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and

Donald L. Iglehart
Stanford University

1. Introduction

Suppose we have two stochastic systems (perhaps alternative designs
for a new system) which are to be compared. Assume that these systems
are represented by two regenerative processes X(i) = {Xt(i) : £ >0}
for i = 1, 2; see CRANE and LEMOINE (1977) or IGLEHART (1978) for a
discussion of regenerative processes and their role in simulation. Under
mild regularity conditions the distribution of xt(i) converges to the
distribution of some limiting random variable (or vector) X(i); this type
of convergence is known as weak convergence and written Xt(i) = X(1i)
as t t o, Simulators often speak of X(i) as the steady-state configura-
tion of system i and take as the performance criterion of the system
r, = E{fi(x(i))), where f1 (i = 1,2) are given real-valued functions
defined on the state space, E(i), of process 5(1). When comparing the

two systems, we wish to estimate the sign of £, - r, by constructing a

confidence interval for the quantity.

*This research was supported by National Science Foundation Grant
MCS-23607 and Office of Naval Research Contract NOOO1l4-76-C-0578.
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Simulation folklore suggests that 'common random numbers' be used

in this situation in order to reduce variance; see FISHMAN (1973), Section

11.7, and KLEIJNEN (1974) for a discussion of this technique. The basic

idea here is to induce a positive correlation between the two systems by
simulating the two systems with a.common sequence of random numbers. Not
only does one save the computer time required to generate the second
sequence of random numbers (which would be required if the two systems
were simulated independently), but the confidence interval for r, - I
will be shorter provided the positive correlation mentioned above is
achieved. Inspite of the generally knowledged appeal of this technique,
we know of few published studies which actually carry out the technique
and document the savings to be expected; one such study is that of
MITCHELL (1973).

When the processes being compared, X(1) and X(2), are regenmerative,
we are able to provide a rigorous (asymptotic) analysis of the comparison‘
technique described above. This we do in Section 2 of the paper. While
positive correlation is normally expected when using common random numbers,
nothing is guaranteed in this respect, One always enjoys the economy of
having to generate only half as many random numbers, however, the variamce

reduction achieved may be minimal or even a variance addition. Conditions

for obtaining the desired positive correlation are discussed in Section 3.

Section 4 is devoted to several simple stochastic systems which were

actually simulated. Here we are able to see exactly what common random
numbers buys the simulator in terms of increased computational efficiency.
Finally, in Section 5 we state our basic conclusions about the use of common

\
random numbers in comparing stochastic systems using regenerative simulation.
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2. Comparing Regenerative Processes

Let 5(1) and §(2) be the two regenerative processes introduced

in Section 1. Assume Xt(i) = X(i) as t teo for i=12, Given

i 1 o°

The regenerative processes arising most commonly in simulations are

£, : E(i) »R, we wish to construct a confidence interval for r, 6 - r

discrete and continuous time Markov chains and semi-Markov processes all
of which are positive recurrent. An efficient method for reducing.the
simulation of a continuous time Markov chain (M.C.) to the simulation of

a related discrete time M.C. was presented in HORDIJK, IGLEHART, and
SCHASSBERGER (1976). The same method can be applied to semi-Markov
processes; see IGLEHART (1978). 1In our simulations presented in Section L
this method is used. Hence to focus our attention on the comparison
problem at hand, we assume that both X(1) and X(2) are irreducible,
aperiodic, positive recurrent Markov chains in discrete time, Under

these conditions Xn(iJ = X(i) as n t o, where X(i) has the stationary
(and steady-state) distribution «(i) = [nj(i) ¢ e Ei]. That is,

P{X(i) = j} = ﬁj(i) for j € E(i). Then

r, = E[fi(x(i))} = fi(j) nj(i) 5 i=l2,
JeE,
Assume for this discussion that E = E(1l) = E(2) and that the state
0 € E; this is no vestriction on our method only a notational convenience.
Then let Xb(i) =0, To(i) = 0, and define the mth entrance to state O

by X(i) to be

e it
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'rm(i) = inf(n > Tm_l(i) : xn(.i) = 0} , m>1,.

