- AD=ADS5 597

UNCLASSIFIED

e

DEFENSE SYSTEMS MANAGEMENT SCHOOL FORT EELVOIR VA
ESTIMATING COMPUTER SOFTWARE DEVELOPMENT gOSTS. (U)
1975 A W ANDRES

DEFENSE SYSTEMS

N
\
g MANHG€N€NT SCHOOL
) o

@ PROGRAM MANAGEMENT COURSE
~ INDINIDUAL STUDY PROGRAM

—

ESTIGATING CMPUTER SOFTWARE DEVELOPHENT
COSTS

STUDY REPORT l
PMC 75-1

S ALBERT W. ANDRES
GS-13 DNC

S e T

FORT BELNOIR, NIRGINIA 22060

DISTRIBUTION STATEMENT A
Approved for public release;
Ristribution Unlimited

FOR FURTHER TRAN 7022 %¢ @

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BN O LT
| REFORT NUWMBER 3. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER |

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ESTIMATING COMPUTER SOFTWARE
DEVELOPMENT COSTS Study Project Report 75-1
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)
ALBERT W. ANDRES

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::(E)(ASR‘AO'IOERLKE‘MJErT.NPUR“OBJEESST, TASK
DEFENSE SYSTEMS MANAGEMENT COLLEGE
FT. BELVOIR, VA 22060
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DEFENSE SYSTEMS MANAGMENT | 1975-1
COLLEGE, FT. BELVOIR, VA I SONB RO BN
67

T4, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office} 15. SECURITY CLASS. (of this report)

UNLIMITED UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

UNLIMITED DISTRIBUTION 777+ " = . |

Approved for pii il - o Ly
Distribution Urnl'niicd

-——ae -v—

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

SEE ATTACHED SHEET

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

SEE ATTACHED SHEET

rl 20. ABSTRACT (Couatfaue en reverse side if necoesary and identify by block number)

FORM
DD ' ax 7 I3 EO1miON OF 1 NOV 68 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wiren Data Entered)

s g 40 e - i

DEFENSE SYSTEMS MANAGEMENT SCHOOL

STUDY TITLE: ESTIMATING COMPUTER SOFTWARE DEVELOPMENT COSTS

STUDY PROJECT GOALS:

To identify, define, and evaluate techniques for estimating computer soft-
ware development costse.

Demonstrate how these techniques apply to estimating in the DOD Program
Office.

STUDY REPORT ABSTRACT

The purpose of this study progect was to increase the reader's knowledge of
computer software development cost estimating. The reasons for the high cost

.of computer software and poor computer software estimates are discussed,

Existing estimating techniques and rules of thumb are presented and their
applicability to cost estimating mlnlcomputer software development- in the
Program Office is considereds

.'The conclusion is that there is no technique that will give an accurate esti-

mate for all situations. A large number of factors that affect the cost of
computer software development have been identified. Therefore, it is manda-
tory that the estimator have the best possible handle on the most important
of these factors.

The most significant recommendation that this report makes is that the Pro-
gram Office establish data bases from which estimates can be made by
parametric methods,

This report has implications for anyone involved in the procurement of com-

puter software. - p—
' . ARERN v

m
[] Suff Section [
WARNOUNCED o
JUSTIFICAVION. ..o

DISTRIBYTION /AVAILABILITY CODES |
— AVAIL and/or SPECIAU

{

|
|

A L’u&l
NAME, RANK, SERVICE A CLASS

Albert W. Andres, GS-13, DNC PMC 75-1 May 1975

Al o

e

- . e "

ESTIMATING COMPUTER SOFIWARE DEVELOPMENT
COSTS

STUDY REPORT

Presented to the Faculty
of the
Defense Systems Management School
in Partial Fulfillment of the
Program Management Course
Class 75-1

by
Albert W. Andres

GS-13 DNC

This study represents the views, conslusions and recommendations
of the author and does not necessarily reflect the official opinion

of the Defense Systems Management School nor the Department of Defense.

AT AL, < 531 5 i i

S,

EXECUTIVE SUMMARY

The purp;se of this study project was to increase the reader's
knowledge of computer software development cost estimating. Its specific
goals were: 1) to identify, define, and evaluate techniques for estimating
computer software development costs, 2) to demonstrate how these techniques
apply to estimating in the DOD Program Office. Emphasis was placed on
minicomputer softwaree.

This study area is important because DOD computer software involves
billions of dollars each year and a large percentage of cost growth is
because of poor cost estimatinge

For background, the reasons for the high cost of computer software
and poor computer software estimating were investigated. Existing
estimating techniques and rules of thumb were considered. Although certain
trends can be established, there is no technigue that will give an accurate
estimate for all situations. There are many factors that affect the cost
of computer software development. Unless the estimator has a very good
handle on most of these factors as they relate to the proposed programming
effort his estimate will be a poor one.

Only a ball park estimate can be made without a good historical
data base to work from. The primary recommendation of this study is that
the Program Office make an intensive effort to establish a data base which
is broken dovmn into #s many cost contributing factors as possiblee.

This report should be useful to anyone involved in the procurement

of computer software.

i.
b
i
F
I
!

TR ey

A P T BT I

R T

e]
g

ACKNOWLEDGEMENTS
I wish to express my appreciation to Ed Rappe of the Defense System
Management School and Ray LeSage of the Naval Electronic Systems Command

for their constructive criticisum.

iv

Executive Surmary ii 1

Acknowledgements : iv
I. Introdution ' 1
II. Review of Present Situation 9
III. Data Collection Method 1
L IV. Reasons for High Software Costs 12
V. Reasons for Pooz; Cost Estimates for Computer 16 i
Software Development ';
VI. The Cost Estimate 18
VII. Conclusions and Recommendations 37
Bibliograghy 39 1
Appendix - Glossary of Digital Computer Terms A-1 i

e ——

g

v
sl i L e

g

Figure

1.

2.
3
L.
5.

6.

Te

8.

9e

10,

1.

LIST OF ILLUSTRATIONS

Comparison of Programmable Calculator,

Minicomputer, and Midicomputer Characteristics
Computer Programming Project Cycle

Hardware Strains Cause Major Softvarg Impact

System Development: Reliability of Estimates
Computer Programming Productivity in Instructions
per Manhour

Marmonths Verses Program Size for Eleven Large-Scale
Programs

Computer Software Documentation Productivity
Information

Relation of Documentation Cost to Total Project Cost
Computer Time for Programming

Software Development Cost Breakdown, Tasks as a
Percent of Total Effort

Krauss's Values for Imput Variables

Page

13
19

22

27

=1

s 3

I. INTRODUCTION
Purpose
The purpose of this study project was to increase the reader's
knowledge of computer software development cost estimating. Its
specific goals were: 1) to identify, define, and evaluate technigues
for estimating computer software development costs, 2) to demonstrate
how these techniques apply to estimating in the DOD Program Office.

Emphasis was placed on minicomputer software.

Scope and Limitations

Because of the increasing use of minicomputers in the Department of
Defense, this paper will address cost estimating of minicomputer

software development in particular.

Important Terms

Minicomputer

What is a minicomputer? Figure 1 shows a comparison of programmable
calculator, midicomputer, and minicomputer nominal characteristics.
An expansion of the minicomputer characteristics is presented below.
Processor . ‘
Usually sincle address, 8 to 18 bit word size (usually 12 or 16).
Memory
Usually core, 600 nanosecond to 1 microsecond cycle times, 102l

to 32,7¢3 words (some memories can be expanded to 131,072 words).

S

A

Programmable Midi or Small
Characteristics Calculator Minicomputer Computer
Maximum memory 100 32,000 256,000
word size
Maximum number of 64 18 24
bits per word i
Higher-level Hardware: Software: Software:
language BASIC FORTRAN FORTRAN
BASIC BASIC
ALGOL ALGOL
RPG RPG
COBOL
Function Dedicated General-Purpose Genergl-purpose
Display Built-in E xternal peripherals E xternal
1/0, and - peripherals
recording 5
devices
Speed Slow Fast Fast
Programming Manually from Assembly or higher- Higher-level
integral keyhoard level language language
Required user None Extensive Limited
knowledge of
machine-level
operation
Applications Dedicated Limited time sharing | Simultaneous
program solving Problem solving lin3i10d time
Limited data Data Acquisition sharing and
acquisition Process Control batch proces-
Peripheral Control sing
: Multiprogramming
Data acquisition
Process control
Extensive
problem solving
Cost Very low Low High
Figure 1., Comparison of programmable calculator, 1
minicerputer, and midicomputer cheracteristics (1:18)1 '

1This notation will be used throughout the report for major references.
The first number is the source listed in the bibliography. The second
rnumber is the page in the reference.

e P LS e R

KRN EI LT

Input/Output
Flexible

Software

Software for miniccmputer systems can be divided into several

classes: (2:10)

1.

2.

L.

Program development software needed by the user to develop

his programs for particular applications. Consists of editors,
assemblers, debugging and utility routines, and one or several
compilers such a BASIC or FCRTRAN.

Input/Output software routines for the system hardware and
peripherals, These packages are generally defined by the
characteristics of the respective hardware.

Operating system software, also called the executive or system
monitor, controls the operation of the minicomputer system.
Applications software, which is related to the task that the
system is to perform and which is therefore unique to the

particular system.

Periperals

Card readers, paper tape readers, line printers, interactive

terminals (keyboard/printer or keyboard/display), magnetic tape units,

disk and drum memories,

Physical Size

The

typical mini weighs less than 200 1lbs., occupies less than

L cubic feet, and is very undisconcerted by reasonable power or heat

variations,

(2:3-L)

T —————

T e e

Cost
Commercial minicomputers cost less than $20,uU00 and often much
less depending on the capability required. The price of the Navy standard
minicomputer (AN/UYK-20) is in the $30,000 to $40,000 range depending on
the needed capability.

