
*D—A055 597 DEFENSE SYSTEMS MANAGEMENT SCHOOL FORT DEL VO

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IFIED
5 W A N D R E S

NL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

55597 _______________________________________ ____________ ____________

.

V

Et~D
FPLM E~

8 9  

-_ _ _ _



-‘I’

FOR FURTHER TRAM l~..1 ~
( (I)

DE~EMSE SYSTEMS
MIIMIIGEMEMT SCHOOL

~~$T Op -~~~~

PROGR~1M MaINiIG€M€MT COUPS€
INDNIDUiIL STUDY PROGR~1M

-

EtiTL ~ATI!~G CJPUTE~t SOFNARE DEVELOPI~ENT
COSTS

STUDY REPORT
PFIC 7S-]. D D C

‘ ALBERT W. AN~)RES U ~~~ ~~ r,

GS-13 

— 

DNC 

— 

~~~~~
!

~~~~

l9T8

~~~~}

poRT ~€i~oi~. ‘JIRGIIIhI 22060

DI$TRIBUTJCN STATEMENT A

_ _ _ _
Approved for public r.1.oa.

-~~itribution Uiilimit.d
ANDRES

- ~ _______ _~~:

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

.4

—

SECURITY CLASSIFICATION OF 7141$ PAGE (Wh.n Dat a ~nt•r.d)

D~~Df1DT ~~~~~~~~ A rlfliI D A I
~~

READ INSTRUCTIONS
r~J..u %jr~ s I#’J~~UIR~~I~ I?’ I I3.PI~~ 1 BEFORE COMPLETIN G FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPi ENT’S CATALOG NUMBER

4. TiT LE (~~ d Subt5tl.) 5. TYPE OF REPORT & PERIOD COVERED
ESTIM&TING COMPUTER SOF~WAEE
DEVELOPMENT COSTS Study Project Report 75—1

S. PERFORMING ORG. REPORT NUMPER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(S)
ALBERT V. ANDRE S

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , TASK
AREA & WORK UNIT NUMBERS

DEFENSE SYSTEMS MANAGEMENT COLLEGE
FT. BELVOIR, VA 22060

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DEFENSE SYSTEMS MANAG1IE)IT 1 Q7S— 1
COLLEGE, FT. BELVOIR, VA 13. NUMBER OF PAGES

__ 67
14. MONITORING AGENCY NAME & ADDRESS(SI dlII.tsn t from ControlUn~ OUSc•~ IS. SeCURITY CLASS. (of lAS. t.port)

UNLIMITED UNCLASSIFIED
ISa. OECLASSIFICATION/DOWNGRAOINO

SCHEDULE

IS. OISTRIBUTION STATEMENT (of this Raport)

UNLIMITED DI RIBUTION ST~~~ ~~~~~~~~~~~~~~

Approved for p ’ . : - .

Distxibution ~ rJ~ ~~~~~~~

17. DISTRIBUTION STATEMENT (of A. abstract ~ it.r.d In Block 20, II dSf I .tae t ftcrl R~potf)

IS. SUPPLEMENTARY NOTES

SEE ATTACHED SHEET

Ii KEY WORDS (Ccntlnu. on t.vara. aids SI n•c•a~~ y sod Sd.ntIfy by block numb.r)

SEE ATTACIIRD SHEET

ZO~ A~~~TNACY (C~~S&.as ~~ ,.v ~~s. ~~~ It n~~~ .wy d Sd.n ifr by block ni~~,b.v)

DO ~~~~~~~ ~~3 EO~7%OIS OP I wOv 4 5 $ OSSOLETE

SECURITY CLASSIFICATION OF TH1S PAGE (USlsn Dat. tnt.r..I)

DEFENSE SYSTEMS MANAGEMENT SCHOOL

STUDY T ITLE: ESTINATING COMPUTER ~OF1WARE i)EVELOI’MENT COSTS

STUDY PROJECT GOALS:

To identify, define, and evaluate techniques for estimating computer soft—
ware development costs.

Demonstrate how these techniques anply to estimating in the DOD Program
Office.

STUDY REPORT ABSTRACT

The purpose of this study project was to increase the reader’s knowledge of
computer software development àost estimating. The reasons for the high cost
of computer software and poor computer software estimates are discussed.
Existing estimating techniques and rules of thumb are presented and their
applicability to cost estimating minicomputer software development in the
Program Office is considered.

The conclusion is that there is no technique that will give an accurate esti-
mate for a].]. situations. A large number of factors that affect the cost of
computer software development have been identified. Therefore, it is manda-
tory that the estimator have the best possible handle on the most important
of these factors.

The most significant recommendation that this report makes is that the Pro-
gram Office establish data bases from which estimates can be made by
parametric methods.

This report has implications for anyone involved in the procuren&~t of cc~-
puter software. . - .

,~III ImtIuu

* Sstf Sict(si rj
*HOU~CEI 0

..

ST ..
IISTIIIITION/AVA !LAIII ITY CO~E&

SlL AY~ L a , or~~PL~ At

NAME, RANK, SERVICE CLASS (DATE
Albert W. Andres, QS-13, DNC PMC 7~-l I ~

_ _ _ _ _ _

r - -

~~~~~~~~~~~~~~~~~~~~ 

-—. .

~~~~~~~

‘

~~~

-

~~

--—- 

~~~~~~~~~~~~~~~~ 

—‘ - -

~~~~~~~~ 

--- ——-
~~~~~~

-
~~~~~~~~~~~~~

ESTINATING COMPUTER SOFIWABE DEVELOPMENT

COSTS

ST~JDY REPORT

Presented to the Faculty

of the

Defense Systems Management School

in Partial Fulfillment of the

Program Management Course

class 7S-1

I
• by

. Albert W. Andrea

GS-l3 DNC

This study represents the views, conslusions and recommendations

of the author and does not necessarily reflect the official opinion

of the Defense Systems Management School nor the Departm~ it of Defense.



_ _ _  - -—-----— — ‘ - — -— -.---,.-- __
—-,

EXECUTIVE SU~~ARY

The purpose of this study project was to increase the reader ’s

knowledge of computer software development cost estimating. Its specific

goals were: 1) to identify, define, and evaluate techniques for estimating

computer software development costs, 2) to demonstrate how these techniques

apply to estimating in the DOD Program Office. E~nphasis was placed on

minicomputer software.

This study area is important because DOD computer software involves

billions of dollars each year and a large percentage of cost growth is

because of poor cost estimating.

For background, the reasons for the high cost of computer software

and poor computer software estimating were investigated. Existing

estimating techniques and rules of thumb were considered. Although certain

trends can be established, there is no technique that will give an accurate

estimate for all situations. There are many factors that affect the cost

of computer software development. Unless the estimator has a very good

handle on most of these factors as they rel ate to the proposed programming

effort his estimate will be a poor one.

Only a ball park estimate can be made without a good historical

data base to work from. The primary recommendation of this study is that

the Program Office make an intensive effort to establish a data base which

is broken doun into ns many cost contributing factors as possible.

This report should be useful to anyone involved in the procurement

of computer software.

- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— .-- - —.

~
-—.-

~~~ 

‘ 1 . —

~~~~~~~~~~~~~~

.“

ACKNGJLEDG~1ENTS

I wish to express my appreciation to Ed Rappe of the Defense System

Management School and Ray Losage of the Naval ~aect ronic Systems Cc~mnand

for their âonstructive criticisum.

H

I

_ _ IIii II~~~~~I: ~~~~

Executive Summary ii

Acknowledgements . iv

I. Introdution 1

II. Review of Present Situation 9

III. Data Collection Method 1].

IV. Reasons for High Software Costs 12

V. Reasons for Poor Cost Estimates for Computer 16
Software Development

VI. The Cost Estimate 18

VII • Conclusions and Recommendations 37

Bibliograghy 39

Appendix - Glossary of Digital Computer Terms A-i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LIST OF ILLUSTRATIONS

Page

1. Comparison of Programmable Calculator,

Minicomputer, and Midicomputer (~ aracteristics 2

2. Computer Prograimning Project Cycle 5
3. Hardware Strains Cause Major Software Impact 13

~. System Dâelopment: Reliability of Estimates 19

5. Computer Programming Productivity in Instructions

per Manhour

6. Manmonths Verses Program Size for ELeven Large-Scale

Programs 22

7. Computer Software Documentation Productivity

Information 25

8. Relation of Documentation Cost to Total Project Cost 26

9. Computer Time for Programming 27 -

10. Software Development Cost Breakdown, Tasks as a

Percent of Total ~~fort 29

11. Krausst a Values for Imput Variables 3].

vi

[ i  
~~~~~~~~ 

-

~~~~~ ~~~~~~~~

. - .  

~~~~~~~~~~~~~~~~~~~~~~~~ 

_j

i

~~~~~
- —

~~~~~~~~~~~~~
— .

~~~~~
. , -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I . INTRODUCTION

The purpose of this study project was to increase the reader ’s

knowledge of computer software development cost estimating. Its

specific goals were: 1) to identify, define, and evaluate techniques

for estimating computer software development costs, 2) to demonstrate

how these techniques apply to estimating in the DOD Program Office.

Emphasis was placed on minicomputer software.

Scope and Limitations

Because of the increasing use of minicomputers in the Department of

Defense, this paper will address cost estimating of minicomputer

software development in particular .

Important Terms

Minicomputer

What is a minicomputer? Figure 1 shows a comparison of programmable

calculator, midicomputer, and minicomputer nominal characteristics.

An expansion of the minicomputer characteristics is presented below.

Processor

Usually single address , 8 to 18 bit word size (usually 12 or 16).

Memory

Usually core , 600 nan osecond to 1 microsecond cycle times, 10214

to 32,7(3 words ( some memories can be expanded to 131,072 words).

1



Programmable Midi or Small
Characte ristics Calcu lator Minicomputer Computer

Maximum memory 100 32.000 256.000
wor d size 

__________________ ______________ __________________

Maximu m number of 64 18 24
bits per word 

-

.

