
•___
I!!

-

_ UI:r


~~~~~~~~~ -- ~~—~--—~

- 

r~

FOR FIJRTIIER 1~AN ~
AL SIMULATION FACILITY/~APAB ILITY MANUAL

C~ VOLUME lb 
Q

2”p

~~ 
EXECUTIYE SUMMARY AND IYSTE NS ~YIONICS IYISION ,

l
~~~~ 

RESEARCH TRIANGLE INSTITUTE
~ ØØ 3RESEARCH TRIANGLE PARK, N.C. 27709 —

I~~~~i7
~~~~~~~~~~~~~ 

_

~ c~
) A F~tJ I 

_ _  

_ _

_ _ _ _ _ _ _ _ _ _ _ _ _  

D D CTECHNICA1~~~ PcH~T ~&p pn.i7..i1 g 
~~~FINAL%EP iI~~ ._IUD~ UL 76 - I iirW I ftl JUN 22 191R

_ _ _ _

IIL__

-
I ~~D~~ ed for public Me~ e; dk~ butIon unU~~~~ j E

~~ ()~~Richard A . M s n a nt ~~ r T .H o ward/ 1~Ued~er]

AIR FORCE ~~‘IONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

_
~~~~~~~~~~~~~

~ -



NOTICE

When Gover,~nent drawings, spe cifications , 03’ other data are used f o r
any pu r~pose other than in connection with a definitely related Government
p 2r oc~a.ement operation , the Uni ted States Gover~vnent thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
government may have fo rmulated, f t~rni shed, 02’ in any way stQp U4d the aa vd
drawings, specifications , or other data, is not to be regarded by i~~lica-
tion or othe1uise as in any manner licensing the hol4er or any other person
or corpo i’ation, or conveying any rights or permission to manufacture, use,
or sell any pa tented invention that may in any way be related thereto .

This report has been reviewed by the Information Office (10) and Is a
releasable to the Nationa l Technical Information Service (NTIS). At NTIS,
it will be availabl e to the general public , including foreign nations .

Thi s technical report has been reviewed and Is approved for publication .

~~~~~~~~~~~~EE Jr, / L t USAF £ I L .
’
S~~~~~iR,~~~ ,USAF

Project Engineer Chief, System Simulation Branch

FOR THE COI IANOER 3

~~~~~~~D W . ~~~ITH,Lt ~~ol ,W~~~~Act ’g Chief , System Avionics Division
Air Force Avionics Labo ratory

*

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a specif ic
doczsnent.

AIR PORCE/56Th0/16 May 197S —60

3

:~ 
- T

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~— - - — - - .-.---


~—.o. -.--~~~
-

.~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~

,‘

~~~~~~~~~~~
- 

~~~~~~~~
—

~
-—--

~~~~~~ ~~~~~~~~~~~~ 
-.. -.———-

UNCLASSIFIED
SCCURITY CLASSIFICAT ION OF THIS PAGE (1PI,.n Oat. Entered) 

_____________________________________

D DADY F5tS liii ~JTATI ASJ DA~~ 
READ INSTR UCT I ONS

r~ e- uro &‘s# urn r~ , ~~ U lu! ’ BEFORE COMPLETING FORM
I. REPORT NUMBER 2 GOVT ACCESSION NO 3. RECi PIENT’S C A T A L O G  NUMBER

/
AFA L-TR—77— 118 , Volume t 

___________________________

4. TITLE (and Subltll•) S. TYPE OF REPORT & PERIOD COVERED

~ arm~
atb0n Facility/Capability ~~~~~ 9

-
76

F1n~1~ 97
9. PERFORMING ORG. REPORT NUMB ER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(S)

Richard A. Whisnant , W. Howard Ruedger , F33615 76 C l3O~
’
~Ronald L. Earp, James Haidt - - -

9. PERFORMING OR GANIZATION NAME AND ADDRESS ID. PROGRAM ELEMENT . PROJECT , TASK
• AREA & WORK UNIT NUMBE RS

Research Triangle Institute’
P. 0. Box 12194 2003-03-15

* Research Triangle Park . North Carolina 27709 ___________________________

II. CONTROLLING OFFICE NAME AND ADDR ESS 12. REPORT DATE

Air  Force Avionics  Laboratory 13. NUMBER OF PAGES
AFAL/AA F, Wri ght-Patterson AFB , Ohio 45433 391
14 . MONITORING AG ENCY NAME & A OORESS(iI different fror,. Contr o lling Office) IS. SECURITY CLASS.  (of thir. rrpo rl)

U n c l a s s i f i e d
IS. . OEC LA SS 1F1 CA T IO N DOW NGRAD ING

SCHEDULE

16. DISTRIB UT;ON STATEMENT (of t hiS Report)

j  Approved for public rel ease ; distribution unlimi ted .

‘7. DISTRIBUTION STATEMEN T (of the abst ract entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY W ORO S (Continue on reverse aide ii necessary and Identify by block number)

Simulation Dig i tal  Computers
Avionics Computer-Ai ded Des ign
Digi tal Simul ation DECsystem-lO

‘\ Avionic Simulation PDP-1l
~b~~~~8ST RACT (ContInu, on reverse aid. If n.ceaaary and identify by block number)

The Air Force Avionics Laborato ry (AFAL) at Wri ght-Patterson AFB Is the
focal point for development of new avionics technology for the Air Force. In
order to carry out this responsibility , a significant capability to simul ate
physical avionics systems and components has been created by the AFA L
divisions. Of prime concern is the effective use of these simulation facili-
ties in the face of conti nually increasing performance requirements ,)

DD ~~~~~ 
1473 EDITION OF I NOV 65 IS OBSOL E’r E UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ( *7.en Data Entered)

06 19 1~



_ _ _  ~~~~~~~~~~~~~~~~~~~~~~ 

- .- -

~

~~~~~~~~~~~~~~~~~ UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGC(W7,.n Data EnI.red)

technological advances , and rising flight-test costs.

The usual approach to satisfy requi rements for Increased avionics performance
has been to place emphasis on the selection of the best subsystems available or
on the creation of new subsystems. However, allow i ng subsystem performance to
drive avionics system desi gn results in Inflated costs and problems In mainte-
nance and retrofit. Subsystems that are desi gned for maximum performance
become increasingly complex and are often incompatible unless interface require-
ments are considered early in the design effort . This effo rt requires not only
a conceptual plan , but a real i stic eva l uat ion of how the cou ple d su bsystems
wi l l i nterac t un der al l cr i tical fl ight conditions .

The trends toward consideration of av ionics hardware from the systems ’ view-
point and toward the increasing use of modularized , di gital hardware put in-
creasing demand on effective use of simulation facilities to ensure reliable ,
cost—effectiVe avionics systems.

This Facility/Capability Manual for the simul ation facilities 0f AFAL has
been developed as a means for increasing the effectiveness of these important
techn i cal resources .

The primary objective of this manual is to document the total simulation
capability in a manner which will serve several groups :

1. Those members of the AFAL directorate charged with planning or approval
of the simulation facilities .

2. Potential users with a need to understand the general capabilities and
limi tations of the simulation facilities .

3. Actual users of the facilities with a need to plan simulations , document
input data , conduct or coordinate s1mulation~, an d In terpret resul ts.

4. Members of the AFAL staff who are Involved in updating , enlargi ng , or
deleting simulation capabilities .

A secondary objective of this manual is to document the relationships
between the various facilities , whi ch may enhance their Interaction and , thus
improve the cost-effectiveness of the overall AFAL simulation capability .

The manual achieves these objectives by presenting Introductory and summary
material ‘In Section I and by presenting more detailed descri ptive material in
subsequent sections. The contents of Section I address the Laboratory
capabilities from a planning/management viewpoint by relating the Laboratory
mission to present facility capability through the development of a conceptual
simulation class structure. The contents of subsequent sections of this manual
address specific facility/capability from a potential-user viewpoint . Both
hardware and software availa bi l ity are documented. The technical level of
these sections is such that availa ble capabi l ity can be determi ned and some
insight can be gained regarding user i nterface.

UNCLASSIFIED
SE CURITY CLASSIFICATION OF THIS PAG E(Wh .n Data Ent.i’,d)

~~~~~~~~~~~~~~ 

...

~~~~~~~ 

.- .‘

_ _ _ _ _ _ _ _ _ _ __ ~~


~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~ 
r ’~~~

I

TABLE OF CONTENTS

Page

I INTRODUCTION AND EXECUTIVE SUMMARY 1

1.1 AIR FORCE AVIONICS LABORATORY : MISSION AND
ORGANIZATION 2

1.1.1 Systems Avionics Division: Misaiàn 3
1.1.2 Electronic Technology Division: Mission 4
1.1.3 Electronic Warfare Division: Mission 4
1.1.4 Reconnaissance and Weapon Delivery Division: Mission 5

a 1.2 SIMULATION CLASS STRUCTUR E 5
1.2.1 Level I, System Functional Simulations 8
1.2.2 Level II, Discrete Event Simulations 9
1.2.3 Level III , Scientific Simulations 10
1.2.4 Level IV, Interpretive Computer Simulations 11
1.2.5 Level V, Real.Time Dynamic Simulations 12
1.2.6 Level VI, Real-Time Sensor Signal Level Simulations 12
1.2.7 Level VII , Special Purpose Hybrid 13
1.2.8 Digital Avionic Information System (DAIS) 14

1.3 AFAL FACILITIES 16
1.3.1 Systems Avionics Division (AVSAIL) 16
1.3.1.1 Hardware Features 16
1.3.1.2 Software Features 21
1.3.1.3 Constituent Simulations 23
1.3.1.3.1 Avionics evaluation programs 24
1.3.1.3.2 GASP N simulation language 25
1.3.1.3.3 Basic simulator (SJMNUC) 28
1.3.1.3.4 Distributed processor/memory system network aimulation 29
1.3.1.3.5 Software design and verification system (SDVS) 32
1.3.1.3.6 Avionics simulation (AVSIM ) 34
i.3.1.3.7 Processor architecture (ISP) 35
1.3.1.3.8 Communication system evaluation laboratory (CSEL) 36
1.3.2 Electronic Technology Division 37
1.3.3 Electronic Warfare Division 37
1.3.4 Reconnaissance and Weapon Delivery Division 37

2 AVIONIC SYSTEM ANALYSIS AND INTEGRATION _ _ _ _ _ _ _ _ _

LABORATORY (AVSAIL) 38
~~~S IS6ftN~~~~~
SIn S’S”..

2.1 AVSAIL HOST FACILITY 38
2.1.1 Hardware 40

.
~2.1.1.1 DECsystem.1O Core Facility 40

2.1.1.1.1 System description 40

r 2.1.1.1.1.1 DEC.10 Central Processor and Main Memory .. 41
~~ Lifl

—
~~~~ 

.—-
~~~~~~~~~~~~~~~ *~~--—

-... -.,-. -. .-.-... ..-
~~~~~

TABLE OF CONTENTS (con.)

Page

2.1.1.1.1.2 Bulk Storage 42
2.1.1.1.1.3 User Interface 42
2.1.1.1.1.4 Hard Copy Devices 43
2.1.1.1.2 DECsystem-10 processor features 44
2.1 .1.1.2.1 Instruction Set 44
2.1.1.1.2.2 Processor Modes 45
2.1.1.1.2.3 Processor Memory Management 46
2.1.1.1.2.4 Real-Time Clock 47
2.1.1.1.2.5 Fast Register Blocks 48
2.1.1.1.2.6 Multiplexed I/O Bus 48
2.1.1.2 Direct Memory Access of Simulators 49
2.1.1.3 PDP.11 Satellite Computers 49
2.1.1.3.1 The DAIS simulators 51
2.1.1.3.2 The F16 simulator 55
2.1.1.3.3 The cockpit simulator 55
2.1.1.3.4 The Picture System 55
2.1.1.3.5 The Video Center 55

2.1.2 DECsystem-10 Software 60
2.1.2.1 Feature and Operating System 60
2.1.2.1.1 Features 60
2.1.2.1.1.1 Timesharing 61
2.1.2.1.1.2 Multiprogramming 61
2.1.2.1.1.3 File Protection 62
2.1.2.1.2 Operating system 63
2.1.2.1.2.1 Command Decoder 65
2.1.2.1.2.2 Scheduler 65
2.1.2.1.2.3 Swapper 66
2.1.2.1.2.4 UUO Handler 66
2.1.2.1.2.5 Input/Output 67
2.1.2.1.2.6 File Handler 67
2.1.2.1.3 Real-time operating system features 68
2.1.2.1.4 Remote communications 69
2.1.2.1.5 Batch computing 69
2.1.2.2 Program Support Software 71
2.1.2.2.1 Higher order language compilers 72
2.1.2.2.1.1 JOVIAL 72
2.1.2.2.1.2 FORTRAN 77
2.1.2.2.1.3 ALGOL 77
2.1.2.2.1.4 APL 78
2.1.2.2.L 5 BASIC 78
2.1.2.2.1.6 AID 79
2.1.2.2.1.7 COBOL 79
2.1.2.2.1.8 DBMS 80
2.1.2.2.2 Util ity software 80
2.1.2.2.2.1 MACRO Assembler 80
2.1.2.2.2.2 Linking Loader 81

iv 

: :;..i ..~



-
~~ 

.

~ 

...

~
-.—--. -.-.--- -... —.—v-.— — _._ 

— 
— - - - - - - - -. .---- 

F

H

L TABLE OF CONTENTS (con .)

Page

2.1.2.2.2.3 Program Debugging 81
2.1.2.2.2.4 File Manipulation 82
2.1.2.2.2.5 File Editing 82
2.1.2.2.2.6 Manuscript Editing 82

2.1.3 Special Purpose Peripherals 83
2.1.3.1 The Picture System 83
2.1.3.1.1 Overview of interactive computer graphics 88
2.1.3.1.2 Picture presentation 88
2.1.3.1.2.1 Graphical Output Med ia 88
2.1.3.1.2.2 Refresh Rate 88
2.1.3.1.2.3 Line Generation 88
2.1.3.1.2.4 Update Rate 89
2.1.3.1.2.5 Picture Buffering 89
2.1.3.1.3 Picture definition 90
2.1.3.1.4 Picture preparation 91
2.1.3.1.4.1 Simple Linear Transformations 91
2.1.3.1.4.2 Compound Linear Transformations 91
2.1.3.1.4.3 Perspective 92
2.1.3.1.4.4 Windowing 92
2.1.3.1.4.5 Conversion to Screen Coordinates 95

4 2.1.3.1.4.6 Text Display 97
2.1.3.1.5 Picture interaction 97
2.1.3.1.6 Overview of the Picture System hardware 98
2.1.3.1.6.1 The Picture Confrofler 98
2.1.3.1.6.2 Matrix Arithmetic Processor 101
2.1.3.1.6.3 Terminal Control 102
2.1.3.1.6.4 The Refresh Buffer 104
2.1.3.1.6.5 Character Generator 105
2.1.3.1.6.6 The Picture Generator 106
2.1.3.1.6.7 The Picture Display 105
2.1.3.1.6.8 Data Input 107
2.1.3.1.6.9 The Tablet and Pen 107
2.1.3.1.6.10 Control Dials 108
2.1.3.1.6.11 Function Switches and Lights 108
2.1.3.1.6.12 Alphanumeric Keyboard 108
2.1.3.1.7 The Picture System Graphics Software Package 108
2.1.3.1 .7.1 User Subroutine PSINIT 109
2.1.3.1.7.2 User Subroutine VWPORT 109
2.1.3.1.7.3 User Subroutine WINDOW 109
2.1.3.1.7.4 User Subroutine ROT 110
2.1.3.1.7.5 User Subroutine TRAN 110
2.1.3.1.7.6 User Subroutine SCALE 110
2.1 .3.1 .7.7 User Subroutine PUSH 110
2.1.3.1.7.8 User Subroutine POP 110
2.1.3.1.7.9 User Subroutine DRAWZD 110
2.1.3.1.7.10 User Subroutine DB.AW3D 110

V

~
) 

_ _ _  
________________ 

_ _ _ _ _ _ _ _ _



- .

TABLE OF CONTENTS (con.)

Page

2.1.3.1.7.11 ITser Subroutine CHAR 110
2.1.3.1.7.12 User Subroutine TEXT 111
2.1.3.1.7.13 User Subroutine INST 111
2.1.3.1.7.14 User Subroutine MASTER 111
2.1.3.1.7.15 User Subroutine DASH 111
2.1.3.1.7.16 User Subroutine BLiNK 111
2.1.3.1.7.17 User Subroutine SCOPE 111
2.1.3.1.7.18 User Subroutine TABLET 111
2.1.3.1.7.19 User Subroutine ISPDWN 112
2.1.3.1.7.20 User Subroutine CURSOR 112
2.1.3.1.7.21 User Subroutine HiTWiN 112
2.1.3.1.7.22 User Subroutine HITEST 112
2.1.3.1.7.23 User Subroutine NUFRAM 113
2.1.3.1.7.24 User Subtoutine SETBUF 113
2.1.3.1.7.25 User Subroutine PSWAIT 113
2.1.3.1.7.26 System Subroutine BLDCON 113
2.1.3.1.7.27 System Subroutine P$AVE 113
2.1 .3.1.7.28 System Subroutine R$TORE 113
2.1.3.1.7.29 System Subroutine P$DMA 113
2.1.3.1.7.30 System Subroutine I$MATX 113
2.1.3.1.7.31 System Subroutine ERROR 113
2.1.3.1.7.32 Function Subroutine P$DIV 114
2.1.3.1.7.33 Function Subroutine P$MUL 114
2.1.3.1.8 Picture System errors 114
2.1.3.2 Video Control Center 115
2.1.3.2.1 Video console 115
2.1.3.2.1.1 AC Power us
2.1.3.2.1.2 Routing Switcher 119
2.1 .3.2.1.3 Sync and Test Signals 122
2.1.3.2.1.4 Monitors 123
2.1.3.2.1.5 Cameras 125
2.1.3.2.1.6 Video Tape System 127
2.1 .3.2.1 .7 Special Effects Generators 128
2,1.3.2.2 Flying Spot Scanner 129
2.1.3.2.2.1 Raster Generator/Processor 129
2.13.2.2.2 Deflection Controller 130
2.1.3.2.2.3 Cathode Ray Tube (CRT) System 130
2,1.3.2.2.4 Video Detector 131
2.1.3.2.2.5 Position Controller 132
2,1.3.2.2.6 Video Processor 132
2.1.3.2.2.7 PDP.11 interface 136
2.1.3.2.2.8 Interface Software 136
2.1.3.2.2.9 Scanner Video Control 136
2.1.3.2.2.10 Switcher Control 137
2.1.3.2.3 Summary 138
2.1.3.3 Cockpit 138
2.1.3.3.1 introduc tion 13S

_ ____ - .



- :~~i- ::‘~~~ 
- - -

~~~~~~~~~~~
- ---- --

~~~~~~~~
- — -.~~---

TABLE OF CONTENTS (con .)

Page

2.1.3.3.2 Simulator facilities 138
2.1.3.3.2.1 DECsystem.10 140
2.1.3.3.2.2 PDP.11/45 Computer interface 141
2.1.3.3.2.3 Out-The-Window Display 141
2.1.3.3.2.4 Rarntek Display Generators 141
2.1.3.3.2.5 Cockpit Functional Hardware 141
2.1.3.3.3 An example test configuration 144
2.1.3.3.4 Future development 146

4 2.2 AVIONICS EVALUATION PROGRAMS 149
2.2.1 AEP Program Capability 149
2.2 .1.1 Air-to-Ground Mission Analysis Programs 149
2.2.1.2 Weapon Delivery Error Analysis Program 150
2.2.1.3 Target Acquisition Analysis Program 152
2.2.1.4 Air-to-Air Mission Analysis Program 153
2.2.1.5 One-on-One Dogfight Analysis Program 154

2.2.2 Interactiv e Graphics Capability 154

2.2.3 Program Set-up 164
2.2.3.1 Flight Pro file 164
2.2.3.2 Functions, Subfunctions, Modes, and States 164
2.2.3.2.1 Air-to-Ground functions and subfunctions 165
2.2.3.2.1.1 Scheduled Maintenance 165
2.2.3.2.1.2 Ordnance 166
2.2.3.2.1.3 Fuel 166
2.2.3.2.1.4 Flight 167
2.2.3.2.1.5 Mission 167
2.2.3.2.1.6 Formation 168
2.2.3.2.1.7 Navigation 168
2.2. 3.2.1.8 Navigation Update 168
2.2.3.2.1.9 Communications 168
2.2.3.2.1.10 Survivability 168
2.2.3.2.1.11 Target Acquisition 169
2.2.3.2.1.12 Weapon Delivery 169
2.2.3.2.1.13 Target 169
2.2.3.2.2 Air-to-air functions and subfunctions 169
2.2.3.2.2.1 Navigation Function 169
2.2.3.2.2.2 Interfl igh t Communications Subfunction 170
2.2.3.2.2.3 External Communications Subfunction 170
2.2.3.2.2.4 Fuel Utilization Subfunction 171
2.2.3.2.2.5 Refueling Subfunction 171
2.2.3.2.2.6 VISUal Detection Subfunction 171
2.2.3.2.2.7 Radar Detection Subfunction 172
2.2.3.2.2.8 IR Detection Subfunction 173
2.2.3.2.2.9 Target Identification Function 173

a 2.2.3.2.2.10 Engagement Function 174



______________________ - - 
_______ 

~~~~~~~

TABLE OF CONTENTS (con.)

Page

2.2.3.2.2.11 Formation Subtun ctio n 174
2.2.3.2.2.12 Weaving Escort Maneuver Subfunction 174
2.2.3.2.2.13 Weapon Detection Function 175
2.2.3.2.2.14 Mandatory Operations Funct ion 175
2.2 .3.2.3 Modes and states 175
2.2.3.3 Airc raft Equipment 176
2.2.3.3.1 Special air-to-ground sections 177
2.2.3.3.1.1 Airframe Section 177
2.2.3.3.1.2 Propulsion Section 178
2.2.3.3.2 Special air-to-air sections 178
2.2.3.3 .2.1 Airframe Section 178
2.2.3.3.2.2 Propulsion Section 178
2.2.3.3.2.3 Radar Section 179
2.2.3.3.2.4 Radar Main Beam Clutter Filter Section 179
2.2 3.3.2.5 lR Detector Section 179
2.2.3.3.2.6 1R Optics Section 179

2.3 GASP IV 180
2.3.1 Models, Systems, and Simulations 180
2.3.1.1 Features 180
2.3.1.2 Discrete, Continuous, and Combined Simulation 181

2.3.2 GASP IV Philosophy 182
Data Storage and Timing Requirements 184

2.3.2.2 Method of Simulation Programming 184
2.3.2.3 GASP lV Functional Capabilities 185

2.3.3 GASP IV Definitions and Proced ures 187
2.3.3.1 An Overview of Subroutine GASP 189
2.3.3.2 Model Status Definition and Control 192
2.3.3.3 State Variable Definition 192
2.3.3.4 Time Advance Procedures 194
2.3.3.4.1 Discrete simulation 194
2.3.3.4.2 Continuous simulation 194

2.3.4 GASP IV Subprograms 195
2.3.4.1 GASP IV Storage Requirements and Limitations 195
2.3.4.2 Functional Breakdown of GASP IV 196
2. 3.4.2.1 Time advance and status update (subroutine GASP) 196
2.3.4.2.2 Initialization 196
2.3.4.2.2.1 Subroutine DATIN 198
2.3.4.2.2 .2 Subroutine CLEAR 198
2.3.4.2.2.3 Subroutine SET
2.3.4.2.3 Data storage and retrieval 199
2.3.4.2.3.1 Subrou tine FILEM (IFILE ~ 199
2.3.4.2.3.2 Subroutine RMOVE 199
2. 3 4.2.3 .3 Subroutine CANC L tNTRY) 199

Yth

—: ~~~~~~~~~~~~
-:

—

— —

,~ ,— -—-=-
~~~ 

-
~~~~


— -,——.—-.—~ ‘
_ ‘__‘• _ __ .__. --- ~~~—,_———.—-.-—,-.-,. — .—.—,—.

~

~~~~~~~~~~ 

.—,——.—- -—-..-—-- ,---- 
— —-.——- ..——— -—----—— .--.-———.- -....-

TABLE OF CONTENTS (con. )

Page

2.3.4.2.3.4 Subroutine COPY (NTRY) 200
2.3.4 .2.4 Locat ion of state conditions and entities 200
2.3.4.2.4.1 Function KROSS 200
2.3.4 .2.4.2 Function NFIND 201
2.3.4.2-5 Data collection, computation , and reporting 201
2.3.4.2.~ .1 Subroutine ~OLCT 201
2.3.4.2.5.2 Subroutine TIMST 201
2.3.4.2.5.3 Subroutine TIMSA 202
2.3.4.2.5.4 Subroutine HISTO 202
2.3.4.2.5.5 Subroutine GPLOT 202
2.3.4.2.5.6 Subroutines PRNTQ and PRNTS 203
2.3.4.2. 5.7 Subroutine SUMRY 203
2.3.4.2.6 Program monitoring and error reporting 203
2.3.4.2.6.1 Subroutine MONTh 203
2.3.4.2.6.2 Subroutine ERROR 204
2.3.4.2.7 Miscellaneous support 204
2. 3.4.2.7.1 Functions SUMQ and PRODQ 204
2.3.4.2.7.2 Function GTABL 205
2.3.4.2 .7.3 Subroutine GDLA Y 205
2.3.4.2.8 Dummy subroutines 205
2.3.4.2.9 Random deviate generators 205

2.3.5 User-Written Subroutines 206
2.3.5.1 Subroutine Descriptions 206
2.3.5.2 Inpu t Formats 207

2.3.6 SIMNUC 208
2.3.6.1 Purpose of Computer Program 208
2.3.6.2 Simulation Facilities 208
2.3.6.3 Program Organization and Simulation Run Control 208
2.3.6.4 Component Functional Description 212
2.3.6.4.1 Control of the simulation proce~ 212
2.3.6.4.1.1 Functional Description 213
2.3.6.4.1.2 SSC Subroutines 214
2.3.6.4.1.3 GOSIMX - Start the Simulation Process 215
2.3.6.4.1.4 ENTRYX - Get the Entry Address to a Subprogram 216
2.3.6.4.1.5 SCHDEX - Schedule an Event 216
2.3.6.4.1.6 CALLEX - Get the Entry Address of the Calling Program 216
2.3.6.4.1.7 DEFCSX - Define an Event Coordination Structure 216
2.3.6.4.1.8 BLCKEX - Block an Event Notice 216
2.3.6.4.1.9 RLSEX . Release an Event Notice 216
2.3.6.4.1.10 FINDEX - Get the Pointer to an Event Notice 216
2.3.6.4.1.11 CANCLX - Cancel an Event Notice 217
2.3.6.4.1.12 TIMEXX - Read the Clock 217
2.3.6.4.2 Memory management 217
2.3.6.4.2.1 Functional Description 217
2. 3.6.4.2.2 DMMC Subroutines 218

ix

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—

~~~~~~~~~ 

—— 

—~



~

..- . 

~~~~~~~~
---. . .---~~~~~~~~~~~~~

TABLE OF CONTENTS (con.)

Page

2.3.6.4.2.3 MIN ITX - Initialize Memory 218
2.3.6.4.2.4 MEMA LX - Allocate Memory 218
2.3.6.4.2.5 MEMFRX - Free (Deallocate) Memory 218
2.3.6.4.2.6 MEMZOX - Store Zeroes in Memory 218
2.3.6.4.2.7 MEMDPX - Dump Memory 218
2.3.6.4.2.8 MCOPYX - Copy Memory 218
2.3.6.4.2.9 MSTATX - Wr ite Memo ry Statistic s 219
2.3.6.4.3 List processing 219
2.3.6.4.3.1 Functional Description 219
2.3.6.4.3 .2 LPC Subroutines 219
2.3.6.4.3.3 Processing of Doubly Linked Lists by Means

of LPC Subroutines 220
2.3.6.4. 3.4 Processing of Indexed Lists by Means

of LPC Subroutines 221
2.3.6.4.4 Generation of random numbers 222
2.3.6.4.4.1 Functional Description 222

F 2. 3.6.4.4 .2 RANDOX - Random Number from a Uniform Distribution
Over the Unit Inte rval 223

2.3.6.4.4.3 RMBINX - Random Number from a Negative
Binominal Distribution 223

2.3.6.4.4.4 RMCCPX - Random Numbers from a User-Defined
Continuous Cumulative Distribution 224

2.3.6.4.4 .5 RMDCPX - Random Number from a User-Defined
Cumulative Distribution 224

2.3.6.4.4.6 RMDRWX - Random Number from a Bernoulli Trial 224
2.3.6.4.4.7 RMERLX - Random Number from an Erlang (Gamma)

Distribution 224
2.3.6.4.4.8 RMEXPX - Random Number from Exponential Distribution . . . 224
2.3.6.4.4.9 RMICPX - Random Integer from a User-Defined

Discrete Cumulative Distribution 225
2.3.6.4.4.10 RMIUFX - Uniformly Distributed Random Integer

from a Set of Consecutive Integers 225
2.3.6,4.4.11 RMNRLX - Random Number from a Normal Distribution 225 —

2.3.6.4.4.12 RMPSNX - Random Number from a Poisson Distribution 225
2.3.6.4.4.13 RMUFMX - Uniformly Distributed Random Number

from a Specific Interval 225
2.3.6.4.5 Processing of sample statistics 225
2.3.6.4.5.1 Functional Description 226
2.3.6.4.5.2 SSPC Subroutines 227
2.3.6.4.6 Error diagnosis and reporting 227
2.3.6.4.6.1 DEBUGX - Select Debug Control 228
2.3.6.4.6.2 DIAGNX - Write a Diagnostic Message 228
2.3.6.4.6.3 TRACEX - Write a User Trace 228
2.3.6.4.6.4 DSDMPX - Write Contents of Indexed List 228

- 2.3.6.4.6.5 LTDMPX - Write Contents of Linked List 228
2.3.6.4.6.6 MEMDPX - Dump Memory 228
2.3Ai.4.6.7 MSTATX - Write Memory Statistics 228

x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



—- -.~~---- . — - ---- — —- --—-—-.— —---- -- ‘—~1

TABLE OF CONTENTS (con. )

page

2.3.6.4.6.8 PKTPRX - Write Contents of Dynamic Memory Block 228
2.3.6.4.6.9 PKTWRX - Write Contents of Dynamic Memory Block 229
2.3.6.4,6.10 RPWRTX - Write Data 229

2.4 DISTRIBUTED PROCESSOR/MEMORY SYSTEM NETWORK
SIMULATION SYSTEM 229

2.4.1 Introduction 229

2.4.2 DP/M Hardware Architecture 230

2.4.3 Bus Control Protocols 231
2.4.3.1 Modified Round.Robin Message Broadcast 231
2.4.3.2 MIL-STD-1553A 233

2.4.4 Avionics Software 235
2.4.4.1 Applications Software Functions 235
2.4.4.2 Executive Software 240
2.4.4.2.1 LEX functional design 242
2.4.4.2.2 GEX functional design 244

2.4.5 DPIM SNS Simulation Control 245

2.4.6 DP/M SNS Reporting Capability 247
2.4.6.1 Event Level Reports 247
2.4.6.2 Sample Period Reports 248
2,4.6.3 Post Simulatio n Reports 248

2,4.7 Simulation Control Namelist Specifications 255
2.4.7.1 Report Control Specification Data 255
2.4.7.2 Avionic Task Definition Data 259
2.4.7.3 Bus Performance and Connectivity Definition Data 261
2.4.7.4 Task to Processing Element Assignment 261
2.4.7.5 Subfunction Scheduling Definition Data 262

2.5 SOFTWARE DESIGN AND VERIFICATION SYSTEM (SDVS) . .  263
— 2.5.1 SDVS Objectives 263

2.5.2 SDVS Overview 263
2.6.2.1 SDVS Control Program (CP) 265
2.5.2.2 Software Management Program (SMP) 265
2.5.2.3 File Generator (SWG) 266
2.5.2.4 Scenario Generator (SCG ) 266
2.5.2.5 Simulation Control (SCP) 267
2.5.2.6 Post Run Edit (PRE) 267
2.5.2.7 DAIS Simulators (ICS, SLS, DBS, EES) 267
2.5.2.7.1 Interpretive Computer Simulator (ICS) 268
2.5.2.7.2 Statement Level Simulation (SLS) 268

xi

-
~~~~~~~~~~~~~~~~~~ -- _ --~~~ , __ . .- , —;- - -:i~~~~~~~ ——-——- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- - ~~—.- -—~~~. ..-~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- ‘

TABLE OF CONTENTS (con.)

Page

2. 5.2.7.3 Data Bus Simulator (DBS) 268
2.5.2.7.4 External Environment Simulation (EES) 271
2.5.2.8 Snapshot/Rollback 275
2.5.2.9 Hot Bench Computer Loaders (HBCL) 275

2.5.3 Using SDVS 276
2.5.3.1 Modes of Operation 276
2. 5.3.1.1 File generation mode 276
2.5.3.1.1.1 File Structure 276
2.5.3.1.1.2 File Types 277
2. 5.3.1.2 Set-up and run simulation mode 278
2.5.3.1.3 Post Run Edit mode 279
2. 5.3.1.4 Rollback mode 279
2. 5. 3.1.5 Delete mode 279
2.6.3.1.6 Supervisor mode 279
2.5.3.1.1 Logoff mode 280
2.5.3.2 SDVS User Languages 280
2.5.3.2.1 Simulation Control Language (SCL) 281
2.5.3.2.1.1 Configure Section 282
2.6.3.2.1.2 Block Section 282
2.5.3.2.1.3 Time-Zero Section 284
2.6.3.2.2 Data Processing Language (DPL) 288

2.6 AVSIM 290
2.6.1 Executive (Control) Module Software 291
2.8.1.1 Multiple Entry Points and Adding New Applications Models 293
2.6.1.2 PRESCENARIO 293
2.6.1.3 MAIN 295
2.6.1.4 SCENARIO 295
2.6.1.5 EXEC 296
2.6.1.6 DIRECTOR/CALIPER 296

2.8.2 Simulation Model Set Description 297
2.6.2.1 AIrframe (AFM1) 299
2.6.2.2 Flight Control System Model (FCS) 299
2.6.2.3 AIr Data Computer Model (ADC) 804
2.6.2.4 Accelerometers/Gyros Model (ACOY) 307
2.8.2.5 Simulated Pilot Model (SIMP) 308
2.6.2.6 Synth etic Mission Generator Model (SMOM) 310
2.6.2.7 Target Simulation (TOT) 313
2.6.2.8 Attack Radar (ARS) 316
2.6.2.9 Radar Altimeter (RALT) 319
2.6.2.10 Random Noise and Error Generation (NERR) 319
2.6.2.11 RelatIve Geometry Model (REGE) 324
2.6.2.12 Weather (WEAl) 327
2.8.2.13 Atmosphere Simulation Model (ATM2) 327
2.6.2.14 Reference Model for Inertial Navigation System (RMIN) 327

xli

..

- — — p
~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~

-
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

—
~~

--- 
~~~~~~~~~~~~~ ~~~~~ 

—.
~~ -.-

-

4. TABLE OF CONTENTS (con.)

Page

2.6.2.15 Inertial Reference Unit (IRU) 331
2.6.2.16 Flux Valve Model (FLUX) 334

2.7 PROCESSOR ARCHITECTUR E (ISP) 338
2.7.1 Specific Simulations 339
2.7.1.1 The PDP-8 Simulation 341
2.7.1.2 The INTEL 8080 Simulation 341
2.7.1.3 The DAIS Processor Simulation 341

2.7.2 The CSL/ISP Language 343
2.7.2.1 Legal Characters 343
2.7.2.2 Identifiers 344
2.7.2.3 Numbers 344
2.7.2.4 Program Structure 345
2.7.2.5 The Declaration Section 345
2.7.2.5.1 Storage elements 348
2.7.2. 5.2 External declarations 346
2.7.2.5.3 Overlay declarations 346
2.7.2.5.4 Procedure declarations 347
2.7.2.5.5 Macro declarations 347
2.7.2.6 The Action Section 347
2.7.2.6.1 Aadgnment statements 348
2.7.2.6.2 Operators 348
2.7.2.6.3 Nested expressions 849
2.7.2.6.4 Conditional statements 349
2.7.2.6.5 Relational expressions 349
2.7.2.6.6 The IF statement 349
2.7.2.6.7 The DECODE statement 350
2.7.2. 6.8 Flow of control statements 350
2.7.2.6.9 Blocks 350
2.7.2.8.10 Macro calls 350
2.7.2.7 The Control Program 351
2.7.2.8 The Register Transfer Operations 351

2.7.3 Processor Simulation 351
-

U

-

2.7.3.1 The Computer Simulation Language Complier 351
2.7.3.1.1 The syntax graph 352
2.7.3.1.2 The parser 353
2.7.3.1.3 The syntax analyser 353
2.7.3.1.4 Code generation 353
2.7.3.1.5 Compiler output 354
2.7.3.1.6 Error detection 354
2.7.3.1.7 Compiler modification 356
2.7.3.2 Code Generation 356
2.7.3.2.1 Storage allocation 357
2.7.3.2.2 Executable code 358

(2.7.3.3 SImulation 358

xlii

- -

_ _ _

~~~~~~~~~~~~~~~~ 
—

~~~~

TABLE OF CONTENTS (con.)

Page

2.7.3.3.1 Simulation control considerations 358
•

- 2.7.3.3.2 Processor description methodology 358
2.7.3.3.3 The general control program 360

2.8 COMMUNICATIONS SYSTEMS EVALUATION
• LABORATORY 361

2.8.1 Introduction 361

2.8.2 SIgnal and Interference Generator 364
2.8.2.1 RF Exciters 366
2.8.2.1.1 Modulators 366
2.8.2.1.2 Up-converters 368
2.8.2.1.3 Attenuators 368
2.8.2.1.4 Types of exciters 369
2.8.2.2 RF Combiners 369
2.8.2.2.1 UHF , L-band and X-band combiners 369
2.8.2.2.2 K-band combiner 372
2.8.2.2.3 Exciter/combiners interface 372
2.8.2.3 Baseband Sources 374
2.8.2.4 Digital Controller 375
2.8.2.5 fllustrative Experimental Configurations 375

2.8 3 Programmable Data Terminal 380
2.8.3.1 FFH/PN Modem 382
2.8.3.2 Programmable Signal Processor 385
2.8.3.3 Application of the PDT 385

2.8.4 Additional Communication Equipment 388
2.8.4.1 Satellite Communication Equipment 388
2.8.4.2 Video Transmission and Display Equipment 390

xiv

_

~~~~~~~~~~~~~~~~~~

_

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -


LIST OF FIGURES

Page

1.1-1 AFAL organization 3
1.2.8-1 Simplified block diagram of DAIS ITB facility 15
1.3-1 AFAL simulation facility organization AFAL/AVSA 1LfAVSLM . . . 17
1.3.1.1-1 DEC-10 system host simulation processor hardware 19
1.3.1.2-1 DECsystem-10, user’s view 21
1.3.1.3-1 DP/M system architecture 29
1.3.1.3-2 SDVS functional organization 33
2.1-1 AVSAIL architecture 39
2.1.1.1.1 Address computation scheme for KI-lO processor 47

• 2.1.1.3-1 DAIS simulator (GT-44A) 52
2.1.1.3-2 DAIS simulator (GT-44B) 53
2.1.1.3-3 DAIS simulator (GT-44C) 54
2.1.1.3-4 F-16 simulator 56
2.1.1.3-5 The cockpit simulator 57
2.1.1.3-6 The Picture System simulator 58
2.1.1.3-7 The Video Center simulator 59

• 2.1.2.1-1 DECsystem-IO, user’s view 60
~.1.2.1-2 The resident operating system 64
2.1.2.1-3 Remote communications 70t 2.1.2.2-1 J73/ 1 compiler structure 75

- - - 2.1.3.1 Special purpose peripherals functional configuration 84
• 4. 2.1.3.1-1 The Picture System 85

2.1.3.1-2 The Picture display and tablet 86
2.1.3.1-3 An operator flying the simulation 87
2.L3.1-4 Three-dimensional perspective proj ections onto a

two.dimensional plane 92
2.1.3.1-5 Two-dimensional clipping 93
2.1.3.1-6 Frustum of vision showing the eye position in relation

to an arbitrary coordinate axis 94
2.1.3.1-7 Partial screen viewport 96
2.1.3.1-8 Full screen viewport 96
2.1.3.1-9 Functional configuration of Picture System 99
2.1.3.2-1 The Video Center 116
2.1.3.2-2 Video console layout 117
2.1.3.2-3 Standard video signal 118
2.1.3.2-4 Power control 119
2.1.3.2-5 Routing switcher 120
2.1.3.2.6 Routing switcher 121
2.1.3.2.7 SYNC and test signals 122

t 2.1.3.2-8 Monitor system 124
2.1.3.2.9 Camera system 125
2.1.3.2-10 Video tape recorder system 127
2.1.3.2-11 CRT system 131
2.1.3.2.12 SERVO system 133
2.1.3.2-13 Video Processor 134
2.1.3.3.1 The cockpit simulator 139

xv

_________ •

- ~~~
—

- ~~~~~~~~~~~~~~~~~~~~

____ -. - -,.- -;- -- --~~ ,- — .- -

/

LIST OF FIGURES (con.)

Page

2.1.3.3-2 System hardware block diagram 140
2.1.3.3-3 Typical Vertical Situation Display (VSD) format 142
2.1.3.3-4 Typical Horizontal Situation Display (HSD) format 143
2.2.1.1-1 Sample output for the AEP air-to-ground mission

analysis program 151
2.2.1.2-1 Sample weapon delivery output 153
2.2.2-1 Application of interactive graphics to existing

batch programs 155
2.2.2-2 Sample execution of the AEP interactive program 157
2.3.2.3-1 Basic modes of GASP IV control 186
2.3.3-1 Layout of main program 188
2.3.3.1-1 Descriptive flow chart of subroutine GASP 190
2.3.6-1 Interface and structure of the main program 210
2.4.2.1 DP/M System Architecture 231
2.4.2-2 Example DP/M application 232
2.4.3-1 1553A multiplex data bus architecture 234
2.4.4.1 -1 Example of directed graph 236
2.4.4.1-2 Directed graph task representation 238
2.4.4.1.3 Loran subfunction directed graph 239
2.4.4.2-1 Executive control hierarchy 241
2.4.4.2-2 LEX module and task interrelationship 243
2.4.4.2-3 GEX block diagra m 245
2.4.5-1 SimuLation control structure 246
2.4.6.2-1 Sample period bus report 249
2.4.6.2-2 Sample period processor report 250
2.4.6.3-1 Bus decomposition report 251
2.4.6.3-2 Bus loading bar graph 252
2.4.6.3-3 Bus utilization summary report 253
2.4.6.3-4 Message transmission summary report 254
2.4.6.3-5 Processor utilization bar graph 256
2.4.6.3-6 Processor utilization summary report 257
2.5.2-1 Hierarchy of SDVS software 264
2.5.2.7-1 ICS inputs and outputs 269
2. 5.2.7-2 SLS inputs and outputs 270
2.5.2.7.3 EES data interface diagram 272
2.5.2.7-4 SDVSf keyboard model interaction 274
2.5.3.2-1 Sample SDVS fligh t profile 285
2.5.3.2-2 Sample SDVS SCL program 287
2.5.3.2.3 Sample SDVS DPL program 289
2.6.1 AVSIM simulation structure 292
2.6.2-1 Major data paths 298
2.6.2.1-1 AFM 1 input/output block diagram 300
2.8.2.2-1 FCS input/output block diagram 303
2.6.2.3-1 ADC input/output block diagram 306
2.6.2.4-1 ACGY input/output block diagram 309
2.6.2.5-1 SIMP input/output block diagram 311
2.6.2.6-1 SMGM input/output block diagram 314

xvi

-
~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~ 

~~~~~~~-



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~ 
—-

— -
~~~~~~~~~~~~~

LIST OF FIGURES (con. )

Page

2.6.2.7.1 TGT input/output block diagram 317
2.6.2.8-1 ARS input/output block diagram 320
2.6.2.9-1 RALT input/output block diagram 322
2.6.2.10-1 NERR input/output block diagram 323
2.6.2.11-1 REGE input/output block diagram 325
2.6.2.12-1 WEAl input/output block diagram 328
2.6.2.13.1 ATM2 input/output block diagram 330
2.6.2.14.1 RMIN input/output block diagram 332
2.6.2.15-1 IRU input/output block diagram 335
2.6.2.16-1 FLUX input/output block diagram 337

• 2.7.1-1 Procedure for generating a processor simulation 340
2.7.3.3-1 Simulation control program execution flow 359
2.8.1-1 General communication system block diagram 361
2.8.1-2 Conceptual models of two types of communication channels 362
2.8.1-3 Transponder block diagram 364
2.8.2-1 Overall block diagram in signal and interface generator 365
2.8.2.1.1 Block diagram of RF exciters 367
2.8.2.2-1 General block diagram of RF combiners 370
2.8.2.2-2 Deta il of combining operation in UHF, L-.hand,

and X-band combiners 371
2.8.2.2-3 Detail of combining operation in K-band combiner 373

j 
- 

2.8.2.2-4 Exciter/combiner interrelationship 374
2.8.2.5-1 Typical LES 8/9 operation 376
2.8.2.5-2 CSEL configuration for testing K-band air-to-ground

communication channel through LES 8/9 377
2.8.2.5-3 CSEL configuration for testing K.band ground-to-air

communication channel through LES 8/9 378
2.8.2.5-4 User configuration for testing K-band/UHF

air-to-ground communication channel through LES 8/9 379
2.8.2.5-5 CSEL configuration for testing UHF/K-band

ground-to-air communication channel through LES 8/9 381
2.8.2.5-6 CSEL configuration to perform RPV jamming experiments 382
2.8.3.1 Programmable data terminal block diagram 383
2.8.3.2.1 Programmable signal processor functional block diagram 386
2.8.3.3-1 Programmable data terminal configuration

simulating LES 8/9 387

xvii

S —---~~~~~~~~~ —-—— .—‘.-.-———-——- -—~~~~~ -S--- ~~~~~~~~~~~~~



LIST OF TA BLES

Page

1.2-1 Simulation Levels 6
1.2-2 Simulation CLasses 7
2.1.1.1-1 DEC-1077 Performance 41
2.1.1.1 -2 Disk Drive System Characteris tics -12
2.1.1.1-3 M agnetic Tape Drive Characteristics 43
2.1.1.1-4 Processor Modes 46
2.1.1.3-1 PDP-l1 Processor Assignments 50
2. 1.1.3-2 P 1W-i 1 Processor Comparison Table 51
2.1.2.1-I File Protection Codes 63
2.1.3.2-i Video Console Components 118
2.1.3.2-2 Console Power Distribution 120
2.1.3.2-3 DAC Control Functions 137
2.2.3-i A - (  and A- -A Functions and Subfunctions 165
2.3.3.1-1 Definitions of Commonly Used GASP IV Variables 193
2.3.4.2-i Functional Breakdown of GASP IV and User Sub programs 197
2.3.4 2-2 Random Deviate Generators 206
2. 3.5.1-1 Description ot t s . ’r -Wr it t eu Subroutines 07
2 .4 .7 . 1- 1 Report Control Spee ificat ion Data 258
2.1 .7 .2-i A vionic Task Definition Dat a 260
2.4 .7.3-i Bus Performance and Connection Definition !)at~i 61
2 4 .7 -I- i Task to Processing Element Assignment Data 262
2-1 .7.5-1 Subfunction Scheduling Definition Data 262
2. 5.2.7-1 EES Periodic Models 273
2. 5.2.7-2 EES Cockpit Control Demand Models 274
2.6.2.1-1 AFM 1 Input/Output Nomenclature 301
2.6.2.2-i FCS Input/Ou tput Nomenclature 304
2.6.2.3-1 ADC Input/Output Nomenclature 307
2.6.2 .4-i ACGY Input/Output Nomenclature 310
2.6.2.5-1 SIMP Input/Output Nomenclature 312
2.6.2.6-1 SMGM Input/Output Nomenclature 315
2.6.2.7-1 TGT Input/Output Nomenclature 318
2.6.2.8-1 ARS Input/Output Nomenclature 321
2.6.2.9-1 RALT Input/Output Nomenclature 321
2.6.2.10-1 NERR Input/Output Nomenclature 324
2.6.2.11-1 REGE Input/Output Nomenclature 326
2.6.2.12-1 WEAl Input/Output Nomenclature 329
2.6.2.13-1 ATM2 Input/Output Nomenclature 329
2.6.2.14-1 RMIN Input/Output Nomenclature 333
2.6.2 .15-1 IRU Input/Output Nomenclature 336
2.6.2.16-1 FLUX Input/Output Nomenclature 336
2.8.4.1.1 Performance Parameters of 10-Foot K-Band

Anten na 389

xviii

— ~~~~~~~ — - - --
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION I

INTRODUCTION AND EXECUTIVE SUMMARY

The Air Force Avionics Laboratory (AFAL) at Wright-Patterson Air Force Base is the
focal point for development of new avionics technolo~~’ for the Air Force. In order to carry
out this responsibility, a significan t capabilit y to simulate physical avionics systems and
components has been created by the AFAL divisions. Of prime concern is the effective use
of these simulation facilities in the face of continually increasing perfo rmance requirements,
technological advances , arid rising fl igh t-test costs.

The usual approac h to satisfy requirements for increased avionics performance has been
to place emphasis on the selection of the best subsystems available or on the creation of new
subsystems. However , allowing subsystem performance to drive avionics system design
results in inflated costs and problems in maintenance and retrofit. Subsystems that are

designed for maximum performance become increasingl y complex and are often incom-
patible unless interface requirements are considered early in the design effort. This effort
requires not only a conceptual plan, hut a realistic evaluation of how the coupled sub-
systems will interact under all critical flight conditions. New technology in components for
avionics systems continually su~~ests new system implementations, which must be explored .
For example , there is a distinct trend at the present toward s digital techniques in all aspects
of electronics. Microprocessor technology has promoted greater utilization of software for
functions previously performed by hard ware, The trends toward consideration of avionics
hardware from the systems’ viewpoint and toward the increasing use of modularized , digi tal

hardware put increasing demand on effective use of simulation facilities to ensure reliable,
cost-effective avionics systems.

This Facility/Capability Manual for the simulation facilities of AFAL has been
developed as a means for increas ing the effectiveness of these important technical resources.

The primary objective of this manual is to document the total simulation capability in a

manner which will serve several groups :

1. Those members of the AF:~L directorate charg ed with planning or approval of the
simulation facilities.

2 . Potent ial users with a need to understand the general capabilities and limitations of
the’ simulation facilities.

3 Ac t eml users of the facilities with a need to plan simulations , document input data ,
conduct or coordmat ~‘ simulations , and interpret results .

L --
.

--
- - ~

. ~~~~~i=:-::—-T:~~~~:~~~~- ~~.
-

- -

~~~~~~ 
~~~~~~~~~~~~


~ - . —~~- - -~ --. ~~~~~~~~~~ .~~~. ~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~

4. Members of the AFAL staff who are involved in updating, enlarging, or deleting
simulation capabilities.

A secondary objective of this manual is to document the relationships between the
various facilities , which may enhance their interaction and , thus, improve the cost-
effectiveness of the overall AFAL simulation capability .

The manual achieves these objectives by presenting introductory and summary material
in section 1 and by presenting more detailed descriptive material in subsequent sections. The
contents of section 1 address the laboratory capabilities from a planning/management view-
point by relating the laboratory mission to present facility capability through the develop-
ment of a conceptual simulation class structure. The conten ts of subsequent sections of this
manual address specific facility/capability from a potential-user viewpoint. Both hardware
and soft ware availability are documented. The technical level of these sections is such that
available capability can be determined and some insight can be gained regarding user
interface. For more detailed simulation facility capability and utilization , the reference
documentation should be consulted.

Each of the divisions within AFAL has been assigned a major section heading within the
manual organization. Thus, section II describes the capability/facility resident within the
Systems Avionics Division; section III those within the Electronic Technology Division;
section IV those within the Electronic Warfare Division; and section V those within the
Reconnaissance and Weapon Delivery Division. Because of time and funding constraints
under the current contract , the extent of the manual has been limited to the simulation
facilities within the Systems Avionics Division. it is anticipated that the manual will be
expanded in the future to include the remaining AFAL Divisions.

11 AIR FORCE AVIONICS LABORATORY: MISSION AND ORGANIZATION

The Air Force Avionics Laboratory is the principal development organization within Air
Force Systems Command (AFSC) for new avionics technology . The primary responsibility
of A FAL is to provide the USAF with the products and ex pertise required for the acquisi.
tion of the best possible avionics systems. To meet this responsibility, AFAL maintains a
base of avionics technology and develops and demonstrates cost-effective avionics systems
and subsystems to improve operational capabilities in navigation , communications, elec .

tronic warfare , surveillance, reconnaissance, and weapon delivery . As required , the labora.
tory provides technical assistance in the systems-acquisition process to all elements of
AFSC, and to all USAF elements in the operation and modification of avionics equipment
in the inventory .

