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ABSTRACT. In order to be able to design a control system for high-speed
control of mechanical manipulators , It Is necessary to understand properly
their dynamics. Here we present an analysis of a detai1ed model of a three-
link device which may be viewed as either a “leg” in a locornotory sy3tem, or
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INTRODUCTION.

In this paper, we analyze the relationship between actuator torques and

joint angular accelerations for a device with three rotational degrees of free-

dom, such as a “leg” on a locomotory system or the first three joints of a

manipulator or “arm”. The kind of analysis we present here leads to a clear

understanding of the effects of varying inertia, joint-interactions and con-

o h s forces and forms the basis for simulations of such systems and, most im-

portantly, design of control systems. It is likely that high speed control

of articulated kinematic chains is not possible without this kind of detailed

understanding; conversely, we show that the computations required of such a

control system are manageable.

Initially, we restrict our attention to arrangements with no offsets be-

tween links , as shown in figure 1. Later, we consider a more realistic case,

the MIT-Scheinman electric arm, which has offsets, as do many practical devices.

Further, we model links as thin rods and, finally, consider more complicated

mass distributions at the end of the paper.

We use rather primitive techniques in order to avoid possible complications

due to the potential difficulty of visualizing angular rotation vectors and

components of Inertia matrices. The same results, however, could be obtained

using such advanced notions, with little savings In effort and considerable

loss of insight.
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NOTATIONAL CONVENTIONS.

The links, modelled as thin ro’~s (see fIgures 2 and 3), are numbered

starting with the base. The base, link 0, is rigidly attached to a fixed

Cartesian coordinate system with the z-axis pointing up through the column,

link 1. Joints are number systematically, with joint I connecting link (I - 1)

to link i. Thus the “hip” or “shoulder” is joint 2, wI th the “knee” or

“elbow” being joint 3.

The lengths of the links will be Ll~ £2 and &3~ with masses m1, m2 and

in3. The joint-angles will be called O1~ 
02 and 03 and the angular velocities

represented as ê1, Ô2, and 03. At times it is convenient to use vector nota-

tion with

= 

~°l’ °2’ 03
)

ê = 
~~~ °2’ 03)

Clearly, o together with j specify the state of the device completely.
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PLAN OF ACTION.

We treat each link In turn: fIrst,we calculate the velocity of each point

In the link as a function of the joint-angle rate; second, we calculate the

total kinetic energy in each link; third , we calculate the torques required

to support the motion of that link; and, finally, we add up the torques

required to move all links to obtain the total torque that must be applied by

each actuator. We calculate gravity components of torque at the very end.

•

___
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REVIEW OF BASICJ1ECHAJ(I.~~

It is convenient to calculate the total kinetic energy of each link by
dividing it into infinitesimal parts and Integrating along the length of each
link. The kinetic energy of a particle of mass in moving wi th velocity v is ,
of course, (l/2)mv2 . Thus we can obtain the total kinetic energy of a link
from

K= ~~- ‘: v2(s)ds
where s is distance along the link and v(s) is the velocity at a point located
a distance s from one end. Here we have assumed that all the mass is concen-
trated along a line and is distributed uniformly from one end to the other
with linear density mit. More complicated models require more di fficult analy-
sis and are warranted only if measurements can be made of the actual mass-dis-
tribution in particular limbs .

We find that, in general , v(s) is of the form

v2(s) = a + bs + cs2

Then clearly

K~~~~~Eat + bç + c ç )
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I
CALCULATION OF ACTUATOR TORQUES.

The easiest technique is based on the Euler-Lagrange formula,

I dt ae
~ ~

where ô.~ Is the angular velocity

ei =~~ ei

and 1.~ Is the torque required at joint I to support the motion. K Is the
kinetic energy. This may look complicated , but, in fact, is very convenient.
In general , if the potential energy term is added in , this calculation leads
to n equations for a device with n degrees of freedom.

= G1(o) + 

~~ ~ 

+ 
j  1 k~~ ~ 

Cljk (e) 0j 0k

Here T~, the actuator torque required at joint 1, Is made up of three components .
The first Is the gravitational term obtained from the potential energy P,

G =~~~~~-~~—

I

The second term Is a sum of products of Inertias and angular accelerations
Ô ,where

- -~~--- ---- -“----- -.~~----- —- ---- .-...-—- . -j - . - .
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d2
Oj =

~ j7 Oj

This term is thus composed of the inertial forces needed to accel erate the

links along the desired trajectory.

The third term is a double sum of velocity product terms and constitutes

the torque required to balance Coriolis forces; these include the centrifugal

forces. Note that all three kinds of coefficients G1, ‘ij and Cijk are

functions of the configuration , e, only, where

That is, they do not depend on joint angle velocities (or accelerations). In

fact, we find that these terms are polynomials in link lengths and sines and

cosines of the joint-angles.

It is convenient to think of the total kinetic energy of the device as a

sum of the kinetic energies of the individual links ,

n
E K

j z l

and to calcu late the total torque required of a particular actuator as a sum of

components, each obtained by applying the Euler-Lagrange equation to a component

of the kinetic energy,

n
z I

j = l



_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where T1~ is the actuator torque requi red at joint I to support the motion
of link j.

T1~~=~~~~~~1) - .~~1
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THE UPRIGHT COLUMN.

If we model this link as a thin rod, it will have no inertia and not urn-

pede accelerations about its axis at ~1l. It is more realistic to model it as

a cylinder of uniform mass distribution. If it has height H, radius R and

mass m1, It has inertia

2
m R

l~~ 2

To introduce the techniques used later for the other links , we calculate this

from first principles . The vol ume of -the cylinder Is

V= it R 2H

Consequently, Its mass density is m1/(icR2H).

Now consider a cylindrical shel l of thickness d5 at distance s from the

axis as in figure 4. It has mass