The times between such entrances are denoted by rm( i) = Tm( i) - 'rm_l( 51, !
m > 1, and referred to as the lengths of the O-cycles for the 1th process.

Next we compute the area under the function fi[X( i)] in the mth cycle:

T (1)-1

N

Ym(i) = >, fi[xn(i)] , a>1,

n=Tm_ 1( 1)

A basic sequence of random variables for the regenerative method is

[Zm(i) : m > 1}, where

Zm(i) = Ym(:u.) - rm(l) f m>l.,
The regenerative method works because the successive O-cycles are
independent and identically distributed (i.i.d.), which implies that
the Zm( i)'s (m > 1) are i.i.d., and the following ratio formula holds

provided E{lfi(x(i))l} < o

r, = B (Y,( i)}/EO[TI( 1)) =

The symbol Eo[-} is short for the conditional expectation E[-‘Xo( i) = 0}.
For more background on the regenerative method see CRANE'and LEMOINE
(1977) or IGLEHART (1978). Let oi = Eo(zi( i)} which we assume is

positive and finite, Then two central limit theorems (c.l.t. 's) follow

from the regenerative structure of these positive recurrent Markov chainms.




One is based on the number of O-cycles simulated and the other on the

number of steps of the M.C. simulated, We define two point estimates

of ri by

ACEIE k>::1 1 (9)/(5 él 7 (1)

and

A  N-1
ri(N) =3 ‘EO fi[xk(i)] 3

where n is the number of O-cycles simulated and N is the number of

steps of the M.c, simulated. The two c.l.t.'s are the following:

2.1y oMBR () - 11/ (o /Bgln (1)) 5 N0, 1)
and

5 Y2 ~ 1/2
(2.2)  NTS[r (M) - £ )/(o/ES (7 (1)}) =N(0,1)

as n and N ? w, Either (2.1) or (2.2) can be used to comstruct a |
confidence interval for L. 1 %
Now suppose we wish to comstruct a confidence interval for r,~Tp
by simulating the two processes X(1) and X(2) independently; i.e.,
independent sequences of random numbers will be used to generate the
sample paths of the two processes. Form the vectors r = (rl, ra) and
E(N) = (?I(N), ?2(N)). Then we can easily obtain from (2.2) the bivariate

(- R

(2.3) w213 - £l =N, A)




where N(0, A) 1is a two-dimensional normal vector with mean vector

0 = (0,0) and covariance matrix

03/Byl7,(1)) 0

1>
]

0 05/E,(7,(2))

An application of the continuous mapping theorem [BILLINGSLEY (1968),
Theorem 5.1] to (2.3) yields the following c.l.t. which can be used to

construct a confidence interval for r.-r.:

12
(2.4) NYEEL(N) - TW) - (x, - ) /o= N(0,1)
where
2 2
2 | s

2
g = + .
Eo[rl(l)} Eo[11(§77
A c.l.t. comparable to (2.4) but based on O-cycles can also be obtained.
Our goal in using common random numbers to generate the sample

paths of X(1) and X(2) is to produce a shorter confidence interval

for r,-T for the same length of simulation run (number of steps of i
the Markov chains generated). 1In other words we seek a c.l.t, similar
to (2.4) but with a smaller value of 0. To accomplish this we generate
the bivariate M.c. X = (xn : n > 0}, where X = (Xn(l), xn(a)). At

each jump of the process X the same random number is used to generate

the jumps of the two marginal chains X(1) and X(2). The marginals

of the process X are seen to have the same finite-dimensional

6 |
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distributions as the original chains X(1) and X(2); however, the
marginal chains are now dependent. The state space of the chain X

is denoted by F which is a (possibly proper) subset of E X E. We
assume here that the chain X 1is also irreducible, aperiodic, and positive
recurrent. These conditions are not automatic but will usually hold for
practical simulations., Furthermore, we assume for convenience that
(0,0) € F and use that state to form regenerative cycles. Note that
Xh::»x as n -5« and the marginal distributions of X are the same as
those of X(1) and X(2), namely, {nj(i) v Je€E) for 1= 1.2, For
any real-valued function f : F - R satisfying E[lf(x)l} < o the
regenerative method can be applied to X to estimate E(f(X)}. Let