-
- ~~~~~~~~~~~~~~~~~~

2

-

.

-

rhe laboratory is organized into four major technology groups , as sh ow n in the

or~antza tion chart in Figure 1.1-1. System and device development is conduct-ed in the
Syste ms Avionics . Reconnaissa net’ and Weapon I)eliverv . Electron ic Tech nologv , and
Electron ic Warfare I) iv is ions . ‘l’he mission of each of these’ is discussed briefl y in the
followin g para graphs.

AFWAL COMMANDER

________________ I TECHNICAL PROGRA MS

I & APPLICATIONS OFFICE

CHI EF SCIENT IST AIR FORCE AVIONICS (XP)

(
~~~

) LA BORA TORY
(CC) RESOURCES MANAGEMENT

OFFICE
(DO)

-~~ _ _ _ _ _ _ _ _ _ _ _  1
TSYST

~~~~~~
NICS

[(AA) DIVISION
(Rw)

ELECTRONIC TEC~~ ELECTRONIC WARFARE TECHNICAL SERVICES
NOLOGY DIVISION DIVISION

~WR)~

DIVISION
(IS)

Figure 1.1.1. AFAL o~uilution,

1.1.1. Systems Avionics Division: Mission

The Systems Avionics Division develops concepts and methodology for the architecture
of advanced avionics systems. Research and exploratory development are conducted in the
areas of information handling , processing, and transfer ; display and control; subsystem
design and optimization ; subsystem and functional integration; and electromagnetic trans-
mission li nks. Programs within the Division develop and demonstrate advanced concepts of
avionic’s subsystems integration , automation , and information processing, display, control .
and transfer. In-house’ capability is being developed to define , demonstrate , and test digital

3

- - -~~~~~~ —

-

-~--~~-~ ~~~ ~~~~~~~~~~~~ ~~~~~ - -

avionics and to provide the hot-bench facility and expertise necessary to achieve this capa-
bility. The Digital Avionics Information System (DAIS) is an example of such a program.

1.1.2 Electronic Technology Division: Mission

The Electronic Technology Division maintains centers of excellence in radar and micro-
wave technology, laser and electro-optic technology , and microelectronics. The Division
conducts basic exploratory research and advanced development programs in these areas to
support the needs of AFAL and its application divisions. In the area of microwave technol-
ogy, program objectives include identification and development of the technology of micro-
wave avio nics devices , sensors , and systems to improve their performance , reduce their c osts ,
and evaluate alternative development paths. The Division seeks to expan d the electro-optic
component technology base , providing new devices to support a wider range of applications ,
as well as offering solutions to Air Force requirements . In the microelectronics field , objei~-
tives associated with reduced cost of ownership, increased performance and reliability, ease
of maintenance , and increased ability to withstand stringent operating conditions are pur-
sued by recognizing and exploiting emerging concepts and technologies to assure rapid
transition of new devices and circuits into the Air Force inventory. Materials , such as Ill-tV
compounds and heterogeneous structures , which show promise for advanced signal-
processing applications , are explored , as well as specific materials applicat ions, such as
bubble memories.

1.1.3 Electronic Warfare Division: Mission

The Electronic Warfare Division conducts exploratory and advanced development pro-
grams in the technical domain of electromagnetic warfare. The Division participates in
advanced planning to provide effective guidance for the Division mission and to provide
timely transition of exploratory and advanced development programs into effective military
hardware . In carrying out its mission , the Division maintains electronic simulators , such as
the Electronic Defense Evaluator (EDE) and the Dynamic Electromagnetic Environment
Simulator (DEES) . Technical areas of interest include , among others: analysis of threats,
projecting scenarios, modeling the effects of electronic warfare on penetration effectiveness,
and performing tradeoff evaluations; performan’e of electronic warfare technique analysis
to generate EW effectiveness data ; developmen t and demonstration of the military worth of
countermeasures for defense of aerospace vehicles against threats utilizing optical or elec-
tro-optical guidance or fire control systems; and development of advanced techniques, tac-
tics, and equipments for manned aircraft to penetrate or enter a hostile air environment.

4

-~~~~~~~~~

-

~~~~ ~~~~~~~~~~~~~ --—



— —- —.- —--- -- . -- -,-----‘ -- - —

I

1.1.4 Reconnaissance and Weapon Delivery Division: Mission

The Reconnaissance and Weapon Delivery Division conducts exploratory and advanced
development programs to demonstrate improved aerospacehorne reconnaissance, nav igat ion

and weapon deliver capabilities for present and future Air Force tactical and strategi c
we apo n svst ems . I’he Division conducts studies and anal yses of potential concepts , sub-
syste m requirements . aerospaceborne reconnaissance , n avigation , target acqu isi tion , fi re con-
tr ol and weapon delivery avionics subsystems , and provides promising completed exp lo ra-
t~ cry effo rts b r  incorporation into those subsystems . Another Division function is identifica-
t ion of areas of technology in its  area of interest , which require development by other
.\FA1 . ‘> r C a l l i z a t t u n s  Also , the Div ision maintains a group fo r dynamic mobile evaluation of

~o f t w a r t  for aerospace inertia L refer en ce subsystems and a group for dynamic and environ-
m ental  cva tu at ion of avionic sensors , subsyste ms , and sy stem s .

1.2 SIMULATION CLASS STRUCTURE

In th e same sc ns~ that  avionic hardwar e development ten d s to proceed within the

narrow t-onhnes of  the fun ct ions  and performance of specific suh ~vstem s - -for exa mp le , a
radar or V o I ( - e  communicat ion radio — simulat ion capabil ities also tend to be developed for
aid in design of certain specific subfunct ions of avionics. In recent years , however , the

opportun ity for and desirability of the integration of avionics subsystems into a functional
hardwa re system hav e presented the necessity to examine the tradeoffs required by the
system-integration process.

While the simulation capabilities that are a vital part of subsystem design are as neces-
sary as ever , simulation of systems at a higher aggregate level become equally important. In
fact , a hierarchy of simulation capabilities becomes desirable and necessary to insure that
overall system performance meets mission requirements and that each subsystem satisfies its
own subrequirements . When simulation is viewed from the perspective of assessing the total
avionic function as an integrated system , it is convenient to structure it to parallel a top-
down-system design procedure that results in maximizing total system performance.

This section presents a conceptual simulation architecture encompassing several levels of
simulation support related to the avionics design and integration process. The rationale for
this architecture was originally developed for the Avionic System Analysis and Integration
Laboratory (AVSA IL) facility (Section 1.3.1) in the Systems Avionics Division. However ,
the architecture is designed to encompass a total system approach to simulation of avionics ,
rather than a subsystem approach , so that it is a usefu l framework for relating the function

~ 1

- 

-

~~~~ 

-

.‘~—~~ -~
.------- —

~-— --
~

•
~~~~ ~~~~~~~~~~~~ — 

—



~~~~~~~~~~~~~~~~~~~~~
‘ ‘ “.‘

~~~~ ~~~~~~~~~~ ‘ ‘~~~ ‘ ‘~ ‘~~~‘ ~~~~~~~~~~~~~~~~~~~~ - - - ‘1

of simulat ion faci l i t i es capab ilities in other AF~ L Divisions as well. As ma become appar-

ent , such a class s t ructur e  WUsi occasionally be warped slightly to fit  an individual e ase . but
in genera l it provides a useful f ramework for both laboratory management and user. By
categori cally locating given simulation capability wi th in  such an architecture , it makes it
conv enient  for  f at - i l i t  y management to plan for controlled expansion of c ap a lc io ty  and also
fur the  potential user to  selec t and revie ~v only those capabiliti e s whi c h are r el evant  to the
simulat ion detail required for his part icular system design task. These categories are listed
below in Table 1.2-1 - Table’ 1.2-2 shows applicatio n s , outputs , and examp les of the various

levels as configured at the Avionics Laboratory .

TABLE 1.2.1. SIMULATION LEVELS

Level I — System functiona l Level V — Real-time dynamic
Level II — Discrete event Level V I — Real-time senior si gnal leve l

Level Ill — Scientific Level VII — Special purpose hybrid
Level IV — Interpretive computer

These various s imula t ion  categories may operate as separ at e capabilitie s for designers

whose problems f~t a particular level , or where evaluation is needed of a specific proposed
configuration. The designer may also use the cate- ~ ort t -s as a continuous s~ ste m of levcl~
start ing at the broad view and proceeding to f iner  levels of detail. lter ation may occur
among any of the  levels at any point in the simulations.

At the broadest level of Sy stems Simulations , the designer looks at functions and oh-

tai n s general , variable , probabilistic outputs. At Discrete Event Simulation , the exterior

boundaries of the proposed system become more specific. At this level the designer gains an

understanding of what the h ard ware in the proposed system would look like and how the
subsy stems would interconnect and communicate. In Scientific Simulation , the software is
added i n the form of algorithms , and the entire system is placed inside an external environ-
ment model group so that flight conditions may he reproduced. In Interpretive Computer
Simulation , the su~ svstem algorithms would be changed to actual flight codes. In Real-Time
Dynamic Simulation, an actual subsystem interconnects with the simulation and replaces a
model. Most of the proposed avionics system would continue to be in modeled form since

this test concerns the integration and interface of a single subsystem. In Real-Sensor Signal
Level Simulation , groups of functional hardware would replace groups of models for a
com plete system integration test. The external envirooment ren 1ains modeled and inter-
faced, but actual sensors may also he stimulated to carry the e’n~~ronmenta l simulat ion to
further details.

_ _  

6

--— —~~~ - ~~~~~ -~~~~~~~~ -~~~~- --‘-- ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- 

~~~~


P

TA BLE 1.2.2. SIMULATION CLASSES
- -- --~~~- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ .- - -

Class’s Applications Outputs Examples

System Functional System Analysis Performance AEP
System Design Parameters/Limits Cost Models
System Requirements Sensitivity Thresholds

Detinition Criteria Requirements
System Leve l Trade Mission Scenarios

Studies System Reliability
Parametric Analyses Estimates

II. Discrete Event Computer System Processing Requirements Simnuc
Capabilities CPU Sizing DPM

Throughput Analyses Bus Loading GASP IVI/O Requnements Loading . -
Information Transfer System Level Timing

Requirements Loading
Benchmark Testing
System Time Line Analysis

I I I . Scientific Navigation/Sensor /Flight Closed Loop Navigation SOVS
Dynamics Interactions Operation AVSIM

Algorithm Verification Ideal Weapon Del.
System Performance Evaluation

Evaluation Statistica l Data Collection
Subsystem Design Processor Characteristics /

Design
Mux System Design
System Software Develop-

ment

IV . Interpretive Detailed Timing Evaluation Detailed Timing of SDVS t ICS)
Computer Fine Grain System lnter~ Command/Discretes Processor

action Detailed “Debug” Aid Arc hitecture (ISP)
Flight Computer Code for Flight Code

Evaluation Preliminary Hardware
Detailed Design of Proc- Timing Evaluations
essor/Mux Subsystems

V. ReaI.Time Man-In-Loop Evaluations Mission Scenario AVSIM
Dynamic (cockpit only) Evaluation

OFP & Flight Computer Sensor Modeling Verif -_
Interaction cation

Functional Avionic Control/Display Evelu.
Repreasntet ion etion

Phase IV &V o f OFP
OFP/Flight Computer
Integration

7

~

~:: ~~~~~~~~~~~~~~~~~~~~~
- -

‘r’~ ~~~~~~~
- —‘ — -,- .-

• — -•--.-— - - - -
- -

~
-

~~~~ 
— -‘- - - ‘~1

TASt E 1.2.2. S$MULA1ION CLASSES (con.)

Classes ApplKe~..s 
- - J Outputs Examples

v’ Reel-Tim. Sansor System Integration End-to-End Signal Flow DAIS
Signal Level Avionic Sensor Testing

Interlace V.i,tication Hardware/Software
Int.gr.tsd System Dynamic Inter-

Testing action
t)ynambc Simulation Completely Instrumented

testing of Seniors Integrated System Tests

- 
Ph.se IV & V o f O F P

VII. Special Purpose A-i Signal Structures Verified A-.J Signal CSEL
Hy brid Let 8/9 Support Structures

UPS Support Performance vs. Channel
RPU Data I ink Design Characteristics

these si m e i l a t i e e i i  li ’~- i -l~~;u-e di sc ussed in d iv i du a l l y  and in iue’ . i t e -i d eta i l  in t h e  fo l l o w i n g

pa ragraph s .

1.2.1 Level I, System Functional Simulations

~vste m simu hit ioiis are a star t i n g point for defining ,  in syst em terms , the  avionic func-

t i o l l s  needed . In a computer simubi t  ion of the functional ( ‘ap abi lit ies of an avionics syst em,

mia l ys( ’s of the  many options available provide the systems designer with a means of deter-

aing th e ’ optimum avionics configu rat ion for a select-ed mission. Mission requir ement s are
firs t analyzed and allocated to specific functions and modes of operation for each phase of
each postulated mission. Appropriat e hardware configurations are then defined , and the
operating characteristics specified to create a system simulation model. A computer analysis
is then made to evaluate the performance of’ each cots figuration relative ’ to various mission 

- 

-

require’mt ’nts. Overall nussioti p ( ’rf or m~mee, as well as e’andnbsli ’ s s t  em cost -effectiven ess .
are’ elements of such an analysis.

Typically , the system (lesigner defines the characteristics applicable to the desired air-
craft typ e ’ and avionics sy st em configuration; then he select-s the mathematical models

necessary to accomplish the simul ation from AV SAIL ’s library of simulation soft ware . I Ic
may t h en s t u e t ’ssivcly m od ity  the ’ configuration by deleting or adding var ious subsystem
models.

8

- - -~~~~~~:~~~~~~~ -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T” . ‘— -

~~

------ --— - -

~

Comparision of the simulation runs and the system performance requirements will sug-
gest tradeoffs , which could result in modifying the’ initial system design . These modified
configu rations may then be subjected to additional simulation analysis.

The system designer may vary numerous model characteristics and determine the effect
of the changes on overall system performance. He may utilize various configurations to
examine the operation of each avionics subsystem and gain an understanding of the func-
tional performance necessary to insure that the system is responsive to primary mission

requirements. Thus, with AVSAIL’s capabilities , the system designer can examine the ef -
fects of varying the system ’s configu ration in a logical arid orderly manner , prior to
construction of hardware prototypes. In general , this level of simulation explores and com-
pares different modes and options for implementing the mission functions. Hundreds of
simulated missions can be examined in a few minutes. Once mission functions have been
established, further refinement of the system design may be accomplished with more de-
tailed levels of simulation.

1.2.2. Level II , Discrete Event Simulations

Discrete event simulations are used to investigate the functional and physical configura.
tions of a proposed avionics system and provide analysis of information-processing loads and
tra nsfer requirements . The designer is able to evaluate and analyze ’ time sequences and the
effects of system degradation. He looks at the proposed system configuration, and he can
make comparisons of various configurations.

Given a specific configuration of avionics subsystems and the detailed performance
requirements of each , the simulation defines the capability required of the airborne pro-

~‘essor and determines the’ flow of information between each of the subsystems. An analysis
of the amount of information flow at any given point in time provides data on gross system
timing and enables the designer to reallocate functions as necessary.

The’ simulation also permits examination of the information-processing cycle for the
avionics svst I’m liv relating each operation to airborne processor time for comparision with
established time boundaries. For each function, the designer can determine total t ime used ,

including processing time required or processor speed required for desired performance.
Ae’curae’ requirements may also be analyzed .

Various methods of interconnecting subsystems can be examined . The’ simulation per-
mit s examination of trial subsystem inte ’rconnections to determine the informati on flow

9

: - -~~i~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — T -:
~~~~~~

-
~~:1J.

-- -~



~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘ 1

t iming . The designer thus identifies peak loading conditions and excessive information de-
lays.

The simulation also establishes boundaries on the amount of information flow hetwee’n
any subsystem and any processor or termination point at any given time. This results in the
questions: What should be allocated to an airborne centra l processor? What processing
should he broken up and allocated to local points in the system?

If , after trying partitioning alternatives , the simulation result calls for impractical air-
borne processor capacity or speed , th en th e proposed avi on ics system may not be a va l id
solution for the mission in terms of current hard ware technology . However , this type of
result would suggest the ’ need to iterat e ’ with the system functional simulation , tryi ng othe r
modes and configurations. Feedback and interaction among various types of simulation is a
conventional usage of AVSAIL in design and analysis.

The proposed partitioning may or may not be satisfactory; if not , modification or
reconfigu ration is necessary . The designer continues to experiment with various ways in
which the system can be interconnected . When he has modeled a workable system , he has

defined the hardware in terms of operating characteristics , hardware interconnection , and
information flow. He has also examined information flow rates and has established general
boundaries on the amount and speed of airborne processing required. His next step is to
model in detail all the elements of the system.

1.2.3 Level Il l , Scientific Simulations

Scientific Simulations involve the use of deta iled models for both hardware and software
in a proposed avionics system. This level provides an opportunity for comprehensive evalua-
tion of the proposed system’s operating logic, performance, and timing, and permits exami-
nation of tradeoffs between hardware and software. The physical partitioning of the pro-
posed system is validated , and hardware specifications and software algorithms are devel-
oped .

The detailed mathematical models of specific subsystems are constructed to include
functional performance and to accept input and produce output signals. For example , a
chosen model of an inertial subsystem would produce signals , which would correspond to
the velocities it should sense over a particular period of time during a simulated mission.

The mathematical models are combined with a detailed information-transfe r scheme and
with trial software models; the entire simulation is also embedded within environmental

- -•- - - -

10

—- — -_-
~~
. —

~~~~~~~
- — ~~~~~ z— —

~~~~
--
~~~~~~:



~~
—

mode’ls . The ‘I environmental  simulation includes validated models of airframe.
rotat ing earth and atmosphere so that the system under test can receive realistic signals and
produce ’ results that - can he accurately analyzed for functional performance .

Aside ’ from a close look at hardware elements and partitioning, software development
for the proposed avionics system is begun in Scientific Simulation by providing an operating
environment to try algorithms in dynamic situations. The designer can then evaluate the
performance of a particular navigation algorithm under given conditions.

Since the sy stem elements are modeled in detail and accept realistic inputs , the simula-
tion also provides accurate outputs in the form of actual signal levels . After suitable
algo ri thms are tested and potential hardware/ software trad eoffs are identified and chosen ,
detailed specifications are generated for both hard ware and software.

1.2.4 Level IV, Interpretive Computer Simulations

Interpretive Computer Simulations are similar to Scientific Simulations , but software
analysis is performed at the airborne processor instruction level for detailed flight-program
development and an examination of fine-grain hardware and software interactions. The
timing of all airborne-processing functions is recorded for analysis.

The Scientific Simulations examine various airborne software algorithms operating with
detailed models of the hardware and the environment. At the Interpretive Computer
Simulation level , the simulations examine complete airborne software coding, operating
with similarly detailed models of hardware and environment. A compiler in the simulation
computer generates the machine code so that the model of the airborne processor can
operate with bit-by-bit simulation of each machine-level instruction. Feedback with other
types of AVSAIL simulation may be required to refine the software coding.

Since the analysis is very detailed , the simulation is focused at critical processing points
in the mission , examining short segment.s of airborne processor operation. Several hours of
simulation are typically required to evaluate a few minutes of flight time.

Actual execution of fligh t code instructions provides a thorough analytical method for
evaluation of software accuracy and identification of timing problems. The most common
objectiv e of this simulation is to support the development and validation of fligh t code.

11



L
1.2.5 Level V , Real-Time Dynamic Simulations

The primary purpose of Real-Time Dynamic Simulation is to test actual hard ware
operating in real time with accurate, detailed simulation models of the proposed avionics
system and the environment.

Any actual avionics subsystem may be exercised to examine its real-time interactions
with the total avionics system. This level of simulation is used to support integration of the
particular subsystem with the proposed avionics system. For example, an airborne
processor , loaded with the fligh t code it will run , can be driven by the simulation. Inputs
would be provided to the airborne processor hardware by the simulation models. The
models would also accept outputs from the hardware under test and interact realistically
with the system.

The environmental simulation provides the hardware under test with a realistic operating
environment , including all fligh t information references. A comprehensive example is the
operation of a cockpit with controls and displays hardware , either to examine the hardware
interfaces and interactions with the rest of the avionics system or for a man-in-the-loop
study. The simulation will accept the control inputs and drive the displays according to
model outputs , including the environment simulation. A video scanning and mixing
capability provides realistic display background synchronized with the modeled air frame
and environment. The sampling of controls and the driving of displays occur in real time at
the cycle time of the proposed avionics system.

Except for such questions as the effect of dynamic maneuvering loads, Real-Time
Dynamic Simulation can produce avionics system debugging results previously obtainable
only through expensive and time-consuming flight test. For this level of simulation , actual
hardware replaces one or more simulation models for validation of one subsystem at a time.

1.2.6 Level V I. Real-Time Sensor Signal Level Simulations

Real-Time Sensor Signal Level Simulations are the basic tool for total system
inte~~ation. Groups of simulation models such as those used in Real-Time Dynamic
Simulation would be replaced by multiple functional groups of actual hardware run together
in real time for an integrated study. Whereas Real-Time Dynamic Simulations concentrate
on a single item or a single closely related group of hardware , this integrated simulation level
exercises and examines complete functional sets of hardware subsystems. For example , all
hardware which will operate on information transfer and processing may be tested together.

12

—



‘:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A complete external env ironment is simulated to the avionics system under test , and the
AVSA1L simulation computer is capable of providing appropriate stimulation to actual
sensors so that overall performance of the system may be evaluated dynamically and
realistically. Where it is not practical to present a computer-generated signal to an actual
sensor (for example , where aircraft motion must be detected), the sensor output is modeled

to conform with the  missions and mission environments being evaluated. Modeled signals are’
inj ecte d as early in the system test as is practical.

(‘omp le’t.e group ings of hardware’ are operated in a sim ulated real-time mission to study

integrat ed performance’. to verif y tha t  all hardwa re interfaces operate properly , and to

validate th e  sy stem software under simulated flight condit ion s.  \ i r tu a l l y all mission modes

ca n ht- examined us ii i t~ validat ed models of earth , at inosphere . and airframe.

.\ V S .\ 11 t -o mp lt ’te ’ syste m integ i— at ion tests comp lement  f l i ght est ing. part icularl y in
soft  ware ’ va l ida t ion  and hardware ’ debu gging. These’ -

~~ mu hi R z is can rt ’p la -e s u e - h basic

chec k ou t  procedure’s pm-eviouslv accomp lished univ in fh i~ht t e s t  ing~ subseq uent flight t cst~
can ~-uncen Irat e  on val idating dynamic performanc e .

1.2.7 Level VI I , Special Purpose Hybrid

While ’ not necessar il y a “level’’ per se’, the capability to perform spe’cial p ur pose

simulations is a necessary requirement in system s eksign. tinder the Special Purpose
category , the Avionics Laboratory has developed the Communicat ions Systems Evalu atio n
Laboratory (CSEL) .

CSEL has been developed to assist the U.S. Air Force in the analysis , synthesis, and
modeling of its communications and data links , and to provide a cost-effective means for
dynamic evaluation and comparison of advanced techniques and systems.

Curren t Air Force communications links between aircraft—both direct and via
satellite—operate in the ultra high frequency (UHF )  or super high frequency (SHF) radio
hands. As new user requirements evolve , new communications systems and data links , such
as the Lincoln Laboratories ’ LES 8/9 satellites, are being designed to handle them. However ,
new systems and innovative equipment are’, in themselves, not enough to handle the
ever-increasing user requirements; there is a corresponding need for change in such related
areas as frequency hands of operation , signal structures , and modulation tee’hniques. The
(‘SEL, by providing the proper computer hard ware/software ’ mix , offers a dynamic-

evaluation tool that will provide the e’apahility to observe’ and e’valuat e’ the ’ performaiwe’ of
such advanced communications and dat a systems .

~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ — - - -~~~


‘r i

1.2.8 Digital Avionic Information System (DAIS)

The various levels of simulation resident within AVSAIL allow the user not only to
select the appropriate degree of sophistication to satisfy his application , but mol e’
powerfully, to assemble various levels in order to broaden interactively the available
simulation -apability. Additionally , the user may choose to sequentially select various
simulation levels as he moves through the various phases of system design . In the following
discussion , the DAIS project is presented as an example of the manner in which AV SAIL
can support the various programs resident within AFAL by virtue of this simulation le’vel
structure .

The purpose of the DAIS project is to demonstrate a coherent solution to the problem
of proliferation and nonstandardization of aircraft avionics , to develop and test in a

hot-bench configuration (known as the Integrated Test Bed) the DAIS concept , and to

permit the Air Force to assume the initiativ e in the specification of avionics configurations
for fu ture Air Force weapon systems acquisitions. The DAIS design approach reflects a total
system concept that is functionally oriented rather than hardware oriented.

The heart of the DAIS system is the redundant time division multiplex data bus shown
in Figure 1.2.8-1. This bus allows information from the aircraft subsystems ‘eg ., avioni c -s
units , stores management , power control) interfaced by remote terminals (R I ’) to be

communicated along the bus and to a set of shared DAIS processors through Bus Control
Interface Units (BCIU) in the processors. Mission software , dev eloped through simulation
wit h the Sof tware Design and V er i f k - at io n System (SI)VS) in non-real-time interact eon
(Levels II and III) with aircra ft and e ’nvironniental models , c-a n be exercised in real time ’ in
the ITB facility. For ex ample , a pilot flying a simulated cockpit views a simulated .
computer-generated scene and interacts with displays in the cockpit generated by DA IS

mission software. The aircraft external environment and flight dynamics are simulated by
models executed by the host computer in a Class II simulation. During such a simulated
flight , the mission software/processor performance is monitored by the Super Control and
Display Units (SCADU), while the bus performance is monitored by the Bus Monitor Unit
(BMU). The results of the Level V simulation can then be compared with those predicted by
earlier non-real-time simulations at Levels I to IV. System performance is , thus , verified in
the laboratory instead of in the field . Many of the simulations utilized in the DAIS ITB hav e
application to other avionics system developments and are described in Section 2.0 of this
manual.

14

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- --

~~~

~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~

- -

~~

—‘

~~

--—-- —

~~~

—~iII1—— snq seup ~~~~NAW $UupUflpu,~~~~~~

F ~i iF d { ~i I ~i J
_ _ _ _

~ II
___ _ _

_ _

_

~ ~~~ [till kill
_

O~1’~)I1)”)’~I’ ~~ _ _ _

iI~
-

15

_ _ _ V -— -
-
~
.--

~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. ~~~~,



- ~~~~~~~~~~~~~~~~~~ :~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - --

~~~~~~~

1.3 AFAL FACILITIES

The hierarchy of facilities for simulation at the Av ionics Laboratory may he

schematically depicted as shown in Figure 1.3-1. Major laboratory facilities , such as the
Dynamic Analyzer Complex (DA C) . AVSAIL , and the Electronic Warfa re Simulation
Facility (EW SF~, are operated by AFAL div isions and constit ut e labo ratories su bdivided

essent ial ly by generic application. Each of the laboratories has varyin g degrees of fur ther
divisio n into component facilities and capabilit ies , as for example is illustrated for AVSAIL
in Figure 1.3-1. ‘rhese major components may be utilized in various configurations to
simulate specific systems or subsystems. The physical facilities of the AVSAIL DEC-10 host
computer , Picture System , V ideo Cente r, and Cockpit are shown in conjunction with

AV SIM DAIS models to provide a rea l-time simulation of the DAIS sy stem Alternatively .

other mod els may be employed by AV SIM . along with dedicated hardware In simulate an

F-16 aircraft fire control system.

The facilities and capabilities of the Avionics Lahora t ci-y are of a complexi ty and

versatility so great that the range of potential app lications cannot be ful ly described in a -:
manual of this limited ext-eat. it is rather the intent here to describe the capabilities and

facilities themselves so that the user may h imself be led to envision the applications. The V

following paragraphs present a brief overview, with additional details provided in manual

- -
sections for each major facility .

1,3.1 Systems Avionics Division (AVSAIL)

The AVSAIL facility has been configured particularly for implementation of all of the
simulation classes previously described. In order to convey the flexibility and power of the
AVSAI L laborator y , the host facility is described in the following sections. The scope of the
description is limited to those aspects of the facility which have significance to the conduct
of simulations, rather than to an exhaustive exploration of capability . Discussions of the
basic computer and peripheral hardware configuration , the operating and utility software
capabilities, and the constituent simulations now resident in AVSAIL are provided. V

-

1.3,1.1 Hardware Features

The AVSAIL laboratory is structured around a Digital Equipment Corporation
DECsystem-10 mainframe computer. As depicted by Figure 1.3.1.1-1 , the DEC-10 has a bus
architecture , which provides both a memory bus for processor-men~ory and direct memory
access communications and an input/output bus for processor-peripheral communications.

— — —

—

-- -~~ —

—.- _ _ - - -

_ _ _ _

‘~~~~~~~~~~~~~~~~~~~~~ ‘r ’~~~~~

4-;

~~~~~ø ~~~I ~
~~~~~~~~~~~ ‘ i~

a ~ ~

~~
‘ a

~\ :~~~~~~ ~~~, .
~~ (6(0~~~~~’

H I

I,
_&

* V
U.

H

17

_______ -
S - -

~~~ 
- 

V:~~~~ 
V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~
-~j -””~ ” —

~ ‘,-~ — ---———- —~- — -‘
- - -~ -~~~ - ~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~ .‘

A wide range of peripheral input/ output dev ices , ais described subseque’ntlv , are’ provided to

handle batch. t im eshare’, and real-time program development and e’xt ’cut ion re’qu ireme’nts. A
utuqu e feature of the A\ ’SAIL configu ration is the eight-channel I)irect Memory Access

I) ~sl A I capabi lity provid ed for access by a t -omplement of eight PDP- 1 1 series
minicomputers. The PDP -1 l’s serve to interfiece specific simulations (e’ g., the F-lB Fire’
(‘ontrol Computer simulator) to the DE(’-lO . An overall hardware system diagram is
provided in Figure 1.3.1.1-1. The central processing unit (CPU ) for the A V S A I L  DEC-10
cons ists of dual Ki -l O processors , with the configuration being designated as a DEC- 1077.
Each CPU module is an independent processor , and programs can operate ’ in parallel , one
program per processor , thereby increasing the ~iverage through put speed . The AVS:~ll.
DE( ’-1077 memorc capacity is currently four 64k word module’s (DEC MF’-lOG ) of 950ns
core memory and 512K word s of Ampex ARM 1 OLX memory . Word size is 36 hit s p iti s
parity. The’ dual KI - lO processo rs and memory modules are directly inte’rfaced by the ’
memory bus of the DEC-10 , allowing maximum utilization of memory and easy expansion. - c

Bulk storage ’ is available on both multisurface cartrid ge disks and magnetic tape ’. All disk
and tape units are interfaced to both the 1/0 bus iend to the memory bus. The system
currently provides four RPO3 disk drives and four RPO4 disk drives. Storage’ capacity of the’
RPO4’s is 20.48 million words: for the RPO3’s, the capacity is one-half that of the RPO4 ’s.
The available magnetic tape drives also provide a choice of performan ce’. Four TV1OA-E
nine-track drives operate at 45 ips, and four TV4O drives operate uìt 150 eps . providing a
range of transfer rates from 9K to 120K characters per second.

The DEC-10 facilit y provides for onsite and off site access both for development o f —

software and for its execution. Currently , onsite facilities include 25 CRT alphanumeric

terminals, two local CRT graphic display terminals, and two minicomputer-based data-
acquisition systems. In addition to these physical terminals, the DEC-10 monitor software
supports up to 48 virtual terminals or “pseudoteletypes,’ which allow jobs to control other
jobs. 

V

Of fsite access to the DEC-10 is throu gh the DC75 Data Communications System (Figure
1.3.1.1-1), which provides a maximum of eight synchronous, 9,600 baud Lines. Maximum
aggregate data rate is 30,000 bps. Currently, 4 ,800-baud full-duplex leased lines connect the
AV SAIL laborato ry through this interface with the Armament Development Center , Eglin

AFB , Florida , and the Nava l Weapons Center , China Lake, California.

Two line printers provide high-speed (1,250 line/m m ) output from the DEC-10. Graphic
hard-copy output is available flom a Cal comp Mode) 583 plotter. This high-sp eed.

18

- 
— — 

_______________ -
-~ -5- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -r~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V - V S  V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~ -. -

~., ~3VIlJ31 NI H3Sfl 3IJO1S VL~H3.LVS
0

,e- r- ~ b U P d t

_ _ _

:
_ _ _ _ _

_ _ _ _ _ _

_ _ _ _

_ _ _ _ _

_ _ _

.—....:..—L
——

—

~~

~~~~~~~~~~~~~~~~~~~~~~~~

____ - .  — 

___ -
~~~~~~ I __— ‘ al

~~~~~ I ._ ~1i I I I0~~
- .  _______ I - ~~~~I ‘

a ; fl i  
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _

1 - =L..
____ 

.‘- -
~- ‘  -1i~~I

_ _ _ _  

_ _ _ _  ~~h _ _ _

; ~~~~~ T: —
~~ 

- 

_ _ _ _ _ _

L~VV~~~~



pr 
~~~~~~~~~~~~~~~~~~~

—---

~~

-

~~

— —
~~

—
~~~~~~~~~ ~~~~~~~~ 

-

~~~~

-

~~~~~~~~~~~~~~
-

~~~
-

~~~
--

v - c

3*IOIS VI V O  N1fl 9 33V1831N1 3I~VMO~VH ~3V I831NI U3Sfl
3ViI1~1V3~ 3A113V1131NI

~~~~L~~~~~~~ iEH
1~l~~ri I 1 1 (I)

L~.L_~~J L_ ~ ..J —i ~ I rT~~i~ ~
_______ ririi ri ‘—~--—‘

~ L!~-i~ u
1.!. JJJ 1! ~~I I u.l ~~~~~u_

~ ~~~~~~ J o ,.. =~~~~~~— t.a~~,_ _ _ I l ~~~~~~~~ 1 (l) 0
— a ~

-

~ ;~~~ .::~~ S - ~‘i cc
I~ ~I~ !

_ _ _ ___
1~- ’ - 1!L!] L_....J~Ji~J -~IiiI [
~ J 4j iLj~~~: riiii:a !

U~~I
-I~~I 4u] ~~~~ ~=::~ ~

IIJ
~ 1!JJJ !~

_ _ _ _ _ _
_ _ _

(
~ f ~ f I I

[U
_ _ _

1~IjjT~____ t~~~cc

~~~ ~~~~~~~~~~~~~~

t~’i _ _ _  1~1 ~~~~~~~~~
2-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - -

— - - ~S Vd - -~ V Vg~~~~~~~~~~ sV. .

drum-type , pen and ink plotter uses 31-inch paper and operates at up to 300 steps per
second. Card input to the system is available through a 1,200-card-per-minute reader.

1.3.1.2 Software Featu res

The wide variety of computing requirements demanded by the several classes of V

simulations carried out within AVSAIL are satisfied by the flexibility and scope of the
DEC-10 software package. This software package provides for the concurrent operations of

timesharing, multistream hatch , real-time , and remote communications. These multifunction

capabilities allow multiple users, both at AFAL and at remote locations , to perform all of
V the tasks necessary to create new simulations , modify existing simulations, and run those

simulations as if they were individual users. The system allows a maximum of 48 users.

From the user’s viewpoint , the DEC-10 may be though t of in terms of (1) input device
and software which he has written or which act on his software , as in Figure 1.3.1.2-1; (2)
the operating system software , which controls system resources; and (3) the system
hardware which was previously described.

I cpu
]

— — —
f

I/O DEVICES j ACTUAL MACHINE

= 1=
_ _ _ _ _ _ _ _

FSHAREABLE I SERVICE I
~~

I(RESOURCE I REQUEST —I SERVICE ~~_ OPERATING SYSTEM

I [~~~~OCATOR L HANDLER ROUTINES I (SOFTWARE)

L — — ~ -1

USER PROGRAMS I INCLUDING _____

METHODS OFI COMPILERS I TTT INPUT INPUT
ASSEMBLERS I

EDITORS II UTILITIES

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

NON RE~~DENT

L _J

Figure 1 3.1.2-1. QEC,Øt.m-10. user’s view.

21
V

- - --- - -~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ -V - - -- - - -— - ~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~ ?~~V~ -

V V ~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,.-—------------ r-~-r-. r’~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V- -, - - -

r

The DEC.10 has several capabilities , which increase the utilization of system resources in

V
a muLti user environment. First , the timesharing capability allows resources to be shared
among users. Users are not restricted to a small set of system resources, but instead are
provided with the full variety of facilities. By means of his terminal , the user has online
access to most Qf the system’s features. This online access is available through the operating
system command control language, which is the means by which the timesharing user
communicates with the system.

Through the command language, the user controls the running of a task , or job , to *

achieve the desired results: create, edit, and delete files; start , suspend , and terminate a job;
compile , execute, and debug a program. In addition , since multiprogramming batch software
accepts the same command language as the timesharing software, any user can enter a
program into the batch run queue. Thus, any timesharing terminal can act as a remote
job-entry terminal.

With the command language, the user can also request assignment of any peripheral
device (magnetic tape, DECtape, and private disk pack) for exclusive use. When the request
for assignment is received , the operating system verifies that the device is available to this
user , and the user is granted its private use until he relinquishes it. In this way , the user can
also have complete contro l of devices such as card readers and punches, paper-tape readers
and punches, and line printers.

When private assignment of a slow-speed device (card punch , line printer , and paper-tape
punch , and plotter) is not required , the user can employ the spooling feature of the
operating system. Spooling is a method by which output to slow-speed device is placed on a
high -speed disk or drum. This technique prevents the user from consuming unnecessary time
and space in core while waiting for either a device to become available or output to be
completed. In addition , the device is managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations experienced by these devices are equalized.

Second , the DEC-10 has the capability to make maximum utilization of memory. The
DEC- 10 is a multiprogramming system; i.e., it allows multiple independent-user programs to
reside simultaneously in memory and to run concurrently. This technique of sharing
memory and processor time enhances the efficient operation of the system by switching the
processor from a program that is temporarily stopped because of 1/0 transmission to a
program that is executable. When core and the processor are shared in this manner , each
user’s program has a memory area distinct from the area of other users. Any attempt to read
or change information outside of the area a user can access immediately stops the program
and notifies the operating system. Because available memory can contain only a finite

22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ m~~~~~~~~~~~~ -~~~~~~



V.~ 7_V~ V V_ ••__V_ ~ •_ VV VV•~ ~~~~~~~~~~~~~~~ — VVV~V_ V ~.. .. .- .__. ~~~~~~~~~~ V~~V.V.~~~~ V_V•_ _~_ V_ ___ ~__~ _~_ _V-_VVVSV ~fl_ - V_V S_~
_
~VV ___V_ VV5_V_ —

number of programs at any one time, the comp’Lting system employs a secondary memory,
usually disk or drum , to increase the number of users serviced . User programs exist on the
secondary memory and move into memory for execution. Programs in memory exchange
places with the programs being transferred from secondary memory for maximum use
available main memory . Because the transferring or swapping takes place directly between
main memory and the secondary memory, the central processor can be operating on a user
program in one part of memory while swapping is taking place in another. This independent ,
overlapped operation greatly improves system utilization by increasing the number of users
that can be simultaneousl y accomm oda ted.

To further increase the utilization of memory, the operating system allows users to share
the same copy of a program or data segment. This prevents the excessive memory usage that
results when a program is duplicated for several users. A program that can he shared is called

V a reentrant program and is divided into two parts or segments. One segment contains the
code that is not modified during execution (e.g., compilers and assemblers ) and can be used
h any number of users. The other segment contains nonentrant code and data. The
operating system provides for shared segments to guarantee that they are not accidentally
modified.

Third , the DEC-10 has the capability to manage the storage of user program and data
tiles consistent with the multiuser environment. The mass storage devices available are
shared among users , and , thus, the operating system must insure independence among the
users; one user’s actions must not affect the activities of another unless the users desire to
work together. To guarantee such independence , the operating system provides a file system
for disks, disk packs, and drums. Each user’s data are organized into groups of 128-word
blocks called files. The user gives a name to each of his files, and the list of these names is
kept by the operating system for each user. The operating system is then responsible for
protecting each user’s file storage from intrusion by unauthorized users. The operating
system Iet~’- the user specify protection rights, or codes, for his files. These codes designate if

— others may read the file , and after access, if the files can be modified in any way. Files are
assigned protection levels for each of the three classes of users; self; users with a common
project number; and all users. Each user class may be assigned a different access privilege, so
that there are eight levels in each of the three user classes. This file protection scheme results
in a three-digit access code for all files.

1.~.1.3 Constituent Simulations

Within AVSAIL several varied simulations are resident and available to the user. These
include: Avionic Evaluation Program (AEP) ; a general , event-driven hybrid system

23

V ~~ -_ - ----—--_. - 
~~~~~~~~~~ 

V V * - -

- V ~~~~~~~~~~ ~~~~~~~ - - --— .V v - _ - ’r - - , . ~~ - -7-V—i

simulation program (GASP IV); Distributed Processor/Memory System Network Simulation
(DP/M SNS); Software Design and Verification System (SDVS); Avionic System Simulation
(AVSIM); instruction Set Processor (ISP); and the Communication System Evaluation
Laboratory (CSEL). These simulations , available in the AVSAIL laboratory , provide a
generic simulation capability applicable to all phases of avionic system design and
integration. The nature of each one is described briefly in the following paragraphs. More
detailed descriptions are given in other sections of this manual.

1.3.1.3.1 Avionics evaluation programs

The interactive Avionics Evaluation Program (AEP) is a collection of avionics
performance-assessment models. AEP provides convenient and systematic assessment of
avionics in the mission environment. The program is designed to be flexible and easy to use
with emphasis on realistic consideration of the operational environment and the generation
of useful data . AEP can be utilized for analysis of most air-to-ground and air-to-air missions.
Individual programs contained within AEP include air-to-ground and air-to-mission analysis ,
weapon-delivery error analysis, target acquisition analysis , and a one-on-one dogfight
analysis. These progr ams are implemented in a conversational , interactiv e mode , thus
providing a powerfu ’ analytical tool available to users by means of dial-up terminals. They
are, therefo re, available throughout DOD and to contractor organizations as well.

The air-to-ground mission analysis program evaluates the performance of a flight of up
to four aircraft through a specified number of days of operation. The aircraft proceeds along
an externally generated nominal trajectory through the mission phases of takeoff , navigatio n
to the search area , search , attack , and return to base. Consideration of ground service
requirements is inclu ded . Monte Carlo techniques are applied to Mean Time Between Failure
(MTBF) data for the defined avionics throughout the mission to determine which subsystem
modes are functioning, resorting to backup modes and mission aborts as required.

The weapon delivery analysis routine is a program for determining the distribution of
impact errors for a weapon system utilizing unguided , unpowered bombs. The routine is
capable of accommodating almost any weapon delivery mechanization under the
assumptions of:

1. FIat , nonrotating earth ,
2. Linear transformation of component error sources to impact er”rs, and
3. Normal distribution for all error sources.

24

- - - V —- V V ~~~~~~ ~~_~~-V-V V ~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

- V



- : - ~
-
~~:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . _ _

~~~ _ __ _ _ _
~~~~~~~~

The AEP target acquisition model is a modified version of the Multiple Airborne
Reconnaissance Sensor Assessment Model (MARSAM II). MARSAM II models the sensor
system and the operational environment in detail. It contains models for display s, lenses,
filters , and film. It considers the impact of image motion compensation , platform
stabilization errors, backscattering, and atmospheric effects on sensor performance. The
human observer is modeled in terms of ability to perceive the target as a function of size and
contrast , display signal-to-noise ratio , presence of confusing objects , and time in the field of
view. Available outputs from MARSAM II include detailed sensor system performance
parameters and associated probability measures of detection , recognition , and identification.

The air-to-air AEP analysis program is a Monte Carlo simulation of two opposing aircraft
flights (up to four aircraft in a flight) through an entire mission. As the fligh t progresses, it is
influenced by hardware failures , refueling, communications to airborne or ground
controllers , enemy aircraft detection capability , identification requirements , and weapon
capabilities. When one side detects the other , that fligh t pursues a course directly at the
other flight and fires when the weapon constraints are satisfied. The encounter is considered
only until both sides have detected the other. At that time, the relative positions and
headings are stored for output so that users can determine which side has the relative
advantage.

A separate , deterministic air-to-air program permits analysis of the dogfigh t encounter.
It simulates an engagement between two fighter aircraft . The logic for control of aircraft
maneuvers is based on lag pursuit and energy management. Lag pursuit implies that each
aircraft attempts to get on the tail of the other. Energy management control implies that the
aircraft seeks a velocity and altitude for best turning performance.

1.3.1.3.2 GASP IV simulation language

A simulation language provides the structure and the terminology to facilitate the
building of simulations. GASP IV is such a computer language ; it helps the user to build
computer simulation programs that can be both the model of the system and the analysis
vehicle. Thus, this program can be thought of as a model of a system and as a generator of
statistical data about the model of the system.

As a programming language , GASP IV gives the computer programmer a set of
FORTRAN statements designed to carry out the most important functions in simulation
programming. Modeling concepts are translated by GASP IV into FORTRAN routines that
can be easily used. GASP IV has fiv e distinct features that make it particularly attractiv e as a
simulation language:

25

i.I ~~V_ 

- 

- —- -- --~ 
— 

— - - -  —---V —---V — -

—~~~~~~~ -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



____ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- ‘ 5 -.. -- ---- - 5 - ‘ .1!

H

1. GASP IV is FORTRAN based and requires no separa te compiling system.
2. GASP IV is modular and can be made to fit on all machines that use a FORTRAN

IV compiler.
3. GASP IV is easy to learn since the host programming language is usually known , and

only the simulation concepts need be mastered.
4. GASP IV can be used for discrete , continuous , and combined modeling.
5. GASP IV is easily modified and extended to meet the needs of particular

applications.

Simulation is divided into two categories: discrete change and continuous change. Note
that these terms describe the model , not the real system. In fact , it may be possible to
model the same system with either a discrete change (hereafter referred to simply as

discrete) or a continuous change (continuous) model . GASP IV is designed to accommodate
both categories of models , separately or combined. In most simulations , time is the major

independent variable . Other variables included in a simulation are functions of time and are
the dependent v ariables. The adjectives discrete and continuous refer to the behavior of the

dependent variables. Discrete simulation occurs when the dependent variables of the model
change discretely at specified point-s in simulated time. In continuous simulation the

dependent variables of the model may change continuously over simulated time. In
combined simulation the dependent variables of a model may change discretely,

continuously, or continuously with discrete jumps superimposed. The time variable may be

discrete or continuous.

GASP N is a language that can be used for discrete, continuous, or combined

simulation. In GASP IV the most important characteristics of combined simulation , which

arise from the interaction between discretely and continuously changing variables , are easily

modeled . In general , this interaction takes one of three forms. First, discrete changes may be

applied to “continuous” variables. Second , achieving specified conditions for a state variabl e

may cause an event to occur or to be scheduled. Third , the functional description of

continuous variables may be changed discretely.

GASP N specifies that the status of a system be described in terms of a set of entities,

their associated attributes, and state variables. The GASP IV simulation philosophy is that a

dynamic simulation can be obtained by modeling the events of the system and by advancing

time from one event to the next. This philosophy presumes a broader definition of event

than has normally been used in discrete-event languages:

An event occurs at any point in time beyond which the status
of a system cannot be projected with certainty.

26

~ 

~~~~~~~~~~~~~~~~~~~ V V V V- - — -- - ~~~~~~~~~ - — V V _ ~ V-V~~V -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
-

— S

_ _ _ _
-~ -----.‘.-.—- --—-- - — — 5 --- - -—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~

In GASP IV it is useful to describe events in terms of the mechanisms by which they are
scheduled. Those that occur at a specified projected point in time are re ferred to as
time-events. They are commonly th ough t of in conjunction with “next event” simulation.
Those that occur when the system reaches a particular state are called state-events. Unlike
time-events, they are not scheduled in the future, but occur when state variables meet
prescribed conditions. In GASP N, state-events can initiate time-events and time-events can

V

- initiate state-events.

The behavior of a system model is simulated by computing the values of the attributes

- - at event times. The time-step increment is automatically determined by GASP IV , based on
the equation form for the state variables, the time of the next event, and accuracy and
output requirements.

The key to event simulation is the ability to organize events so that they are executed
within the computer in an order corresponding to that which would occur in the real
system. This preserves the time relationship between simulated and real events. Ordinary
programming languages are unsuited to this task because they operate in a strictly sequential
manner; there is no way to tell a FORTRAN program to “do something later’. without

V
building special subprograms. GASP IV provides these subprograms.

Every GASP IV simulation model consists of: (1) a set of event programs or state
variable equations, or both , that describe a system’s dynamic behavior , (2) lists and matrices

V that store information , (3) an executive routine that directs the flow of information and
control within the model , and (4) support routines. These form an operating computer
program whose performance reflects that of a simulated system. A GASP IV program is
made up of subprograms linked together by an executive routine that organizes and controls
the performance of the subprograms.

V

GASP IV is organized to provide eigh t specific functional capabilities :

1. Event control ,
2. State-variable updating using integration if necessary,
3. Information storage and retrieval,
4. System state initialization ,
5. System performance data collection ,
6. Program monitoring and event report ing,
7. Statistical computations and report generation , and -

V

8. Random deviate generation.

27

-

—
—

~~~~~~~
‘ ~~~~~ * 

V
~~~~~~ O~

V
~,_ ~“r—~ V~~-V~ VV

_ _ _ _ _

- V -
- ~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~’~~~~~~~~~~

The functions provide the user with a very general tool with which to build simulations.

For example , GASP N language provides the basis for the Basic Simulator (SIMNUC)
described below , which in turn has been used to build the Distributed Processor/Memory
simulation available at AVSAIL.

1 3.1.3.3 Basic simulato r (SI MNUC )

The Basic Simulator (SIMNUC) is an integrated package of subprograms designed to

facilitate modeling and simulation of discrete stochastic systems in a manner similar to the

GASP N simulation programs.

The following features characterize this package :

1. Model independence .
2. FORTRAN orientation; the user’s portion of a simulator can be programmed in

FORTRAN or , if desired, in assembly language.
3. Capability to produce event-oriented simulation models.
4. Availability of list processing and dynamic memory management facilities.

5. Capability to collect and display standard queue and sample statistics.
6. A full complement of random number generators.

The basic approach , which sometimes is referred to as a simulation-world-view , used to

model discrete systems for digital simulation with the Basic Simulator is the event-oriented

approach , which emphasizes decomposition of the simulation process into indiv idual event

procedures, each of which describes all changes in the system caused by the occurrence of

the related event , just as was done in GASP IV.

The Basic Simulator consists of the following functional software components :

1. Dynamic memory management,
2. List processing,
3. Simulation run control ,
4. Random number generators,
5. Sample statistics processing, and
6. Error diagnosis and reporting.

28

- -  V - V _ V - V VV 5 - :~~~~~ 5 5- - V~~ -V 

-

- ~~~~~ 
_ _

~~~ ~~~~ ~~~~~~~~~~~~~ —~~~~~~~~ —- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r

-i

1.3.1.3.4 Distributed processor/memory system network simulation

- 

~- 
The advent of the minicomputer and the microprocessor has made available to the

avionics system designer highly compact and versatile computational capabilities that can be
both physically and functionally distributed among avionics equipments. Used in
conjunction with multiplexed data buses, these processors make up distributed processing
systems presenting new challenges to the system designer.

The Distributed Processor/Memory (DP/M) System Network Simulator (SNS) provides
the necessary tool to explore some of the tradeoffs available to designers of these
distributed systems. The SNS is a discrete , event-oriented , high-level traffic simulator
w r i t t e n  in ANSI standard FORTRAN. The SNS is built around a nucleus of
model-independent utility routines (SIMNUC) which are not simulators in themselves, but
are used to create a simulator in conjunction with the avionic software task specifications
and topological organization specifications of a given avionic s system. 

CLUSTER i GLOBAL

UNSOR UD I
I LOCAL IU$ 

_ __I LOCAL

AFFINITY GROUP I BUS ~c~u J INTERFACEj ........ GLO BAL

_________________  

‘US

PRIORITY AND TIMING ]

1 M] 
~ 

LOCAL I/O]

FIgurs 1.3.1 3.1. DP/M syst.m arcIiit.ctur..

29

_____________________ - -—— -~~ 5-—— 

Vi _ _= _ -
~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 _V  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V-V - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ y -

The DP/M system concept is essentially the use of varying numbers of simple,
homogeneous processor/memory elements (PE’s) applicable to a wide range of avionic
system processing problems. Architecturally, these PE’s can be used as stand-alone
uniprocessors, or they can be configured in a distributed network as shown in Figure
1.3.1.3-1. Serial-time-division-multiplex (TDM) buses interconnect the network. Two levels
of busing are provided: a Global bus can interconnect each PE in a system network, and a
Local bus can interconnect multiple PE’s clustered together to perfor m a given function.
This cluster of PE’s is referred to as an Affinity Group (AG). Input/output (I/O) for a given
PE to an external device is via its local I/O interfac e unit. V

The SNS, being constructed of SIMNUC model-independent routines, has the same
general characteristic s as SIMNUC and GASP N. That is, SNS is a discrete, event-oriented
simulation system. Unlike a continuous system where transitions from one state to the next

V are a continuous function of time, transitions from one state to another in a discrete system
occur at discrete points in time. Distinguishable state transitions are called events.
Event-oriented simulation systems emphasize a detailed description of the steps that occur
when an individual event takes place.

During the period the DP/M SNS has been in use at AFAL, two bus protocol algorithms
have been implemented. The first is a modified “round-robin” slotting technique, which
provides for simple advancing of the “bus control slot” from PE to PE in a predetermined
order among the total set of PE’s attached to the bus. Each bus transmission , referred to as a
message, is terminated by the transmitting PE.