~~~ 
2irSH~~S

Particles in this shell move with velocity S~~ when the column rotates at angular

rate e~. The kinetic energy of the cylindrical shell Is then

~ 
(
~

) (~~~~]2 
= ds

Integrating over the whole cylinder we find the total kinetic energy Is

_ _ _ _ _ _   
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K1 ~ - ê ~ j R 
~3 ds ~.(! ) j~

The term ‘1 = mR2/2 is the inertia of the upright column, link 1, about its
axis of rotation .
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 1.

We are now ready to appl~’ the Euler-Lagrange equations to find the required

actuator torques .

I -I

where

0 and 
~
j — = ~~~

so

~~~~~

or

111 = Ii ~

This rather obvious conclusion shows that we need only an inertial torque to

support this motion. No other joints are affected .

( 
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THE SECOND LINK.

Link 2 is modelled as a thin rod of mass m2 and length £2 (see figures 5
a~ i 6). To compress long expressions we adopt a convention for trigonometri c
terms:

Ci 
= cos( o 1) s~ = sin(s 1)

and

= cos(e 1 + o~) s1,~ = cos ( o1 + O
j

)

The infinitesimal particle t of length ds has mass

din = — ds
£
2

First we determine the velocity of this particle; it can be found by differenti-

ating its position with respect to time. Let r = (x,y,z) be the particle ’s posi-

tion in reference to the rectangular coordinate system introduced earlier. If

I, j, k are unit vectors in the directi ons x, y, z respectively, then,

r = S((c 152) 1 + (s1s2) 
j + (c2 )k]

Taking the derivative we get the velocity

= S[(-s 1e1s2 + c1c2~2) j + (c1o1s2 + s1c2~2) J + (—s282)k]



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _
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To calculate the kinetic energy we need only the square of the absolute value
of the velocity,

V2 = v • v = s2[(-s1j1s2 + C1C2Ô2
)2 + (c1i1s2 + S

1C2Ô2
)2 + (S

2~ 2
)2]

v2 = ~~~~~ +

Finally, the kinetic energy is

= + 
~~ f:2 ~2 ds

That is,

1(2 = .
~
;. m2 £~ [s~i~ + i~]

(

—.

~~

H

E~. 
r-~-

F 

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 2:

First, we find the required derivatives:

aK
= 0 and ~~ — 

~~ m2L~(s2c2e~]

3K aK1 m q[s~o ] and —
~~~~ = ~ - m £2[~ ]1 2

aK2
= ..

~
- m2q[2s2c262e1 + s~o

.
l]

Finally, using the Euler-Lagrange equation ,

T12 
~~~~~ 

(!~?) — !~~a ~~m2q[4e~ + 2s2c2i1é2]

~~~~~ ~~02~~ 

- 

~~ 
.5m2q ~~ 

- s2c2ê1]
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ANALYSIS OF TORQUE COMPONENTS.

The two components of l
~2 

represent inertial and corIolIs factors. First,

note that (l/3)m 2&~s~ is the Inertia of lInk 2 about the vertical axis. Multi-

plying this by the angular acceleration of joint 1 gives us the tcrque re-

quIred to produce that angular acceleration. The second term, containing a

product of angular velocities is a coriolis force factor which vanishes when

~ ~2 
= 0 or 02 Is an Integer multiple of 900 sInce

2s2c2 = sin(2o2)

This torque term has to do wi th the change in kinetic energy when the inertia

about the vertical axIs is changed -- it is the term which speeds up a spinning
ice skater when (s)he pulls in his(her) arms and slows him(her) down as the

arms are stretched out. It shows one of many interactions between motions for

which it is hard to get an Intuitive grasp.