X, = (0,0) and form (0,0)-cycles which begin at the times T, =0

2

]
[}

wmEln >0 . : X ={0,0)), m> 1,

1

Also let T ® T =T m > 1, be the length of the mth cycle and

m m-1’

Tm-l

YI(1) = n_TZ £ -, m>1.
T m-1

Here the f-functions are f£(j k) = fl(j) and f£(j,k) = fa(k). Set
z&(i) = Y;(i) - r, T,. Since the ratio formula still holds for the

i
' - -
process X, E(o’o)(zm(i)] =0 for ia=1,2. Let

n

aij = E(O O){zi(i) zi(j)] ) i‘)j 1’)2
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which we assume is finite and non-zero. Since the vectors

§ i ]
Z = (Zm(l)’ Zm(2)) are i.i.d., the standard c.l.t. yields

plfa R
(2.5) NS T geNe, B,

where £ = (aij]' Just as we are able to go from (2.1) to (2.2) in

the one-dimensional case it is possible to obtain from (2.5) the c.l.t.

(2.6) NY/2[E(N) - £] >N(0,B)

-1
15 B(0,0

the same as that given by CHUNG (1960), Theorem 16.1. Again using the

where B = {0 )[Tl}}. The argument leading to (2.6) is essentially

continuous mapping theorem in conjunction with (2.6) yields

/
N1/2

(2-7) [<?1(N) w ?Q(N)) = (1’.‘1'1'2)]/'\1 :N(O,]-) »

where

o (g * oo 2012)/5(0’0){11} 2

A c.l.t. comparable to (2.7) but in terms of n (0,0)-cycles of X can
also be obtained, Now consider the marginals of (2.6) in conjunction
with (2.2). Since the marginals of the chain X have the same stochastic
structure as the chains 5(1) and X(2) considered separately, these

two c¢.1l.t.'s must be identical, Hence




2
i i3

g

EO(TI( i) } o E(O’O)[Tl}

2
Thus upon comparing the constant 02 in (2.4) and v in (2.7) we

conclude that v2 < 02 if and only if %12 > 0. In Section 3 we will

examine conditions on the functions fi and processes X(i) which

guarantee that > 0.

¥

The measure of variance reduction we use is

R2 = 02/v2 A

So, for examole, if R2 = 0.5, then only half as many steps of the Markov
chain X need be simulated to obtain a confidence interval of specified
length for r,-r, as would be required when simulating X(1) and X(2)
independently. In addition, of course, only one stream of randcm numbers
need be generated. While we have worked here with discrete time Markov
chains, the same method can be used for continuous time Markov chains,
semi-Markov processes, and discrete time Markov processes with a general
state space. The examples treated in Section 4 illustrate the effectiveness

of the method when applied to a variety of these stochastic processes.




A Guaran:eeing_Yariance Reductions

In this section we investigate conditions under which the variance

reduction obtained when 91 > 0 can be guaranteed. Our major result is

that if f1 and f2

and if X(1) and X(2) satisfy a stochastic monotonicity condition,

are monotonic functions (in the same direction)
then 012_2 0. This result is related to other work on monotonicity
and antithetic variates; (see ANDREASSON (1972), MITCHELL (1973), and
KLEIJNEN (1974)). When using antithetics (if U is a random variable
uniformly distributed on [0,1] then U and 1-U are said to be an
antithetic pair) one is generally interested in only one stochastic
process, not in comparing the output of two or more processes. Also in
the antithetic scheme variance reductions are obtained by creating negative
correlation rather than the positive correlation we seek here. If only
one process is to be considered, the sample paths of X(1) and X(2)
may be generated using antithetic streams of random numbers. Under
proper conditions the results of this section may then be applied to
guarantee the desired negative correlation (provided that the two dimen-
sional process X is regenerative).