Computer Software Development Life Cycle

The steps making up the computer programming process, or project
cycle, are assumed to be as defined by Nelson (3). See Figure 2. The
six steps are:

Preliminary Planning and Cost Evaluation

This activity ccnsists of the economic feasibility study for the
proposed program. Based on a statement of the user's requirements, ;
an estimate is made of the mampower, elapsed time, or other resources
required for the project. Using these estimates, a summary project
plan and a cost verses benifits comparison are prepared.

Information Processing System Analysis and Design

The process of determining the detailed requirements for improved
information processing and planning of a system, plus a set of
computer programs capable of fulfilling them, is devided into two

parts--System Analysis and System Design. The first part, the

analysis {sometimes called problem formulation), consists of
investigating the particular informaticn processing problem that may
be solved by new or improved automatic data processing methods;the

second design consists of attempts to devise a satisfactory solution

3SVE viva °Z

(9:€) oToLy g09foxd Sumumeasoxy Jeqnduon

SNOILYD NOILVYNIVA3

NONVLINIW =141234$ 150D 2
-N20a ¥3sn W3LSAS *d1¥ds3a
W31SAS °1 a3viag 193r0%d °t

*2 2andtg

¢ 1531

NOIS3a

: 300> v
IONVNILINIVW NOLLV¥OIINI NOI53a
WYIO0ud WILSAS WVIO0ud i
BWINEWOD NOILYWIONI ¥ILNIWOD

NOILYNTIVA3

AYVNIWITIY

150 ANV
ONINNYY

e

N NG N A
'

to the data processing requirements involved., In the broadest
sense, the problem and its solution may involve the design of a
far-flung network including communications displays, data equipment
for sensors or missiles, computer operating procedures, and computer
programs. In its narrowest sense, Analysis and Design work as part
of computer programming may only include the design of a change to
a computer program in an existing system.

Generally, the mission of the analyzing and synthesizing
process is to devise the most effective and efficient organization
of system components including computer program functions and
elements possible within the constraints of available manpower,
funds, and time, to perform the recquired information processing
functions, 1Ideally, this selection of a solution should be made
on the basis of cost/benefit comparison of feasible alternatives.

Computer Program Design, Code, and Test

This activity covers all work necessary to produce the computer
program end product in accordance withv the detailed Specificatiqn
of requirements for the computer program including design, code,
test (debug) and documentation work for the entire program 'as well
subprograms (runs, segments, individual programs).

Information Processing System Integration Test

This activity covers all work necessary to test the performance
of the computer program within the total system at the operational

facility under realistic ("live") operating conditions.

e &

Information Processing System Installation and Turnover

The purpose of the turnover step is to help the user demonstrate,
at his own operational site, that the computer pro:ram system will :
operate as specified, and to support the user with documentation,
advice, and fuidance, and troubleshooting during the initial period
of system operation.

Computer Program Maintenance

Computer program maintenance is the process of improving,
changing, and correcting ccmputer programs in an informaticn system
that is currently operaticnal.

Program maintenance, including both revisicns and error
corrcctions, is needed throughout the life of the information system.
Revisions are needed because operaticnal requirements are continually
changing during both the development and cperation of the system.
Although operaticnal needs are projected during requirements analysis,
in most cases thay can te neither totally defined nor totally
implemented in the imposed time schedules. Also, corrections must
usually be made to the computer programs because errors snd operational
deficiencies not detected in the routine testing of the programs are
usually discovered when the system becomes operstional.

Since the need for improvement and suprort activities for the
informaticn system tends to be amorphous, system maintenance is often
funded at a level the user can afford or is willing to spend rather
than the level precisely rccuired. HMuch of the work of program

maintenance personnel must be devoted to the resclution of emergencies

|
B ——
IR oS — Tt

s B

;
¢
:

and to modifications required by hard-to-predict envirommental changes.

Organization of the Report

In the analysis of minicomputer software development cost estimating,
reasons for high software costs and poor estimates will be considered.
Lkxisting methods of computer software estimating will be evaluated to

determine applicability to estimating in the DOD Program Office.

S A A £ M SR i B

II. REVIEW OF PRESENT SITUATION
The purpose of this section is to document the importance and the

present status of camputer software development cost estimating.

Sources of Cost Growth

In this age of highly complex equipment and continuing pressure
to incorperate technology pushing the "state of the art" overruns in
both cost and development time are more the rule than the exception. (L:lk)
The experiences of more than 30 major programs over an extended period of
time give some indication of the problems of cost growth most likely
to beset new programs. These program histories show that the factors
contribﬁting to cost growth and their approximate impact were:

1. Changes in Cost Estimates-refinements of the base program

estimate-accounted for L0 percent of the total cost growthe

2. Engineering Changes-alterations in physical or functional
characteristics-20 percent.

3. Schedule Changes-changes in delivery schedules or program

milestones-15 percent.
Li.. Economic Changes-escalation adjustments in contracts and
other changes in the purchasing power of the dollar-10 percent.
5. Support Changes-changes in spare varts, training, testing, and
other susport requirements-7 percent.
A variety of other items made up the balance of some 8 percent of
the total cost growth in these programs. (5:39)

High Cost of Computer Software

Estimates of current Air Force annual expenditures on software are
9

PN

R " VIR SER P

it s o o i i i il o

L T R

P ———————

between $1 billion cnd $l.5 billion, compared to $300 to $400 million
per year on computer hardware. (6:4) The total DOD expenditure would
therefore be quite substantial,

The concern of the Air Force about computer software costs for
weapons systems is documented by their Project Ace progress reports.
(7:69,93)

The combination of changes in cost estimales being a large percentage
of the total DOD program cost growth and the high cost of computer
software, make computer software cost estimating an inviting subject.

Minicomputer Trend

Minicomputers are becoming serious campetiticn for the large
computers. Several minis put together can outperform a large computer
at a fraction of the hardware cost. (8:11) The number of minicomputers
available is rising rapidly; as prices continue to decline, an increasingly
greater number of applications are discovered. Assuming a healthy
economic climate the market should sustain 30-LO¥ growth rate over the
next few years. (2:3-1) DOD will be a contributor to this growth rate.

Estimating Difficulty

It is extremely difficult to estimate the time and effort necessary
to produce a computer software package. This difficulty stems from a
poor understanding of the production process, the number of disparate
factors affecting program complexity, and the limited ability of human
decision-makers to assimilate and effectively weigh these factors.
Studies concerning software estimation have identified at least 90

factors that affect the overall cost of computer program development. (9:v)

10

III. DATA COLLECTICN METHOD

To

determine what computer software estimating techniques and rules

of thumb are in use today, the following sources were used.

1.
2.

-f 3.

L.
Se

6.
Te

paper.

Defense Documentation Center computer search.

Review of current civilian literature,

Interviews with representatives of DOD Program Offices utilizing
minicomputers as a subsystem.

Interviews with computer software consultants.

Questionaire response/interview with contractors involved in
programming minicomputers.

Interviews with minicomputer manufacturer's representatives,
Interviews with representatives of a DOD office that procures

minicomputers and associated software.

Because of the relative newness of the minicomputer most of the data
% obtained was related to large programming efforts. However even the
large program information is considered to be relevant to the study of
the minicomputer problem in that trends can be shown by looking at the

overall problem. This will be demonstrated in later secticns of this

R R = v

IV. REASONS FOR HIGH SOFTWARE COSTS

As stated in Section II, computer software is expensive. The
purpose of this section is to present some of the reasons for the higher
than expected costs. Depending on the circumstances, cost may be rcduced
by attacking the causece.

Poor Cost Estimates

An over optimistic estimate is probably the largest factor in the
computer software surprise costs,

Femory Size Constraints

When a programmer gets into a situation where he has to be concerned
with computer memory size the programming cost will increase. This is
shown grachically in Figure 3. When the computer's capacity is pushed,
machine language must be used instead of high-level languages such as
FORTRAN; several elements of data must be packed into a single machine
word, and many tricky programming shortcuts must be employed. This
makes the program more difficult to check out and modify as Vell as more
difficult to write.

Overall system cost is generally minimized by procuring computer
hardware with at least 50 percent to 100 percent more capacity than is
absolutely necessary., The more the ratio of software-to-hardware cost
increases (as it will markedly during the 1970's and 1980's), the more
excess computing capacity one shculd procure to minimize the total coste
It is far more risky to err by procuriﬁé a computer that is too small than
one that is too large. This is especially important since the initial
sizing of the data-processing job often tends to underestimate its magni-
tude. (10:49) Memory size constraints are particularly relevent to mini-

computers because the memory is small.
12

——

® &
- <
L
<
4
i] 1
g3
7}
E EXPERIENCE
B
z
#
&
8 ;
o 2
z
S
s
<
- 4
3
3
W
> —
.-: — — — =
3 ’
Er o
FOLKLORE
0 | 1 1
) % S0 % 100]
UTILIZATION OF SPEED AND MEMORY CAPACITY — percent
HARDWARE STRAINS CAUSE MAJOR SOFTWARE IMPACT (10:47)
LY (Effect of hardware speed and memory size constraints on the relative cost of software)
-8 Figure 3.
|
13

Change in Requirement

A fantastic increace in a weapcns system capability is obtained when
computer control/analysis is added. VWhen the user sees this increased
capability he may want more. Also, in many apnlications a hardvware/seft-.
ware trade off exists. The hardware design is frozen relatively early
in the development phase, presenting a tempting opticn to change software
requirements in order to meet changing operational recuirements or hard-
ware deficiencies.

Hardware/Software Incompatibility

There is much waste in programming and computing, resulting from poor
matching of software and hardware. Also, poorly designed primitive
fupctions in hardware require repeated costly and error-inducing program-
ming of basic computational functions. (11:l)

Indirect Costs

Software is often a critical component in large system:. Consequentiy,
overruns in delivery time or serious flaws in quality can have hidden
system costs that far exceed the software costs, however high they may
be. (11:1)

Inadecuate Functicnal Snecification .

Because of eagerness to get things moving the Govermment is susceptible
to providing, and the qontractor accepting, a functional specif¥cation
that is not adequate. Accordingly, the contractor estimates log, a
commitment is made and we are underway toward a votential overrun situat-
ion. The Programm Office and the contractor must have a clear and

documented understanding of the user'!s requirement.

