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Abstract: We discuss several formulations of optimization

problems which arise in a natural way in the investigation of

transport properties of artificial membranes and general dif-

fusion—reaction media. Nonlinear reaction velocity approxima-

tions dictated by reactions of interest to biochemists place

the problems in a class to which one cannot apply the usual

computational techniques (e.g. gradient, conjugate-gradient)

in a straightforward manner. The inherent difficulties, how

one might circumvent them, and some of our initial efforts

towards development of feasible computational schemes are dis-

cussed.
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We consider control problems governed by the following

nonlinear diffusion-reaction systems:

a s
— - 

~~~~~~ l+s+ks
2

(1)

aa 0<x<l , O<t< T ,

s(0,t) = s0(t) }~(l,t) = o
(2)

a(O ,t) = a0(t) ~-~ (l,t) = 0

s(x,0) = f0(x) s(x,T) = f1(x)

(3)

a (x , O) = g~~(x) a (x ,T) = g1(x ) .

The control of systems such as (l)-(3) is of importance in the

investigation of enzymatically active artificial membranes

similar to those employed by D. Thomas and his coworkers in ex-

periments at Université de Technologie de Compiègne (see [2] for

more details). In such systems the variables s and a repre-

sent respectively normalized variables for substrate and activa-

tor concentrations. The nonlinear reaction term in (1) is a

Michaelis—Menten-Briggs-Haldane type (see Chap. 1 of [1]) velocity



2.

approximation term for a reaction in which one has inhibition

by excessive substrate. The boundary conditions are those

appropriate for a one dimensional diffusion—reaction medium in

contact with a reservoir (at x = 0) and an electrode or im-

permeable wall ~at x = 1) as depicted in Figure 1.

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

s0(t) ~~~~ ~~~~~~~~~~~~~

a0(t) ~::.Y
V - 

~~

0~~~~~~~~~~~~~~~~

•

;:.:::~~ ,.:.: :

____________________________ :
x — 0  x = l

Figure 1

For the nonlinear system (1)—(2) it can be argued that

multiple steady—state solutions exist and the initial and terminal
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functions in (3) are taken to be distinct such steady—states.

That is, f~ ,g1, i = 0,1 are solutions of

0 = 
l+f+kf~

(4 )

f (l )=0
1. X

g(0) = ~~~(l)  = 0.

The basic question we address here is: Given the system

in an initial steady-state configuration Cf 01g0) at time t = 0,

how does one use boundary controls s0,a0 to transfer the system

in time 0<t<T to a second steady—state configuration (f1,g1)

and do this in an efficient manner. That is, there is some cost

associated with adding (or deleting) substrate and/or activator

to the system via the boundary controls and one should try to

minimize some measure of this cost as the transfer from one steady—

state to another is made. We take as cost functional a measure of

the total flux (in the L2 sense) of s and a into the system

at the boundary x = 0. Thus, we desire to choose control func-

tions s0,a0 in some control space ‘~ (e.g. L2(0,T)) so as to

minimize

j0
~~~~~~0, tH 2 

+ I~~(c ,t) I 2 }dt

—~~~~~~~~~ . -.•~~~~~~-• •~ 



4.

• subject to (l)—(3). (In general the system (1)— (3) need not be

exactly solvable for a given ~~~~~ i = 0,1 (i.e., controllability

questions arise) and one must replace the above posed problem by

one of transferring f0,g0 to a terminal state close to f11g1.

One thus actually considers for both theoretical and computational

purposes the modified problem of minimizing J~ J +

~ Io~I5~~,
T )_ f l~~~

2 
+ (a(x ,T)-g1(x)~

2}dx subject to (l),(2) and

s(x O) f0(x), a(x,0) = g0(x).)

The above might appropriately be called a “1-dimensional

medium ’ reaction—diffusion problem. An analogous “0—dimensional

medium” problem is of interest in the event that one has Ci)  reaction

and diffusion separated within the medium or (i i )  very rapid diff u—

sion (i.e., a well-mixed medium for reaction-diffusion). The latter

assumption is valid in general models for continuously stirred tank

reactors. In the “O-dimensional. medium” problem the spatial variable

is ignored and one has as control system (for s = s(t), a = a(t ) )

ds _ a s
— 5  S 2dt 0 ~.+a 1+s+ks

(6 )
= c~{a~ —a } 0<t<T ,

s(0) = f 0 s (T )  =
(7)

a(0) = g0 aCT) = g1,

where one still chooses the controls s0,a0 from some space

~ of admissible policies. However, now the initial and ter—

minal states (f0,g0), Cf 1,g1) are constants which satisfy

i gj
O = s 0~~~fj~~~a14g F(fj)

(8)
• 0 = a ~~— g ~ , i — 0 ,l,

—4
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where (sg,a~) = (s0(O),a0(0)), (s~ ,a~) = (s0(T),a0(T)) and

F(s) E s/(l+s+ks2). The cost functional is taken as

{1s 0(t)-s(t) 1 2 
+ 1a 0 (t)-a(t) 2}dt . (9)

Just as in the case of the “1—dimensional” problem, one can

show that multiple steady—states (i.e., solutions of (8)) are

possible for the system (6) * Also, one usually must consider a

modification of the minimization problem since (6),(7) may not be

exactly solvable (i.e., again controllability questions arise).