Iligher level Hardware: Software: Softwa re:
languag e BASIC FORTRAN FORTRAN

BASIC BASIC
ALGOL ALGOL
RPG RPG

COBOL

Funct ion Dedicated General-Purpose Gener~l-purpo5e

Diaptay Built-in External periphe rals External

110. and . per ipheral s

recording
devices ______________ ________________ ______________

Speed Slow Fast Fast

Programming Manually from Assembly or higher- Higher-level

_____________________ 

integral keyt ’oard level language language

Required user None Extensive Limited

know(edge ~~~

machine-level
operation 

__________________ _________________

Applications Dedicated Limited time sharing Simultaneou s
program solving Problem solving limited ti me

Limited data Data Acquisition sharing and
acquisition . Procese Control batch proces-

Perip heral Control s ing
Multipr ogrammi ng
Data acquisition
Process control
Extensive
problem solving

Cost V ery low Low High

Figure 1. Comparison of programmable calculator,
riiniccr~uter, and midicomputer charactcristics (1:18)1

‘This notation will be used throughout the report for major references .
The first number is the source listed in the bibliography. The second
number is the page in the reference.

~~~~~~~~~~~~~~~ ~~~~. 

2 J

Input/Output

Flexible

Software

Software for ininiccmputer systems can be divided into several

classes: (1:10)

1. Program development software needed by the user to develop

his programs for particular applications. Consists of editors,

aGsemblers, debugging and utility routines, and one or several

compilers such a BASIC or 1~Ci~TRAN .

2. Inr~ut/Otitout software routines for the system hardware and

peripherals. These packages are generally defined by the

characteristics of the respective hardware .

3: Operating system software, also called the executive or system

monitor, controls the operation of the minicomputer system.

14. Applications software, which is related to the task that the

system is to perform and which is therefore unique to the

particular system.

Periperals

Card readers, r iper tape readers, line printers, interactive

terminals (keyboard/printer or keyboard/display), magnetic tape units,

disk and drum memories.

~~~sical Size

The typical mini weighs less th an 200 lbs., occupies less than

14 cubic feet, and is very undisconcerted by reasonable power or heat

variations. (2:3—14)

3



Commercial minicomputers cost less than $20,i.~0O and often much

less depending on the capability required. The price of the Navy standard

minicomputer ( AN/UYK-20 ) is in the $30,000 to $140,000 range depending on

the needed capability.

Comouter Software Development Life Cycle

The steps making up the computer programming process, or project

cycle, are assumed to be as defined by Nelson (3). See Figure 2. The

six steps are:

Preliminary Planning and Cost Evaluation

This activity consists of the economic feasibility study for the

proposed program. Based on a statement of the user ’s requirements,

an estimate is made of the manpower, elapsed time, or other resources

required for the project . Using these estimates, a summary project

plan and a cost verses benifits comparison are prepared.

Information Processing System Analysis and Design

The process of determining the detailed requirem~~its for improved

information processing and planning of a system, plus a set of

computer programs capable of fulfilling them, is devided into two

parts- -System Analysis and System Design. The first part, the

analysis ( sometimes called problem fonnulation), consists of

investigating the particular information processing problem that may

be solved by new or improved automatic data processing methods;the

second design consists of atte~npts to devise a satisfactory solution

14



-

~~~~~~~

U

z z ‘U

> ~ vQ~~i- O’- <
zo .n~ ~ u,~~ Z O

u_ vi p-z z ~~~~~~~~~~~~

z z z _2 o ~ 2

~~~— —

43
C,

Io
-J

z
2 

~ 
0

$

c’J

z z •
.0i.- ,. I.- 14

U —

~I~2



~ -- - --
~~~~~~~ 

to the data processing requirements involved. In the broadest

sense, the problem and its solution may involve the design of a

far-flung network including communications displays, data equipment

for sensors or missiles, computer operating procedures, and computer

programs. In its narrowest sense, Analysis and Design work as part

of computer programm ing may only include the design of a change to

a computer program in an existing system.

Generally, the mission of the analyzing and synthesizing

process is to devise the most effective and efficient organization

of system components including computer program functions and

elements possible within the constraints of available manpower,

funds, and time, to perform the required information processing

functions. Ideally, this selection of a solution should be made

on the basis of cost/benefit comparison of feasible alternatives.

Computer Program Design, Code, and Test

This activity covers all work necessary to produce the computer

program end product in accordance with the detailed specification

of requirements for the computer program including design, code,

test (debug) and docuxrentation ~;ork for the entire program as well

subprograms (runs, segments, individual programs).

Information Processing System Integration Test

This activity covers all work necessary to test the performance

of the computer program within the total system at the operational

facility under realistic (“live”) operating conditions.

6

- -~~~~~~~

Information Processing System Installation and Turnover

The purpose of the turnover step is to help the user demonstrate,

at his own operational site, that the computer pro~ ram system will

operate as specified, and to support the user with documentation,

advice, and -uidance, and troubleshooting during the initial period

of system operation.

Computer Program Maintenance

Computer program maintenance is the process of improving,

changing, and correcting ccmputer programs in an information system

that is currently operaticrial.

Program maintenance, including both revisicns and error

corrcctions, is needed throughout the life of the information system.

Revisions are needed because o erationa]. requirements are continually

changing during both the development and operation of the system.

Although operaticnal needs are projected during requirements analysis,

in most cases thay can i.e neither totally defined nor totally

implemented in the imposed time schedules. Also, corrections must

usually be made to the computer programs because errors and operational

deficiencies not detected in the routine testing of the programs arc

usually discovered when the system becomes operational.

Since the need for improvement and support activities for the

informaticn system tends to be amorphous , system maintenance is often

funded at a level the user can afford or is willing to spend rather

than the level precisel; rc c~uired • ~4uch of the work of program

maintenance personnel must be devoted to the resolution of emergencies

7

~~~~

-- - - - --- ~~~~~~~~ —_ _ __ _ _



_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if

-
~ and to modifications required by hard-to-predict environmental changes.

Organization of the Report

In the analysis of minicomputer software development cost estimating,

reasons for high software costs and poor estimates will be considered.

Existing methods of computer software estimating will be evaluated to

determine applicability to estimating in the DOD Program Office.

—

U

8

__ --~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~—— -~~~—— — -- — -  -.~-—~V --
~~
--

~~
---.

~~~~~~
---

~~~ 

II. k~ VI~d OF ?~.ESENT SITUATION

The purpose of this section is to document the importance and the

present status of computer software developm~ it cost estimating.

Sources of Cost Growth

In this age of highly complex equipment and continuing pressure

to incorporate technology pushing the “stnte of the art” overruns in

both cost and development time are more the rule than the exception. (14:~)

The experiences of more than 30 major programs over an extended period of

time give some indication of the oroblems of cost growth most likely

to beset new programs. These program histories show that the factors

contributing to cost growth and their approximate impact were:

1. Changes in Cost Estimates-refinements of the base program

estimate-accounted for l.~O percent of the total cost growth.

2. &xgineering Changes-alterations in physical or functional

characteristics—20 percent.

3. Schedule Changes-changes in delivery schedules or program

milestones-].S percent.

h. Economic Changes-escalation adjustments in contracts and

other changes ir the purchasing power of the dollar-lO percent.

S. Support Changes-changes in spare Darts, training, testing, and

other su~~ort requirements-7 percent.

A variety of other items made up the balance of some 8 percent of

the tote]. cost growth in these programs. (~:39)

High Cost of Computer Software

Estimates of current Air Force annual e~~enditures on software are

H~i - -

~

- .__

between $1 billion and ~l.5 billion, compared to $300 to $1400 million

per year on computer hardware. (6:14) The total DOD expenditure would

therefore be quite substantial.

The concern of the Air Force about compute r software costs for

weapons systems is documented by their Project Ace progress reports .

(7:69,93)

The combination of changes in cost cstin a~.o~ being a 3-arge percentage

of the total DOD program cost growth and the high cost of computer

software, make computer software cost estimating an inviting subject.

Minicomputer Trend

I~.inicomputers are becoming serious coai~)etition for the large

computers. Several minis put together can outperform a large computer

at a fraction of the hardware cost. (8:11) The number of minicomputers

available is rising rapidly; as prices continue to decline, an increasingly

greater number of applications are discovcred. Assuming a healthy

economic climate the market should sustain 30-140% growth rate over the

next few years. (2:3-1) DOD will be a contributor to this growth rate.

Estimating Difficulty

It is extremely difficult to estimate the time and effort necessary

to produce a computer software package. This difficulty stems from a

poor understanding of the production process, the number of disparate

factors affecting program complexity, and the limited abil ity of human

decision-makers to assimilate and effectively weigh these factors.

Studies concerning software estimation have identified at least 90

factors that affect the overall cost of computer program development. (9:v)

10

k - - ~~~~~~~~~ -~~~~~_-~~~~~ -- -

-~~-~~~ - _
-~~~~~~~~~~~~~~~_~~~~~~~~~~~~~~~~~~~~~~~~ - --~~~~~~~~~~~~~~~ .-- _ - — ~~~~-~~-~ -~~~~~~ -~~~~~~-- -~~~~ -—-_ -~~~ - - - ~~~- -~~--~~~~- -- -~~- _ - - - - .-

III . DATA COLLECTI(~ ~ET~-!OD

To deternine what computer softw are estimating techniques and rules

of thumb are in use today, the following sources were used.

1. Def ense Documentation Center computer search.

2. Review of current civilian literature.

3. Interviews with representatives of DOD Program Offices utilizing

minicomputers as a subsystem.

14. Interviews with computer software consultants.

S. Questionaire response/interview with contractors involved in

programming minicomputers.

6. Interviews with minicomputer manufacturer ’s representatives.

7. Interviews with representatives of a DOD office that procures

minicomputers and associated software.

Because of the rel ative newoess of the minicomputer most of the data

obtained was related to large programming efforts. However even the

large program information is considered to be relevant to the study of

the minicomputer problem in that trends can be shown by looking at the

overall problem. This will be demonstrated in later sections of this

paper.

U

- - - - - —- -_ - - -~-

IV. REASONS FOR HIGH S0FT~1ARE COSTS

As stated in Section II, computer software is expensive. The

purpose of this section is to present some of the reasons for the higher

than expected costs . Depending on the circumstances, cost may be reduced

by attacking the cause.

Poor Cost Estimates

An over optimistic estimate is probably the largest factor in the

computer software surprise costs.

I1emory Size Constraints

when a programmer gets into a situation where he has to be coneerned

with computer iaeznory size the programming cost will increase. This is

sho~m gra thicafly in Figure 3. ~Jhen the computer’s capacity is pushed,

machine language must be used instead of high -~level languages such as

FORTRAN; several elements of data must be packed into a single machine

word , arid many tricky programming shortcuts must be employed . This

makes the program more difficult to check out arid modify as well as more

difficult to write.

Overall system cost is generally minimized by procuring computer

hardware with at least 50 percent to 100 percent more capacity than is

absolutely necessary. The more the ratio of software-to-hardware cost

increases (~ s it will markedly during the 1970 ’s arid 1980’s), the more

excess corn~uting capacity one sh: uld procure to minimize the tote]. cost.

It is far more risky to err by procuring a computer that is too small than

one that is too large . This is especially important since the initial

sizing of the data-processing job often tends to undere~-timate its magni-

tude. (10:149) Memory size constraints are particularly relevent to mini-

computers because the memory is small .