— — — ————

L, TATNIA A

Production Demands

Progress in software technology has been very slow, but demands for
software production are increasing in volume and complexity. Such demands
have clearly outstripped the technology, with very costly results. Pro-
duction of new software products suffers great overruns in cost and
delivery time, and quality is often deficient, in correctness, modifiabil-
ity, and transferability. The maintenance costs for old software products
may be an order of magnitude larger than production cost, due to poor
original design and production. (11:1)

Variations in Programmer Efficiency

The differences in computer programmer productivity can vary as much
as 26:1 between individuals. (12:52) - Higher than expected costs will
result if estimates are made assuming that a highly efficient programmer

.

will do the work but a very inefficient programmer actual does ite

‘o

V. REASCNS FOR PCOR COST ESTINMATES FOR CUMPUTER SOFTWARE DAVELOPMZNT

Almost everyone in a software development mana-ement position is

aware that a large percentage of estimates are yoor, but vrobably not

many are aware of the reasons why. This section will present scme of

the reasons.

Keider (13:53) reports the following reasons for poor computer

software develovment estimates.

1.

2.

3.

L.

Se

No standards exist for estimating how lcng the project

will take. That is, each project is treated as a new znd
novel system with some individual responsible for estimation.
His estimate will be based upcn his own understanding of

the vroject and its tasks, and on how cuickly he can
accomplish the subtasks. Little use is made of a history
file of similar projects and actual versus originally
estimated times.

Estimation is not dcne by the probable project leader, but
rather, by whoever happens to be available at estimating time.

The rroject is not adecuately defined. The request for an
estimate usually t-kes the form of "John, iwe're planning

to redo the payroll system. What do you think it will
require?" '"Payroll" may mean a number of different things
to different people. Does it involve labor distribution?
Personnel information? leave accounting? salary, hcurly and
executive payroll? Any of the above can measurably impact
the estimate of the project.

Short lead times are allowed for estimates, with corresponding
inaccuracy as a result.

Xnowledge of "tools" to perform the project more efficiently
is lacking. Are there modules, or subroutines already
available which can be used? Is there a test data generator
available? What about system design or docw:entation aids?

Definition of the project is vague, misleading, or totally
wrong.

16

BPRpo

Use of Nonrelevant Historical Data

The experience of many program managers is that the number of
instructions is often grossly underestimated except when very similar
programs can be used for comparison. (1h:242) As will be shown later in
this report, there are numerous variable factors that impact software
productivity, These factors must be compared in detail between the
programs on which the historical data is based and the program that is

; being estimnted.

17

PN S R S e

VI. THE COST ESTIMATE

The purpose of the section is to analyze existing computer software
cost estimating data, equations, and rules of thumb to determine their
aprlicability to DOD minicomputer softwvaree.

The computer software estimating effort can be assumed to consist
of three steps.

1. Determining the scope (or number of instructions in the
proposed program) and complexity from a functional or
design svecification,

2. Converting the number of instructions into quantity of
resourees required in programmer man months, computer
time etc.

3. Converting the effort into dollars,

Step 1 - Determine the Scope

As a lead-in to this step the DOD Program Office should assure that
the best possible functicnal specification exists, and it is even desirable
to have a detailed design specification. The Computer Program Performance
Specification and Computer Program Design Specification should be con-
tracted for deparate from the actual programming effort. The more that is
knovn, the better the estimate should be. Figure L was prepared with the
assumption that at each project stage, estimates are made for all of the
successor stages. The preliminary analysis stage in Figure L can be equa-
ted to the prelirinary planning and cost evaluation st:ge described in
Section I. Assuming that the datz in Figure L4 has some validity, it is
apparent that the results of estimating in the early stages should be
handled with caution.

)

18

Preliminary Systems

PROJECT STAGLS et Analysis Programming Operating
Initial Approval +5% +25-50% _10+100% -
Preliminary

Analysis - #15-25% +50_100% _10+100%
Systems Analysis - - +20_25% +50_1003
Programming - - - +10%

Figure L. System Development: Reliability of Estimates for Successive

Project Stages. (15:3-01-0L)

Determining the size and complexity of a new program is considered
by many to be black magice To assure a reasonable degree of success in this
task the following course of action should be taken.

l. Obtain the best possible estimator or estimating team.

2. The estimator should get a thorough understanding of the
performance specification.

3. Identify existing programs which may be similar in function,
size, and complexity to the program teing estimated.

Lhe After a though comparison of the new and existing programs to
insure that a good understanding of the similarities and dif-
ferences exists, a scaling operation can take place. Because
of the number of variables which impact the scope of the job,
close attention must be given' to the differences beiween the

existing and new programs and compensate for those difterences.

19

T S S ——r T ¥

r—

The key is to obtain programs that are as similar as possible to

the new program.

7

Step 2 - Determine Resources Required

This step can be initiated after the basic scope of the nroposed
program has been determined. That is, the estimated number of instructions
in the program and complexity have been established.

With the number of instructions as a stafting point an estimate of
re ources required can be accormplished by parametric methods. Parametric
estimates are determined by relationships between historical costs and
physical and/or performance characteristicse

In an attempt to determine what minicomputer software programming
rates can be expected Figure 5 was generated. A quick look at the data
indicates large variations in the various rules of thumb. A closer look
shows that certain trends exist,

Both the Aron and Nanus/Farr data show a large variation in program-
ming productivity with variations in the size of the program. Figure 6
indicates an exponential rate of increase in man months of effort re-
quired verses the size of the program. Aron's data gives us one reason
for this trend. The larger the program, the greater the number of
programmers required, therefore more interactions are required. The
greater the number of interactions, the poorer the efficiency. This
theory is supported by Brooks. (16)

The interactions between progremmers should be minimized on mini-
computer programming efforts. Because of the small programs, typiczally
only one to three programmers would be involved. Therefore, it is assumed

that a nearly linear relaticnship exists between the programming effort

20

—

e

Min Max Mean Comments

Nanus/Farr (1L:242) 238 5.95 L.16 small programs (less than
10,000 instructions)
1.19 L.rge programs

AN/UYK-7 Report (17:BL) 1.L46

Wood (18:152) .83

CCIP-85 (6:12) 1.25 assumes large programs
Aron (16:L9) .74 many interactions

2.148 scme interactions
k.96 very few interactions

Fleishman (19) L9 L3.15 L.89 scientific application,
program sample-27
.15 82.67 9.05 business application,
program sample-79
.06 U43.15 3,63 machine oriented language,
63 82,67 11,76 procedure oriented language,

Bell Labs (16:49) «255 complex, 52,000 word program,
83 programmers
.313 complex, 51,000 word progrem,
60 programmers
1.10 less complex, 38,000 word
program, 9 programers
1.13 less complex, 25,000 word
program, 13 programmers

Corbate (20:115) «60 large program, high level

language
Company A .89 medium to low risk

o7l high risk

Company B o5 assembly language, highly
technical/real time program,
good programmers

Company C 2.25 21,000 instructions, FORTRAN=-
5,000 Assy-16,000

Company D 1.0

Company E 1.27 no documentation, 7,500
instructions, assembly

Company F o7l real time, executive

program, assembly language
99 non real time
1.9 modified program
Figure 5. Computer Programming Productivity in Instructions per lianhour.

2

Ay Y

Man-months

8,000
7,000
6,090
5,000
4,000
3,000
2,000

1,000

et S g

Incomplete

-

s

100 200 300 400 500 600 700
" Thousands of machine instructions

Figure 6, Manmonths Versus Program Size for Eleven Large-Scale
Programs (1l:242)

22

required and the size of the program for a minicomputer program.

The Fleishman data was included in Figure 5 to show the general large
variations in programming efficiency. This data does show the expected
trend in efficiency improvement in going from machine oriented language
to procedure oriented language, and the decrease in efficiency in going
from a business application to a scientific application.

The Figure 5 data labeled Company A through F was obtained from
goverment contractors for minicomputer software development. Thic data
was obtained informally rather than by audits. The approximate average
of one instruction per man hour is lower than might be expected, however
the data does include the effort required for documentation (except
company E) and much of the.programming was in assembly language.

The conclusions that can be made from Figure S5 are:

1. Certain productivity trends can be identified.

2s Productivity rates are dependent on many variables,
therefore no one productivity rate can be used as a rule :
of thumb for accurate estimating.

3. Ball Park estimates can be made for minicomputer software
development by using a one instruction per man hour pro-
ductivity rate. This estimate must be refined of course,
if such things as type of language to be used, complexity,
and individual programmer efficiency are known.

Documentation

The effort required to document computer software is included in the
total effort of Figure 5, but because the level of documentation desired
may range from full MilSpec (such as in accordance with Weapons Specifica-
tion 1S-8506 and DOD Manual L120,17<M) to back of the envelope notes, it

23

should be considered separately.

Sof'tware documentation is one of the biggest "hidden costs" in
generating softuare systems. When it is produced in quantity, it rarely
fulfills its functions, and when it is omitted as a cost-saving measure,
the orzanization pays for the some software oroblem to be solved cver and
over. (21:80)

Figure 7 presents the computer software productivity data collected.
Nelson's data indicates the expected trend of a higher documentation
cost for a more complex scientific program. Because the large variations
in the data are so large and little justification was provided by the
sources no other trends can be identified.

Figure 8 shows the theoretical relationship of varying documentation
costs to total project cost and hypothesizes an optimum documentation
level.

Computer Time

The computer time required is another factor that must be considered
in the total software development cost. Figure 9 presents the data
collected in this area. This data varies widely also., However, two
expected trends are indicated. Greater computer time is required for
complex programs using machine oriented language as opposed to simple
programs using procedure orientened language.