The components of are even easier to understand. The first term is just

the Inertial force needed to accelerate link 2, since the inertia of link 2
about joint 2 is simply (l/3)m 2t~. The last term is a centrifugal force term,

which again is zero when 02 is an integer multiple of 90°. It represents the

tendency for the second link to become horizontal as a result of rotation about

the vertical axis.



_ _ _ _ _ _ _ _  
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THE THIRD AND LAST LINK.

Link 3 is modelled as a thin rod of mass m3 and length £3 (see figures 7
and 8). The location r of the infinitesimal particle of length ds and mass dm
is found first, where

m
on - —.

~~ ds£3

We find that,

r = c1(t2s2 + s s23)1 + s1(L2s2+ss23)j + (t2c2 + s C23) k

Differentiation wi th respect to t1r~e,

V = (—s1ê1(t2s2 + 
~23~ 

+ c1(t2c2Ô2 + s c23(è2 + 03))] 1 +

[c 1Ô1(t2s2 + 3 s2~) + s 1 (&2c2é2 + ~ c~~(é2 + 03))]J +

[-t2s2i2 
- s

Then,

v2 — V V

j~ (L
2

S2 +S~~23
)2 + ( t 2C2

j
2 + s c23(62 + Ô

3
))2 +

- S 
~23~~2 

+ 03
)]2

_ _ _ _ _ _ _ _ _ _ _ _ _
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~ (t~s~ + 2&2s2s233 + 
4~~ 2) 4~ + + 2t2c3é2(é2 + Ô3)s +

(ê 2 + 03
)2 ~2

Since c2c23 + s2s23 cos(e2 - ~
°2 

+ 0
3

)) = c3.

So,

K3~~~.J3 v2 _1 ds

becomes

In £~1(3 
= 

~~ + t2t3$2523 + y- s~3)~~ + t~e~ + L2&3c3ê2(~2 + 03) +

£2

~
.a (e

2 + e
3

)2]

That is,

In

5 = r ((&~s~ + £2t
3S2S23 + r ~ 3) +

+ £2L3c3 + +
2

(&2t3c3 + —s—) ~203 +
t 2

i~)

This finally Is the kinetic energy link 31



_ _ _ _ _  -- --~~~~ -~~~~~~~ ~~~~~~~~~~~~ ~~-
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PARTIAL DERIVATIVES NEEDED.

3K
ao l

aK in 2L 2
= ~~~~ (2~~s~c~ + &2&3(c2s23 + s2c23) + .._

~~~~ s~3c23 ) e~

3K m 2t2

ii ;:!. = ~~
. ((L2L3s2c23 + —i. s~3c2~)ê~ + (-2 2t3s3)é~ + ( 

2t3~ 3
) Ô 2Ô 3]

3K3 in
3 £ 2

= r [2(L~s~ + £
2

L
352S23 + 

~~4 ~~3~~l’

3K in £2 2t 2
_~~~~~~. = ~~ [2(~~ + &

2t3c3 + 
~~~~~~~~ 

+ (& 2t3c3 + ..
~~~~~ ) ê 3]

2t~ 2t2
= 

~~ [(~~t3c3 + _-
~~~~

-
~ 02 + —

~~~~~ 63]
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3K in
= ~~ [2(~~s~ + £22352523 + ~~ s~~) o +

2t 2
2(2~~s2c2~2 + £2L3(c202s

23 
+ s2c

23
(ê2 + 0

3
))  + —

~~~~
. s23c23(ê2 + 03 ))e 1]

aK m £2 .. 2~2
= 

~~ [2(L~ + £
2~ 3

C
3 

+ iT~~~
°2 

+ (~2L3c3 + _.~i) 83 +

+ (-t 2~3s 3è3)ó 3]

3K m 2L 2 2L 2

~~ t(~~t3c3 + _.~i)o~ + ~~~~~~ + 

-— --~~~~~--. -~~-.-- - ----~~~~--- ~~ 
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 3.

3K 3K

113 = ~~ (2(t~s~ + £2L3s2S23 + ~~~~~~ 43) 
~l 

+

2L2
2(2 z~s2c2 + £2L3(c2s23 + s2c23) + ~1.a s23c23) 

~1~2 
+

2t2~2(t 2&3s2c23 + —i— s~3c23 ) °3°1~

3K 3K
23~~~~j~~ ~~~~

m t2 2& 2
T23 r (2(~2 + L2L3c3 ~ T~~~ 

e2 + (~2~3c3 + ~~~~ 9~ -

2L2
+ L2t3(c2s23 + s2c23) + —

~~~~~ s~3c23) ê~ -

-2L2L3s3ê2~3 - £2L353
’0
~
]

133 = 

1713 

- 

2t~ •~ 2t~T33= ~~
— ((L2L3c3 + —s.—) 

~2 
+ ~~~~~~~ 03 -