The second bus protocol algorithms implemented by DP/M SNS is that specified by
MIL- STD-1553A (Aircraft Internal Time Division Command /Response Multiplex Data Bus).
The basic differenc e between the 1 553A protocol and the round-robin protocol is that data
transfers occur only between two PE’s, one specifically designated as a transmitter and the
oth-~r as a receiver. Three word formats are defined for the protocol: (1) Command word, V

(2) Data word , and (3) Status word . One PE must be designated as a bus controller , and
transmissions are performed in a half-duplex , synchronous manner. Three message formats
are permitted:

1. Controller to remote terminal (RT) transfers,
2. RT to controller transfers, and
3. RT to RT transfers.

The hardware architecture represents one half of the distributed avionics system design
problem. The other half is the software , obviously. The DP/M SNS assumes that the system

30

V~~~~~~ - —

- —
~
-
~~~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - •

V~

designer will partition the executive and applications software into suitable tasks for some
given hardware architecture. The SNS then provides the designer with the capability to
analyze and evaluate:

1. Processing element characteristics/capabilities,
2. Number of resources in the system ,
3. Local and global bus configuration ,
4. Inter-PE communication technique ,

V
5. PE Bus protocol communication technique, and
6. Executive control technique.

The SNS is predicated on the representation of software modules by a directed graph
V consisting of a set of nodes and a set of directed edges between these nodes. A node is used

to represent a set of computations which , once initiated , (‘an run to completion without
wait ing for completion of another set of computations also represented by a node. An edge
from node i to node j means that , upon completion of the computations represented by -

node i , the computations by node j can be initiated.

The representation of software execution sequences via a directed graph has a particular
advantage within the DP/M concept. The subfunction-directed graph reveals potential V

process construction options in allocating tasks and program to PE’s. If any one set of tasks
must be partitioned among several PE’s, the options available in allocating this software to
PE’s are clearly defined within the graph. Data sets that are passed from one task to another
represent Local bus messages if their respective tasks are not collocated in the same PE.
Likewise, collocated tasks need not generate bus traffic with their data interchanges.

The use of distributed PE’s in the DP/M system concept dictates the need for a method
of scheduling activities, transferring bus messages between PE’s and general system control.
These operations are referred to as Executive functions and are provided by the SNS. The
subfunction-directed graph contains the necessary information from which the Executive
can determine task-scheduling conditions (based upon required predecessor events) and
intertask communication. The DP/M Executive structure provides two levels of control: the
Global Executiv e (GEX) and the Local Executive (LEX) . Functionally, the GEX assumes
the role of system monitor and scheduler. It enforces subfunction interrelationships and is
responsible for system performance by coordinating those software programs required to
effect mission avionic functions for the pilot and aircraft. The LEX is a PE-oriented
function responsible for sequencing and controlling tasks assigned to a PE. The LEX is
concerned with scheduling those tasks assigned to its PE , based upon successful satisfaction
of all the tasks’ given predecessor conditions.

-I
- -

31

The Global Executive schedules time-dependent subfunctions in the DP/M system. A

time-ordered linked list provides the GEX with the relativ e times to schedule every
time-dependent subfunction in the system. A ‘ go” message is generated by the GEX to a
suhfunction only if other predecessor conditions for the subfunction hav e been satisfied
when it is time to run the subfunct ion . The GEX data base (or tables) contains all
information pertaining to the initialization and control of all time-dependent subfunction s
in the DPJM system .

A family of data collection and report generation programs is provided with the DP/M V

System Network Simulator. These programs provide the capability to selectively collect data
on and generate reports for the various system parameters under investigation for a
particular DP/M system configuration andfor avionic mission segment . The collection and
dispensation of data, as well as generation of reports , are controlled by user specified
parameters. In general , the user has four options: (1) no data is collected and no reports
generated ; (2) data is collected and saved , but no report generated; (3) data is collected and
report generated , but data not saved; or (4) data is collected and saved , and reports gener-
ated. Data saved on tape may be processed at a later time. In fact , this saved data may be

used at a later time to compare results of two or more different simulation experiments.

Data collection and report generation occur at three distinct levels: (1) event level . (2)
V

sample period level, (3) postsimulation levet . At each nI these levels , repo rts concerning bus
performance , processor loading, executiv e performance , and number of avionic tasks
processed may be selectively generated.

1.3.1.3.5 Software design and verification system (SDVS)

Software tools to aid in the development , testing, verification , and maintenance of
avionic mission software are provided by SDVS. Simulations available under SDVS are
non-real-time. The SDV S was created as an integral part of the DAIS program , and the user V

will encounter some constraints imposed by the DAIS concept. Since the use of common V -

hard ware and software for acquisition of sensor data , processing of information , and
provision of display information is key to the DAIS concept , the software design and
verification functions, in the context of any particular processor architecture , are vital to
success. These same considerations for software integrity are common in some degree to all
avionic software developments. Thus, SDVS can play an important role in software
development.

The basic functions prov ided by SDVS are depicted by Figure 1.3.1.3-2. Configuration
Management refers to provisions for control of all files associated with the development ,

V

32

V~~~~5V~5 ~~~~~~~~~~~~~
V .V. VS_ _~~~~r~~~ V V ~V - T

— ~ V - -

- ~~~~~~~~~~~~~~
__

~

“ —-

~~~~

‘

~~~~~ 

— __
~~

_ V V V ~~_V~~V

I
i

~ 1S
L±NT 1~~

DEVEL0PUE ::

r::~: _ _ __ _

Figure 1.3.1.3- 2. SDVS functional organi zation.

test , and verification of software. An extensiv e cataloging and security system is provided
for the various types of software maintained by SDVS. A set of interactive conversational

commands is provided by the File Management function; these commands enable the user to
perform various file manipulation activities necessary during software development. In
in terpreti n g these comm ands , the Configuration Management catalogs are interrogated to
determine if the user has file-access authority and , i f so , the t ype of access aut hor ity. V

Software Development Managem ent functions are divided into two groups. hi order to
test software efficiently and comprehensively, an easy-to-use man/machine interface is

necessary to fa~-ilitat e the specification of the simulated environment , data to be recorded ,
and the required processing of simulation data. Two special purpose languages , the
Simulation Control Langu age and the Data Processing Language are provided by SDV S for
these purposes . Testing and validation of software are facilitated by severa l tools provided
by SDVS, the first being the support facility function , which is DAIS-specific and not
dir ectly app licable to other software development programs. A second testing and validation
software function is provided by four simulators. These simulators model processor and bus
performance in the execution of mission software :

1. Statement Level Simulator ,
2. Interpretiv e Computer Simulator ,
3. Data Bus Simulator , and
4. External Environment Simulator.

33

- - V
_

~

~~~~~~V~~~~~~~~~~~~ VV V_V



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The External Environment Simulator is quite general and applicabl e to any avionic
software development. The other three would have app licabil ity, depending on the
similarity of a given software program to that of the DAIS program since they simulate
DAIS hardware. They are of interest , of course, from the standpoint of the testing and
validation concepts they illustrate and their potential adaptability to other programs.

The function provided by Postrun Processing is that of sort ing, editing, analyzing, and
outputting simulation data from the various software simulations. The Rough Output Tape
generated during a simulation run is processed and output to the user by this function.

1.3.1.3.6 Avionics simulation (AVSIM)

AVSIM is a simulation facility that affects avionics system evaluation , validation , and
integration by dynamic digital simulation of the airframe , flight controls , and avionic
equipments of a generic high-performance tactical fighter. Currentl y, the objectives of this
facility are:

1. To test and validate operational flight programs under realistic flight conditions,
2. To affect digital avionics system integration ,
3. To identif y hard ware/software problems in prototype avionics systems, and
4. To recreate fligh t problem areas through dynam ic simulation.

AVSIM is capable of simulating the navigation , penetration , and weapon-delivery phases
of an attack fighter mission , either individually or compositely. The AVSIM user configures
his aircraft , sensor complement, environmental characteristics, and target characteristics by
linking individual simulation models into an overall simulator structure. The AVSIM
simulator curren tly has real-time, non-real-time, man-in-the-loop, and self-contained modes
of operation. The user has the option to use resident (F-16) software developed by General
Dynamics, Ft. Worth ; to use resident (A7) software obtained from the Navy; or to develop
his own by utilization of resident creation routines.

In the example of the resident software, the airframe is configured by selecting either ~‘n
F-16 or an A7 aircraft model; an appropriate fligh t control system dependent on desired
complexity; and self-contained (synthetic mission generator/simulated pilot), prerecorded ,
or real-time cockpit inputs. The sensor complement presentl y available includes the radar
altimeter , the attack radar, and (may be extended to include) electro-optical sensors. Flight
environment is incorporated by using models that provide simulated air data inputs ,

accelerometer and gyro outputs , representativ e weather effects , atmospheric perturbations ,

34

____ - ~~~~~~~~~~~~~~

—
V~ V~___ -~~~~

_ _ _ _ _ _ _ _ _ _V V V~~~~~~~~~~~~~~~~ V V V V V V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

inertial outputs , and magnetic heading. Auxiliary software integral to the total simulation
includes an uwrt ial reference , geometry effects , and (he abi l i ty  to introduce mow at variow.
points.

AVS IM is hosted by the [)EC-l 0 facility at AF~\ L and is linked to peripht !rals such as
the cockpit - and display general -or by means of a l)MA channel to satellite I’ Dl’- I i ’ s. AVS 1M
software consists of control modules and app licat ion models. ‘l’h e control soft-wan’ provides
(u t’ man ipula t i on , sets up f l i t ’ simula t ion configur ation . provides m i t  i a lu z a t km .  ini~ik’nients
man - - unat -l~ lu- ic interface, and controls overall the execution sequence. The applicat ion m odels
provid e aforementioned sensor data , external physical conditions , etc. Also conta ined with-

u - i the soft- ware are data acquisition and analysis modules , which accumulat e and edit data
for validation analy sis.

AV SIM programs art’ coded largely in ANS I - FOIt l ’ItAN in an at t empt  to make the
V softwar& ’ flexib le , modular , and transferable. l)KC system FO R TRAN-i t )  features as well as

V I)EC.1 (1 assenthly language are also used to a lesser degree.

1.3.1.3.7 Processo r arch itecture (ISP)

The 151’ processor simulation facili ty enables a user to describe computer processing
units at (lit’ register transfe r level and , from these descriptions . I ~-i q uit ’kl v si’t up intera ct iv~’
si mul ations of these processors . A language . (‘SL/ ISP (Computer Simulation languag e) was
developed as a dialect of Instruction Set Processor language (I SPL) from (‘arncgie-Mt’llon
I Iniver sity .  A compiler produces l)EC-1() code from the CSI~I ISP source , and the user then
runs this code from a control program , which 1w constructs by modifying :t model general
pu rpose simulation control program. A methodology is included for creating simulations
from manufacturers ’ instruction set- descriptions. V

The processor simulation program can , from a description of the register transfers cit ~
V corn putu ’r . ~)rod u( ’e a sumu l a t ion of th a t  computer. ‘l’his progra m m a y  1w broken into three

general areas . ‘l’lwse includ e : a formal language compiler wit -h which to describe register
t ransfer level processes, a code generator t-o produce I)EC- l 0 code from (hi’ output of a
compiler for that  language , and a general purpose control program with wh ich to drive the V

si nai (at ors ~uroduc(’d from the comp iler.

The compiler tu s i ’s a set of register tr ansf e r operators , called XTV i p s , Iii produce a set of
pseudo -instruct ions , whi ch ran 1w inte rpreted by the  I) E ( ’ - 1 0 assemhlt’r~s ( M .~(‘HO) macro
fac  i i it  v . The macros , which %%- t’n’ w r i t t i ’ u u  I i )  produce l)E( ’- 10 code from these

:15

L - 

:~ V~~~~~~~~~~
-

’
, - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ J



V 
c~~~~~~~~~.:

- ~___V V ~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~ ~~~~~~~~~~~~~~~ ____

- 1 I

pse’utl o-u struc t i~,u ic . product ’ o~-itimu.ed ct-ide and compr st’ a universal library . which is
seart ’hei i dur in g u ’.st’m i~lv

Siiu uLit  i i ’ui ’. art ’ controlled by a program with which the user t ’an int eractively set
registers aiul memory locations . load unen iti ry . set breakp oints, et c. ‘l’he control program
causes in structions n sunulated memory t i - i  Ia’ executed by repetitively calling on the
simulator to execute a single instru ct ion.

The behavior of i processor is determined by (hi ’ natur e of its individual operations and
the sequence u- i whit -h (host ’ operat ions occur - Tb is sequence is generally governed by a
stored program , which r esut it ’s in the memory of the  computer and the set of in te rpre ta t ion

V 
i-u It ’s which the ~I rot -essor applies to ( lit ’ program.

.-~Ithou gh the above format is conimon lv ust ’tl t i - i  descrdw dig it a l  computei-s . ISP does
lI t - i t l imi t  the user to  a part it ’u lar I y pe of dcst ’ript am. ‘I’htis , 151’ t’a n lie used to tit ’scr lw
register transfer systems in general: dig tal computer s ar t ’ ii subset of such systems which
interpr et an instruction set. Other devut -es . such as btuse ~- and th ’~ i i i ’ t - o nt r t - i ll i ’rs ca n also 1w
described in I SP .

1.3.1.3.8 Communication system evalua tion laboratory (CSEL)

CSEL is a combined hard wart (software facility designed to anal y ze. sy ut la ’su i.e . and
model advanced communication syStems V ‘Phi’ laboratory centers about a computer-based
simulation facility, which is (‘apahle of creating a v~u-it ’ty of hostile H F signal env ironment s

at IIII F and 14— , X- , and K-hand. ‘I’o this facility may be interfaced, for testing and

evaluation , either laboratory-model communication hardware , actual communication
hardware , or a combination of element-s of both . To aid in the construction of laboratory
communications systems, (‘SEL provides a high-speed . progra m mable signal processor and a
spectru m of communication equipment. including modems , terminals , and antenna systems.

It is important~ t O note that the simulation facility just mentioned, called the Signal and

Interference Generator, produces simulated signal environments in the appropr iate HF band.

Thus, it qualifies as a ha rd wa re simulato r , control over which is exercised dynamically by a V

digital computer operating in real time. Initial configuring ot’ the simulator is also performed
through the digital controller by means of a series of user commands , which the system

software interprets and translates into contro l signals to the communication hard ware.

lnti ’rfaciuig communication terminals t o  the Signal and Interference (~enerator H 1”

hardware then i-ir ov id. ’s a re alistic t u’st bed for the terminals , in which imi’ cali not only

V 36

V ~~~~~~~~~ 
V V V ~V~~ — --~~~ --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cz. i- :


- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~
V ~~V V V V~~V V.VV~~~~V~~ VV~V ~~~~~~~~~~~~~~~ ~_~V V~ ~VV ~V~_V V V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —-  V - ~~~ 
- V V ~~~~ V ~~~~~ : ~~ -‘~ ‘~~~~ — 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ V

-j

troubleshoot the equipment hut also test its performan ce wi th  respect to such
environmental effects as jamming and fading. ‘I’lw User caui specif y these effects with relative
east’ and can vary them readily from 0mw test run to the next , there by obtaining a e’om()lt ’te’
cha racterization of the  performance capabiliti es of his equi pment.

:~ t ypical application of CSEL is illustrated by the  tests performed to determine the
su i tabi l i ty of the LES-8/9 communication satellites for use with the’ Airborne Command
Post, In these t ests , CSEL was used not only to troubleshoot Ka-band communication

V hardware, but also to ascertain the vulnerabilit y of the communication system to various
types of ja mming.

‘l’o accompl ish these goals , (‘SEL was equipped with appropriate K-hand and UHF
communication modern s , terminals , and an tennas. ‘l’h is configuration allowed use of the
comnhuni cation satellite in a laboratory system equipped with  a qualif icat ion model of the
:~N/ASC Ka-bai-i d airborne (‘ommuni ( -at io n termin al , together with antenna systems , to
establish cornnninication links with l,E S-8(t) . ‘I ’his equipment , when conibimied with the
Signal and Interference Generator , allo wed the realization of actual satellite communication
channels ir a which were introduced controlled-interference efforts in the form of jam ming,
fading, and dc)pp ler. To reinforce this capability , the high-speed signal processor , called th e
Programmable t)ata Terminal , was programmed to simulate satellite processing when

LES— 8/ 9 were unavaila bl e ’ to use’.

Current emphasis in CSEL is shift ing toward a study of the performance of
communication systems (inking re’ mo tely piloted veh kit’s with air- and ground-based
command posts. To this end , the facility is being upgraded to include the elements of a
video processing and display capability. Future studies envisioned for CSEL involve satel-
lite-based navigation systems and the performance they obtain in a hostile environment.

1.3.2. Electronic Technology Division

To be included in a future version of this manual.

1.3.3 Electronic Warfare Division

To lie ’ included in a future version of this manual.

1.3.4 Reconnaissance and Weapon Delivery Division

l o  hi’ int ’ ltmdet j in a future version of this manua l.

V - 
-:~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



SECTION II

AVIONIC SYSTEM ANALYSIS AND INTEGRATION LABORATORY (AVSA IL)

2.1 AVSA IL HOST FACILITY

The AVSAIL host facility has been configured particularly for implementation of all the
simulation classes previously described. In order to convey the flexibility and power of the
AVSAIL laboratory, the host facility is described in the following sections. The scope of the
descriptions is limited to those aspects of the facility which have significance to the conduct
of simulations, rather than to an exhaustive exploration of capability. Discussions are
provided of the basic computer and peripheral hardware configuration and performance, the
operating and utility software capabilities, and the communication interfaces to onsite
simulators and offsite users.

The concept of AVSAIL encompasses all of the analysis and integration functions
necessary to create innovative avionics systems. These functions are best illustrated by the
discussion of the simulation class structure in Section 1.2 of this manual. One of the more
important aspects of the AVSAIL concept is the need for a simple interactive interface for

V the user of the laboratory host facility. The complex nature of the problems which may be
investigated in this laboratory imply many users over extended periods of time. The systems
being designed Will be subjected to evolutionary modifications, necessitating comparisons of
performance of components and systems at various stages of the design. In order for the
AVSAIL facility to provide the degree of interaction and flexibility required to simulate a
wide range of systems and operational scenarios, the facility architecture of Figure 2,1-1 was
proposed.

This architecture demonstrates the explicit requirement that the user be allowed tc
address the simulation facility without regard to facility management and control
constraints. This is achieved by use of appropriate interface structure , which translates user
requirements into facility inputs interactively . The focal point of the simulation facility
architecture is the simulation control program , which addresses the various simulation levels
and handles the control and response files according to user requirements.

A set of simulation models is available to the user in the model data ba se. Models
currently available are described in this manual and others may be added as required. The
user may modify model parameter values for his particular simulation needs. modify
models, or create his own models and add them to the data base. Such modifications or
additions to the data base would be under the supervision of the facility manager , however.

38

- V V 
- V _ V V V V . 

V~~



- ~~~~~~~~~~~ V
V 

---—--

I.

4

a a gL~’ 1 kj L~1I Li ~ _ _ _ _ _ _ _

I ~~~J !rc
UI

ri1i-
~t 1~

’bIir
~H

1

_ _ _ _  ~~
II!J H

39

V V
V 

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~__ W~ V_ ~ •V - ~~~~~~~~~ ~~~~~~~~~~~~~ —

In order to simulate a system or component , the user would create a simulation control
file that would speci fy such items as flight scenarios , system configuration , model selection ,
model parameters, simulation time frames , data recording, data analysis , and component
performance or reliability. The simulation control program then accesses the model data
base , configures the simulation , runs the simulation , and records the outputs as defined by

the control file. At the completion of the run , the simulation response file contains a record
of system performance parameters defined by the user in a format compatible with all
models in the model data base and with outputs of other simulation levels so that th e results
of other past or future simulations may be compared with current results. This allows
parametric studies or evolutionary designs to be carried out through the mechanism of
simulation.

The simulation control progra m is responsible for control of computer facility hardwai~’
and software resources for both real-time and batch simulations. The user is not required to
directly interface with the management functions of an executing simulation or the data
generated by the simulation. This allows the facility management to control the software
implemented on the facility so as to ensure compatibility of all levels of simulation. The
user interactive interface , on the other hand , provides a flexible means for structuring
simulations of a wid e range of avionic systems and analyzing their results in a manner best
suited to the purposes of the individual users.

While the concept of AVSAIL just described has not been fully implemente’d for the
overall system as described by Figure’ 2.1-1, it has been imp lemented within some of the
major software packages , such as the Software Design and Verification System (SD\ ’S~ and
the AVSIM avionic simulation package .

2.1.1 Hardware

As can be seen from subsequent discussions of specific simulator and software programs.
signi~ cant simulation capability alread y exists, whose use requires little , if any, knowledge
of the AVSAIL laboratory hardware capability . However , the planning and integration of V -

new simulators or the execution of major software simulations must be done with the host
facility constraints in mind.

2.1.1.1 DECsystem-1O Core Facility

2.1.1.1.1 System description

The AVSAIL laboratory is structured around a Digital Equipment Corporation DEC-I 0

40

V ~ - V ~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~ - V V~~ 

~~~~~~~--~~~~ ::‘ ~V :  --:
~~~

----- ~~~~~

_ _ _ _ _ _ _ _ _ - —

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

mainframe computer. A wide range of peripheral input/output devices , as described
subsequently, are provided to handle batch , timeshare, and real-time program development
and execution requirements. A unique feature of the AVSAIL configuration is the
eight-channel Direct Memory Access (DMA) capability provided for access by a complement
of eight PDP- 11 series minicomputers. The PDP-11’s serve to interface specific simulations
(e.g., the F-16 Fire Control Computer simulator) to the DEC-10. An overall hardware

V
system diagram is provided in Figure 1.3.1.1-1 , and the major elements are briefly described
below.

2.1.1.1.1.1 DEC-10 Central Processor and Main Memory. The central processing unit
(CPU) for the AVSAIL DEC-10 consists of dual KI-lO processors , with the configuration
being designated as a DEC-1077. Each CPU module is an independent processor, and
programs can operate in parallel , one program per processor, thereby increasing the average
throughput speed . Other performance characteristics of the DEC-1077 are given in Table
2.1.1.1-1.

As shown in Figure 1.3.1.1-1, the DEC-10 memory is made up of 4 DEC 64K modules ,

and an additional 512K words of Ampex ARM-1OLX memory , for a total of 768K words.
Word size is 36 bits plus parity . Each of the memory modules , as well as the CPUs and data
chann els, are interfaced via the memory bus. The structure of the memory bus gives the
cen tral processor and high-speed data channels simultaneous access to separate memory
modules and allows each to operate at its own speed . The memory bus system allows each

dath channel to transmit full 36-bit words in parallel at a speed of 1 million words per
second. In total , the memory structure opera tes at rates of up to 10 million characters per
second when I/O devices and processors are simultaneously transferring data.

TABLE 2.1,1.1•1. DEC~1O77 PERFORMANCE V

Msmo iy size (mm - max) 128-4096K Instruction times (Ms)
No. of instructions 378 Fixed point add 1.5
Instruction look -ahead Yes Fixed po int multiply 4.1
Virtud memory Yes Jump 1.1
M.mory intedeaving 2 or 4 way Sin~e precision floating point added 3.6 V

Index registers 4X15/CPU Double precision floating point added 7.8
Ac cumulators V4X 1S/CPIJ I/O bus bind width , words /s 310K

Memory bus Iandwidth word s/s 4000K

V 41

VV I
________________ _________________

____ ____

V V
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~


—~~~ —~~~~ ~~~~~~- ~~~~~~~~~~~~~~ —~~~~~~~~~ —-~~~~~~~~--—----

-.

2.1.1.1.1.2 Bulk Storage. Bulk storage is available both on multisurface cartridge disks
and magnetic tape. All disk and tape units are interfaced to both the 1/0 bus and to the
memory bus.

The system currently provides four RPO3 disk drives and four RPO4 disk drives. The
RPO3’s and RPO4’s are separately interfaced as shown by Figure 3.1.1.1.1. Some

performance characteristics of these disk drives are given in Table 2.1.1.1-2. Storage
capacity of the RVPO4’S is twice that of the RPO3’s, and transfer rate is nearly triple that of
the RPO3’s.

Magnetic tape drives available also provide a choice of performance. Four TU1OA -E

9-track drives operate at 45 ips and four TU 40 drives operate at 150 ips, providing a range
of transfer rates from 9K to 120K characters per second. Additional performance data is

~ ven by Table 2.1.1.1-3.

2.1.1.1.1.3 User Interface. The DEC-10 facility provides for onsite and offsite access for
both development of software and for its execution. Currently, onsite facilities include 25

V CRT alphanumeric terminals, 2 local CRT graphic display terminals and 2 minicomputer
based data acquisition systems. In addition to these physical terminals, the DEC-10 monitor V

TABLE 2.1.1.1-2. DISK DRIVE SYSTEM CHARACTERIST ICS

Characterist ic RPO3 Disk R PO4 Disk

Disk drive capacity 10.24 million words 20.48 million words
Transfer rate 15 ia/word 5.6 Ms/wo rd
Acce ss t ime:

Track~to-track 7.5 ma 7 ms
Average 29 ms 2B ms V

Maximum 55 ms 50 ms
Organization:

128 words/sector 128 words/sector
10 sectors/track 20 sectors/track
20 tracks/cylinder 19 trac ks/cylinder

400 cylinders/pack 411 cy linders/pack
Number of heads 20 19
Number of recording surfaces 20 19
Number of disks 11 12
Number of drive s/controller 8 8
Number of drives/system 32 32
Maximum storage/system 1.96 billIon characters 3.92 billion characters

42

I
V

_ _ _ _--—f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V
~~~~.::•.

_
~~

V-_. _



V-fl

TABLE 2.1.1.1-3. MAGNETIC TAPE DRIVE CHARACTER ISTICS

Characteristic TUIOA-E TU4O

Tap. speed 45 ips 150 ips
Transfer rate at:

220 bpi 9K char/s 30K char/s
556 bpi 25K char/s 83.4 K char/s
800 bpi 38K ~hv/s 120K char/s

Recording technique NRZI NRZI
Nomi si intarrecord

Gap :
9 track 0.6 In. 0.6 in.

Rewind time (2400 ft ) 195 $

software support up to 48 virtual terminals or “pseudo-teletypes” which allow jobs to
contro l other jobs. Normally a job is associated with a physical terminal, but the

V pseudo-teletype function allows jobs to be initiated and controlled by other jobs. A V

controlling job sends the same kinds of commands to its subjobs as would be sent by a user
at a physical terminal , and the monitor does not distinguish jobs controlled by a physical
terminal from those controlled by a pseudo-teletype. The physical user interface is thus
expanded by software to increase system throughput potential. The physical terminals jus t
described are interfaced to the DEC-10 through DC7S-DA Data Communications System
( Figure 1.3.1.1-1). Asynchronous lines operating at 300 baud connect to the terminal s,
although interface capability is for 9,600 baud maximum line , and a maximum aggregate
transfer rate of 30,000 bps.

Off-site access to the DEC-10 is through the DC’? -J Data Communications System
( Figure 1.3.1.1-1) which provides a maximum of eight synchronous , 9,600 baud lines.
Maximum aggregate data rate is 30,000 bps. Currently, 4,800 baud full-d u plex leased lines
connect the AVSAIL laboratory through this interface with the Armament Development
Center, Eglin AFB, Florida. and the Naval Weapons Center, China Lake, California.

2.1.1.1.1,4 Hard Copy Devices. Two line printers provide high speed output from the
DEC-10. The 1,250 line per minute LP 10F :~ is a 132 column format printer with a 64
character EDP font. The LP 1OHC provides the same performance , but has a 96 character
scientific font. Graphical hard copy output is available from a Cak’omp ~lodeI 563 Plotter.
This high speed , drum-type pen and ink plotter uses 31 in. paper and operates at up to 300
steps per second. Card input to the system is available through a CR 1OE 1.200 card per
minute  reader.

13

Lz~ ~~~~~
‘ V~~~~VV ~—~~~————- ~~~—~~~= ~~~~~~~~~~~~ ~~~~~~~~~~~ —



V V

= 
— ‘  -VV-V~_-V~ _  

— — ~~_ ~~~~~~~~~~~~~~~

2.1.1.12 DECsyst em-1 0 processor featu res

In order to convey some of the power of the DEC-10, some of the more important
features are described in the following paragraphs. These features will be of more value to
the user initiating a major new simulation than to those using or modifying slightly existing
simulations.

2.1.1.1.2.1 Instruction Set. The KIlO has 378 instructions, an extremely large
repertoire which provides the flexibility required for specialized computing problems. Since
the set provides so many instructions to choose from , f ew  instructions are required to
perform a given function. Assembly language programs are therefore shorter than with other

computers, and the instruction set simplifies the Monitor , language processors , and utility
programs. For example, compiled programs on a DEC-10 are often 30 to 50 percent shorter ,
require less memory and execute faster than those of comparable computers.

In addition to these instructions , the DEC-10 provides 64 programmable operators, 33
of which “trap” to the Monitor (Monitor calls) and 31 of which trap to the user’s core area.
The remaining instructions are unimplemented and reserved for future expansion. An
attempt to execute one of these unimplemented instructions results in a trap to the

V Monitor. V

The instruction set, despite its size, is easy to learn. It is logically grouped into families
of instructions and the mnemonic code is constructed modularly. All in structions are
capable of directly addressing a full 256K (36-bit) words of memory without resorting to
base registers, displacement addressing, or indirect addressing. Instructions may , however,
use indirect addressing with indexing to any level. Most instruction classes, including
floating-poin t, allow immediate mode addressing, where the result of the effective address
calculation is used directly as an operand in order to save storage and speed execution.

The half-word data transmission instructions move a half-word and may modify the
contents of the other half of the destination location. - 

-

The full-word data transmission instructions move one or more full words of data from V

one place to another. The instructions may perform minor arithmetic operations such as
forming the negative or the magnitude of the word being processed. The five byte
manipulation instructions pack or unpack bytes of any length , anywhere within a word. The
logic instructions provide the capabilities of shifting and rotating, as well as performing the
complete set of 16 Boolean functions on two variables. J

V V V V V ~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ VJ


!I_
VS V V-V~V-V~V ~~~~~ -V ~~~~~~~~~ VV__~~~ — _~V~~ V~-V ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ = ~~~~ - --- - • -~~~- ‘~ ~~~~~~~~

The KIlO processor implements instructions to perform scaling, negating, addition ,

s u b t r a c t i o n , mul t ip l ica t ion , and division upon numbers in single-precision and
double-precision floating-point format. In the single-precision floating-point format , 1 bit is

reserved for the sign , 8 bits are used for the exponent , and 62 bits are used for the fraction.

Special KIlO instructions provide the capability of converting fix ed-point formats to or
from floating-point formats. Two sets of instructions are provided to perform this function:

one set optimized for FORTRAN and a second set optimized for ALGOL.

The arithmetic testing instructions may jump or skip, depending on the result of an
arithmetic test and may first perform an arithmetic operation on the test word . Instructions
are also provided to modify and/or test using a mask and/or skip on selected bits in an

accumulator. Program control instructions include several types of jump instructions and
the subroutine control PUSHJ and POPJ instructions.

Input/ output instructions govern all direct transfers of data to and from the peripheral

equipment and also perform many operations within the processor. Block transfe r
instructions handle bulk data transfers to/from I/O devices.

The KI lO has hardware for processing both single-precision and double-precision V

f l o a t i n g - p o i n t numbers . There are eight double-precision instructions and three
fixed/ floating conversion instructions. A double-precision word consists of the sign , an 8-bit

exponent and a 62-bit fraction. This gives a precision in the fraction of 1 part in 4.6 x iO~ ~
and an exponent of 2 to a power of from -128 to +127.

2.1.1.1.2.2 Processor Modes. Instructions on the DEC-10 are executed in one of two
V

modes depending upon whether a mode bit has been set. Programs operate in either User

Mode or Executive Mode. In Executive Mode operations, all implemented instructions are

legal, add resses are not relocated , and all core locations are accessible. The monitor operates

in Executive Mode and is able to control all system resources and the state of the processor.
In User Mode operations, addresses are relocated , certain instructions are illegal, causing

monitor traps when executed, and address references are confined within two program seg-

ments.

The KIlO further divides Executive and User Mode operation into two submodes each.

User Mode is subdivided into public and concealed submodes and Executive Mode into

supervisor and kernel submodes. For each 512-word page in the system, information is

stored in a table maintained by the operating system which specifies whether a page can be

accessed or altered , and if it is defi ned to be public or concealed. The Executiv e and User

45

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



Modes subdivide on the KIlO according to whether the active program is running in a public
or concealed area. Within User Mode are the public and concealed submodes; within
Executive Mode, the supervisor and kernel subinodes. These mode features are summarized
in Table 2.1.1.1-4.

2,1.1.1.2.3 Processor Memory Management. The KIlO provides memory address
mapping from the program’s memory address space (referred to as the effective address ) to
the physical memory address space by substitution of the most significant bits of the
memory address. This mapping provides access to the entire physical memory space which is
16 times larger than the maximum user address space. The user’s effective address space is
256K words addressed with 18-bit addresses; the physical address space is 4,194,304 deci- V

mal .

The memory mapp ing process utilizes the most significant nine bits of the effective
address as an index into the appropriate page map (User or Executive) in memory. The data
located by the index provides 13 bits which are appended to the least significant 9 bits of

TABLE 2.1.1.14. PROCESSOR MODES

User Mode

Public Submode Concealed Submode

• User programs • Proprietary programs
• 256Kword address • Can R EA D,WRITE , V

EXECUTE , or TRANS-
FER to any location
labeled Public

• Al l instructions permitted unless
they corn promise Integrity of
system or other users

• Can transfer to conce aled submode
only at entry points

Executive Mode (Monitor)

Supervisor Submode Kernel Submode

• Performs general management of Syste m • Performs I/O for system
• Performs those functions that affect • Performs those functions

one user at a time th at effect all users
• Executes in vi rtual address space

labeled Public

46

I,



V 

the effective address in order to form the 22 bit physical address . Also provided are three
bits which indicate what type of memory requests are allowed to the page in question (one ,
read-only, proprietary , etc). If this scheme were implemented exactly as outlined above ,
every user memory reference would require two actual memory references: one to obtain
the memory mapping data and another to obta in the user ’s mapped memory reference. In
order to reduce the number of actual memory references to nearly the same number as
required by the program, an associative memory mapping unit is used in the KIlO as
illustrated by Figure 2 1 11-2.

The Monitor assigns the core area for each user by load ing the various page tables ,
- setting up the trap locations in the user page map, and responding appropriately when a trap

occurs. The Monitor provides memory protection for itself and each user by filling the page
tables only with those entries which are allowed to be accessed. A zero access bit in the page
table will cause reference to the associated page to initiate a page failure trap to the
Monitor. The TOPS-lO Operating System utilizes the KIlO and page maps to create one or
two segment programs. The major benefits of the paging capability are a smaller unit of core
allocation (512 words instead of 1,024), the freedom to scatter the pages of a segment
randomly through physical core (avoiding core fragmentation and the overhead of repacking

V core), and the opportunity to execute a program when all of its pa ges are not in physical
core (i.e., a virtual memory capability).

2.1.1.1.2.4 Real-Time Clock. The DKIO Real-Time Clock provides high-resolution
timekeeping for time accounting, time-base maintenance, periodic high-frequency inter-

EFFECTIVE ADDRESS
l8 BITS

~~~~~~~~~~~~~~

9 13 V

32 ASSOCIATIVE PAGE
WORDS MEMORY TABLE

V

13 9 22BITS {4O~SK WORDS

PHYSICAL ADDRESS

Fipre 2.1.1.1.2. Address computation sdseme far 1(110 processor.

47

-~~~~~~~ - - - -V - V _
-V ~~~ -V~V V_ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~
- . —---—-- - -—-

~~~~ 

-~~~~- -V
~~~

-V
~~~~~~~~~~~~ V~~~~~~~~~~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~ V ~~~~~~ V_

-V., V

rupts, and interval timing. The clock provides 110 ps resolution and a choice of up to 2’ ~
possible timing interv als, so that interrupts can be programmed at intervals from 10 J2s up to

— 2.6 sec.

In addition to an interval register , the DK 1O has a frequency counter which counts the
pulses of an internal ~ 0.01 clock kHz , or an external clock having a maximum frequency of
400 k l-Iz . The clock also includes a comparator network which provides a running
comparison between the frequency counter and the interval register. When the frequency
counter reading equals the total on the interval register , a program interrupt is generated and
the frequency counter is automatically reset so that it can time the next interval.

The clock , which is assignable to any interrupt channel , can be used to pace real time .
- V monitor , or other functions performed in either Executive or User Modes. Clock updating is

interlocked with the DATAI instructions so that it can be read correctly at any ti m e by the

KIlO without losing a clock pulse.

2.1.1.1.2.5 Fast Register Blocks. General-purpose registers are another DEC-10 feature
that help improve progra m execution. These sets of fast integrated circuit registers can be
used as accumulators , index registers , and as the first locations in memory . Since the
registers can he addressed as memory locations , th ey do not requ ire special h andli n g

instructions. Four set-s of 16 fast registers are included in the Kilo. Program switching time

for the KIl O between register stacks is 2.5 us. On the K 110, di fferent register blocks can he
used for the operating system and individual users . This eliminates the need for storing
register contents when switching from User Mode to Execut ive Mode. V~~1SO :i critical

real-time progra m is able to maintain its  own register block for handling data and interrupt

sequen ces at max imum speed.

2.1.1.1.2.6 Multiplexed I/O Bus. The DEC-10 Multiplexed I/O Bus provides a 36-hit
full-word parallel path between memory and an I/ O device for purposes of control or
low-speed data transfer. To initiate high-speed data transmission directly between memory
and a device connected to the memory bus, a control word is first transferred over the I U
bus to the buffer of the high-speed device controller. Then , on command , en tire dat-a blocks
are moved directly to or from memory with a single instruction. V

The I/O bus may also be used as a control and dat-a path to/from a large number of
low-speed I/O devices. Transfer is performed in 36-bit words in parallel at speeds of 370K
words/s on the KIlO. Thus each data transmission instruction moves one word of data
between memory and the buffe r of the device controller. When block input or output
instructions are used, entire blocks of data are moved to or from the device with a single
instruction.

48

— ~~~~~~~~~~~~~~~ 

V -  

Vi~~~~V~~~~ 

—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ _ ~~~ -‘— -~~~~~~~ - - - --- -
‘

Ui

2.1.1.2 Direct Memory Access of Simulators

V The AVSAIL laboratory is designed to facilitate testing of hardware/ software systems in
a simulated real-world environment. The systems under test may include hardware and
software only, or , alternatively, human (pilot) interaction with a simulated external
environment may he included as a system component. Arm example might be the testing of a
fire control computer and its software with a human pilot flying in a simulated cockpit as he
views the target on a computer generated disp lay. Fire control computer and software are
real , but the aircraft dynamics and the target display must be simulated with the proper
time relationships. In the AVSAIL laboratory , the DEC-10 computer provides the simulated
environment by executing models of that environment. The interface between the DEC-10
and the system under test is provided by multiple DEC PDP-1l minicomputers that allow
more than one system simulation , or complex multicomput .er simulations , to be connected
simultaneously to the DEC-10. As shown in Figure 1.3.1.1.1, there are currently eight
PDP-11’s interfaced to the DEC-10. Four of these are devoted to various aspects of the
DAIS program , one is devoted to interfacing the F-16 Fire Control Computer Simulator ,
one t.o the cockpit simulator currently being used with DAIS, one to the Evans and Suther-
land Picture System , and the eighth to the video center.

In order to interface multip le PDP-11’s to the DEC-10, hardware and software features
have been provided to allow the PDP-11’s to transmit and receive data from the DEC-10.
The basic mechanism for data communication is a 4K word memory “window ” in the
DE(’- 10 memory. The location of the window can be specified by any DEC-10 program and
add ressed by the PDP- l 1 computer. Provision for an 18-bit- address has been made l)y
hardware modifications to the I)MA-1OC Direct Memory Access Controller. The memory
“window ” is formatted to provide storage of “to” and “from ” data and window identifier
information . Data are stored in the window at each simulation frame or upon interrupt from
a PDP - l1. Data transfer to and from the PDP-l1 is under PDP-11 control .

A special software program , resident in the DEC-10 , handles data formatting as required
by the different word sizes of the two computers (i .e., 36 hits for the DEC-10 and 18 bits
for the POP -I l) . This software also provides the functions of interrupt handling from the
PDP-l 1’s and the real-time clock.

2.1.1.3 PDP-11 Satellite Computers

Eight Digital Equipment Corporation (DEC) PDP- 11 computers are employed within the
DEC-10 Host Simulation Processor Hardware in order to provide an interface for each of
eight system simulato rs with the 1-lost Hardware. Each interface is operated in a pseudo

~~~~~~~~~ 

- : 
- 

~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -VVV ~~~~~~~~~~~~~~~~~~~ —,— - ----- .— ~~~ -V — —  7V-V~
- - - - -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

real-time asynchronous interrupt mode via a Direct Memory Interface Controller. The
output of the memory controller is coupled to an MX-lO Memory Multiplexer prior to
connection to the DEC-10 memory bus. The speed of the multiplexer and direct memory

V access bus operation is fast enough that each satellite computer appears to be operating in
real time to the user . Each system simulator computer can in this manner provide data to

common memory blocks of the DEC-10 system. This data can then be shared throughout

the facility. The assignment of simulator processors is givemA in Table 2.1.1.3-1.

The PDP- 1 1 series of computers are well suited to use in a simulation facility primarily

due to their single or UNIBUS structure. The UNIBUS is a single , high-speed, bidirectional,

asynchronous communications path within each of the PDP-1 1 computers . It allows all
system components and peripheral devices to communicate directly without central

processor intervention. This direct communications means that the PDP-11 does not require

I/O instructions. The same instruction that performs a register-to-register transfer within the

central processor performs:

1. a memory-to-device-register transfer,
2. a memory-to-memory transfer,
3. a device-register-to-me mory transfer , and

V 4. a device~register-to-another-device-register transfer.

Therefore, the key point is that a peripheral device can be communicating with memory
at the same time the processor is performing computational operatio ns.

All PDP-11 system elements connect directly to the UNIBUS in plug-in fashion. The

asynchronous nature of the UNIBUS means external devices can be tied into the system
without regard for individual operating speed. The UNIBUS permits system expansion to

any level without revision of the present system. Also, as the full UNIBUS technique is

TABLE 2.1.1.3-1. POP-l I PROCESSOR ASSIGNM ENTS

System Simulator POP Computer System Simulator POP Computer

a) DAIS (GT-44A , Figure 2.1.1.3-1) 1 1/40 a) Fl6Simu leto r 11/40
b) DAIS (GT44A . Figure 2.1.1.3-1) 11/4 0 f) Cockpit 11/45
c) DAI S (GT-448, Figure 2.1.1.3-2) 11/40 g) Evans and Suther land Picture System 11/50
d) DAI S (GT-44C , Figure 2.1.1.3-3) 11/40 h) Video Cente r 11/20

50

— -

~

- - - :--_.,_, 
--—-

~~~~ 

—

- ~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V 

-



_ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

common to all PDP -11 systems, peripheral devices can be freely interchanged from system
to system without the need for special interfaces.

All PDP-.1 1 processors use the same basic instruction set. Programs developed on the
PDP -11/40 of DAIS are immediately usable on the PDP-11/50 of the Picture System.
Common software incurs no conversion problems as needs increase. Programs developed on
any PDP -1 1 will serve all anticipated systems , regardless of the specific model. A processor
comparison table for the 11/40 , 11/45 , 11/50 , and 11/20 is given in Table 2.1.1.3-2.

2.1.1.3.1 The DAIS simulato rs

The four PDP 11/40 computers associated with DAIS are employed as shown in Figures
2i.1.3-1, -2, and -3. Two of the simulators have configuration A shown in Figure 2.1.1.3-1.

TABLE 2.1.1.3.2. PDP-ll PROCESSOR COMPARISON TABLE

Processor Type 11/20 11/40 1 1/45 11/50

Stack processing Yes Yes Yes Yes
Programmable stack limit No Optional Yes Yes
General registers 8 8 16 16
Rug-to-rag , transfer 2.3 ~s 900 ns 300 ns 300 ns
Hardware floating point No 32 bit (opt) 32. 64 bit (opt) 32, 64 bit (opt)

V

V

Max memory size (bytes) 56K 248K 248K 248K
Memory type Core Core BIPOLAR ’ BIPOLAR

MOS’ MOS
Core Core

Effective memory speed 980 ns 1000 ns 300 ne 300 ns
500 ns 500 ns
l000 ns l000 ns

Memory parity Optional Yes Yes Yes
Memory management No Optional Yes Yes
Processi ng modes 1 2 (opt) 3 3
Auto hardware interrupts Yes Yes Yes Yes
Auto software interrupts Yes” No Yes Yes
Power fail/auto restart Yes Yes Yes Yes
Reel-time clock Optional Optional Yes Yes
Pro~jramm,r’s console Yes Yes Yes Yes
Hardware bootstrap Optional Optional Yes Yes
Serial line controller Yes Yes Yes Yes

A POP 11/45 used with BIPO LA R end/or MOS memo ry becomes the equiv alent of a POP 1 1/50.
‘Automatic interrupts are possible through the use of software TRAP progr amming.

51

-
~~~~~~ -

- — - -V -V -V—;~~~~~~~~~~~~~~~~~~
-V — 

~~~ -r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

-- V

~ -~~--~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _,.=i____
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 9

1~ 
E~{I~Ri !i’ ~~ ~LF~1U ~

—fJu 
~~~

[niIif—
~
i
~~~~~ F 

iHv ~~ ii
_ _ _ _  

H-

— I- iM~~~~O ~~~C —  N~~~~~~~~~~~ ~~~~~~~

52

— - - — — 

- - 
- ---: ---

-——---— -—— - -



-
-V 

~~SSV V T: r’ ’~ ‘~~-T ’~ ~~~~z.T~~~~_j T I~ :~~~
— ~- V-V~~~~~V-V 

~~ :~~~ ~~~~~~~~ 
T IT  

~

V I 
S

• _

k~ ~~~~~~~~~~~~~~~~ 
,I—r

~~~ ~ 
I~.E~I ~HH_~I~1I1~V!J

ii~~
—

~~j i_~} ~~ I
~~~~~~~~~ d 

_ _ _ _

I,

~ ~ II~ I

53

~~~~~ V V ~ 

-
~~~~~~~~::: ~~~~~~~~~~~~~~

-
~~~

-
~~~



-.-~ --.~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V r _,_~V5 _~~VV

I

-

~~~ D 

H

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~ 
~ 
Hii ~1 V

~~~~~~
I

IV
~~

!H IM ~1*—~ ~~~~~~~~~~~~~~~~~~ I .

~~ 1

~~~~~~~ 

-

-V --V 
____ ___  

L-~ - - - L . .



-

~~~~~~

—

~~~~~~

—---

~

-VV---—-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This configu ration utilizes 16K of 16-bit core memory as well as 2 1.2 megaword disk
memory systems. Configu ration B shown in Figure 2.1.1.3-2 employs 32K of 16-bit core
memory, 2 1.2 megaword disk drives and a bootstrap loader memor y. Configuration C
shown in Figure 2.1.1.3-3 contains only 16K of 16-bit core memory , however, it also
utilizes 2 1.2 megaword disk drives.

2.1.1.3.2 The F16 simulator

A PDP 11/40 computer is used with the F16 simulator as shown in Figure 2.1.1.3-4 . The
basic memory provided for this configuration consists of a 24K word by 16-bit core
memory , and a 1.2 megaword disk memory system. The 11/40 is used in this simulator in
order to control the Fire Control Naviga tion Panel , and Fire Control Computer simulator. It
also receives Flight Control Stick and Throttle data as inputs and provides control informa-
tion to a local Head Up Display CRT.

2.1.1.3.3 The cockpit simulator

The cockpit simulator utilizes a PDP 11/45 as shown in Figure 2.1.1.3-5. In this
configuration a high-speed 28K by 16-bit MOS memory as well as a 68K word by 16-bit
core memory are used . The 11/45 processor provides control and data for the Horizontal
Situation Display and Vertical Situation Display as well as the control stick and associated
lamp and keyboard displays. These controls and displays are all lccated within the simulated
cockpit.

2.1.1.3.4 The Picture System

The Picture System may be interfac ed and controlled by any PDP -11 computer . Picture
Systems have been interfaced to PDP-11/05, PDP-11f 35 and PDP.11f45 computers with

• various standard DEC peripherals including disks, DECtapes, megtapes, printers, etc. The
standard Refresh Buffer requirements is 8K of 36-bit words. An additional 8K of Refresh
Memory may be obtained to provide a 16K Refresh Buffer.

The Picture System currently employs a PDP.11/50 as shown in Figure 2.1.1.3-6. Inthis
configuration , two core memories of 16K and 44K each are utilized as well as 32K of MOS
memory.

2.1.1.3.5 The Video Center

The Video Center currently employs a PDP-11/20 as shown in Figure 2.1.1.3-7. This

55

— ~~ ~~~~~~~ V~~~
••

—

— —‘————

?: ~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .‘—~— ~~~~~~~ ~

-
~~~~-—‘~~~~~~~

-
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

!f i .

~~~~~ J

F” ~
]

~I b I

~~ _ _ _ _

V

-
~~

_ _ _ _ _ _ _ _ ~1ii~1 {n
V

—

liii
_ _ _ _ _ _ _

!I~] ~I1I~]
_ _ _ _

V

56

Vj

_ _ _ _ _ _

_ _ --V

-

- - - V ~~~~~~~~~~~~~~~~~~~~~~~~
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
-V -=~ - 

- -



______________________ - ~~~~~~~~~~~~ -.—-- --- ..-~~~ — ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -— ---V- ---—-~ -

~ 1
D
—~~~~

- lIE 

~~~~~ ~t—H~~ ~ 

0

~~~~~~~~~~~~~~ 

~~~~~~~

—

~L~~~~J
_____0 O~~~~ I4 ______ ______ _ _ _ _ _ _V

0

_ _ _ _ _ _ _

~ H ~
_ _ _ _ _ _

F ~ii—1 ~~~~ _ _ _ I I
I ~—~R ~ H’ ’

Di~}~ i
~ ~~~~~~u snai:

V

57

iL V~~~~~~~ - - - - - - .:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I H
2

0

— _ _  -ir $~~

I 

a —

~j i~
••— iii~i ~i ~:9 i r i~ L~1

L_
~ ~I ~~~~ _ _ _

m

~

- 

~ 1_ 
~ ~ 1 ~ :;:

~~ F’ ‘- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

________ ~10

‘U

V I

I

I ~~~~~~~~~~

~ f01 ~hI~ilikh~ ‘~[II~
__ ________________________________

-
~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~J T T TT V T~ I

~~
V
~~~~~~~~~

V
~~

~~~~~~~~~~~~~~ _ _ _ _

H

kd ~
I

_ _ _ _ _ _  _ _ _ _ _ _  

_ _ _ _  

___ T
_ _ _ _ _ _  _ _ _ _ _ _  ‘~~;~ 

; Si

-Iar II.~~ 0
_ _ _  -I 

_ _ _ _ _  _ _ _ _ _ _  

it

~~~~~iI L

59

_ _ _ _ _ _ _ V V~~~~~~~~~~~~~~~~~~~~~~~
•- --- - — - _

V

- ~~~~~~~~~~~~~~~
_ _ _ ,~~~~~~~~ 5.~~~~_, ~~~~~~~~~~~~~~~~~~~~~~~ ~~~

_ _ _
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_•____

- —5-. ~~~~~~~~~~~~~~~~~~~ 5- —V----.- -- --
~~~~~~~~~~~~~~~~~~ V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • _ - V -V~~ _ - V - V~~ -V5_-V __••_

configuration employs only 28K of 16-bit core memory as the 11/20 is used primarily to
control the Flying Spot Scanner and to control switching at the Video Console .

2.1.2 DECsystem-1O Software

2.1.2.1 Features and Operating System

2.1.2.1.1 Features

The wide variety of computing requirements demanded by the several classes of
simulations carried out within the AVSAIL laboratory are satisfied by the flexibility and
scope of the DEC-10 software package. This software package provides for the concurrent
operations of timesharing, multistream batch , real time , and remote communications. These

multifunction capabilities allow multiple uses, both at AFAL and at remote locations , to
perforn’ all of the tasks necessary to create new simulations, modify existing simulations ,
and run those simulations as if they were individual users. The number of users on the
system at any one time depends on the total computing load.

From the user’s viewpoint , the DEC-10 may be though t of in terms of: ( 1) his input
device and software which he has written or which act on his software, as in Figure

2.1.2.1-1; (2) the operating system software which controls system resources ; and (3) the

I ACTUAL MACHINE$ I c~u j  I/O DEVICES 
~ 1 ”  (HARDWARE) V

E = :~ : f ~~~~~~~~~~~~

1~~t~ L REQUEST I SERVICE L OPERATING SYSTEM

I [~ALLOCATOR I HANDLER ] ROUTINES (SOFTWARE)

L  I— - —
_ _ _ _ _ _ _  

I
I MEDIA 1

USER PROGRAMS 
~~~~~~~~ 

HOD OF

• COMPILERS I TTT INPUT I T
ASSEMBLERS

EDITORS I
UTILITIES

DEBUGGING AIDS NON-RESIDENT
SUPPORT PROGRAMS SOFTWARE

L _J
Figure 2.1.2.1-1. OECsystem-1O, user’s view.

V V _V

60

~~~~S-V~ •-V~~~~ V S  ~~~~~~~~~~ — ~~ V-V~~~ S5~~ — z~’- -



I V
~
I

system hardware which was previously described . The DEC-10 has several capabilities which
increase the utilization of system resources in a multiuser environment . These are described
in the following three sections.