Indirect costs can be incurred if an inefficient computer operation
is used. For example, a programmer may have to wait around for hours or
days to get a computer printout that he needs to move to the next step.
Inefficicncies may also result if programmer man hours is traded off for

computer time. That is where desk checking may be more efficient, the

2

——

UOT}RuLIOJUT ATATIONPOI] UOTHBUSUMOO] aJemiyos Joqnduwog) eandty

q1033e *3oad Teq0% Jo %02

a
q103F° *8oad Teq0} Jo ¥S2 0
fep ueu T 0S g
9058~SM MVI s°L y Auweduoy
weaSoxd e8xeT ‘L9TTTAN : 14114
uea8oad 98xeT ‘OTITIUSTOS L6°€ Q
urexdoad e@3xeT ‘ssaursnq 99°9 (g9:€) uwosTaN
00T=-g8¢ (2€T:02) UpIoN
UOT}e3Usumoop JO SpPJIEpUE]S
pue ‘*3oad yo adfq ‘azTs :
*3oad 09 emp uoTjeTIEA O0OT$-0L$ 00T$-0L$ ST-0T (1ST:8T) Poopm
*3oxd eTeds adxer G uo 0s (€M2:MT) dxed/suuey
aded xad eded aad 8ded xod

SquaUO) aomnpoay 94eJ8UdN 03 380D SUOT4ONIFSUT
03 380D

DocumentaTION - {-

Cost

Too MucH DOCUMENTATION
OPTIMUM
DOCUMENTATION
Cost Too L1TTLE DOCUMENTATION
0 SMALL PROJECT LaRGE PROJECT

ToraL ProvecT CosT

RELATION- OF DOCUMENTATION COST TO TOTAL PROJECT COST (16:155)

Figu.re 80

Surumres8oxg Joy ewT] J2qnduwoy °4 SINITJ

3oo1q qMOoNo3Yd MW/IY T
yoqeq qnOoNoaYd NIy} 3uTpod Wi/IY T

suea8oad adaeT

J0F ATTeTquauodxa S8seaqoutT " " 1t
sureagoad e3JeT " " cl

" n on

aFen3ueT poqueTao aampadoxd " " 9€
oSen3ue pequUITIO SUTYOBU " " 80T
uotqeoTTdde sssutsnq " " €n
uotqeoTTdde OTJTRUSTOS UOT39NI4SUT/SPU0das 19

SqUBUIIOY surp) Jo9nduon

y Aweduio)

(€M 1r) red/snueN
(€1:22) U0IaATON

(26T:9T) POoM

(ST:6T) weuysTTd

27

programmer keeps putting the program in the computer with only small

changes without thinking the problem out. This can be particularly costly
to the government if it is furnishing the computer time.
Task Breakdown

Figure 10 shows a breakdown of software development cost for tasks
as a percent of the total programming effort. This figure was included to
provide the rcader with a feel for the relative effort normally required
for testing of the program. This knowledge would seem to be particularly
valuable when reviewing a contractors proposed defelopment schedule., If
he has allowed only 10 of this total effort for testing, we have a high
probability for a schedule/cost growth,.

Software EstimatingﬁEqpaﬁions

Numerous equation using methods for estimating computer software develop-
ment costs exist. The Krauss Method (24:100) is summarized and evaluated
by Morin. (20:22)

Krauss describes a method for estimating programming time that he says
he has found to be fairly accurate. The method is designed for use in
application programming projects, particularily business programming pro-
jects, with no restrictions as to the size of the programs. Encompassed
in the estimate of programming time is the time required for the program-
ming tasks of designing, coding, testing, and cocumenting. The method is
to be applied subsequent to the completion of the system design activity.

When applying this method, the estimator must use his judgment,
experience, and knowledge to determine as accurately as rossible the
following five factors:

1. Size-the estimated number of computer instructions or the total
storage requirements for absolute code.

2. Complexity-an indicator based upon logic and variations in
processing.

3. Input/Output-the number and the kinds of devices to be controlled
by the program.

L. Programming Language-the language to be used to code.

Se Programmer Know-How-an indicator of orogrammer experience.

JOTqURSSY

J8podojny
xaTdwon
a3eaaAy

aTdurrg

SqUdULIOY

R |

#0T

%02+
$GC+

P9t
%2 g1
40T

o
2

/g2
FET

202
%02
05
#05
$0€
%Ot

£6°91
76°6€
£33
25°ME
205
281
419

2
2L
%05
2L

zsh

UOTgBIUBUMDO(] 3utysay,

2n°6¢
%0€
#Le
%11

g€

2'e
#LT

%0e

8utpop

3]
%05
%0€
233
25€
40€

geelL
$6°TL
40€

249

o/

%0t
26¢€

gat

udtsog pue
stsATeuy

*qI07F9 Teq0] JO Juedasd e se syse] ‘umopieaag 450) jusudorercg sIem3yos °*OT SIn3TJ

<MOAMMK

dnoxn 9say

uopuexg
vou
LoweTa(q

(293€2) ueasuuay-utrrsopr

A NUNLVS
INTIHHD
SLIN
Jovs

(6€30T) S@=dI0D

(61T:9T) Poonm

29

Krauss constructed tables which can be used to determine values for
the above five factors. See Figure 11 for a list of values for each factor.
Krauss developed a formula which used thes factors to estimate the number
of man-days required to nrograme. The formula is:

Unadjusted Estimate (in man-days) =

(Estimated Size Valus x Complexity Value) + Input/Output Values.
Programming Language Value

To account for individual differences, the following formula is applied:

Adjusted Estimate =

Programmer Know-How Allowance x Unadjusted Estimate.

Krauss added two caveats to the use of his formula.

1. If a program consists of a number of modules which are either
written by different types of programmers, or vary in complexity,
each module must be estimated separately.

2. Because his formula does not take into account the time that
may be consumed in nonprogramming activities such as vacations,
holidays, administrative duties, training, campany meetings,
presentations to management, etc., he suggests the use of an
overall loss factor of 20 to 30 percent for such activities.

The Krauss lMethod's major flaw is its dependence on the estimator's
ability to predict the size and complexity of the programs. Even though
the value range for these two factors is relatively broad, it has been my
exoerience that most estimators have difficulty predicting project size
within 5,000 instructions of the actual program size before coding takes
place. The values for programming size in Figure 11 also assume a linear
relationship between effort, There is significant evidence that such
linearity does not exist for programming systems. As a result of the
assumption of lineerity by Krauss, no size limitation was placed on the
programs to which this method could be applied. However, I believe that
the Krauss Method would be increasingly inaccurate as the programs increase
in size.

On the surface Krauss's equation looks promising for use in the DOD
Program Office, but lets look to see what happens when values that could

be expected on a DOD minicomputer programming effort are assumed.

30

Figure 11,
Krauss'!s Valucs for Input Variables
Estimated Size Value Range
1,000 - 5,000 1~ 5
6,000 - 10,000 6 - 10
11,000 - 15,000 11 - 15
96,000 - 100,000 96 - 100
Complexdity Rating Value e
Low difficulty Y 40
Intermediate difficulty 3= 6
Average difficulty T =2
Above average difficulty 13 - 19
Very high difficulty 20 - 30
Experimental 31 - S0
Kind of Input/Output Device Value
Card Reader 1
Card Punch 2
Printer L
Console typeuriter L
Paper tape 6
Magnetic tape 8
Disk 10
Data cell 12
Drum 12
Optical or MICR reader 15
Typevriter terminal 15
Graphic terminal 15
Audio terminal 15
Film scanner 16
Programming Language g Value
Absolute 2
Assembler S
CCBOL 7
PL/1 7
PG 9
FORTRAN 10
Programmer Know-How Allowance Range
Senior Programmer 0.6 - 1,0
Programmer 0.9 - 1.k
Associate Programmer 1.2 = 1.6
Junior Programmer 1.k - 1.8
Trainee Programmer 1.7 - 5.0

Assumed Values:
Estimated Program Size - 5,000 Instructions, Value = 5
Complexity Rating - Very High Difficulty, Value = 30
Kind of Input/Output Device - Console Typewriter/Printer, Value = L
Programming Language - FORTRAN, Value = 10
Programmer Know How - Programmer, Value = 1
Loss Factor - 30%

Calculation:
Unadjusted Estimate (in man-days) =

(Estimated Size Value x Complexity Value) + Imput/Output Values
Programming Language Value

2 x 301511 b 15.8 man days

Adjusted Estimate =

Programmer Know How Allowance x Unadjusted Estimate

= 140 x 15,8 man days = 15.8 man days

With a loss factor, the estimate becomes 20,54 man days for 5000
instructions. This is approximately 2L3 instructions per man day, but
does not include the analysis and design tasks efforts. Decreasing this
by LO% (based on Figure 10) to compensate for analysis and design results
in approximately 1L6 instructions per man day. The Krauss Method is

designed for use on bus.ness programming projects. If a 503 reduction in

efficiency is assumed for a scientific program the productivity rate

decreases to 73 instructions per man day, which seems unrealistically high.

32

Because the most significant factors seem to be included in the
Krauss equation I believe it could be used effectively by making adjust-
ments to his input factors and adding factors for camputer time and
documentatione.

Which Method?

This investigation leads me to the following course of action for
determining the resources reaquired for a computer software development
effort,

l. A baseline equation should be established that considers
programming effort, documentation effort and computer time
recuirements, The equation would be established by using
the best possible data base (the déta base that most closely
compares to the new program).

2¢ Refine the baseline equation by collecting and incorporating
historical data.

I don't believe the form of the equation is very important as long
as it meets the criteria above. There are software estimating equations
that are much more complex than Krauss's, but any equation will be use-
less to the Program Office if it is not based on accurate historical data

from programs which are very similar to the one being estimated.

33

I propose the baseline saquation below:
Frogram Development Cost in Dollars =
(Programming iffort) +
(Documentation Effort) «

(Computer Time) +

(other Direct Costs) =

ép ((sp) + (Sp x Op)) +

I

Ip (((Pep) ((Sp) + (Sp x Op))) + (Pp)) +
I (Ti) (Ce) +

(oDc) =

Where:
I = number of instructions in program

Rp = programmer production rate in instructions per hqur

Sp = programmer hourly wage

Op = programmer overhead rate

Ip = estimated number € instructions per page of documentation
Pep = programmer effort per page of documentation (hours)

Pp = production cost per page of documentation (art work, typing, etc.)

