The airfoil is executing bending motion and its instantaneous position

is given by z = e ; the unsteady pressure in the figure is evaluated

on the top surface, i.e., y - h.

It is clearly evident that the provision of acoustic liners

significantly attenuates the unsteady pressure fluctuation and tends

to suppress the occurrence of flutter.
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APPENDIX

Here we shall derive the inversion of (15a): we note that

cos 80y becomes, from (12a)

Cos $oy = cos A(iw +Us) 2
0 j ch

Taking the inverse transform, we obtain

L-1 [cos aoy] - exp (-i )x L-1  cos [y(- UA'2-

= exp (-i L - 1 C [R + Y 2 UA  s + 0 (A 2) + -

U 2 ch

2
- exp (-i 2) [ 6 (x) + y UA (x)+0 (A)+--].

2ch

From (14a) and with the aid of convolution, one obtains (15a).
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1. Introduction.

Pressing problems beset with unsteady flow phenomena in practical

applications appear to involve almost invariably the propagation

of disturbance through non-uniform media -- such as flow with velocity

and temperature gradients. Notable among them are: the flutter problems

in turbomachinery bladings where the imparted swirling motion induces

substantial radial gradient in steady base flow; the aeroacoustic noises

propagating through aircraft engine ducts whose contoured form and the

boundary layer growth over its inner surface result in pronounced

variation of velocity; and high-intensity sound generated in heat

exchangers, gas-cooled reactors and the like whose complicated interuals

inescapably produce considerable spatial distribution, both in velocity

and temperature.

Having been spurred by these compelling incentives, the last

decade has witnessed intensified activity in the study of acoustic

propagation through non-uniform flow field;. for extensive bibliography

in this area, the reader is referred to the recent survey articles by

Nayfeh, Kaiser and Telionis (1975) and Goldstein (1976). However,

but for few exceptions (e.g. Pridmore-Brown (1958), Shankar (1971),

1
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Goldstein and Rice (1973)),the bulk of the work has leaned heavily on

entirely computational method. Though, needless to ;ay, extremely useful

as these numerical methods are, they may still tend to fall short of

achieving the desired goal of revealing the explicit functional inter-

relationship between the assorted parameters and displaying the underlying

physical features. Even in the situations which are amenable to analytical

solutions, they appear to suffer from various rigid constraint imposed by

the particular choice of velocity profile or the geometry studied; for

example, the analytical expressions accrued for unbounded media may

not readily be applied to eigenvalue problems associated with ducted

flow and often they are altogether unwieldy for physical interpretations.

It therefore appears that what is genuinely needed is a simple, albeit

approximate, technique which enables one to cope effectively with the general

wave propagating problems. In this paper, we shall describe such a technique

which yields an analytical solution of disturbances propagating through arbitrary

velocity profile in simple, closed form; and we shall present it from a

unified viewpoint where, once the free-space solution is derived, a slight

modification of the results will promptly furnish both a solution and physical

interpretation even for wave guide problems. The essential idea that we shall

promote is not unknown, and it is in fact a variant of 'slowly varying' method,

but somehow it does not appear to have been pursued in the way it will be

exploited here; with the assumption of small velocity (or temperature) gradient,

the technique to be employed here is strikingly simple yet appears to be

capable of exposing physical meaning in unmistakably transparent manner.

In the problem of sound propagation through non-uniform media,

the original governing equations are invariably reduced into a second-

order ordinary differential equation with varying coefficients, the

latter reflecting the non-uniformity of velocity (and temperature)

profile; the equation is sometimes called Pridmore-Brown's equation.
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According to the method suggested perhaps first by Jeffreys and Jeffreys

(1956, p. 522), we recast the second-order differential equation, via ex-

ponential transformation, into a first-order equation. The equation is of

Ricatti's type, nonlinear and inhomogeneous; the transformation is, of

course, the one sometimes used as the first step in deriving the WKB for-

mula. In the standard WKB method, one then proceeds to solve the nonlin-

ear first-order equation by iterative process. Here, instead, we seize

upon the explicit advantage that under the assumption of small velocity

gradient, the first order equation turns into the linear one with Lonstant

coefficients; a closed form solution follows immediately from this, provid-

ing a free-space solution for sound propagation through non-uniform media.

In compact form, our solution (2.11) gives the expression for wave trans-

mission through any arbitrary shear profile; as a special case, we shall

prove that the solution, when applied to linearly sheared flow, recovers

the result corresponding to the exact solution of Goldstein and Rice (ibid.),

which they obtained in terms of Weber's parabolic cylinder function. The

present solution also includes, for another specific shear profile, a solu-

tion of Miles (1957) and Ribner (1957) for sound transmission through sudden

velocity discontinuity. These shall be discussed in the following section, 2.

Most significantly, from the wave-like behaviour of the solution

explicitly embodied in the exponential transformation and furthermore, ow-

ing to the simplification arising from the assumption of slightly sheared

flow, the present solution will conspicuously reveal the physical features

of the wave propagation in non-uniform media, which will be described in

section 3. For example, we shall readily recognize that for
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disturbances propagating slightly but arbitrarily sheared profile,

the wave front advancing past a given point can simply be constructed

by replacing the role of convective velocity in uniform flow by the mean

velocity cumulatively averaged up to that point (as might be antici-

patedJ from 'slowly varying' concept); this appears to provide the

approximate but simpler means than the ones where the wavefront has

to be successively constructed by chasing an instantaneous front surface

after surface. After these descriptions of physical implication, we

shall compare the present solution with the ones derived from WKB

formula; to obtain this, we transform the Pridmore-Brown equation

into one-dimensional Schrodiger's equation and apply the standard WKB

method; we shall observe that the present solution, when rendered into

alternative form of infinite series representation, is tantamount to providing

all the higher-order terms lacking in the solution based upon the standard

WKB method. In the final section 4, we shall show how these solutions ob-

tained for unbounded media can be utilized, with slight modification, to

waveguide problems, leading to closed-form solution (4.13). In addition,

we shall observe there that, with the aid of free-space solution, a certain

interesting phenomena associated with some class of velocity distribution

will become physically interpretable.

Our undeviating aim in this paper is to obtain a solution for waves

propagating through non-uniform media in a form as uncomplicated as possible

and in order to strive for this, it will inevitably be subject to certain formal

limitations; nevertheless we shall find that the present approach appears to be

highly effective, both in providing a compact expression, from which one can

easily detect various trend, and in exposing physical features.
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2. General Solution For Unbounded Medium.