2.1.2.1.1.1 Timesharin g. The timesharing capability allows resources to be shared
among users. The timesharing environment utilizes processor time and system resources that
are wasted in single-user systems. Users are not restricted to a small set of system resources,
but instead are provided with the full variety of facilities. By means of his terminal, the user
has online access to most of the system’s features. This online access is available through the
operating system command control language, which is the means by which the timesharing

V user communicates with the system.

Through the command language, the user controls the running of a task , or job , to
achieve the desired results: create , edit , and delete files ; start , suspend , and terminate a job ;
compile, execute, and debug a program. In addition , since multiprogr amming batch software
accepts the same command language as the timesharing software, any user can enter a
program into the batch run queue . Thus, any timesharing terminal can act as a remote
job-entry terminal.

With the comman d language , the user can also request assignment of any periphera l
device (magnetic tape, DECtape, and private disk pack) for exclusive use. When the request
for assignment is received , the operating system verifies that the device is available to this
user , and the user is granted its private use until he relinquishes it . In this way , the user can
also have complete control of devices such as card readers and punches , paper tape readers
and punches , and line printers.

When private assignment of a slow-speed device (card punch , line printer, paper tape
punch , and plotter) is not required , the user can employ the spooling featu re of the

• operating system. Spooling is a method by which output to a slow-speed device is placed on
a high-speed disk or drum. This technique prevents the user from consuming unnecessary
time and space in core while waiting for either a device to become available or output to be
completed. In addition , the device is managed to a better degree because the users cannot tie 

V

it up indefinitely, and the demand fluctuations experienced by these devices are equalized.

2.1.2.1.1.2 Multiprogramming. The DEC-10 has the capability to make maximum
utilization of memory . The DEC-10 is a multiprogramming system; i.e., it allows multiple
independent-user programs to reside simultaneously in memory and to run concurrently.
This technique of sharing memory and processor time enhances the efficient operation of
the system by switching the processor from a program that is temporarily stopped because

61

________  

-



5
’

of I/O transmission to a program that is executable. When core and the processor are shared
in this manner , each user’s program has a memory area distinct from the area of other users.
Any attempt to read or change information outside of the area a user can access
immediately stops the program and notifies the operating system. Because available memory
can contain only a finite number of programs at any one time, the computing system
employs a secondary memory , usually disk or drum , to increase the number of users
serviced . User programs exist on the secondary memory and move into memory for
execution . Programs in memory exchange places with the programs being transferred from
secondary memory for maximum use available main memory. Because the transferring, or
swapping, take s place directly between main memory and the secondary memory, the
central processor can be operating on a user prog ram in one part of memory while swapping
is taking place in another. This independent , overlapped operation greatly improves system

V utilization by increasing the number of users that can be accommodated at the same time.

To further increase the utilization of memory, the operating system allows users to share
the same copy of a program or data segment. This prevents the excessive memory usage that
results when a program is duplicated for several users. A program that can be shared is called
a reentrant program and is divided into two parts or segments. One segment contains the
code that is not modified during execution (e.g., compilers and assemblers) and can be used
by any number of users. The other segment conta ins nonreentrant code and data . The
operating system provides for shared segments to guarantee that they are not accidentally
modified.

2.1.2.1.1.3 File Protection. The DEC-10 has the capability to manage the storage of
user program and data files consistent with the multiple-user environment. The mass storage
devices available are shared among users, and thus, the operating system must ensure
independence among the users; one user’s actions must not affect the activities of another
unless the users desire to work together. To guaran tee such independence, the operating
system provides a file system for disks, disk packs, and drums. Each user ’s data is organized
into groups of 128-word blocks called files. The user gives a name to each of his files , and
the list of these names is kept by the operating system for each user. The operating system is
then responsible for protecting each user’s file storage from intrusion by unauthorized users.
The operating system lets the user specify protection rights, or codes, for his files . These
codes designate if others may read the file, and after access, if the files can be modified in
any way. Files are assigned protection levels for each three classes of users : self , users with a
common project number , and all users . Each user class may be assigned a different access
privilege, so that there are eight levels in each of the three user classes as described by Table
2.1.2.1-1. This file protection scheme results in a three-digit access code for all files.

62

- ~~~~~~~~~~~~~~ ~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
V - •

~~~ V V


- ~~ S _~_S_VV -~~ -
5

•

- - ‘5-T
~~~~T ~~~~~~~~~~~~~~~~~~~~~~~~

TABLE 2.12.1-1. FILE PROTECTION CODES

Protect ion Level Acc ess Cod. Access Privile ges

Gre.t.st protectIon 7 No eccess privilegeg
8 EXECUTE ONLY
5 READ , EXECUTE
4 APPEND, READ. EXECUTE
3 UPDAT E, APPEND , READ

EXECUTE
2 WRITE , UPDATE , APPEND,

READ , EXECUTE
1 RENAME , WRITE , UPDATE .

APPEND , READ , EXECUTE
Leest protection 0 CHANGE POSITION , RENAME ,

WRITE , UPDAT E , APPEND ,
READ , EXECUTE

2.1.2.1.2 Operating syste m

— In order to hav e some bette r appreciation for the manner in which the resources of the
DEC-10 are managed , it is hel pful to examine the nature of the operating system alluded to
by Figu re 2.1.2 . 1-i . The resident operating system is made up of a number of separate and
somewhat independ ent parts , or routines (Figure 2 .1.2.1- ”). Some of these routines are
cyclic m nature and ar e repented at every system clock interrupt (tick) to ensuri’ that every
user of the computing system is receiving the requested services. These cyclic routines are :

1. The command processor . or decoder ,
2. The scheduler ,
3. The swapper.

Fht ~ command decoder is responsible for interpreting comnuinds typed by (bC user on
h. s ’rniinal and passmg them to th e  appropriate system program or routin e . The schc’d~iIer

~~~~~~~ ~ • whic h uwr is to run in the inte rval between I-he clock interru pts, allocates sham ble

~~~ saves and restori’s con(iitioflS needed to start a program interrupted by
- I h. ippc r rota tes us.’r jobs betwee n secondary disk memory and core memory

* a i. h .‘  t~~~ ~~hoiiI. I he in core hut art’ not These routin es const it-uk ’ (-hi’ part of
.I.’n, i i i  .il V t I t ~ ‘~~ many ~ I to Ia ’ opt’rat tu g simultane ousl y.

r i ’ I II,: ~%- .teIii ~rc l t i % (  .ketl t’nI~ I’v user pro~ri~ins and

— ______ - 
-- — _~~~ 

_ _ L~~~ ... ..a..r _ — — —



T~~ ~~~r~~: ~ ~~~~~~ V~~~~~~~
V V . - ---.- ~~~~~~~~~ ~- - ---y

5”

I OTHER [ áóTAT ING 
~J i~ uriour~urSERVICE k SERVICE A MEMORY ~~ ROUTINES

L_~~!u!.!!!__i \ ROUTINES / 
HANDLER j  I

~~~~~~~~~~~~~~ -+ -/-----

~~~~~~uuO 
- 

~ ./ J FILE
HANDLER [ 1 HANDLER~~J

r~~~~~:~~
A

~ 

--\----

~~~~~~~~~~~~~~~~~~i

—

[.!! I~~J~I
I ROUTINES

USER
[PROGRAM

Figure L1.2.1-2. The resid.nt opsr.ting system.

an’ responsible for provid ing these programs with th e selv let ’s availab le throu gh t hi’
operating s’~steiu . These ron tint’s are:

1. The I Inimplemen ted User Option ((11)0) .
2. The input/ output, routines ,
:~. The file handler.

The’ L T U () handler is the means by which the user program communicates with the
operating system in order to have a service perfo rmed. (‘ommun icat ion is (p,~ way of
programmed operators (also knowit as 1. TI . IO’s) contained in th e user program which . wlu’n
executed , go to (he operating svsl ciii for processing. l’he in put r out put routin e ’s 8re ’ th e
routines responsible’ for directing dat a t.ninsfi’rs bet ween peripheral devices and user

(1.1
-~

-
-
. ~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S 
_ _ _ _ _ _ _ _ _ _



pro~~;ims in core memory . These ro utines are invoked through the UUO handler , thus saving
the ’ user the detailed programming needed to contzol peripheral devices. The file handler
adds permanent user storage to the computing system by allowing users to store named
programs and data as files .

2.1.2.12.1 Command Decoder . The Command Decoder is the communications link
between the user’s terminal and the operating system. Because all the requests for system
resources are initiated via the command decoder , it is the most visible part of the system to
,. t e I -  ‘I ’~s’r . When the user types commands and/or requests on his terminal , the characters are

~.1 ’r’ ‘n an input buffer in the operating system. The command decoder examines these
- ‘ i i  ~.. ~t’rs in the buffe r, checks them for correct syntax, and invokes the system program or
u~,-r progr am as specified by the command.

, . . l
~ ~ (~~l( interrupt , control is given to the command decoder to interpret and

pr Oc ess one command in the input buffer. Given that the command is a legal one, several
actio ns are’ possible. For instance , a command must be delayed if the job is swapped out to
the disk and the command requires that the job be resident in core ; the command is
executed on a later clock interrupt when the job is back in core. If all conditions as specified
by the legality flags are met , control is passed to the appropriate program .

2.1.2.1 .2.2 Scheduler. The DEC-10 is a multiprogramming system; i.e. , it allows several
user jobs to reside in core simultaneousl y and t-o opera te sequentially. It is then the job of
the scheduler to decide which jobs should run at any given time. In addition to the
multiprogr amming feature , the DEC.10 employs a swapping technique whereby jobs can
exis t on an external storage device (e.g. , disk or drum) as well as in core. There fore , the
scheduler decides not only what job is to be run next , but also when a job is to be swapped
out onto disk or dru m and later brought back into core .

All jobs in the system are retained in ordered groupings called queues. These queues
have various priorities that reflect the status of each job at any given moment. The queue in
which a job is placed depends on the system resource for which it is waiting and , becau se a
job can wait for only one resource at a time , it can be in only one queue at a time. Several
of the possible queues in the system are:

1. Run queues for jobs waiting for , or jobs i n , execution ,
2. 1/0 wait queues for jobs waiting for data transfers to be completed ,
3. 1/0 wait-satisfied queues for jobs waiting to run after data transfe rs have been

completed ,

65

- -  .~~~~~ - - ~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ... ~--~ ~~~~~~~~ ... ... ... -.

4. Resource wait queues for jobs waiting for some system resource ,
5. Null queue for all job numbers that are not currently being used.

The job’s position within certain queues determines the priority of the job with respect
to other jobs in the same queue . For example , if a job is first in the queue for a shar able
device, it has the high est priority for the device when it becomes available. However, if a job
is in an I/O wait queue, it remains in the queue unti l the I/O is completed . Therefore , In an
I/O wait queu e, the job’s position has no significance. The status of a job is changed each
time it is placed into a different queue.

In additon , data transfers use the scheduler to permit the user to overlap computation
with data transmission. In unbuffered data modes , the user supplies an address of a
command list containing pointers to locations in his area to and from which data is to be
transferred. When the transfer is initiated , the job is scheduled into an I/O wait queue where
it remains until the device signals the scheduler that the entire tr ansfer has been completed .

In buffered modes, each buffer contains information to prevent the user and the device
I , from using the same buffer at the same time. If the user requires the buffer currently being

used by the device as his next buffer , the user’s job is scheduled into an I/O wait queue.
When the device finishes using the buffer , the device calls the scheduler to reactivate the job .

2.1.2.1.2.3 Swapper. The swapper is responsible for keeping in core the jobs most
likely to be run. it determines if a job should be in core by scanning the various queues in
which a job may be. If the swapp er decides that a job should be brought into core, it may
have to take another job already in core and transfer it to secondary memory . Therefore ,
the swapp er is not only responsible for bringing a job into , core but also responsible for
selecting the job to be swapped out. The swapper periodically checks to see if a job should
be swapped in. If th ere is no such job , then it checks to see if a job is requesting more core.
If there is no job wishing to expand its size, then the swapper does nothing further and
relinquishes control of the processor until the next clock tick.

2.1.2.1.2.4 UUO Handler . The UUO handler is responsible for accepting requests for
services available through the operating system. These requests are made by the user
program via software-implemented instructions known as programmed operators, or UllOs.
The UUO handler is the only means by which a user prog ram can give control to the
operating system in order to have’ a service performed. The user inform s the operating
system of his requirements for I/O by means of 1)1)0’s contained in his program. The actual
input/output routines needed are then called by the UU() handler.

66

- - - ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~1~ ”~~T’~ T ’ ’ T~~
T- ’ ’ -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

2.1 .2 .1 .2 .5  Input/Output. Since the operating system channels communication
between the user and the device , the user does not need to know all the peculiarities of each
device on the system. In fact , the user program can be written in a similar manner for all
devices. The operatin g system will ignore , without returning an error message, operations
that are not pertinent to the device being used. Thus , a terminal and a disk file can be
proces sed identically by the user program. In addition , user programs can be written to be
indep endent of any particular device. The operating system allows the user pro gram to
specify a logical device name , which can be associated with any physical device at the time
when the program is to be executed. Because of this feature, a program that is coded to use
a specific device does not need to be rewritten if the device is unavailable. The device can be
designated as a logical device nam e and assigned to an available physical device with one
command to the operating system.

2.1.2.1.2.6 Fi le Handler . The disk file handler man ages user and system data; thus, this
data can be stored , retrieved , protected , and /or shared among other users of the computing
system. All inform ation in the system is stored as named files in a uniform and consistent
fashion , thus allowing the information to be accessed by name instead of by physical disk
addresses. Therefore, to reference a file , the user does not need to know where the file is
physically located. A named file is uniquely identi fied in the system by a file name and
extension, an ordered list of directory names (UFDs and SFDs ) which identi fy the owner of
the file, and a file structu re name which identifies the group of disk units containing the file.

Usually a complete disk system is composed of many disk units of the same and /or
different types. Therefore , the disk system consists of one or more file structures—a logical
arrangement of files on one or more disk units of the same ty pe . This method of file storage
allows the user to designate which disk unit of the file structure he wishes to use when
storing files. Each file structure is logically complete and is the smallest section of file
memory that can be removed fro m the system without disturbing other units in other file
structures. AlL pointers to areas in a file structure are by way of logical block numbers rather
than physical disk addresses; there are no pointers to areas in other file structures, thereby
allowing the file structure to be removed.

All disk files are composed of two parts , data and information used to retriev e data. The
retrieval part of the file contains the pointers to the entire file , and is stored in two distinct
locations on the device and accessed separately from the data. System reliability is increased
with th is method because the probability of destroying the retrieval information is reduced ;
system performance is improved because the number of positionings needed for

• random-access methods is reduced. The storing of’ retrieva l information is the same for both

-

L _ 

67

- 
— _~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,—.——-- ~



~~~~ - ~~T T ’ ~~ ‘1

sequential and random-access files. Thus a file can be created sequentially and later read
randomly , or vice versa , without any data conversion.

To the user , a file structure is like a device; i.e., a file structure name or a set of file
structure names can be used as the device name in command strings or UUO calls to the
operating system. Although file structures or the units composing the file structures can be
specified by their actual names, most users specify a general, or generic, name (DSK) which
will cause the operating system to select the appropriate file structure. The appropriate file
structure is determined by a job search list. Each job has its own job search list with the file
structure names in the order in which they are to be accessed when the generic name is
specified as the device. This search list is established by LOGIN and thus each user has a
UFD for his project-programmer number in each file structure in which LOGIN allows him
to have files. File storage is dynamically allocated by the file handler during program
operations, so the user does not need to give initial estimates of file length or the number of
files.

2.1.2.1.3 Real-time operating system features

The multiple simulators attached to the DEC.10 (Figure 1.3.1.1-1) which require
software simulations to be carried out by the DEC-10 in real time, as well as handle the
attendant data transfer between the DEC-10 and the PDP-lls, call upon the real-time
capabilities of the operating system. The operating system must allocate system resources
dynamically in order to satisfy the response and computational requirements of real time
without affecting the simultaneous operations of timesharing and batch jobs. As part of its
normal operation, the DEC-10 operating system satisfies this response requiremen t by
overlappin g I/O operations with processing time and by reacting to a constantl y changing
system load.

At the same time , each user of the computing system must be protected from other
users, just as the system itself is protected from all user program errors. In addition , since
real-time systems have special real-time devices associated with jobs , the computing system
must be protected from hardware faults that could cause system breakdown. And , because
protection is part of the function of the operating system , the real-time software employs
this feature to protect users as well as itself against hardware ari d software failures. Inherent
in the operating system is the capability of real time , and it is by way of calls to the
operating system that the user obtains real-tim e services. The services obtained by calls
within the user ’s prog ram include:

1. Locking a job in core,

68

• : ,._~ ~
-

,.-,--.--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - -

~

‘I

2. Connecting a real-time device to the priority interrupt system,
3. Placing a job in a high-priority run queue,
4. Initiating the execution of FORTRAN or machine langu age code on receipt of an

interrupt ,
5. Disconnecting a real-time device from the priority interrupt system.

Memory space may be occupied by the resident operating system and by a mix of
real-time and non-real-time job s. The only fixed partition is between the resident operating
system and the remainder of memory . A real-time job may need to be in memory so as not
to lose information when its associated real-time device interrupts ~(since there may not be
sufficient time to swap-in the job). The job can request that it be locked into core .

The real-time user can connect real-time devices to the priority interrupt system ,
respond to these devices at interrupt level , remove the devices from the interrupt system ,
and/or change the priority interrupt level on which these devices are assigned. There is no
requirement that these devices be connected at system generation time. The user specifies
both the names of the devices generating the interrupts and the priority levels on which the
devices function. The operating system then links the devices to the operating system.

The real-time user can receive faster response by placing jobs in high-priority run queues.
These queues are examined before all other queues in the computing system , and any
runnable job in high-priority queue is executed before jobs in other queues. In addition , jobs
in high-priority queues are not swapped to secondary memory until all other queues have
been scanned.

2.1.2.1.4 Remote communications

The DEC-10 allows the simultaneous operation of multiple remote sta tions. Software
provisions differentiate one remote station fro m another. By utilizing peripheral devices at
various stations, the user is provided with increased capabilities as shown in Figure 2.1.2.1-3.
For example , data can be collected from various remote stations , compiled and processed at
the central station, and then the results of the processing can be sent to all contributors of
the data.

2.1.2.1.5 Batch computing

In addition to the timesharing and real-time capabilities available on the DEC-10, batch
computing is provided by the GALAXY-lO batch software. GALAXY-lO batch software
enables the DEC-10 to execute up to 128 batch jobs concurrentl y with timesharing jobs.

69

- -

~~:• :~~~-~ ~~~
-
-•-.•-

‘!! “
~ _____

—

~~
-
~~~

---- -
~~

_ _  _ _  
,

I ’  
~~

~~~~
•

_ _ _ ~~~~~~~~

_ _

1- 111 <

~jJJ
~~

EJIJ ~~~~~
~~~~~~~~~~~~~~~~~~~~~~~

70



I
f Just as the timesharing user communicates with the system by way of his terminal , the

batch user normally communicates by way of the card reader. (However, he can also enter
his job from an interactive terminal.) Unlike the timesharing user, the batch user can punch
his job on cards , insert a few appropriate control cards, and leave the job for an operator to
run. In addition, the user can debug the program in the timesharing environment and then
run it in batch mode without any additona l coding.

The GALAXY-lO system consists of a series of programs: QUASAR , the system queue
manager and scheduler; SPRINT , the input spooler; BATCON , the batch controller; and the
output spoolers, LPTSPL and SPROUT . The input spooler is responsible for reading the

• input from the inpu t device and for enterin g the job into the batch controller ’s input . ~ieue.
After the input spooler reads the end-of .file and closes the disk flies , it makes an entry in
the batch controller ’s input queue. The batch controller processes batch jobs by reading the
entries in its queue. The contr ol file created by the input spooler is read by the batch
controller , and data and nonresident software commands are passed directly to the user ’s
job.

QUASAR is responsible for scheduling jobs and maintaining both the batch control ler ’s
input queue and the outpu t spooling queues. A job is scheduled to run under the batch
controller according to external priorities, processing time limits, and core requirements
which are dynamically computed , and according to parameters specified by the user for his
job , such as start and deadline time limits for prog ram execution.

The output spooling programs improve system throughput by allowing the output from
a job to be written temporarily on the disk for later transfer , instead of being written
immediately on a particular output device. The log file and all job output are placed into
one or more output queues to await processing. When the specified device is available , the
output is then processed by the appropriate spooling program . These spooling programs may
be utilized by all users of the computing system.

2.1.2.2 Program Support Software

The preparation of software programs in both assembly langua ge and in several higher
order languages is facilitated by the various utility programs and compilers supported on the
AVSAIL DEC- 10. The basic features of each of these support prog rams are briefly
summarized below.

71

• 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•--- - •
~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ •- - •


- ~ r7~~~~~~~~- •~~~~~ -• -• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~-~--‘ - ~-r

2.1.2.2.1 Higher order language compilers

A wide range of higher order language capa bility is supported by the DEC.10 AVSAJL
facility. Languages available include JOVIAL, FORTRAN, APL, Basic, COBO L, and others

~is subsequently described. The descriptions, other than for JOVIAL, are brief since these
languages are widely used and documented.

2.1.2.2.1.1 JOVIAL. The JOVIAL language is the Air Force standard language for
command and control software, and the level I subset of J73 is supported with a compiler
on the DEC-10.

JOVIAL had its beginnings in 1958 and, as the acronym (Jule ’s Own Version of the
International Algebraic Language) implies, is similar to ALGOL in many ways. Subsequent
modifications over the years have left it substantially different , however. The introduction
of JOVIAL brough t with it a number of innovative software features. It was the first
language (and until PL/I, the only one) to provide good facilities for simultaneously
performing scientific numerical computation and nontrivial data handling, while at the same
time it could also be used in general information handling areas. A second contribution is
the use of COMPOOL (COMmunication POOL) as a central source of data description. A -

•

third contribution was its practical usage as its own compiler , and finally, it made a
significan t contribution in terms of allowing the programmer great flexibility for controlling
storage allocation when he needs to, but not requiring him to do so otherwise. It is not
within the scope of this manual to define the JOVIAL language. Readers familiar with
FORTRAN and ALGOL will find many similarities. A few distinctive features of JOVIAL
are mentioned here to differentiate it from other higher order languages.

JOVIAL is a procedure-oriented, problem-oriented , arid problem-defining language. Its
basic objective is to provide a language for use in solving large , complex information
processing problems. Possibly the most distinctive feature of JOVIAL related to this basic
objective is the COMPOOL. The COMPOOL is a facility which allows for creation of one or
more preprocessed common data base descriptions. The COMPOOL source, as defined by a

• COMPOOL directive and declarations, contains two types of information. First, data declar-
ations which are common to two or more programs may be described in a COMPOOL. In
addition , any external procedures or functions may be declared in the COMPOOL. The
COMPOOL process involves essentially a compilation of the COMPOOL source, creating two
forms of output. One output is a relocatable object module containing space reservation for
the data delcared in the COMPOOL and any presets defined for this COMPOOL data. The
second output is a special file containing names declared in the COMPOOL and their

72

~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



-. —‘-.-~~
- •,

~
-._--- -

~
‘--- ---.- •-- - .--— -_- ---- 

--~~~~~~~~~~•~

rr 
•- — - --

~~~ 

- -

~~

-- - -

~~

--------- — - -• — - — - — ~~~~~~~

attributes for use by the compiler during subsequent compilations which refer to the names
declared in the COMPOOL.

Another feature of J73/I worthy of note is the absence of input/output statements.
Communication with JOVIAL programs is via the compool data base. Directives are
available for accessing auxiliary source files , however.

Certain features of the J73 data declaratio ns are of interest. J73 supports three basic
data structures: items (scalar variables); tables of one to seven dimensions; and blocks.
Scalar items, tables and blocks may be grouped in blocks. Data may be allocated to one of
three levels. The primary and most permanent data is reserve data. Only those values that
are left in reserve data upon exit from a procedure are guaranteed at re-entrance to that
procedure. Procedure data values are not valid after exit from the containing procedure. The
final level of data is based data . No storage is allocated for based data by the compiler.
Based data describe a structuring of data , a temp late , which may be relocated dynamically.
This relocation may be performed by declaring a default base—an item whose value is to be
used as the address—or at each reference by using a formula whose value is the address. The
allocation level to be ascribed to data is indicated by an allocation specifier in the
declaration. J73 also provides for packing of table items at three levels: no packing, dense
packing, or medium packing. The level of packing imp lies the extent to which more than
one item is stored in a computer word .

The J73/I subset provides two types of statements ; statements that compute values and
statements that control program flow. Statements may be named or not and may be either
simple or compound (delimited by BEGIN . END). Program control statements include
GOTO, STOP, RETURN , IF-ELSE , WHILE and a particularl y powerfu l FOR-Loop
construct which is, roughly FOR (control variable), BY (increment phrase), THEN
(replacement phrase), and WHILE (terminator phrase). The BY , THEN , WHILE elements
may appear in any order.

The J73 language is program and procedure-oriented and a procedure call statement is
included. The J73 compilation may be a program that is invoked by an operating system or
a procedure called from a program or other procedure . Within a compilation (progra m or
procedure), internal procedure declarations may be nested to any level . Within a program , a
stop statement is used to terminate a program or procedure and return to the system. A
return statement may not be used within a program but may be used within a procedure .

Some additional insight into the nature of JOVIAL is provided by the following brief(. discussion of the J73 /I compiler which is composed of a data base, a set of seven logical

73

-‘ ~~r~~~~~~~~~~ -~~~- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~ - _______

processing phases, and an executive program which supports input/output , phase loading,
and commonly used utility functions. Interphas e communication is via the global data
blocks, tables, and files that comprise the compiler ’s data base. The structu re of the J73 /I
compiler is presented in Figure 2.1.2.2 .1. Descriptions of the compiler compenen ts are
provided below.

The Compiler Executive (ECEX) is a collective name for those procedures which remain
resident throughout a compilation. Resident procedures are of three types:

1. Host Computer Operating System Interface Routines where routines are coded in
assembly language; they support phase loading and file input /output and must be
completely recoded to rehost the compiler;

• 2. A collection of conversion and data manipulation procedures, and compiler
debugging procedures which output symbolic dumps of compiler files and tables; the
conversion and data manipulation procedures are coded in assembly language, and
debugging procedures are coded in J73 /I ;

3. A collection of symbol table service procedures which search and create symbol
table entries; these procedures are coded in J73 J 1.

The Control Card Interpreter (CC!) reads and processes control card command
statements for the compil ation. Example s of options selectable by a command statement
are: target computer identity, input and output file names, and listing options. CCI is
currently coded in assembly language.

The Compool Input Processor (CIP) is called after control card interpretation to process
compool directives. CIP presets the symbol tab le with entries from the compool files named
in the compool directives. The process consists of reading a compool file ’s directory,
searching for specified entities , obtaining the specified entities from the body of the
Compool File, and constructing the appropriate symbol table entries.

CIP is coded in J73 /I . Except for certain data declarations, it is host computer
independent. CIP and other target independent compiler modules access a global table
(TRGPARM) of target parameters, such as bits per word, bits per byte , and address size , in
order to generate target-specific output.

Syntax analysis is performed by the Analyzer (ANZR) . ANZR translates dynamic
statements to Polish postflx form in the Intermediate Language (IL) file, translates
declarative statements into symbol table entries, and copies constant presets and
cross-reference information to the code file. ANZR is coded in J73/l .

74

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ‘ T- TT~~~~~~~~

* 

I

~ ~~1IiII~
N —I

_

- -.--‘~~~~~ ~~~~ ~~~~~~~~~~~~~ 

-



_ _~ -••- - -
~

-- -
~

•-- •• ~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Allocator (ALOCTR ) is responsible for assigning relative storage addresses for data
declarations recognized by ANZR as as result of a procedure or compool compilation.
ALOCTR is coded in J73/L

There is one Optimizer/Code Generator pair for each compiler target machine. An
Optimizer/Cod e Generator pair is re fe rred to as COGN. COGN operates in a two-pass
manner within a single phase. Optimization is performed during the first pass where the IL is
translated to a modified IL. Code generation and register assignment are performed during
the second pass, where the modified IL is transformed into the Code File.

The Editor (EDIT) reads the Code File and produces the relocatable object program file.
EDIT also optionally generates an edited object code listing and a cross-reference listing.
There is one EDIT phase per target computer .

The Compool Processor (COP) executes only in a compool build compila tion . It
executes after EDIT and transforms the symbol table contents into a Compool File for later
inclusion in compilations which refer to compool-declared entities.

The major compiler data base elements include the Symbol Table , Compilation Control
Block, In termediate Lan guage File and Code File. The Symbol Table consists of a
fixed-length hash table and a variable-length set of entries that describe the structures and
constructs that are derived from source language parsing (e .g., source-program -declared
tables, blocks, and procedures) and that are produced to assist the compiling process (e.g..
compiler-genera ted labels and items). There are two types of symbol table entries: name
entries and attribute entries. Some attribute entries describe source program entities which
have names , such as variables, procedures, and labels. Since names are variable in length , and
since more than one entity can bear the same name, the name part of a symbol table entry is
maintained separately from the related attribute information that describes the entity.

The Compilation Control Block (CCB) is a small core-resident block of data used for
communication between the compiler executive and the phases. CCB is a collection of it-em3
such as symbol table chain headers, a bit vector describing compilation options, and the
current statement number.

The Intermediat e Language (IL) File represents the executable statements of a program
in Polish postfix form . It is produced by the syn tax analyzer phase , and is read by the

optimizer/code generator phase. The IL was designed to simplify optimization and code
generation. It has the following characteristics:

76

______________________________________________ ~ r e~~~~~~~~~— ~~~~~~~~~~~~~



A0 A055 591 RESEARCH TRIANGLE INST RCSLARCH TRIANGLE PARK N C F/s 1/3 I
AFAL SIMULATION FACILITY/CAPABILITY MAMJAL. VOLUME I. EXECUTIVE—ETC(U)

UNCLASSIFIED 
JUN fl R A WHISNANT . V H RUEDGER, R

U .  __
_____ _I

~

i1 0
p _

_ _  _ _ _ _ _ _  
‘I



-

~~~~~~~~~~~~~

---, .

~~

-

~~~~~~~~~~

-—

~~~~~~

— - - - .- -

~~~~~~~~~~

—-----—‘r---

1-!!

1. The IL is, in general, language and machin e independent;
2. All conversions are explicitly expressed in the IL;
3. The IL is, in general , nonredundant; for example , a FOR statement is expressed in

terms of simpler statements such as assignment, IF , and GOTO.

The Code File (CF) is used for three purposes: (1) it contains name set/use information
produced by ANZR for the cross-reference listing; (2) it contains variable preset values
produced by ANZR; (3) it contain s the target machine instructions produced by the Code
Generator . The Code File is read by the Editor.

2.1.2.2.1.2 FORTRAN. The FORmula TRANslator language , FORTRAN , is a widely
used procedure-oriented programming language. It is designed for solving scientific-type
problems and is thus composed of mathematical-like statements constructed in accordance
with precisely formulated rules. Therefore , programs written in the FORTRAN language
consist of meaningful sequences of these statements that are intended to direct the
computer to perform the specified computations . DEC.10 FORTRAN-b is compatible with
and encompasses an ANSI standard. FORTRAN-10 also provides many extensions and
additions to this standard which greatly enhance its usefulness and increase its compatibility
with other FORTRAN lan guage sets. Extensions include subroutines which allow the
FORTRAN user to do real-time programming. With these subroutines, the time-sharing job
can dynamically connect real-time devices to the priority interrupt (P1) system, respond to
these devices at interrupt level, remove the devices from the P1 system, and change their P1
level. Use of these routines requires that the user have real-time privileges and be able to
lock his job in core.

FOROTS, the FORTRAN-10 object-time system, implements all program data file
functions and provides the user ‘with an extensive runtime error reporting system. An
additional feature is that the association between FORTRAN logical units and the file
descriptions to which they refer may be either made within the source program or deferred
until runtime. DEC.10 FORTRAN-J.0 also supports FORDDT, an interactive program that
is used as an aio in debugging FORTRAN programs.

2.1.2.2.1.3 ALGOL. The ALGOrithmic Language, ALGOL, is a scientific language
designed for describing computational processes , or algorithms. It is a problem-solving
language in which the problem is expressed as complete and precise statements of a
procedure. The DEC-10 ALGOL system is based on ALGOL-60. It is composed of the
ALGOL processor , or comp ile r , and the ALGOL object time system. Any errors made in
writing the program are detected by the compiler and passed on to the user.

77



—

H

The ALGOL object time system provides special services, Including the input/output
service, for the compiled ALGOL program . Part of the object time system is the ALGOL
library, a set of routines that the user’s program can call in order to perform calculations.
These include the mathematical functions and the string and data transmission~ routines.
These routines are loaded with the user’s program when required : the user need only make
a call to them. The remainder of the object time system is responsible for the running of the
program and providing services for system resources, such as core allocation and

• management and assignment of peripheral devices.

2.1.2.2.1.4 APL. A Programming Language (APL) is a concise programming lan guage
especially suitable for dealing with numeric and character array-structured data . APL is a

• completely conversational system which tends to increase programmer productivity and
expertise by allowing the user to interact with the APL system and his runnin g programs.
APL is rich in operators that f acilitate array calculations. This higher-level programming is
accomplished by suppressing much of the programming detail inside single APL operators .
One operator may be used to sort a vector of values in ascending order , thereby making
“sort” a primitive operation rath er than a tedious subroutine. APL is intended for use as a
general data processing language as well as a mathematician ’s tool.

2.1.2.2.1.5 BASIC. The Beginner’s All-purpose Symbolic Instruction Code, BASIC, is a

problem-solving language that is easy to learn because of its conversational nature. It is
particularly suited to a time-sharing environment because of the ease of interaction between
the user and the computer. The BASIC language can be though t of as divided into two
sections: one section of elementary statements that the user must know in order to write
simple programs, and a second section of advanced techniques for more powerful programs.

The BASIC system has several special features built into its design :

1. BASIC contains its own editing facilities. Existin g programs and data files can be
modified directly with BASIC instead of with a system editor by adding or deleting
lines, by resequencing the line numbers, or by combining two files into one. The
user can request a listing of all or part of any of his files on either the line printer or
the terminal.

2. At the editing level, BASIC allows various peripheral devices to be used for storage
or retrieval or programs and data files; within a program, info rmation can be read
fro m or written to the terminal and to the disk (in the latter case, either sequentially
or by random access);

3. Output to the terminal can be simply formatted by tabs, spaces, and column

78

- 

~~~~~~~~~~~~~~~~~ • .~ __: —--
~~~~ -~~

- 
~~~~~~~~~~

—
~~~

-- --



—.
• - • -

headings or more precisely formatted by using the advanced PRINT USING
statement;

4. BASIC has statements designed exclusively for matrix computations;
5. An advanced string handling capability includes a concatenation operator , substring

and search functions, and other string intrinsic functions; mathematical intrinsic

• functions are contained in BASIC, along with methods by which the user can define
his own functions .

2.1.2.2.1.6 AID. The Algebraic Interpretive Dialogue, AID, is the DEC-10 adaption of
the language elements of JOSS, a program developed by the RAND Corporation. To wri te a
program in the AID language requires no previous programming experience. Commands to
AID are typed in via the user’s terminal as imperative English sentences. Each command
occupies one line and can be executed immediately or stored as part of a routine for later
execution. The beginning of each command is a verb taken from the set of AID verbs. These
verbs allow the user to read, store, and delete items in storage ; halt the current processing
and either resume or cancel execution; type information on his terminal; and define
arithmetic formulas and functions for repetitive use that are not provided for in the
language. However, many common algebraic and geometric functions are provided for the
user’s convenience.

The AID program is device-independent. The user can create external files for storage of
subroutines and data for subsequent recall and use. These files may be stored on any
retrievable storage media, but for accessibility and speed, most files are stored on disk.

2.1.2.2.1.7 COBOL. The COmmon Business Oriented Language, COBOL, is an
industry wide data processing language that is designed for business applications, such as

• payroll, inventory control, and accounts receivable.

Because COBOL programs are written in terms that are familiar to the business user , he
can easily describe the formats of his data and the actions to be performed on this data in
simple English-like statements. Therefore, programming training is minimal. COBOL
programs are self-documenting, and programming of desired applications is accomplished
quickly and easily.

DEC-10 COBOL accepts two source program formats: conventional format and
standard format. The conventional format is employed when the user desires his source
programs to be compatible with other COBOL compilers . This is the format normally used
when input is from the card reader . The standard format is provided for users who are

79



familiar with the format used in DEC-10 operations. It differs from conven tional format in
that sequence numbers and identification are not used because most DEC.10 programs
require neither.

2.1.2.2.1 .8 DBMS. The Data Base Management System (DBMS-b ) is a facility of th e
DEC-10 that permits the user to consolidate his data files into one or more data bases. A
data base is a collection of nonredundant data items that can be accessed by a variety of
programs and/or applications that have common processing requirements and function al

• relationships. The data base is created and maintained through modules of DBMS-b . These
modules permit the user to structu re the data in such a way that each application can access
in an optimum fashion , yet no data item is actually duplicated in the data base . This
arran gement is accomplished by the data administrator who structures the data base in a
manner such that each application can access it through a search pattern most suited to its
needs. Once the data base has been established , users can access the data through COBOL
programs containing special data base syntax .

2.1.2.2.2 Utility software

2.1.2.2.2.1 MACRO Assembler . MACRO is the symbolic assembly program on the

DEC-10. It generates machine language programs by performing the following function s :

1. Translating symbolic operation codes in the source program into the bin ary codes
needed in machine language instruct ions;

2. Relat ing symbols specified by th e user to numeric values ;
3. Assigning absolute core addresses to the ~y mholic addresses of program in st ruct ions

and data;
-I . Preparing an output listing of the program which includes any errors det ected

during the assembly process.

MACRO is a two-pass assembler. This means that the assembler reads the source
program twice. Basically, on the first pass, all symbols are defined and placed in the symbol
table with their numeric values, and on the second pass, the binary (machine) code is
generated. Although not as fast as one-pass assembler , MACRO is more efficient in that  less

core is used in generating the machine language code and the output to the user is not as

long.

MACRO is a device-independent program; it allows the user to select , at i-un tinw ,
standard peripheral devices for input and output files. For example , input of the source
program can come from the user’s terminal and output . of the assembled binary program can

80

I,. - _•
~~~~~~~~ 

- — - - -

go to a magnetic tape , and output of the program listing can go to the line printer. More
commonly , the source progra m input and the binary output are disk files.

2. 1 2.2.2.2 L i n k i n g Loader . LINK -1 O , the DEC- 10 linking loader , merges
• independently translated modules of the user’s program into a single module and links this

module wi th system modules into a form that can be executed by the operating system. It
• provides automati c relocation and loading of the binary modules producing an executable

version of the user ’s program. When the loading process has been completed , the user can
request L I NK- b either to transfer control to his program for immediate execution or to
output the program to a device for storage in order to avoid the loading procedure in the
future.

While the primary output of LINK- b is the executable version of the user ’s program,
the user can request auxiliary output in the form of map, log, save, symbol , overlay plot ,
and expanded core image files. This additional output is not automatically generated; the
user must include appro priate switches in his command strings to LINK-lO in order to
obtain this type of output. The user can also gain precise control over the loading process by
setting various loading parameters and by controlling the loading of symbols and modules.
Furthermore, by setting switches in his command strings to LINK-l O, the user can specify

• the core sizes and starting addresses of modules , the size of the symbol table , the segment
into which the table is placed , the messages he will see on his terminal or in his log file , and
the severity and verbosity levels of the messages. Finally, he can accept the LINK- b
defaults for items in a file specification or he can set his own defaults that will be used
automatically when he omits an item from his command string. LINK- b has an overlay
facility to be used when the total core required by a user’s program is more than the core
available to the user.

2.1.a2.2.3 Progra m Debugging. The Dynamic Debugging Technique , DOT, is used for
• on-line program composition of object programs and for on-line checkout and testing of

these programs. For example , the user can perform rapid checkout of a new progra m by
making a change resulting from an error detected by DDT and then immediately executing
that section of the progra m for testing.

After the source program has been compiled or assembled, the binary object with its
table of defined symbols is loaded with DDT. In command strings to DDT, the user can
specify locations in his program, or breakpoints , where DDT is to suspend execution in
order to accept fu rther commands. In this way, the user can check out his program
section-by-section and if an error occurs , the user can insert the corrected code immediately.

81

_______ __________________ _____________________

~~~— -~.~~~~- - •— -~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ -- •- 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 


-~~ •

~~~~~~~~~ 
• ‘

~~
-

~~~~ 
‘
~~~~~

-
~~

--‘-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ,II

2.1 2.2.2.4 File Manipulat ion. The Peripheral Interchange Program, PIP, is used to
• transfer data files from one I/O device to another. Commands to PI P are formatted to

accept any number of input (source) devices and one output (destination) device. Files can
be transferred from one or more source devices to the destination device as either one
combined file or individual files. Switches contained in the command string to 11P provide
the user with the following capabilities:

1. Naming the files to be transferred,
2. Editing data in any of the inpu t files .
3. Definin g the mode of transfer,
4. Manipulating the directory of a device if it has a directory,
5. Controlling magnetic tape and card punch functions,
6. Recovering from errors during processing.

2.1.2.2.2.5 File Editing. The Text Ed itor and COrrector program , TECO, is a powerful
• editor used to edit any ASC1 1 text file with a minimum of effo rt . TECO commands can be

separated into two groups: one group of elementary commands that can be applied to most
editing tasks, and the larger set of sophisticated commands for character string searching,
text block movement , conditional command, programmed editing, and command repetition.

TECO is a character-oriented editor. This means that one or more characters in a line
can be changed without retyping the remainder of the line. TECO has the capability to edit
any source document: programs written in MACRO , FORTRAN , COBOL, ALGOL, or any
other source language ; specifications; memorandums, and other types of arbitrarily
formatted text. The TECO program does not require that line numbers or other special
formatting be associated with the text. Editing is performed by TECO via an editing buffer ,

which is a section within TECO’s core area. Editing is accomplished by reading text from

any device into the editing buffer (inputting), by modifying the text in the buffer with data
received from either the user’s terminal or some other device (inseri.ing). and by writing the

modified test in the buffer to an output file (outputting).

2.1.2.2.2.6 Manuscript Editing. RUNOFF facilitates the prepara tion of typed or

printed man uscripts by performing line justification , page numbering, titling , indexing .

formatting, and case shifting as directed by the user. The user creates a file with an editor

and enters his material through his terminal. In addition to entering the text , the user

includes information for formatting and case shifting. RUNOFF processes the file and
produces the final formatted file to be output to the terminal , the line printer , or to another

file.j 82

• ~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________



- ~~~~‘ -~~~~~-~~--,-~~~-• ‘.—.‘-‘

With RUNOFF , large amounts of material can be inserted into or deleted from the file
without retyping the text that will remain unchanged. After the group of modifications have
been added to the file , RUNOFF produces a new copy of the file which is properly paged
and formatted.

21.3 Special Purpose Peripherals

In order to prov ide the capability for simulations which assess the influence of human
factors on avionic system performance, the AVSAIL laboratory includes a simulated cockpit

- and computer-generated visual displays of the external environment and the cockpit flight
data displays. The functional configuration of these elements of AVSAIL is shown in Figure
2.1.3-1. The elements shown are configured in three bask’ subsystems, which are referred to
here as (1) the Picture System, (2) the Video System, and (3) the Cockpit Simulator. Overall
communication between these special purpose peripherals is through the’ DEC-10 which
executes the simulation models. Capabilities of each of these three peripheral subsystems are
described in succeeding sections.

2.1.3.1 The Picture System

The Picture System is a standalone general purpose, interactive computer graphics
system which can display smoothly moving pictures of two- or three-dimensional objects
effectively in real time. The basic components of the system , manufactured by the’ Evans &
Sutherland Computer Corporation , are a DEC P OP -I l ;  hard ware’ processing units which
perform such functions as rotations, zooming, and perspective; an 8b72-point Refresh
Buffer; a Picture Genera tor; a Character Generator; a 21 in. Picture Display; a Tablet- to
facilitate pictu re interaction; and the software to support the’ system.

Figure 2.1.3.1-1 is an overall view of the Picture System interfaced with a DEC
POP-li/SO computer. A close-up view oi the Input Tablet , and 21 in . Picture’ Display (with
a typical display configuration) is shown in Figure 2,1.3.1-2. The tablet serves as the
standard , general-purpose , graphic input device in TIlE PICTURE SYSTEM. The tablet can
be used for positioning or pointing to the picture elements by use of a pen whose x and v
coordinates are read by the picture controller. In this manner , the’ tablet and pen can be’
used to simulate functions, such as joy stick con tro l , such that the operator can interactively
“fly the simulation.” An operator seated at the Input Tablet is shown “flying the’
simulation ” in Figure 2.1.3.1-3.

83



‘~~ i±~~~ ~~ 
~~~~~~~~~~~~~~~~ 

-
~~

-- --
~~~~

_-
~

- —- - r

I
a

U

U

_ I‘1

r ~~~~ 
I I

_ _ 
II

11_
~~1 ~

[
~~

i h ’I] ~LJ~~
U[ 

_ _ _ _

~

4 U  ~ 
- 

_ _



_

~~‘

a

I

V

-fi

- -
~~ 

- 

- 
-

- ~~~-~~—— — - - - .~~—-•-----~~• — — ‘~—- 



~ . - - - - ~~- - • ---~~~~~~~~~~~~~~-_- • - -~~~~~~~~~~~~~ ._~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _

p

____________________ —--~-- ----—



_ : _
~~~~~~

—V 1. ,,
—

.1

fr
‘
~~~~~~~~~~~ 

I

~~~~~~~~~~~~~~~~~~~~~

~~
I-

~~
,,-

~~
,--

______- \

~1
_ _ _ _ _

_ _ _ _ _
_ _

-

• • —
~~~~~~~~~~~~~~~~~~~~~~~~ • ___________________________ •i_ 1~iiil~~_ _ _ _  _ _ _ _ _ _



~~~~ - • .- - - -~~~~~-~~~~~~ -~~~~~~~~~-- 

~~~

-- -

~
--•

~~~~~

2. 1.3.1.1 Overv iew of interactive computer graphics

Int er act ive ’ computer graphics allo ws a IM ’r to dicta te cha nge’s to the ’ p icture ’ and see tht ’
results immed iately. The system time lag is a very smal l fraction of a second , and the ’ user
gets the feeling that he is actually manipulating the pi ctur e ’ itself in real timt ’.

(‘omputer graphics is a very broad subject , encompassing man y details which are not
pert i nent here . However , some appreciation of the more basic aspects , as represen ted by the
AVS ALL Picture System, will he l p to orient the’ reader. Four topic areas are presented in
subsequent sections: presenting a prepare picture , representing structures to be (lepicted .
prepan ng a picture of such structures , and interacting with the pictur e’.

2.1.3.1.2 Picture presentation

2.1.3.1.2.1 Graphical Outpu t Media. Output media fall in to two basic divisions ,
permanent and impermanent. Plotters and roster printe rs an’ examples of the first type .
which do not lend themselves to inte ractive ’ app lications. The cathode ray tube (CRT ~I is the
most widely used impermanen t , in tera ctiv e display device. Information is presented on a
CRT by directing a beam of electrons about on its phosphor coated fa ce. The CR1 face
emits light for an instant when it. is struck by the electron beam and then turn s dark. For
the picture to be visible’ it must be redrawn or refreshed very frequently. The refresh (‘RI
used by the Picture System can be drawn upon with a set of strokes at any position and any
angle.

2.1.31.2.2 Refresh Rate . Since the phosphor on the refresh CRT fades almost
immediately after it is struck t’y the electron beam, t he picture must be continually redrawn
to be viewed, This rate at which it is redrawn is called the refresh rate , usually measured in
frames per second. If the picture ’ is not redrawn frequently enough , the eye will notice it
fading between refreshes , producing an unsightly effee’t known as flicker . To avoid flicker ,
the Picture System is refreshed at a rate which is greater than thirty times per second.

2.1.3. 1.2.3 Line Generation. .-\ line is specifi ed by two end-points (x ,y) and (x ’.y ’).
expressed in the coordinate system of the CR1, called screen coordinates . The actual
movement of the electron beam between the two points is accomplished by a hard w are’
device called a line generator or a vector generator. A sophisticated line generator is also
capable of dra wing lines with a progra m-specified in tensity, or even varying the intensity of
a line - , from one end to the other. In thi s most general case’, where line endpoints are
speci fied by the three coordinates (x ,~’,z) , th e int ensi t y or brightness of line ’s can appear to

88

_ _

_ _
-

--— -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

- -
- 7 .

- ——---
~~~~~~~

-
~~~

I
,

trail off in the distance, producing an illusion of depth. This technique is known as
depth-cueing.

2,1.3.1.2.4 Upd ate Rate. The advantage of the refresh CRT is that it ~an show
smoothly changing pictures. Lines dra wn on a CRT do not really move, of course , but the
illusion of motion is imparted by continually redrawing the picture of each frame with lines
at slightly different positions each time. The eye blends this sequence of slightly different
frames together into a smoothly moving picture such as a motion picture. The rate at which
these different frames can be displayed is called the update rate. In contrast to the refresh
rate which counts the number of pictures drawn per second, whether or not they are
changed, the update rate counts only those frames that are different. An update rate of
10-20 frames per second will provide smooth motion.

2.1.3.1.2.5 Picture Buffering. In the Picture System a refresh buffer provides storage so
that the refresh and update rates may be different. Although refresh of 30-40 frames per
second is required to avoid flicker , update of 10-20 frames per second is adequate tc provide
smooth motion. In effect, each new frame is shown two, three, or even four times while the
next frame is being computed.

Data resident in a refresh buffer is called a Display File. Full frames stored in this buffer
may be read out and used to refresh the CRT any number of times before a new frame is
created. Typically, new frames are created 20 times a second and the picture is refreshed 40
times a second; i.e., each frame is shown twice. Thus, the presence of a refresh buffer allows
both refresh and update to proceed at their respective optimal rates and the system has a
larger line capacity than it otherwise would.

A potential problem area exists when a picture is refreshed from a memory which is
simultaneously being filled with a new frame, namely, that a picture displayed may consist
of some lines from one frame and some from another. This can produce a number of effects ,
some very unsightly. To avoid this problem , the refresh buffer can be split into two separate
buffers, and update and refresh can be switched between the two in a way which avoids
conflicts . This is called double-buffering, and its only disadvantage is that the amount r’f
pictorial data which may be buffered is halved. In some cases this can place an unnecessarily
low ceiling on the line capacity. The alternative, single buffering, can he used to take
advantage of the entire buffe ring space when the effects are not too disturbing, usually
when the pictures shown are not highly dynamic.

89

-
-

~~~~~~~~~~~~~~~~~~~ - - - -  •



— — —r - W f l P”

2.1.3 .1.3 Picture definition

Data ultimately deposited in a refresh buffer must originate in the memory of the
computer controlling the system. This computer-resident data is called a Data Base and may
be vastly different in form fro m the display file which emanates fro m it ,

The’ data base contains the coordinates of points in the structure to be displayed , along
with instructions for interpreting those points . Along with coordinate information there
may he pointers, su bstructure names, and other non-graphic information and attributes.

Points are the basic geometric entities in the data base. There are three basic instructions
for treating a point : move the beam to that point, draw a line to that point , or draw a dot
at that point.

The most straightforward way to specify the position of a point is simply to state its
absolute coordinates. An alternative that often introduces considerable efficiencies , called

reLative coordinates , entails stating the displacement required to get to a point from the

previous point. Codes for common sequences like “absolute, relative , absolute, relative. . . . ”

can be made recognizable to facilitate handling tables of points.

If a structu re to be displayed lies in a plane , it is simplest and most efficient to define it
using two-dimensional data . In this case it is typical to supply an x and a y coordinate for
each point in the structure , and then perhaps a single z coordinate which applies to all the

points.

If however , the structure is non-planar , it must be’ defined as three-dimensional dat-a

where a coordinate triple of the form (x ,y, z) is given for each point.

In general a full computer word is devoted to etu’h coordinate ’ of e’ach point - and all

coordinates are’ expressed as integers . In the 16-bit computer , then , th e ’ largest expre ssible

positive num ber ~ 32767. ‘(‘his is su ff icie ’nt for many appli cations , hut the need to e’xpress

larger numbers sometimes arise’s. This need can he’ met , at tb. ’ t’X Pe’flst’ of some luss of

resolution in dat-a de ’finition , 1w emp loying an alternate means of expressing data called

homoge’neous coordinates . Uere a point (x ,y , z ) is defined by the ’ four coordmate’s

thx ,hy , hz ,h’ 32767), where ’ h is an arbitrary number between zero and one. It is apparent

though that  r e solution is lost when h iS 1/2 , it is in~po~sihle ’ to  exactly express odd value ’s

for the ’ original coordinat es . Smaller values of h impose’ a corre snonehngl y great .‘r loss of

resolution .