Ti = computer time required (minutes per instruction)

Cc = Cost of computer time per minute
Initial values would be plugged into ‘the equation based on the best

information available, and then updated or scaled to different applications

based on an increasing data base.

If the Program Office has many different but similar programming
efforts under contract it seems that a benificial data base could be
obtained rather cuickly. This would seem especially true in the case of
an office that utilizes many minicomputers. I hope that it has been
sufficiently demonstrated earlier in this report how one variable can
throw an estimate completely off, so great care must be taken to determ-
ine the differences between the data base programs and the new program.

Step 3 - Converting the Effort into Dollars

The discussion of actual dollar costs will be limited to presentat-

ion of some tyrical values as inputs to the proposed baseline equation.

%p ((sp) + (Sp x Op)) +

%o (((Pep) ((Sp) + (sp x Op))) + (Pp)) +
I (Ti) (Cc) +

(onc) =

L (($10.00) + ($10.00 x 120%)) +

I0 (((7) (($10,00) + ($10.00 x 120%))) + ($35.00)) +
(Lx 06 X $500°) +
(0nc) =

(I x $22,00) + Eég ; ($15L.00 + $35.00)) (I x $3.00) + (ODC) =
10

$43.90 (I) + (oDC)

35

L

G & A / fee were not included in the equation above. Othgf Direct
Costs cover such things as travel. ;

The values used in the example above are my best estimate of averages
based on my limited research, and of course would have little validity
for application for any specific situation. %ach program must be con-

sidered individually,

VII. CONCLUSIONS AND RECOMMENDATIONS

The poor cost estimate results in a large percentage of the cost
growth on DOD programs. The primary reason for poor estimates for comp-
uter software development is probably the lack of, and difficulty in
establishing standards,

The cost of computer software development will be based on a number
of factors, some of which are listed below.

l. Complexity of the program.

2¢ Efficiency of the programmerse.

3. Size of the program.

Le Computer memory available to the programmers

5. Level of documentation.

6. Quality/type of specification.’

7. Type of language.

In order to make an accurate cost estimate for computer software
development a good historical data base is required. Therefore the pri-
mary recormendation of this report is that the Program Office establish
a data base which is broken down into as many cost contributing factors
as possible, by:

1. Making computer software a separate line item in a software/

hardware contract.

2¢ Require that the contractor provide a Work Breakdown Structure

in accordance with Mil-Std-881 as part of his proposal, and
then report costs against it.

3¢ Annotate the contractors report with information that will

37

better define the effort accomplished, For example, the skill level

of the programmer.

i Additional recommendations for the Program Office:

1. Contract for the Computer Program Performance Specification
and Computer Program Design Specification separate from the
,actual prozramming effort.

2. Develop and update a baseline equation similar to the one

described in section VI,

Recormendation for futher study:
Conduct a thorough search to determine what computer software devel-
opment data bascs exist, and evaluate the success being obtained in

using them in estimatinge

s

1.

2e

3.

Le
5e

6.

.7.
8.

9e

10.

11.

12,

13.

BIBLIOGRAPHY

Weitzman, Cay; Minicomputer Systems, Structure, Implementation,
and Application, Prentice-Hall, Inc., Englewood Cliffs, N.J., 197k.

Burkhaulter, K. E. Jr.; Characteristic Minicomputer Architecture,
Minicomputers II: Hardware, Software and Systems, Professional
Growth in Engineering Seminar, National Engineering Consortium,
Inc., 197k.

Nelson, E. A.; lManagement Handbook for the Estimation of Computer
Programming Costs, Systems Development Corporation, Santa Monica,
California, lMarch 20, 1967.

Melburn, Michael; Toward Full Disclosure of Program Status, The
Federal Accountant, March 19Th.

Logistics Management Institue; Introduction to Military Program
Management; LMI Task €9-28, Washington, D.C., March 1971.

U.S. Air Force; Information Processing/Data Automation Implications
of Air Force Command and Control Reouirements in the 1980's (CCIP-85),
Executive Summary, February 1972.

Air Force Systems Cormmand; Project Ace - Findings and Action Plans -
Progress Report, Andrews AFB, Nov, 1973.

Hanks, Dale; Programming Considerations for Minicomputers, Computers
and People, January 197L.

Farcuhar, J. A.; A Preliminary Inquiry Into the Software Estimating
Process, RM-6271-PR, Rand, Sonta lionica, California, August 1970.

U.S. Air Force; Information Processing/Data Automation Implications
of Air Force Command and Control Requirements in the 1950's (CCIP-05),
Vol. I’ Apﬂi 1972,

Goldberg, Jack, Editor; Proceedings of a Symposium on The High Cost
of Software, Held at the Naval Postgraduate School, Monterery,
California, sept. 17-19 1973, Stanford Research Institute, Penlo
Park, California.

Boehm, B.W.; Software and Its Impact: A Cualitative Assessment,
Datamation, May 1973.

Keider, Stephen P.; Why Projects Fail, Datamation, December 197k

Nanus, B., and Farr, L.; Some Cost Contributions to Large-Scale
Programs, American Federation of Information Frocessing Societies,
IHCQ’ SJCC, 25’ 1%&.

39

et e i o

15.

16.

Data Processing Manual, Auerbach Publishers, 197L.

Brooks, F. Pe; The Mythical Man-Month, Datamation, December 197L.

17. U.S. Navy; Comparison and Summary of AN/UYK-7 Combat System Testing

18,

19.

20.

2.

22.

23.

2l.

(on line and off line) Rev A., Naval Ship Engineering Center,

Hyattsville, Md., July 197L.

Wood, De L.; Data Processing Value Engineering, Society of American
Value Engineering Proceedings, Meeting of May 13-16, 1973.

Fleishman, T.; Current Results From the Analysis of Cost Data for
Computer Programming, Electronic Systems Division, Air Force
Systems Command, L.G. Hanscom Field Bedford, Mass., August 1966.

Morin, Lois He; Estimation of Resources for Computer Programming
Projects, M.S. Thesis, University of North Carolina, Chopel Hill,
197k,

Ridge, Warren J. and Johnson, Leann E.; Effective Management of
Computer Software, Dow Jones-Irwin, Inc., Homewood, Illinois, 1973.

Yolverton, Ray W.; The Cost of Developing Large Scale Software,
Paper prepared for IEEE 1972 International Convention and
Exposition, New York, March 20-23, 1972.

Kennevan, W. J. and Joslin, E. O.; Management and Computer Systems,
College Readings Inc., 1973.

Krauss, Leonard; Administering and Controlling the Company Data
Processing Function, Prentice-Hall, Inc., Englewood, N.J. 1969.

L0

GLOSSARY CF DIGITIAL CCMPUTER TiRNMS (2:A-8)

Absolute - Pertaining to an address fully defined by a memory address
number, or to a progran which contains such addresses (as opposed
to one containing symbolic addresses).

Accumulator - A register in which numbers are totaled, manipulated, or
temporarily svored for transfers to and from memory or external
devices.

Add - Restrictive: ™"two's complement" addition of binary numbers.
General: any arithmetic addition.

Address - (Noun) A number which identifies one location in memory.
Verb) To direct the computer to read a specified memory location
(synonymous with "reference").

Address Modification - A programming technique of changing the address
specified by a memor-reference instruction, so that each time that
particular instruction is executed, it will affect a different
memory location.

Address Word - A computer word which contains only the address of a
memory location.

ALGOL - Algebraic-Oriented Language = An international algebraic
procedural language for a computer programming system.

Algorithm - A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps.

Alphanumeric - Pertaining to a character set that contains both letters
and numerals, and usually other characters.

Alter - A modification of the contents of an accumulator or extend
bit, e.g., clear, complement, cor increment.

"pdd" - A logical overation in which the resultant quantity (or signal)
is true if all of the input values are true, and is false if at
least one of the input values is false.

Argument - 1) A variable or constant which is given in the call of a
subroutine as infcrmation to it. 2) A variable upon whose value
the value of a function depends. 3) The known reference factor
necessary, to find an item in a table or array i.e., the index.

A=l

Arithmetic logic - The circuitry involved in manipulating the information
contained in a computer's accumilators,

Arithmetic Operation - Restrictive: A mathematical operation involving
fundamental arithmetic (addition, subtraction, multiplication, :
division), soecifically excluding logical and shifting operations.
General: any manipulation of numbers,

Array - A set of lists of elements, usually variables or data.

ASCII - An abreviation for American Standard Code for Information
Interchange.

Assemble - To translate from a symbolic program to a binary program by
substituting binary operation codes for symbolic operation codes
and absolute or relocatable addresses for symbolic addresses.

Assembler - A program for a computer which converts a crogram prepared
in symbolic form (i.e., using defined symbols and mnemcnics to
reoresent instructicns, addresses, etc,) to binary machine language.

Assembly Language - The source language used as input to an assembler
and translated by the assembler into machine language.

Auxiliary Storage - Storage that supplements core memory, such as
disk tape.

Background Processing - The automatic execution of a low priority
computer program wvhen higher priority programs are not using the
system resources.

Base - The quantity of different digits used in a particular numbering
system. The base in the binary numbering system is two; thus there
are two digits (0 and 1). In the decimal system (base 10), there
are ten digits (O through 9).

Base Address - A given address from which an absolute address is
erived by combination with a relative address.

Base Page - The lowest numbered page of a computer's memory. It can
e dircctly addressed from any other page.

i AN bt i i el S U

Binary - Denoting the numbering system based on the radix two. Binary
digits ure restricted to the values O and 1.

Binary Coded Decimal = (BCD) - A coding method for representing each
decimal digit (0-9) by specific combinations of four bits. For
example, the 8-4=2-1 bed code commonly used with cormputers represents
"1" as 0001, and "9" as 100l.