Consider acoustic waves propagating in a two-dimensional and

flowing medium; the base, steady flow is unidirectional, with velocity

U in the positive x direction and it varies in the transverse y direction

as shown in Figure 1, e.g. U = U(y). For the sake of simplicity, the

ambient density and temperature are assumed to be constant, although, if

necessary, the present technique can easily be employed for stratified

medium as well; the flow will be treated as inviscid. In this section,

we consider the medium to be unbounded and in order to fix our ideas,

we shall be interested in acoustic waves travelling from y - - and

propagating through sheared flow in the positive y direction; at y -

U is assumed to be uniform. The governing equations are given in the

linearized form as

1 ( ((au' av'
+U (y) + P( + --)M

c ax

au__' au' v' d - I p2 (2.1)at +U(y)a-- +  dy p ax

av' Y av' M 1 p

where p and c are unperturbed density and the speed of sound, respectively,

which are constant; u' and v' are the fluctuating part of the velocity

component in the x and y direction, respectively; p' is the perturbed

pressure and t is time. Eliminating u' and v' from (2.1), one obtains
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(- + U (y ) [(1- (y)) + - 2 3xa' 2 2

ax 2  ay2  c xat c at
a~ t 2

- 2 dU (Y (2.2)
dy axay '

where M (y) - U (y)/c is the usual Mach number. If one considers a

sinusoidal wave with frequency wand travelling with wave constant a

in the x direction, the fluctuating pressure takes the following form:

p, = p (y) ei( x - wt) (2.3)

Parenthetically, this embodies a kinematical condition that the wave

number in the x direction, cu/2Tr , remains always constant even though the

waves suffer refraction due to shear flow in the y direction. Into

(2.2), we substitute (2.3) and obtain

p 2q'(y) p' + [(aM(y) - k)2 - 2] p 0 , (2.4)P" O(y) - k

where k = w/c and the primes denote the differentiation with respect to

y; the above ordinary equation involving variable coefficients is

sometimes called Pridmore-Brown's equation (Pridmore-Brown, 1958).

For the extremely simple situation of M (y) = constant - Mo, say,

the solution is, of course, given by

p' exp [t iy /4c*0 k)2c]. (2.5)
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Now consider slightly sheared flow with arbitrary profile

M (y) - M0 + Eg (y) (2.6)

where e is a small paradeter and the shear distribution g(y) is any

given function of y; we take M0 to be the Mach number at y i -

(hence g (- -) - 0). Motivated by the form of (2.5) for uniform flow,

we write in the present case

p = exp [± i y XOM0 - k) 2 - 2 + s fF (E) dE]. (2.7)

Substitution of (2.7) into (2.4) at once yields the following equation,

to the order of e, for F:

+ 21 yF-+ [2 (c] - k)Og (Y) T 0, (2.8a)
dy - 0 a(M0 - k

where

y oM0 - k)2 _ a2. (2.8b)

It is crucial to recognize here that the above first order equation is

linear and the coefficients are constant; were the perturbation scheme

not explicitly introduced in (2.7), the exponential transformation would

have led to the nonlinear Ricatti's equation. In the above (2.8a), we

also call our attention to the fact that shear flow profile g (y), which

is a function of y, now appears only within the bracket or as non-homogeneous

term. With regard to the solution of (2.8a), the homogeneous solutions

is obviously equal to exp (+ 2 iyy). But since this does not
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contain any effect of shear, the solution is physically meaningless

and, therefore, is discarded; only the particular solution of (2.8a)

is relevant. In order to obtain the latter, we take the Fourier transform

of (2.8a) and obtain

- iOF + 2iyF = - 2 (c440 - k) ag + 2 k (2.9)

where F and g are Fourier transform of F and g, respectively, defined by

F I_1 F eiay dy, g 1 g eiGy dy.

Solving for F and inverting, we obtain

F - i g (y)

+ I 4 k -2cc(aM 0  k)] g() eT 2 iY ( y - )d . (2.10)+ LM0 - k

-00

We substitute this into (2.7) and, restoring the dependence with respect

to x and t, obtain immediately

p'-e x W + i o 0  ( (21a

r e a-n
y

+ oAO - k 2 0(a - k)j d ] () e .-

• w ,. ..
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Thus we have already attained the desired goal of obtaining an expression

for waves propagating through arbitrarily sheared flow in the positive y

direction. (For waves propagation in the negative y direction, one only

has to change the lower limits of the integrals from - to +oa.) If

the flow is uniform up to certain height, say, y = YO, i.e.,

g (y) - 0 for y< y 

(2.11a) becomes

p =ei(x - + iy

- M o- k g (2.11b)

YO

yO
4y 2  ag e +2i(n - d&)

+ EcM -Ok - 2t(oH0 - k)] dn J()ed .
ON 0 -Y 

O Y O

Although the case of y - 0 or zero incidence angle is physically trivial

for the present free-space transmission problem, we record here, for

subsequent reference to be used in ducted wave analysis, that at y - 0

(2. llb) becomes

Y np' e ei(ax- Wt) exp [ 2ca(ce0- k)/ dn g (Q) dE] (2.11c)

YO YO
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For given shear flow, the propagating wave at any point can be determined from

either of the above, once the integration involved is carried out. A

note of caution is, however, in order here. When the integration over g

is carried out for specified shear profile, sometimes the terms in the form

of exp (+ 2 iyy) appear. Since they are of the same form as the afore-

mentioned homogeneous solution of (2.8a), these terms are parasitic in their na-

ture and therefore they should always be discarded for the reason already stated.

In what is to follow, we shall work out examples for three shear

distribution: (a) shear profile with exponentially decaying transition

(b) linear shear and (c) sudden velocity discontinuity (see Figure 2).

In (b) and (c), we shall observe that the present results agree

satisfactorily with the ones based on the available solution.

Example 1. Shear profile with exponential transition:

g(y) - 1 - e- ay for y > 0

and g(x) - 0, for y < 0.

Upon substitution of g(y) into (2.11b) where we take y0 - 0 and discarding

the terms of exp C± 21yy) after carrying out the integral, one obtains,

when y # 0

p* A i(ax - WOt) + iyy

xexp (y + 1 e-

+ .C..,%o - k 2(cI 0 - k)]
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1 1 e-ay
+21yY aT2iy a

where

A -exp : ie a(C o - k) + LoM 0  k 2 a(UMOk)] (2.12)

1 1 - 1 1
X(a '2 i 0 a 7 (+ 2i-y) + (a T2iy) 2iy]

This represents the transmitted wave in the region above y - 0 when the

incident wave for y < 0 is prescribed to be p' - ei( a x - bt)e- iyy. We

particularly emphasize here that the above expression provides even the

correct amount of the amplitude of the transmitted wave corresponding

to the amplitude of incident waves specified to be unity. (If other

than unity, the amplitude of the transmitted wave should, of course, be

adjusted proportionately). This is the reason why the constant A is

deliberately retained in the above and there is no need to multiply

it by some other additional factor. One can directly confirm this point

by applying, at the interface of y - 0, the continuity of pressure and

the particle displacement condition between the expression of (2.12),

valid for y >0, and the expression for y < 0; the latter is given by the

following combination of plane incident and reflecting waves

p, . ei(ax - Wt) e+ Yy + I ei(x - wt)eTi y, for y < 0

where R is the amplitude of the reflected wave to be determined in the process.
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Example 2. Linear Shear : g(y) Y for y > 0 and g(y) - 0

for y < 0.