12

~

- - - - - --- ~~-~--—_ ~~~~~~~~-

r ~~~~~~
-.-

~ -~
-—----- -———--

~~~~~~~~~~~~~~~~~~~~~~~~ 

- ‘I

-

4 ‘ I

b
J 4.’)

f

I 1

zg 3

EXPER IENCE

z

UI

8
0 2 —  . —

z -

I
.(

8
UI

— — _ — —_ __\ . -
FOLK LORE

0 - I
0 25 50 75 ‘00

UTILI ZATION OF SPEE D AND M EMOR Y CAPACITY — p cc.nt

HARDWARE STRAINS CAUSE MAJOR SOFTWARE IMPACT (10:147)

~Effe ct of hardware speed and memory size constraints on the relative cost of software)

-~ Figure 3. 
-

13

______  ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —



_—

Change in itequirement

A fantastic increase in a weapons s ,rstem canability is obtained when

computer control/analysis is added. s-Then the user sees this increased

capability he may want ~iore . Also, in many armlications a hardware/soft-

ware trade off exists . The hardware design is frozen relatively early

in the development phase , presenting a tempting option to change software

requirements in order to meet changing operational reauirements or hard-

ware deficiencies.

Hardware/Softi~are Thcompatibility

There is much waste in programming and computing, resulting from poor

matching of software and hardware. Also, poorly designed primitive

functions in hardware require repeated costly and error-inducing program-

ming of basic computational functions. (U~l)

Indirect Costs

Software is often a critical component in large system.... Consequently,

overruns in delivery time or serious flaws in quality can have hidden

system costs that far exceed the software costs, however high they may

be. (11:1)

Inadeouate Functional S~ecification

Because of eagerness to get things moving the Government is susceptible

to providing, and the contractor accepting, a functional specif~cation

that is not adequate. Accordingly, the contractor estimates lot, a

commitment is i~iade and we are underway toward a potential overrun situat-

ion. The Programm Office and the contractor must have a clear and

documented understanding of the user ’s requirement.

— - 

114



Production Demands

Progress in software technology has been very slow, but demands for

software production are increasing in volume and complexity. Such demands

have clearly outstripped the technology, with very costly results. Pro-

duction of new software products suffers great overruns in cost and

delivery time, and quality is often deficient, in correctness, modifiabil-

ity, and transferability. The maintenance costs for old software products

may be an order of ma~’nitude larger than production cost, due to poor

original design and production. (11:1)

Variations in PrograiTmier Efficiency

The differences in computer programmer productivity can vary as much

as 26:1 between individuals. (12:52) Higher than e~~ected costs will

result if estimates are made assuming that a highly efficient programmer

will do the work but a very inefficient programmer actual does it.

iS 

: 

-



- -~ - -— ----- ~~~~~~~~~~~~ - ----—.— ~~~-~~~----- - -~~~~~~~~ --~~~ -~~~~~~~ - - ---~~~~~~ — 

V • ~~S~’NS FOR POOR COST E~TI1~~T~~ POR CUMFJTE:~ SOFTtIARE D ELO~i~L~NT

KL’sost everyone in a software development mana ement position is

aware that a large percentage of est r:~te~ arc oc-~r , but crobably not

many are aware of the reasons why. This section will present some of

the reasons.

Keider (13:53) reports the following reasons for poor computer

software development estimates.

1. No standards exist for estimating how lcng the project
will take . That is, each project is treated as a new and
novel system with some individual responsible for estimation.
His estimate will be based upon his own understanding of
the ‘roject and its tasks, and on how cui ckly he can
accomplish the subtasks . Little use is made of a history
file of similar projects and actual versus originally
estimated times.

2. Estimation is not done by the probable project leader, but
rather, by whoever happens to be available at estir~ating time.

3. The ~roject is not adequately defined. The request for an
estimate usually t kes the form of “John, we ’re planning
to redo the payroll system. What do you think it will
reuuire?” “Payroll ” may mean a number of different things
to different people. Does it involve labor distribution?
Personnel information? leave accounting? salary, hourly and
executive payroll? Any of the above can measurably impact
the estimate of the project.

14. Short lead times are allowed for estimates, with corre sponding
inaccuracy as a result.

5. Knowledge of “tools ” to perform the project more efficiently
is lacking. Are there modules, or subroutines already
ava~1able which can be used? Is there a test data generator
available? dhat about system design or docaL entation aids?

6, Definition of the project is vague, misleading, or totally
wrong.

16 

------— - - - -~~~ - - — - . -



Use of Nonrelevant Histori cal Data

The experience of many program managers is that the number of

instructions is often grossly underestimated except when very similar

programs can be used for comparison . (114:2L12) As will be shown later in

this renort , there are numerous variable factors that impact software

productivity, These factors must be compared in detail between the

programs on which the historical data is based and the program that is

being estim~ted.

17

_ _ __ _ _ __ _ _ _  ~~~~~~ -~~~~~~~~~~~ -~~~~~~~~~~ - -~~~~~~~~~ - 



VI. THE COST E3TDIATE

The purpose of the section is to analyze existing computer software

cost estimating data, equations, and rules of thumb to determine their

apr~licabi1ity to DOD minicomputer software.

The compute r software estimating effort can be assumed to consist

of three steps.

1. Determining the scope (or number of instructions in the

proposed program ) and complexity from a functional or

design soecification.

2. Converting the number of instructions into quantity of

resourees required in programmer man months, computer

time etc.

3. Converting the effort into dollars.

Step 1 - Determine the Scope

As a lead -in to this step the DOD Program Office should assure that

the best possible functic~na]. specification exists, and it is even desirable

to have a detailed design specification. The Computer Program Performance

Specification and Computer Program Design Specification should be con-

tracted for deparate from the actual programming effort. The more that is

known, the better the estimate should be. Figure 14 was prepared with the

assumption that at each project stage, estimates are made for all of the

successor stages. The preliminary analysis stage in Figure 14 can be equa-

ted to the prelii inary planning and cost evaluation st ge described in

Section I. Assuming that the data in Figure 14 has some validity, it is

apparent that the results of estimating in the early stages should be

handled with caution.

18



r _ _ _ _ _ _ _ _ _  _ _ _ _ _  

PROJECT ~iTAGi~S Programming Operating

Initial Approval +25-50% 10+100% -

Preliminary
Analysis - +1~ -25% +50 100% 10+100%

Systems Analysis - - ~ 2O_ 2S% ~SO lOO%

Programming - - - +1O~

Figure ~~. System Development: Reliability of Estimates for Successive

Project Stages. (15:3-01-014)

Determining the size and complexity of a new program is considered

by many to be black magic. To assure a reasonable degree of success in this

task the following course of action should be taken.

1. Obtain the best possible estimator or estimating team.

2. The estimator should get a thorough understanding of the

performance specification.

3. Identify existing programs which may be similar in function ,

size, and complexity to the program being estimated.

14. After a though comparison of the new and existing programs to

insure that a good understanding of the similarities and dif-

ferences exists, a scaling operation can take place . Because

of the number of variables which impact the scope of the job,

close attention must be given to the differences be~ween the

existing and new programs and compensate for those differences.

19

_ _ _ _ _ _ _ _ _ _ _ _  -



- -~ -~ -- --~ - ~—~ -- - - - -- - -~~~~~ -- ~~~~~ .- —

The key is to obtain programs that are as similar as possible to

the new program. 
-

Step 2 - Determine Resources Required

This step can be initiated after the basic scope of the oroposed

program has been determined. That is, the estimated nuniber of instructions

in the p rogr am and complexity have been established .

With the number of instruction s as a starting point an estimate of

re ources required can be accomplished by parametri c methods. P ar ametric

estimates are determined by relationships between historical costs and

physical and/or performance characteristics.

In an attempt to determine what minicomputer software progra nurd. ng

rates can be expected Figure 5 was generated . A quick look at the data

indicate s large variation s in the various rules of thumb. A closer look

shows that certain trends exist,

Both the Aron and Nanus/Farr data show a large variation in program-

ming productivity with vari ations in the size of the p rog ram . Figure 6

indicates an exponential rate of increase in man months of effort re-

quired verses the size of the program. Aron ’s dat a gives us one reason

for this trend . The larger the program, the greater the number of

progra mmers re quired , therefore more int eractions are required , The

greate r the number of interactions , the poorer the efficiency. This

theory is supported by Brooks . (16)

The interactions between programmers should be minimized on mini-

computer programming efforts. Because of the small programs , typically

only one to three programmer s would be involved. Therefore , it is assumed

that a nearl j linear relat l ;nship exists betwe en the programming effort

20



I

I~iin Max Mean Comments
Nanus/Farr (114:2142) 2.38 5.95 14.16 sinai]. programs (less than

10,000 instructions)
1.19 large programs

AN/UYK-7 Report (17:B14) 1.146

~Jood (16:152) .83

ccip-85 (6:12) 1.25 assumes large programs

Aron (16:149) .714 many interactions
2.148 scme interactions
14.96 very few interactions

Fleishman (19) .149 143.15 14.89 scientific application,
program sample-27

.15 82.67 9.05 business application,
program :;ample—79

.06 143.15 3.63 machine oriented language,

.63 82.67 11.76 procedure oriented language,

Bell Labs (16:149) .255 complex, 52,000 word. program,
83 progrmmners

.313 complex, 51,000 word program,
60 programmers

1.10 less complex, 38,000 word
- program, 9 programmers

1.13 less complex, 25,000 word
program, 13 programmers

Corbato (20:115) .60 large program, high level
language

Company A .89 medium to low risk
.71 high risk

Company B .5 assembly language, highly
technical/real time program,
good progrannuers

Company C 2.25 21,000 instructions, FORTRAN-
5,000 Assy-16,000

Company D 1.0

Company E 1.27 no documentation, 7,500
instructions, assembly

Company F .Thii real time, executive
program, assembly language

.99 non real time• 1.149 modified program

Figure 5. Computer Programming Productivity in Instructions per I~anhour.

21 

- -



- - ______

8,000 - - - - - -  - - - - - .  ‘- . -.- — -

- 

- 
• 

incomplete

7,000 
-

. 

• 
-

•

6,000 - • : : . 
• - 

• 

•

U) 
,-•. —

~~ 5,0O0 - I

C - ~~~~~- : • - -~~~~~~~~~ :- . • •

0 . - • :-~~ 
- I

E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ 4,000 :•~~
• 

• • - • •
• 

- 
• . 

•

• • • 
•

• )

3,000 - 
• : • 

• • ~.— •
• 

•

- 
• • : - .

2,000 • • - -  
- ‘ ~~~~~~~~~~~~:• .~ • •~~~ 4 • - - -

~~~• • - . ‘- . •. • ~~~~~ ,_~ _ t - .  - •  • -
-

- —4 4Ø ø~’O
~~~I .‘ ~~~~~~ -

i,ooo - 
- 

• o
_
~~~

1
,_

- -

-

100 200 300 400 500 600 700
-

Thousands of machine instructions

Figure 6. Manmonths Versus Program Size for Eleven Large-Scale
programs (114:2142)

22

required and the size of the program for a minicomputer program.