Binary Program - A program (or its recording form) in which all

information is in binary machine language.

Bistable - Pertaining to an electronic circuit having two stable
states, controllable by external switching signals, analogous
to an on-off switch.

Bit (b) - A single digit in a binary number, or in the recorded
representation of such a number (by hole punches, magnetic
states, etc). The digit can have one of only two values, Oor 1l.

Bit Density - A physical specification referring to the number of bits
which can be recorded per unit of length or area.

Bit serial - Cne bit at a time, as opposed to bit parallel in which
all bits of a character can be handled similtaneously.

Block - A set of consecutive machine words, characters, or dlgits
T handled as a unit, particularly with reference to I1/0.

Bootstrgg - A technique or device designed to bring itself into a
gesired state by means of its own action, e.g., a routine whose
first few instructions are sufficient to bring the rest of itself
into the computer from an input device.

Branch - A point in a routine where one of two or more choices is made
under control of the routine.

Breakpoint - A point in a computer program at which conditional
interruption is made to permit visual check, printouts, or other

debugging aids.

Buffer - A register used for intermediate storage of information in
T the transfer sequence between the computer's accumulators and a
peripheral device or a designated area of memory used to temporarily
hold data.

Bug - A mistake in the design or implementation of a program resulting
in erroneous results.

Bulk Memory - Storage in addition to the main memory of the computer,
e.C., magnetic tape, disc or drum.

Bus - A major electrical path connecting two or more electrical circuits.

- A group of binary digits usually operated upon as a unit, frecuently
eight b,

Calling Sequence - A specified set of instructions and data necessary
to set up and call a given routine. .

Carry - A digit, or ecquivalent signal, resulting from an arithmetic
operation which causes a positional digit to equal or exceed the
base of the effective numbering system.

A-3

Central Processing Unit (CPU) - The unit of a computing system that
includes the circuits controlling the interpretation and execution
of instructions--the computer proper, excluding I/0 and other
peripheral devicese.

Character - The general term to include all symbols such as alphabetic
letters, numerals, runctuation marks, mathematical operators,
etc. Also, the coded representation of such symbols.

Checkpoint - A point in time during a program run at which processi
is momentarily halted to make a record, on an external storage
medium of the condition of the variables of the program being
executed.

Clear - To erase the contents of a storage location by replacing the
contents, normally with zeros or spaces; to set to zero.

Code - A system of symbols which can be used by machines, such as a
computer, and which in specific arrangements have a special
external meaning.

‘ gggigg - Writing instructions for a computer using symbols meaningful

to the computer, or tc an assembler, -compiler, or other language
processore

Compatability - The ability of an instruction or source language to
be used on more than one computer,

Compile - To produce a binary-coded program from a program witten in
source (symbolic) language, by selecting appropriate subroutines
from a subroutine library, as directed by the instructions or
other symbols of the source program. Linkage information is
supplied for combining the subroutines into a workable program,
and the subrcutines and linkage are translated into binary code.

Compiler - A language translation program, used to transform symbols
mezningful to a human operator to codes meaningful to a computere.
More restrictively, a program which translates a machine-independent
source language into the machine language of a specific computer,
thus excluding assemblers.

Corplement - (Cne's) To replace all bits with 1 bits and vice versa.
{(Two's) To form the one's complement and add 1.

Computation - The processing of information within the computer.

Computer (digital) - An electronic instrument capable of accepting,
storing, and arithmetically maniputlating information, which
includes both data and the controlling program. The information
is handled in the form of coded binary digits (0O and 1),
represented by dual voltage levels, magnetic states, punched holes,
etc.

A=L

Computer Word -~ See "word".

Conditioned Assembly - Assembly of certain parts of a symbolic program
only if certain conditions have been met.

Confipuration -~ The arrangement of either hardware instruments or
software routines when ccmbined to operate as a system.

Console - Usually the external front side:of a device, where controls
and indicators are available for manual operation of the device.

Constant - Numeric data used but not changed by the nprogram.
Contents - The information stored in a register or memory location.

Convert - 1) To change numeric data from one radix to another. 2) To
transfer data from one recorded farmat to anothere.

Core - The smallest element of a core storage memory module. It is
a ring of ferrite material that can be magnetized in clockwise
or counterclnckwise directions to represent the two binary digits,
0 and 1.

Core Memory - Tu~ main high-speed storage of a computer, in which
binary data is represented by the switching polarity of magnetic
cores. L

Current Locaticn Counter - A counter kept by an assembler to determine
the address assigned to an instruction or constant being assembled.

Current Page - The memory page comprising all those locations which
are on the same page as a given instruction,

Cycle Time - The length of time it takes the computer to reference
one word of memory.

Data - A general term used to denote any or all facts, numbers, letiers,
and symbols. It connotes basic elements of information which ¢an
be processed or produced by a computer, 3

Data Accuisition - The gathering, measuring, digitizing, and recording
of continuous-form (analog) information.

Data Peducticn - The transformation of raw information gathered by
measuring or recording ecuipment into a more condensed, organized,
or useful form,

Vata Word - A computer word consisting of a number, a fact, or other
information which is to be processed by the computer.

A=5

IRCTRRPRRNTRRSP SRR ESFPR S

Debug - To check for and correct errors in a program.
Decimal - Denoting the numbering system based on the radix ten.

Decrcment - To change the value of a number in the negative directioii.
If not otherwise stated, a decrement by one is usually assumed.

Device - An electronic or electromechanical instrument. Most commomly
implies measuring, reading, or recording equipment,

Diagnostic - (Adjective) Relating to test programs for detection of
of errors in the functioning of hardware or software, or the
messages resulting from such tests. (Noun) The test program or
message itself,

Digit - A character used to represent one of the non-negative integers
smaller than the radix, e.g., in binary notation, either O or 1l.

Direct Address - An address that specifies the location of an instruction
operand.

Direct Memory Access - A means of transferring a block of information
words dircctly between an external device and the computer's
memory, bypassing the need for repeating a service routine for
each word. This method greatly speeds the transfer process.

Disable - A signal condition which prohibits sore specific event
from proceeding.

Disc Storage - A means of storing binary digits in the form of
magnetized spots on a circular metal plate coated with a magnetic
material. The information is stored and retrieved by read-write
heads which may be positioned over the surface of the disc either
by moving the heads or the disc itself,

Documentation - Manuals and other printed materials (tables, listings,
diagrams, etc.) which provide instructive information for usage
and maintenance of a manufactured product, including both
hardware and software.

Double-length Word - A word which, due to its length, recuires two
computer words to represent it. Double-length words are normally
stored in two adjacent memory locaticns.

Double Precision - Pertaining to the use of two computer words to
represent one number.

Dovntime - The time interval during which the device is inoperative.

A-6

T

Dunmy - Used as an adjective to indicate an artificial address, instructicn,
or record of information inserted solely to fulfill prescribed
conditions, as in a "dummy" variable.

Dump - To cony the contents of all or part of core memory, usually onto
an external storage medium.

Dynamic Relocation - The ability to move programs or data from auxiliary
memory into main memery at any convenient location. Normally the
addresses of prorsrams and data are assigned when the program is
compiled.

Effective Address - The address of a memory location ultimately affected
by a memory reference instruction. It is possible for one instruction
to go through several indirect addresses to reach the effective
address.

Enable - A signal condition which permits some specific event to
proceed, whenever it is ready to do so.

"Exclusive-0Or" - A logical operation in which the resultant quantity
(or signal) is true if at least one (but not all) of the input values
is true, and is false if the input values are all true or all false.

Execute - To fully perform a specific operation, such as would be accom-
plished by an instruction or a program.

Exit Secuence - A series of instructions to conclude operation in one
area of a program and to move to another area.

External Storage - A separate facility or device on which data usable by
the computer are stored (such as paper tape, tape, or disk).

Field -~ 1) (ne or more characters treated as a unite 2) A specified
area of a record used for a single typve of data.

File - A collection of related records treated as a unit.
Filename - Alphanumeric characters used to identify a particular dile.
Fixed point - A numerical notation in which the fractional point
(whether decimal, octal, or binary) appears at a constant predetermined

position. Compare with "floating point."

rlag - A variable or register used to record the status of a program
or device - in the latter case sometimes called a “"divice flag."

A=T7

Flip-Flop - An electronic circuit having two stable states, and thus
capable of storing a binary digit. Its states are controlled by
signal levels at the circuit input and are sensed by signal levels
at the circuit output.

Floating Point - A numerical notation in which the integer and the
exponent of a number arc separately represented (frequently by two
computer words), so that the implied position of the fracticnal
point freely varied with respect to the integer digits. Comoare with
"fixed point."

Flowchart - A diagram representing the operation of a computer program.

Foreground Processing -~ Higher priority processing that takes precedence
over "background processing" and can interrupt such processing.
It results from real-time events or encuiries.

Format - A predetermined arrangement of bits and characters.

FORTRAN - A programming language (or the compiler which translates this
language) which permits programs to be witten in a form resembling
algebra, rather than in detailed instruction by instruction format.

Forward Referencing - The need to refer to a symbol in a program prior
to its definition (i.e., trying to asseble the instruction JUMP
PLAC%, where PLACE is a location symbol further down in the program
code).

Full-Duplex - Describing a communicational channel capable of simultaneous
and independent transmission and reception.

Gate - An electronic circuit capable of performing logical functions
such as "and", "or", "nor", etc.

Half-Duplex - Describting a communication channel capable of transmission
an%7or reception, but not both simultaneously,

Hardware - Electronic or electrcmechanical components, instruments or,
systems.

High Core - Core-memory locations having high-numbered addresses.
"Inclusive-Cr" - A logical operation in which the resultant quantity

(or signal) is true if at least one of the input values is true,
and is false if the input values are all false.

Increment - To change the value of a number in the positive direction.
If not otherwise stated, an increment by one is usually assumed.

A-8

Incremental Marnetic Tape - A form of magnetic tpe recording in which
the recording transport advances by small increments (e.g., 0.005 in.), |
stopping the tape advancement long enough to record one character
at the spot located under the recording head.