In this case, where at y = 0 the base flow changes from uniform

distribution to linearly varying one, equation (2.11b) becomes as

follows:

p, ei(€ - t) + iyy

p ep F ecl0 0  2 y t-- (2.13)

x exp +_ t + [ - k" + 01kk] y)"

In obtaining this, the term in the form of exp (+ 2 iyy) , which has arisen

in the course of integration, is again discarded. As before, (2.13) re-

presents the wave transmitted in the region above y - 0 when the incident

wave impinging on y - 0 is specified to be p' - ei((x - Wt)e± y

For linearly sheared profile, Goldstein and Rice (1973) obtained

the exact solution of propagating waves in terms of the parabolic cylinder

function. In the present notation, their solution can be expressed as

p e i(x - Wt) 1 [U'(b, + ) Tb C U (b, +_)], (2.14)
2 +b

where U is the parabolic cylinder function (e.g. Abramowitz and Stegun

(1970), p. 686) defined by the following integral representation:

1 t 2b 1
U (b,C) - 1 • exp (-t 2 dt, (2.15a)

+ b)2
- i 0
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where

b = and = i (k -al(y)) . (2.15b)
2iN-

dyM

When the gradient of shear, d is small, both b and defined

above tend to become large. In such a case, one may prove, as shown in

Appendix A, that, with the aid of the Darwin's formula (1949) for the

parabolic cylinder function, (2.14) is reduced to the present result,

equation (2.13). (In lieu of Darwin's formula, it might appear possible

to start with the integral representation of (2.15a) and apply the Laplace's

method for large values of b and &. It turns out that this approach

calls for the usage of the generalized Laplace's method and so-called

Faxen integral, both of which are discussed in Olver (1974, p. 331-332).

The method is, however, apparently somewhat too crude to serve the present
2

need, for, although this accurately reproduces y term in (2.13), it

fails to yield the correct coefficients of y.)

Example 3. Sudden Velocity Discontinuity:

g (y) -= Mfor y > 0

and g (y) - 0 for y< 0.

When the steady velocity increases suddenly by AM at y - 0,

(2.lb) yields

p= A e•i ( x - t) e + i y exp [+ ic (aM0 - k) 121y] , (2.16a)Y



14

where f- - 2
a[2-y2 - (c 0 - k)

A -exp cam (2.16b)

2y 2 (c (d0 - k)

Once again, this is the wave transmitted in the region above the

interface y - 0, upon which the incident wave impinges.

The exact solution for sound transmission through a flow velocity

discontinuity was obtained by Miles (1957) and, independently, by

Ribner (1957). According to them, the transmitted wave is given by

p' = T e i(Ox - Wt) etay tan 2 (2.17a)

where

2 sin (2 ()
T- sin (2 01) + sin (2 02) (2.l7)

In the above, 01, and '2 are incident and refracted wave angle,

respectively, measured from the positive x direction. 01 is given by

tan ; (2.17c)

and 02 is related to 01 by the following law of refraction analogous

to the Snell's law:

1 o 1 + cAM. (2.17d)
coon 1 coon

_ __
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When the amount of velocity jump is small, one can readily prove

that (2.17) becomes identical to (2.16), the details of which are shown

in Appendix B. Additional numerical comparison between the Miles-Ribner's

exact solution and the present approximate solution is shown in Table 1,

where the transmission coefficient, A of (2.16b) for the present solution,

are compared with T of (2.17b) for various incident angles, *l; they

are given both for positive and negative velocity discontinuity. It is

clear that the present formula provides sufficiently accurate values

for a wide range of incident angles, except for the vicinity of either

critical incidence (corresponding to total reflection for positive

velocity jump) or the zero incidence in the case of negative velocity jump.

(The local discrepancy near these two incidence angles is not quite

unexpected, since both correspond to the turning point of (2.4), about

which we shall discuss more in section 3; for AM > 0, the turning point

occurs in the region where y > 0 and for AM < 0, in y < 0.)
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3. AZternative Represetatin and PhysicaZ Interpretation.

We now return to the general solution, (2.11), representing waves

propagating through arbitrary shear profile; though convenient for

obtaining compact expression of such waves, it is not appropriately

suitable for exposing physical features. Therefore, in order to pave the way

for extracting physical interpretation, we recast it in alternative form.

Taking the case of shear distribution where the flow remains uniform up

to y - 0 and whose solution is given by (2.11b), we apply the integration

by parts to its double integral appearing in the argument of exponential

and obtain

p, . ei(x - Wt)+ ivy

aq k)
x exp _i O g (n) dn

o
0

+ C [ 4ay 2  - 2a (CHO- k))
aM0 - k

x 1[- g(Y) 1 ,,(Y) + 1 g (4) (Y) _

(2y) (2y)4  (2y)6

+ 1 [1 3 g' (y) - 1 g'''(y)+ 1 7 g(5 )(y) --
(2y) (2y) (2y)

, (3.1)

where, as before, the terms in the form of exp + 2 iyy) originated from

the lower limits of the integral are discarded. The above expression, (3.1),

is a series expansion of (2.11b) in terms of y. Though, in general, it is

lose expedient for computational purpose, on the other hand it readily
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surrenders to the physical interpretation, whose term-by-term

description will be given below; pursuant to this, we shall compare

(3.1) with the other series solution, which we derive by applying the

standard WKB method.
Y

3.1 Term Associated with fg (E) d.

Before we consider the first term in the exponential

a<a0 - k) Y
+icf g() d, (3.2)

Y
0

we note that for uniform flow (C - 0), the surfaces of crests and troughs or

of constant phase are given by

ax + yy - constant, (3.3a)

and the surfaces move as time changes. For the present case of

C # 0, the term (3.2), which is the leading correction term for large

values of y or at higher frequency, modifies the above into the following:

cax+ -yy f e yI g(n) d n - constant . (3.3b)

0

The Integral form indicates that phase change is dependent on the

entire flow field over which the wave has traversed; hence, the term

embodies cumulative, memory content and might be called "phase memory". (Though

more popularly found in electromagnetic propagation, this phase memory recently

surfaced in the context of unsteady flow field radiated by an oscillating
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body (Kurosaka, 1977).) In order to appreciate the meaning contained

in (3.3b) more fully, we replace the uniform velocity M0 appearing

in the following definition of y,

cv the mean velocity averaged up to the vertical position, y, i.e.,

M= A f (n)d n =MO+ f g(n) dn.

0 0

1/2
Then, if we define y to be [(aM - k) - 2] ,this becomes,

to the present order, as

Y= ea~ao o - k) I
y - A g (n) d n,

Y yj
0

and (3.3b) becomes

ax + yy M constant (3.4)

Comparison of the above with the expression for uniform flow, (3.3a),

immediately reveals the following: the surfaces of constant phase for

waves propagating through shear flow passing a vertical point, y, may be

given (as a good approximation for shortwave length in the y direction or at

high frequency) by replacing the role of uniform velocity by the mean

one cumulatively averaged up to that point, y. From the intimate

relationship between the behaviour of the waves at high frequency and the

wave front (e.g. Whitham, 1974, p. 236), one is naturally led to



19

expect that the same replacement might take place for wave fronts.