The notion of associated random variables can be used to guarantee
nonnegative correlation. The following definition and properties may be
found in ESARY, PROSCHAN and WALKUP (1967).

sy

(5.1) DEFINITION. Random variables T = (TI’ " Tn) are said to be

associated if

cov(£(T), g(I)} > 0

’

10




for all nondecreasin. functions f and g for which E{f(T)}, E(g(T)]},

and E{f(T) g(T)} exist.

(3.2) PROPERTY. Any subset of associated random variables ares associated.

(3.3) PROPERTY. If two sets of associated random variables are independent

of one another, then their union is a set of associated random variables.

(3.4) PROPERTY. The set consisting of a single random variable is

associated,

'(3.5) PROPERTY. Nondecreasing functions of associated random variables

are associated.

A class of processes for which nonnegative correlation can be
guaranteed is stochastically monotone Markov chains (s.m.m.c.). This
class was introduced by DALEY (1968) and includes many of the basic
queueing models such as the waiting time process in the GI/G/1 queue

and the embedded Markov chains used to study the M/G/l and G/M/s

queues, In the following definition let i be a fixed index,

(3.6) DEFINITION. Let X(i) = (X, (i), n >0} be a real valued Markov
process with initial distribution P,(x) = P{Xo(i).s x)} and transition
function P;(x,A) = P[Xn+1(i) € Alxn(i) = x) (for measureable sets A).
X(i) 1is said to be a stochastically Monotone Markov chain if for every

y, P(x, (-»,y]) 1is a nonincreasing function of x.

11




Define the inverse distribution functions P;l(-) and Pll(x,-)

by

P;'(u) = infly : Py(y) > u],

-1
Pi (x,u)

inf(y : Pi(x, (-=, ¥]) > u} .

Notice that if X(i) is a s.m.m.c. then P;l(x,u) is an increasing

function in both arguments. This fact will enable us to show that for

each n >0 {xo(l), Sy Xn(l), XO(Q), o iiny Xn(2)] are associated.
We shall henceforth assume that the sample paths of X(i) are

generated on the computer using the inverse transformation scheme

7 -1

(5.8) B e e n

v
—

where U = {U, n>0} is a sequence of pseudorandom numbers. U is,

n]
of course, assumed to be a sequence of i.i.d., random variables uniformly

distributed on [O,1].

(3.9) THEOREM. If X(1) and X(2) are both stochastically monotone
Markov chains with sample paths generated by (3.7) and (3.8), then for
each n >0 {xo(l), 5oy Xn(l), Xo(2), S ey Xh(2)] are associated random

variables,




PROOF. The proof is by induction. For n = 0 (3..4) implies that (Uo]
is associated and since PEL(UO) is a nondecreasing function of U0 for
each i, (3.5) yields that [xo(l), Xo(2)} are associated. Assume now
that (X,(1), ..., X (1), Xo(2), g Xn(2)} are associated. Since

U is independent of this set, [Xo(l),... % Xh(l), x0(2),,..,x5(2), Un+1}

n+l

are associated (by (3.3)). The map which takes these random variables

fve TR, i, BUN RO, BABY, oo, K12, X

n+1(2)} is non-

decreasing because X(1) and X(2) are both s.m.m.c.'s. Property {3.9)

then yields the final result. |

The previous theorem can now be used to show that when simulating

s.m.m.c.'s using common random numbers a reduction in variance is obtained.

(3.10) THEOREM. Let X(1) and X(2) both be stochastically monotone

Markov chains with sample paths generated by (3.7) and (3.8). Let £,

and f2 be nondecreasing functions. If

(i) E[Ti} <o,
. T -1 5
(ii) E{( % !fi(xn(i))f) } Cw for i=1, 2,
n=T
. m-1

then o,, > 0.




n
PROOF. Let S (i) = ¥ f.(Xk(i)). S (i) is then a nondecreasing
n g * n

function of associated random variables so that (Sn(l), Sn(2)] are
associated. Therefore cov{Sn(l), Sn(2)}‘2 0. (This covariance exists
and is finite by (i) and (ii), see SMITH (1955).) Theorem 8 of SMITH

(1955), which may be applied under assumptions(i) and (ii), implies that

1
lim = cov[Sn(l), Sn(2)} =015,

n o

so that o

12‘2 0. A (s ]

If f1 and f2 are both decreasing then c12.2 0, but if fl
and fE are monotonic in opposite directions, that is if one is increasing
and the other is decreasing, then 012'5 0 (in this case antithetics

should be used to ensure o,, > 0).