Index Register - A memory device ccntaining an index. See "Address
NModification,."

Indirect Address - The address initially specified by an instruction
when it is desired to use that location to re-direct the computer |
to some other location to find the "effective address" for the |
instruction. .

Information - A unit or set of knowledge represented in the form of
discrete "words," consisting of an arrangement of symbols or
(so far the digital computer is concerned) binary digits.

Inhibit - To prevent a specific event from occurring.

Initialize - The procedure for setting various parts of a2 stored program
to starting values, so that the program will behave the same way
each time it is repeated. The procedures are included as part of
the program itself.

Input - Information transferred from a perinheral device into the
computer. Also applied in the transfer process itself.

Input/Output (I/0) ~ Relating to the equipment or method used for trans-
mitting information into and out of the computer.

Inout/Output Channel - The complete input or output facility for one }
~individual device or function, including its assigned position in
the computer, the interface circuitry, and the external device.

Instruction - A witten stztement or the equivalent computer-acceptance
code, which tells the computer to execute a specified single
operation.

Instruction Code - The arrangement of binary digits which tell the
computer to execute a particular instruction.

Instruction Logic - The circuitry involved in moving binary information
between registers, memory, and buffers in prescribed manners,
according to instruction codes.

Instruction Word - A computer word containing an instruction code. The
code bits may occupy all or (as in the casec of memory reference
instruction words) only part of the word.

2 ane

Interface - The connecting circuitry which links the central processor
of a comnuter system to its veripheral devices.

Internal Storage - The storage facilities forming an integral physical
part of the ccmputer and directly controlled by the compnter.
Also called "main memory" and "core memory."

Interpreter - A program which translates and executes source language
statements at run time.

Interrunt - The process, initiated by an external device, which causes
the computer to interrupt a program in progress, generally for
the purpose of transferring information between that device and
the computer.

Interrupt Location - A memcry location whose contents (always an
instruction) are executed upon interrupt by a specific device.

Iteration - Repetition of a group of instructionse.

Job - A unit of code which solves a problem, i.e., a program and all
its related subroutines and data.

Jump - An instruction which breaks the strict sequential location-by-
location operation of a program and directs the computer to
continue at another specified location anyvhere in memory.

K - One thousand twenty four. For example, Lk words of memory me ns
L096 words.

Label - Any arrangement of symbols, usually alphanumeric, used in place
of an absolute memory address in computer programming.

Language - The set of symbols, rules, and conventions used to convey
information, either at the human level or at the computer level.

Leader - The blank section of tape at the beginning of the tepe.

Least Significant Digit - The rightmost digit of a number.

Library Routine - A roitime designed to accomplish some cammonly
used mathematical function and kept permcnently available on a
library rrogram tare (e.g., FORTRAN Library)e.

Line Feed - 4 tcrminal or line printer operation which advances the
the paper by one line.

Line Iumber - In source languages such as BASIC and FCRTRAN, a number
which berins a line of the source program for purposes of identifica-
tion. A numeric label.

TP

Linkare - In nrogramming, code that connects two separately coded
routines.

List - 1) A set of items. 2) To print out a listing on the line printer
or terminal, 3) See "Pushdown list."

Literal - A symbol which defines itself.
Load - To put information into (memory, a register, etc.). Also
(e.g+, loading tape), to »rut information medium into the appropriate

device.

Loader - A rrogram designed to assist in transferring information from
an exturnal device into a computer's memory.

Load Time - That time at which an asscmbled program is placed in the
computer and readied for execution.

Location - A group of storage elements in the computer's memory which
can store one computer word. Each such location is identified by

a number ("address") to facilitate storage and retrieval of information

in selectable locationse.

Logical Operation - A mathematical process bhased ¢n the principles of
truth tables, e.ge., "and", "inclusive-or", and "exclusive-or"
operations.

Logic Diagram - A diagram which represents the detailed internal
functioning of electronic hardware, using binary logic symbols
rather than electronic component symbols.

Logic Equation - A written mathematical statement, using symbols and
rules derived from Boolean alrebra. Specifically (hardware design),
a means of stating the conditions required to obtain a given signal.

Loop - A secuence of instructions in which the last instruction is a
Jump back to the first instruction.’

Low Core - Core-memory locations having low-numbered addresses.

Machine - Pertaining to the comruter hardware (e.g., machine timing,
machine language).

Machine Lan e - The form of code information (consisting of binary
digits? which can be directly accepted and used by the computer.
Other languages require translation to this form, generally with
the 2id of translation programs (assemblers and compilers).

A-11

ot e

Machine Timing - The regular cycle of events in the operation of intec <2l
computer circuitry. The actual events will differ for various
orocesses, but the timing is constant through each recurring cycle.

Macro - An assembly-time facility that allows lines of text to be
retrieved and modified by the substitution of text for dummy names
in the saved text. The resulting modified text is assembled
at the point of retrieval.

Macroinstruction - An instruction, similar in binary coding to the
computer's basic machine-language instructions, which is capable
of producing a variable number of machine-language instructions.

Magnitude - That portion of a comnuter word which indicates the absolute
value of a number, thus excluding the sign bit.

Mask - A bit pattern which selects those bits from a word of data which
are to be used in some subsequent operation.

Mass Storage - Pertains to a device, such as tape or diék, which stores
large amounts of data readily accessible to the central processing
unite.

Media Conversion - The transferral of recorded information from one
recording medium (e.g., punched paper tape, magnetic tape, etc.)
to another rccording medium.

Hemory - An organized collection of storage elements (eege, ferrits
cores), into wnich a unit of information consisting of a binary
digit can be stored, and from which it can later be retrieved.
Also, a device not necessarily having individual storage elements,
but which has the same storage and retrieval capabilities
(eege, magnetic discs)e.

Memory Cycle - That portion of the computer's internal timing during
which the contents ol one location of memory are read out (into
the Transfer Register) and written back into that location.

Memory Module - A complete segment of core storage, capable of storing
a definable number of computer words (e.g., L4096 or 3192 words).
Computer storage capacity is incremental by modules and is frecuently
rounded off and abbreviated as "Lk" (e.g., U096 or approximately
L000 words), "8k" (8192 or 8000), "16k", etc.

Memory Protect - A means of preventing inadvertent alteration of a
selectable segment of memory.

Memory Reference - The address of the memory location specified by a
memory-reference instruction, i.e., the location affected by the
instruction.

A-12

Microcomnuter - A general term used to describe computers or major
parts of a computer when they are implemented on LSI chips.

Microinstruction - An instruction which forms part of a larger composite
instruction.

Minicomputer - A general term used to describe small computers. In
this sense, small usually implies both the computer's physical
size and its word size (data-path width). lMost minicomputers are
designed with a 16 bit word size, but sizes from 8 to 19 bits are
considered in the minicomputer range.

Monitor - An operating orogramming system which provides a uniform
method for handling the real-time aspects of program timing, such
as scheduling an: basic input/output functions.

Most Significant Digit - The leftmost nonzero digit.

Multi-Level Indirect - Indirect addressing using two or more indirect
addresses in sequence to find the effective address for the current
instruction.

Multiple-Precision - Referring to arithmetic in which the computer,

for greatest accuracy, uses two or more words to represent one
number,

Multiprocessing - Utilization of several computers or processors to
logically or functionaily divide jobs or processes, and to execute
them simultaneouslye.

Multiprogramming - A system of execution of two or more programs kept
in core at the same time. Execution cycles between the programs.

Normalize = To adjust the exvonent and fraction of a floating-point
quantity so that the fraction appears in a prescribed format.

Object Programming - The binary coded program which is the ocutput
after translation from the source language; the binary program
which runs on the comouter,

Octal - Denoting a numbering system based on the radix eight. Octal
digits are restricted to the values O through 7.

Octal Code - A notation for writing machine-language programs with the
use of octal numbers instead of binary numbers.

Off-Line - Pertaining to the operation of peripheral equipment not
under ccntrol of the computer.

A-13

JT——————

One's Complement - A number so modified that the addition to the modified
number and its original value, plus one, will egqual an even power
of two. A one's comnlement number is obtained mathematically by
subtracting the original value from a string of 1's, and electronically
by inverting the states of all bits in the number.

On-Line - Pertaining to the operation of peripheral equipment under
computer control,.

Operand - That which is effected, manipulated, or operated upone The
address or symbolic name, portion of an assembler instruction,

Operatins System - An integrated collection of routines for supervising

the sequencing of programs by a computer, e.g., debugging, input/
output, operation, compilation, and storage assignrment.

Operation (OP) Code - That part of an instruction designating the
operation to be performede

erator - That symbol or code which indicates an action (or operation)
to be performed.

Optisum Code - A set of machine l:nguage instructions which is particularly
efficient with regard to a particular aspect, €+ge, minimum time
to execute or minimws or efficient use of storage space.

nOr" - (Inclusive) A logical operation such that the result is true if -
either or both operands are true, and false if both operands are
false. Exclusive) A logical operation such that the result is true
if either operand is true, and false if both operands are either
true or false.

Origin - The absolute address of the beginning of a section of codee.

Output - Information transferred from the com uter to a peripheral
device, Also apolied to the transfer process itself.

Overflow - A ccndition that occurs when a mathematical operation yields
a result whose magnitude is larger than the program is capable of
handling B

Overlay - The operation of bringing into main memory and executing a
segment which is a subprogram (i.e., a more or less separate
entity) of a larger program.

Packed ‘jord = A4 comcuter word containing two or more independent units
of information. This is done to conserve storage when information
recuires relatively few bits of the computer worde.

Pare - An artificial division of memory consisting of a fixed number of
locations, dicated by the direct addrescsing range of memory reference
instructions.

A~1h

o R L

Page Zero - The memory page which includes the lowest numbered memory
addresses.

Parity Bit - A supplementary bit added to an information word to make
the total of one-bits always odd or even. This nermits checking
the accuracy of information transfers,

Pass - The comnlete onrocess of rcading a set of recorded information
(one tape, one set of cards, etc.) through an input device, from
beginning to end.