In order to obtain the direct confirmation of this, we regard the

solution, correct to the present order and expressed in terms of the

above y, as the Fourier transform, F, with respect to a and w: that is

e- inF, (3.5a)

where
1/2

S- [((M-k) -  a] (3.5b)

The expression for the wavefront will accrue naturally when one

takes the inverse transform so as to derive the transient response,

(Miles, 1959, p. 53; Kurosaka, 1977). Taking the inverse transform

of (3.5a) with regard to a and w

F- da f (i(ax-Wt) :t+i dw,(3.6a)

Cda - eC- d

we obtain

F ~2 [c 2(t 2-_-1y) 2 (x -Ut) 1/

DY ~ C2

2 1 2 1/2

c

where U is the averaged shear velocity defined by

U- f U (y) dy, (3.7)

0
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and H is the step function; the derivation of this is relegated to

Appendix C. From (3.6b), it is clear that the wave front is given by

2t2 2 + x-t2 .  (3.8)

2 2 2 2

Comparison with the one for uniform flow, c t = y + (x - U t),

readily shows that the wave front propagating through non-uniform flow

can easily be obtained by replacing the role of uniform velocity by the

cumulatively averaged one, as might be anticipated from 'slowly-varying'

notion. We emphasize the point that the above approximate

but analytical expression offers a simpler way to construct wavefronts

than the general method where it has to be successively constructed from the

initial surface by the vectorial addition of acoustic velocity, which

is in the direction of normal to the surface, and fluid velocity.

3.2 Term Associated with q(,y).

With respect to the term associated with g(y) in the argument of

the exponential in (3.1),

Sa2. - k - 2a (aM0 - k)] 2 g(y), (3.9)
0 (2y)

we observe that this is wholly real and consequently represents the

primary change of wave amplitude due to the presence of shear. It

may be of interest to note its following implication: when we

express the amplitude corresponding to the above by A, i.e.,

A exp _ 2 2a '

M 0 k0 (2y)2!2 i
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then

dA A A • g'(y) . (3.10)
dy

Therefore, to the first order of short wavelength in y direction or at

high frequency, the rate of the change of the amplitude is proportional

to the product of velocity gradient at that position and the amplitude

itself. (It satisfies the equation analogous to the one for radioactive

decay.)

3.3 Terms Associated with derivatives of g(y)

The remainder of the terms in the argument of exponential in (3.1),

2

cry -k 2a (aM0 -k)]
0

1 (y)+ 6 (4)(y) ---xU(- g" (y)(y + --

(2y) (2y)

1 3 1 , (y) 1 1 ,,, (y) + 1 7 8(5)y__])

(2y) (2y) (2y)
(3.11)

obviously provides the higher-order correction to both amplitude

and phase. If we consider a shear profile where at some point y - Yl'

all of its derivatives vanish (see Figure 1 again), i.e., g'(yl) -

g'' (Yi) - -- - 0, the wave transmitting through y does not perceive

any local change in steady velocity; and therefore, both the amplitude

and phase should remain unaltered while traversing past yl. This

fact is indeed accounted for in the present solution, since in such
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an instance, (3.11) vanishes completely while (3.2) and (3.9) retain

the same value just before and just after leaving yl.

3.4 C spa'on with the Series Solution Obtainable

by the Standard WKB Method.

We now compare the alternative series representation, (3.1),

with the other series solution derivable from the standard WKB formula.

For this, we transform the Pridmore-Brown's equation (2.4), into the

Schrodinger's equation for one-dimensional quantum-mechanical motion

where the standard form of WKB solution is readily available. First,

we remove, in (2.4), the term in first derivative by the following

standard transformation:

p = zY, (3.12a)

where

z - M(y) - k (3.12b)

This, together with (2.6), changes (2.4) into

y"' + Iv2 - CU(y)] Y - 0 , (3.13a)

where

u(y) -2 -2(aO-k) g (y) ao-k+(Y) Y
0UM yk+ teny

2 2a 2 (&,(Y))2
+ C[-a 9 Y) + 22 I (3.13b)

(CHo - k + ac g(y))
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This is the Schrodinger's equation where U (y) corresponds to potential

and so far no approximation has been made. The standard WKB formula

(e.g. Horse and Feshbach, 1953, p. 1092 et seq.) is applied here and

the approximate solution of (3.13a) is immediately found to be

YIexp [+ q dy - Ilog q] , (3.14a)

0

where q - /Y2 CU(y) . If we now assume C << 1, (3.14a) becomes,

to the order of C, as

I o~o - k) f
Y exp + i~y +i a y 0-k g (n) dn

0

1

- 2a (am0 -k) 2 g (y)
(2y)

2
4a y 2 g,9 (y)

aMO0 - k (2y)3

4aT2 1 1'' (Y) (3.15)
SaMo0 - k (2y)4

To this, we restore the factor z of (3.12b), which we recognize to be equivalent,

to the order of the present approximation,, to

z '-(Moo - k) exp k]
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Multiplying the result by ei( x - wt), we obtain p' as

pI, e i(Ox - wt) + iyy

x exp + -k) f (n) dn

0

+ E [ 2y 2a (Mo - k)] 2 g (y)
0MO - k 0 (2y)2

4ay2  "

+ 1M 9- (Y) () (y )  "  (3.16)
ON -k (Zy) 3(2y)4

We take a special note that the argument of the above exponential function

consists of finite terms, in contrast to the infinite series appeared in

(3.1). Further scrutiny between the above WKB solution, (3.16), and our

y
series representation, (3.1), reveals that the terms associated with I g (n) dn

0
and g (y) agree; the other terms associated with g'(y) and g''(y) are not

quite the same; g'''(y) and other higher derivatives are completely missing

in the WKB solution. One can show that whereas the present series solution

(3.1), or more precisely its y-dependent portion corresponding to p(y)

of (2.3), satisfies the original differential equation (2.4) to the order

of E, the WKB solution (3.16) fails, not surprisingly, to do so even

to 0 (e). Indeed, it is straightforward to prove that if the iteration

procedure described by Morse and Feshbach (ibid.), which leads to the standard

form of WKB solution of (3.14a), had been repeatedly continued, the resulting

higher order terms would, to the order of s, contribute to recover the entire

terms missing. in (3.16). Consequently, the present infinite series representation,
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(3.1), does offer the terms of higher order which would be lacking in

the WKB solution; the primary expression obtained in the preceding section

2, (2.11), amounts to the sumnation of these terms into a concise form

convenient for arbitrary shear profile. Observe also that without the

assumption of e <<1, the solution (3.14a) directly derived from the

standard WKB formula would not be amenable to the physical interpretation

described previously.

Before concluding this section, we wish to dissipate a potential

source of misconception about summation formula, (2.11): on the face

of it,this solution might appear to be valid even in the neighborhood of

y - 0, which is a singular point in the series representation of (3.1)

or WKB solution (3.16). (The turning point of (3.14b) is q = /0 2 - Uy- 0

but the expansion for C << 1 has transferred the singular point to Y - 0,

Instead). However, except for the case where y happens to be exactly

equal to zero, this is not so; for once the integration for (2.11) is carried

out, the terms like 1/y reappears. For example, one can immediately recognize

this from (2.12), which -- although of compact form than the one that would

be obtained from the infinite series representation corresponding to (3.1) --

is still singular; in example 3 of section 2, we also have observed the

similar behaviour. To avoid undue complication, we defer any attempt to improve

this limitation obviously associated with the regular perturbation scheme to

elsewhere, but in the next section we shall observe that even in the present

form, the expression for y - 0, (2.11c), will be found to be valid and of

physical significance in ducted acoustic waves.
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4. Application to Ducted Shear Flow Problem.