The Fleishman data was included in Figure 5 to shoi; the general large

variations in programming efficiency. This data does show the expected

trend in efficiency improvement in going from machine oriented language

to procedure oriented language, and the decrease in efficiency in going

f rom a business application to a scientific application.

The Figure 5 data labeled Company A through F was obtained from

goverment contractors for minicomputer software development. This data

was obtained informally rather than by audits. The approximate average

of one instruction per man hour is lower than might be c~xpected, however

the data does include the effort required for documentation (except

company E) and much of the . programming was in assembly language.

The conclusions that can be made from Figure 5 are:

1. Certain productivity trends can be identified.

2. Productivity rates are dependent on many variables,

therefore no one productivity rate can be used as a rule

of thumb for accurate estimating.

3. Ba].]. Park estinmtes can be made for minicomputer software

development by using a one instruction per man hour pro-.

ductivity rate. This estimate must be refined of course,

if such things as type of language to be used, complexity,

and individual programmer efficiency are loiown.

Documentati on

The effort required to document computer software is included in the

total effort of Figure 5, but because the level of documentation desired

may range from full 14i].Spec (such as in accordance with Weapons Specifica-

tion WS-8506 and DOD Manual 14120.1741) to back of the envelope notes, it

23

should be considered separately.

Software documentation is one of the biggest “hidden costs ” in

generating software systems • When it is produced in quantity, it rarely

fulfills its fuiictions, and when it is omitted as a cost-saving measure,

the o~~anization pays for the some software oroblem to be solved over and

over. (21:80)

Figure 7 presents the computer software productivity data collected.

Nelson ’s data indicates the expected trend of a higher documentation

cost for a more coi’çlex scientific program . Because the lc.rge variations

in the data are so large and little justification was provided by the

sources no other trends can be identified.

Figure 8 shows the theoretical relatIonship of varying documentation

costs to total project cost and hypothesizes an optimum documentation

level.

Computer Time

The computer time required is another factor that must be considered

in the tots]. software development cost. Figure 9 presents the data

collected in this area. This data varies widely also. However, two

expected trends are indicated. Greater computer time is required for

complex programs using machine oriented language as opposed to simple

programs using procedure orientened language.

Indirect costs can be incurred if an inefficient computer operation

is used. For example, a programner may have to wait around for hours or

days to get a computer printout that he needs to move to the next step.

Ineffici~ ncies may also result if programmer man hours is traded off for

computer time • That is where desk checking may be more efficient, the

214

- ~~~~~~ _ - _ _ _- - - - - — — -_~~~~— --_ _ _ _ —----- _ - - - - _ _ __--

~~~~~

_-- _ - -_- _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - _ _ _ _  
_ _ _ _ _ _

d il
0

~~~

: •
~:~

nj ~~

~~~~~~~ ~~~~~~~
,
~~~

~~~~

I
C—

0
r1

$

I8

S 

F

~~~p4 
~~~ 

f-I ~~~~~ SZ•Lt~ U\
I . .~~~ •0

43 4~ 
C— U\ .r 1  C-

~~~~~~~~~~~~~~~~ Ir ‘mon

i i

25

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~



DOCWIENTATION -. 
- 

.100 1~kJCH DOCUMENTAT ION
COST

OPT IMUM
)OCUMENTAT ION
COST Too LITTLE DOCUMENTATION

0 LARGE PROJECT

TOTAL PROJECT COST

RELATION-OF DOCUMENTAT ION COST TO TOTAL PROJECT COST (18:155)

Figure 8.

26

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _



‘ I  

I

.

4) 1.i

~~.d r4 d -p

I

i L b
~ -rI O 2 U

= I.

ç:~ •;
~ r4 r-i

r-4
I-I

z

27



~~~~~~~~~~~~~

-.-- .

~~~~~~

--

~~~~~~

programmer keeps putting the program in the computer with only small

changes without thinking the problem out. This can be parti cularly costly

to the Coverninent if it is furnishing the computer time.

Task Breakdown

Figure 10 shows a breakdown of software development cost for tasks

as a percent of the tote], programming effort. This figure was included to

provide the rc~ader with a feel for the relative effort normally required

for testing of the nrogram . This knowledge would seem to be particularly

valuable when reviewing a contractors proposed development schedule. If

he has allowed only lO,~ of this total effort for testing, we have a high

probability for a schedule/cost growth.

Software Estimating Equations

Numerous equation using methods for estimating computer software develop-

ment costs exist. The Krauss Method (2L~:1OO) is su~r.marized and evaluated

by Norm . (20:22)

Krauss describes a method for estimating programming time that he says
he has found to be fairly accurate . The method is designed for use in
application programming projects , particularly business programming pro-
jects, ‘4th no restrictions as to the size of the programs . ~ icompassed
in the estimate of programming time is the time required for the program-
ining tasks of designing, coding, testing, and cocumenting . The method is
to be applied subsequent to the completion of the system design activity.

When applying this method, the estimator must use his judgment,
experience, and knowledge to determine as accurately as possible the
following five factors:

1. Size-the estimated number of computer instructions or the total
storage requirements for absolute code.

2. Complexity-an indicator based upon logic and variations in
processing.

3. Input/Output-the number and the kinds of devices to be controlled
by the program.

li. Programming Language-the language to be used to code.
5. Programmer Know-How-an indicator of orograumier experience.

28

-~ ~~~ ~~~ ~~~~ -- —-- _
~__ .4

a’

I
.
~~

r. . 4,

i~.
&

Cf .c~ m o n r ~i r z~

~~~~

°

~

° . 1 
~~

°“

~ ~~

29



Krauss constructed tables which can be used to determine values for
the above five factors. See Figure U for a list of values for each factor.
Krauss developed a formula which used thes factors to estimate the number
of man-days required to ‘ rogram. The formula is:

Unadjusted Estimate (in man-days ) =

(Estimated Size Valus x Complexity Value) + Input/Output Values.
Programning Language Value

To account for individual differences, the following formula is applied:

Adjusted Estimate =

Programmer Know-How Allowance x Unadjusted Estimate.

Krauss added two caveats to the use of his formula.

1. If a program consists of a number of modules which are either
written by different types of programmers, or vary in complexity,
each module must be estimated separately.

2. Because his formula does not take into account the time that
may be consumed in nonprogremmirig activities such as vacations,
holidays, administrative duties , training, company meetings,
presentations to management, etc., he suggests the use of an
overall loss factor of 20 to 30 percent for such activities.

The Krauss Method~s major flaw is its dependence on the estimator’s
ability to predict the size and complexity of the programs. Even though
the value range for these two factors is relatively broad, it has been my
~x’erience that most es~irnators have difficulty predicting project size
within 5,000 instructions of the actual program size before coding takes
place. The values for programming size in Figure II also assume a linear
relationship between effort. There is significant evidence that such
linearity does not exist for programming systems. As a result of the
assumption of linearity by Krauss , no size limitation ~as placed on the
programs to which this method could be applied. However, I believe that
the Krauss Method would be increasingly inaccurate as the programs increase
in size.

On the surface Krauss ’s equation looks promising for use in the DOD

Program Office, but lets look to see what happens when values that could

be expected on a DOD minicomputer programming effort are assumed.

30

—4



Figure U.
Krauss’s Values for input Variables

Est imated Size Value Range

1,000 - 5,000 1 -
6,000 - 10,000 6 - 10

11,000 
: 
15,000 U - 15

96,000 100,000 96 100

Complexity Rati~g Value Range

Low difficulty 1 — 2
Intermediate difficulty 3 - 6
Average difficulty 7 - 12
Above average difficulty 13 — 19
Very high difficulty 20 - 30
Experimental 31 - 50

Kind of Input/Output Device Value

Card Reader
Card Punch 2
printer
Console typewriter
Paper tape 6
)iagnetic tape 8
Disk 10
Data cell 12
Drum 12
Optical or }IICR reader 15
Typeuriter te~nninal 15

• Graphic terminal 15
• Audio terminal 15
• Film scanner 16

programming Languag~ Value

Absolute 2
Assembler
COBOL
PW1

9
FORTR?IB 10
Progr~~ ner Know-How illowance Range
Senior Programmer ~ .6 - L.0
Programer 0.9 -
Associate Programmer 1.2 - 1.6
Junior Progranm~er 1.14 - 1.8
Trainee Programmer 1.? - 5.0

31



Assumed Values :

Estimated Program Size - 5,000 Instructions, Value = S
Comnlexity Rating - Very High Difficulty, Value = 30

Kind of Input/Output Device - Console Typewriter/Printer, Value = 14

Programming Language - FORTRAN, Value = 10

Programmer Know How - Programmer, Value = 1

Loss Factor — 30Z

Calculation:

Unadjuste d Estimate (in man-days ) =

(Estimated Size Value x Complexity Value) + Input/Output Values
Programming Language Value

* 
S X 3 0 + i ~ + 1 4 = 15.8m a n days

Adjusted Estimate =

Programmer Know How Allowance x Unadjusted Estimate

= 1.0 x 15.8 man days = 15.8 man days

With a loss factor, the estimate becomes 20.514 man days for 5000

instructions. This is approximately 2143 instructions per man day, but

does not include the analysis and design tasks efforts. Decreasing this

by 140% (based on Figure 10) to compensate for analysis and design results

in approximately 1146 instructions per man day. The Krauss Method is

designed for use on bus ness programming projects . If a 5~~ reduction in

efficiency is assumed for a scientific program the productivity rate

decreases to 73 instructions per man day, which seems unrealistically high.

32

- — ~~~~~~~~~~~~~~~~~~~~~ 
, . — .~~~ - .



- . -~~~~~~~~ .- ~~~~~~—. ---.- -
~~~~

Because the most significant factors seem to be included in the

Krauss equation I believe it could be used effectively by making adjust-

merits to his input factors and adding factors for ccznputer time and

documentation.

Which Method?

This investigation leads me to the following course of action for

determining the resources required for a commuter software development

effort.

1. A baseline equation should be established that considers

programming effort, documentation effort and computer time

requirements. The equation would be established by using

the best possible data base (the data base that most closely

compares to the new program).

2. Refine the baseline equation by collecting and incorporating

historical data.

I don ’t believe the form of the equation is very important as long

as it meets the criteria above. There are software estimating equations

that are much more complex than Krauss ’ s, but any equation will be use-

less to the Program Office if it is not based on accurate historical data

from programs which are very similar to the one being estimated.