2t2
(t2t3s2c23 + —

~~~~~ s23c~~) ~ +

(t2t3s3) ê~]
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GRAVITATIONAL TORQUE COMPONENTS IN SIMPLE CASE.

If gravity acts along the z-axis and has magnitude g, then the potential

energy of the device can be found easily from the vertical positions of the

centers of mass of the two links .

9. 9.
= C2 and z3 = (t2c2 + ~~ c23)

So the total potential energy is

£ £
P = g[m2 ~~ c2 + m3(L2c2 + ~~~~ c~3)]

So the torque components are simply

- 
~~2 

= g[m2 ~~ S2 + m3(t2s2 + 2.a 
~~~~

— and

T3g = - 

303 
= 

9 [m3 r ~23~

These components may simply be added to the components already found for inertial
and coriolis torques.

- 

_
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GRAVITY COMPENSATION IN GENERAL CASE.

The position of the center of mass of link 2 is

£

r2 = ~~.?. [(c ls2 )i + 
~~~~~ 

+ (c2 )k]

If ~ = (g1,g2,g3) is the vector of gravitational acceleration , then the p0-

tential energy is

= 

~~ 2 ~~~ 
= 

~~ [c~s~g1 + s1s2g2 + c2g3]

Similarly, the position of the center of mass of link 3 is

9. 9.
r3 

= c1 (t2s2 + ~ 
+ s1 (9.2s2 + ~

. s~~)j + (t2c2 + ~~ c23 )k

P3 = -(r
3 g)m

3 
=

£ 9. 9.
-m3[c1 (&2s2 + ~~ s23)g1 + s1 (L2s2 + 

~~ ~23~~2 
+ (L 2c2 + y- c23)g3]

The total potential energy is the sum of P2 and P3. The gravity compensation

torques can be found from P by differentiation.



—-~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~~~- -
~~~~~~~~~~
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T1g
= - = s1(-m2 r ~2 - m3(L2s2 + ~~ s

23
))g1 +

L
r- 

~2 
+ m3 ~ 2~2 

+ 
~~ ~23~~ 2

1
2g 

- 

~ 2 
= c1(m2 C2 + m3(t2c2 + ~~ c23))g1 +

C2 + m3(t2C2 + ~~ c23))g2 +

(—m 2 ~~ s2 
- m3(t 2s2 + ~~~~~ s~~))g3

13q - 

30 
= m3[c1(~-~ c23)g1 + s1(~~~c23 )g2 - ~23 93

- 1 
_ _  

_ _ _ _ _ _ - --4
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MASS CONCENTRATION AT THE_END OF LINK 2.

Let there be an additi onal mass M2 attached at the end of link 2. Its velocity

squared is -

v2 = & ~~[s~~Ô~ + 6 ~]

So

K~ = -~- M 2 &~[s~ é~~ +

So the torque components would come to

= M2q ~~ 
+ 2s2c26 1ö2]

= M2P..~ [ó 2 
- 52C20

~
)

U _ ___ ___ _ __ _
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MASS CONCENTRATION AT THE END OF LINK 3 ••- LOAD CARRIED.

Let there be an additional mass M3 attached at the end of link 3. Its

velocity squared i s

v2 = 
~ 2~2 

+ £35~3
)20~ + + 2L2L3c3Ô2(~2 + 03) + £~

(e2 + 0 )2

So,

K~ = ~~
- M3[(t2s2 + £3s23

)2o~ + (~~ + 2~~L3c3 + +

29.3(Q.2c3 + 9.3)9 20 3 + L~ e~~]

3K’3
38 i 

0

3K’
= M3[(L~s~ + £3s23)(&2c2 + 9.3c23) ê~]

3K’
= M3[(t 2s2 + £3s23)t 3c23 ~i 

- 

~~~~~~ 
- £2L3S3 ~~~~

3K,
= M3[(9.2s2 + £

3
S23)261]

3K’
-

~~

-

~

-

~

- = M~ (~ + 2t2&3c3 + ~P ~2 + £3(L2c3 + £3) 03]

ft -— 

- II I _____
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3K’
= M3[&3(&~c3 + £3) ~2 

+ £~03]• 303

3K’
= M3C(L 2s2 + 9.3523

)2 01 + 2(t 2s2 + t3s23 )(& 2c262 + t3c23(o 2 +

3K’
= M3[(q + 2t2t3c3 + t~ ) 02 + £3(L2c3 + £3) 03 

-

29.2&3s352ê 3 - £2L353ô
~
]

3K’
= M3(t3(L2C3 + 

~3~°2 
+ 9403 - 9.2L3s3Ô2~3]

= M3[(t2s2 + L
3
S23)2~~1 +2 (9 .

2
5

2 
+ 9.3s23)(9.2c2 + L3c23)8192

29 .
3

C23 (Z
2

S
2 

+ 
~3~23~ 

0381]

= M3 f (~~ + 29.29.3c3 + 94~°2 + £3(L2c3 + £3) 03 
-

+ 9.3s23
)( 9.2c2 + &3c23)~~ 

- 29.2L3s3626 3 -

T
~ 

= F43[L3(9.2c3 + 
~3~°2 

+ - £3c23(L2S2 + £3s23 )é
~ 