12
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4. Examples

In this section we investigate the magnitude of variance reductions
obtained when using common random numbers in simulations of some simple
stochastic models. These models are the waiting time process in the
M/G/1 .queue and the queue length processes in the finite capacity M/M/s
queue, repairman problem, and a repairman problem with two repair facilities
(sometimes called the central server model). For these models the method
was able to produce quite substantial variance reductions. In addition
we investigated the use of common random numbers when comparing two
different (s,S) inventory policies. To our surprise variance reductions

were slight in this case,

The Single Server Queue

Let Wn(i) be the waiting time of the nth customer in the ith
GI/G/1 queue which we wish to study. Let {Sn(i): n > 0} be the
sequence of i.i.d. service times (with mean u;I and distribution
function Gi) and {An(i): n > 1} be the i.i.d. interarrival times
(with mean X;l and distribution function Fi) for this queue. Set

Xn(i) = Sn_l(i) - An(i). The waiting times are then defined by

|
o

Wo(1) =

Woa(1) = [W (1) + X (( 33 n>o0

where for any real number a, [a]* denotes the maximum of O and a.

Let Py = \i/ui. 1f g < 1 then Wn(i) = W(i). We shall be interested

15




in estimating E(W(1)} - E{W(2)}. Recall that E(W(i)} is finite if

E(X}( 1)%) < », see KIEFER and WOLFOWITZ (1956). Let (v :n>0) and

2
[Un :n > 1} be independent sequences of i.i.d. uniformly distributed

random variables which generate the service and interarrival times by
-1

(4.1) Sn(i.) =G, (Vn) A n>0
-1

(4.2) An(i) = Fi (Un) . g i

where G;I and F;l are the inverse distribution functions of Gi
and Fi respectively. The following theorem states conditions under
which the two dimensional process W = [(wn(l), W (2), n2>0} will be

regenerative.

(1.3) THEOREM. Let o <1 and E(x(1)%) <w for 1= 1,2, If the
joint distribution of (Xn(l), Xn(2)) has a positive density in an open

neighborhood of (0,0), then W is regenerative.

PROOF. Let € >0 be given and consider the discretized waiting time

processes

Wo(1) = 0

)

[}

wfm( i) = (Wi(1) + x§+1(i)]+ . n>0

where Xi(i) = ke if (k-1l)e < Xn(i)'s k= for some integer k. The

process Ee = [(wi(l), wi(a)), n > 0} is a Markov chain with a countable

16
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state space. Since Xn(i) = Xi(i)

wn(i).s wi(i) so that returns to

(0,0) occur more frequently for W than for W~ . The condition on

the joint distribution of Xn(l) and Xn(2) ensures that for small

enough ¢, Ee will be irreducible and aperiodic (so that i
ne(i,j) = lim P[Wﬁ(l) = fg, wi(a) = je} exists). It therefore T
n oo

sufficies to show that Ee is positive recurrent,

Let T; be the mth time Ee enters (0,0). We seek to show
that E[Ti] < o and since nQ(O,O) = I/E[Ti] we need only show
ne(o,o) > 0. Let € be chosen small enough so that the traffic
intensity, pi, in each discretized queue is less than one and so that

E{(X;(i)+)2} < =. Then wi(i) =W (i) and E(W%(i)} <. Since pi <1

(k.1) 0 <xj(0) = lim P(W(1) = 0}
n -«
= lim ‘E P(WS(1) = 0, W:(2) = ke} .
n 2o k=0 . L 1
Then

P(W_ = (0, ke)} < P(W(2) = ke}
< PWS(2) > ke)

SPW(2) 2 k)
the last inequality being true because the GI/G/1 queue is a s.m.m.c.
o
But ¥ P(We(2) > ke) < » (since E{WE(Q)} < ») so that by the dominated
k=0 g

convergence theorem we may interchange limits and summation in (4.4).