There are a number of interesting nontrivial theoretical

questions (controllability, existence, uniqueness, etc.) associated

with the control problems formulated above but we shall not discuss

those questions directly here. Our initial interest in these pro-

blems arose from an attempt to use computational schemes (i.e.,

software packages) in connection with experimental efforts. From

the descriptions above one might anticipate this to be a rather

routine task since the problems would appear tractable using

standard ideas from the theory of boundary control of partial dif-

ferential equations in the case of the “1—dimensional” problems

(see (2]) or those from the theory of nonlinear ordinary differen-

tial equation control problems in the case of the “0—dimensional”

problem (see (3]) along with gradient, conjugate-gradient type

numerical techniques. Initial numerical experiments revealed that

this is not the case and our efforts here will be limited to an

explanation of the difficulties along with suggestions as to

• possible alternative formulations which might lead to problems

amenable to solution on the computer.



To facilitate discussions of the above-mentioned dif-

ficulties it is helpful to consider the quasi-steady—state

approximation to the “0—dimensional medium” problem (a similar

approximation reveals the inherent difficulties in the “1-dimen-

sional medium ” problem). In light of the small transient times

found in experimental realizations of these models , one can make

a plausible argument that the quasi—steady—state approximations

are reasonable approximations to the problems formulated above.

We shall not do that here but turn instead to the problem of

minimizing J given in (9) subject to the constraint equations

(steady—state approximations to (6))

— s(t) — F(s(t)) = 0

(10)

a0(t) 
— aCt) = 0.

Since in this case a0 E a, we define for convenience the

variable p cia! (l+a) and consider the problem of minimizing

J while transferring a “state” X0 = (s0(0),p(0),s(0)) to a

state X1 = (s0(T),p(T),s (T)) subject to the constraint

s0(t) — s(t) — p(t)F (s(t)) = 0, 0<t<T. (11)

A sketch of the surface in (s0,p,s) space described by (11)

is given in Figure 2, where one recognizes the well—known “cusp”

(catastrophe) surface of Whitney (5] and Thom [4]. In Figure 2
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the folds in the cusp surface are projected down into the (s0,p)

plane as the (infinite) arcs containing CA and CB. We are

thus choosing control strategies (paths in the (s0,p) plane)

which yield corresponding “trajectories” that move on this (multi—

valued in some regions) surface.

Consider a problem which requires transfer of an initial

configuration X0 to a terminal configuration X1 as depicted

in Figure 2. Two possible distinct control strategies

{ ( s
0(t),p(t))}, 0<t<T , are depicted in Figure 3.

p

(s 0 ( O) ,p  ( 0 ) )

SO 
(s 0(T)~~~~~~

• Figure 3

_ _ _ _ _ _ _ _ _ _ _  -•~~~~~~~~~~~
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It is clear that two such strategies can be made ar-

bitrarIly close (using any reasonable measure of closeness) in

the (s0,p) plane while the corresponding “trajectories”

(s0(t),p(t) ,s(t)), O<t<T, lying on the constraint surface will

not be close. The trajectory corresponding to strategy 1 (see

Fig. 3) “travels” along the lower fold (see Fig. 2) while strategy

2 yields a trajectory which during the corresponding time “travels ”

along the upper fold of the surface defined by (11). (The heavy

lines with arrows in Fig. 2 represent jump discontinuities in s

for the quasi—steady—state model. For the original problems, i.e.,

the non-quasi—steady—state models, these correspond to extremely

rapid “motion” from trajectories near the lower surface to tra-

jectories near the upper surface.)

From these considerations it is clear that the trajectories

for the quasi-steady model are not even continuous as a function

of the control strategies and hence it is not surprising that

methods (e.g. gradient, conjugate—gradient) involving derivatives

(with respect to controls) of the cost function are troublesome

when applied to the problems governed by (l)-(3) or (6)-(7).

Once one has visualized the problems in this heuristic but

informative way, it is apparent that the difficulties are a result

of the particular nonlinear reaction velocity approximation found

in (1) and subsequent associated versions of this system equation em-

ployed above. The models entail a region r (for (6) and (11)

with transfer from X0 to X1 as shown in Figs. 2,3 this region

is depicted in Fig. 4) in “control” space in which one must choose

control strategies with extreme care.
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H

Figure 4

In carrying out laboratory experiments, this region is

observed to be one in which the system is highly unstable. Thus

from both a theoretical and practical viewpoint, additional con-

straints on operation of the system in this region are desirable.

Careful formulation with additional constraints can lead to

tractable problems. We illustrate this first with a sketch of

how one might formulate such a control problem for a discretized

version of the quasi-steady approximation to the “0-dimensional

medium” problem.