+ 
~~~~~~~

These expressions can be used to calculate additional torques required to support

the movements of a load carried by the third link.
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GRAVITY COMPENSATION FOR THE MASS CONCENTRATIONS AT THE ENDS OF LINK 2 AND
LINK 3.

The position of the mass concentration at the end of link 2 is

= 

2[(c1s2)1 + (s1 s2)~ + c2k]

and its potential energy is

= -(
~~~~~ 

. g) M~ = -M2L2[c1s2g1 + 
~l~2~2 

+ C
293]

Similarly, the position of the mass concentration at the end of link 3 is

R3 
= c1 (L2s2 + 

~3~23~
j + s1(9.2s2 + 

~3~23~ 
+ (9.2c2 + L3c23)k

and its potential energy is

= -(R3 
. g)M3 = -M3[c1(9.2s2 + &3s23)g 1 + s1 (t2s2 + 2;3s23)g2 +

+ £3c23)g3]

The net potential energy of the mass concentrations is

= P~ +

and the gravity compensation torques for the three links , on account of the

mass concentrations , are

= - ~~~~~— s1(-M~~2s2 
- M3(L2s2 + t3s23))g1 +

c1 (M29.2s2 + M3(& 2s2 + 
~~~~~~~

_ _ _ _ _ _ _ _ _  

H
-~~
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T~g = - = c1 (112&2c2 + M3(&2c2 + &3c23))g1 +

s1(M2&2c2 + M3(t2c2 + t3c23))g2 -

(M2L2s2 + M3(t 2s2 +

T~jg = - = M3(&3c1c23g1 + £3s1c23g2 - ~3~23~3~

,
—1~
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•THREE DEGREE OF FREEDOM DEVICE WITH OFFSETS.

In some manipulators and legs, trade-offs in the mechanical design dictate

a geometry with offsets between links as seen in figure 9, for example. Smaller

packaging , better strength and larger range of motion can be achieved this

way in return for a small increase in complexity of control. The MIT-Scheinman

electric manipulator is an example of a device with offsets. It will be found

that only a few extra terms appear in the expressions for the torques required

of the actuators. Obviously the torques required to support the motions of

link 1 , the upright column , do not change, so we start with link 2.

---- - ----- - _ _ _  
_ - •  —--- •-- -
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THE SECOND LINK IN A DEVICE WITH OFFSETS.

The position r of a particle on the second link can be found by considering

fIgures 10 and 11.

r — [sc1s2 
- 62s1j1 + [ss 1s2 + 6 2c1]j + [sc2]k

Differentiating ,

Y =  [—ss 1é1s~ + 5c1c262 
— 62c161]1 +

[sc 16 1s2 + ss1c262 
- 6 2s10 1]j + [—ss 2ê2]k

So,

v2 s2s~~ + (sc262 — 6201)2 + s2s~ê~

v2 (~~~~~ 
+ s2s~)ê~ — 2s62c2ê1é2 + s20~

The kinetic energy can be found by integration

£ 117

~ 
(2 1 —

~~~ v2ds
‘ 1 0 2 9 .2

9.2 9.

~ 
m2((6~ 

+ ~~~~~
. s~)~~ - £262C20l02 + r

----4L — - - - ----- -— 
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 2.

aK in 2t~— 0 and = -
~~~ E—~~

-— s~c~ê~ + L262s201e2]

~~~~~~~~~ 
~~~~~~~~~~~~~~~ 

~~1 
-

in 2z2

i~~~~

. = 

~~ [-&~~ c~ê.~ + ~~~~.?. 6
2
]

3K m ~2
~~~~ (...-~ .?.) = ~~ [2(~~ + 

~~ 
- £2a2c~~2 + 

~~~~~~~~ 

s2c2el62 +

= .~-?. {—&262c2~1 + 8~ +

Final ly,

3 3K
12~~~I

In 4~~ 2

= 
~~ [2(~~ + -

~~ ~~~ 8
1 

- t2â2c2
’e~2 + —

~~~~~ s2c2~1é2 + £
2

6
2

S
2

O~~~]

3K 3K

in 29.2 29.2
•‘ 2~~ 2r ~-~2~2c2~1 + —T 

~~ 2 
- 

~~ 
S
2

C
2

0
1 
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THE THIRD LINK IN A DEVICE WITH OFFSETS.