Patch - To modify a routine in a rough or expedient way.

Peripheral Device - An instrument or machine electrically connected to
the computer, but which is not part of the computer itself.

Plane - An arrangement of ferrite cores on a matrix of control and
sensing wires. Several planes stacked together form a "memory
module,"

Pointer Address - Address of a core-memory location containing the
actual (effective) address of desired data.

Power Failure Control - A me.ns of sensing primary power failure so
that a special routine may be executed in the finite period of
time available before the regulated dc supplies discharge to
unusable levels, The special routine may be used to preserve the
state of a program in progress, or to shut down external processes.

Priority - The automatic regulation of events so that chosen acticns
will take precedence over others in cases of timing conflict.

Procedure - The course of action taken for the solution of a problem;
also called an "algorithm,"

Process Control - Automatic control of manufacturing processes by use of
a computer.

Processor - The central unit of a computer system (i.e., the device
which accomplishes the arithmetic manipulations), exclusive of
peripheral devices. Frequently (when used as an adjective) also
excludes interface comconents, even though mormally contained
within the processor unit; thus "processor" options exclude inter-
face ("input/output") options.

Program - A plan for the solution of a2 nroblem by a computer, consisting
of a secuence of computer instructions.

Program Listing - A printed record (or equivalent binary-output program)
of the instructions in a program.

A-15

Prorrammer - A person who writes computer rrograms. Also (hardware),
an interface card or instrument which sets up (or "programs") the
various functions of one measuring instrument.

Programming - The process of creating a orogram.

Pscudo Instruction - A symbolic statement, similar to assembly-
language instructions in general form, but meaningiful only to the

program containing it, rather than to the computer as a machine
instruction.

Punched Tape - A strip of tape, usually paper, on which information is
recresented by coded patterns of holes punches in columns across
the width of the tape. There are commonly 8 hole positions
(channels) across the tape.

Pushdowvn List - A list that is constructed and maintained so that the
next item to be retrieved is the item most recently started in the
listo

Queue - A waiting list, In timesharing, the monitor maintains a queue
of user programs waiting for processing time.

Radix - The base of a number system, the number of digit symbols
required by a number system. See "binary," "octal."

Random-Access - Pertaining to a storage device in which the accessibility
of data is effectively independent of the location of the data.
(Synonomous with "direct-access").

Read - The process of transferring information from an input device
into the computer. Also, the process of taking information out
of the computer's memory. (see "memory cycle").

Real Time - Time elapsed between events occurring externally to the
computer. A cocmputer which accepts and processes information from
one such event and is ready for new information before the next
event occurs is said to operate in a "real-time environment."

Record - A collection of related items of data, treated as a unit.

Recursive Subroutine - A subroutine capable of calling itself and returning
at some later point to the program which initially called it.

Reentrant Code - A program segment (e.g., subroutine) which can be
exccuted (i.e., reentered) by more than one other program
simultaneously. This mode of operation requires a separate storage
area for storing information that varies for each instance of
exscution.

A-16

Register - An array of hardware binary circuits (flip-flops, switches,
etc.) for temporary storage of information., Unlike mass storage
of devices such as memory cores, registers can be wired to permit
flexible control of the contained informaticn, for arithmetic

perations, shifts, transfers, etc.

Relative Address - The number that specifies the difference between the
actual address and a base address.

Relocatable - Pertaining to programs whose instructions can be loaded
into any stated area of memory.

Relocating Loader - A computer program capable of loading and combining
relocatable programs (i.e., progrems having symbolic rather than
absolute addresses)e.

Reset - A signal condition representing a binary "zero."

Response Time - Time between initiating some operation from a terminal
and obtaining results., Includes transmission time to the computer,
processing time, access time to file records needed, and transmission
time back to the terminal.

Restart - To resume the execution of a program.

Rotate - A positional shift of all bits in an accumulator (and possibly
an extend bit as well) with those bits lost off one end of the
accumulator "rotated" around to enter vacated positions at the
cther end.

Routine - A program or program segment designed to accomplish a single
unction.

Run Time - The time during which a program is executed.

Segment - 1) That part of a long program which may be resident in core
at any one time. 2) To divide a program as in 1, or into two or
more segments, or to store part of a program or routine on an
external storage device to be brought into core as needed.

Serial-Access - Pertaining to the sequential or consecutive transmission
of data to or from core, for example, paper tape. Contrast with
"random-accesse"

Service Routine - A seduence of instructions designed to accomplish
the transfer of infcrmation between a particular device and the
computer,

Set - A signal condition representing a binary "one."

A-17

. Shift - Restrictive (arithmetic shift): to multiply or divide the magnitude
portion of a word by a power of two, using a positional shift of
- thces bits, General: any positional shift of bits,

Sign - The algebraic plus or minus indicator for a mathematical cuantity.
Also, the binary digit or electrical polarity representing such an
indicator.

Significant Digit - A digit so positioned in a numeral as to contribute
a definable degree of precision to the numeral. In conventicnal
written form, the nost significant digit in a numeral is the left-
most digit, and the least significant digit is the rightmost digite.

o as Sollh s e Lo sl gt e (ot o el s o s ace S e alma Lo e ot La o L ace s

Simulate - To represent the functioning of a device, system, or computer
program with another system or program.

Sl e A

Skip - An instruction which causes the xomputer to omit the instruction
in the immediately following location. A skip is usually arranged
to occur only if certain specified conditions are sensed and found i
to be true, thus allowing various decisions be made.

~ Snapshot Dump - A dynamic printout during execution, at breakpoints and
checkpoints, of selected areas in storage.

Software - Computer programs. Also, the tapes or cards cn vhich the
programs are recorded.

Software Fackage - A complete collection of related programs, not
necessarily combined as a single entity.

Source Program - A program (or its recorded form) written in some
programming language other than machine language and thus requiring
translation. The translated form is the "object program."

Starting Address - The address of a mcmory location in which is stored 1
the first instruction on a given program.

Statement - An instruction in any computer-related language other than
machine language.

Storage Allocation - The assignment of blocks of data and instructions
to specified blocks of storage.

Storage Capacity - The amount of data that can be entered, retained,
and retrieved,

Storage Device - A device in vhich data can be entered, retained, and
retrieved.

Store - To put information into a memory location, register, or device
ccpable of retaining the information for later access.

A-18

String - A connected sequence of entities, such as characters in a
command string.

Subroutine - A sequence of instructions designed to perform a single
task, with provisions included to allow some other program to cause ’
execution of the task sequence as if it were part of its own program.
Subscript - A value used to specify a particular item in an array. 4
Swapping - In a timesharing environment, the action of either temporarily :
bringing a user program into core or storing it on the disk or
other system devicee.
Switch - A device or programming technique for making selectionse.

Symbol Table - A table in which symbols and their corresponding values
are recorded.

Symbolic Address - A label assigned in place of absolute numeric addresses, 1
usually for purposes of relocation. (See "relocatable.")

Symbolic Coding - Broadly, any coding or programming system in which
symbols other than actual machine operations and addresses are used.

Symbolic Instructions - An instruction which is the basic component of
an assembly language (input to assembler) and is directly translatable]
into machine languagee. s

Syntax - 1) The structurc of expressions in a prografnming language. 2)
The rules governing the structure of a programming language.

Table - A collection of data stored for ease of reference, generally 3
an arraye

Temporary Storage - Storage locations reserved for immediate results,

Terminal - A peripheral device in a system through which data can either
enter or leave the computer. :

Timesharing - A method of allocating central-processor time and other
computer services to multiple users so that the computer, in
effect, processes a number of programs sirmltaneously.

Time Slicing - A method of job scheduling in a multiprogrammed
systeme This refers to the allocation of fixed amounts of
computing time among users on a round-robin basis. Interrupts
are generated by a fixed interval timer causing control to pass
to the next waiting service request.

Toggle - Using switches to enter data into the computer memory.

A=19

Transfer Vector - A table, usually at a fixed location in memory,
containing jump instructions and/or indirect addresses for jump
instruction. When a jump instruction to a particular routine or
when the address of a routine is placed in this table, other routines
can call the routine without necessarily knowing its actual location
in memory. This technique is used frequently when a relocatable
assembler is not available for a particlar machine.

Truncation - The reduction of precision by dropping one or more of the

least significant dicits; e.ge., 3.141592 truncated to L decimal
digits is 3.1b1.

Truth Table - A table listing of all possible configurations and
resultant values for any given Boolean algebra function.

Two's Complement - A number so nodified that the addition of the modified
number and its original value will equal an even power of two. Also,
a kind of arithmetic which represents negative numbers in two's
complement form so that all addition can be accomplished in only
one direction (positive incrementation). A two's complement number
is obtained mathematically by subtracting the original value from
an appropriate power of the base two, and electronically by
inverting the states of all bits in the number and adding one
(complement and increment).

Underflow - A condition that occurs when a floating-point operation
yields a result whose magnitude is smaller than the »rogram is
capable of handlinge.

Updated Program - A program to which additions, deletions, or corrections
have been made.

User - The person or persons who program and operat a particular computer.

Utility Routine - A standard routine to assist in the operation of the
computer (e.g., device drivers, sorting routines, etc.) as opposed
to mathematical("library") routines.

Variable - A symbol whose value changes during execution of a program.

Waiting Loop - A sequence of instructions (frequently only two) which
are repeated indefinetly until a desired external event occurs,
such as the receipt of a Flag signal.

Word - A set of binary digits handled by the computer as a unit of
information. Its length is determined by hardware design, e.g.,
the number of cores ger location, and the number of flip-flops
per register. #

A-20

Word Length - The mumber of bits in a word.

Working Register - A register wiiose contents can be modified under
control of a program. This a register consisting of manually
operated switches is not considered a working registere.

Write - The process of transferring information from the computer to
an output device. Also, the process of storing (or restoring)
information into the computer's memory (see "memory cycle").