Let us turn our attention toward the problem of acoustic wave

propagation through shear flow in ducts; here we shall find that the results

of the previous sections obtained for unbounded media can be applied to

channel flow with minor modification -- in particular, without any change in

the case of the fundamental mode.

The coordinate system is shown in Figure 3 where the duct walls are

placed at y - + k. Assuming that the walls are rigid or hard, the boundary

conditions on the walls are given by

a - 0 at y X + . (4.1)

In order to ascribe definite meaning, the steady, base velocity, M0, of (2.6), is

now taken, without loss of generality, to be the one averaged across the duct, i.e.,

MO = f M(y) dy, (4.2)

and accordingly

f g(y) dy 0 (4.3)

-L.

If the flow inside the duct is uniform, it is of course elementary

to show that the wave constant in the y direction, y of (2.8b), takes

the following eigenvalues determined from the wall boundary condition:
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Yn where n- 0, +1, +2, --- (4.4)

and correspondingly inverting (2.8b),a is given by

Mok + /k2 - (1-H 0
2) n 2

% 2 for n 0, + 1, + 2, ---, (4.5)HO -lI-- -

where we assign suffix n to a. In the above, the positive sign corresponds

to the waves propagating in the upstream direction and the negative sign

to the one in the downstream direction.

In the particular case of the fundamental mode of plane wave

where n - 0, y for uniform flow becomes zero from (4.4). If we return to

the present subject of sheared flow, then for y - 0 the solution has

previously been obtained as (2.11c) and, when one takes the lower limit of

the integrals to be equal to -X, we obtain the following:

p' =ei( a x - wt)exp[-2ea (Oc0 - k) I dn g( ) d] . (4.6)

-t -t

Upon differentiation with respect to y, it is immediately apparent from

(4.3) that this does satisfy the boundary condition, (4.1); consequently

this is in fact the lowest mode for waves propagating in duct; the

underlying physical reason why in this case the free-space solution also

becomes a ducted wave will be given subsequently. For now, from the expression of

cL corresponding to n - 0 in (4.5), one obtains ylt

PO ' exp + k HO+ 1 )exp [C f d f (C)dM.

(4.7)
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where suffix 0 attached to p' denotes the fundamental mode and upper signs

inside the exponential correspond to the upstream propagation and the lower

signs to the downstream propagation. During the course of the present work,

it was communicated by Dr. Savkar that the essentially same expression was

previously obtained by him in hitherto unpublished memo (1972), which is

now being prepared for publication, by using an entirely different method

where a technique akin to PLK method was employed along with certain ortho-

gonality condition for various duct modes; on the other hand, as we have just

seen, the present derivation is directly obtained from the free-space sol-

ution and not dependent upon the latter requirement.

Of interest here is the comparison of the present expression, (4.7),

with Shankar's solution (1971) for initial value problem. He posed and.

solved a problem where a harmonic plane wave disturbance is suddenly switched

on at x - 0 in an initially quiescent medium with slightly sheared flow. For

the initial condition

p'(O,y,t) - A eitH(t)

where A is constant (plane wave) and H is the step function, his solution

for large time is given, according to the present definition of M0, to be

kL(x'y't) =exp -iW (t - x

A c(l + M0 )

a

+ z RbI o nwy*, e-iwt22 2 bk cs ben- = (l + MO) n

n A
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-exp c(l+ MO)  + 0 (e2) (4.8)

where b - 2k , y* - y + £ and an is the Fourier coefficient of shear

profile g(y) M( 1 ) (y*) defined by

b

a M (E) Cos (l) d
n

0

We combine the first term of (4.8) and the terms of the same exponential

form appearing inside of the series, i.e.,

exp iW (t- c(l + M0)

a
___4____b_ k 2 co n Ty* e-iWt i Wx

-2 2 2 co (~ +exp)
nl

(4.9)

Upon differentiating twice with respect to y, it is straightforward to show that,

from the Fourier series formula, the sum is indeed equal to the present result of

(4.7) for downstream propagation, correct to the order of C. ( The other

term in the series of (4.8) obviously correspond to higher modes associated
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with the particular choice of the initial condition which is assumed

to be a plane wave in Shankar's paper.)

The present expression for the fundamental modes, (4.7), reveals

explicitly various features of the shear flow effect. For example,

for a parabolic shear flow satisfying the requirement of (4.3), i.e.

g(y) = 1/3- (y/)2

p iv t exp (+ i kR7 2i 2 (l

(4.10)

where the upper and lower signs correspond to upstream and downstream

propagation, respectively. Not only the role of amount of shear (C), frequency

(k) and mean Mach number is transparently obvious, but also, when we note

that [(y/k)2 _ 2] always remains negative across ducts, it is plainly visible

that shear layers refract the fundamental mode wave toward the wall for

downatream propagation and away from the wall for upstream propagation.

The effect has been known from the various results based upon numerically

computational scheme (see Nayfeh et al. for full references.); the magnified

effect of refraction at higher frequency and greater shear has likewise

been recognized. We feel, however, that the present analytical expression

displays these effects, perhaps more conspicuously and compactly. The

numerical comparison of (4.7) with the results obtained by wholly computational

scheme (e.g. Mungur and Gladwell (1969))for prescribed shear profile such

as linear distribution shows the satisfactory agreement,even when the values

of ck 2 2 appearing inside the exponential of (4.7) become moderate;
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therefore in this paper, in the interest of retaining simplicity, we

shall not attempt to improve the, formal limitation at large values

of ek 2 2 through the obvious application of singular perturbation procedure.

For higher modes in ducted flow, the free-space solution obtained

previously, requires some modification. Since, for uniform flow, the

wave constants in the x direction, an of (4.5), are dependent upon the
n

uniform velocity, H0 , we expect that for sheared flow, it is dependent

on shear; accordingly, we express

S a + CX (4.11)

where is the correction factor due to shear. In general, xn has to be

evaluated from the boundary condition. However, as in the previous case of

fundamental mode of n - 0, which in the present notation corresponds to

(o - 0, one can show that even for higher mode ) vanishes for a certain shear

profile; that is, for odd component of velocity distribution in the y

direction, X - 0 or the wave number in the x direction remains unaffected by

the presence of shear. This fact appears to be first recognized by Savkar

in the aforementioned unpublished memo based upon the duct-mode analysis;

in what is to follow, we shall instead show this from physical consideration

based upon free-space solution.