The posItion r of a particle in the third link can be found from figures
12 and 13.

= [(~~~~ + s s23)c~ - 53s1)i +

+ S s~3)s 1 + 63c1]j +

+ s c23]k

Differentiating ,

= 

~ 2~2 + s s23)s161 - 63c161 + (~~c2ô~ + sc23 (6 2 + è3))c1]i +

+ s s23)c1ê1 — o3s161 + (&2c262 + sc23(~2 + o3fls1]j +

— ~ 
~23~°2 

+ o3)Jk

So,

v2 = = 
~ 2~2 

+ ~ 523)20~ + [—6 3é1 + t2c2~2 + sc23(~2 + 0
3
)]2 +

— 
~ 
~23~~2 

+ 03)]2 

- -- ------- --—---_ - - -
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I.-

,

That is ,

= 

~ 2~2 
+ S + + t~

I
0~ + ~2(~~ + ~~)2 — 2o39.2c2~1ê2 

+

2s&2c3~2(~2 + 03) 
- 2o3sc23~1(ê2 + 93)

= (t~s~ + 259.252523 + S S ~3 + 6~~~~)~~~~~ - 263(12c2 + sc23)~1~2 +

+ 2s~.2c3 + ~2) ~~~ + (2sL2c3 + 2s2)~2~3 + (~2)~~ - 2so3c23~3~1

•1

K.)= J 
‘
~ ~~

_
~.~ v2ds

K3 
= 

~~~~~~ + t2&3s2s23 + ~~~ S~3 + o~~
) ’o~ 

- 63(2L2c2 + t3c23)~1Ô2 +

(t~ + ~2t3c3 + 
~~~~~~~~~~~ 

+ (L29.3c3 ~~~~~~~~ 
+ (~i)o~ - 6

3
(L
3
C23)0301]

pl ______ 
_ _ _ _

—--- —
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PARTIAL DERIVATIVES NEEDED.

3K in 2&2
= 

~~~~ [(2&~s2c~ + &2&3(c2s23 + s2c23) + ._~~i s23c23)ö~ +

+ &3523 )0 102 +

= 
~~~ [~ 2~3~2c~3 + 

~~2 

s23c23)ê~ + 63(L3s23)~1~2 
—

— (9.29353)0203 + o3(9.3s23)~3~1
]

= ~1 [2(~~s~ + £
2
&
3
S
2
523 + ~~ + 6~ )~~~~ -

+ &3c23)62 - 63(L3c23)53]

3K m ~2 2t2
= 

~~~ [-&3(2&~c2 + 9.3c23)~1 + 2(&~ + £
2
9.
3
C
3 
+ 
r~°2 

+ (&2t3c3 +

aK m 29.2 2&2
= ~~ .!. [(L2&3c3 + 

~~~~~ 
+ - 63(L3c23)~1]

__ _ _ _  -~~~~ • - - . - .  - • -
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3K m

~~~~~

. (j~-) 
= ~.a [2(&~s~ + 

~2~3~2~23 
+ ~~~ S~~

3 
+ 6~~~~) 

~~~~ 

-

63(2L2c2 + £3c23)~2 - 63(&3c23)~3 +

2{2&~s2c2~2 + 9.29.3(c2~2s2 + s2c23(~2 + 0
3)) 

+

s23c23(~2 + 0
3

)}  ê

1 

+ 63 (2L2s2~2 + 
~3~23~°2 

+ ê

3

))ê
2 

+

63(L3s23(~2 
+ 0

3
))0

3]

in
= 

~~~ f-6 3(2L~c~ + £3c23) ~~ 
+ 2(&~ + £2L3c3 + r~°2 

+

29.2
(9.2~3c3 + 1.a )~3 + 63(2&2s2~2 + 

~3~23~°2 
+ 03~~

01 -

2(t 2&3s3~3)~2 — 
~~~~~~~~~~

3K m 29.2 29.2
E = ?~ 

t(t2&3c3 + 
~~~~~ 

+ 
•T

~~~
°
3 

- 63(L3c23)b~
’
1 -

~~~~~~~~~ 
+ 63(&3s23(~2 + 03fl0~]

~~~~~~~ _ _
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 3.

3K 3K
T13= ~Q) -

in
T13 ~~ E2(&~s~ + ‘~2’~3~2~23 

+ r S~~ 3 
+ -

+ £3c23)02 - 6
3

(L
3
c23)’6

3 
+

29.2
2(2L~s2C2 + L2L3(C2S23 + s2c23) + —