9(1 

~~~~~~~~~~~~~~~~~~~~~~~~ —~ -— -i- - - -~~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~ 

- -

~~~
-

~~~~~~~~ ~~~ -. - 


.~

I-~
.

It is customary to conserve core by supplying only the first three coordinates (hx ,hy,hz)
for three-dimensional points, or just two coordinates (hx ,hy) for two-dimensional points
(with a common value for hz), and to prespecify a fourth coordinate (usually referred to as
w) which applies to several such points.

21.3.1.4 Pictu re preparation

The data base is almost never identical to the display file because the base represents
some view of that scene. To create a display file, transformation of the data base is required.
In order to prepare a structure for display, it may have to be changed in size , position , or
orientation; it may have to be put in perspective as seen from a given vantage point; parts of
it may have to be removed to keep everything within a given field of view; and its
coordinate system may have to be changed to conform with the output device. All of these
steps can be expressed mathematically and implemented in software or hardware.

Fortunately, since many of the steps involved in picture preparation are invariant from
application to application , it is very worthwhile to implement them with special purpose
hardware. Any calculations unique to a given application can still be performed in software.
To meet the demand for fast frame creation , high performance graphic systems employ
special purpose hardware processors to implement the picture preparation steps. These steps
are described in the following sections.

2.1. 3.1 .4.1 Simple Linea r Transformations. Linear transformations (rotations,
translations, scalings, etc.) can be described by parameters which indicate the type and
degree of info rmation. If the transformation parameters are properly arranged into a matrix ,

-
- a vector of original coordinates can be multiplied by this matrix to yield a vector of new

coordinates reflecting the desired transformation.

i
t

- A 4 x 4 matrix can represent any rotation , translation , or change in scale and can be
used to transform points represented by homogeneous coordinates or , as special cases,
two-dimensional or three-dimensional coordinates.

2.1.3. 14.2 Compound Linear Transformations. All linear transformations can be
expressed as a sequence of simple translations, rotations, and changes in scale. A
transformation expressible only by such a sequence is called a compound transformation.
When a compound transformation is to be applied to a set of points, first a composite
mat r ix is formed by multiplying together matrices representing all the simple
transformations in the sequence, in the same order in which the data would have

91

——~~~ r:-- ~~~~~

encountered the original transformations , and then applying this composite matrix to all
points to be transforme’d. The process is known as transformation concatenation.

2.1.3.1.4.3 Perspective. The perspective operation entails computing a point projection
of thre ’e-dime’nsionnl points onto a plane representative of the screen , as depicted in Figure

2.1.3.1.!. Perspe(’tive can he applied to three-d imensional data by taking advantage of the
fact that the perspective transformation is expressible in matrix form : a perspective
transformation matrix can be included at the end of the sequence of rotation , translation ,
and scale matrices to tiansform three-dimensional data into a two-dimensional perspective
representation.

2.1.3. 1.4.4 Windowing. In some g~’aphics applications , the data base is displayed in its
entirety on the screen. Often , however, a closeu p of some portion of the data base is desired
and the rest is preferably omitted. Determining what to omit is so time-consuming in
software that it jeopardizes the dynamic movement of the picture.

The Picture System can address this so-called windowing problem by performing a
visibility cheek in hardware after the transformation stage and drawing only visible lines on

POINT 2

V ~~~~~~~~~~~

1~~~~~~
NT 1

~~~~~~~~~~~ 
L~~~~

.— .—-1
— -

~~~~

-

~~~~~~~~~~~~~~~~~~~~~~- - ~~~ Z~~~~1PolNT l ~~~/

~~~ 

- — ON SCREEN
‘
~~~ 

.x~-.. ~
/
7 ( 

,,
,

~ I<j
x ~~X2 )W

~27

S D  /z2 
___________________________________zi I

Figure 2.1.3.1-4. Thres-dim ensi onel perspective projections onto a two -dimensional plane.

92

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~


- T~4~~
IL

p

the display. One implementation of windowing is called clipping, and entails comparinK all
Lines with the boundaries of a program-specified field of view superimposed on the data
base. Lines or portions of lines outside the field of view are eliminated and only visible lines
are passed on for display on the screen .

In two dimensions, the field of view is a rectangle called a window, superimposed on the
plane of the data base. Clipping is easiest if the sides of the rectangle are parallel with the
coordinate axes; however , this presents no restriction since the effect of a rotated window
can be obtained by rotating the data in the opposite direction.

A window is specified by supplying values for its left , right , bottom , and top boundaries
using the same coordinate system used in the data base. Two-dimensional clipping is
diagrammed in Figure 2.1.3.1-5.

WINDOW WINDON
LEFT RIGHT

WINDOW
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TOP LINE LEFT INTACT BY THE
CLIPPING PROCESS

A~~ ER CUPMNG PROCESS

NDOW _ _

LINE SEGME NTS REMOVED

~~~~~~~~~~~~~~~~~~~~~ BY THE CLIPPING PROCESS

\
~~~~~~~~~~~~— LINE ENTIRELY REMOVED BY

TH E CLIP PIN G PROCESS

Figure 2.1.3.14. Two dimensional clip ping.

93

‘
~~~ 

.Z 
~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ - -~~~~- S.-,—,— - - - -~~~
-

~ 

* —~-- -~~ — 5— --- - —  .- -._r~~ —j- ~~g~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 11111!

In three dimensions the field of view is a three-dimensional region. It may be a

rectangular volume, or, If its contents are to be seen in perspective, a section of a pyramid

called a frustu m of vision. Such a frustu m is shown in Figure 2.1.3.1-6 along with the

parameters necessary to completely specify it.

l
v

/~~~\

_ _ _  E 

H ______

\
RIoIs 1

~

,,

~~~~~~~~~~

1

-

,

N

Figure 2.1.3.14. Frustum of vision shov~ng the eye position in relation to an arbitrary coordinate axis ..

94

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ----~~~ ~.  ~~~~~i~i~~ — -



~ 
~~~~~~~~~~~~~~~~~~

In Figure 2.1.3.1-6 an eye positioned at point E along the Z axis is to see the portion of
the data base that Lies within the frustum whose hither (near) boundary is at point H , yon

-

- (far) boundary is at point Y , and whose side boundaries are determined, as in the
two-dimensional ease, by the window Left , right , bottom , and top boundaries at the hither
plane.

As in the two-dimensional case, lines are retained , completely eliminated , or parti ally
eliminated , depending on wheth er they are completely within . completely outside, or
partially outside the fru stum of vision .

Another approach to windowing is called scissoring. Scissoring entails making available a
screen coordinate drawing space which is somewhat larger than the screen itself and then
intensifying only the lines and line segments actually on the screen. Scissoring is easier to
implement than dipping and does not take up time in the picture preparation stage. On the
other han d, scissoring permits an effective drawing area only sligh tly larger than the screen
as opposed to the vastly larger effective drawing area permitted by clipping. Another
disadvantage of scissoring is that the Line generator spends time tracing out all lines , both
visible and invisible, which makes flicker occur more readily.

2.1.3.1.4.5 Conversion to Screen Coordinates. Coordinate data that is not rejected by
the clipping process is within limits determined by the field of view which may he of any
size and at any position in the data base definition space. However, it is generally
undesirable to display that data in a corresponding size and position on the screen. Rather ,
the data should be properly sealed (or mapped) so that it fills some program-specified region
on the screen called a viewport. This can be accomplished by performing a final processing
step which linearly maps all data from the window to the viewport .

If the viewport is a rectangular region aligned with the screen axes, It can he specified by
supplying the screen coordinates for its left , righ t , bottom , and top edges. If the system ’s
line generator can dra w lines of varying intensity, a viewport may also specify the intensity
Limits for the data displayed. These limits specify the intensities of the data at the hither and
yon boundaries and are called the hither and yon intensities. When the hither and yon
intensities are different , the intensity of the displayed picture elements varies between these
limits, allowing an illusion of depth to be imparted to the picture . A viewport is used to
specify the region of screen and the intensity limits for the data to which , in the most
general case, the frustum of vision is mapped . Figures 2.1.3.1-7 and 8 show how data may
be displayed within a viewport which is the entire screen or only a portion ot’ it . Viewport s
may also be utilized to map data into the coordinates of devices other than a display . For
example . viewport boundaries could be specified in the coordinate system ot’ a plotter or

:,
--- --—- -- - — - - -

--

~

- ~~~~~~~~~-—-~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~:: ==~:- --

~. — - ~~~---~~~ - - -,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ -
~~~

- -
---,

~~
—

~~~~~

P

1•
~ ~

i_ —
~i~ 

VIEWPORT

Figure 3.1,3.1-7, PartIal acres. vlsv~ort. -

VIEWPO R T

Figure 3.1.3.1-1 F. acres. vlswps st

96

—~~~ -. 
— 

~~~~~~ - .i 
-

— — .--.-- — —

similar device to provide the capability of obtaining hard copy output to the precision of
the plotting device.

An advantage of program-specified viewports is that several may be assigned ~n the same
program , each receiving different data . This technique proves convenient for many purposes
in graphics, such as showing different views of an object or views in different directions
from the same point on the same output device simultaneously.

2.1.3.1.4.6 Text Display. Almost all graphics applications call for the presentation of
alphanumerics on the screen at one time or another. It is possible of course to define
character shapes in the data base like other pictu re elements, and in fact , this is necessary if
characters are to be treated like other objects , i.e., rotated , clipped , ete. However , it is
possible to derive effi ciencies from the foreknowledge of character properties when they do
not require such sophisticated treatment, by generating the actual strokes of the characters
just prior to drawing them and dealing only with character codes up to that point.

A hardware device which accepts character codes and produces the strokes comprising
the character is called a Character Generator.

To use the generator to draw a string of characters, a display progra m must first
stipulate character size , shape and orientation values ; then position to where the string is to
begin and insert a set of packed character codes, called a text string, into the display file.
The Character Generator would then interpret the text string, look up the set of strokes
associated with each code , size and orient the strokes properly, and draw the characters on
the output device. Codes are packed into text strin gs as a memory conservation measure .

2.1.3.1.5 Pictu re interaction

Graphics applications require that the form or content of the picture he changeable by
the user. A number of inpu t devices for this purpose have been made available.

Function switches and lights art’ attached to the computer in the graphics system. These
are toggle switches or push buttons from which polarity can he read. Each switch can he
assigned a meaning unique to the program -

Analog inpu t devices, including control dials , are also used for interaction. These devices
offer one or more degrees of freedom over which a user can enter input values used for
trans lation , scaling. etc -

97

_________________ - - v~~-~~~~~’~ .r..’ ’ ~~~~~~ - - _. . - ~~ ~~~~~~~~~~~ - - -, -~ — - . - - -- -

~~~~~~

- - - - -

~~~~~

P

A versatile interactive input device is the Tablet and Pen, which is a flat rectangular plate
which may be positioned on a table in front of , or near, the display screen. Associated with
the tablet is a pen which may be moved about over the plate. Its position on the plate may
be read with fine resolution by the computer controllin g the system. The computer can also
detect whether the pen is actually touching the plate and may also indicate if the pen is near
the plate. To tie pen motion together with a picture, a cursor is usually drawn on the screen.
This cursor is a smal l symbol which continually moves about in concurrence with the pen. It
soon becomes natural to guide the cursor to a desired position on the screen by an
appropriate motion of the pen.

The tablet can also be programmed to perform the functions of function switches or the
analog devices. In order to enable a tablet to perform the pointing function of typical ligh t
pen , the system should be equipped with a hit test feature which checks all data as it
emerges from the transformation stage for proximity to the pen position. The user positions
his cursor over the target structure and initiates the hit test feature (perhaps by touchin g the
pen down) . If a target structure is encountered , a flag is set which may be later tested or
may be programmed to cause an interrupt. This method of pointing has the advantage that
the target structure is marked in the data base, not the display file. It is often difficult or
impossible to backtrack from an entry in the display file to find its corresponding entry in
the data base.

The user of the tablet is allowed to sit in a natural writing position and at any desired
distance from the graphic display. This reduces user fatigue and improves operating
conditions.

2.1.3.1.6 Overview of the Picture System hardware

This section provides an overview of the hardware components which comprise the
Pictu re System. A functional diagram of the configuration of the system is shown in Figure
2.1.3.1-9. The user of the system wilL normally interface with these components by means
of the Graphics Software Package described in a later section .

2.1.3.1.6.1 The Picture Controller . The Picture Controller in the Picture System is a
Digital Equi pment Corporation PDP-11 General Purpose Digital Computer. Software
available for the system includes a Text Editor . Macro Assembler , Linker , File Utility
Packages, Debugging Packages , and higher level languages including BASIC and FORTRAN.
The availability of these software systems and the Graphics Software Package provided with
the Picture System enable the PDP-11 to act as the Picture Controller .

98

~~~~~~~ —~~~~ --- - - -
-

-~ ~~~~—— — - -.-- -



r ~~~~~~~~ 
- - 

: TI

P

PEN PICTURE I

AND —‘
~ 

CONTROLLER
TABLET (P OP -Il )

T INTERFACE
CHANNEL

MATRIX
ARITHMETIC
PROCESSOR

L~~J~ 
~~~ t]

READ CHARACTER

PICTURE

PICTU RE

MEMORY
GENERATOR GENERATO R DISPLA Y

Fi~ur. 2.1.3.1-I. Functional conf ipust ion of Picture System.

The Picture Controller is used to:

1. Conta in the data base which describes the object(s) to be viewed,
2. ControL the processing of the object coordinate data by the Picture Processor,
3. Perform all input and output required to facilitate graphical interaction ,
4. Compute parameters for use in simulation of object movement, data representation,

etc.,

99

,p—.- —

~~
- - -

~~~~ 

- - - —

~~~~

- ---

~~~~

-- -- - 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -_~~-~~~-~~r.-- .- ~~.

P

5. Per form all standard operating functi ons required by the operating system under
which the control program executes.

The Pictu re Controller communicates with the Pictu re Processor shown in Figure
2. 1.3.1-9 by an Interface Channel . By means of this interface, all commands and data are
communicated to the Picture Processor , Refresh Buffer , and Picture Generator.

The following describes the functional specification of the Picture Controller.

1. Genera l Functions: contains the data base, executes the display programs, performs
input/output opera tions ,

2. Computer: DEC PDP-11/50, 16-bit word size ,
3. Dimension Modes : the Picture System displays two- and three-dimensional objects ,
4. Two-dimensional data require two words of Pictu re Controller memory to store the

x and y coordinate values of a point ,
5. Three-dimensional data require three words of Picture Controller memory to store

the x , y, and z coordinate values of a point.
6. Homogeneous coordinate data representation can be used with the Pictu re System in

order to provide a much larger effective dynamic range by scaling the norm al
two-dimensional and three-dimensional data.

7. Coordinate Specification Modes : Absolute coordinates (A) used to define points
which are a given displacement from the origin of the data space.

8. Relative coordinates (R) used to define points which are a given displacement fro m
the previous set of coordinates.

9. Picture elements may be specified in any of the following sequences of coordinate
poin t definitions:
a. A,A,A,A,. . .
b. A,R,R,R,. . -
c. R,R,R,R,. . . ,

10. Drawing Modes: The Move (M) moves the beam position to a specified location
with the beam intensity off.

11. The Dra w To mode (DT) draws a straight line from the current beam position to a
new specified location and leaves the beam position at a new location.

12. The Dot mode (D) moves the beam position to a specified location with the beam
intensity off and then intensifies the beam at the specified location. The beam
position remains at the dot location.

13. The Character mode (C) draws the specified character beginning at the current
character beam position and then moves the beam position with intensity off to th e
position where the next character in a string begins.

100

~

— .

- .

~~~~~~~~~~~~~~~~~~~ 
-—

~~~~~~~~~

_

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

P

14. Picture elements may be drawn using any of the above modes one by one , or they
may be drawn using any of the fo Llowing sequences of the above modes:
a. M.DT,M.DT, . . .  (unconnected lines),
b. M .DT,DT,DT, . . .  ( lines connected end-to-end ),
c. DT,M,DT,M, . . .  (another mode sequence for unconnected lines) .
d. DT,DT,DT,DT, ... (an other mode sequence f or  lines connected end-to-end),
e. D,D,D,D, . . .  (a series of dots),
f. C,C,C,C, . . .  (a string of characters).

15. Instancing: A method of defining in the data base a two-dimensional or
three-dimensional structure once and replicating it several times in a picture in
different positions, sizes and orientations.

16. Instancing may be performed to any level.
17. Parameter Load/Store: The Picture ControLler can load and store aLl control

registers, status registers, and matrix registers that reside in the other components of
The Picture System.

2.1.3.1.6.2 Matrix Arith metic Processor. The Matrix Ari thmetic Processor consists of a
Transformation Matrix , a Transformation Matrix Stack, an Arithmetic Unit , and a

Parameter Register File.

The Transform ation Matrix is a 16-bit word. This 4 x 4 matrix is used to transform
object coordinate data. It can also be concatenated with other 4 x 4 matrices to obtain a
combined transformation.

The Transformation Matrix Stack is a storage area where up to four , 4 x 4 element
matrices may be “stacked” or saved for future recall .

The Arithmetic Unit performs all arithmetic operations in the Picture Processor. This
includes subtraction , addition , multiplication , division , and normalization.

The Picture Processor contains an array of 16-bit registers into which parameters
specifying viewport boundaries, scale factors , etc., ~~ stored and may be retrieved.

The Picture Processor utilizes these units to perform digital operations on the data
received from the Picture Controller.

These operations are:

- To process two-dimensional data ;

101

- -

~ 

- 
— 

~~~~~~~~~ - 

-

P

2. To process three-dimensional data;
3. To push the Transformation Matrix onto the Matrix Stack;
4. To transfer the top 4 x 4 matrix of the Matrix Stack into the Transformation

Matrix ;
5. To load the Transformation Matrix with data from the Picture Controller ’s memory;
6. To store the contents of the Transformation Matrix into the Picture Controller ’s

memory ;
7. To concatenate the contents of the Transformation Matrix with a 4 x 4 matrix in

the Picture Controller ’s memory to obta~n a compound transformation;
8. To load and store the registers of the Picture Processor;
9. To check transformed coordinate data for visibility by comparison with a

two-dimensional or three-dimensional viewing window—lines or portions of lines
outside the window are removed by a clipping process so that only visible segments
are processed further , and at this point three-dimensional data are converted to two
dimensions by computing perspective or orthographic views;

10. To perform a linear mapping of points from the object’s coordinate system into that
of the Picture Display.

Each data coordinate that is transformed may be written into the Refresh Memory by
the Terminal Control to become a portion of the new frame.

2.1.3. 1.6.3 Terminal Control. The Terminal Control is the unit of th.~’ Picture Processor
that controls the re fres h of pictures seen on the Picture Display. The function of the
Terminal Control is to receive data from the Matri x Arithmetic Processor and store it in the
write portion of the Refresh Buffer. It is usually concurren tly reading data from the read
portion of the Refresh Buffe r and sending it to the Picture Generator .

The following describes the functional specifications of the Picture Processor :

General: — The Picture Processor operations are implemented in digital hard ware.

Transformations: — Translates objects in any direction in three space.
— Rotates objects about any axis in th ree space.
— Scales objects with respect to any of the dimensions in three space.
— Perspective transformations can be perfo rmed on data passed to the

Pictu re Processor.
— The Transformation Matrix is expressed in homogeneous coordinates

which allow much larger translational values than would otherwise be
possible.

102

- - -—--
.-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ --~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ —~~~~~~‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



_ _

~~~~~~

__
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__
-:-•_;

_

~~~

— Creates mirror images of objects about a plane.
Compound
Transformations: — Multiplies transformation matrices together while maintainin g full-word

accuracy.
— The Transformation Matrix may be loaded fro m thi ’ data base or stored

into the data base residing in the Pictu re Controller memory.
— There is a push-down stack for storing four full transformation matrices

with provision for continuing the stack in the Picture Controller
memory.

Clipping: — Extracts the portions of the objects , defined in the data base, that are
within a program-specified field of view.

— In two dimensions , the field of view is a program-specified rectangular
region of the data space.

— In three dimensions , the field of view is a pyramid or frustum
(truncat ed pyramid) in the data space whose apex is at the eye.

— Clipping is performed with respect to the program.controlled six
surfa ces of the frustum.

I’erspective: Displays realistic line representations of three-dimensional objects as
they appear to the eye with re fe rence to relative distance or depth .

Viewport : — The vicwport specification is under program control and defines a six
surface region of the Pictu re Disp lay where the picture is to appear.
Data which has been transformed , clipped , and put in perspective is
linearly mapped into the viewport which allows (‘omplet.e separation of
the coordinate systems of the drawing space an(l the Pu’turt ’ I)isplay.

— The resolution of the data mapped into the viewport is 16 bits , which
allows these data to be used for precision plots.

— Multiple viewports may he defined for a given frame to give
simultaneous screen .

— Specification of viewport front and hack provides th~ intensity bounds
for depth -cueing.

Zooming: — The Picture Processor allows for moving smoothly and quickly into (or
out of) a complex data structure in order to obtain a more (I(’ta iled (or
wide angle) view of a chosen region in the drawing space.

I lit Test.: -— 1 he Picture System (‘an detect whether any Part of a given picture
elemen t, is within a program-specified region in the (lath space or on th e

-— Picture Display. h it. Test is used for implementing th e pointing functio n
with ii data tablet , eliminating the need for a ligh t pen .

103

-
-- - J


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -

P

Memory Write
Back: — Under program control , transformed digi ta l data can be written back

into the Picture Controller ’s memory to drive a hard copy plotter , for
ex am ple , or as data for further computation.

2.1.3.1.6.4 The Refresh Buffer. The Refresh Buffer is a memory (distinct from the
Picture Controller ’s) into which processed data is deposited still in digi ta l form. This data
represents the picture to be disp layed on the Pictu re Display. For each frame refresh , the
Terminal Control reads the data in the Refresh Buffer and passes the data to the Picture
Generator , where the data is converted to analog signals to drive the Picture Display .
Character stringii from the Picture Controller pass through the Picture Processor unmodifi ed
and are deposi ted in the Ref resh Bu ffe r as packed ch aracter codes.

The Refresh Buffe r may be operated in single or double buffer mode under program
control. In single buffe r mode, the entire Refresh Buffer is used to store a single display
frame. In this mode, disp lay refresh may be initiated from partially updated display frame.
In double buffer mode , one half of the refresh buffe r is designated as an old frame and
one-half a new frame. Display refresh is then initiated from the old frame , while the new
frame is being constructed. When the construction of the new frame is complete , the frame
buffers are swapped and the newly constructed frame is displayed and the space occupied
by the old frame becomes available for new frame construction.

The following describes the functional specification of the Refresh Buffer.

General
Function: — The Refresh Buffer stores processed digital frame data allowing

complete separation of Picture Display refresh requirements from the
dynamic picture update requirements.

Data Content: — Dots and line endpoint data for use by the Picture General-or (one
complete dot or line endpoint definition per buffe r entry containing 12
bits for each of the x and y coordinate values and 8 hits for the
intensity value).

— Packed character codes fcr use by the Character Generator (up to three
codes per buffer entry).

— Status information used to (~ontro1 the displaying of the data .
Bufferin g: — Program-selectable single or double bufferi ng is standard.
Cursor: — A dynamic cursor can be maintained regardless of the frame update

ra te .

L 
104



L

Size*: — In single buffer mode, up to 8,188 dots , line endpoints , or character
code entries can be stored in the buffer in any combination.

— In double buffer mode, up to 4 ,092 dots , line endpoints, or character
code entries can be stored in the buffe r in any combination.

2.1.3.1.6.5 Character Generator. Character strings from the Pictu re Controller pass
through the Picture Processor unmodified and are deposited in the Refresh Buffer as packed
character codes. Then character word s are read out of the Refresh Buffer; the Terminal
Contro l recognizes these codes and calls upon the Character Generator to access a read .onlv
memory containing character stroking data. The strokes are read out of the read.only
memory one by one, multiplied by a pre-specified sizing parameter , and drawn by the
Picture Generator on the Picture Display.

The following describes the functional specifications of the Character Generator.
General

Function: — Accepts character codes and produces properly sized digital character
stroking data for the Pictu re Generator.

Character Set: — 96 character extended ASCII character set.
Sizes: — There are 8 character sizes available under program control ran ging

fro m 0.07 in. high in increments of 0.07 in . to 0.56 in. high on the
Picture Display. The character width is also under program control with
8 different width s selectable for each size .

Character
Orientation : — I lorizon tal 90° counter-clockwise orientation.
Capacity : — A maximum of 1,725 characters can be displayed at a refresh rate of 30

frames per second.

2.1.3.1.6.6 The Picture Generator. The Picture Generator receives digi tal data
consisting of x ,y coordinate and intensity information read from the Refresh Memory by
the Tt-rmin al Control Unit. These digital data are conver ted by the Picture Generator into
analog signals and used to draw the picture on the Picture Display.

2.1.3.1.6.7 The Picture Display. The Pictu re Display receives an alog sign als from the
Pictu re Generator which are used for electron beam positioning and inte nsity control. The

• The Standard Refresh Buffer ii 8K. 36-bit words. An add itional 8K of Refresh Memory may be obtained
by providing a 16K Refresh Buffer .

105

~.z.:_ -
~~~~~~~

-
~=~~~~~~

-
~~ ~~~~~~ -.-~

- -~--- .‘~~~~ .
, -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ --—~~~~~~ —--~
--

~~~~~~~~~~~ 


—

Picture Generator controls beam positioning and the drawing of all vectors and dots on the
Picture Display. The following describes the functional specification of the Picture
Generator and Picture Display .

General Function: — Converts digital coordinate and intensity information to analog
voltages to drive an electron beam across a phosphor-coated surface.

Line Modes: — Solid.
— Blink mode allows sek cted picture elements to blink on and off .
— Dash mode allows selected lines of a picture to be dashed.

Intensity Modes: — Constant intensity of program-selected picture elements may be
chosen from 256 levels. Lines are drawn at a constant rate which
assures uniform brightness for the chosen intensity level.

— Depth-cueing allows the intensity of lines to vary continuously with
depth (i.e., the z coordinate of the display).

Intensity and
Contrast Contro ls: — In order to present a uniform variation in brightness, the intensity

control of the Picture Display treats the z coordinate data as the
logarithm of the intensity to be shown on the display .

— The contras t control of the Picture Display is completely
independent of the intensity control.

Refresh Control: — The refresh cycle is controlled by synchronization with the power
line.

Display Rates: — Move Time (for an n in. move)
< .41 X n + 2.85 pa for n > 1/2 in.
< 3.Ops f or n > 1 / 2 in.

— Draw Time (for an n in. line)
< l.85 X n + 2 . Op s f o r n > l / 2 in.
< 3.Ops f o r n < 1/ 2 in.

— Dot Time (for dots spaced n in . apart)
< .5 X n + 4 .9 p s f o r n> 1/2 in.
< 5.15 ps for n < 1/2 in.

— Approximate display capacities at 30 frames per second refresh rate:
1. 11,100 connected 1/2 in. lines
2. 1,625 connected 10 in. lines
3. 6,650 dots 1/4 in. apart
4. 1,725 characters .14 in. high (average)
5. 1,500 characters .56 in. high (average)

I)isplay Type: — Calligraphic.

106

— ~~~~~~~~~~~~~~~~~~ ~~~~~‘-‘ -‘~~~~~ -r-~~~
- — --

~~~~~~~~~



Deflection Ty~ — Electromagnetic
Spot Size: — 0.020 in.
Addressable
Locations: — 4,096 X 4,090.
Endpoint
Matching: — 0.020 in.
CRT Size: — 21 in . rectangular, 10 in. X 10 in. quality viewing area.
Phosphor: — p4.

2.1.3.1.6.8 Data I nput All data is input directly to the Picture Controller in the
Picture System. Data may be input by any of the various standard peripherals available with
the PDP-11 or by any of four graphical input devices supported by the Picture System :

1. Tablet ,
2. Control Dials,
3. Function Switches and Lights,
4. Alphanumeric Keyboard .

The use of these standard graphical input devices provides all the capabilities normally
required for graphical interaction with the Pictu re System.

2.1.3.1.6.9 The Tablet and Pen. The Tablet serves as the standard , general purpose
graphic input device in the Picture System. The Tablet can be used for positioning or
pointing to the picture elements by use of the Pen whose x,y coordinates are read by the
Picture Controller. A “cursor ” may be drawn on the Picture Display to indicate the position
of the Pen on the Tablet. With these capabilities , the Tablet and Pen can perform the
interactive functions usuall y reserved for such graphic input devices as light pens , joy sticks ,
and function switches. The Tablet is fully software-supported under the Graphic s Software
Package provided with the system.

The following describes the functional specification of the Tablet.

General: — General purpose interactive input device.
Output: — 11 bits of x, 11 bits of y, and pen up/down status.
Resolution: — Digita l: 11 bits for both x and y.

— Graph ic : 100 lines per in.

Sampling Rate: — Variab le up to 200 samples per sec.
Size: — 11 in. x 11 in. useful area.

107



— —• ,—, —,. 
—

Cursor: — The cursor location on the Picture Display may be made to correspond
to the stylus pen position on the tablet.

2.1.3.1.6.10 Control Dials. Control Dials are available with the System which permit
the user to dynamically vary values which may be used to control angles of rotation , scaling
factors , velocity rates, etc.

2.1.3.1.6.11 Function Switches and Lights. Function switches and lights are available
with the Picture System to provide the capability for the user to util ize switches to be used
for functions assigned under program control. An additional capability available with the
switches is that the lights (one per switch) may be used to indicate function switch polarity
or for displaying programmed information.

2.1.3.1.6.12 Alphanumeric Keyboard. The Alphanumeric Keyboard available with the
Picture System is a standard 61-key , 128-character keyboard which may be used for text or
data input to the Picture Controller for graphical interaction or other functions required by

the user.

2.1.3.1.7 The Pictu re System Graphics Software Package

The Graphics Software Package furnished with the Picture System consists of a set of
FORTRAN-callable subroutines written for the Digital Equipment Corporation PDP-11
computer using the MACRO-li assembly language. These subroutines are written with the

intent of providing a user with the full capabilities of the Picture System without the

necessity of the user to interface on a system level with the system hardware. These
subroutines provide the general user with the facilities necessary for writing interactive
computer graphics programs without having to comprehensively understand the matrix
arithmetic utilized within the System Processor. Instead, the user merely “calls” a
subroutine to perform a required graphical function , i.e., TRANslate , ROTate, SCALE, read

TABLET information , display CURSOR , display TEXT, etc.

The graphics subroutines for the Picture System have been written utilizing the PDP-ii

FORTRAN calling sequence convention of the PDP-li FORTRAN compiler V06. This
calling sequence convention , supported under the DEC RT-.ii , DOS/BATCH , RSX-11M and

RSX-ilD operating systems, provides the user with flexibility of utilizing argument lists
that are re-entrant or non-re-entrant in form.

All FORTRAN—callab le Picture System subroutines use the standard cal l by name (as

108



opposed to call by value) parameter passing technique and specify the non-re-entrant inline
form of calling sequence. Those subroutines which are not FORTRAN-callable specify no
FORTRAN calling sequence.

The System Graphics Software Package may be separated into two sets of subroutines:

1. User Subroutines,
2. System Subroutines.

The User Subroutines provide all the capabilities required for the general graphical
application programmer. The System Subroutines are utilized to implement the User
Subroutines and are available to the programmer who wants to interface with the system
software directly.

A brief description of each subroutine is contained in the following sections.

2.1.3.1.7.1 User Subroutine PSINIT. The PSINIT subroutine is called to initialize the
Picture System hardware and software. The initialization process includes the following :

1. The system Real-Time Clock interrupt handler is connected to the interrupt vector
and set to provide automatic refresh of the old frame and timing for frame update at
the intervals specified by the calling argument list;

2. All variables are assigned their default values; all registers used in the Picture
Processor are initialized for two-dimensional drawing mode; the Picture Processor is
set to display data unrotated, untranslated, at full brightness, within a viewport
which just fills the display screen;

3. A window is set to include the entire definition space (± 32767);
4. The Refresh Buffer is set to double buffer mode with an initial frame consisting of a

null cursor; the Picture Generator status is initialized to solid , 0.28 in. character size,
and horizontal character mode;

5. All Picture Displays are selected for output.

2.1.3.1.7.2 User Subroutine VWPORT. The VWPORT subroutine is called to set a
viewport specified by the values supplied by the operator within the calling parameters.

2.1.3.1.7.3. User Subroutine WINDOW. The WINDO W subroutine concatenates a
two-dimensional or three-dimensional windowin&z transformation to the Picture Processor
Transformation Matrix. This subroutine can be used to perform two-dimensional

109 

~~~~~~~~~———— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
- -

windowing, orthographic projection or a true perspective transformation of data. The
windowing transformation is constructed from the arguments specified in the parameter list.

2.1.3.1.7.4 User Subroutine ROT. The ROT subroutine is called to build a rotation
transformation based on the angle and axis of rotation specified in the parameter list. The
transformation is then concatenated to the Picture Processor Transformation Matrix .

2.1.3.1.7.5 User Subroutine TRAN. The TRAN subroutine is called to build a
translation transformation based on the x, y, and x translational values specified in the
parameter list. The transformation is then concatenated to the Picture Processor
Transformation Matrix.

2.1.3.1.7.6 User Subroutine SCALE. The SCALE subroutine is called to build a scaling
transformation based on the x , y, and z scaling terms specified in the parameter list. The
transformation is then concatenated to the Picture Processor Transformation Matrix .

2.1.3.1.7.7 User Subroutine PUSH. The PUSH subroutine is called to push the current
Picture Processor Transformation Matrix onto the matrix stack (hardware or memory stock ,
dependent upon the current stack depth).

2.1.3.1 .7.8 User Subroutine POP. The POP subroutine is called to pop the top element
of the matrix stack (hardware or memory stack , dependent upon the current stack depth)
into the Picture Processor Transformation Matrix .

2.1.3.1.7.9 User Subroutine DRAWZD. The DRAWZD subroutine is called to draw
two-dimensional data coordinate points using the drawing mode specified in the parameter
list. The data to be drawn are arranged in x ,y pairs and are displayed at the intensity
specified by the IZ parameter.

2.1.3.1.7.10 User Subroutine DRAW3D. The DRAW3D subroutine is called to draw
three-dimensional data coordinate points using the drawing mode specified in the parameter
list. The data to be drawn are arranged in x ,y,z triplets and are displayed at the intensity
dependent upon the z coordinates and the values specified for the hither and yon planes.

2.1.3.1.7.11 User Subroutine CHAR. The CHAR subroutine is called to update the
status used by the Character Generator when characters are to be displayed on the display
screen.

110

2.1.3. 17.12 User Subroutine TEXT. The TEXT subroutine is called to display the text
string specified in the parameter list. The display of the text will be from the current beam
position and at the intensity associated with the last information displayed. The character
status will be initialized by PSINIT or updated by the CHAR subroutine if previously called
by the user.

2.1.3.1.7.13 U ser Subrout ine I N ST. The INST subroutine concatenates a
two-dimensional or three-dimensional instancing transformation to the Picture Processor
Transformation Matrix . This subroutine is used in conjunction with the MASTER
subroutine to produce multiple instances of an object or symbol. For each desired
appearance of the object , the INST subroutine is called to specify the location (and
implicitly the size) of that appearance; then the user-supplied routine describing the object
is called to display the object previously defined within a two-dimensional or
three-dimensional enclosure. The INST subroutine pushes the initial Transformation Matrix
onto the Transformation Stack before concatenating the instancing transformation, so that
it may be restored (transferred) by the user after the object has been drawn .

2.1.3.1.7.14 User Subroutine M ASTER. The MASTER subroutine concatenates a
two-dimensional or three-dimensional master transformation to the Picture Processor
Transformation Matrix . This subroutine is used in conjunction with the INST subroutine for
instancing of data. The master transformation is constructed from the arguments specified
in the parameter list.

2.1.3.1.7.15 User Subroutine DASH. The DASH subroutine is called to set the Picture
Generator status such that all subsequent lines drawn will be dashed or nondashed
depen dent upon the value of the argument.

2.1.3.1.7.16 User Subroutine BLINK. The BLINK subroutine is called to set the
Picture Generator status such that all subsequent lines drawn will cr will not blink ,
dependent upon the value of the argument. Data drawn in Blink mode will blink at
approximately 90 blinks per minute.

2.1.3.1.7.17 User Subroutine SCOPE. The SCOPE subroutine is called to select the
Picture Display to which output will be directed.

2.1.3.1.7.18 User Subroutine TABLET. The TABLET subroutine is called to read the
current pen position and status in relation to the tablet. The user may also specify initiation
of automatic tablet mode. This will cause the current pen position to be updated at each

in

—--

~

- ~~~~ -—~~~~~~ —-~~ -.~ - —-

—~ -‘.‘—.-~ .~ . -~
-—

fram e refresh . This ability, used in conjunction with the automatic cursor mode, allows
completely dynamic cursor tracking irrespective of new fram~ update rate. It should be
noted that once the pen information is updated with the pen down bit set , the pen position
will not be updated until th e’ user has cleared the pen value word indicating that the pen
down position has been read or unt d the pen is set down again.

2 . 1 . 3 . 1 . 7 .19 User Subroutine ISPDWN. lSl’l)\V N (IS I ’AN DOWN~ is a FORTRAN-
callable’ intege r function subrout me which may be used to determine whether the pen is
&town i t ’.. j~resst~d against the surface of the tableO. This function routine allows
FORTRAN applications programs , which do not have the ability to perform bit testin g, to

test the pen U I) (IOWU status .

2.1.3.1.7.20 User Subroutine CURSOR. The CURSOR subroutine is called to disp lay a

cursor at the position specified ~~ the parameter list. This will cause a cursor to be displayed
upon each frame refresh irrespective ’ of the new frame update rate. The cursor displayed in
automatic cursor mode will be’ at the posit ion specified by the x and y position values and
wi th in the vit ’wport that had been specified at the ’ time ’ of the ini tial (‘U li S~)R call. ‘(‘he-’
cursor displayed consists of a cross w ith a center at the x and y position specified .

2.1.3.1.7.21 User Subroutine HITWIN. ‘l’he 1IITW1N subroutine is called to specify a
window through which data will be passed to determine ’ whether data are being drawn
within a given area. The user specifies an x and y coordinate where a window transformation
of the specified size’ is centered. This window transformation is then pre-concatenattxl with
the transfo rmation in the Picture’ Processor Transformation Matrix , after first saving the
original transformation so that it may be restored after all hit testing has been completed.
The Picture Processor status is then set to prohibit all data drawn from being output to the
Refresh Buffer. The subroutine then returns to allow the user to draw all data against which

hit testing is to be performed.

2.1.3.1.7.22 User Subroutine HITEST. The IIITEST subroutine is called to determine
if any output data has passed within a prespecified hit window (see HITW 1N). The proce-
dure for this test is of the form :

I . (‘ALL H 1TWIN to set up the desired hit window ,
2. Draw data (DRAW2D and/or DRA\V3D) for comparison against that window .
3. CALL IHTEST to determine if th ere was a “hit ”,
.1. Repeat steps two and three as often as necessary , setting LIITEST argument two to a

non-zer o value on the last call to LIITEST to restore’ the former user transf ormation.

112

- - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - - . -

~~

‘

~~~~~~

“ 

~~~~~~ 
—.-- - .w~-—.”- --- _— - - - _---

2.1.3.1.7.23 User Subroutine NU FRAM. The NUFRAM subroutine is called to initiate
the switch from display ing the old frame data to displaying the new frame data (the actual
frame switch does not occur until the appropriate refresh interval).

2.1.3.1.7.24 User Subroutine SETBUF. The SETBUF subroutine is called to set the
Refresh Buffer to single-buffer or double-buffer mode. Once the Refresh Buffer has been set
to a mode , it may be reset at any time to the other mode. The user needs to call this
subroutine only if the Refresh Buffer is used in single buffer mode. PSINIT during the
initialization process seth the Refresh Buffer to the default double-buffer mode.

2.1,3.1.7.25 User Subroutine PSWAIT. The PSWAIT subroutine is called whenev er it is
necessary to wait until the Picture Processor and Direct Memory Access Unit have com-
pleted their present operations before continuing. This is used to insure that the data
transfer to or from the Picture Controller ’s memory is complete before the data is refer-
enced or modified .

2.1.3.1.7.26 System Subroutine BLDCON. The BLDCON subroutine is called to
per form all transformation operations and matrix manipulations.

2.1.3.1.7.27 System Subroutine PSAVE. The P$AVE subroutine is called to save
registers R0-R5 on the program stack.

2.1.3.1.7.28 System Subroutine R$TORE. The R$TORE subroutine is called to restore
registers R0-R5 fro m the program stack.

2.1.3.1.7.29 System Subroutine P$DMA. The P$DMA sUbroutine is called to initiate a
Direct Memory Access (DMA) transfer and check for the correct completion of the opera-
tion.

2.1.3.1.7 .30 System Subroutine I$MATX. The 1$MATX subroutine is called to initial-
ize a 16-word array in memory (P$MATX) to a 4 x 4 identity matrix.

2.1.3.1.7.31 System Subroutine ERRO R. The ERROR subroutine is called by all
Picture System subroutines that encounter an error condition during the course of
e’xecution . This subroutine in turn calls the user error subroutine specified in the call to
PSINIT or the default system error routine.

i l a

~
- --

~~~~~~~~~~~~~

-----

The following two function subroutines are optimized for the part icular PDP 1 1 hard-
ware configuration.

2.1.3 .1.7 .32 Function Subroutine P$DIV. The P$DIV function subroutine divides the
signed division in RO and Ri by the signed divisor in R2 , leaving the quotient in RO and the
remainder in Ri with R2 undisturbed . The quotient bears the algebraic sign of the division ,
white the remainder retains the sign of the dividend .

2.1.3.1.7.33 Function Subroutine P$MUL. The P$MUL function subroutine multiplies
the signed multiplicand in RO by the signed multi plier in R2 , leaving a signed product in RO
and Ri with R2 undisturbed .

2.1.3.1.8 Picture System errors

Error detection by the Graphics Software Package is performed to insure’ program
integrity and to facilitate program debugging. A user may make four types of programming
errors that will be detected by the Graphic s Software Package. These’ are :

1. The call of a graphics subroutine with an invalid number of parameters specifie’d,

2. The call of a graphics subroutine with an invalid parameter value,
3. The attempt by the user to PUSH the matrix stack to a depth greater than that

specified by the user in the call to PSINIT ,
4. The attempt by the user to POP a transformation from the matrix stack which had

not been previously PUSHed.

When an error is detected by a graphics subroutine, the system subroutine ERROR is
called with an argument that specifies the origin of the error detected and the error con-
dition encountered . The system subroutine ERROR then calls the user error subroutine ,
specified in the call to PSIN 1T. When called , a parameter will be passed by the user error
subroutine, which specifies the origin and type of error detected . Return from the user error
subroutine will result in the termination of the program. lf , in the call to PS1NIT , the’ user
does not specify an error subroutine, the’ graphics error subroutine PSF~~RS will be cal led.
PSERR S . when called , wil l be called. P SERR S, when called, will output tht ’ following
message to the console terminal.

ERROR X DETE(’TEl) IN GRAPHI CS SUBR OU ’l’INE \‘Y.
and t e ’rminate ’ the  e’X e’cut ion of the program.

Be’eausk’ a comprt ’ht ’nstvt ’ set ot’ system dmgnost ~~ ~ pr ov i l t ’d w i th  he Pi c ture ’ Sy~te’ni .

i l - I

- —~ ----- — - - .— ~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ---
~

-- - — -‘-,-- -----
~

-- --- - - . ---,- --- — . :- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~-- . .--- -— —--- —

p

hardware error detection is performed to a minimal level. There are , however , two error
codes which may indicate a h ardware failure . They ,en’:

1. 2. Direct Memory Access Error: This indicates that an error occurred during the last
Direct Memory Access operation;

1, 3. Matrix Stack Error : This error indicates that the Picture Processor detected an
attempt to overflow or underf iow the hardware matrix stack: this error can only
be caused by a hardware malfunction or by a system programming error , and if no
software error is apparent , the PUSH/POP diagnostic routine may be run to check
the integrity of the hardware .

2.1.3.2 V ideo Control Center

1’he purpose of the Video Control Center is to generate , control , monitor , and record all
standard video signals needed in the AVSAIL simulation facility. Video signals may be
generate~I live , fro m video tape, or fro m movie film. The video signals can be monitored at
the’ console and distributed to a remote location such as the cockpit simulator. Special
effects can he used to alter the signal. Cameras are available to observe the pilot ’s
movements during a simulation. This information , as well as all other video signals , can be
recorded on tape for future reference . The system can also serv e as a training tool in that
de’monstrat ion and instruction tapes can be produced .

The Flying Spot Scanner is designed to simulate a raster type sensor on an aircraft . The
scanner is included in this report because it is a source of video and depends upon control
signals from the Video Control Center for operation. A photograph of the complete console
(with the exception of the Flying Spot Scanner) is shown in Figure 2.1.3.2-i.

2.1.3.2.1 Video console

Figure 2.1.3.2-2 is a sketch of the console with the various functional components
numbered . A listing of these components is given in Table 2.1.3.2-1. Each component is
described briefly in the following sections.

A standard video signal has three main parts: SYNC , BLANKING , and VIDEO
INFORMATION. Figure 2.1.3.2-3 defines these and other terms used throughout this
discussion.

2 t3.2.1.1 AC Power. Nearly all pieces of equipment in the console are powered

115 



I

I ‘ I

I

. : I ’
I

.. ,, i.
I .

—~~ S I  I ,• 5 •  •
I

‘

1

’ 

:~ :

‘4 
-‘

~

t i

‘I-,.-
— - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- 

~~~~~~~~ 

~~~~~~ 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ :~~~~~~~~~~

-

~~~~

- -

~~~~
-

~~~~~~~ 
- --.. --.

~~~~

—-- --
~‘

_

7/
/ ~~~ _ _

Jif ~~1 ’ \~
\ \ \

—- ______________

i~U1INt //
_ _ _ _ _

7/
\\AmI~L~i7iJ/

—_
-
~~_

-

117

~~~~~~~~~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~~-- - —
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ --- -~~~~~~- - -~ - - 

- .

_______________________________________ — -

FT - - -
-~~~~~~~ -~ -~~~_~~~‘ -~ - — ~~~~~~~~~~~~~

-
‘

TASLE Z.1.3.2.1. VIDEO CONSOLE COMPONENTS

Console Component Number Console Componen ts

1 AC p~~er

2 Vidso tape system
3 Cameras
4 Synchronization end test signal connectors
5 RoutIng switcher
6 MonItors
7 Specl.l effects generator
8 POP 11 interfsc.
9 Part of flying spot scanner

.7V (WHITE) —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SYNC FRONT lACK
PORCH PORCH

VIDEO INFORMATION

Figure 2.1.3.2-3. Standard video signal.

through a latching relay technique. (Figure 2.1.3.2-4.) The relay unit consists of a relay bOX

that plugs into a rack power strip and has one or two 12OVAC outlets for the equipment
and a 3-pin Cinch connector for a control cable. The master control panel has a monwntary

rocker switch and indicator light for each relay. Depressing the switch wilt energize the relay
and cause it to switch states. A second energizing will cause the relay to switch hack
(latching impulse relay). The indicator light shows the state of the relay box output, he ne’t’
the status of the equipment connected to that box.

118

~~~~~ .—
~~--I-,~t —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - 

— — 

— -~~~ ——— ~-e~
- .~~~



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~ -
-

:1

MINI BOX

I~~~ AC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I I RELAY

•

_ _ _ _ _ _ _

-
I

_ _ _

• ro 0 0] CINCH CONNECTOR

ROCKER SWITCH

Figure 2.1.3.2.4. Power control .

The various equipments powered from the switch panel are listed in Table 2.1.3.2-2.

Not all equipment power is controlled by these relays. Such items as the Time Base
Correctors which have obvious power switches and pilot lights are not controlled in order to
conserve relays. Other items such as the 146 SYNC Generator are on continuously for

• frequency stability.

2.1.3.2.1.2 Routing Switcher. The routing switcher is the heart of the video system.
(Figur e 2.1.3.2-5 , -6.) The 400 crosspoint video switcher selects and distributes video to all I

-

destinations.

The purpose of the switcher is to perform a function equivalent to connecting coax
from a video source to a destination by merely pushing a hutton. The system also provides a
readout tall y of completed circuits.

119

______________ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _____



7 
- - 

~~~~~~

‘ ____

TABLE 2.1.3.2~2. CONSOLE POWER DISTRIBUTION

Switch label Equipment

CMx Color mon itor x (0.41
BMx -y Monochrome monitors 5~7, 8- 1O, 11-12
520/529 520 Vectorscop e, 529 Waveform monitor
0 AMPS Distribution amplifiers
P Sw Production sw itchers
C CAM 1 IVC 150 camera and NTSC encoder
C CA M 2 IVC 928 camera and NTSC encoder (film chain)
C CAM 3 GE TE 1800 camera
VAE Vertical aperture equali zers for IVC-150 and 928 cameras
Swit cher Main power to routing switcher
SW tights Switcher tally lights
SW +5 Switcher control interface
~ 15 Scanner rester and POP-I l inte rface
tNT .

~~~ +5 su pp ly to POP-It interf ace

~~~~~~~~~~~~ 1DD~~ SS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

H s
_ _ _ _ _

W

I
_ _ _ _ _ _ _ C

~.0
•

~~~~~~ I 40 LINE
“ LATCH STROBE COMMU- TALLY STROBE~~~ R

__________________I TATOR 7

L L
~ 

CLOCK
G
H r~i ~~~~~

—

T 1~~i~~~~ AT~~~~~~~~
1 O T A J I Y R E T U R N

FIgure 2.1.3.2.5. Routing switcher.

120



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -1

REMOTE 1 . 1
BUTTONS

f 1
INT ERFAC E

TALLY _ _ _ _ _ _ _ _ _ _

LIGHTS

Figure 2.1.3.2.6. Routing switcher .

The control inputs require TTL compatible signals whereas the tally-out signals are
discrete transistors. The interface circuits act as a buffer/summer for incoming commands
and a data multiplexer for returned tally information. The buffer input is designed to accept
commands from more than one source such as from console push-buttons, remote push-
buttons or the PDP-11.

The switcher ’s 400 crosspoints are arranged as 10 inputs and 40 outputs. This is true to
—

-

the extent that a given output can select any one of 10 inputs. However, the system is
provided with 20 inputs. By means of internal jumper wires, each output can be switched
between a selected 10 of the 20 inputs. An attempt was made to provide an output with
only the inputs logically required.

Control from the push-button panels of the console requires that one simply locate the
row of buttons corresponding to the desired output and press the button labeled with the
desired input.

The switcher control input requires two addresses in TTL compatible form. The x
address is a complimented 4-bit BCD digit (0-9) corresponding to the input desired. The y
address is a discrete 1 of 40 strobe to designate the output. (Refer to Figure 2.1.3.2-5.) The

121

_______ ______________________ - - . •— ••- --.—

•~i~~~
_
~~ -- -~~~~~~-~~~~~~~~~~~~ =

-
~~~~~



• •—- - — -• 
- •-

~
.---

~
---- -.-

~~ ~~~~~ -,•,--___-_-_ ~—.-•---~

tally can be read by sensing a BCD x address and y strobe from the TALLY OUT connector.

2.1.3.2.1.3 Sync and Test Signals. Synchronizing video sources in the video control

center (Figure 2.1.3.2-7) requires a master SYNC Generator. By deriving all drive signals

from one source, video signals can be mixed or switched at will without fear of sync

problems. Tektronix 146 and 147 NTSC SYNC Generators serve this function for the video

control center. A set of Alma Engineering distribution amplifiers are also present to boost

the capacity of the 146 and 147 output signals.

The maximum SYNC signal requirement is exemplified by the IVC-150 and IVC-92B

color cameras which utilize COMPOSITE SYNC, COMPOSiTE BLANKING , HORIZONTAL

DRIVE, VERTICAL DRIVE, BURST FLAG, and SUBCARRIER.

COMPOSITE SYNC is a signal structured to contain both horizontal and vertical sync

information. This signal is added to the video information and controls the sweep circuits of

the video receiver. When the sync is present the video is referred to as “COMPOSITE video”.

Without SYNC present the signal is “noncoinposite video”.

COMPOSITE BLANKING , like COMPOSiTE SYNC, contains both vertical and

horizontal BLANKING information. Since the purpose of BLANKING is to blank out video

- -~ information during the retrace periods, COMPOSITE BLANKING is not used to control

sweep circuits as is COMPOSITE SYNC.