The sound field in ducts may in general by regarded in the following,

two different ways: in the first interpretation, it can be visualized as

the superposition of two sets of free-space waves, one propagating in the

positive y direction and the other in the negative y direction; alternatively,

it can be viewed that these waves are continually reflected back and forth

between two rigid walls. Let us at first adopt the first viewpoint and
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consider these two waves generated by the initial pressure specified

at x - 0; for the n-th mode in uniform flow, the wavelength in the

y direction is equal to 2X/n, (shown in Figure 4(a) for n = 1 ) with the

pressure oscillating at frequency, w. The wave constant, a, in the x

direction is proportional to the number of crests (or troughs) in unit

length in that direction. Let us pose the following question: what is

the change in the number of crests due to the non-uniform velocity

distributibn? In order to answer this, we extend the shear profile,

originally defined inside the duct, to its outside in periodic, repeated

manner in order to cover the entire unbounded space, as shown in

Figure 4(b). (For odd component of velocity distribution, the profile in

the neighborhood of y - + , + 2t, --- may, if necessary, be envisioned

to be slightly modified so that the velocity distribution becomes continu-

ously smooth; this is to avoid the unnecessary complication arising from the

refraction which would otherwise occur at the interface between velocity

discontinuity.) We note that, for any modes, the lines of constant phase

in the free space may be given by the curves along which the imaginary

part of (3.1) remains constant, i.e.,

(0 - k) I +

+ [ 4aT2 2 ad - k)] [_!,XS(y) 9 of'"(y) +- --
+ 0 -k -2, ) (2y) 3  (2) ( 7

x 8(5) (y) --- constant.

(4.12)
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We observe that because of the periodic extension of the shear profile

throughout the entire space and with the aid of (4.3), the integral

involved may be reduced to the following:

f g(r) dn f g(n) d Y.

We at once recognize that at the points corresponding to walls, y + £,

the integral vanishes. Furthermore, for odd component of velocity

distribution, the odd derivatives take the same value at these points:

g'(1) - g'(-L), g'''(k) = g"'(-Z) and so on. Consequently, these promptly

lead to the following: in (4.12), all the terms associated with c or

shear take the same value at the points corresponding to walls. Therefore

lines of constant phase appear, as shown in Figure (4c), where,

for the sake of illustration, the lines are adjusted so that the lines

of constant phase for uniform and for non-uniform flow cross each other

initially at y L - . When we now switch to the second viewpoint of

regarding the duct wave system as being reflected repeatedly back and

forth between the walls, one can immediately recognize that for odd component

of velocity distribution, the number of wave crests remains unaffected

by the presence of shear;and therefore, in such a case Xn of (4.11) vanishes.

(It is apparent that this does not hold for even component of velocity.)

A similar argument can also be used to provide the physical explanation of

X0 - 0 for n - 0 or the lowest mode, for in the corresponding free-space

solution of (2.11c), the shear effect appears only as the real part of

the argument of the exponential function, leaving the phase surface unaltered.
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For general, arbitrary shear profile, the solution for higher

mode may be obtained by enforcing the boundary condition (4.1), upon

the linear combination of the solutions, which can be obtained, in a manner

similar to the one used for free space; in the course of this we naturally have

to keep in mind the correction of an as expressed in (4.11). The final solutionn

for the n-th mode is as follows:

n' (exp z + exp z ) ei(an + Xa) x - iWt, n = 1, 2 --- (4.13a)

where Zn is the complex conjugate of zn defined by

y

z = iY y+ ic2 n yn 01) dT
n n n M° _ k f g

2

+ nn - 2a (a M - k))anM - k n nO

x dn f g(E) e-21Yn(n - dE

-t -i

__+ _ 13 g'L i g,,,(i) +-__1

(2yn3() (2Y)5

+ ( e[(anMO k) - an] (4.13b)

Yn n n
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and where

1 a (anM0  -k)]
Xn- Z[MO(a k)- ] o--k k)UaaH-2k

u~On nO0

£ [2 -g' (-t)] [g'"(t) -(2yn)2 (27n)4

(4.13c)

It is quite apparent that for odd velocity distribution, )C - 0, as we

expected before. Needless to say, in the above, as in the free space

solution, the parasitic terms of e- nY, which may arise in the course

of carrying out the integration for specific velocity distribution, have

again to be discarded.

Although the above results are obtained for hard-walled ducts,

one can obtain, in similar manner, the expressions for the ones with soft

or treated wall as well.

I,]
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5. Concludina Roez*.

In susmary, it has been our intent to demonstrate that the present

method provides a simple and effective means to obtain a solution for

waves propagating through aribtrarily sheared flow. Our main results,

accrued in closed form for both unbounded media (2.11) and ducted flow

(4.13), involve only quadratures of any given shear profile; as special

cases, they are found to embrace other known solutions and besides, they

can be rendered into forms particularly convenient for the extraction

of various physical features. The method appears to be easily applicable

to other problems involving disturbance propagation through non-uniform

media. (For example, the method is now being found to be particularly

instrumental in assessing the effect of spanwise flow variation upon

flutter in turbomachinery bladings.)

The author owes his sincere gratitude to his former colleagues,

Drs. Shankar and Savkar for arousing his early interest to the problem.

The work was in part supported by the Air Force Office of Scientific

Research under Contract No. F 44620-74-C-0040.
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APPENDIX A

We shall show that, under the assumption of small velocity

gradient, (2.14) expressed in terms of the parabolic cylinder function

becomes equal to (2.13). For this we make use of the following formula

of the parabolic cylinder function, due to Darwin (1949):

U (b, + Y) exp MI i + _ +- _ + + (hh+ +

2 xi-la)

where Y = (x2 - 4a) 2  (A-lb)

1 x+Y
= 4 x Y - a log 2v- (A-lc)

a = -ib, (A-ld)

1

x = 1i2  ,(A-le)

and the expression for g, Z,... etc. are given in Darwin's paper.

Since in the present case of Example 2 of Section 2, g(y) of (2.6) is equal

to y, it follows

dT
dy

and from (2.15b), (A-ld) and (A-le) become

a - 2- (A-2a)

I2c
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x-i ()2 (k -c 0 -ay) (A-2b)

Into (A-ic), we substitute the above and, after expanding and discarding

a certain constant which is disposable, we obtain

~k - am0

1y Y k2  0 + 0 (2) , (A-3)

where Y is defined in (2.8b). Likewise

1
2-2 acy(k- MO) 1 4 2 2 1

Y- Y 2 E: y 4 + - (A-4)

By substituting (A-3) and (A-4) into (A-la), it is found that the

terms associated with g, , . etc. become negligible and we obtain

k- aM-k
-lM2 0 1 0t'y.

U(b, + &) nu exp (+ iyy) exp [T I icty - ay

(A-5)

Upon substituting the above into (2.14) and noting that the factor

b associated with the second term within the bracket can be expressed as

bC - exp [log (bC)]

a -2i 1 2 (k - UM )  exp og (l - _

a (22  r y + 0 (c2)]
1 ( 0 - O0

it follows that, due to this factor, the second term dominates for

small c; from this, (2.14) takes the same form as (2.13).