Therefore

17




o0
0< % %0,k
k=0

2

and since ne(i,j) is either 0 for all i and j or greater than

i i 5 S S

0 for all i and j it must be true that =°(0,0) > O. 0

This theorem may be extended to multiple server queues and to
situations in which more than two queues are being considered. 1In
addition these queues possess the proper monotonicity characteristics
i to ensure that 012‘2 0.

The first two sections of Table 1 report variance reductions when
two M/G/1 queues are compared, The service times were chosen to have the

Weibull distribution:
G.(x) = 1 - exp{-(r x)ai} x>0
i i ’ =

for constants ai 0. M Q =1, Gi reduces to the exponential

i

distribution. The figures in Table 1 are point estimates and 90% con-

Ty

fidence intervals based on N independent replications of C cycles of

the two dimensional process W. For example, in the section of Table 1

we estimate R2 to be .142 (and a 907 confidence interval for R2 is

12 4+ .015). Notice that cycles for W are not much longer than those

of the individual processes. In fact for the processes compared in the
i first section of Table 1 it can be shown that Wn(l).s wn(2) for all n
so that Tm = Tm(2). The random number generator described in LEARMONTH

and LEWIS (1973) was used for all simulations reported in this paper.

18
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Continuous Time Markov Chains

The use of common random numbers in comparing two or more continuous
time processes is limited by problems in the "synchronization" of the
random number streams (see KLEIJNEN (1974). This problem can be overcome
in the case of continuous time Markov chains and semi-Markov processes
by transforming the continuous time processes into appropriate discrete
time Markov chains. Details of this transformation are given in HORDIJK,
IGLEHART and SCHASSBERGER (1976). Once in discrete time common random
numbers may be used to generate the sample paths of the two processes.
This procedure has been used to investigate variance reductioms for
three finite state space continuous time Markov chains. Because the
state spaces are finite the multidimensional processes will always be
positive recurrent (assuming irreducibility).

The first two examples, the queue length processes in the finite
capacity M/M/s queue and the repairman problem with spares are both
birth and death processes. The finite capacity M/M/s queue has birth

and death parameters

X 5 0<i<M
ki =

o, i>M

in , 1<i<s
By =

sy, s<i<M,

20




where M 1is the capacity of the queue. For this model let p = X/Sp.

The repairman problem has parameters

nA 0<i<m
Xi =
(n+m=-i)A , m<i<mn
ip , 1<ic<s
by =
sup o, s <i<mn

where n is the number of operating units, m is the number of spare
units, s 1is the number of repairmen and )\ and p are the failure

and repair rates respectively of the units, Calculated variance reduc-
tions for these two models are reported in Tables 2 and 3. It should

be noted that for our choice of parameters Xn(l).s Xn(2) for all n >0
provided that Xo(l) = xo(a) = 0. These are examples in which the two
dimensional process is not irreducible. 1In such cases attention must be
focused on only one irreducible class of states.

The next example is a multidimensional repairman problem. This
example can be modelled by the closed queueing network pictured in
Figure 1. A more detailed description of this model may be found in
IGLEHART and LEMOINE (1974). The parameters chosen for this model were
n=10, m=U4 A=1 p=.2 s, = 2, Hp = - By o= 1. The effect of
varying sy on the mean number of failed units was studied. Since each

individual process has a two dimensional state space, a four dimensional




TABLE 2

Calculated Variance Reductions for Comparing Two Finite Capacity
M/M/s Queues, Capacity M = 15

Process Process Process >
Parameters 1 2 r, ) R R
A 5 5
n 10 5 1.00 1.5 .088 .296
s 1 2
o 0.5 0.5
A 5 5
u 10 5.55 1.00 1Al . 148 .385
s 1 3
) 0.5 0.5
A 5 5 ]
1] 5 3.33 1.33 1.7h4 .10l 317
s 2 3
) 0.5 0.5
A 9 9
u 10 33 5.11 5.87 .032 179
s 1 3
o 0.9 0.9
i
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TABLE 3

Calculated Variance Reductions for Comparing

} Two Repairman Problems, n = 10, m= 4 A = 1.