F 

TEST PATTERNS 
—

~~~ R OUTIN G SW ITCHER

I TEKTRON IX I r
IN PUT

146 J DISTRIBUTION I
L ~~LSYNC, BLANKING .

_
~P[AMPS

H&V DRIVE, ETC.

GENLOC K

Figure 2.1.3.2-7. SYNC and test signals.

122

- --- -

—
‘

~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~ y

HORIZONTAL and VERTICAL DRIVE signals have a duty cycle that can control the
trace and retrace times of the horizontal and vertical sweeps respectively. In the case of
most video sources (cameras, etc.), H and V DRIVE controls the sweep circuits, while
COMPOSITE SYNC is merely added to the output signal. In the case of the TE-26 cameras,
removing the COMPOSITE SYNC input only changes the output from “composite” to
“noncomposite” but does not disable the camera.

SUBCARRIER is a 3.579545 MHz signal which is the basis for NTSC encoded color
transmission. The SUBCARRJER output from the SYNC Generator is a highly stable source
used to phase-lock the internal oscillators of the NTSC encoders. By having one source of
subcarrier phase reference, all video sources can be color synchronized and sweep synchro-
nized.

The video receiver reference is the BURST which is located in the “back porch” of the
signal. The BURST FLAG is a signal which acts as a gate for insertion of the BURST into
the video signal .

In addition to the SYNC and DRIVE signals, the generators also provide several test
signals. Some examples are COLOR BARS, CROSSHATCH , MULTIBURST , and CALI-
BRATED NOISE. These signals are primarily used for calibrating, aligning, or evaluating
video transfer circuits or receivers.

The 147 has another feature in that it can insert on a video signal the Vertical Interval
Reference Signal (VIRS). This signal is a line of video occurring during the vertical blanking
period , which has a standard LUMINANCE AND CHROMA content. After the VIRS is
aided, the signal may pass through several amplifiers, distribution systems, or transmitters
and receivers, each of which could alter the signal characteristics. By examining the VIE S at
the final destination and processing the signal so as to restore the VIRS signal to its standard
characteristics, the remainder of the signal is corrected as well . A device that performs this
processing is the Tektronix 1440.

2.1.3.2.1.4 Monitors. Three general classes of monitors (Figure 2.1.3.2-8) are present in
the system—MONOCHROME , COLOR , and WAVEFORM. The color monitors in the
console are standard NTSC units with 12-in, screens. The Tektronix 650 is a much more
precise uni t than the other monitors and is used for all critical examination work. All color
monitors hav e a cross-pulse featu re which allows viewing of the SYNC and BLANKING
information normally occurring durin g retrace. it is thus possible to examine for SYNC
stability, video tape alignment and drop out , or presence of BURST.

123

- ~~~~~~~~~~~~~~~~~~~~~~~~~ • •.  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • J . ~~ -


-

- ~~~ r’r~~- ’ —‘-•- ---•-•- - -—-—,1--., -;-•----—’

• •

- .—.- -- -- - - ---.—-—----—-

~

- - — • - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ROUTING
SWITCHER r

MONOCHROME
•1 MONITORS

(9 EACH)

________
I

~~1 
MONITORS
(6 EACH)

TEK65G 1 1 520 1 529 1 CONRAC

NONITOR~~
_j  

~~ vEcTonsCo PE WAVE I~ORM j  (HI.RESOLLmON J
Figure 2.1.3.2-S. Monitor system.

The 650 is connected or “looped” with a Tektronix 520 Vectoracope and a 529 Wave-

form Monitor. Routing a signal to CM4 will also route the signal to the 520 and 529. The
529 operates much as an oscilloscope with sweep and trigger circuits “tuned” to video line

and field rates. In the line rate mode , the display shows lines of video with the SYNC,

BLANKING, and BURST visible. In the field mode, an entire field of video is display ed. The

529 Waveform Monitor is also useful in aligning cameras.

Waveform examination can be aided by using the input filters provided on the 529.

FLAT response allows the entire signal to pass to the screen. HIGH PASS essentially passes

only the subcarrier or CHROMA information. IEEE and LOW PASS are both low pass

filters, but the IEEE filter has a much sharper cutoff and serves to remove the CHROMA

information, whereas the LOW PASS filter will distort the SYNC as well.

The 520 Vectorscope is primarily for use on NTSC color signals. It will display line

information but not the SYNC inte rval. The Y , R , G, and B buttons select a line display of

the separate LUMINANCE , RED , GREEN , and BLUE information. The 520 does not ,

however, display the actual subcarrier as the 529 does. The 520 decodes and separates the
color signal before displaying.

The remaining category of monitors is the MONOCHROME category . The console has
several small monitors which simply display monochrome video and have no features such as

124

- ~~~~~_j~~~~~~_ -- - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



:~~ ~~~

-—

~

-—-

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

cross-pulse. One large-screen MONOCHROME monitor exists for special purposes. The
Conrac RQA-17 is designed to automatically lock to any line rate from 450 to 1300
lines/frame. It is wired to the 650/520/ 529 monitor loop.

2.1.3.2.1.5 Cameras. The following cameras (Figure 2.1.3.2-9) are available in the video
system:

1. IVC-150B
2. IVC-92B
3. TE-1000
4. TE-26B

5. TMC -2300
6. Color

SYNC (SYNCa SYNC . BLANKING , H & V. ETC..)

REMOTEccu
MONO

CAMERA
~ noun PIG

7 EACH
SYNC

_

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~E:oER vAE ,

,
‘.—

~~~~ ~~~~~~~~~~~ 
SYNC ccu

1 11 I FILM

J ~~ CHAIN

IVC . 92S ENCC E~~
VAE

Figure 2.1.3.2.9. Cam.ri system.

125

~~~~~~~ -- -- 
________ ____________ —.: -



-
- 

~~~~ ~~~~~~~~~ - ~~~~~~~~~~~ 

—

~~~~~ 

—

~ 

- - _

~~ 

_-.-- --

~

---

7. Color
8. Color
9. Monochrome

10. High Resolution Monochrome

The IVC-150 is a three tube, studio grade, color camera. It features a 10:1 zoom lens
and remote iris controllable from the Camera Control Unit (CCU) located in the console.
This camera is useful for taping demonstrations or for the generation of any high quality,
live color video. The IVC-92B is another three tube color camera which is dedicated to the
Film Chain system. In place of the iris control the 92B has a Video Gain control in the CCU.
Associated with each of these cameras is a Vertical Aperture Equalizer (VAE) which
processes the NTSC video and enh ances edges and contours to give a sharper picture.

The two cameras output RGB color video rather than NTSC encoded video. Therefore ,
each camera is associated wi th an NTSC encoder. Activating the power relay to energize one
of the cameras will also energize the appropriate encoder. However, the VAE’s must be
activated separately. The VAE’s are designed to pass the video unaltered if the unit is not
energized. The outputs of these cameras should be adjusted using the 529 Waveform
Monitor.

The TE-1000 is a single tube color camera which is more sensitive than the IVC units
but has less picture quality. The advantages of the TE-1000 are sensitivity, small size, and
the self-contained design which allows the unit to operate on a standalone basis with no
requirement for additional equipment other than the CCU to produce NTSC color video.
Supplying the CCU with SYNC and SUBCARRIER will automatically bring the TE-1000
into lock with house sync.

The monochrome cameras consist of several TE-26 models. Each unit has a CCU
available. All the CCU’s for the TE-26’s are interchangeable. The camera must be supplied
with H and V DRIVE to operate and COMPOSITE SYNC to produce “composite” video
output. The CCU must also be connected and the power switches on both the camera and
the CCU must be ON. These cameras accept standard C-mount lenses available from 12.5
mm to 75 mm focal lengths.

One of the TE-26 units has been modified to be a standalone unit. No sync or drive is
required to opera te this camera but a CCU is required.

The remaining monochrome type camera is the TMC.2300, 1000-line. This model is a
standalone unit. It is designed to operate as a totally self-contained camera head or to

126



operate with a CCU (Located in the console). The only monitor presently available for
1000-tine video is the Conrac RQA. The 2300 has additional features of scan reversal and
video inversion. The 2300 also accepts standard C-mount lenses.

:~ set of neutra l density filte rs is installed between the 92B and the optical multiplexer
to control the intensity of Light entering the camera . A control on the filter unit varies the
density of the filters . The 1VC-150 and 92B each have an electronic viewfinder in the form
of a small monochrome monitor located in the back of the camera.

2.1.3.2. 1.6 Video Tape System. The Video Tape System (Figure 2.1.3.2.10) consists of
two LVC-870 , two IVC-800 helical scan Video Tape Recorders (VTR), and two CVS-504

EXT INPUT

~c c  .‘t~
— •~

-_-— ,( ivc :io ] 
~ 

CVS - 605 

1 ‘

¶ ADVANCED
1 VERTICAL

EXT

—
~E——’— ivc~sio 

1 
cvs.5o

~1
ADVANCED
VERTICA L

IVc -8o~ 
~

DATATRON

~~~~ E DITOR

Figure 2.1.3.2-10. Video tape recorder system.

l~~7

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- - - _ 
_ - -  - 

_- _ .

~~~~ 

- -
- . _ _ _ _- -

~~~~~~~~~~~~~
- -



Time Base Correctors (TBC). One 800 is a portable machine usually divorced from the
system. This machine can be connected using the VT3 input and output of the routing
switcher. The other 800 is slated for use in a portable console for taping lectures or
demonstrations physically inconvenient to the console.

The 870’s and the TBCs operate together to form the main Video Tape System. Inputs
to the VTRs are controlled by the VT1 and VT2 outputs of the routing switcher. The TBC
can either pass the VTR output unaltered and process the signal for time base stability, or

process and lock the signal to house sy nc.

To p lay back , three options exist. Unprocessed video can be viewed without using the
TBC (monochrome only). The TBC can be used to either process the signal and improve
time base stability and clean up the sync, or to process the video and lock the output to
house sync. By having the VTR output locked to house sync it can be treated as any other
synchronized video source and hence can be mixed with other sources using the production
switchers. - ‘

2.1.3.2.1.7 Special Effects Generators. The video system contains two Ball Brothers
Mar k VII production switchers or special effects generators. Each unit has two video inputs
and one output. The two inputs may be combined in several ways.

Wipes are a method of switching from one input to another by electronically moving a
boundary across the picture. The shape of the wipe is selected by push-button switches and
the speed and direction are controlled by the T-handle. The N-N/R switch causes the wipe

to occur in the same direction regardless of T-handle direction. In the wipe mode only, the
wipe selector buttons, T-handle , and N-N/R switch are functional.

The remaining modes are MIX , MAT , and KEY. MIX refers to the simultaneous display
of the two inputs with the T-handle controlling the relative intensities. KEY is a mode for
inserting segments of the B-input video into the A-input video. In the INTERNAL KEY
mode the output is A-input video unless the B-input exceeds a luminance level set by the
KEY SENSE control. When B exceeds this level , the output is switched to the B-input video
information. EXTERNAL KEYING is similar except that the switching from A to B is
controlled by the signal on the EXTERNAL KEY input connector.

The MAT function senses the B-input in a similar manner to the INTERNAL KEY
function. Rather than switching from the A to the B input however, the output is switched
from the A-inpu t to a solid color as determined by the HUE , SATUR ATION . and

128

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 
- - - -

- -

~~~~~~~~~--~~~~~~~~~~ — - -

~~~

~ --~~ ~~~~~~~~~
-

~~
-- -

~~~~~~~~

—-  -—

~~~~~~~~~~

--—-

~~~

-.:

LUM INAN ( ’E cont.rots . When u sed with the MIX mode on the second unit, slight tint can
be added t-o a pict ure.

The outputs of the two production switchers are designated PSi and PS2. Four sections
of the routing switcher control the inputs of the production switchers.

2.1.3.2.2 Flying Spot Scanner

The Flying Spot Scanner ~FSS) is a special video source system consisting of several
parts. The general classifications are : Raster Generator/Processor. I)eflection Controller.
Position (‘ontrolLer , V ideo Detector , and Video Processor.

In relation to theory of operation, the main part-s are : CRT (Optics), Transparency, and
Photomultip lier Tube ~PMT) . The CR1 displays a scan of the desired shape with ~~
Int ens i ty  modulation. The optic system focuses the (‘RT scan on the transparency.

A PM’I’ is located behind the transparency to convert the instantaneous light intensity to
a ~oliage waveform. In this manner, the phosphor surface of the CRT is equivalent to the
surface of the transparency. Thus, scanning th~ CRT i:’ equated to scanning the transpar-
t’ncy The output of the PMT is a voltage waveform in time-sync with the (‘RT scan.
:~ddit ionallv, the optics included usually reduce the scan size to increase resolution. By
changing the time synchronization between the input (‘RT scan and the photomuLtiplier
t ube output , the apparent view of the transparency can be changed.

The sweeps for the CRT, Us, and Vs are deriv ed from a Celco (Constantine Engineering
Lanoratories) raster generator which accepts H and V DRIVE from the 146 SYNC generator
and produces two ramp voltage waveforms equivalent to a 4:3 aspect raster. —

The input control voltages can be deriv ed from two sources. For manual operation , a set
of controls is located near the Raster Processor. The voltmeter can be switched to monitor
any one of the control voltages. Throwing the toggle switch below a control knob will revert
contro l of that function to a Digital to Analog Converter (DAC) driven by the PDP-11
interface. In this manner , any combination of computer and manual control is possible.

2.1.3.2.2. 1 Raster Generator/Processor. For this FSS system , the desired output is
standarrl 525(60 video. Therefore , the input scan must be a set of waveforms timt’-svnced to
525 t 0  rates. Beginning with two orthogonal u s  and Vs sweeps from a raster generator , the
Raster Generator ’Prot’essor alters th e sweep wav~’forrns to achiev e th e effec t of a TV sensor
on an aircraft .

12t)

.-
~~—~

.-- .— -,-~- — - --



Z1.3.2.2.2. Deflection Controller. The Deflection Controller section contains the
Deflection Drivers, CRT, and CRT Power Supplies. Activating the main power control for
the Video Cabinet will begin a turn-on sequence controlled by time-delay relays. The order
of activation is as follows: Deflection Drivers and PMT Low Voltage, CRT Gun Supply ,
PMT High Voltage, CRT High Voltage and Focus. A set of indicator lights track the progress
of the five-minute power-up cycle. If any of the scanner door interlock switches are tripped,
the CRT High Voltage will not turn on , and an indicator will light showing the interlock
failure. When the failure is corrected , the light will extinguish but the High Voltage supp ly

will not activate for 30 seconds.

The sweep signals from the Raster Generatorf Processor provide the input for the Deflec-
tion Drivers. The driver unit is a Celco RDA-1,260 dual axis driver connected to a Celco

Deflection precision yoke. The RDA-1,260 is a 60-volt , 12-amp system which can fully
deflect the beam at a rate of 30 KHz.

In magnetic deflecti n systems the current through the yoke determines the beam
deflection. A cons~~nt e urrent will cause a fix ed deflection from center. The RDA-1,260 is
essentially two high power, operational amplifiers which convert an input voltage to a
proportional current through the yoke . The input voltage waveform is dup licated in the
output current waveform on a one volt equals one amp basis.

2.1.3.2.2.3 Cathode Ray Tube (CRT) System. (Figure 2.1 .3.2-11.) The CRT is a seven-

in., flat screen , 42° deflection tube with a 1.5 mil minimum spot.

The light from the CRT is focused by mirrors and lenses onto the surface of the
transparencies. Two 20 x 20 in. glass transparencies are mounted in a single carrier frame.
The light from the CRT is split into two beams such that the two transparencies are scanned
in parallel. A photomultiplier tube for each plate is located on the opposite side from the
CRT and optics. The carrier frame is positioned by a set of X-Y servos.

The CRT is driven by the CRT Gun Supply and High Voltage Supply located in the

Video Cabinet. The Gun Supply is a Litton model 1050 which supplies the filament and grid

voltages to the CRT.

The 1050 Gun Supply also has a CRT intensity modulator. The modulator circuit board
has been removed from the 1050 chassis and mounted adjacent to the CRT in the Scanner

Cabinet.

130

~~~~~~~~~ -~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~ -~~ - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



H

X-YSCOPE VIDEO PROCESSOR
RAS TER GENERATOR/PROCESSOR
POP~~1l I NTER FAC E

VIDEO CENTER CONSOLE

PM T SU PP LY~ \~~~~ 

1
1
1
,/
/~ CRT SUPP L IE S

VI DEO CAB SE RVO CAB

RDA-1260

Figure 2.1.3.2-11. CRT iyst ,m.

The modulator is driven by the Video Processor to blank the CR1 during retrace and
periods corresponding to horizon and sky of the genera ted scene. Thi’ details of this circuit
are explained in the section on the Video Processor.

‘l’hc focus supply is a Litton 1008 for magnetic focus systems. The focus coil is mounted
behind the deflection yoke on the CRT. The focus control is located on the 1008 in the
Video Cabinet. The I u g h  Voltage supply is a Speilman RG.30. 80 kv supply. The normal
setting for this system is 27 kv. Since the 1(6.30 is a vacuum tub e SUi)Lily , approximately 15
seconds is required for warm-up. The final sequence relay activates both the 1008 and the
1(6-30. Hoth supplies drop out if a door interlock switch is tripped . Normal ly these supplies
are not adjusted during operation.

2.1.3.2.2.4 Video Detector. The photomultipl ier tubes require 7.5 volts and -900
volts . A Kepen supply located in the Video Cabinet provides the 900 volts. This supply is

181

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -:



-
~~~~~~~~~~~ —- - - -—- -~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~ - - -—---- --•- ,- • - • -- .-- • - -——.~~--- -— - “

~~~~~~~~~

— -- ---

p

sequenced on just prior to the’ (‘R’l’ I Ligh Voltage. ‘l’he ’ power to t hi s supply also energizes
the door interlock ind icator. Hence, a lock failure ’ will not show before’ the’ l’MT supply is
activated . The $ 7.5 volt supply is located in the scanner (~ahine ’t be’twee’n the’ two PM’l”s
behind the’ transparency. This supply is activated with the’ main powe r bre aker.

The PMT assembly consists of a PM tube’ and an integrated amplifier , both housed in a
metal cylinder. The’ amplifier serves to boost the PM’I’ output voltage and to reduce’ output
impedance. By having the’ amplifier in the same housing as the PMT, noise pickup is

reduced . Each PMT assembly is supplied 7.5 volts and -900 volts (HN C) and output -s a
one-volt P-P signal to a ‘l’NC connector. This output drives the Video Processor circuitry .
Except for a common ground , no electrical connections exist between the PMT system and

• the’ CRT or Deflection systems. The only coupling is the light passing from the CR1 through
the transparency to the PM’I’.

2.1.3.2.2.5 Position Controller. ‘I’he remaining section of the Scanner Cabinet is a
feedback Servo System. Speed feedback (see Figure 2.1.3 .2-12) is implemented in the
following manner. The output of the ’ two motors runs into a diffe rential gear. By adjusting
the’ speed of each motor, the output of the di ffe re’ntial can be’ set to a nonrotation
condition. This continuous running of th e’ motors reduces the initial startup delay of the ’
servos. When the course’ position gets within a certain window the analog switch change’s the ’
motor speed control from coarse control to tint’ control.

The’ prt’se’nt syste’iu is interfaced through digital to analog converters to th e ’ PIM ’- I I .

2.1.3.2.2.6 Video Processor. The’ output from the ’ photomuttiplie’r tube ’ syste’m is a

raw video signal with no SYNC . BLANK 1N ( 1, or black re’fe’re’nce’ leve’l. ‘l’he \‘ ideo Processor
section contains the’ circuitry t•o cle’an up the video and add the necessary SYN( ’ and some’
special effects. (Refe r to Figure ’ 2.1 .3.2-i 3.)

‘rhe’ Proc Amp circuitry receive s the’ raw video from the’ PM’l’ and performs the ’ follow -

ing fu nctions. The’ signal is keyclamped and limited to produce ’ a uniform amplitude ’.
unipolar signal , meeting “video information ” signal specifications. The’ Proc Amp then
blanks the’ signal and inserts SYNC as required . BURS’I’ is also inse’rted in the “back t~~n’h” .
As shown in Figure ’ 2.1.8.2- 13 . the Proc Amp use’s signals from the l’ektron ix 1.16 to
per form the’st’ tasks. ‘l’he output fro m the ’ Proc Amp is a standard NTSC video signal.

In addition I o the ’  abov e’ tasks the ’ (‘me’ Amp has the ’ fe’ature of adding a (‘11 1~ 
( )M A signa l

to the ’ vid eo. l’his ( ‘II K ( )MA signal is ge’ne’rate’d by the I lorizon Simu lator.

182

-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~- ~~~~~~ ~~~~~~~~~~ ~~~~~~  ~~~~~~~~~~~ •~~~~~ -~~ • 

-



- ~~~~~~
--.

-.‘

[
1/64 

] 
SWITCH SWITCH

SUMME R MOTOR SP EED
DETECTOR L I M I TOR CON T R O L

~~

I

~~
ii j_J ~+ —.i~+

EFI
~~~~~~~~~~~~~~~~~~~~~

S
~~~

MER L~~~~~~~~~~~~J

L F R A M E  J
POSITION

Figure 2.1.3.2.12. SERVO system.

133

L - 
~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_______ -
______ -

—

~~~~~~~~~~~~~~~~ 
j ’___ __ ___ 

~~~

—

~~~~~

--—‘.———-“.- ,——. - -  -----‘-——-

~

- — —- - — — 
—-i

H

—— I

I I I
I I  ~~I 

~H

I , J1~1~11~~~
[’ 

r9:
~~
!E1

,

~ ~i~—: 
~

‘ 

~i1 
~

‘ 

~[J l ,~4
j ._. h9 

I
_ _ _  ~

— i ~ei. ‘ - 4  ~~
_—I~~ ~ _1

~~~~~~I I~~i F~~~~~1 ~I I~~k-~-~J: i I~~ ~.
~~ ~~~~~~~~~

_ _ _ _ ~r ’I1.~~] : U.

“ I —

L -
~ I-— — — ——-i I x >

_ _ _ ~ ~L_.~
_

8
I- —

~~~~~~~ I
> -~ I”U

I ~

~
a O

134



- -- 

~T1
• 

• r

The Horizon Simulator consists of four parts—BURST and CHROMA phase controller,
threshold detector, CHROMA modulator, and CRT modulator.

The phase controller produces 2 3.58 MHz signals with independent phase controls. The
BURST controls the phase of the BURST on the video output relative to master phase from
the 146. In this manner, compensation can be made for the phase shifts caused by
propagation delays. The CHROMA SUBCARRIER phase control determines the HUE of the
CHROMA generated by the CHROMA modulator.

The CHROMA modulator receives a signal from the threshold detector and outputs a
CHROMA signal controlled in HUE by the phase controller and adjustable in SATURA-
TION and LUMINANCE by separate controls. By using the three controls the inserted sky
can be set to any color within NTSC capabilities. The intensity of the inserted CHROMA is
also modulated by the threshold detector to produce a smooth transition from ground to
sky.

The threshold detector performs several functions. The mathematical equivalent of a
sensor looking at the horizon is, for some terms, going to infinity . The scan signals from the
Raster Processor are level detected to determine the occurrence of the infinity terms. Upon
detecting an infinity condition , the threshold detector outputs two signals. One signal drives
the CHROMA modulator and “turns on ” the sky while the other signal simultaneously
blanks the CRT and eliminates the video information from the PMT’s. The output from the
threshold detector is not a binary signal but is a fast ramp designed to give a “soft”
appearance to the horizon. The “threshold.’ and “horizon gain” controls adjust the
detection point and output signal slope respectively .

Since the threshold detector outputs a signal capable of blanking the CRT, the com-
posite BLANKING signal from the 146 is supplied to the circuitry to blank the raster during
retrace. Similarly, a crosshatch signal can be applied to the raster for test purposes.

The raw video at the output of the PMT contains no synchronization information. A
monitor could not operate on the PMT output alone. The sync signals added by the Proc
Amp provide the necessary timing information. The raster which produces the light input to
the PMT is timed by only the H and V DRIVE pulses supplied to the raster generator
circuitry . Since the SYNC added by the Proc Amp and the H and V DRIVE used by the
raster generator are from the same source , the PMT video will be properly timed, relative to
the added SYNC. If , however , the H and V DRIVE signals are phase shifted relative to
SYNC , the raster will be late in starting a scan. Since a display monitor begins a scan

135 

~~~~-- - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ c- —--



~~~~~~~~~~~~~~~ ———-— -~--- ~~~~~~~~

according to the SYNC, a time lag will be created between the raster and the display. This
“time” lag will cause a “position” shift to occur in the video information as display ed on
the monitor. Thus, delaying the H and V DRIVE has the effect of moving the picture down
or to the side on the display.

As far as the simulation is concerned , the moving of the picture down is equivalent to
pitching the aircraft up toward the sky. The raster delay circuitry performs this task , and

• the delays are continuously variable and may be set by computer control. The delay
circuitry also generates a signal during the period between the input drive pulse adn the
delayed output pulse to drive the horizon simulator and turn on the sky. In this manner the
picture “wrap-around” is eliminated. A control line on the horizon simulator inverts the
signal from the delay circuits, resulting in a sense of moving the picture up, rather than
down. This discussion made reference only to vertical delays and movements; however ,
similar circuitry exists for the horizontal channel and results in left or righ t movements. The
manual and digital-to-analog converter controls are channel independent.

• 2.1.3.2.2.7 PDP-1 1 I nterface. The PDP-11 interface driving the Video System and the
Flying Spot Scanner is based on a circuit designed for the DAIS Hot Bench. The interface
built for the Video Center is for data output only with no provisions for input data from the
Video Center to the computer. Furthermore, the Video Center accepts digital data , hence
no synchro or resolver conversion is required.

2.1.3.2.2.8 Interface Software. The purpose of the interface control software is to
initiate block transfer of data from the computer memory by providing the necessary
commands to the DR11-B. The block transfer is initiated when the interface control
software loads the word count register with the 2’s complement of the number of words to
be transferred , specifies the initial address of the memory block where the transfer is to be
made, selects the interface to receive the block transfer, appropriately setting bits 2 and 3
(function 2 and function 3) of the command/status register, and issues a GO pulse by
loading bit 0 of the command/status register.

As the transfer is taking place, the control software monitors bit 7 (the ready bit) of the
command/status register. Detection of a 1 in the ready bit indicates the completion of the
block transfer.

2.1.3.2.2.9 Scanner Video Control. The Raster Generator/Processor is controlled by
DC voltage inputs. These voltages are supplied from seven DAC cards. Each DAC card
contains two sections of eight bits each (two BCD digits) and a polarity controller. The

136

• 
~~~~~~ . ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -  • -



~~~~~~~~~~~~~ TTr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

output voltage ra nge is from -9.999 volts to +9.999 volts. To transfer data, a buffer is se~ ...,i
with the 14 words. The lower eigh t bits of a word must form the bit pattern corresponding
to the two BCD digits to be transferred. The ninth bit of a word is the sign bit with “0”=+
and “1”= -.

Table 2.1.3.2-3 indicates the control function of each DAC.

The following is a description of the control functions with appropriate limits:

1. The size controller corresponds to slant range or altitude (limits + 1500 to +9999);
• 2. Heading is the compass heading with +5000 equal to North. (limits -9999 to +9999);

3. Roll changes the perspective look angle about the roll axis; +5000 is straight down ;
below 5000 is left and above 5000 is right (limits +500 to +9000);

4. FOV or field-of-view simulates various sensor fields-of-view and is limited by
approximation to ± 25° ; exact calibration is subjectiv e, but a good guess is that 25° is
+4000; therefore, the limits are +0 to +4000.

5. Forward depression or pitch is similar to roll except about the pitch axis; +5000 is
straight down with +400 to +5000 corresponding to a forward look angle (limits
+400 to +9200);

6. The delay control DAC’s are wired to output only positive voltages; the sign bit has
been wired to the “invert” line of the “raster delay” circuits.

2.1.3.2.2.10 Switcher Control. The Routing Switcher may be controlled by the PDP.11
through the interface. The lower six bits of the lower bits are the binary number of the y
address. The lower four bits of the upper bits is the x address. By creating a word in
memory with the appropriate bits set, the switcher can be commanded from the computer.

TASI. E 2.1.12-3. DAC CONTROL FUNCTIONS

Data Word Data Section Output Data Word Data Section Output

1 IA 8 4B FOV
3 2 lB Size 9 SA

3 2A 10 5B Pitch
4 28 Heading 11 6A
5 3A 12 SB Vertical deliy
6 3C Roll 13 7A
7 4A 14 lB Horizont al delay

137



P

• 2.1.3.2.3 Summary

The purpose of the Video Control Center is the control and generation of video signals
for the simulation laboratory . The routing of video is by solid-state switching ana can be
controlled by computer. Circuitry for video generation by the Flying Spot Scanner is also
under computer control. Steps were taken to provide similar control for the video tape

• system. All systems are also provided with manual controls. The capability also exists for
video from film.

Monitors are available to view all video signals passing through the system. Additionally,
test signals and monitoring eqt~ pment are available to evaluate the quality of the video
signals.

2.1.3.3 Cockpit

2,1.3.3.1 Introduction

A two place, side-by-side cockpit simulator of F-ill dimensions was fabricated as a
multipurpose test bed to evaluate controls and displays integrated with the overall avionics
systems as shown in Figure 2.1.3.3-1. The complete computer simulation includes the
cockpit with controls and display s wired to the other elements of the system in terms of
hardware or simulation models, with the cockpit rigged for realistic fli ght simulation.
Man-machine interfaces are also evaluated ‘n the realistic fl ight environment , using outside
visual cues related to the missions. These efforts are centered around the engineering
problems involv ed in integrating the sensors, processors, and displays/controls in the digital
aircraft , and the human factor problems involved in piloting this aircraft. Another issue to
be considered is redundancy and failure analysis.

Control and display equipment can be arranged to include a Head-up Display (HIJD),
Horizontal Situation Display (HSD), Vertical Situation Display (VSD), Multi-purpose
Displays (MPD’s), Control Panels, Multi- function Keyboards (MFK’s), etc. The total cockpit
configuration can be rapidly and easily changed to suit a particular equipment functional
evaluation.

2.1.3.3.2 Simulator facilities

The cockpit simulator functions in an interconnection of AV SA1L faci li t it’s as shown in
Figure 2.1.3.3-2. A hrief functiona l description of each system element is provided in the
following sections.

138

• •~~~~~~~ -~~~~•~~~— - ——-—- - -• - • - ~~~~~~~~~~~~ — ~~~~~
=

~••- - .  •—-_
~
‘• 

•-•.••.- -- - - --•-——-- - —-• - --- - -



p

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
U41

_ _ _ _ -
~~~~ 

•T~~~~~~~~
JT 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ - • ~~~~~~~~ - - • •  •


_ _ _ _ _ _ _ _ _ 1 ~~~~~~~~~~~~

MPD 1

IntSrcom

[DEC10 _ _ _ ~ =1 —j
~~j ~

,t. rsj Switch! MFK
I Lamp I
1 [Intsvfa c. fl

_ _

I l DiaitJ l
I L~~~~~ ode J

• 1_ p__I

1 1 Setfecan
_ _ _I Ds ay I Desplay MFK

L.J int .tfacs B

L*I] -

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

[FEi~ 

1
Fipir. 2.1.3.3-2. System Ii.rdv.r. ~l.ck diagram.

2.1.3.3.2.1 DECsystem 10. The DEC.10 host processor is connected as the primary
system controller and provides, on a time-shared basis, the following functions as related to
operation of the cockpit:

Simulation Models: — provides all necessary aircraft parameters to the 11/45 to be used in
display processing;

Map Assembly: — generates a display list of symbolic waypoint map information to be
processed by the Ramtek symbol generator;

Data Recording: — records cockpit display parameter data on magnetic tape at a 20 s
iteration rate ;

Data Reduction: -— an off- line ’ program reduces the raw real-tim e recorded data int o
meaningful data that can be analyzed.

140

— - -  
•• • •• -.—‘---- - • •‘=~~~

_
•_: •_ _~~ _ _ • __~~~~~

-
~~~~~~--——-•-—_-— 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~ •~~~~~~~- ~~~~~~~~~



2.1.3.3.2.2 POP 11/45 Computer Interface. This general purpose digital computer pro-
vides the following functions:

1. Configuration Control — used to set up the cockpit controls/displays configuration
prior to each flight;

2. Display Assembly — generates image listings to be further processed by the Ramtek
raster symbol generator; data from the simulation models was used for the VSD and
MPD formats.

3. Map Driver — provides output control of map data to the Ranitek symbol generator;
the image lists of the map are done by the DEC 10;

• 4. Keybo ard Logic — processes incoming switch data and determines the display state
of all the keyboards;

5. Flight Control Sampling and Scaling — buffers and scales flight control data to be
used by the DEC-10 simulation models.

2. 1.3.3.2.3 Out-The-Window Display. In order to present a more realistic environment
to the pilot when the cockpit simulator is being used for man-in-the-loop experimentation , a
large-scale parabolic projector screen is mounted forward of the cockpit. The display
information is projected onto the screen by video projectors driven from the Video Control
Center. Th is display presents a moving real-time scene which changes in response to the
pilot’s control actions to the cockpit controls.

2.1.3.3.2.4 Ramtek Display Generators. These generators drive 525 line raster monitors
in the cockpit in response to processed image lists and provide the vertical and horizontal
situation displays described subsequently.

2.1.3.3.2.5 Cockpit Functional Hardware. The cockpit layout as shown in Figure
2.1.3.3-1 is arranged with the pilot seated in the right side of the cockpit while the left seat
is occupied by an experimenter. The controls and displays for the left seat may or may not
be activated . As the cockpit is considered a general purpose test facility , a large variety of

• test configurations are possible. The basic elements of the cockpit functional capability are
described below.

Provided as part of the cockpit is a Keyboard Input/Output interface which stores a
switch image buffer of all cockpit switch states to be sampled by the 11/45. Also decoded
are keyboard lamp data which are sent from the 11/45 to the cockpit to selectively turn
lights on or off . The keyboard input/output interface provides the capability of sampling
and storing the states of 255 switches and driving 255 lamps. A similar Fligh t Control

141



P

ftinction is provided which digitizes analog stick, rudder, and thrust control inputs and
buffers the resultant data for transmission to the 11/45 computer .

Four electro-optical displays are available to provide information fOr utilization by the
Vertical Situation Display (VSD). Figure 2.1.3.3-3 depicts a typical VSD format. A nine-in.
diagonal color display presenting the following symbology consisting of: (1) an orange
horizon line delineating the boundary between a blue sky and brown earth background, ( 2)
a white pitch ladder with 5 and 10 degree pitch lines , (3) black roll indexes every ten
degrees (± 60 degrees) with a white roll index marker , (4) a flight director symbol in orange .
and (5) a fixed black aircra ft symbol. Altitude , indicated airspeed, heading, vert ical velocity ,
and acceleration (g ’s) are presented digitally in white on black background. In addition ,
trend information for the airspeed and altitude parameters is provided by white
thermometer type bars which are placed above the respective digital readouts.

H _ _  _  _ _

fieoo V 189 1 I G 1.2 1

10 10

1 
• I

- -10 -10 • 

•

- 11999 fl

_ _ _ _  I ALT

/ I I H \ \
Figure 2.1.3.3-3. Typ ical Vertical Situation Diiplay (VSD) format

142



-. 
• - ~~~~~~~~~~~~~~~ -- - -

A nine-in diagonal color monitor presents simplified navigation information for the
Horizontal Situation Display (HSD) in the form of an electronic map in a heading-up or

- 
- 

north-up format . The symbology consists of: (1) a triangular aircraft symbol, ( 2) a
symbolic flight path between mission waypoints, and (3) digital readouts of grotmd speed
heading, and distance to the nex t waypoint. All symbology is green on a black background.
Figure 2.1.3.3-4 depicts a typical Horizontal Situation Display format.

Two five-in, diagonal monochrome monitors are used for Multipurpose Displays
(MPD’s). The one mounted on the left side of the cockpit provides either communication

Waypoint
Position
Identifiers

~
T
~ii~? 

DIST

H L
Aircraft Symbol

Figu re 2.1.3.3-4. Typical Hor~ont.I Situation Disp lay (HSD) format.

143

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~: -


,

P

data or navigation data . Engine instrumentation and keyboard failure status information are
display ed on the right MPD. This MPD has sixteen peripheral push button switches which
are available for general use. Each monochrome monitor ’s presentation is typically
formatted in a conventional text mode, however this is not a requirement.

T he co n sole ’s four , six-in, diagonal , monochrome CRT displays provide the
experimenter with an experimental console for monitoring the simulator displays (VSD ,
HSD , and 2 MPDs). The experimenter is also able to initiate tasks and control the
normal/failure status of the configurations. In order to minimize experimenter workload ,
cock pit reconfiguration is automated as much as possible and incorrect waypoint and
frequency digits are detected by the computer.

2.1.3.3.3 An example test configuration

Of the many keyboard configurations possible , one which has been evaluated repeatedly
employs multifunction keyboards (MFK5) . A typical cockpit evaluation employed two
types of MFK s and one dedicated key board.

One MFK consisted of 16 push-button projection switches. Each switch had 12 possible
legends. The legends were programmed to inform the pilot of the four levels of systems
control available.

The other MFK utilized .t plasma panel with 16 peripheral push-button switches. Each
switch was associated with a legend located on the plasma panel. Due to the relative
difference in sizes of the switches and plasma panel , the legends were not directly adjacent
and in line with the corresponding switches. Therefore , each switch was associated with the
appropriate legend by a white line. The switches were operable only when information was
displayed adjacent to the switches on the plasma panel. The plasma panel MFK and
projection switches MFK were functionally redundant.

The digit/mode panel consisted of 17 dedicated push-button switches. Twelve of the
keys served as a data entry panel ; five served as mode select keys. The’ five switches were
hacklighted to indicate mode selected (green-selected, white-not selected).

The dedicated digit/mode panel was mounted forward of the throttle. Each typ e ’ of

MFK was mounted on the front panel during half of the flights and on the righ t hand
console during the other flights. Thus. the operation of each MFK type . both as a primary
(front instrument panel) keyboard and as a backup (right console) key board, cou ld be

examined .

144

- ~~~~~~~~~~~ ~~~~~~~~~~~~~ -~~~~.~~iT i T~~

P

A t the initialization of each test flight , (-he’ displays were in the following
configuration : (a) VSD--—Flight- lnuafliet.e’rs were appropriate to that of level fl igh t in a
t~nust~ mode with an altitude’ of 20,000 feet- and indicated airspeed of 30] knots~ (h)
IISI) -—Air craft - position was approximately 7 mile’s short . of waypoint I ; the ’ heading was the
same as that for the first leg. The’ ground Speed was 301 knots; (c) Left- MPI) - - - - Engine stat -us
format- was displayed ; (d) Right MPI)- —Engin e status format- was displayed . The’ SENSORS
mode at logic level I had been activated on the appropriate keyboard .

Throughout each flight , the information displayed on the VSI) and u S!) was dynamic in
response’ to th ru st , hank , and pitch inputs . I lowever . t.he~ flight - director on the VSD was
inoperable until the pilot crossed waypoint 1. Selection of COMM or NAV on the
appropriate’ keyboard determined whether communication or navigation status Wits

displayed on the left MI’D. When displayed , the navigation status on the ’ left Ml ’E)
constant ly pre’se’nte~t ne’w information such as aircraft position , time’, distance’ to the ’ flt’xt
waypoint . et c . Alse . the communk’ut-ioa format display presented (-he status of the
communication radios.

‘l’h.’ appropr iate key boards were inoperative’ unt .il activated by th e experimenter.

4 Activation of the’ foll owing switches was required for a navigation update : N AV , N AV
COMP , WAYI’T. and the appropriate digits. If an incorrect switch was pushed in levels 1. 2.
or 3, le’ge’nds unre lated to the re’quest(!d tusk appeared on the key boani. In order to

complete the’ required task , the pilot , had to correct (1w mistak e. l’o accomplish this , th e
pilot pushed the (‘LEAR switch once to return the keyboard to the previous level and then
made the proper selection. Once’ the pilot reached the fourth logic level step, a pre-entry
readout of ea.’h selected digit was available ’ on t.ht ’ nav igation MPI) format. When the ’ pilot
pushed the ENTER button , the computer interpret-ed the digit -s select-ed and de’ternnne’d
their accuracy. If the’ pilot had pushed an incorrect- digit , the’ error me’ssage. “IN COR ltl’X’T
I)IG IT ENTRY . RE-ENT ER. ” was present-ed at the top of the display and I-he ’ pil ot would
re-enter the’ correct. data. Once the data was correctly e’nte’red , the’ task would he complete ;
the’ keyboard would reinitial ize t-o logic level one and then become deactivated .

For a comm u ii i c a t ion chang e ’ , ac t i va t i on of the following switches Wits

reqmrexl : (‘0MM , t I l l F and UI IF POWER , A/N and appropriate digits. Both t i ll F’ and t i l l F
POWER switches were selected at step 2. I Iowv v e’r , during the’ second e’ommtmicat-ion
change of each flight , the’ (T I IF power remained active so th at . f-h e required swit cli

became: (‘0MM , 1 TI IF , A/N , and its digits . The Ml’l)/keyhoare l changes and related
procedu res of a communication change were’ similar to that of a navigation update.
I lowever , if a pilot. entered an incorrect- frequency that was still within 1-he’ normal (T I IF

I 4 L ~e J

~

—— . .

P

frequency range’, the keyboard returned to the third level , h ut no error message was

t resented on the ’ MPI) . [‘he pilot was then notified by the experimenter to redo the task.

Concerning the ’ nor m al / failure status of the configuration , each flight was initialized in a
normal m ock . \Vhe’n the experimente r changed the configuration to a degraded mode’, the
master caution light , located to the left of the VSD , flashed orange. When the’ pilot
a(’k nowle’dged the ’ tailed stat e by pushing the master caution light, the flashing stopped .
(‘oncurr ently, a primary keyboard became inoperable and the logic levels that were on the

key board were presented on the’ right console’ keyboard . When a failure ’ occurred , t h ’

display on the right MPD was rep laced wi th the failure message’. This format. specified which
keyboard was failed and the ’ logic levels that were operable on the’ right console’, backup
keyboard . When the ’ experimenter returned the cockpit to a normal mode , the master
caut io n light flushed gree’n , the primary keyboard became operable , the right console’
keyboard became inoperable , and the information displayed on the right MPD indk-ated

- -
that normal operation was reinstat .t’d.

Other controls used included: t a) flight- mode select panel —- only the’ cruise’ mode was
ut i lized in this study ; (h) landing gear control panel—speed brakes and flaps were
operational while ’ landing gear was not; and (c) pitch indication zeroing switch— -activation of
this blue-lighted push-button switch aligned the horizon line with the ’ aircraft symbol at that
pitch altitude.

Thrust was controlled by a left-sid e, slide control throttle. Bank and pitch commands
were input ‘ither by means of a center stick mounted on the floor or a side stick mounted
on the right console. This latter configuration also had a right side armrest.

2.1.3.3.4 Futu re development

Proposed additions to the cockpit facility include a Head-up Display and a h elmet
Mounted Display. The intent of these displays will he to present well concentrated fligh t
data to the’ pilot in order that it will no longer be necessary to observe continuously a
number of display panels. Instead , the pilot can concentrate on one or perhaps two displays
mounted directly in front of him and thereby be able to fly at all times in a “head-up ”
mode.

146

__ __- -
-
~~~~~~~~ 

-
~~--~~

-
~~~~~~~

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
____ - -



P

SECTION 2.1 BIBLIOGRAPHY

2.1.1 and 2.1.2 DEC-10 Hardware and Software

AFAL. DECsystem-10 Newsletter Number 1.
AFAL. DECsystem-10 Newsletter Number 2.
Borasz, F. M., and Burlakoff , Mike. “JOVIAL (J73/ 1) Language Specification, ” AFAL

Report SA204200 . December 19, 1974.
DECsyst ein- I0 Introductory Manuals . DEC- 10-XFIMA-A-D. Maynard , Massachusetts:

Digital Equipment Corporation , 1974.
DECsystern -10 Monitor Calls Manual. DEC-10-OMCMA-A-D. Maynard , Massachusetts:

Digital Equipment Corporation , 1974.
DEC’system- 10 Operating System corn ,nand Manual. DEC-i 0-OSCMA-A-D. Maynard ,

Massachusetts : Digital Equipment Corporation , 1974.
DE Csyste ’rn- 10 Technical Summary . Digital Equipment Corporation.
DECsystern- 10 Text Editor and Correc tor Program Programmer ’s Reference Manual.

DEC . 1 O-U’I ’PRA-A-D. Maynard , Massachusetts : Digital Equipment Corporation , Apr il
1975.

DECsystern- 1 0 Utilities Manual. DEC-I 0-UTILA-A-D. Maynard , Massachusetts: l)igit.al
Equipmen t Corporation , 1975,

DECsystt ’rn- iO Utilities Manual Addendum. DEC- I O-UT ILA-A-DN I , June 1 9 7 5 .

Getting Started with DKCsystem- 10. l)EC- 10-XGSDA-A-D. Maynard , Massachusetts : l)igi-
tal Equipment Corporation , March 1975.

Green , ‘r. “DALS Simulator (GT-44) C PDP-11/40---Part of: A VSAI L Revised Sketch.”
Unpublished , March 1977.

Green , T. “Evans and Sutherland Picture System with PDP 11/5G—Revised Sketch. ”
Unpublished , March 1977.

Green, T. “System Flow Diagram—Video Center , Picture System, t, uc.~pit , PDP-11/45,
l’DP- 11/40 , PDP- 11/20 , DEC-i0,-—Revised Sketch.” Unpublished , March 1977.

Green, T. “DEC-10 System Host Simulation Processor Hardware—Revised Sketch.”
Unpublished , March 1977.

Green , T. “Systems Integration Lab. (SIL) PDP-11/20---Part of: AVSAIL Revised Sketch.”
Unpublished , March 1977.

Green , T. “DAIS Simulator (GT-44) A PDP-11/40---Par t of: A VSAIJ .  Revised Sketch. ”
Unpublished , March 1977.

Green , i .  “DAIS Simulator (GT-44) B PDP-11/40—Part of: .1 % ’S, - I IL  Revised Sketch. ”
Unpublished , March 1977.

(‘tre’en, T. “Systems Integration Lab (SILl PDP- 11/15-—Part - of: .1 I S AI l .  H ev ist’d Sketch. - .
(‘ mipubl ish ed , March 1977.

147

— ______ .__._a~~~~_ ~~~~~~ — -‘.‘~~ ~~~ -4-- —- -



- -

h
Green , 1’. “F-16 Simulator Configuration.” Unpublished Sketch, March 1977.
Ham, Jeff , and Lynn , W. JO VJ.4L J7 3/ 1 Computer Programming Manual , AFAL Report

MA204200.1. January 5, 1976.
I-Iara , Jeff , and Lynn , W. JOViAL J73/ 1  DE C-JO Programm ing Language s Interfa ce Manual.

AFAL Report MA204200-2. January 5, 1976.
tiara , Jeff , and Lynn , W. JOV1A I~ J7311 Language Reference Handbook. AFAL Report

MA204200-3. October 1975.
Hoskins , P. “DAIS Simulator (GT-44) C PDP-11/40---Part of: A VSAIL PLN.  NR.  10.”

AFAL Data Item 75-0002. April 15, 1975.
tioskins, P. “Systems Integration Lab. (SIL l PDP- 11/20-Part of: A VSAIL PLN. NR. 22.”

AFAL Data Item 75-0006. April 15, 1975.
Hoskins, P. “DAIS Simulator (GT-44) A PDP-i1/40—Part of: A I ’ S A I L  PLN.  N R . 10. ”

AFA L Data Item 75-0004. April 15, 1975.
Hoskins , I’. “DAlS Simulator (GT-44) B PDP-11/40--Par t of: .4 VS ~4iL PLN. N R . 2~ .”

AFAL Data item 75-0007 , April 15, 1975.

- 
I Iloskins , P. “Systems integration Lab (SIL) PDP-i1/45—P art of: AVS.41L P L N .  N R .  10.”

AFAL Data Item 7 5-0003. April 15, 1975.
}Ioskins , P. ‘‘Systems Integration Lab t SIL) PDP-1 l i - I  5 - Part of ’. :t I ’S.1!1. PLN. NR.  23. ”

AFAL Data Item 7 5-0007 , April 15, 1975.
JOVIAL J73/ 1  Re ’ta rg e ’tahil ity Guideline ’ ~Ilanuat. Data Item A000. Computer Science’s

Corporation , April 1976.
J O V I A l. J73 / 1 Rehos tab ility Pr ocedure Manual. Data Item AOOC. Computer Sciences

Corporation , April 1976.
“PDP .il Computer Family Products and Services.” Digital Equipment Corporation , 1976.
“PDP-ll System Report ,” Digital Equipment Corporation. ” Report No. 5405.011.100 ,

1975.
Processor Handbook. Digital Equipment Corporation , 1973.
Sammett , Jean E. Prog ramming Languages: History and Fundamenta ls . Prentice-Hull , 1969.

2.1.3.1 The Picture System

I)re’sel , D. “Figure’ B-i PDP 11/50 System to Simulate UUD . ” Unpublished AFAL Sketch ,
November 1, 1976.

Evans and Sutherland. The Picture ’ Syste ’m Users Manual.  Computer Corporation , No.
E5-PS-5001-005, 1976.

(i re’t’n, T. “Sys tem (~verview . ’’ tln pub lmshed AF:~l~ Sketch , March 1977.

I-I S

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~‘



_ _ _ _ _  -—~~~---‘ ~~~~~ __—

~~: ~~~~~~~~~~~~~~~

2.1,3.2 Video Control Center

Green , T. “Video Center and Flying Spot Scanner—Revised Sketch.” Unpublished February
1977.

Williams, D. A. “Video Generation and Control System.” Ohio: Wright-Patterson Air Force
Base, Avionics System Simulation Branch. Report No. AFAL-TR-76-164, August 1976.

2.1,3.3 Cockpit

Dresel, D. “Cockpit Simulation Facility.” AFAL Internal Publication , January 1977.
Reising, Dr. T. M., and Bateman , R. P. “The Use of Multi-Function Keyboards in Single-Seat

Air Force Cockpits.” AFAL Technical Memorandum AFFDL-TM-76-67-F6R , July 1,
1976.

2.2 AVIONICS EVALUATION PROGRAMS

The Avionics Evaluation Progra m (AEP) is a collection of avionic performance
assessment models. The AEP provides convenient and systematic assessment of avionics in
the mission environment . The program is designed to be flexible and easy to use with
emphasis on realistic consideration of the operational environment and the generation of
useful data . AEP can be utilized for analysis of most air-to-ground and air-to-air missions.
Individual programs contained within AEP include air-to-ground and air-to-air mission
analysis, weapon delivery error analysis, target acquisition analysis, and a one-on-one
dogfight analysis. These programs are implemented in a conversational interactiv e mode thus
providing a powerful analytical tool. These programs are available to users by means of
dial-up terminals and therefore are available throughout DOD as well as contractor
organizations.

2.2.1 AEP Program Capability

2.2.1.1 Air-to-Ground Mission Analysis Programs

The air-to-ground mission analysis progra m evaluates the performance of a flight of up
to four aircraft through a specified number of days of operation. The aircraft proceeds along
an externally generated nominal trajectory through the mission phases of takeoff , navigation
to the search area , search , attack, and return to base. Consideration of ground service
requirements is included . Monte Carlo techniques are applied to MTBF (Mean Time’

149



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Between Failure) data for the defined avionics throughout the mission to determine which
subsystem modes are functioning, resorting to backup modes and mission aborts as required.
The model utilizes the best mode still available for each function at the time it is to be
performed . Target location uncertainties and navigation system performance parameters are
combined to define the actual flight path , relative to the true target location. The sensor
ground swatch for the defined search pattern is then compared to the true target location to
determine if the target passes through the sensor ground area coverage. Probabilities of
detection , target kill , and aircraft survival are sampled to determine which mission phases
are successfully completed.

The following steps are required to set up a problem:

1. The mission must be defined in terms of the target, threat , and weapons;
2. The flight profile is defined using waypoints to describe flight segments;
3. A suite of hardware (black boxes) describing the aircraft is itemized; reliability data

are provided for each black box;
4. The required mission functions are selected (typical functions include navigation ,

navigation update, target acquisition , weapon delivery , survivability , communica-
tions, refueling, etc.);

5. For each function , the primary and backup modes of operation must be defined ; a
mode is defined by specifying the performance capability of the mode (if applicable)
and assigning the hardware black boxes required to operate in that mode.

Figure 2.2.1.1-1 shows a typical program output. Another page is printed showing the
hardware items and the number of missions on which each box failed or was disabled by
enemy fire . Another page shows each function, its associated modes, and the number of
times each mode was utilized . The output also includes additional statistical data on the
occurrence of ground and airborne events as well as mission cost data.