~~~~~ s~3c~~) 8182 +

+ &3523 )0
~ 

+ 2â3t3s2302~3 
+ 63L3S23$~ +

2&
2L3c23(L2s2 + 

~~~ 
s23) 0381]

3K 3K
123= ~~~~~~~~~~~~~~~) 

-

in
T23 ~~~~~ (-~s3(2t2c2 + L3c23)~1 + 2(&~ + £29.3c3 + —4)’

~2 
+

29.2 29.2
(9.29.3c3 + __

~i)~ 3 
- (2L~52c2 + 

~2~3 
(c2s23 + s2c23) + .—

~~~~~ s23c23)6~ -

2(L29.3s3)~2~3 - (t2&3s3)~~]

Note the cancellation of terms in and 
~~~~ 
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3K 3K
I d 

~
. 3~ 3-

in
3 29.2 29.2

T~~= r- [-63(&3c23)b1 + (t2&3c3 + —
~

-
~
•
~2 

+ —~~)~3 
-

2&
+ ~~~ s23)ê~ + (L2&3s3)~~]

Note cancellation of terms in 5
1
ê~~~~, 

~2~3 
and

I’ _ _
_ _

_ _ _ _ _ _ _ _ __ _ _  _ __  _ _ _ _ _ _ _  _  •~~~~~~~~~~~~~~~~~~~~~~~~~
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TORQUES REQUIRED TO SUPPORT GRAVITATIONAL FORCES.

The center of gravity of link 2 Is

- (~~ c1s2 - 62s1)1 + (~~~ S1s2 + 6~c~)j + (~~~~~~ c~)k

Its potential energy is,

£ £
= 

-cr2 
. g)m2 = -m2[(~~~c1s2 - 62s1)g1 + 

~~~~~~ 
+

9.
+ (~~.c2)g3]

Similarly, the position of the center of gravity of l ink 3 Is

£ 2.
= [ ( ~~~~ + -

~~~~~
. s~3)c~ — 63s1]i + 

~~~~~~~~~~~~~~ 

+ ~~ s~3)s1 +

2.
63c1]j + [L2c2 + 

~~~~~ c~3]k

Its potential energy is

P3 
= -(r3 9)m3

P
3 

- m3[[(t2s2 + 

~~ 

s:3)c1 - 63s1]g1 + ((t2s2 + ~~ s~~)s1 +

63c1]g2 + (t2c2 + ~~ c~~]g3

L 
The total potential energy Is the sum of P2 and P3.

• I



-.- -- • ~~
- - -

~~~~~~~~~~~~~ 
-----

~~~~~ ~~~
--

-38-

Torques required then are :

Tlg = - = g1[-m 2(~~ ~l~2 
+ 62c1 ) - m3(9.2s2 + ~~~~~ s~3)s~ -

£ 9.
m363c1] + g2[m2(1- c1s2 - 6

2
5

1
) + m3(L2s2 + ~~ s~3) c1 -

m363s1J

1
29 

= - 

~~ 
= gl(m2 ~~~~~ c1c2 + m3(:2c2 + ~~ c23)c1] +

~~
— s1c2 + m3(L2c2 + ~~~~~ c23)s1] +

£ £
g3[-m2 i~~ ~2 

- 1fl
3

(2.
2

S
2 + r S23fl

T3g = - = g1(m3 ~~ c23c1] + g2[m3 ~~1 c23s1) + g3[-m 3 ~~ ~23
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MASS CONCENTRATION AT THE END OF LINK 3 -- LOAD CARRIED.

v2 = (t~s~ + 22.2t3s2s23 + Q4S~ 3 
+ 6~)O~ -

263(L2c2 + £3c23)61e2 + (9.~ + 2L22.3c3 + 24)0~~ +

(2L29.3c3 + 294)6263 + - 2t 3o3c23b361

3K’
K~~=~ .M

3v
2

= M3[(9.2s2 + £3S23)(L2c2 + &3c23)e~ + 63(L2s2 + 23523)0102 +

2.3635236361]

3K’
= M~[(&~s~ + L

3
s23 ) 2.3c236~ + 63L3s2361~2 

- £22.3s3(6 2 + 03)0 2 +

£
3
6
3
S230361]

= M3[(t~s~ + 22.2L3s2s23 + 945~ 3 + 6
~
)Ol 

- 6
3
(45
2
C
2 
+ 9.