33

-~

I propose the baseline ~quation below:

ProCram Development Cost in Dollars -

(Programming Effort) +

(Do cumentation Effort) ~i.

(Computer Time) +

(Other Direct Costs)

((Sp) + (Sp x Op)) +

I
Ip (((Pep) ((Sp) + (Sp x Op))) + (Pp)) +

I (Ti) (Cc) +

(0DC) =

Where:

I = number of instructions in program

= programmer production rate in instructions per hour

Sp = programmer hourly wage

op programmer overhead rate

Ip = estimated number d~ instructions per page of documentation

Pep programner effort per page of documentation (hours)

Pp - production cost per page of documentation (art work, typing, - etc.)

Ti = computer time required (minutes per instruction)

Cc = Cost of computer time per minute

Initial values ‘~:ould be plugged into ~the equation based on the best

information available, and then updated or scaled to different applications

314

-. ---~~. -- -- - - -~- ----________

based on an increasing data base.

If the Program Office has many different but similar programming

efforts under contract it seems that a benificia]. data base could be

obtained rather quickly. This would seem especially true in the case of

an office that utilizes many minicomputers. I hope that it has been

su.t’ficiently demonstrated earlier in this report how one variable can

throw an estimate completely off , so great care must be taken to determ-

ine the differences between the data base programs and the new program.

Step 3 - Converting the Effort into Dollars

The discussion of actual dollar costs will be limited to presentat-

ion of some ty~”ical values as inputs to the proposed baseline equation.

((Sp) + (Sp ~ Op)) +

~~
(((Pep) ((Sp) + (Sp x Op))) + (Pp)) +

I (Ti) (Cc) +

(ox) -

~ (($10.00) + ($10.00 x 120%)) +

~ tj (((7) (($10~00) + ($10.00 x i20~))) + ($35.00)) +

(L x .6 x $5.00) +

(I x $22.00) + ((I) ($1514.00 + $35.00)) (I x $3.00) + (000) —
((TO)

$143,90 (I) + (oDe)

35

0 & A / fee were not included in the equation above. Oth~I~ Direct

Costs cover-such things as travel.

The values used in the examole above are my best estimat e of aver ages

based on my limited research, and of course would have little validity

for application for any specific situation. !~ach program must be con-

sidered individually.

36

- -

VII . CONCLUS I ONS AND RECC~ iENDATIONS

The poor cost estimate results in a large percentage of the cost

growth on DOD programs. The primary reason for poor estimates for comp-

uter software development is probably the lack of , and difficulty in

establishing standards.

The cost of computer software development will be based on a number

of factors, some of which are listed below.

1. Complexity of the program.

2. Efficiency of the programmers .

3. Size of the program.

14. Computer memory available to the programmer.

S. Level of documentation,

6. Quality/type of specification .

7. Type of language.

In order to make an accurate cost estimate for computer software

development a good historical data base is required. Therefore the pri-

mary recommendation of this report is that the Program Office establish

a data base which is broken down into as many cost contributing factors

as possible, by:

1. Making computer software a separate line item in a softwa re/

hardware contract.

2. Require that the contractor provide a Work Breakdown Structure

in accordance with Mil-Std-881 as part of his proposal, and

then report costs against it.

3. Annotate the contractors report with information that ;‘ill

37

L - - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - ~~~~~~~~~~

better define the effort accomnlishod. For example, the skill level

of the programn er.

Additional recommendations for the Program Office:

1. Contract for the Computer Program Performance Specification

and Computer Program Design Specification separate from the

actual pro{’raxnming effort.

2. Develop and update a baseline equation similar to the one

described in section VI.

Recommendation for futher study:

Conduct a thorough search to determine what canput er software devel-

opment data bases exist, and evaluate the success being obtained in

using them in estimating.

38

L~~. - - -

- -

BIBLIOGRAP HY

1. Weitzman, Cay; Minicomputer Systems, Structures Implementatioi,~and Application , Prentice-Hall, Inc., Englewood Cliffs, N.J., 19714.

2. Burkhaulter, K. E. Jr.; Characteristic I’i.nicomputer Architecture ,
Minicomputers II: Hardware, Software and Systems, Professional.
Growth in Engineering Seminar, National Engineering Consortium,
Inc., 19714.

3. Nelson, E. A.; Management Handbook for the Estimation of Computer
Programming Costs, Systems Development Corporation, Santa Monica,
Califor nia, March 20, 1967.

14. Melburn, Michael; Toward Full Disclosure of Program Status , The
Federal Accountant , March 19714.

5. Logistics Management Institue; Introduction to Military Program
Management; LMI Task 69-28, 1~1ashington, D.C., March 1971.

6. U.S. Air Force; Information Processing/Data Automation Implications
of Air Force Command and (~~ trol Recuirements in the l9BOt s (cCiP—55),
Executive Summary, February 1972.

7. Air Force Systems Coimand; Project Ace - Findings and Action Plan s —
Progress Report, .‘~ndrews AF~B, Nov. 1973.

8. Hank~, Dale; Prograrnmin~ Considerations for Minicomputers, Computers
and People, January 19714.

9. Farciuhar, J . A.; A Preliminary Inquiry Into the Software Estimating
Process, 1~4-627l-PR, Rand, Sonta Monica, Calif ornia, August 1970.

10. U.S. Air Force; Informati on Processing/Data Automation Implications
of Air Force Coimnand and Control Requirements in the 1980’s (CCIP-8S),
Vol. I, April 1972.

11. Goldberg, Jack , Editor; Proceedings of a Symposium on The High Cost
of Software, Held at the Naval Postgraduate School, Nonterery,
California, Sept. 17-19 1973, Stanford Research Institute, Menlo
Park, California.

12. Boehm, B.W. ; Software and Its Impact: A c’ualitative Assessm,~~~
Data mation , May 1973.

13. Keid er , Stephen P.3 Why Projects Faii, Datamation, December 19714.

114. Nanus, B., and Farr, L.; Some Cost Contributions to Large-Scale
Programs , Americ an Federation of Information Processing Societies,
inc., iJCC, 25, 19614.

39

—4

15. Data Processing Manual, Auerbach Publishers, 19714.

16. Brooks , F. P.; The Nythical Man-Morit,~~ Datamation, December 19714.

17. U.S. Navy; Comparison and Summary of AIVUYK-7 Combat System Testing
~(on line and off line) Rev A,~~ Naval Ship Engineering Center,

H.yattsville, Md., July 19714.

18. Wood, D. L.; Data Processing Value Engineering, Society of American
Value Engineering Proceedings, Meeting of May 13-16, 1973.

19. Fleishman, T.; Current Results From the Analysis of Cost Data for
Computer Progra mming, Electronic Systems Division, Air Force
Systems Command, L.G. Hanscom Field Bedford, Mass., August 1966.

20. liorin, Lois H.; Estimation of Resources for Computer Programming
Pro j ect,~~ M .S. Thesis , University of North Carolina , Chapel Hill ,
19714.

21. Ridge, Warren J . and Johnson, Leann E.; Effective Management of
Computer Software, Dow Jones-Irwin, Inc., Homewood, Illi nois, 1973.

22. Wolverton , Ray W.~ The Cost of Developin g Large Scale Softwar,~~
Paper prep ared for IEEE 1972 International Convention and
Exposition, New York, March 20-23, 1972.

23. Kerinevan, :1. J. and Joslin , E. 0.; Management and Computer Systems,
College Readings Inc., 1973.

214. Krauss, Leonard; Administering and Controlling the ComD any Data
Processing Function, Prentice-Hall, Inc., Englewood, N.J. 1969.

140

GLOSSARY CF ~IGITI AL CCMPIJTER T :R1iS (2: A— 8)

Absolute - Pertaining to an address fully defined by a memory address
n uniber , or to a orogr a~ which contains such addres ses (as opposed
to one containing symbolic addresses).

Accumulator - A register in ~-thich numbers are totaled, manipulated, or
temporarily stored for transfers to and from memory or external
devices.

Add - Res tric tive: tttwo l s comulement” addition of binary numbers.
General: any arithmetic addition.

Address - (Noun) A number which identifies one location in memory.
(Verb) To direct the computer to read a specified memory location
(synonymous with “reference ”).

Address Modification - A program ming technique of changing the address
specified by a incmor -re ference instruction , so that each time that
particular instruction is executed , it ~ill affect a differentmemory location.

Address Word - A computer word which contains only the address of a
memory location .

ALGOL - Algebraic-Oriented Language - An international algebraic
procedural language for a computer programming system.

Algorithm - A prescribed set of wefl-defined rules or processes for the
so1u~ion of a problem in a finite number of steps .

Al phanumeric - Pertaining to a character set that contains both letters
and nuraerals, and usu ally other characters .

Alter - A modification of the contents of an accumulator or extend
bit , e.g., clear , complement , or increment.

“Add” - A logical operation in which the resultant quantity (or signal)
is true if aU of the input values are true, and is false if at
least one of the input values is false.

Argument - 1) A variable or constant which is given in the ca.U of a
subroutine as information to it. 2) A variabl e u~on whose value
the value of a function depends. 3) The kno wn refcrence factor
necessary to find an item in a table or array i.e., the index.

A-i

- - -----

~

-

~

_ _ _ - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Arithmetic Logic - The circuit ry involved in manipulating the infor~nation
contained in a computer ’s accumulators.

Arithmetic Operatioi~ - Restrictive: A mathematical operation involving
fundamental ar [thnietic (addition, subtraction, multiplication,
division), s- ecifically excluding logical arid shifting operations.
General : any manipulation of numbers .

Array - A set of lists of elements, usually variab les or data.

ASCII - An abreviation for American Standard Code for Information
Interchange.

Assemble - To translate from a symbolic program to a binary program by
substituting binary operation codes for symbolic operation codes
and absolute or relocatable addresses for symbolic addresses.

Assembler - A program for a computer which converts a program prepared
in symbolic form (i.e., using defined symbols and mnemonics to
renresent instructions, addresses, etc.) to binary machine language.

Assembly Language - The source language used as input to an assembler
and translated by the assembler into machine language.

Auxiliary Storage - Storage that supplements core memory, such as
disk tape.

Background Processi ng - The automatic execution of a low priorit y
computer program when higher priority programs are not using the
system resources.

Base - The quanti ty of different digits used in a particular numbering
system. The base in the binary numbering system is two; thus there
are two digits (0 and 1). In the decimal system (base 10), there
are ten digits (0 through 9). -

Bas e Address - A given address f rom which an absolute address is
derived ~by combination i~rith a relative address .

Base Page - The lowest numbered page of a computer ’s memory. It can
be dircctly addressed from any other page.