2.2.1,2 Weapon Delivery Error Analysis Program

The weapon delivery analysis routine is a program for determining the distribution of
impact errors for a weapon system utilizing unguided , unpowered bombs. The routine is
capable of accommodating almost any weapon delivery mechanization under the following
general assumptions:

150

-
~~~~~~ -f~~ --: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,



.~~~~~~~
- ?  ~~~~~~~~~~~~~~~ 

- 
~w— 

________
1~

AEPOUT COMMAND- - EVENTS ,ALL

• GROUND EVENTS
GENE RAL MAINTENANCE 19
SORTIE CANCELLED 3

NOT OPERATIONALLY READY 5

EQUIPMENT ITEM REPLACED 89
REPLACEMENT UNAVAILABLE 15 

AIRBORNE EVENTS 
DETECTED FAILURE 129
FALSE FAILURE 9
UN DETECTED FAILURE 10
AIRCRAFT ABORT

A/C 1 0

A/C 2 1

AIRCRAFT LOST
A/C 1 13
A/C 2 25

A/C LOST TO ENEMY FIRE
A/C l 5
A/C 2 4

MISSION ABORT 5
LOW FUEL ABORT 0
DISPLAY TARGET DETECTION

A/C 1 54
A/C 2 62

VISUAL TARGET DETECTION
A/C 1 73
A/C 2 59

TARGET A11~ACKED
TARGET 1 127
TARGET 2 121

PRIMARY DESTRUCTION
TARGET 1 10
TARGET 2 10

SECONDARY DESTRUCTION
TARGET 1 49
TARGET 2 39

GO-ABOUND FOR ATIACK
TARGET 1 1
TARGET 2 5

Fl~sirs 2.2.1.1-I. ~ unpIe output for the AEP .ir-to-srsuud mluion analysis program,

151

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~=— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~ - ~~~~~~~~~~~~



1. Flat , nonrotating earth ,
2. Linear transformation of component error sources to impact errors, and
3. Normal distribution for all error sources.

The routine can be operated in three modes:

1. The user can supply a weapon release algorithm in the form of a FORTRAN
subroutine;

2. The user can supply equations which transform the sensor measurements into

rectangular coordinate estimates of position , velocity, and wind relative to the
target; thirteen system implementations using this technique are presently stored in
the program; arid

3. The third mode requires a user-supplied FORTRAN subroutine duplicating the
weapon release algorithm as in Model 1; this mode applies to systems which employ
filtering and for which the user chooses to specify the sensor errors in terms of
magnitude and frequency characteristics.

To set up a problem, the user (1) selects or defines an aircraft ; (2) describes the
trajectory in terms of dive angle , velocity, release altitude, pull-up acceleration , etc.; (3)

selects 1 of the 26 stored weapons; and (4) selects contributing error sources (from

approximately 50 stored sources). Figure 2.2.1.2-1 shows a typical output.

2.2.1.3 Target Acquisition Analysis Program

The AEP target acquisition model is a modified version of MARSAM 11. The Multiple
Airborne Reconnaissance Sensor Assessment Model (MARSAM ) is a target acquisition
progra m developed in 1968 for the Aeronautical Systems Division , ~Vright .Patterson AFB ,

Ohio, by h oneywell , Incorporated. It was originally developed for use in the performance
assessment of reconnaissance sensor systems of varied types operating on prescribed flight
profi les against ground targets in specified background and weather environments.
MARSAM II addresses those aspects of sensor performance related to the capability of such
systems to provide target identification detail . Specifically, the types of aerial sensor
systems considered in the MARSAM 11 model are : frame and panoramic came’ras , tel evisio n .
the visual observ er , vertical and forward-looking infrared, side-looking and forward-look ing
radar . An activ e TV model has been added . The FLIR model has been added to include the ’
modulation transfer function (MTF) data as a system performance measure . In addit ion .
there is a stored library of characteristic data for numerous target-element s , backg round .
weather , and terrain conditions.

152

~ 

_J~~i



- ‘- -- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - -----~

~i.

Weapon Delivery System Number 3
Consta nt Flight Path Angle Traj.ctory With an 0.3S7 Thrust Setting

Tints TAS FPA Altitude Range Alpha

Roll4n —1 .000 300.0 —.0 1000.0 4451.6 3.7
Designate —0.000 300.0 —.0 1000.0 3845.0 3.1

—0.000 300.0 —.0 1000.0 3945.0 3.7
Minimum Altitude 0.020 300.0 —.0 1000.0 3934.8 18.2

Error Source (units) I Along Tr .ck———— l————l—————— Cro ss Track 

Error Source Error Source Miss
Magnitude Distance Magnitude Distance

16 Video Tricker Los Angle (Nil:) 3.0 3.0 3.0 12.2
17 Video Tracker Angle Rate (Miii !:) 0.5 34.2 0.4 12.9
18 Laser Range (Ft ) 25.0 0.4 0.0 0.0
19 Laser Rang. Rate (FPS) 5.0 —18.7 0,0 0.0
22 WInd Correction (FPS) 12.5 —3.1 12.5 2.1
25 Laser Alignment (Mils ) 2.0 —0.6 0.0 0.0
34 Sideslip (Miii) 0.0 0.0 1.4 5.5
35 Steering (Mile) 0.0 0.0 5.0 19.7
43 Bomb Fall Algorithm (Miii ) 1.0 8.9 0.0 0.0

Prerplesse Root Sum Square 40.2 27.1
49 Release Delay (MSEC) 20.0 10.1 0.0 0.0
50 Ejection Velocity (FPS) 2.0 29.2 0.0 0.0
51 Ballistic Dispersion (Nil :) 3.0 26.7 3.0 12.2

Root Sum Square 57.3 29.7
Probable Errors REP = 38.64 DEP = 20.06 CEP 50.60

figure 2.2.1.2.1. ~~a,ple weapon d&ivsry output.

MARSAM II models the sensor system and the operational environment in detail. It
contains models for displays, lenses, filters, and film. It considers the impact of image
motion compensation, platform stabilization errors, backscattering, and atmospheric effects
on sensor performance. The human observer is modeled in terms of ability to perceive the
target as a function of size and contrast, display signal-to-noise ratio , presence of confusing
objects, and time in the field of view. A search performance model in human factors display
has been added as an option. Available outputs from MARSAM include detailed sensor
system performance parameters and associated probability measures of detection ,
recognition , and identification.

2.2.1.4 Air-to-Air Mission Analysis Program

The Air-to-Air AEP mission analysis prog ram is a Monte Carlo simulation of two

153

__________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ____________



—r- ~~~~~~ ~~~~~~
“ ‘

~~
‘
~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

~~

“

~~~~

‘ - - - ‘ C..-.,- ,
~ 

—,- .- --- .—

opposing aircraft flights (up to four aircraft in a flight) through an entire mission. As the
flight progresses, it is influenced by hardware fail ures, refueling, communications to
airborne or ground controllers, enemy aircraft detection capability, identification
requirements and weapon capabilities. Modeling of these functions varies considerably in
levels of deta il based upon impac t on mission success and initial model development
priorities. Detailed visual , radar , and infrared detection models are available for the target
detection function.

When one side detects the other, that fligh t pursues a course directly at the other fligh t
and fires when the weapon constraints are satisfied. The encounter is considered only until
both sides have detected the other. At that time, the relative positions and head ings are
stored for output so that users can determine which side has the relative advantages. Kills
occur only if weapons are fired before detection by both sides has occurred. At the
termination of the engagement, both sides return to the nominal flight profile for the return
flight.

The mission is described by the vehicle hardware makeup, fligh t profile and mission
functions. However , these must be described for both friendly and hostile aircraft. All
friendly aircraft (and similarly all hostile aircraft) must be identically equipped , although
friendly need not be the same as hostile.

2.2.1.5 One-on-One Dogfight Analysis Program

A separate, deterministic air-to-air program permits analysis of the dogfigh t encounter.
It simulates an engagement between two fighter aircraft. The logic for control of aircraft
maneuvers is based on lag pursuit and energy management. Lag pursuit implies that each
aircraft attempts to get on the tail of the other. Energy management control implies that the
aircraft seeks a velocity and altitude for best turning performance. A comprehensive on-line
plot capability supports use of the dogfight analysis program. Users can plot large numbers
of position , velocity, and acceleration components in an earth or aircraft reference frame in
two or three dimensions. in addition , the user can define firing criteria and the program will
automat ically examine th~’ results of a run to determine intervals when the cr iteria are
satisfied.

2.2.2 Interactive Graph ics Capability

An interactive graphic s processor is available for use with AEP . The purpose of this
processor is to ease user difficulty in communicating with the computer and wi th AEP.
Specifically, the processor has the following characteristics:

154 

~~~~~~~~~~ ~~~~~~~~~ - -~~-,-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— —__ - ‘ - -


‘
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i - - -~~ -~~~-

.’
~~

-

~~~~~~~~~~~ ‘~~ r-~ 71J

- I L fl
1. The user develops input on-line;

- 
1 2. Input data is stored on permanent files for later reference or use in other runs;

3. Input data are checked against upper and lower limits to detect improper input ;
4. The program is executed in steps to allow the user to check reasonableness of partial

executions;
5. Output data can be graphically displayed and hard copies, suitable for presentations

or reports, can be made; and
6. A special “help” feature is available to provide the user with instructive comments

whenever the user is in doubt about how to proceed .

The AEP programs are batch programs, even though they are automatically executed
from a remote interactive terminal. The input and output processors are used to
communicate with the user for problem setup and review of the output. New data is stored
in convenient subsets for later use. A very important “help” file and a complete on-line
user’s manual are available to aid the user in communicating with the processor and
associated programs.

OU TPUT
PROCESSOR

I I
H

INPUT I Alt BATCH I OUT PUT
PROCESSOR INPUT FILE

ORIGINAL PROGRAM
~~~~~~~~~~~~~~~~~

IN PUT
DATA
BANK

HELP
FILE

Fipire 2.2.2•1 . Appl ication of interacti ve graphics to existing batch progra mi.

155

~~a. -. a f l f l* .* --~~ -— —
-- ________ .

-

— —-----~~~~~~~~~~~~~~~~~~~~~~~~~
____- - -

Figure 2.2.2-1 shows an overall block diagram of the interactive graphics programs. The
user specifies the required data by either supplying new data or retrieving data previously
stored . Once the user is assured that the data are satisfactory, an execution deck can be
requested and the program can be executed . The main programs produce an output on a
permanent file. The interactive software then interrogates the output permanent file at the
user’s command to produce the desired displays. The sample air-to-ground mission analysis
problem of Figure 2.2.2-2 on the following pages demonstrates the manner in which the
interactive software can be used . Each section of Figure 2.2.2-2 is a hard copy of the actual
display , except for the figure title.

After the user has logged in and attached and loaded the program , the logo of Section
(a) appears . Since the logo uses a full page, the user is informed (with an audible “beep”
from the terminal) that , at the next step, the page will be erased . Thus, if a hard copy is
desired , it should be mad e at that time. On the next page the user is asked for an AEP
command. Note that whenever a double dash (--) appears, the program is expecting a user
input. Since the user did not remember the possible AEP commands, a question mark (?)
was entered . The program then supplied all of the possible commands and again asked for an
AEP command. The user was interested in the command PP but wanted more information
about it , so the command FP? was entered. The program responded that FP was the fligh t
profile generation command and again asked for an AEP command. This time, the user
entered the command FP. The requested entry was not clear, so more information was
requested. Based on the explanation , the user entered SHOW and was provided with a list of
stored flight profiles. After the user selected the third flight profil e, the program asked for
the nex t FP command. A question mark provided a list of available commands (continued as
Section (c). The user requested an explanation of the LIST and PLAN commands and then
commanded LIST .

In Section (d), the fli ght profile waypoints were tabulated and at the completion of the
tabulations the nex t command was requested . The user requested a “PLAN. ” Since that
plan required a full page, the user was notified with a “beep.”

Figure 2.2.2.2 (e) shows the resultant plan view of the fligh t profile with a grid in
nautical mil e units. Note that the concentration of way points on the right (near way point

~ 18) does not allow a good view of the profile. The user may request an expanded plan view
of the waypoints in this area.

In Section (f) the user requested an exp lanation of the command (‘IIAN GE and then
changed way point 12. Note that the user changed only the x and y coordinatcs of that way
point.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~ ——~~ - 
~~~~~~~~~ 

—

WELCOME— YOU ARE NOW CONNECTED WITH THE INTERACT IVE
VERSION Of THE AV IONICS EVALUAT ION PROGRAM

AEP

OEVELOPEO BY
~~~TTELLEI COLUMBUS LABO RnTORIES

(a) LOGO

Fig.,, 2.2.2.2. Sample execut ion of the AEP interactive program.

157

- - 
-
~~

-- —I ~

-- — 

—--
- — 

-— ~~~~~~~~~~~~~~~~~~~~ —--~~~-=.



AEP COMMAND

EXECUTIVE (AEP) COMMANDS
EQUIP SUBF WD WDDECK WDOUT FP
MARSAM AEPDECK AEPOUT END (QUIT)

AEP COMMAND
— —  FP?
FLIGHT PROFILE GENERATION
AEP COMMAND
— —  FP
FLIGHT PR OFI LE DATA INPUT
ENTER PROFILE ID

?
ENTER NUMBER ID OF STORED PROFIL E, EN TER G TO CREATE NEW PROFILE

ENTER SHOW FOR LIST OF STORED PROFILES

ENTER PROFILE ID
- -  SHOW

1 SAMPLE PROFILE FOR FINAL REPORT JAN 73
2 RPV SAMPLE PROFILE
3 SAMPLE PROFILE

ENTER PROFILE ID
— —  3
FP COMMAND —

FLIGHT PROFILE (FP) COMMANDS
ENTER VALID COMMAN D WITH REQUIRED PARAMETER LIST

I D 0 LIST FLY PLAN ALT VEL SAVE QUIT
FP COMMAND —

— — LIST?

(b) In teractive Dialogue

Figure 2.2.2.2 (con. ). Simpl, execution of the AEP interactiv, program.

158

~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4’

DISPLAY LIST OF CURRENT VALUES POINTS ARE RESE QUEN CED TO

REFLECT PREVIOUS COMMANDS
FP COMMAN D -
— —  PLAN?
DRAWS A PLAN VIEW OF THE PROFILE. ENTER THE COMMAND AS

FOLLOWS
PLAN. ID1.

POINTS ID 1 THRU 1D2 ARE PLOTTED

IF ID2 IS OMITTED. ALL POINTS FROM ID1 ON ARE PLOTTED
IF BOTH PARAMETERS OMITTED ALL POINTS ARE PLOTTED

FP COMMAND —
— —  LIST

(c) Interactive Dialogu e (cont lnu d)

Figure 2 2.2.2 (con.). Sample execution of the ALP Interactive program.

l r)9

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 

,-.- F

H

J

ID X X H V ON OFF
1 0.00 0.00 0. 150. 701 702

1201
2 35.00 -20.00 20000. 450.
3 127.50 0.00 20000. 450.
4 150.00 0.00 5000. 162.
5 160.00 0.00 5000. 162.
6 160.00 10.00 5000. 162.
7 150.00 10.00 5000. 162.
8 150.00 15.00 5000. 250.
9 160.00 20.00 5000. 182.

10 180.00 30.00 5000. 300. 303 901
11 185.00 35.00 2500. 250. 1102 3 9

12 188.00 38.00 2500. 250.
13 185.00 30.00 2500. 250.
14 180.00 30.00 2500. 250.
15 180.00 35.00 2500. 250. 702 7
16 189.00 39.00 2500. 250. 11
17 190.00 40.00 2500. 300.
18 190.00 45.00 5000. 450.
19 155.00 29.00 20000. 450.
20 30.00 60.00 20000. 450.
21 20.00 15.00 20000. 450.
22 0.00 0.00 0. 150. 1 12

FP COMMAND --
PLAN

(d) Way Point Description

Figure 2.2.2.2 (con. ). Simple execution of the AEP interactive program.

160

iri r- - i-- —.~~~~~~~~
- 

-- —~~~~~~~ -~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______



~~~

-
. ~~~~~~~~~~~~~~~~~

— .. - -— ---
~~

-

~

--- -

r

4’

100+ + + + + + + + + +

+ + + + + + + + +

-25 0 25 50 75 100 125 150 175 2U0

(e) Flight Profile Plan View

Figure 2.2.2~2 (con.). Sample execution of the ALP interactive program.

161

_ _

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -



- 

~~~~~~~~ 
- . ~~~~~~~~~~~~~~~~~~

..—-

~~
- .----—-- - —--—-----

~~~~~~~~~~~~~- -- -_—-— -- - -

FP COMMAND —

—— C?

CHANGE VALUES AT WAYPOINT ENTER COMMAND AS
ON ,OFF

ID=POINT TO BE MODIFIED
KTS),

ON=FUNCTIONS TURNED ON , OFF=FUNCTIONS TURNED OFF
FIVE ON OFF NUMBERS MAY BE ENTERED

THE 14 INPUT PARAMETERS X THRI) OFF~5) MAY BE ENTERED WITHOUT

THE LETTER CODE. ONLY PARAME TERS SPECIFIED AR E CHANGED.
IF  PARAMETERS ARE SKIPPED , LETTER CODE MUST BE USED

EX— CHANGE,4,100.,10.,V=250. SETS X=100.,Y=10.,V=250. FOR POINT 4
FP COMMAND —

— C,12,195.38
FP COMMAND —

—— PLAN , 10,18

(f) Command Explanation Request

Figure 2.2.2.2 (con .). Sample execution of the ALP interactive program. -

~~~~~~~~~ -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-

- --— --~~~~ -~~~~~~~~~~~~1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

F

H

FP COMMAND —
—— SAVE
ENTER T ITLE , UP TO 60 CHARACTERS
— — SAMPLE FLIGHT PROFILE CREATED 6/25/73

• SAMPLE FLIGHT PROFILE CREATED 6/25/73
IS TITLE O.K., V OR N
—— V
DO YOU WANT TO DELETE ANY TRAJECTORIES, Y OR N

— —  N
AEP COMMAND

— —  QUIT

HEP FINISHED
EXIT

COMMAND—

(g) Program Exit

Figure 2.2.2.2 (con.). Sample execution of the ALP interactive program.

163 

H -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ JI~~~~~~~~

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~~ ~~~ - - -- -----
~~~~~

L

In Section (g) the user exited the program. Note that the user must respond to several

questions before an exit is allowed. This provides the user with an opportunity to save data

and to enter comments for later reference.

This example serves to demonstrate the main features of the interactive graphics
processor. It should further be noted that the interactive portions of the program provide

the user with a wide variety of displays both on program set-up and during program
execution. The various references should be consulted for an indepth discussion of these

capabilities.

2.2.3 Program Set-up

In setting up the AEP , missions (i .e., A/G , A/A , etc.) are defined by specifying a fligh t

profile as a sequence of way points with associated tactical functions and by specifying a
vehicle hardware makeup as a set of subsystems to support these tactical functions.

2.2.3.1 Flight Profile H

Each waypoint along the fligh t profil e will generally reflect a change in direction or
airspeed or a change in the functions utilized (the definition of a function will become clear
in subsequent paragraphs). Each waypoint is described by providing:

1. the distance east of the origin (base),
2. the distance north of the origin ,
3. aircraft altitude above MSL, and
4. aircraft velocity .

From this information , heading and flight path angle are determined by a straight line
trajectory between waypoints. Changes in vertical flight path angle occur instantaneously
while changes in heading are achieved with a constant bank angle coordinated turn. Changes

in velocity occur immediately upon leaving a waypoint. Acceleration incorporates ful l
throttle while deceleration incorporates idle thrust.

2.2.3.2 Functions, Subfunctions , Modes and States

As a part of the fligh t profile, mission functions are specified over appropriate time

intervals. A function is defined as an operation or action performed during the mission.

Functions may further he divided into associated sub .functions which are alternative

16-I

-z ;  ~~~—-=~~~
-- 

~~
- 

~~~~~~~~~ - :j ~~~~~~~j~~~~ 
-

~~~~. - 
-- 

. -



__________  - -  ~~~~~~~~~~~~~~~~~~~ -,-- - -~- 

- 

- - -

~~~~~~

(.
options for performing a particular function. A table of functions and subfunctions is
indicated in table 2.2.3-1 for the air-to-ground and air-to-air versions of AEP. A more
detailed description of existing functions and subfu nctions is included in subsequent
sections.

2.2.3.2.1 Air-to-ground functions and subfunct ions

2.2.3.2.1.1 Scheduled Maintenance. The scheduled maintenance function provides an

TABLE 2.2.3~1. AID AND A/A FUNCTIONS AND SUBFUNCT IONS

Air-To~6round Air ~To-Air

Functions Subfunctions Functions Subfunctions

Scheduled maintenance Preflight Navigation Ground controlled intercept
Thrufli~~t Airborne controlled intercept
Postflight Communications tnterffight communications

Ordinance General purpose munitions External communications
Rockets Fuel Fuel utilization

Fueling Fuel loading Refueling
Fuel usage Target detection Visual
Refueling Radar

Fli~ t Launch Infrared
Infligh t aircraft abort Target identification Electronic 1FF
Mission abort Television
Lou of aircraft Visual
Landing Engagement Semi-active radar missile

Mission Schedule IR missile
Cost accumulation Form ation Form ation

Formation Nominal flight Maneuv e r Weaving escort
Navigation Radio .aided Weapo n detection Visual

Self-contained Radar
Navigation update Automatic navigation update Infrared

Radar navigation update Mandatory operations Aircraft abort
Visual navig ation update Aircraft loss

Communica tions lnterfl i~~t
External

Survivability Survivability subfunctlons (5)
Target acquisi tion Display acquisition

Visual acquisition
Weapon delivery Manual weapon deli ve ry

Automat ic we apon delive ry
Target Target subfunctions (5)

165

_ _ _ _ _ _ _ _ _ _ _

assessment of the time involved to keep aircraft ready for t1i~ht . Three subfunctions are
provided to account for preflight (beginning of day), thru-flight (between sorties), and
postflight (end of day) maintenance. Data required to describe the ground maintenance
are: mean duration , standard deviation , and equipment checklist. The random service time
is drawn from a log-normal distribution defined by the input parameters. It is assumed that
the repair of items in the checklist occurs in parallel with the maintenance time, and that
repair of other items is in series.

The preflight subfunction sequences each aircraft to ordnance loading at the completion
of the maintenance interv al. If one or more aircraft become NORS, the remainder of the
day is cancelled.

The throughflight subfunction sequences each aircraft to ordnance dearming at the
completion of maintenance. In reality, dearming would occur prior to ground service.
However , for convenience in programming and since the total time interval is the same,
throughflight and dearming times are reversed. As with preflight , a NORS state cancels the
day.

The postflight subfunction sequences each aircraft to ordnance dearming at the
completion of maintenance. Since postflight occurs at the end of the day’s sorties, a NORS
state has no impact. All redundant items are repaired during postflight maintenance.

2.2.3.2.1.2 Ordnance. The ordnance function calculates the time required to load and
arm the ordnance prior to each sortie, and also calculates the time required to unload and
dearm the ordnance at the end of each sortie. There are two ordnance subfunctions—general
purpose munitions and rockets. The logic within the subfunctions is identical . The
difference lies in the distributions wh ich describe the loading and unloa ding times of the
different munitions. The input items for each subfunction are : the number of weapons
carried, the mean and standard deviation of the loading, plus arming time per weapon, and
the mean and standard deviation of the unloading plus dearming time per weapon.

2.2.3.2.1.3 Fuel. The fuel function provides a means of managing the aircraft fuel
requirements. Three subfunctions are available for fuel loading, monitoring of fuel used, and
air refueling. The fuel flow rate during flight is one of the aircraft states provided by the
aircraft flight simulation. An aircraft abort occurs if fuel monitoring or refueling status are
unavailable. A mission abort occurs if no modes are available for air-refueling.

The fuel usage subfunction aborts an aircraft if the remaining fuel is less than that
required to complete the flight plus the required reserve.

166

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .- ~~~~~~~~~~~~~~~ — ~~~~~—.~~~~~~~~
-- --

-- — - -

~~~~~

--‘-

~~~~~~~~:~~~~

--- -—-‘——

~~~~~~~~~~~~~~~~~~~~~~~~

The air refueling subfunction determines the time of hookup from a uniform probability
distribution specified on input by the minimum and maximum hookup times. Several
aircraft can be refueled simultaneously, the exact number being specified as input. The time
required to refuel is calculated as a function of the amount of fuel to be loaded and the
refueling rate, which is also specified as input.

2.2.3.2.1.4 Flight. The flight function provides a means of specifying the equipment
requirements for various portions of the mission. Five subfunctions are available: launch,
inflight abort , mission abort, aircraft loss, and landing.

The launch subfunction iraws a random sortie launch time from a ~og-normal
distribution defined by the input data . This time represents the interval between engine start
and takeoff. At takeoff , subfunctions 2-4 are turned on, and launch is turned off. The
launch subfunction uses only the time data given with the first mode. A ground abort of the
mission occurs if either an aircraft has no available equipment state, or no mode
requirement is satisfied.

There are no program calculations associated with the aircraft abort subfunction. The
aircraft equipment states associated with this subfunction allow determination of an abort
situation. In addition , an aircraft abort will occur if the aircraft does not satisfy some mode
requirement. This is a unique use of the mode definition for this subfunction.

The mode/state requirements for the mission abort subfunction are used to define when
a sortie must be aborted. If no mode is available, the mission is aborted.

The aircraft loss subfunction is used to define the set of equipment required to keep an
aircraft airborne. If no aircraft equipment state is available, the aircraft is lost.

The landing subfunction is used to define the set of equipment required to make a —

successful landing. If no landing equipment state is available, the aircraft is counted as lost.

2.2.3.2.1.5 Mission. The mission function provides a means of specifying the
operations schedule and the cost of various portions of the mission. There are no nominal
calculations, aircraft aborts, or mission aborts associated with this fu nction.

The schedule subfunction is the overall mission scheduler for the nominal portion of the
simulation. The schedule, utilizing the input data, manages the starting times for the
individual sorties and the individual data . All maintenance actions and all fligh ts are

167 - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -k -;— — -~~~~~~~~~


_ _ _ - - -

,
‘

controlled by this subfunction. If a delay occurs in the ground maintenance functions, the
scheduler may cancel a sortie if the input maximum delay times are exceeded. This
subfunction is called initially to begin the simulation, at the end of throughflight and
preflight maintenance, and at the end of each sortie.

2.2.3.2.1.6 Formation. The purpose of the formation function is to specify the
position of flight members relative to the lead aircraft. The user specifies the distance right ,
behind , and above the leader for up to three supporting elements.

2.2.3.2.1.7 Nav igation. The navigation function includes two subfunctions—radio-aided
navigation and self-contained navigation. The two subfunctions provide the capability of
computing and considering navigation errors. Two types of navigation errors are
considered—a fixed position navigation error and a per unit time error. A mission abort
occurs if the self-contained navigation subfunction fails. If the radio-aided navigation fails, a
switch to self-contained navigation is attempted. If the switch is successful, the mission is
continued; otherwise, a mission abort occurs.

2.2 .3 .2 .1 .8 Navigation Update. The navigation update function includes three
subfunctions: automatic update , radar update, and visual update. The navigation update
subfunctions calculate the sensor field of view and determine if the checkpoint is within the
field of view , and if the checkpoint has been detected. Once the checkpoint has been
detected, the accuracy of the navigation update is computed.

2.2.3.2.1.9 Communications. Two communications subfunctions are provided to assess
the reliability of the communications equipment: interflight and external communications.
Loss of all aircraft equipment states for intertlight communications causes an aircraft abort.
LOSS of all modes for either subfunction causes a mission abott.

2.2.3.2.1.10 Surv ivability. The survivability subfunctions have two primary purposes.
The firs t is to generate a random time of hit for each aircraft from an exponential
distribution specified on input. The second purpose is to process the aircraft hits to assess
aircraft damage. The input data items at the constant probability of hit , the per unit time
probability of hit , and the probability of aircraft kill . Five subfunctions are provided so that
the user may have direct control over when each is used. For example, a typical mission
profile may progress through defensive zones with different probabilities of survival. The
user can key the use of each subfunction (with different data) to waypoints defining the
flight profile.

168

— _-~~~~~~~~ — ----- --— -— -- ~ -~
-
~
--. -

~~~~~~~~~~~~~~~~~~~~~~~~ 
- - .



.

~~~~~~~ ~‘~~~~‘1~~~~’T T T T T~~~~~~~

2.2.3.2.1.11 Target Acquisition. Display and visual target acquisition subfunctions are
provided. All targets specified by the user are checked for detection during each search
segment, with attack passes occurring based on the sequence of detection. Thus, for
relatively close targets, the order of attack can be different than the order of target
locations. After an attack against one target, the acquisition process is resumed for the
remaining targets, allowing a user to simulate a target of opportunity type mission. There
are no aircraft aborts due to loss of acquisition equipment items. A mission abort occurs
only if all possible modes of both subfunctions fail.

2.2.3.2.1.12 Weapon Delivery . Manual and automatic weapon delivery subfunctions are
available . A significan t feature of the updated weapon delivery function is that ordnance
and target types are keyed to the delivery modes. This provides the flexibility of considering
various ordnance mixes for a multiple target sortie. A unique feature of the weapon delivery
funct-ion is that a subfunction/mode status is maintained for each aircraft. Thus, it is
possible for one aircraft to use the automatic release subfunction and another aircraft to use
the manual subfunction. Mode changes due to equipment failure have no immediate impact
if weapon delivery has not been activated. When a weapon delivery run is committed and a
mode regression occurs, only a mode with a release range matching the committed range will
be used. Otherwise, the aircraft with the failure cannot attack on that pass. An individual
aircraft does not abort if no equipment states remain . If that aircraft was initially in the
automatic subfunction , the manual subfunction will be used if possible. If none of the
aircraft can perform the weapon delivery function , the mission is aborted.

2.2.3.2.1.13 Target . The target function manages the number of attack passes and
target location uncertainty for up to five targets. This information is specified on input.
There are two levels of target destruction accumulated, primary and secondary destruction ,
which are based on primary and secondary kill radii.

2.2.3.2.2 Air-to-air functions and subfunctions

2.2.3.2.2.1 Navigation Function. The primary purpose of introducing a navigation
function is to have a mechanism for reflecting the influence of navigation on target
detection. No influence of onboard navigation system errors are considered. Navigation is
important on an intercept mission where a supporting ground or airborne element is
providing an alert or intercept vectors. The quality of the vectors is not addressed. The
effect of the supporting element is to place the airborne flight in an alerted or vectored
status. The implications of this status are :

169

- ~~~~~~~~~~~~~
- .- ‘ - ~~~~~~~~~~~~~~~~~~ ~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- - ----

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~ ~~~~~~~~~~~~
-“

~
- --‘. 

~~~~~~~~~~~~~~~~~~~~~~~~

1. in autonomous search (no supporting element), three sweep detections are required
to adequately assess target position and direction of fligh t,

2. In alerted search , two sweep detections are required; and
3. In vectored search , one sweep detection is required.

The navigation subfunctions draw random numbers to determine this status.

The input data items are:

1. Probability that the controller detects the enemy fligh t, and
2. Probability that sufficient information is available for vectored search.

No action is taken if these subfunctions are lost.

2.2.3.2.2.2 l nterf light Communications Subfunction . The interfligh t communications
subfunction calculates a delay in transmitting target detection from one flight member to
the rest of the flight. The input data items are:

1. Communication frequency utilization ,
2. Mean duration of the utilization,
3. Maximum communication delay, and
4. Time to communicate.

The first input data item is a number between zero and one expressing the probability
that the communication frequency is being utilized when a flight member attempts to
transmit. The second item is the mean value of the duration of interference. This item
defines an exponential probability distribution of delay . The delay is limited by an input
max imum delay . This subfunction is called by the detection function. If the user does not
select this subfunction , no delay is calculated. If this subfunction is lost, the mission is
aborted .

2.2.3.2.2.3 External Communications Subfunction. The external communications
subfunction calculates delay in communicating controller alerts or vectors to the airborne
flight. The input data items are :

1. Communication frequency utilization,
2. Mean duration of utilization,
3. Maximum time of utilization ,

170

-
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ . _



‘~J

4. Probability of ECM interference,
5. Mean delay of ECM rnterference, and
6. Maximum vector update period required to maintain vectored status.

The delay is calculated in the same way as for interflight communications, except that
jamming of the link is an added possibility. An exponential distribution is used for the
duration of jamming when it occurs. The purpose of this subfunction is to determine delay
in communicating the alert or vector status. A vectored status must be updated at the end of
each update period . Thus the flight can oscillate between alerted and vectored status if there
are communication delays. If this subfunction is not selected , no delays are calculated. If
this subfunction is lost, no action is taken.

2.2.3.2.2.4 Fuel Utilization Subfunction. This subfunction aborts the aircraft if the
remaining fuel is less than that required to complete the fligh t plus the required reseive. The
subfunction is called periodically (when it is on), based on the flow rate and fuel status. The
input data item is the reserve fuel requirement measured in pounds. If this subfunction is
lost, the mission is aborted.

2.2.3.2.2.5 Refueling Subfunction. Refueling occurs when th is subfunction is turned
on. Hookup time is determined from a uniform probability distribution specified by the
minimum and maximum hookup time. Several aircraft can be refueled simultaneously. The
time to refuel is a function of the refueling rate and amount of fuel to be added. The input
data items are:

1. Minimum hookup time,
2. Maximum hookup time,
3. Refueling rate (lb/mm ), and
4. Number of aircraft refueled simultaneously.

If this su bfunction is lost, the mission is aborted.

2.2.3.2.2.6 Visual Detection Subfunction. The visual detection subfunction has
computations in both the nominal and Monte Carlo portions of the AEP. The purpose of
the nominal evaluation is to compute the cumulative probability of detection as a function
of time for each aircraft. The cumulative probability is applicable as long as the opposing
aircraft fly the nominal trajectory . If the opposing flight intentionally departs from the
nominal , detection is computed based on the mean detection range (from a Rayleigh
distribution).

171

k. -- - - ~~~~~~ -: - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~
- 

~~~~~~~~~ 
- - ____________________ ___________

r - - - - -

~~~~

- 
- -  - ---

~~~~~~~~~~~~
-

~~~
-—-—- -

~~~
--

The input data items for this function are:

1. Azimuth field of view search limits for each aircraft—half angle symmetrical about

the nose (degree),
2. Maximum elevation search angle (degree),
3. Time for an individual scan for each aircraft ,
4. Ratio of time spent searching to total time for each aircraft ,

5. Meteorological visibility (nmi),
6. Background luminance (typically 1,000),
7. Target luminance (typically 2,200),

8. Sky-background brightness ratio (typically five),
9. Contrast compensation factor for observers (typ ically 1 for good observer , .5 for

untrained observ er),
10. Contrast compensation factor due to target shape, and

11. Mean detection range for off-nominal closing aircraft (nmi).

If this subfunction is lost , the fligh t is aborted.

2.2.3.2.2.7 Radar Detection Subfunction. The radar subfunction has computations in

both the nominal and Monte Carlo portions of the AIRAEP. The program models a high

PRF pulse Doppler radar . The purpose of the nominal evaluation is to compute the

cumulative and single look probabilities of detection as a function of time. If the opposing

flight intentionally departs from the nominal , detection time is recomputed within the

Monte Carlo.

The input data items are:

1. Azimuth coverage for each aircraft-total angle-symmetrical about the nose (degree),

2. Elevation angle of the composite beam center (degree),

3. Width of the composite beam in elevation—for multiple bar search use the total

width (degree),
4 . Frame time—time to complete one sweep cycle (degree),

5. Dwell time—time that the beam would illuminate a point in space as it sweeps across

the point (s) ,
6. Probability of the rad ar operator observing a single scan , and

7. Terrain reflectivity ~typically .1).

This ~ub funct ion uses several other data items entered under the ’ radar :~nd main beam

172

— _ _ _ _ _ - -

_ _ _ _ _ _ _
-———

~
—

~~
--

~~~



rr-
A0 A055 591 RESEARCH TRIANGLE INST RESflRCH TRIANGLE PARK N C F/s 1/3AFAL. SIMULATION FACILITY/CAPABILITY MANUAL. VOLL*IE I. EXECUTIVE—ETC(U)

JUN 77 R A WHISNANT , W H RUEDGER. R L EARP F33615—76—C—1305
UNCLASSIFIED Sr.’ —t R—77— II n..Vfl. I

p.

______ _to _
______ 

PIE I_

EIIIEI
_ _



P

clutter filter equipment items. In addition , it uses selected tables of aircraft radar cross
section. If this subfunction is lost , the mission is aborted .

2.2.3.2.2.8 IA Detection Subfunction. The infrared detection subfunction has
computations in both the nominal and Monte Carlo portions of the AIRAEP. The purpose
of the nominal evaluation is to compute the cumulative probability of detection as a
function of time for each aircraft. The cumulative probability is applicable as long as the
opposing aircraft fly the nominal trajectory . If the opposing flight intentionally departs
from the nominal , detection is computed based on the mean detection range (from a
Rayleigh distribution).

The input data items for th is function are:

1. Upward elevation limit (degree),
2. Downward elevation limit (degree),
3. Frame time (s),
4. Collecting aperture area of the optics (cm 2 ),
5. Focal length (cm),
6. Instantaneous detector FOV (degree),
7. Electrical filter factor (typically near 1.0),
8. Probability of an operator observing a detection,
9. False alarm number (typically 10.**6),

10. Atmospheric model,
11. Haze,
12. Visual range at sea level (1cm), and
13. Target radiant intensity (watts/cm 2 /ster).

If this subfunction is lost, the mission is aborted.

2.2.3.2.2.9 Target Identification Function. This function is called after detection has
been completed. If this function is not selected by the user, identification is assumed not to
be required and the program immediately sequences to the engagement function.
Identification can occur via an electronic 1FF, TV display , or visual subfunction. The
electronic 1FF subfunction draws a random number for each aircraft to determine whether
1FF is possible. If the draw is affirmative , another number is drawn from a Rayleigh

distribution to determine the time required for identification. The TV and visual
identification subfunctions require the user to specify a mean identification range. This is
used to describe a Rayleigh distribution from which the identification time can be

determined .

173

____________________________________________________________________________ ~~~~~~~~~~~ - 1 ~~ _______ •~~~. •



___ -~ —~~~~~ — —

The input data items for the electronic 1FF are:

1. Probability that identification can be achieved ,
2. Mean delay (s), and
3. Maximum delay (s).

The input data item for the TV and visual subfunctions is the mean identification range
(nmi). If any of these subfunctions are lost the mission is aborted .

2.2.3.2.2.10 Engagement Function. The engagement is hal ted whenever both sides have
detected each other . When a weapon reaches the target flight , it is assumed that that flight
detects the attacker. After the engagement is halted, all of the airborne weapons are
processed to determine their effect. However, no additional weapons are fired . At the
beginning of the attack, the attacking flight heads directly toward the target flight.

The input data items for both the radar and lB. missile engagement are :

1. Maximum firing range (nmi),
2. Minimum firing range (nmi),
3. Maximum azimuth launch envelope (degree),
4. Maximum upper launch envelope (degree),
5. Maximum lower launch angle (degree),
6. Number of missiles,
7. Number of missiles per salvo,
8. Time between salvos (s),
9. Initial launch delay (s),

10. Missile reliability,
11. Probability of target kill, and
12. Missile velocity (kn).

If either subfunction is lost, the mission is aborted .

2.2.3.2.2.11 Formation Subfunction. The purpose of this function is to specify the
position of flight members relative to the lead aircraft. The user specifies the distance right,

behind , and above the leader for up to three supporting elements.

2.2.3.2.2.12 Weaving Escort Maneuver Subfunction. The purpose of the maneuver
func tion is to define characteristics of specific maneuvers that are not incorporated in the

174

I 
_ _  

_  _ _ _  _ _

_ _ _ _ _  
_ _ _ _  ____________________________________



nominal flight profile definition. This subfunction creates a weaving escort pattern. This
pattern is used to support a slower moving aircraft. The user specifies the width of the
pattern (nmi) and the mean velocity of the aircraft being escorted (kn). The program then
internally generates new waypoints based on the difference between the fighter aircraft
velocity and mean velocity. If the flight is composed of more than two aircraft , then two
aircraft fly a mirror image of that pattern. The reason for providing this function was to
preclude requiring users to define the internally generated waypoints where repeating
patterns were desired.

2.2.3.2.2.13 Weapon Detection Function. Weapon detection occurs automatically if a
missile intercepts the target flight. The purpose of adding this function is to allow a
modified kill probability if the target flight detects the approaching missile early enough .
However, at present , a single kill probability is used regardless of when detection occurs.
The input data items are:

1. Probability of missile detection, and
2. Mean detection range (nmi).

If this subfunction is lost , the mission is aborted.

2.2.3.2.2.14 Mandatory Operations Function. This is a special function used to define
critical elements of the aircraft. If the first subfunction is lost, the aircraft aborts. If the
second is lost, the aircraft is lost.

2.2.3.2.3 Modes and states

A mode is defined as a suite of subsystems which allows a particular function to be
• performed . Several operating modes are possible for each function or subfunction (primary

and backup operating modes). The concept of modes is quite straightforward for a

• one-aircraft simulation. In that case, there is a suite of hardware and performance data
associated with each mode. Presumably, a user sets up a problem such that the first mode
represents the best performance and subsequent modes represent degraded performance
with less demanding hardware requirements.

The introduction of multiple aircraft complicates the problem. Modes must now apply
to the complete flight. Thus, when entering data for a mode belonging to the radar
detection subfunction , the user specifies data applicable to all aircraft in the flight. Some of

175

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .•—~- .- -•---—. .~~-:-

--•

the’ data art, the same for all aircraft in the flight. But other data , such as field of view and
frame time , must be specified for each aircraft , all as part of the same operating mode. A
backup mode may be required if one of the aircraft loses a hardware item or aborts the
mission. The user defines mode regression criteria using subfuneUon states. A subfunction
state defines the equipment status for each aircraft for that subfunction . The user defines
states for a single aircraft for each selected subfunction. Associated with each state is a suite
of hardware selected from the available equipment candidates. Based on the definition of
these stat es, the user uses Boolean and/or logic to define criteria for being in each mode. For
example , mode 1 of a given sub funct ion may require that aircraft A. B, and C be in the
primary state and that airc ra ft 1) be no lower than state’ 3. If this criteria was not satisfied
because’ of failure of some equipment , mode regression would occur.

2.2.3.3 Aircraft Equipment

Airc raft hardware date an’ specified by the’ establishment of sections and candidates. A
section is a parti cular type’ of hardware such as airframe’, propulsion , ordinance’, Lii iF radio .
inert ial navigation system, etc. Within each section the user can specify several candidate ’s .
In the section called inert ial navigation systems , there could be an LN-15 , LN- 12 , INS-6 1 ,
etc., reflecting sp~~j fj & ’ inertial navigation systems. The user usuall y has complete flexibility
to aggregate or disaggregate actual t)(ack boxes into equipment elements by defining the
necessary candidate ’s for each section and creating the appropriate ’ states and mode’
requirements under the Aepdeck command. To define a candidate, values are entered for
the data item associated with the section.

Following is a list of the standard date items associated with every section in the
air.to .ground program :

1. MTBF Mean time’ between failures based on flight hours .
2. MTBMA Mean time betwee’n unscheduled maintenance actions .
3. OFR Operational hours per flight hour .
4. PV Vulnerability factor ,
5. NR Number of redundant boxes,
6. MTTR Mean time to repair ,
7. PR Probability the box will he replaced ,
8. PA Probability the replacement box is available ,
9. PU Probability of undetected failure,

10. PF Probability of false failure ,
11. AC Acquisition cost , and
12. UMC Cost per unscheduled maintenance action.

176

2:

_ _ _ _ _ _ _ _ _ _ _ _~r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~•1

Two sections have additional data items which reflect performance data unique to those
sections. (See equipment subsection titled special sections). In general , however , the above
items relating to hardware reliability and cost are the only items associated with each
section. The first two digits of the standard Air Force work unit code (WUC) ident ify a
section.

A candidate cannot be created unless the section with which it is to be associated has
been created previously . The following information is required for each candidate:

1. Name of the candidate,
2. Number of the section with which it is associated , and
3. Values for the data items.

The following six data items are associated with each section in the air-to-air program:

1. Mean time between failures,
2. Mean time to replace,
3. Repair time,
4. Mean time between maintenance actions,
5. Warmup time, and
6. Vulnerability factor.

Several sections require additional data items which are unique to those sections.

The data items which are applicable to a candidate were specified when the section was
created . Once the appropriate section has been identified , the user can obtain a listing of the
data items to determine the data required.

• The following paragraphs briefly describe existing special sections resident in AEP.

2.2.3.3.1 Special air-to-g round sections

2.2.3.3.1.1 Airframe Section. This section has extra items used to define aircraft data
required to simulate the vehicle equations 3f motion. Several of the aerodynamic derivatives
are a function of mach number. The user can enter up to four values which the program uses
to develop the continuous curv e of variable versus mach number. The mach numbers for the
fou r entries are : (1) takeoff—Mach 2, 3, (2) subsonic—mach 0.9, (3) transonic—mach 1, 0,

and (4) supersonic—mach 1, 1. If the aircraft does not operate above mach 0.9, then the

177



transonic and supersonic values need not be entered . However , the user should be careful
that the flight profile does not inadvertently cause the aircraft to enter this flight regime.

For a development of the equations of motion and more detailed definition of the date
required , see AFAL•TR .73-44 . Pages 10.17. In addition , volume 11 of that report (classified
confid ential ) contains an unclassified example of a development of the required data for an
F•4.

2.2.3.3.1.2 Propulsion Section. This section contains extra items used to enter data
regarding engine characteristics. There are’ 4 items over and above the standard 12 items that
must be specified . These are :

1. Military specific impulse (hr )—th is item is used to calculate fuel consumption for
normal throttle settings;

2. Maximum specific impulse (hr )— this item is used to calculate fuel consumption
when the afterburner is used ;

3. Military thrust (lb)—m aximum th rust without the use of afeerhurner; idle thrust is
assumed to be 20 percent of this value; and

4. Maximum thrust (lb)— maximum thrust with afterburner ; if the aircraft dot’s not
hav e an afterburner , items 2 and 4 above should be the same as I and 3, respectively.

2.2.3.3.2 Special air-to-air sections.

2.2.3.3.2.1 Airframe Section. The first section is utilized to define the aircraft data
required to simulate the vehicle equations of motion. Severa l of the aerodynamic derivatives
are a function of mach number. The user can enter up to four values which the program uses
to develop the continuous curv e of variable of interest versus mach number. The mach
numbers for the four entries are’: ( 1) takeoff—mach 0.3, (2) subsonic—mach 0.9, (3)

transonic—mach 1.0, and (4) supersonic-mach 1.1. If the aircraft does not operate above
mach 0.9, then the transonic and supersonic values need not be entered . However , the ’ user
should be careful that the flight profile does not inadvertently cause the aircraft to enter
this flight regime.

2.2.3.3.2.2 Propulsion Section. The second section is utilized to enter date regarding
engine charac teristics. Four items over and above the standard six items must be specified .
These are:

1. Military specifi c impulse (hr)—this item is used to calculate fuel consumption for
normal throttle settings;

178

k. -~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



:~~~ ‘~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
— —

~
- P-—-

2. Max imum specific impulse (hr)—this item is used to calculate fuel consumption
when the afterburner is used ;

3. Military thrust (lb)—max imuni thrust without the use of afterburner; idle thrust is
assumed to be 20 percent of this value; and

4. Maximum thrust (tb)—maximu m thrust with afterburner .

If the aircraft does not have an afterburner , Items two and four above should be the
same as one and three, respectively.

2.2.3.3.2.3 Radar Section. This section is reserved for pulse Doppler radar . The
peculiar data items are:

1. Peak transmitted power (W),
2. Pulse repetition frequency (Hz),
3. High (1) or low (2) PRF (not presently used),
4. Transmit duty cycle,
5. Receive duty cycle,
6. Antenna gain (db),
7. Wavelength (m),
8. Bandwidth (Hz),
9. Noise figure (dB),

10. System losses (dB),
11. Sidelobe gain (dB), and

12. False alarm number.

2.2.3.3.2 .4 Radar Main Beam Clutter Fitter Section. ThIS section is reserved for the
radar main beam clutter filter data . Data are entered as filter gain (dB) versus the difference
between range rate and clutter velocity (FPS). Up to four values of gain can be entered (all

negative dB) for four values of velocity difference (must be positive monotone increasing).

2.2.3.3.2.5 IR Detector Section. This section is reserved for entering the response
versus wavelength (micron). Up to eight values of response can be entered. The units of
detectivity are CM*HZ**.5/W, The logarithm (base 10) of detectivity is entered. The data
couples should be entered in increasing values of wavelength.

2.2.3.3.2.6 IR Optics Section. This section is reserved for entering the IR optics
transmissitivity versus wavelength (ja). Up to four data couples can be entered in increasing
values of wavelength . The transmissitivity can take on values between zero and one.

179

-~~-~~~~~~~~~~~~ —-—I—— -

SECT ION 2.2 BIBLIOGR APHY

AEP Pro~~ams

Hattelle. (‘olumbus , .-t i io ’i ies I~’t ’aluation P i ’ograrn - ‘ser Manual, July 19, 1976.
ltettelle. Columbu s , ir to- .4ir . 1tuniics Et~iluation Progra m . f ’s-er’s .%f a nual , July 31, 1975.

I3attelle. (‘olumbus . :tt ’ionie ’s l.’raluat ion P r ogrur r i Mult ipl e .4,r emf t. .%l ulttp le ~.or ties. a nd
(‘ost .4eeumulat:on . AF’ Al. .TR.76.19(i , November , 1976.

Su mmers , l)uene E ., and Welp. l)tev te l W ‘‘ :~vta t ion L’~valuat ion Programs. ’’ published paper.
Source’ unknown .

Vi el p .4 pp 1 tea tioa of lnteru t’tu ’ e’ Gruphu ’s to the ru es ~‘t ’~t l I i a f son Progr am.

.‘i F’ Al . -1’ ii- 73 ~ 70. November 1973.
lVe’lp . .1 ‘. ‘~‘tç’:~ ter l~rogv-~uri for .“irnuhi tton and b’ffr ’tu ’eness ~.‘t ’olua f t o n of .1 i’U’Hh’s for

.l l th ta rv %, r ,.’raf t AFAt . -’l’R~73~t4 , Febniarv l~)73

2.3 GAS P IV

2.3. 1 Models , Systems , and Simulations

A simulat ton language provides the structure and termino logy to faci litat e the build tug
of simulations. i. .-\SP 1V is such a computer language ; it helps the user to build computer
simulation programs that can be both the model of the system and the analysis vehicle . Thus

this program e~m he’ eonside ’reel a model of a system and a generator of statistical data about

the’ model of the sv st t ’m.

GASP I\ ’ enables statist ical experiments to be conducted , but it does not deal with
actual exper imental design. GASP I\’ can make simulation economical and t e~’hn ically

feasible’, but it clot ’s not provid e information that makes th e ’ “simulate or not ” decision any

e’asier.

2.3.1.1 Featu res

a ~‘rogrammmg language, G:~SP IV gives the computer programmer a set of
FOR TRAN st a t e ’me” it s designed to carry out the most important functi ons in simulation
progr amming Modeling concepts are translated by (~:~SP IV ili t ee FORTR :~ N r out ines th a t
t~ Ui he easiI~’ usisi . G ASP t\’ has f iv e dist iiie t features that make’ it pa rt icularly attnie ’ti ve’ as a

simulation language ’

180

____________ - ____

~~~~~~~~~~~ -~~~ ——S



—~~~~—.—-, ,~~~.. -.~~-‘-~ - .S—.— 

~r~’T~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~

_ _, —~~~~
-,-

~~~
_ - -5 .-- .- -. .—- - ..-

1. GASP IV is FO RTRAN based and req u ires no separate compiling system.
2. GASP IV is modular and can be made to fit on all machines that use’ a FORTRAN

IV compiler.
3. GASP IV is easy to learn since the host programming language , FORTRAN IV , is

usually known , and only the simulation concepts need he mastered .
- GASP IV can be used for discrete ’, continuous , and combined modeling.

~~ . GASP IV is easily modified and extended to meet the needs of particular
app licatio ns.

2.3. 1 .2 Disc rete , Continuous , and Combined Simulation

Simulation is divided into two categories: discrete change’ and continuous change’ . These’
terms describe the model , not the real system. In fact , it may he possible to model the same’
system with either a discrete change (hereafter referred to simpl y as discrete) or a
continuous change (continuous) model. GASP 1V is designed to accommodate both
cat egories of models, separately or combined . In most simulations , time is the major
independent variable. Other variables included in a simulation are functions of time and art’
the dependent variables. The adjectives discrete and continuous refer to the behav ior of the
dependent vari able.s.

Discrete simulation occui~ when the dependent variables of the model change discretel y
at specif ie~i points in simulated time. The time variable may be either continuous or discrete
in such a model , depending on whether the discrete changes in the dependent var iable s can
occur at any point in time or only at specified points . Variable time increment (including
next-event) procedures result in a continuous time variable , whereas fix ed time increment
procedure’s are normally discrete in time. GASP IV is a discrete simulation language’;
however , it is necessary to recognize that a digital computer is technically discrete in it,s
operation. As a practical matter , however , any variable whose possible values are limited
only by the inherent capabilities of a computer is considered continuous.

In continuous simulation , the dependent variables of the model may change
continuously over simulated time. A continuous model may be either continuous or discrete
in ti me, depending on whether the values of the dependent variable’s art’ available at any
point in simulated time or only at specified points in simulated time.

In combined simulation the dependent variables of a model may change discretely,
continuously, or continuousl y with discrete jumps superimposed . The time variable may be

discrete or continuous.

181

- 5-.-- ~__ii 
~~~~~~ —.--.- -~~~~~~~~~~ S - -~~~~~~~~~~~ -~~~—~~~~~~~ ~~~~~~~ -‘~~--~~~~

-
—5-

—,--.-.— - .----—-——-.- --—-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 -555

GASP IV is a la,wuage that can be used for discrete , continuous, or combined
simulation. In GASP IV , the most important characteristics of combined simulation , which
ar ise’ from th e’ interaction between discretely and continuously changing variables , art’ easily
modeled, in general , this interaction takes one of three forms. First, discrete changes m ay lx’

app lied to “ continuous ” variables. Second , achieving specified conditions for a state variable
may c8Use’ an event to occur or to be scheduled . Third , the functional description of
continuous variable’s may be changed discretely.

2.3.2 GASP IV Philosophy

The phi losophical basis for the design of GASP 1\’ is the concept of modeling a system
in two dimensions: the time dimension and the state-space dimension. Fundamental to
build ing a GASP lV simulation model is the decomposition of time and the state space into
manageable elements . The decomposition in the time dimension involves the defining of
events and potential changes to the system when an event occurs. The GASP IV phi losophy
requires that the user specify the causal mechanisms by which events can occur. but relieves
him completely of the need for sequencin g the events. Thus the user must only define the
mathematical-logical relations that transpire’ at an event occurrence, and he is not required
to model the timing of events during a simulation. This decomposition of the time axis into
points at which events could occur is a huge reduction in the size of the modeling effort.

in the state-space dimension GASP IV presumes that a system model can be’
decomposed into its entities, which art’ described by attributes. These are further classified
as discrete or continuous. The use of the adjectives “discrete” and “continuous” is
motiv ated by their use n the definitions of discrete and continuous simulation. More
descriptive adjectives would be static and dynamic. The value of a discrete attribute remains
constant between event times. The value of a continuous attribute may change between
events according to a prescribed dynamic behavior. Because of the special nature of
continuous attributes and the need for the user to model their dynamic behavior , they art’
referred to as state variables. Special storage arrays are provided in GASP l\~ for storing
values of state variables and , also , if required , their derivatives and immediate past values. To

avoid confusion , the word “attribute” is used to refer only to a discrete attribute.

GASP IV specifies that the status of a system be described in terms of a set of entities,

their associated attributes , and state variables. The GASP IV simulation philosophy is that a
dynamic simulation can be obtained by modeling the events of the system and by advancing
time from one event to the next. This philosophy presumes a broader definition of event
than has normally been used in discrete-event languages:

182

~~~~~~~~~~~~~~~~~~ 

. ‘

-.
-

An event occurs at any point in time beyond which the status of a system
cannot be projected with certainty.