3
c23)02 -

6 3L3c2393]

3K’
= M3[-63(t2c2 + £

3
c23)6

1 
+ + 222L3c3 + 94~~2 +

(L29.3c3 + 94)93
] 

~~~~~- - - - - -- - -
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3K’
= M3[~363L3c23O1 + (9.

29.3c3 + 94)°2 + 9463]

3K’
= M3((t~s~ + 222L3s2s23 + 945~3 + 6

~
)
~l 

-

63(L2c2 + 2.
3
c23)02 - 6323c23~3 +

2(&2s2 + £
3s23 ) (9~2c2

$
2 + 9.3C23(02 + 03))Ol +

+ 
~3~23~°2 

+ 03~~
82 +

+ 0
3
)0
3]

= M3[(2.~s2 
+ 22

2
L
3
s
2s23 + ~45~3 + 6

~~~
)

~~~ l 

-

6
3
(L2s2 

+ t
3c23 )b

2 
- 632.3c2~

’e3 +

2(L2s2 + 2.3523 )(L2c2 + L
3
c23)~ 1

O2

+ £
3
S23 )i5

3ê~ 
+ 263L2s236263 +

6
3
2.3s230~ + 2(& 2s2 + £

3S23)L3C230301

4

r  
. 1

-

- —

~~~~~~~~~~~ 
p,~- -•- 

- - - - ~- -- - - -~~~~~~--__--- - -- - --A



-41-

+ £3c23)~1 + (q + 2L2R3c~ + 94~°2 +
(t2t3c3 + 94)03 + 63(9.25202 + 2.3523(02 + °3~~°1 

-

_2L
2L3s3~2~3 

-

+ £
3c23)~ 1 

+ (&~~ + 292L3c3 + 
~3~~2 

+

(2223c3 + 94)03 + 6
3
(L
2
S
2 + £

3
s23) ~l~2 -

2L
2
z3S3

0
203 

- 
~~~~ 

+ 63L3s23e3~l]

~~~~
-
~
i) = M3[-6 3&3c2~e~ + (&2L3c3 + £~~

•
~2 + +

63L3s23è1~2 - £2L3530203 +

= M3[L~s~ + 2L2&3s2s23 + 3 + a~~)O.~ -

63(t2c2 + £3c23Y~2 - 63L3c2~ê3 + 2(t2s2 + 
~3~23~

(&2c2 + &3c23 )0 102 + 
~~~~ 

+ £
3

S23 )6
3

0
~ 

+

263L2s23ê263 + 63L3s23ê~ 
+ 2t3c23(t2s2 + £3s23)0301



-42-

= M
3[-63(2.2c2 + &

3
c23)~1 

+ (~~~~~ + 22.2&3c3 + £
~~~

)
~~~ 2 

+ -

£3(L2c3 + - + £
3
523)(L2c2 + £

3
C23)0~ -

2&2t3s36263 - &2&3530~

M
3
[-6

3
&
3
c23~1 

+ £
3
(9.
2
c
3 
+ 

~3~°2 + £~~3 - £3c23 - 
I

+ £3
$23 )ô

~ 
+ £

2
&

3
S

3
è~~]

I

I _______ 
_ _ _  --H

_ -  -J



_ _ _ _ _ _ _ _ _ _ _ _ _  
__________ - -_ ~~~~~~~_ -—- ----- - - - -_

-43-

GRAVITY COMPENSATION FOR LOAD CARRIED.

The position of the load is,

r3 
= 

~~~~ 
+ £3s23)c1 - 63sl]i + 

~~~~ 
+ L

2
S23 )$

1 
+

63c1]j + 
~ 2~2 

+ £3C23]k

The potential energy is,

= — (r3 9)113 = -M3[g1((z2s2 + £3S23)c 1 - 63s1) +

g2(~2s2 + £3s23)s1 + 63c1) + g3(L2c2 +

~~ M3 {-g 1[(L2s2 + 
~3~23~~l 

+ 6
3
c1] +

92E(2.2s2 + £3s23)c1 — 635]]}

T
~g 

= 113 {g1(&2c2 + &3c23 )c 1 + g
2

(&
2

C
2 

+ t3c23)s1 -

g3(&2s2 + L3s23)

= M3 {g1t3c23c1 + g~&3c23s1 - g3L3s23}
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SUIIIARY AND CONCLUSIONS.

We have shown that detailed analysis of the dynamics of mechanical manI-

pulators is feasible and leads to complicated , but manageable equations. Such

equations may be used in the simulation of such devices or directly In control

systems based on open-loop computation of required joint torques. Simulations

may be used in the design or analysis of traditional control systems, which

can maintain stable control only for low speeds.

New kinds of control systems can be envisaged , where negative feedback is

only used to account for smal l errors which come about because of differences

between the actual device and the mathematical model used in deriving these

equations.

We have derived the necessary equations for devices wi th rotational de-

grees of freedom and no offsets (pages 10, 13, 19). Compensation for gravita-

tional forces have also been calculated for arbitrary orientation of the de-

vice (page 22) as have the torques required to move a load carried at the tip

of link 3 (page 25). Finally, compensation for gravitational forces on this

extra load were considered (page 26).

The same calculations were then repeated for a device with offsets

(pages 10, 29, 34, 35).
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