Process Process Process -
Parameters 1 2 r r R R
1 2
u 6 L 3.08 3.47 .060 245
2 p)
' n 6 3 3.08. 3.8 .103 .321
2 L
u 6 2 3.08 L.75 .192 432
2 6
" 4 3 3.47 3.89 .069 .263
s 3 I
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Repairman Problem with Two Repair
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state space is obtained when using common random numbers. The third
section of Table 1 reports the estimated variance reduction for this
example. The expected cycle length for the four dimensional process is
much larger than for either of the two dimensional processes, but it is
not as long as we had originally feared. Of course the expected cycle
length is a function of the return states chosen and care must be taken

so that regenerations do not occur too infrequently,

Inventory Policies

Our final example is comparing two different (s,S) inventory
policies. The use of common random numbers should be particularly
well suited to inventory problems since it intuitively seems better
(i.e., less variable) to compare different policies by subjecting them
to the same, rather than independent, demand processes. However the
figures in Table 4 indicated that very little variance reduction is
obtained for this model. This apparently is due to the fact that (s,S)
policies grossly violate the monotonicity conditions of the previous
section.

Let Xn(i) denote the level of stock at the beginning of the nth

period and let Dn be the demand during the nth period. Then

s

s if X (1) -0 <=
n n

if X (1) -0 <9,
n n>-




TABLE 4

Calculated Variance Reductions for Comparing Two

(s,S8) Inventory Policies, r, = E[X(1)])

Process Process Process 2
Parameters 1 2 E[:l(l)] E[11(2)] E[rl] R R
| s 6 5
E S 10 11 3.00 4.00 9.21 .959 979
| r 8.33 8.38
| Demands Geometric o)
| s 6 L
S 10 12 3.00 5.00 11.11 .963 .981
E r 8.33 8.40
| Demands Geometric )
s 5 b
S 11 12 4.00 5.00 15.21 .967 .984
r 8.38 8.40
Demands Geometric S
s 6 5
S 10 11 2.59 3.46 TeeT5 .959 .980
r 8.39 8.42
Demands Poisson 2
s 6 L
S 10 12 2.59 4.32 9.24 .951 .980
r 8.39 8.43
Demands Poisson 2
s 5 i
S 11 12 3.46 4.32 12.89 973 .987
r 8.42 8.43
Demands Poisson 2

N
N




We choose demands to have either a geometric or Poisson distribution with
parameters .5 and 2 respectively,

The discontinuity at s prevents us from obtaining strong positive
correlation (and hence good variance reductioms). If Xn(l) is near

then, with high probability, the first

s, but xn(e) is well above s

1 2
process will increase while the second will decrease. This tends to

create negative correlation rather than the desired positive correlation.

We were able to increase the variance reductions somewhat by using antithetics
when in certain regions of the two dimensional state space. However K the
generality of such a procedure seems limited since it may be quite difficult

and costly to identify regions of this type which would lead to good

variance reductions.




5. Conclusions

In this paper we have shown how the method of common random numbers
may be used in certain regenerative simulations to obtain variance reduc-
tions. In some cases substantial variance reductions have been obtained,
but it seems reasonable to expect that as the complexity of the processes
being simulated increases the amount of variance reduction will decrease.
It is anticipated that the primary difficulty in the implementation of
this method will be the relatively long expected cycle length for the two
dimensional process X. Since the validity of the confidence intervals
formed will in general depend upon the number of cycles simulated, the
method is not suggested for use unless the expected cycle length is short
enough so that an adequate number of cycles can be simulated within one's
budget constraint, If preliminary simulation runs indicate that the
expected cycle length will be excessive (or that the use of the method
will result in a variance addition), it is then suggested that independent

simulations be performed.
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