L
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Considering the controls s0,a0 to be piecewise constant

on [O,T], one can reformulate the quasi—steady problem as a

multi—stage discrete control problem with “controls”

i = l ,.. ., Jc , constrained to lie outside r
(see Fig. 4) with “states ’ {s(t~)} given implicitly by

a0(t.)s0(t~) 
— s(t~) — cTl+a (t) F(s(t.)) = 0.

The payoff is then taken as

k
J = ~~ {s~ (t0) 

— s(t1)}
2
~t~.

The most natural formulation along these lines leads to immediate

difficulties with regard to necessary conditions (multiplier

rules or maximum principles are not readily available for discrete

control problems with implicit state equations). However, one

can reformulate this slightly as a constrained “state” and “control”

problem so that necessary conditions are easily obtained. If one

identifies s0,a0 as “states” and defines a mapping A:R2 +

by x3 = ~ (x 1,x2 ) where x3 is a solution (appropriately chosen

when multiple solutions exist) to

x1
_ x

3
_ o

1~~~~F(x3)i ’ 0

and introduces “controls” v1, Wj (with suitable constraints),

the problem becomes one of minimizing

~

_

~

_ • • .

~

_ • • - _ _ _ - -__ • • -_ _~~~~. •_ - _ - -_ • - -• - •
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= Z {s
0(t~) 

-

subject to state equations

s0(t1) = s0(t~_1) + v~

a0(t~) = a0(t11) + w.

and constraints

~j(s0(t~)~ a0(t~)) $~ 
0

defined to prohibit values of s0,a0 in the region r. In this

formulation one can obtain necessary conditions (to use as a

basis for computational schemes) via application of the operator

theoretic optimization framework with abstract multiplier rule

developed by Neustadt (e.g., see Chap. 7 of (3]).

The above formulation essentially involves the assumption

that “changes” (or more precisely “rates of changes”) in

are the controls. This can be viewed as a special case of a re-

formulation for the continuous version problems. Consider the

full “0-dimensional medium” problem and adjoin to the state

equations (6) additional equations

ds0

(12)

da0



with control constraints lv i  < M1, Jw J < M2. The “states” for

the problem are then taken as s0,a0,s,a with “controls” given by

v,w. In addition to the natural control restraints, one imposes

mixed state-control (so—called “phase—control” constraints) in-

equality constraints which restrict the choices of v and w in

the event one is in the region r in (s0,p) space (see Fig. 4).

These constraints are defined so that one rules out control policies

that yield paths in the (s0,p) plane that travel along the

“singular” arc containing CA (see Figs. 2,3,4). That is, one

rules out via constraints on v,w policies such as those depicted

in Fig. 3. Hence, while one does not prohibit crossing of the

r region, one restricts carefully the types of trajectories one

allows while passing through this region. The resulting con-

straints will thus be joint in the “states” s0,a0 and the “controls”

v,w.

Finally, we point out that one can also use these reformu-

lation ideas to take a linear programming approach (function minimi-

zation problems with linear inequality constraints) to these pro-

blems as opposed to the optimal control approach (multiplier rule

for constrained control problems) sketched above. For example

we illustrate briefly with the quasi—steady approximation to the

“0—dimensional medium” problem.

We approximate the arc containing CA above and below by

straight lines with slope m. With this fixed slope m, we con-

struct a family of parallel and equidistant lines {p =

in the (s0,p) plane as depicted in Figure 5. The admissible

t
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“states” are then required to lie on these lines. (The construc-

tion is made so that the arc CA lies between two of these lines,

(50(0), p (O)) lies on p = ms0 + b0, and (s0(T), p (T)) lies

on = Ins 0 + bk.) A “trajectory” will then consist of a sequence

of points (s0(t~)1 p (t1)~ s(t~)) satisfying (11) with

~(t~)) belonging to the line p = ms0 + b1. One can take as con-

trol policies the collection of sequences



- _ 
• • .~~ •~~~~

15.

U = (p iItl,p2,t2,...,pk_ l,tk_l )

with to = 0, tk = T and corresponding “state” equations

I

s0(t 1) = (p~~ b~~)/m

s0(t) — s(t.) — p~F(s(t~)) = 0 -

In addition to making appropriate modifications to the payoff

J, one constrains the analogues of equations (12), i.e.,

s
0

(t~ )—s 0(t~_1) 
Kti

_ti_i — 1
(13)

p
i

— p i_ l

• E.-t. < K2
i. i—i

One must also add positivity constraints for S3,p given by

> max{0,b.}. (14)

By defining suitable coefficient matrices E and D, one can

write the constraints (13), (14) as

• EUT >D. (15)

The problem then becomes one of minimizing a function J subject

to the linear inequality constraints (15) and standard computa-

_ 
•

_ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •



tional techniques (e.g., descent methods such as the Davidon-

Fletcher—Powell schemes)are applicable.

A more detailed discussion of theoretical aspects of

the above different formulations and approximations along with

our numerical findings will be presented in a forthcoming manu—

script.

•——— ~•.- - • --~— • -
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