_ o _V
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APPENDIX B

Here, ye shall find that for small velocity discontinuity,

k-.17) becomes (2.16). From (2.17d), we obtain

C s 1

From (2.17c) and the definition of y given in (2.8b), ai tan 02 appearing

in (2.17a) becomes

a tan 2 - y±+e Ec( - k) 6 (B-2)

With the aid of (B-1), T of (2.17b) becomes

ct(2y - (aX% - k)21

2y 2(cwMc - k)

which, to the order of C , is equal to (2.16b). Thus, (2.17) becomes

(2.16), to the present order of approximation.
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APPENDIX C

We prove that (3.6a) is identical to (3.6b). For this, we

rewrite (3.6a) as

-I- f ei ° t I() da, (C-la)

where

I (a) = 1 f /e - l  e + Y d. (C-lb)

-O

From the definition of Y given by (3.5b), (C-lb) becomes

I() / f e - it exp + i c [ (w - ac(M - 1))(w - ac( + dw.

-w L(C-2)

Now from Campbell and Foster (1961, p. 109, No. 860.0), one notes

_- i wtS[(w - c( + 1)Xw - c(- 1))] 2 e

x exp i ( c (M- 1))(w - wc(M + 1))1 dw

cc

2ri H(t+ 1c 2 1 2 2

(C-3)
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where H is the step function and J0 is the Bessel function. Differentiating

both sides with respect to y, we obtain

I (c) - -y * c exp (-icogt)

1 y)J2 1 2(C4x H (t¥ T 1y) JO [ca (t2 - -  (C-4)
C 2

Into (C-la), we substitute (C-4); with the aid of the following identity

J0 (b&) e x d '- 2(b2 - x 2 ) 2H (b - jxl),

which is found in Erdilyi, et al (1954, vol. 1, p. 43), and with the

definition of U given in (3.7), we obtain (3.6b).
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TABLE 1

COMPARISON OF TRANSMISSION COEFFICIENT

AM - 0.05

incidence angle transmission coefficient transmission coefficient
*l(degrees) T (Miles-Ribner) A (present)

90 1.000 1.000
80 .996 .996
70 .992 .993
60 .992 .992
50 .996 .995
40 1.011 1.008
30 1.059 1.044
20 1.324 1.166
17.75* 2.000 1.232

*critical incidence

AM - -0.05

incidence angle transmission coefficient transmission coefficient
1 (degrees) T (Miles-Ribner) A (present)

90 1.000 1.000
80 1.004 1.004
70 1.007 1.007
60 1.008 1.008
50 1.005 1.005
40 .994 .992
30 .967 .958
20 .896 .857
10 .691 .464

0 0 0

~#



Figure Cap tione

Figure 1. Definition Sketch.

Figure 2. Examples of Shear Profile.

Figure 3. Coordinate in Ducts.

Figure 4. Lines of Constant Phase.
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Three-Dimensional, Refraction Effect Upon Unsteady

Oscillating Airfoils in Supersonic Flow

M. Kurosaka*

The University of Tennessee Space Institute
Tullahoma, Tennessee 37388

I. Introduction.

On the subject of three-dimensional effect upon the supersonic

flutter in aircraft engines, Ref. 1 identified the following, two key

issues which could significantly modify the results based upon two-

dimensional approximation: (1) reflection of waves from the encasing

walls and (2) refraction arising from the propagation of disturbances

through steady flow with strong velocity gradient in the radial direction

existing in turbomachines. Of these two, Ref. 1 specifically restricted

itself to the first problem or its variant of practical significance where

the sound absorbent material is installed upon the wall surface.

In the present paper, we turn our attention towards the second

one and examine to what extent the unsteady pressure on the airfoils will

be affected by the non-uniformity of surrounding, steady flow. As is

Work supported by Air Force Office of Scientific Research under
Contract No. F 44620-74-C-0040.

Associate Professor, Mechanical and Aerospace Engineering.
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well known, the sheared velocity distribution always refracts the sound

waves; for example, according to a geometrical acoustics picture convenient

for high frequencies, the rays of sound will be bent while propagating

through any stratified media. The refraction of disturbances traversing

a flow field with steep radial velocity gradient present in turbomachinery

environment may considerably alter the unsteady pressure signals, when

compared to analysis based upon two-dimensional approximations. In order

to focus our attention solely on the refractive aspect of the problem,

we shall attempt to extricate ourselves from the other unneccessary

complications. Therefore we pose and study a model problem, which seems

to capture the central nature of the problem, and consider an isolated

oscillating airfoil which is placed in a supersonic duct with non-uniform

velocity. The steady, sheared velocity is in the postive x direction (Figure

1) and is function of y only, i.e. U(y). The walls of the walls located

at y - k and y - -i are rigid and the airfoil is harmonically oscillating

with small amplitude in the z direction.

Our aim is to compare the effect of sheared flow upon the unsteady

pressure acting on the surface of the airfoil with the uniform flow. In

analyzing the problem, we rely exclusively on the results of Ref. 2, where

a simplified representation of unsteady disturbance propagating through

non-uniform flow is obtained.
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II. ForlmZation.

The linearized governing equations can be written

+-- +ucy) + p¢-- '+ - + - - o
2-d (at a

a

au-- + (y) + v' dU(y) - _ '
ay dy P ax

(1)

av, av'+5-t y)5- -- ay ,

-w- + U(y)- - = - 3z

where p and a are constant ambient density and acoustic speed, respectively

and primes denote perturbed quantities with conventionally defined meanings.

As usual, in the above we write all the perturbed quantities as the product

of two factors, one for the spatially dependent amplitude and the other

for time-dependent factor such as p' = p' eiWt and obtain

1 + -Bu' v' -w

am

iW U' +U(y) 1- + dV' 49v) -- _1 2L
dy p ax

(2)

iW,', +U(y) -- ii-

a- P as"
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The boundary condition on walls is that the normal velocities are equal

to zero, i.e.,

V'(x,y "+t , z) 0 (3)

On the airfoil, the velocity normal to it is prescribed by the given

movement of the airfoil and if its amplitude is equal to W(x,y), then

w'(x,y, z - 0) -W (x,y) (4)

Upstream of the initial Mach cone, the flow is quiescent. Because of the

supersonic nature of the flow, the flow fields above and below the airfoil

is unrelated and hereafter we consider only the flow above the airfoil,

z > 0.

fI

7-!
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III. Solution.

In order to obtain a solution of (2), we first eliminate the x

dependence by taking the Fourier transform in that direction; next, the

application of the Fourier cosine transform in the z direction removes the

z dependence and the resultant equation involving only y is solved with

the aid of the results obtained in Ref. 2; the description of these

successive steps will be given below.