Binary - Denoting the numbering system based on the radix two. Binary
digits afe restricted to the values 0 and 1.

Binary Coded Decimal (BCD) - A coding method for representing each
decimal digit (0-9) by specific combina tions of four bits. For
example , the 8-14—2-1 bed code commonly used with computers represents
“1” as 0001, and “9” as 1001.

A-2

- ~~~~~ — - -~~~~~~~~ -~~~~-~~~~~~~~~~~~~~~~~ - -~~~~~~~

Binary Program - A program (or its recordi ng f o r m) in which all.
information is in binary machine language.

Bistable - Pertaining to an electronic circuit having two stable
states, controllable by external switching signals, analogous
to an on-off switch .

Bit (b) - A ~:ing1e digit in a binary number, or in the recorded
rcpresentati ’n of such a number (by hole punches , magnetic
states , etc). The digit can have one of only two values, Oor 1.

Bit Density - A ~hy’sica]. specification referring to the number of bit s
which can be recorded per unit of length or area.

Bit seri al - One bit at a time, as opposed to bit parallel in which
all bits of a character can be handled simultaneously.

Block - A set of consecutive machine words, characters, or digi ts
handled as a unit, particularly with reference to I/O.

Bootstr~~ - A technique or device designed to bring itself into a
aesired state by means of its own action, e.g., a routine whose
first few instructions are sufficient to bring the rest of itself
into the computer from an input device.

Branch - A point in a routine where one of two or more choice s is made
under control of the routine .

Breakpoint - A point in a computer program at which conditional
inte rruption is made to permit visual check , printout s, or other
debugging aids .

Buff er - A register used for intermediate storage of information in
the transfer sequence between the compute r ’ s accumulators and a
peripheral device or a designated area of memory used to temporarily
hold data.

- A mistake in tim design or 1i~ip1enientati on of a pro gram resulting
in erroneous results.

Bulk Memor~ - Storage in addition t~ the main memory of the computer,
e.g., magnetic tape , disc or drum.

Bus - A major electrical path connecting two or more electrical circuits.

A group of binary digits usually operated upon as a unit, frequently
eight b.

Calling Sequence - A specified set of instructions and data necessary
to set up and call a given routine.

Carry - A digit , or equivalent signal, resulting from an arithmetic
operation which causes a positional digit to equal or exceed the
base of the effective numbering system.

A-3

-- — --— -~~- - -- -- —-------- - — _ — ---- ------— - - -

_ _ _______—_ _ _

Central Processing Unit (Cpu) - The unit of a computi ng system that
includes the circuits controlli ng the interpretation and execution
of instructions--th e computer proper , excluding I/O and other
peripheral devices.

Character - The general term to include all symbols such as alphabetic
letters , numerals , punctuation marks , mathematical operators ,
etc. Also, the coded representation of such symbols.

Checkpoint - A point in time during a program run at which processing
is momentarily halted to make a record , on an external storage
medium of the condition of the variables of the program being
executed.

Clear - To erase the contents of a stora~-e location by replacing thecontents, normally with zeros or spaces; to set to zero.

Code - A system of symbols wh i ch can be used by machines, such as a
computer , and which in specific arrangements have a suecial
external meaning .

Coding - Writing instructions for a computer using symbols meaningful
to the computer , or to an assembler, ~compiler, or other language
processor.

Compatability - The ability of an instruction or source languag e to
be used on more than one computer.

Compile - To produce a binary-coded program from a program witten in
source (symbolic) language , by selecting appropriate subroutines
from a subroutine library, as directed by the instructions or
other symbols of the source program . Linkage information is
supplied for combining the subroutines into a workable program,
and the subrc~itines and linkage are translate~ into binary code.

Con~iler - A lan guage translation program, used to transform symbols
meaningful to a human operator to codes meaningful to a computer.
More restrictively, a program which translates a machine-independent
source language into the machine language of a specific computer,
thu s excluding assemblers .

Cornplement — (One ’s) To replac e all bits with 1 bits and vice versa.
(~ woTs) To form the one ’s complement and add 1.

Computation - The processing of information within the computer.

Computer (digital)~ - An electronic instrument capable of acce ting,
storing, and arithmetically maniput la ting information , which
include s both data and the controlling program . The information
is handled in the form of coded binary digits (o and 1),
represented by dual voltage levels, maguetic states , punc hed holes,
etc .

V

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -. - - --~~~~~—~~~~~- - ~~-

Computer Word - See “word” .

Conditioned Assembly - Assembly of certain parts of a symbolic program
only if certain conditions have been met .

Configuration - The arrangement of either hardware instruments or
softwari routines when combined to operate as a system.

Console - Usually the external front side of a device, where controls
and indicators are available for manual operation of the device.

Constant - Numeric data used but not changed by the nrogram.

Contents - The information stored in a register or memory location.

Convert - 1) To change numeric data from one radix to another. 2) To
transfer data from one recorded f ormat to another.

Core - The smallest element of a core storage memory module. It is
— a ring of ferrite material that can be magnetized in clockwise

or count~” :~ -‘ckwise directions to represent the two binary digits,
O a nd l.

Core Memo~~ - Ti1’ ‘— .iin high-speed storage of a computer, in which
binary data is represented by the switching polarity of magnetic
cores.

Current Location Counter - A counter kept by an assembler to determine
the address assigned to an instruction or constant being assembled.

Current Page - The memory page comprising all those locations which
are on the same page as a given instructj on.

Cycle Time - The ]ength of time it takes the computer to reference
one word of memory.

Data - A general term used to denote any or all facts, numbers, letters,
and symbols. It connotes basic elements of information which can
be processed or produced by a computer.

Data Accuisition - The gathering, measuring, digitizing, and recording
of continiiius-form (analog) information. -

Data Peducticn - The transformation of raw information gathered by
me~.surin~ or recording equipment into a more condensed, organized,
or useful form.

i)ata Word - A computer word consisting of a number, a fact, or other
information which is to be processed by the computer.

A-S



Debug - To check for and correct errors in a program.

Decimal - Denoting the numbering system based on the radix ten.

Decrement - To chan~e the value of a number in the negative directi oli.
If not otherwise stated, a decrement by one is usually assumed.

Device - An electronic or electromechanical instrument . Most commomly
implies measuring, reading, or recording equipment.

Diagnostic - (Adjective) Relating to test programs for detection of
of errors in the functioning of hardware or software, or the
messages resulting from such tests. (Noun ) The test program or
message itself.

Digit - A character used to represent one of the non-negative integers
smaller than the radix, e.g., in binary notation, either 0 or 1.

Direct Address - An address that specifies the location of an instruction
operand.

Direct I•~einory Access - A means of transferring a block of information
words directly between an external device and the computer ’s
memory, bypassing the need for repeating a service routine for
each word. This method greatly speeds the transfer process.

Disable - A signal condition which prohibits some specific event
from proceeding.

Disc Storage - A means of storing binary digits in the form of
magnetized spots on a circular metal plate coated with a magnetic
material. The information is stored and retrieved by read-write
heads which may be positioned over the surface of the disc either
by moving the heads or the disc itself.

Documentation - Manuals and other printed materials (tables, listings,
diagrams, etc.) which provide instructive information for usage
and maintenance of a manufactured product, including both
hardware and software.

Double-len1~~ Word - A word which, due to its length, rec!uires two
computer t~ords cc represent it. Double-length words are normally
stored in two adjacent memory locations.

Double Precision - Pertaining to the use of two computer words to
represent one number.

Do~mtime - The time interval during which the device is inoperative. —



Dw any - Used as an adjective to indicate an artificial address , instruction,
or record of information inserted solely to fulfill prescribed
conditions, as in a “dummy” variable.

- To c o y  the contents of all or part of core memory, usually onto
an external storage medium.

Dynamic Relocation - The ability to move programs or data from auxiliary
memory into main memory at any convenient location. Normally the
addresses of programs and data are assigned when the program is
compiled.

Effective Address - The address of a memory location ultimately affected
by a memory reference instruction. It is possible for one instruction
to go through several indirect addresses to reach the effective
address.

&iable - A signal condition which permits some specific event to
proceed, whenever it is ready to do so.

“Exclusive Or” - A logical operation in which the resultant quantity
(or signal) is true if at least one (but not all) of the input values
is true, and is false if the input values are all true or all false.

Execute - To fully perform a specific operation, such as would be accom-
plished by an instruction or a program.

Exit Sequence - A series of instructions to conclude operation in one
area of a program and to move to another area.

External Storage - A separate facility or device on which data usable by
the computer are stored (such as paper tape, tape, or disk).

Field - 1) One or more characters treated as a unit. 2) A specified
area of a record used for a single type of data.

File - A collection of related records treated as a unit.

Filename - Alphanumeric characters used to identify a particular du e.

Fixed point - A numerical notation in which the fractional point
(whether decimal , octal , or bin ary ) anpears at a constant predetermined
position. Compare ~ith “floating point .”

- A variable or register used to record the status of a progrm~
or device - in the latter case sometimes called a “divine flag.”

A-?

--- -- - -

~

--- -

~ 

_ _ _ _ _ _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Flip-Flqp - An electronic circuit having two stable states, and thus
capable of storing a binary digit. Its states are controlled by
signal levels at the circuit input and are sensed by signal levels
at the circuit output.

Floating Point - A numerical notation in which the integer and t~~exponent of a number are separately represented (frequently by two
computer words), so that the implied position of the fracticna].
point freely varied with respect to the integer digits. Como are with
“fixed point. ”

Flowchart - A diagram representing the operation of a computer program.

Foreground Processing - Higher priority ~roces~in~ that takes precedence
over “background processing” and can interrupt such processing.
It results from real-time events or enquiries.

Format - A predetermined arrangement of bits and characters.

F0RTR~N - A programming language (or the compiler which translates this
language) which permits programs to be idtten in a form resembling
algebra, rather than in detailed instruction by instruction format.

Forward Referencing - The need to refer to a symbol in a program prior
to its definition (i.e., trying to asseble the instruction JUMP
PLACE, where PLACE is a location symbol further down in the program
code).

Full-Duplex - Describing a communicational channel capable of simultaneous
and independent transmission and reception.

Gate - An electronic circuit capable of performing logical functions
such as “ and” , “or ” , “nor ”, etc.

Half-Duplex - Describing a communication channel capable of transmission
and/or reception, but not both simultaneously.

Hardware - Electronic or electrcmechanical components, instruments or,
systems.

High Core - Core-memory locations having high-numbered addresses.

“In clusive-Cr” - A logical operation in which the resultant quantity
(or signal) is true if at least one of the input values is true,
and is false if the input values are all false.

Increment - To change the value of a number in the positive direction.
If not otherwise stated, an increment by one is usually assumed.

A-B

L

— -~~~~~~~ -~~~— -— — — - ~~~~ -~~~~~~~~~~~~~~~~~~~~~~ --~~~~~ -.- -~~---- -

Incremental 1~iacnetic Tape - A form of magnetic tpe recording in which
the recording transport advances by small increments (e.g., O.OOS in.),
stopping the tape advancement long enough to record one character
:lt the soot located under the recording head.

Index Re p-ister — A memory device containing an index. See “Address
~odification.”

Indirect Address - The address initially specified by an instruction
when it is desired to use that location to re-direct the computer
to some other location to find the tleffectjve address” for the
instruction.

Information - A unit or set of knowledge represented in the form of
discrete “words , ” consisting of an arrangement of symbols or
(so far the digital computer is concerned) binary digits.

Inhibit - To prevent a specific event from occurring.

Initialize - The procedure for setting various parts of a stored program
to starting vaLues , so th at ttie program will behave the same way
each time it is repeated. The procedures are included as part of
the program itself .

Input - Information transferred from a perinheral device into the
computer. Also applied in the transfer process itself .

Inout/Output (I/O) - Relating to the equipment or method used for trans-
mitting information into and out of the computer.

Inout/Output Channel - The complete input or output facility for one
individual device or function, including its assigned position in
the computer, the interface circuitry, and the external devi ce.

Instruction - A witten stateme~ t or the equivalent computer-acceptance
code, which tells the computer to execute a specified single
operation.

Instruction Code - The arrangement of binary digits which tell the
computer to execute a particular instruction.

Instruction Logic - The circuitry involved in moving binary information
between registers, memory, and buffers in prescribed manners,
according to instruction codes.

Instruction ~iord - A computer word containing an instruction code. The
code bits may occupy all or (as in the case of memory rcierence
instruction words) only tart of the word .

A-9

- 4

r~~~~~~~

Interface - The connecting circuitry which links the central processor
of a computer system to its peripheral devices.

Internal Storage - The storage facilities forming an integral physical
part of the computer and directly controlled by the compi~ter.
Also called “main memory” and “core memory.”

Interpreter - A program which translates and executes source language
statements at run time.

Interrupt - The process, initiated by an external device, which causes
the computer to interrupt a program in progress, generally for
the purpose of transferring information between that device arid
the computer.

Interrupt Location - A memcry location whose contents (always an
instruction) are executed upon interrupt by a specific device.

Iteration - Repetition of a group of instructions.

Job - A unit of code which solves a problem, i.e., a program and all
its related subroutines and data.

- An instruction which breaks the strict sequential location-by-
location operation of a program and directs the computer to
continue at another specified location anywhere in memory.

K - One thousand twenty four. For example, 14k words of memory me - ns
1.~O96 words.

Label - Any ~rrangement of symbols, usually alphanumeric, used in place
of an absolute memory address in computer nrogramming.

Language - The set of symbols , rules, and conventions used to convey
information, either at the human level or at the computer level.

Leader - The blank section of tape at the beginning of the tax e.

Least Significant Digit - The rightmost digit of a number.

Library Routine - A ro-itime designed to accomplish some commonly
used mathematical function and kept perm3nently available on a
library rrogram ta~e (e.g., FO~TI~AN Library).

Line Feed - A terminal or line printer operation which advances the
the ~aper by one line.

Line Number - In source languages such as BASIC and FCRTR.AN, a number
which be~-ins a line of the source program for purposes of identifica-
tion. A numeric label .

A-1O

--

Linkap e - In r rogramming, code that connects two separately coded
routines.

List - 1) A set of items. 2) To print out a listing on the line printer
or terminal. 3) See “Pushdown list, ”

Literal - A symbol which defines itself.

Load - To put information into (memory, a register, etc.). Also
(e.g., loading tape), to ~ut information medium into the appropriate
device.

Loader - A ~rograzn designed to assist in transferring information from
an ext -rnal device into a computer’s memory.

Load Time - That time at which an assembled program is placed in the
computer and readied for execution.

Location - A group of storage elements in the computer ’s memory which
can store one computer word. Each such location is identified by
a number (“ address ”) to facilitate storage and retrieval of information
in selectable locations.

Logical Operation - A mathematical process based on the principles of
truth tables, e.g., “and ’, “inclusive—or ”, and “exclusive-or”
ore rations.

Logic Diagram - A diagram which represents the detailed internal
functioning of electronic hardware, using binary logic symbols
rather than electronic component symbols .

Logic Equation - A written mathematical statement, using symbols and
rules derived from Boolean alL ebra. Specifically (hardware design),
a means of stating the conditions requi red to obtain a given signal.

~222~
- A sequence of instructions in which the last instruction is a
jump back to the first instruction.

Low Core - Core-memory locations having low-numbered addresses.

Machine - Pertaining to the cmruter hardware (e.g., machine timing,
machine language).

Machine Lan~uage - The form of code information (consisting of binary
digits) which can be directly accepted and used by the computer.
Other languages require translation to this form, generally with
the aid of translation programs (assemblers and compilers).

A-li

- - -

~ -

Machine Timing - The regular cycle of events in the operation of inL - ~al
computer circuitry. The actual events will differ for various
orocesses, but the timing is constant through each recurring cycle.

Macro - An assembly-time facility that allows lines of text to be
retrieved and modified by the substitution of text for duxrmy names
in the saved text. The resulting modified text is assembled
at the point of retrieval.

Macroinstruction - An instruction, similar in binary coding to the
computer ’s basic machine-language instructions, which is capable
of producing a variable number of machine-language instructions.

Magnitude - That portion of a com’~uter word which indicates the absolute
value of a number, thus excluding the sign bit.

Mask - A bit oattern which selects those bits from a word of data which
are to be used in some subsequent operation.

Mass Storage - Pertains to a device, such as tape or disk, which stores
large amounts of data readily accessible to the central processing
unit.

Media Conversion - The transferral ol’ recorded information from one
recording medium (e.g., punched paper tape, magnetic tape, etc.)
to another r~cording medium.

Memory - An organized collection of storage elements (e.g., ferrite
cores), into ~ihich a unit of information consisting of a binary
digit can be stored, and from which it can later be retrieved.
Also, a device not necessarily having individual storage elements,
but which has the same storage and retrieval capabilities
(e.g., magnetic discs).

Memory Cyele - That portion of the computer ’s internal timing during
which tne ~ontents ox one location of memory are read out (into
the Transfer Register) and written back into that location.

Memory Module — A complete se~ nent of core storage, capable of storing
a definable number of computer words (e.g., 14096 or 8192 words).
Computer storage capaci ty is incremental by modules and is frequently
rounded off and abbreviated as “14k” (e.g., 14096 or approximately
14000 words), “Bk ” (8192 or 8000), “16k”, etc.

Memo ry Protect - A means of preventing inadvertent alteration of a
selectable se~ nent of me~~ry.

Memory Reference - The address of the memory location specified by a
memory-reference instruction, i.e., the location affected by the
instruction.

A-12

_ _ --— -— ~~--~~ - - - - - -~~~~~~~~~~ ---~~~ -_ _ _ _

hicroconmuter — A general term used to describ e computers or major
parts of a computer when they are implemented on LSI chips.

Microinstruction - An instruction which forms part of a larger composite
instruction.

Minicomputer - A genera]. term used to describe small computers. In
this sense, small usually implies both the computer ’s physical
size and its word size (data-path width). ilost ininiconputers are
designed with a 16 bit word size, but sizes from B to 19 bits are
considered in the ininicomouter range.

Monitor - An operating orograziuning system which provides a uniform
method for handling the real-time aspects of program ti~iing, such
as scheduling an~ basic input/output functions.

Most Significant Digit - The leftmost nonzero digit.

Multi-Level Indirect - Indirect addressing using two or more indirect
addresses in sequence to find the effective address for the current
instruction.

Multiple-l’recision - Referring to arithmetic in which the computer ,
for greatest accuracy, uses two or more words to represent one
number.

Multiprocessing - ~Jtilization of several computers or pro cessors to
logically or functionally divide jobs or processes , and to execute
them simultaneously .

Multipr ogr~mning - A system of execution of two or more programs kept
in core at the same time . Execution cycles between the programs.

Norma].ize — To adjust the exoonent and fraction of a floatin g—point
— quantity so that the fraction appears in a pr escribed format.

Object Progra unn ing - The binary coded program which is the output
after translation from the sourc e langu age; the binary program
which runs on the com?uter .

Octal - Denoting a numberin g system based on the radix eight. Octal
digits are restricted to the values ,O throug h 7.

Octal Code - A notation for writing machine-langua ge programs with the
use of octal numbers instead of binary numbers.

Off-Line - Pertainin g to the operation of peripheral equipment not
under control of the computer.

A-13

One’s Comp1en~ nt - A number so modified that the addition to the modified
number and its original value , plus one , will equal an even oower
of two. A one ’s corn lement number is obtained mathematic ally by
subtracting the original value from a string of l’s, and electronicall y
b , inverting the states of all bits in the number.

On-Line - Pertaining to the operation of perip heral equipment under
compute r control.

Operand - That which is effected , manipul ated , or operated upon. The
address or symbolic name , port ion of an assembler instruction.

Operat inr System - An integrated collection of routines for supervi sing
the sequencing of programs by a computer , e.g., debugging, input/
output , operation , compilation , and storage assignaent.

Ox)erat ion (or) Code - Tha t part of an instruction designating the
ope r.~tion to be performed.

Operator - That symbol or code which indicate s an action (or operation)
to be performed.

Optisum Code - A set of machine i nguage instructions which is particularly
efficient with regard to a particul ar aspect , e.g., minimum time
to execute or minimui or efficient use of stor age space.

“Or” - (Inclusive) A logical opera tion such that the result is true if
either or both operands are true , and false if both operands are
false. Exclusive) A logical operation such th at the re sult is true
if either operand is true , and false if both operands are either
true or false.

Origin - The absolute address of the beginning of a section of code.

Output - Information transferr ed from the corn uter to a perip heral
— device. Also apolied to the transfer orocess itself.

Overflow - A condition that occur s when a mathematical operation yields
a resul t whose magnitude is larger than the program is capable of
handling .

Overlay - The operation of bringing into main memory and executing a
segment which is a subprogram (i.e., a more or less ser arate
entity) of a larger program.

Packed word — A computer word containing two or more independent uni ts
of info rmation . This is done to conserve storage when information
re c uire s relatively few bits of the computer word .

Pac e - An artificial division of memory consisting of a fixed number of
locations , dicat ed by the direct addressin g range of memor y reference
instructions.

A-14

Page Zero - The memory page which includes the lowest numbered memory
addresses.

Parity Bit - A supolementar y bit added to an information word to make
the~~otal of one-bits always odd or even. This r)erjn.its checking
the accuracy of information transfers.

Pass - The com~lete orocess of rcading a set of recorded information
(one tape, one set of cards, etc.) through an input device , f rom
beginning to end.

Patch - To modify a routine in a rough or exoedient way.

Peripheral Device - An instrument or machin e electrically connected to
the coxnnute r , but which is not part of the computer itself .

Plane - An arrangement of ferrite cores on a matrix of control and
sensing wires. Several planes stacked together form a “memory
module. ”

Pointer Address - Address of a core-memory location containing the
actual (effective) address of desired data .

Power Failure Control - A me~ ns of sensing primary power f ailure so
th at a special routine may be executed in the finite period of
time available before the regulated dc supplies discharge to
unu sable levels. The special routine may be used to preserve the
state of a progr am in progress , or to shut down external processes .

Priorit y - The automatic re gulation of events so that chosen actions
will take precedence over others in cases of timing conflict.

Procedure - The course of action taken for the solution of a problem;
also called an “algorithm.”

Process Control - Automatic control of manufacturing processes by use of
a computer.

Processor - The central unit of a computer system (i.e., the device
which accomplishes the arithmetic manipulations), exclusive of
peripheral devices . Frequently (when used as an adjective) also
excludes interfac e comoonents , even though mormally contained
within the processor unit ; thus “processor ” options exclude inter-
£ ace (“input/output”) options.

Program - A plan for the solution of a problem by a compute r , consisting
of a sequence of computer instructions.

Program Listing - A printed record (or equivalent bin ary-output progr am)
of the instructions in a program.

A-iS

_ _ _ _ _ _ _ _ _ _ _ _ _ _ . , ~~~~~~~~ - -

_ _ _ ~~ ~~~~~~~~~~~—~~~~~~ --~~~~~ -~~~~~~~~~~ - -- ~

Prorrammer - A nerson who writes computer r~rograms . Also (hardware) ,
an interface card or instrumen t which sets up (or “programs ”) the
various functions of one measuri ng instrument .

Programmi~~ - The process of creating a ~rogram.

Pseudo Instruction - A symbolic statement , similar to assembly-
language instructions in general form, but meaningful only to the
program conta ining it , rather than to the computer as a machine
instruction.

Punched Tape - A strip of tap e, usually paper , on which information is
repre sented by coded pattern s of holes punches in columns across
the width of the tape. There are commonly 8 hole positions
(channels) across the tape.

pushdown List - A list that is c nstructed and maintained so that the
next item to be retri eved is the item most recently started in the
list.

Queue - A waiting list. In timesharing , the monitor maintains a queue
of user pro grams waiting for processing time .

Radix - The base of a number system, the number of digit symbols
required by a number system. See “binary, ” tsoctsl .tI

Random-Access - Pertaining to a storage device In which the accessibility
of data is effectively independent of the location of the data.
(Synonomous with “direct—access ”) .

Read - The process of transferring information from an input device
into the computer. Also, the process of taking information out
of the computer ’s memory. (see “memory cycle”) .

Real Time - Time elapsed between events occurring ext.ernally to the
computer . A computer which accepts and processes information from
one such event and is ready for new inform ation before the next
event occurs is said to operate in a “ real-time environment. ”

Record - A collection of related items of data , treated as a unit.

Recursive Subroutine - A subroutine capable of calling itself and returning
at some] ater point to the pro gram which initially called it.

Reentrant Code - A program segment (e.g., subroutine) whi ch can be
— executed (i.e., reentered) by more than one other program

simultaneously. This mode of operati on requires a separate stor age
area for storing in.forma tion that varies for each instanc e of
execution .

A-16

_ _ _

Register - An array of hardware binary circuits (fl ip-flops, switches,
etc.) for temporary storage of information . Unlike mass storage
of devices such as memory cores , registers can be wired to permit
flexible control of the contained information, for arithmeti c
operations, shifts, transfers, etc.

Relative Address - The numbei- that specifies the difference between the
actual address and a base address .

Relocatabl e - Pertaining to programs whose instructions can be loaded
into any stated area of memory.

Relocating Loader - A computer program capable of loading and combining
relocatable programs (i.e., programs having symbolic rather than
absolute addresses) .

Reset - A signal condition rep resenting a binary “zero.”

Response Time - Time between initiating some operation from a terminal
and obtaining results . Includes tr ansmission time to the computer ,
processing time, access time to file records needed , and transmission
time back to the terminal.

Restart - To resume the execution of a progr am.

Rotate - A positional shift of all bits in an accumulator (and possibly
an extend bit as well) with those bits lost off one end of the
accumulator “rotated ” around to enter vacate d positions at the
rt her end.

Routine - A program or program segment designed to accomplish a single
function.

~n Time - The time during which a program is executed.

Segment - 1) That part of a long program which may be resident in core
at any one time . 2) To divide a program as in 1, or into two or
more segments, or to store part of a program or routine on an
external stor age device to be brought into core as needed.

Serial -Access - Pertaining to the sequential or consecutive tr ansmission
of data to or from core , for example, paper tane. Contrast with

“ random—access. ”

Service Routine - A seouence of instructi ons designed to accomplish
the transfer of information between a particular device and the
computer.

Set - A signal condition represen ting a binary “one. ”

A-i?

Shift - Restrictive (arithmeti c shift): to multiply or divide the magnitude
portion of a word by a power of two, using a positional shift of
th~es bits . General: any positional shift of bits .

- The algebraic plus or minus indicator for a mathematical cuantity.
Also, the binary digit or electrical polarity representing such an
indicator.

Significant Digit - A di4t so positioned in a numeral as to contribute
a definable degree of precision to the numeral . In conventicnal
written form, the nost significant digit in a numeral is the left-
most digit , and the least signifi cant digit is the rightmost digit.

Simulate - To represent the functioning of a device , system , or computer
nrogram with another system or program.

- An instruction which causes the xomputer to omit the instruction
in the immediately following location. A skip is usually arranged
to occur only if certain specified conditions are sensed and found
to be true , thus allowing various decisions be made.

Snans hot Dump - A dynamic printout during execution, at breakpoints and.
checkpoints , of selected areas in storage.

Software — Computer •~rogra ms . Also, the tapes or cards cn which the
programs are recorded.

Software Fack~~~ - A complete collection of relate c~ programs , not
necessarily combined as a single entity.

Source Program - A - rogr am (or its recorded form) written in some
programing language other than machine language and thus requiring
translation. The translated form is the “object program.”

Starting Address - The address of a m :mory location in which is stored
the first instruction on a given program.

Statement - An instruction in any computer-relate d language other than
machine language.

Storage Allocation - The assignment of blocks of data and instructions
to snecifie d~~locks of storage.

Storag e Cap~acity - The amount of data that can be entered , retained ,
and retrieved.

Storage Device - A device in -~thich data can be entered , retained , and
retrieved.

Store - To put information into a memory location , register , or device
capable of retaining the information for late r access.

A-18

-~

String - A connected sequence of entities, such as characters in a
command string.

Subroutine - A sequence of instructions designed to perronn a single
task, with provisions included to allow some other program to cause
execution of the task sequence as if it were part of its own program.

Subscript - A value used to specify a particular item in an array.

Swapping - In a timesharing environment, the action of either temporarily
bringing a user program into core or storing it on the disk or
other system device.

Switch - A device or programming technique for making selections.

Symbol Table - A table in whi ch symbols and their corresponding values
are recorded.

~ymbolic Address - A label assigned in place of absolute numeric addresses,
usually for Purposes of relocation. (See “relocatable .”)

Symbolic Coding - Broadly, any coding or programming system in which
symbols other than actual machine operations and addresses are used.

symbolic Instructions - An instruction which is the basic component of
an assembly language (input to assembler) and is directly translatable
into machine language.

~yntax - 1) The str~~ ture of e~q)ressions in a programming language. 2)
~~e rules governing the structure of a programming language.

Table - A collection of data stored for ease of reference, generally
an array.

Temporary Storage - Storage locations reserved for immediate results.

Terminal - A peripheral device in a system through which data can either
enter or leave the computer.

Timeshari~~ - A method of allocating central-processor time and other
con~uter services to multipl e users so that the computer , in
effect , proces ses a nu±er of pro grams simultaneously.

Time Slicin~ - A method of job scheduling in a multiprogra’~med
system, This refers to the allocation of fixed amounts of
computing time among users on a round-robin basis. Interrupts
are generated by a fixed interval timer causing control to pass
to the next wai ting service request-.

Toggle - Using switches to enter dat a into the computer memory.

A—19

Transfer Vector - A table, usually at a fixed location in memory,
containing jump instructions and/or indirect addresses for ju mp
instruction. When a jump instruction to a particular routine or
when the address of a routine is placed in this table, other routines
can call the routine without necessarily Imowing its actual location
in memory, This technique is used frequently when a relocatable
assembler is not available for a particlar machine.

Truncation - The reduction of precision by dropping one or more of the
least significant di:~its; e.g., 3.lhlS92 truncated to I~ dccimaldigits is 3.].1.~l.

Truth Table - A table listing of all possible configurations and
resultant values for any given Boolean algebra function.