A. Fourier transform in the x direction.

We take the Fourier transform of (2) defined, for example, by

= fi' ei'OX dx,

and eliminating the resulting i, and 4, one obtains the following

equations in terms of P:

-Li + 2j 2a dM(y) '_i + [(oM(y) -k) 2 -a 2 ] j 0 , (5a)

y 2 3z2  014(y) - k dy Dy

where k - -- and with the boundary conditions
a

a =O (5b)

a y- + zo(b

ail-iAP(W - UWx)O) (Y) .(Sc)

Iz 0



6

B. Fourier osine transfoarm in the z direction.

Taking the Fourier cosine transform of j~defined by

coo0 dz

0

(5) becomes

d2 (c 2a__ __ CF~ 2 2 2+ a d [(014(y)-k) -(a + )F ()
d2  CM(y) -k dy dy c

i ipa [cd(y) -k]X . (Y), (6a)

with the boundary condition

F -0. (6b)
dy

y -

In order to solve this inhomogeneous equation, we first consider, according

to the standard method, eigenfunctions of a corresponding homogeneous equation

given by

d - 2at dM dF 2 2 +2 (*
d2 kiI;y)-k y + (MI(y) -k) -( 08]

with the boundary condition

0d (7b)
d+
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To solve (7), one assumes that the non-uniformity of the flow inside

the duct is small, i.e.,

M(y) - M0 + 68(y), (8a)

where K0 is the averaged velocity in the duct defined by

1 M f(y) dy, (8b)
-M

and e << 1. According to (8a) and (8b), it immediately follows that

f g(y) dy - 0 •(8

-t

Under this assumption, the eigenfunctions of (7) are derived in Ref. 2 and

they are given by

U0 (a, y) = exp [-2 ea(c140 - k) f dn fg(&) d& ], (9a)

0 -t

u (,y) (exp n + exp zn), n - 1, 2, --- (9b)

where zn is the complex conjugate of zn defined by

2aqn2

z.iy+ F l 0 - kify+(n)fg(

2

+ , nk -2a (M%- k)]
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x dr f8(E) e-2 i n  d + g,() - +

x(2-)d (2y)) + --- ]

n'

+n Xn (y - ) [MoOo -M k) - ,(90)

and where

n

1 ___ 1n
Xn= I[ 0 (c o - k) -a] [cd! o -k 2~ (aMO-k)]

)2 [g'(t) - g"(-t.)] -()
4 [g'''(L) - ''(-L)] +

(9e)

and (oH0 - k)2 - a2 _ 82 takes the following eigenvalues:
2 2 2

-a -k ) (,) + 2xn [MO (M O -k) -a]. (9f)

(Contrary to the situation of Ref. 2, where the eigenvalues are assigned only

to a, here we ascribe it to the constant consisting of combination of

a, 0, M and k, which appears on the left hand side.) Since (7) is a

Sturm-Liouville equation, the eigenfunctions un are orthogonal and they

are Indeed complete. Hence we expand Fc(j) of the inhomogeneous equation

of (6a) and also its right hand side into series of eigenfunctions, i.e.,
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F(G) - t a u  (aY) , (loa)

n =0

and

(Y) n (a,8)u (c , y), (lOb)

n O

g (y) rd (y)" a. n (  )u n (,y), (10e)

n 0

and where y

gn ) (yu (a, y) d-- (10d)
u[u(, B,y) 2 dy

and f g(y) 19(y) u n (a, O,y) dy

Sn(a, L) le)
[un(a, 0,y)]2 dy

-t

-L

Substituting these into (6a) and making use of the fact that un

satisfies the homogeneous equation (7a), one can determine an of (lOa)

and FP(p) becomes

CL
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(C4 0 - k) SO ac co
c2 ( k) 2 2 + 2 2 02 ]u0( y)C(aH 0 -k) 2 -a - (M 0 - k) 2 -ac -8

(LHO - k) :2 2Xne[(dM - k) -(x]

+ _ k)2 _ a2 )2 _)2 .

(11)

If the velocity on the surface of the airfoil, (4) is such that

V(x,y) - H(x)X(x) (y + R) (12)2(22

where H is a step function and is the amplitude of oscillation and for

linear duct flow distribution represented by

g(y) - Ay, (13)

then xn. 0 and (10d) and (10e) become
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o - . 15 co - k)]

S i -L A(l n 4ty 11 2 -2aOO kI n 12-- (4)
n 2X 4 aM 0 - k 2a (a 0 - k)] , n - 12, (14a)

29

0 21, 3

ni 29 X (nt)2 -

Inverting (11), we obtain

- paF(a o - k) o + a  o  2 2 uo (a ,y)
S(ct 0 - k) 2 - 2

x i-sin [z (O 0 -k) - a2

+ pa [(coM - k) n + a (a0 k) Z- a u n. (aL Y)

i sin [zV(oaH0  k)2 _ 2  (15)

One can show that if one replaces isine of (15) by cosine, it also satisfies

(5a and b); and (5c) becomes, in such a case
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.-0.

z- 0

Hence the solution is a sum of these two expressions, i.e.

1

-Pa [(cM 0 - k) t0 + = 0 2 _ 2  u0 (a, y)

x exp [izT(M0  k)2 -2]

+ Pa [(aMo - k) n n ]  ni 2 (a. y)

ni a

x exp [iz " ao - k)2 - a2  (RI)2]

(16)

C. Inversion of Fourier Transform.

Inverting (16) with respect to a and by deforming the contour

of integration, we obtain the pressure on the airfoil, z 0, as

22- I ) la1() + a2 '(0) + a3 (0)]
L2

-X'(x) [a2 (0) + 2a3'(0)]

+X"(x) a3 (0)

x
+f X Wx -o(z - t) dt ,  (17a)

0t
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where

a0 (x) - -kI 0
0 (x) + Pi00'(x)

E, W 1& eIW

0 3 0 ''(x)

(-)nw 2 2+ EA -4 4 2k] i n'(x)

n1l

-4k 0 'n"(x) + 21 M02 eA , ' ( x )  (17b)

a1 (x) -i (x)

+ 2 00 '(x) - i

+ cA (l (al 2 2

-8k MO0 o' (x) + 61 Mo 2 on' (x) (17c)

a2(x) - VO(x) - &i00 '(x)

+ cA - k MO on(x) + 61 H0 8 ,'(x (17d)

n-i V 4

S - T

_ _ _
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a3 (x) C- 0oW

n 2
+n 2 O 6(X) , (17e)

n-1

where

4 44 3
jMot + T5 At ek + At

8 A 4 eM0

4 2

and where

Mk
8n(X) - exp (-ix - )

x f cos h (W nZ sine) exp (-iXXn cose) v (0, y) d8

0 (17f)

d k2  
2 1/2

and X' [.. +. .1

m mi

vn(Gy) -un (a, y)

which is given in (9) and where

~Mok

.. Xn cos 8 + 2m
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If the amount of shear, C, is equal to zero, one can readily

show that the above expression is reduced to the standard solution of

two-dimensional airfoil oscillating in uniform supersonic flow.
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IV. Dicaussion of Reulta.

1
Figure 2 and 3 compare C p'/2Pu2 , computed from (17) and

evaluated on the surface of airfoils placed in a linearly sheared duct

with the one corresponding to uniform flow. The pressure is calculated

at the top of the duct and the airfoil is oscillating in torsional motion

at mid-chord with unit amplitude. Additional parameters are as follows:

-- 1.5, where 2 is half-duct height, c is airfoil chord,
c

_c= -0.7
a

and

M = 1.3 + 0.0666 (-)

It clear that the spanwise velocity distribution corresponding to the

three dimensional, radial velocity gradient indeed induces significant

modification to the one for radially uniform or two-dimensional approximation.
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