~~~0
t 5 Complement - A number so modified that the addition of the modified

number and its original value will equal an even power of two. Also,
a kind of arithmetic which represents negative numbers in two ’s
complement form so that all addition can be accomplished in only
one direction (positive increinentation). A two’s com plement number

- is obtained mathematically by subtracting the original value from
an appropriat~ power of the base two, and electronically by
inverting the states of all bits in the number and adding one
( complement and increment).

Underflow - A condition that occurs when a floating-point operation
yields a result whose magnitude is smaller than the orogram is
capable of handling.

Ufldated Program — A program to which additions, deletions, or corrections
have been made.

User - The person or persons who program and operat a particular computer.

Utility Routine - A standard routine to assist in the operation of the
computer (e.g., device drivers, sorting routines, etc.) as opposed
to mathematical ( “library”) routines.

Variable - A symbol whose value changes during execution of a program.

Waiting Loop - A sequence of instructions (frequently only two) which
are repeated indefinetly until a desired external event occurs,
such as the receipt of a Flag signal.

Word - A set of binary digits handled by the cor~puter as a unit of
information. Its length is determined by hardware design, e.g.,
the number of core s ~~r location , and the number of flip-flops
per register.

A-20



A

r

Word Length - The number of bits in a word .

Working Register - A register wh m’so contents can be modified under
• control of a program. Thus a register consisting of manually

operated switches is not considered a wor king register.

Write - The process of transferring infonnatior~ from the comsuter to
an output device. Also, the process of storing (or restoring)
information into the computer ’s memory (see “memory cycle ”).

t

A-U 

- 

~~ -~~~~~-