Events usually cause changes in the status of the system or in the equations defining the
sta te ’ variables of the system. h owever , this definit ion does not necessarily relate an event to
any change’, eithe r discrete or continuous , in the status of a system. Events could occur at
decision points where’ the decision is not to chan ge the status of the system. Conversely, the
above’ def inition allows the system status to change continuously without an e’ve’nt
occurring, as long as the ’ change has been prescribed in a well-defined manner.

In GASP IV it is useful to describe’ events in terms of the mechanism by which they are
scheduled . Those that occur at a spee’i fie’d proj e’e’ted point in time art’ referred to as
time-events. They are commonly used in conjunction with “next event” simulation. Those
tha t occur when the system reaches a part icular state are called state-events. Unlike
ti me-events , they are’ not scheduled in the future but occur when state variables meet
prescribed conditions. in GASP IV , state-event-s can initiate time-events and time-events can
i n iti ate state-events.

The behavior of a system model is simulated 1w computing the values of the attributes
at event ti mes . The time ’ step increment is automatically dete’rmined by GASP I\’ . based on
the ’ equal ion form fo r the’ state’ variabl es , the time of the next e’vent , and accurac y and
output req u irements.

When an event occurs , it can change system stat u s in thr ee’ ways : by altering the’ value
of state ’ variables or the attributes of the entities; by altering relationships that exist among
entities or st-ate variables; and ’or by changing the’ numbe r of entities present. Methods are
available in GASP IV for accomplishing each type of change. Any of these chan ges can
result fro m th e occurrence of an event. Between event times, only the values of the state
variables can change .

At each time-step, the state ’ variables art’ evaluated to determine’ if the conditions
prescribing a state-event have occurred . If a state-event was passed, the st ep size was too
large and is reduced. If a state-event occurs, the model status is updated according to the
user’s state-event subroutine. Step size is automatically set so that no time-event will occur
within a step. This is accomplished by setting the step size so that the time-event ends the
step.

Since time’-e’vents are’ scheduled happenings, certain attributes are associated with them.

183

______ ~~~~~~~~~~~

-

~~~~~~~
-- -  .



~1

‘
p

At the min imum , a t ime’-event must hav e attributes that define its tim e .’ of occurrence and its

type’ . If the ’ t lme ’ -e’v at is associated with an entity , either the attributes of that en t i ty  must

be’ associated with it or the event must ht ’ able’ to refer to the attributes of the entity.  For

e~aniple . if the re’ is an end-of-st’iv ice’ event for an item , the attrib utes for that item must in

some way be associated with the event.

2.3.2.1 Data Storage and Timing Requirements

In GASP IV a system ’s file-e ’nt ity -attribut e structure is established by data declarations.
Kntit ies are represented by vectors and matrices , the elements of which are stored and

re’present attribute data .

The membership of entities to groups (such as a waiting line) is changeable , and th e data

that express them are stored differentl y. They are stored in computer lists called files. A
single array NSET is used to store all files. Special routines , such as F 1LEM (to put an entity
in a file ) and RM OVE (to take an entity from a file), are par t of the GASP I V language.

Entities , at t ributes , state variables , and fil e memberships comprise the static structure of
a simulation model. They describe the state’ of a system model hut not the operation of the
syste m. The latter depends on event definitions and the ’ equations defining the behavior of
the’ state variables.

The key to event simulation is the ability to organize events so that they are’ t’xe’c uted
within the computer in an order corresponding to that which would occur in the real
system. This preserves the time relation ship between simulated and real events. Ordinary
programming langu ages arc unsuitable for this task beCause they operate in a strictl y
sequential manner; there is no way to tell a FORTRAN program to “do something later ”
without bu ildin g special subprograms. GASP IV prov ides these subprograms.

2.3.2.2 Meth od of Simulation Programming

Every GASP IV simulation model consists of: (1) a set of event programs or state
variable equations , or both , th at describe a system ’s dynamic behavior , ( 2) lists and matrices
that store nfor mation , (3) an executive routine that directs the flow of ’ in f ormat ion and
con trol w i th i n the model, and (4) support routines. These’ form an operating computer
program whose performance re’flects that of a simulated system . A  GASP l\ ’ program is

made ’ up of subprograms linked together by an executiv e routine that organizes and controls
the ’ performance of the subprograms.

184

—— —5-- _ _ ___ •
55

_ .5— -— —-— —5--,. ~~~~~~~~~~~~~~~~~ ~~~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .ia -5L~~ 5 _, .


-
-. ~~~~~ ‘

~~
_

‘ T :5
~~~~~~~~~~

-
~~~~~~~~

_ —
~~~~~~~

.’

Simulation programs conta in routines for reading input data, performing record keeping
tasks, advancing time, updating system status, producing reports of the simulated system’s
behavior, and so forth. A simulation program is said to be in a particular mode of operation
when it is performing the correspondin g function , for example , the input mode or the
simulation mode. A mode can, when necessary, call upon many separate programs, each
performing a task related to the general function of the mode.

2.3.2.3 GASP IV Functional Capabilities

• GASP IV is organized to provide eight specific functional capabilities:

1. Event control.
2. State variable updating using integration if necessary.
3. Information storage and retrieval.
4. System state initialization.
5. System performance data collection.

• 6. Program monitoring and event reporting.
7. Statistical computations and report generation.
8. Random deviate generation. -

Four of these capabilities, (1), (2), (4), and (6), are primary functions. At the time a
program is engaged in one of them it is not performing any of the others. The remaining

- four , (3), (5), (7), and (8), are support oriented; they provide a fundamental computational
or data processing capability th at is not contro l oriented.

The four primary capabilities constitute the basic modes of GASP N , which are shown
in Figure 2.3.2.3-1.

Two forms of program control are required. One directs the program into its various
modes: initialization , state variable updating, monitoring, and so forth. The other operates
within the simulation model and sequences the execution of event routines. In GASP IV,
the first function is called the executive function and the second is called the event selection
function.

The executive function is computationall y and logically oriented; it switches from mode
to mode as the logic of a program dictates. It also updates state variables over time using a
step-evaluate-step procedure. At each step, the state variables are updated and their values
are checked against the conditions defining state-events. The event-selection function is
time-oriented; it switches to an event when one occurs.

185

— 5—.— 5-——-. ~—‘--~~~~~-. ~v~:— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~


5- -

~~~~~

‘

~~

“- 

~

- --, .- - -- -- 
~~~~~~~~~~~~~~~~~~~ Th-~’.~~’ ~~rr’ç~ ~~~~~

-: -~~_~ :z~ —- - r ’ 5 - -- .--- —.-- - .
- .- ~~— ‘~~~~~~

~~~

-- - -  —e--

T st.n I

1~-~:!t_~ ~‘::=‘ I
lip

System ~~~ Event [~~~Po,r.m Meu.Itestn~l ltlsttistton L Cont ro l L end R.psrtln~

_ _ _ _ _ _  _ _   1
I ~ ; Ii ~ IL~i 1 ~1 F~ m I 

~~T’ [~i~°:::j
• 1

FIgure 73.2.3.1. Basic mod es of GASP IV control.

Additional simulation f le x ib i l i ty  can b~’ achit ’ve’d tw def in in g control events in addition

0 sy stem a c t iv i t y  events. ‘I’he’st’ e’vents art’ time oriented instruct -ions to t he’ execut ive’ that

allow mod e’ swit ch ing to  be performed on a time’ and a logic basis. One’ can schedule an
event to go int o output mode” when the simulator clock rt’ache’s 1000 hours as well as
when demand e’xcee~,ts 100 unit -s.

‘I’he’ form ot’ organization used in GASP IV is hierarchical; the’re’ art’ two levels of

control , ~nd each le’vel has authority over its subordinate ’ le’vols.

The highest level of progra m control , the’ e’xt ’cn t ive’ leve l , el t ’termini ’s what the ’ program
must do at each point in simulated time and directs control to the ’ appropriate ’ mod e’ to

twrf orm the selected task. Control passes from executiv e’ level to mode’ and back again.
Control is maintained within a mode until all computations and e’valuations pertin ent t o
that mode’ have been made’. ‘I’he’ sequencing of the computations and evaluat ions is
accomplished as part of th e functi on designed into the’ subprogriuns of the imxle.

One’ of th e’ most important uses of simulation Is to Investigate the effec t of changes in a

system on selee’te’d measures of system performance. ‘I’his I~ trite ’ whether a simulation is

186

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ — —.~.- ~~~~~~~~~ _,


being used for evaluation or deeign . The “hierarchical control-mode-data pool” concepts

provide the needed flexibility in design and adaptation, since changes in simulatio n models
usually require changes in input data, system elements, or event logic. A modular structure

allows event logic to be changed quite simply, because each event is a separate subprogram.
A data pool allows changes made in data inputs to be communicated throughout an entire

simulation model by a change in a single data input. The preparation of reports summarizing
the results of simulation runs is simplified by utilizing standard report programs that obtain
their information from the common data pool. Perh aps most important of all , model
debugging is simplified by providing access points at which program results can be sampled
without interfering with the logic of particular events.

2 3.3 GASP IV Definitions and Procedures

A simulation program written in GASP N consists of two parts: a user part and a GASP
11 part. The user part contains subprograms b r initialization (the main program and
subroutine INTLC); equations for state variables and conditions defining state- events
(subroutines STATE and SCOND); event code definitions (subroutine EVNTS) ; event
processing (subroutines called by EVNTS); and special data collection and reportin g
procedures (subroutines SSAVE, OTPUT, and UERR). The GASP IV part contains
subprograms that provide for the following functions: the executive or mode controller
(su broutine GASP), data and event initialization (subroutine DATIN), data stor age and
retrieval , data collection, statistics computation and reporting , monitoring and error
reporting, random deviate generation , and miscellaneous support.

The GASP IV fu nction of the statu s advance includes the sequencing of time-events ,
identification of state ~event .s, and state variable integration if needed. It is the heart of the
executive process. The main program initializes the non-GASP variables that are to remain
constant for all simulation runs. Subroutine GASP is then called from the main program.
The general layout of the main program is shown in Figure 2.3.3-1. Subroutine GASP ’s first
action is to call subroutine DATIN , which initializes all GASP IV variables either throu gh
arithmetic statements or the reading of data cards. Either data cards or a prog ramming code
can be used to establish the initial events and entities for the simulation. Subroutine DATIN
calls the user generated subroutine INTLC , which is used to initialize non-GASP variables at
the start of each run. Through the use of subroutine INTLC the user can perform sequential
simulations with changes in the non-GASP variables. Initialization of state variables is
accomplished by a call to subrouti ne STATE. This completes the initialization phase of the
simulation.

- 5 --
-

. - .
~~~~~~~~~~~~~~~~

.. - - -



____________________________ - - ~~~~~ ‘5-~~ 
‘

~~~~
_ ~~~~- ; :~~~~~~ - :

~~

5- ‘ “~~~~~~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~ -

~~~~~~~

-

~~~~~

-

C MAI N PROGRAM
DIMENSION NSET (NNSET)

C NNSET to be specified
COMMON (GASP varia bles)
COMMON (non-GASP variables. This must be a named
COMMON Block)
EQUIVALENCE (NSET(1), QSET(1))

C Initialization of non-GASP variables
C Ini tializ e Card Reader Value , NCRDR and Printer Value,
C NPRNT.

CALL GASP
C It more runs are desired, insert GO TO statement
C to either reinitialize non-GASP variables or
C to CALL GASP again

sTop
END

Figure 2.3,3.1. Layout of main program.

During a simulation run , subroutine GASP determines if a time advance by a step or to
the next event should he made. If the simulation only involves time-events, TNOW is set
equal to the time of the next e’vent. If only a continuous simulation is being performed ,

TNOW is advanced to the time at which the next evaluation of the state’ variables is to be

made’. If a combined simulation is being performed , the time advance occurs by steps, with
the step size’ adjusted when necessary to end at an event. :\ run can be comp leted either by
setting a time for completion or by having an end.of-sirnulation event. If a run is not
completed , the clock for the simulation , as represented by the variable TNOW , is advan ced.

In continuous and combined simulations , the updating of the state variables is

performed in subroutine STATE. The vectors SS(•) ~~~~ 1)1) (.) are ’ used to (k ’ftnt ’ the stat e
variab le values and their derivative ’s, respectively. The user must code subroutine STATE in
a manner that permits the calculation of SS(‘) or Dl)(I . Once the sLth’ variables an’
updated , thei r value ’s are ’ checked against user prescribed conditions that define state’-e’ve nts
in subroutine SCOND . If no st at t ’ -e’ve’nt has occurred, time ’ is advanced again by subroutin e

GASP.

If t im ’ has advance’el to a t inu’~e’ve ’nt , sub rout ine ’ G:~SP obtains th e attribute ’s for the ’
event by re ’nR)v tu g t in ’ first (‘vent st t~rcd iii fil e 1, which is t he event fil e or eah ’ndar of

155

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~_ • ~~,• ~- - 



-
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - —- -

~~~
--——

~

-~1 eve’nts. ‘l’he user written subroutine ’ E\’ N’l’S( I X )  is then e’aIle ~l to tk ’ci phe’r the event code’,
IX , and to c -aU the appropriate ’ e’ve’nt subroutin e .

A call t et  subroutine ’ EVNTS is also made if a state-eve’nt occurs. in this ease , IX is the ’
state-e ’vent code’ indicating that a stat e ’ .e’vent has ot’e’urrt ’d.

Whe’n a simulation run is eomple’ted , subroutine O’l’Pt t ’L ’ is calle’d. Subroutine ’ O’l’Pt ‘‘1’
provides the ’ user with a m echanism to make final calculat ions for the simulation run and to
print out any spec i fi c information that - was collected during the’ run. ‘l’hus the ’ call of
subroutine ’ O’l’l’I l’l’ t a n  be’ used as an end-of -sin iulmet ion e’Vent- . Following it return from

— subroutine ’ O’l’PL ‘1 , subroutine ’ GASP calls subroutine ’ SLIM KY , which P r ints out th e ’ fi tial
GASP l\ ’ summary report , inclu d ing statistical in furnui t ion , tables of state ’ variable ’s , and
plots ut ’ s tate var iables. ‘l’he’ user e’an also suppre ss the ’ printing of the’ (3 ASP IV summary
report. Following the ’ printing of t-h e’ final summary report , tests are’ nuttle t-o determine ’ it ’
other simulat ion runs are’ to 1w made’. :~ ne’w simulation run can he’ start-ed by returning to

- 
- 

the ’ main program for t ’omple’te’ rein i t iul izat i on or to subroutine ’ l)A’ l ’IN for p artial
re ’initial izati on . If another run is to ht ’ munci e’, t he’ above ’— nte ’ntione ’e t l roce’ss is repeated . If no
f urth er nws are ’ r eeluir eMi , the ’ si nwh itiea program is l. ’rminati ’d .

2.3.3. 1 An Overview of Subroutine GASP

Figure ’ 23 .3 .1- i  prese ’nts a dese’r iptive ’ flow chart of subroutine ’ GASP. (‘~ASP first calls
subroutine ’ DA I’IN , whie ’h initializes all GAS1~ IV variable ’s eith e’r dire ’ctly or from reading
data e’ards. Initia l e’ve’nts and other file ’ e’ntxies can also be established by l) ,Vl ’lN . 13e’side’s
ini tiali zation . DA’I’IN ulso prints out the ’ value’s of the’ input data. Events to occur at the
beginning of the ’ simulation art’ then processed .

:~ test is then made’ to dete ’rmine ’ if the ’ simulation involve’s only t imue ’-e ’ve ’nts , t hat is, a
‘ 

~list rt ’t e ’ simulation. If this is the ease’, a next e’v e’nt time ’ advance’ is used and the ’ simul ation
prot’e’e’d s from time’-e’vent to time—e ’ve’nt until a signal is given to end the ’ simulat ion. ‘l’he’
metho d used in (‘ ASP IV to p*’rf ~rtit t h. ’ nex t event portion of a simulation involve’s file ’ 1 .
the’ e’vent file’ use’d to store’ attribute ’s assot’iate ’d with e’ve ’nt s. Since’ events must 1w inse ’rt e ’el
in th e’ file ’ and removed fro m it in chronologie’aI orde’r , it is ne’ce’ssary to have’ routines for
these’ functions. ‘l’he’ GASP IV subroutine ’ FILEM puts e’ve’nts in the ’ e’ve ’nt file ’ based on the
time’—of• eve’nt attribute ’. ‘I’he subroutine ’ R MO V E re ’moves e’ve ’nts from the ’ e’ve ’n t file ’ . l’hus
GASP l\’ pr ovi(les an information storage’ and retrieval system for events.

In add it ion to the ’ e’ale’ndar of e ’ve ’nt s , ot he ’r file’s of informat ion must usually be’

189

- --~~~ - -~~~~- - ~~~~~
‘__j~~~~~~~~ _ _

_ 
— -

— 

- ~~~~- 

—- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r- ~~ ’ ’~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘ — ~~~~~~~~~~~~~~~:

Stat

Establlth ‘mitisi caisditions
and procsa In itial .vents

Stat. or No .t~ nm saut
dorlustive ustisas?

yes

Sst Sr n es t asut st~ *.
Estib1is~ II tim.wut

sods it.

accunsey
OK?

yes

Sat.-Yss -

st.p?

No

U~d.ts stats vsnl.blss and TNOW

ate—or tiNo .~..t or both
at sad of its

V..

Prsesa. avant(s)

N ~~~ d St Pniat summay

Figure 2.3,111. DescrIptive flow citart .1 subroutine GASP.

190

I
’

—
- - . - ~~~~~~~~~~~~~~~ - , ...~ . ~- —‘.~~~~~~

-—-----
~~‘_~~~~~~~

_
~~~~~‘ ~~‘“

-
~~~~~~~

‘ - - -

maintained during simulation runs. All files are stored in the equivalenced arrays
F NSET/QSET and are procecued by the subroutines FILEM and RMOVE.

To write a discrete event simulation program, it is necessary to specify the changes that
occur at event times , and the futu re events that are generated by event occurrences. The
user writes these event routines, such as ARR I V and ESERV , which specify what happens in
the simulation model when these events occur.

To write a continuous simulation program, the equations governing the dynamics of the
state’ variables must he defined , and state-event conditions must be specified if they exist.
For a combined discrete-continuous simulation , all of these must be written. GASP IV has
been designed to reduce , as much as possible , the amount of programming necessary beyond
writing the event and state variable routines.

If the simulation involves “continuous ” variables , a step-eva luat e.step time advance
procedure is used. The step size is varibble to ensure that no events occur within the step
and that the desired accuracy in the calculation of state var iables is maintained . The
accuracy test is necessary only if state variables are described in terms of a derivative
equation , where integration is required to obtain state variable values. To ensure that a
time-even t does not occur within a step, the step size is automatically adjusted so that the
time-event occurs at the end of the step. For state-events the step size is reduced if such an
even t occurs within the step. The step size is set so that either no state-event occurs within it
(but may occur at the end of the step) or the minimum step allowed is used . The minimum
step allowed is specified as an inpu t value by the user. A state-event occurring within the
minimum step size is considered to occur at the end of the step.

The conditions for a state -event art ’ defined by the user and would normally involve a
state variable achieving a threshold with a prescribed tolerance. The user codes these
conditions in subroutine SCOND. The equations defining the state variables art’ coded in
subroutine STATE. Subroutine GASP establishes a step size by which it attempts to advance
time. Subroutine STATE is called to compute the values of the state variables at the end of
the proposed step. For each derivative equation , intermediate calls to STATE are made to

—

perform accuracy checks and to allow derivative equations to be funct ions of the state
variables. it accuracy is not met, the step size is reduced accordingly and the process
described abov e is reinitiat.ed.

If accuracy conditions an~ met , subroutine SCOND is called to check whether a

191

- , - - - -
.

~~2~~-r

E~’~~~’ T ~~ ~~~“ ‘ “~~ ‘ ~~
- - -—-----..

— — — - —-- - -~~---- - - -
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

stat e-event occurred within the step. After a return from SCOND , GASP performs a test on
the GASP IV variable , ISEES , to determine if a state-event has been passed (ISEE S K 0.), if
one occurs at the end of the step (I SEE S > 0), or neither of these (I SEES = 0). In the first
case, the step size is reduced and the above -mentioned process is repeated . ln the latter two
cases, the step size ts accepted and model status, including TNOW , is updated . GASP 1V
provides the subprogram KROSS , which automatically sets ISEES. Function KROSS detects
the crossing of a variable beyond a threshold , or the crossing of one variable by another
variable. If the user does not employ KROSS , he must set ISEES before retu rn ing from
subroutine SCOND.

If the step ends with an event , this is processed by calling subroutine EVNTS , which
calls the appropriate event based on the event code of the event occurring. A check is then
made to determine if the simulation is to he ended . if not , a nex t step is processed .

At the end of the simulation run , a standard GASP IV summary report is printed , and
tables and plots of the state variable values are’ printed as requested.

Table 2.3.3.1-1 lists definitions for the GASP IV variables that are commonly used Iw
the GASP 1V programmer. Other important variables art’ established through data input and
these are defined in Table 2.3.5.1-1.

All GASP IV variables, with the exception of NS 1~T, are in named COMMON blocks.
Blank COMMON is only used for the array NSET. The GASP IV user must not use blank
COMMON for non-GASP variables.

2.3.3.2 Mode l Status Definition and Control

The sta tus of a GASP IV simulation model is defined in terms of events , entities and
their attributes , state variables , or a combination of the three. Entity definition and storage’
in GASP IV is accomplished through the use’ of the file storage arrays NSET/QSET and tilt ’
processing routines . Events are scheduled to occur either at a future time’ (a time-event) or
when state variables meet specified conditions (a state-event ). Time-events and their
associated attributes are stored in file 1 using predecessor and suct’essdr pointers. Ent i t i e s
and their associated attributes art’ stored in fil e 2 through file’ NNF ’IL. State variables and
their derivatives are stored in the GASP IV arrays SS( .) and DD( ’) .

2.3.3.3 State Variable Definition

The’ GASP IV variables SS( I ) ,  SSL( I ), DD( II ,  and Dl)L ( I )  ar e used to de’fine’ the’ state ’

192

__________________________________________________________________ - 
~~~~~r~~z~~~ — r


-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ r

TABLE 2.3.3.1-1. DEFINITIONS OF COMMONLY USED GASP IV VARIABLES

Variable Definition

A TR IB(I) Buffer storage for the Ith attribute value to be stored in or
removed from QS ET

DD(I) The value of the derivative of SS(I) at TNOW
00 1(l) The value of the deriv ative of SS(I) at TTLAS
OTFUL Fuli step s ize
UTNOW TNOW-TT I.AS
lIE VT Cods of state- events
II NN(l) Prio rity r.nking indic ator for file I
ISEES Intern al indicato r that a sta te-event ends currentstep
J EVNT Cods of time -event to be processed, which is the second

attribute of an event
KKRNK (I) The attribute on which file l i e  ranked
LFLAG (l) State condition flags
MFA Relative address of the first cell of NSET/QSET available t or

storing a new entry
MF E(l) The pointer to the fi rst ent ry in file I
ML E(l ) The pointer to the last entry in file I
MSTOP Indicator for specifying method of ending the s imulation
NNATR Number at attributes per en try
NCRDR Number of the card reader (input tape number )
NFLAG Number of state condition flags
NPRNT Number of the printer (output tape number)
NNQ(l) The current numbe r of entries in tile I
NSETU) Integer representation of filing array; used for pointers only
PPARM(I , J) Array for storing parameter values
QSET(l) Real valued representation of the tile storage area; used for all

attribute values
QQTIM(l) Time of last use of file I
SS(I) The value of the state variable SS(l) at TNDW
SSL(l) The value of the state va riable 55(l) at TTLAS
TTLAS The last time at which in event could have occurre d; when a

step advance is in progress.
TTLAS is ths tim , at which acceptable values of SS(l)
were computed

TNOW Current time of simulation; when a step advance Is in progress.
TNOW is the time to which GASP is trying to advance

variables and their derivatives at times TNOW and TTLAS where

TNOW = time at which values of the state varia bles are being computed.
T’FLAS = time at the beginning of the current step (the time at which the values for the

state variables were’ last accepted).

193

- - — - — ~~~~~~~~~~ 
— 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_ _ _ _

~~~~~~~~

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SS(I) = value of state variable I at time TNOW.
SSL( I) = value of state variable I at time TTLAS.
DD(I) = value of the derivative of state variable I at time TNOW.
DDL(l) value of the derivative of state variable I at time TTLAS.

The equation s for calculating the values of SS(l) and DD(I )  must b~ written by the user
and included in subroutine STATE. All state variables are in G:~SP IV common storage and
are accessible to the user in any subprogram.

2.3.3.4 T ime Advance Proced u res

In G A SP IV . the amount by which simulated time is advanced depends on the type of’

si mulation being perform ed and the values of specific variables at the current point in time.

2.3.3.4.1 Discrete simulation

In a discrete simulation. time is advanced from one event to the next event, It is
assu ned that the system status has remained constant between events.

2.3.3.4.2 Continuous simulation

For a continuous simulation , the maximum step size prescribed by the user is employed ,
unless an event occurs within the step. Should this occur , the step size is reduced , if the
event causes a state variable to cross a threshold beyond allowable tolerances. The step size
is reduced (typicall y halved ) based upon allowable error specifications introduced by the
user. When all state variables are within the accuracy specifications to a significant extent ,
the next step size to be used is increased by an integration algorithm.

It is obvious that the time advance procedures included within GASP IV involv e many
variables with many interactions between these variables. Subroutine GASP automatically
advances time for the user based on the input values prescribed for the minimum step size
DTMIN , the maximum step size, DTMAX , and the increment in time between the recording
of the status of the system, DTSAV. The accuracy requirements of absolute error value,

AAERR , and relative error value, RRERR , as well as the value of the derivative of the state
variables as specified by the user also determine the time advance procedures used .

194

—— ~~~~. r~~.— ----~~~~



2.3.4 GASP IV Subprograms

2.3.4.1 GASP IV Storage Requirements and Lim itations

GASP I\ ’ uses both named and blank COMMON storage. Variables art’ stored in

COMMON for one of two reasons: ( 1)  to make their values accessible to other subprograms .

or (2 )  to prevent their undefinitior i upon execution of a RET URN in the subprogram in

which th e’v art ’ defined .

Blank COMMON is only used for the array , NSET. The’ GASP LV user must not use

blan k COMMON for non-GASP variables.

NSET is placed in blank COMMON storage so that it can be dimensioned to the required

size in the main program and nominally dimensioned t-o one in all the GASP IV

subprograms. This takes advantage of the fact that the size of b lank ( ‘OMMON in the

various subprograms comprising an executable program need not he the same. Thus

precompiled GASP IV subprograms with NSET dimensioned at one can be maintained on

the computing system , and the dimension of NSET can bt’ set in the user ’s mait~ program.

Named COMMON is used for all GASP IV variables oth er than NSE’l’, which requ ire

COMMON storage.

The organization of the named COMMON blocks was designed to minimize ’ the number

of COMMON blocks required in the user subprograms. :~ gross description of the variables

for each common block is given below:

1. UCOM 1 \‘ariahles associa ted with discrete ’ simulations.

2. G(’0M2 Variables associated with continuous simulations.

3. G(’0M3 Var iables associated with a step time ’ advance’ procedure .

4. GCOM.1 Variables associated with dat-a collection and report ing.

5. GC OM 5 Var iables assoeiate ’d with run conditions and description.

6. GCOM6 \‘ariahle’s assoL’iate’d with fil ing system and statistical storage arrays.

The’ limitations in~~osed by array size and the variable ’s causing the limitation are’

prese’nte’d below. A D:~TA statement is included in subroutine’ DATIN. which specific’s the ’

largest value ’ for each limitation. :~ e’heck is made in subroutine ’ l) :~TlN to e’nsurt ’ that these

array size’s are’ not exceeded :

1. Numbe’r of state variables ~ 100 ,

195

=— -~ ---~-— ~— —~~~~~~~~~ ‘-— — ~~~~~ 

—



- - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

~-—

~~~~~~~ -- - - -  ~~~~~~~~~~~~~~~

p

2. Numb er of histognims -~ 25,
3. Total numb er of cells for all histograms ~ 500.
-I - Nunibe ’r of var iabl es for which statisti cs are collected ~‘ 25,
5. Nu mb er  of variable’s for which statistics are’ collected over tim e ‘- -  25 .
6. Numb e r of attnbutt ’s describing an eve’nt ~ 25.

Numbe r of file ’s ~ 100.
S. Numb er  o f parameter sets ~~. 50,
9. Numbe ’r of p lots ’ - 10 .

10. Number of variables per p lot ~ 10,
11. Number of random number streams ~ 6,
12 N umber of st ate t’ond it ions  — 50,

13. Nu mber of ent r ies per t’ilt ’ li mited only by available core ’ storage .

2.3.4.2 Functional Breakdown of GASP IV

lh e f unct iona l breakdown of t hi’ ( :~SP IV subprograms is shown in l’able ’ 2.3 .4.2- 1 , In

athlition t t ’ list i ng th e genera l functions included in simulation programs , I’~ilih ’ 2. 3-1 . 2 -I
4 t -iate’go nies eat -h subprogra m accord i ng to whether it is (i:~.SP l\ ’ p rovided ot user wri t ten.

Bri ef descript ions ot’ the subrout ines follow.

2.3.4.2.1 T ime advance and status update (subroutine GASP)

The’ GASP IV function of status advance’ includes the’ sequencing of time-events .
identifi cat io n of s t a te -even t s , and state variabl e’ integration if needed . It is the ’ heart of the
e’Xe’t’utive process.

Subroutine (‘~ ASP i’ the GASP IV executive ’ routine , it selects the appropriate mode of
control and calls the necessary subroutine’s to process a simulation from ini t ia l izat ion of the

fir st run through output of the final run. Subroutine GASP is called only by th~’ user wr it ten

mai n progra m , and contro l is not returned to the ’ main program unt i l  t h e’ requeste’d number
of run s has been completed .

2.3 4.2.2 Initialization

I nit ial izat ion of v :tr iahles prior to the executi on of a GASP 1V simulation run occurs in
phase ’s. ~~~~ au.chles are’ nu t  iali,.ed d ur in g program t-oi npil at ion by l ) - ~ I A  state ments.
Others are ’ assi~u i’d \-a Ii ie ’.~ obta i ne’d el i r e ’ct Iv froni t h e ’ r ead ing of G ASP I \ ’  input dat a card s.
Fiiially , some ,u’iahhe ’s art’ assig ned in it i a l  ‘~ a h t i e s  a f t e r  all G ASP I\ ’ inp ut data cards h av e ’

3 19t~

-~~ - —‘
.
~

_ - -—
~ 

- 
~~~~

- S~ - - -
- - -~~- ~~~.‘ ~~~~~~~~~~~~~~ -

- -

TABLE 2.3.4.2~1. FUNCTIONAL BREAK DOW N OF GASP IV AND USER SUBPROGRAMS

Subprograms Supporting Function
Function Provided by GASP IV Provided by U~ r

Time advance and Subroutine GASP Subroutine STATE
status update Subroutine SCOND

Subroutine EVNTS
Eva nt subroutines

Initi el izat ion Subroutine DATIN Main program
Subroutine CLEAR Subroutine INTLC
Subroutine SET Input data

Data storage and retriwel Subroutin e FILEM
Subroutine RMOVE
Subroutine CANCL
Subroutine COPY

Location of conditions Function K ROSS
and entries Function NFIND

Oats collection , computation, Subroutine COt -CT Subroutine SSAVE
and reporting Subroutine TIMST Subroutine OTPUT

Subroutine TIMSA
Subroutine H ISTO
Subroutine GPLOT
Subroutine PRNTQ
Subroutine PR NTS
Subroutin e SUMRY

Program monitor ing and Subroutine MONTR Subroutine UERR
error reporting Subroutine ERROR

Miscellaneous support Function SUMQ
Function PR000
Function GT ABL
Subroutine GD LAY

Random deviate generation Function 0 RAND
Function U N F R M

• Function TR IAG
Function RNUHM
Function RLO GN
Funct ion [RING
Function GAMA
Function BETA
Function NPSSN
Function 6AM

197


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p

been read . In ge’nerah , each phase is associated with specific e’le’rnents of the executable
program. l)AT:~ st.ate ment~s in ind i vidual sub programs assign values to variables local to

thos e ’ subprograms. The’ main program must initialize two GASP IV variable ’s: the card
reader number , NC RDR : and the printer number . NPR N I ’ . The user may emp loy the main
program to initializ e non-GASP var iables prior to the assumption of executiv e’ cont rol I t
subroutine GASP. The preceding multipl e ’ runs are made. The last phases of initial ization are
controlled 1w subroutine ’ 1)ATI N : they are’ discussed in conjunction with the description of

that subprogram.

2.3.4.2.2. 1 Subroutine DAT IN . This subroutine is called by subroutine GASP , and it
provides for the selective’ initia l ization of GASP IV variables through four mechanisms.
Some’ GASP IV variables are initialized to standard or default values: some are assigned
valu es equal to or computed from GASP IV input data ; some are assigned values deriv e’d
from the user provided subroutines INTLC and STATE; and some are assigned values (or
left unchanged ) from a previous run. Subroutine DATIN accomp lishes this in iti aliza tion in

the proper sequence to facilitate either single or multiple runs.

Subroutme DATIN also performs error checking and provides a printout (echo check) of

the input data that may be selectively suppressed .

Subroutine DATIN is called only by subroutine GASP and only during the initialization
phase of a simulation run.

2.3.4.2.2.2 Subroutine CLEAR. Subroutine CLE:\ R is used to zero out the storage
arrays that collect values of variables to be reported in the final summary report. For
exa m ple, if the user wants to calculate statistics based on data collected afte r time 1000, the

statement CALL CLEAR inserted into the program at time 1000 (possibly through a time ’
event) can be used to accomplish this. if file statistics as ~vell as summary statistic s are to be’
reinitialized , this can be accomplished using subroutine MONTR.

2.3.4.2.2.3 Subroutine SET. Subroutine SET initializes the filing array NSET and all
va riab les associated with the filing array. This includes the following variables: number of
entries in fj lt ’ I . NNQ( l) : the time integrated number of entries in file I , EENQ( l) : the second
moment of the time integrated number of entries in file I , VVNQ(I ’); the largest number of
entries that  hav e been in file I , MMAXQ (l);  and the last time an entry was either filed or
removed from file I , QQTIM( I) . A call to subroutine SET can be activated through the use
of the ’ GASP IV input cards. When subroutine SET is called, all events and entities stored in

all files are deleted and the file structure is reinitialized .

198

-- --  ~~~~~~~~~~ ~~~~~~~~~~~~~ -- . -



—
~~~~~~~~~~~

-—
~~~~~~ 

—
~~~

-
~
—

~~~~~
--— —

~~~~~~~
- —

~~~
-- — — -~ 

— — —-- — -— --  - — — ----
~~

--
~~

-
~

- I

2.3.4.2.3 Data storage and retrieval

$he data storage and retrieval subpro grams prov ide the mechanisms throug h which
entries with their associated attributes are maintained. In GASP IV , entries are stored in a
doubly linked list maintained in the filing array NSET. NSET is a one dimensional array that
is equivalenced to the one dimensional array QSET , which is in COMMON storage . This
enables each of the attribute values to be stored as a real number and pointers to be stored
as integers.

Priority in a file is based on a ranking attribute and a priority method. Any attribute
number can be used as the ranking attribute for a file. The ranking attribute number for file
I is established by data input and is stored as the GASP IV variable KKRNK( 1). Four
priority codes are available in GASP IV.

1. Low-value -first (LVF).
2. High-value-first (HVF).
3. Fir st.in-fir st .out (F IFO ) .
1. Last-in.first-out (L I FO).

2.3.4.2.3.1 Subroutine FILEM (IFILE). This subroutine stores the attributes of an
entry in a file , updates statistics for the file , and maintains the time for the next discre te’
event TTNEX if the new entry is an event, Subroutine F1LEM is a long subroutine since it
contains the coding for inserting any entry into any file under any of the four priority
methods.

2.3.4.2.3.2 Subroutine RMOVE. TO remov e an entry from a file , subroutine RMOVE is
used . It is called to remove the entry whose first cell number is NTRY (I ) from file I F I LE.
RMOVE may also be used to cancel an entry . Subroutine RMOVE is called by subroutine
GASP to process the next time-event. RMOVE may also be called directly by the user.

2.3.4.2.3.3 Subroutine CANCL (NTRY ) . This subroutine is used to cancel an entry in
the event file whose first cell is NT R Y. Cancellation of an event consists of removing it from
the file storage array , updating TTNEX if the event was the next event , loading the buffer
ATR IB , and updating file statistics. In other words , cancellation consists of the same

functions as removal .

Subroutine CANCL is included only for its mnemonic value and is equivalent to the
direct use of the statement CALL RM OVE (NTRY , + 1).

199

• 
—-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -~~~~~~~Trt. - -
~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-
,~~~~~~~~



‘r~ r -
~~~ ~~~~~~ 

—-- —
~

-
~~~~~

-‘.---
~~-,~~~ ~~~~~~~~~~~ ~~~~_

- 

-
_
_.— - __•

~~
_ --w-—- - --”_ - - - . ——-_--_— ’_ ’•’ _-,--- ‘---

~—~

p

2.3.4.2.3.4 Subroutine COPY (NTRY ) . This subroutine is called to copy the value s of
the attributes of entry N’I’RY to the buffer ATR L B. Copying an entry does not change the ’
file storage area or its associated statistics in any way.

2.3.4.2.4 Location of state conditions and entities

Two functions , KROSS and NF I ND , are included in GASP IV for location purpos es.
Function KROSS assists in locat ing the time at which specified state condit ions are met.
NFI ND is used to identify the fir st cell of an entry havin g an attribute with a specified value
in a particular file.

2.3.4.2,4.1 Function KROSS . This function locates spec ified state conditions and
returns a coded value indicating whether the condi t ions hav e been met , not met , or
exceeded.

Function KROSS is used primarily in subroutine SCOND and performs the dual
functions of causing subroutine GASP (through its calls to SCOND) to “search ” for

• specified state conditions and marking th e satisfaction of those conditions. The’ first
function is accomplished through use of the GASP IV control variable ISEES. The second is
accomplished by returning a coded value of KROSS , indicating that a crossing has occurred .

A crossing may be either positive or negative. A positiv e crossing occurs when a variable
(the crossing variable ) increases in value from “less than” to “greater than” or “equal to ” a
second variable (the crossed variable ), times a multiplicativ e constant , p lus an additive
constant. Both the crossing and crossed variables must be’ st-ate variables when using KRO SS ,
and they are identified by their subscripts. A zero value for the subscr ipt of the crossed
variable or a zero value of the multiplicati v e constant reduces the crossing description to one
of a variable crossing a constant. The concept of a negative crossing is analogous to that of a
positive crossing.

A crossing is defined as being located with sufficient precision if ( 1) a discrete change’
caused the crossing, in which case the crossing is located exactly in time or (2 )  a time ’
advance caused the cro ssing and the d iffe rence at the end of the -step between the crossing
variable and the crossed function is less than , or equal to . the prescribed tolerance.

The’ user specifies not only the state conditions and toL erances defining a crossing but
also the direction of crossing. Thus it is possible to search for and identify either negative or

posit ive crossings or both. This flexibi lity permits , for example ’, the location of a local

200

- - ~~~~~~~~~~~~ — — ~~~~~~~~~ -7.~~~~~ ~.::.__- S — ~:~~
-
~~~~~~~~~~~~~~~ :—- =-—— -—— 

~~~~~~~~~
.-_--



-~~-~-~~_ -~ 

~~~~T ’ ~ TT”—. .
‘
~~~~~~~~~~~~~~~~ 

- - -—-•,-

~~~

.- —--

p

maximum (or point of inflection) by defining a negative crossing of zero by the derivative of
the variable of interest,

2.3.4.2.4.2 Function NF I ND. Function NF IND is used to locate entries in NSET.
N FIND is set equal to the first cell number of the entry . The first argument specifies a value
for attribute comparison. The second argument of N FIND is the code for the type of search.
Argument 3 specifies the file number , and argument 4 specifies which number of the
attribute is compared . The fifth argument is a tolerance for searches seeking equality.

2.3.4.2.5 Data collection , computation , and reporting

GASP IV includes eight subroutines that support data collection , computation , and
reporting. Subroutines COLCT , TIMST , HISTO , and GPLOT each perform all three
functions. The user normally employs only the collection mode since the computation and
reporting mode are automatically used during the preparation of a GASP IV summary
report. Subroutine TIMSA is used only for data collection. Subroutines PRNTQ and PRNTS
perform only computation and reporting. They are normally used during the preparation of
the echo check and again during the preparation of the summary report. Subroutine
SUMRY performs only a reporting function. It is normally called by subroutine GASP to
provide a complete summary report . However , SUMRY can be called by the user at any
time without altering any GASP IV variables.

2.3.4.2.5. 1 Subroutine COICT. This subroutine collects sample data for variables
based on an observation of the variable when used in the collection mode. In the
computation and reporting mode , it calculates the mean , standard deviation , standard
deviation of the mean (assuming independent observations), coefficient of variation ,
minimum , maximum , and number of observations. It also provides tabular output of the
calculated statistics.

2.3.4.2.5.2 Subroutine TIMST. Subroutine TIMST is also used for collecting values of
variables for which statistical estimates are desired. When TIMST is used, the var iable in
question is assum ed to have maintained a constant value over a time interval. This type of
variable is referred to as a time persistent variable. An example of a time persistent var iable
would he the numbe r of custome rs in a queueing system. The number of customers in a
queueing system has a constant value over a time interval before it is changed . The length of
the time interval dictates the weight assigned to the value of the variable in computing its

201

- - - -

~TT~~~
-
~~

,t
~
-’--- :- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1

average over the entire simulation. Subroutine TIMST integrates the value of the variable
over the time interval by multiplying these two quantities together.

2.3.4.2.5.3 Subroutine TIMSA . Subroutine TIMSA performs the same function as
subroutine TIMST except that the average of the last value observed and the current value
are used to integrate the time persistent variable . TIMSA is part icularly useful for keeping
sta tistics on state variables , since their values are permitted to change between events as well
as at event times. The trapizo idal inte gration used in TIMSA yields better estimates for such
variables than does TIM ST. By data input , the number of variables for which TIM ST and
TIM SA are used is defined as the varia ble NNSTA. Clearly, since ’ SS’I’PV is used by TIMST
and TIM SA , diff erent numeric codes must btr assigned to varia bles using these two
subroutines. Initial values of time persistent variables for statistical calculations must he set

either by standard GASP IV input , by an initial call te TI MS ’I ’ or l ’lMS :~, or by set ting

SSTPV(I ,6) in the main program.

2.3.4.2.5.4 Subroutine HI STO. Subroutine 1-IISTO is used to determine the ’ relative’
frequency with which a variable falls within a set of prescribed l im it s . it is normally used for
variab les that hav e a prescribed value based on an observation , such as the t ime in t-he
system for a customer , TISYS. The lower limit and width of each cell of the histogra m are
descñbed by data input for each histogram. The array JJCEL is used to store the histogram.
The number of cells for histogram 1 is specified by input and stored in the array NNC EL (I) .
The upper limit of the first cell and the width of each cell of histogram I is Specified by

input and stored in the arrays HHLOW (I) and HHW I D(I) , r espect ively. As with subroutines
COLCT and TIMST , subroutine HI STO is used to print and to plot histograms and can be
called by the user. Histograms are automatically printed at the end of a simulation run as
part of the GASP IV summary repo rt .

2.3.4.2.5.5 Subroutine GPLOT . Subroutine GPLOT collects values for eventual
plotting of up to 10 dependent variables for one independent variabl e, The independent
variable must he monotonic. Many options are available with regard to the type and scaling
for the plot. At most , 10 plots, each with 10 dependent variables , can be stored on tape
units. Significant reduction in computing time is obtained when the plot data are stored in
core memory . GASP IV provides the capabilit y for maintaining the values for one plot in
core .

The first argument of GPLOT is a dimension variable that accepts up to 10 values. Since
the dummy argument in the subroutine is dimensioned , there are various ways of passing the
dependent variables to the plotting subrout ine.

202

• ~~~~~~~~~~~~~~~~~~~~~
-— -

-

-

p

2.3,4.2.5.6 Subroutines PRNT Q and PRNTS. Subroutin es PRNTQ and PRNT S are
used to print the filing array and the state storage vectors , respectively. The statement
CALL PRNTQ(’ vould cause the computation and printing of the average number ,
standard deviation , and maximum number of entries in file 2, and wou ld prepare a tabular
listing of the contents of file 2. The statement CALL PR.NTQ(O) would perform the
procedure for all files. The statement CALL PRNTS would cause the state variables and
their derivatives to be printed out.

When the entire file storage area is requested, subroutine PRNTQ computes and prints
the maximum number of entries stored in the file storage array since it was last initialized .
This information is obtained from a sequential search of predecessor pointers. The first
entry having a negative predecessor pointer is the first entry that has not been used . The
normal listing for each file includes: (1) the current simulated time , (2) the time the file
was last used , (3) the time-integrated average and standard deviation of the number of
entries in the file (r iot included if current time is equal to file initialization time), (4) the

• maximum number of entries in the file since last initialization (not included if current time
is equal to initialization time), and (5) a sequential listing of the entries currently in the file.

2.3.4.2.5.7 Subroutine SUMRY. SUMRY provides all standard GASP IV output by
either printing or causing all of the following to be printed:

1. A heading,
2. All parameter sets,
3. All statistics for variables based on observation,
4. All statistics for time persistent variables ,
5. All files and file statistics ,
6. All state and derivative values ,
7. All histograms , and
8. All tables and plots.

2.3.4.2.6 Program monitoring and error reporting

The functions of monitoring and error reporting are supported by subroutines MONTR
and ERROR. These subroutines are good candidates for user mod ification to obtai n specific
information for use during the debugging of a simulation program.

2.3.4.2.6.1 Subroutine MONTR. This subroutine selectively provides any of the
following functions during a simulatio n run:

— - -
~~
- - — -

~~~~~~~~ -= -
~~~~~

- -----
~

-
- ---------—--

~~ :

0. Start or stop tracing each event.
1. Print contents of files.
2. Reset file statistics and clear statistical storage arrays.
3. Print contents of state storage arrays.
4. Print information on state variables and files.
5. Print summary report-.
6. Cause error exit.

Subroutine MONTR may be called directly by the user (after assigning an appropriate

value to the event code , JEVNT), or by the occurrenc e of a monitor event (any time- event

with an event code less than zero).

2.3.4.2.6.2 Subroutine ERROR. ERROR is called when an error is detected in a GASP

IV subprogram. The error message provides the programmer with a code (KODE) that

indicates the condition causing the error and the location of its detection.

-
•

Because ERROR may be called by subroutines that are called by ERROR , a loop

pro tection variable (NERR) is used to assure that a loop does not persist.

Subroutine ERROR provides useful diagnostic information by listing the error code,

simulated time, and current values in the file storage buffer. Next , a call to the user-provided

subroutine h ERR permits any specific information to be output. A complete summary

report is then pre pared (if possible) and the error message is repeated. Finally, ERROR

causes a FORTRA N error to take advantage of FORTRAN-prov ided diagnostic and

traceback information.

2.3.4.2.7 Miscellaneous support

The miscellaneous suppo rt subroutines included with GASP IV are functions SUMQ,

PRODQ , and GTABL and subroutine GDLA Y .

2.3.4.2.7.1 Functions SUMO and PRODÜ The function SUMQ computes the sum of

all attribute values for a given file. Suppose that the assets of a corporation are stored in file

2 with attribute 3 being used to define the value of an asset. The statement TASSC = SUMQ

(3,2) computes the value of the total assets of the corporation as TASSC. The function

PRODQ performs a similar function to SUMQ but multip lies the values of the attributes

instead of summing them. There fore , if the components logically, in series, in a system , are

stored as entries in file 3, and attribute -I is the reliability of a component , the statement

SREL = PRODQ(4 ,3) will compute the system reliability SREL .

204

____________ ______ - ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-— -,•-.—i-•--•-S•--.-,.--- •,-,__-’_—_ - __
~ •-_•,•-_.- .- ,•- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- i•:’ -

p

2.3.4.2.7.2 Function GTABL. The function GTABL provides a look.up function for a
table in which the independent variable of the table has equal intervals. The arguments of
GTABL include: (1) the name of the array storing the table that defines the function , (2)

the value of the independent variable for which the function is to be evaluated , (3) the value
of the independent variable corresponding to the first and last tabulated value , (4) and the
interval of the independent variable corresponding to the interval between the tabulated
values.

2.3.4.2.7.3 Subroutine GDLAY. Subroutine GDLAY provides a vehicle to obtain a
variable order exponential delay for use in systems dynamics and simulations. Using this
subroutine , state variables can be driven from their current value to a prescribed value in a
specified number of stages. At each stage a specified amount of delay is encount ered . To use’
GDLAY , each stage must be represented by a DD(~) variable. GASP IV automatically
update’~ ~‘orresponding SS(’) variables in subroutine GASP.

2.3.4.2.8 Dummy subroutines

Dummy subroutines for all the user written subroutines are included in the GASP IV
pac kage. Their inclusion permits the user to code only those subroutines that are needed for
a given simulation. The executable statement in each of the dummy subroutines is to
comply with the requirement of ANSI FORTRAN that every subprogram hav e at least one
executable statement.

2.3.4.2.9 Random deviate generators

To write general purpose subprogram s for generating random deviates (samples), one
must be able to reference parameter values for the distributions to be sampled within
various subprograms. This is accomplished in GASP IV through a two dimen sional array ,

PPARM. Each row of PPARM contains a set of values that are used as the parameters of a
distribution. Since the parameters are stored in rows of PPARM , it is only necessary to
designate the row number when calling a subprogram that requires parameter values.
PPARM is initialized in subroutine DATIN through data cards , and the values of PP ARM are
printed to ensure that the values used in a simulation are rt’corded.

GASP IV provides the mechanism to obtain deviates given a distribution type and
parameters for the distribution. The data collection. statist ic-al ‘~lys is (including
goodness-of-f it testing), and modeling to describe the inputs to a simulation must he
performed by the user.

205

;
—~-. —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - 
•-- --—-

~

.—.-,—.-- 

~

—,-- -.-- - - - •—. —-- ---

p

GASP IV provides subprograms for generating deviates from the following distribution
types as listed in Table 2.3.4.2 -2: uniform or rectanguLar , triangular , normal , log-normal ,
Er tang (gamma with an integer parame ter), Gamma , Beta , and Poisson. The uniform ,
triangular , Er lang, and Poisson types employ the probability-integ ral-transformation
approach to random deviate generation. The Beta and Gamma generators use a deriv ed
analytic result in conjunctio n with a rejection technique. A dev iate from the exponential
distribution can be obtained from the Erlang function or through the writing of a single
statement.

2.3.5 User-Written Subroutines

2.3.5. 1 Subroutine Descriptions

In addition to the main program , the user communicates with GASP IV through the
subroutines described in Table 2.3.5.1-1.

The function of the main program, EVNTS, INTLC , and OTPUT were described
previously. Subroutine UER}t allows the user the option of performing operations and
printing specific information when a GASP IV error is detected.

TABLE 2.3.4.2-2. RA NDO M DEV IATE GE NE RATO RS

Random Deviate Generator Type of Distr ibut ion

0 RA ND Uniform distribut ion on inte,val 0-I (pseudorandom number ).

UNFRN Uniform distribution on a specified inteival (Ul.O , UHI).

TRI AD Triangular distribution.

KNO RM ‘ Uniform distribut ion on the specified port ion of an array.

RLOG Lognormal distribution.
[R ING Erland dist riubtion (gamma distribution with ana parameter ).

NPSSN Poisson dist ribution .
6AM Support routine used to obtain a sample from a Gamma or

or Beta distr ibution.

GAMA Gamm. distribution.

BETA B.ta distr ibution.

206

— - T T ~~~L 1~~~~~ ~~~~z -~~ ~~-
- 

•



- :  _ _ _

2.3.5.2 Input Formats

All GASP IV variables are initialized by data card inputs. Each data input is associated
with a specific data card in a specified format. A total of fourteen data card types are
specified for complete initialization.

TABLE 2.3.5.1-1. DESCRIPTION OF USER-WRITTEN SUBROUT INES

Name Description

Subroutine EVNTS (IX) Called by subroutine GASP to process event IX. A computed GO TO statemen t with argument
IX is used to t ransfer to the app ropriate time-event processing subroutine; howeve r, if
IX = IIEVT must be made by the user in EVNTS; normally the vector LFLA G is used
for this purpose whe re LFLA G(I) is set by the user in subroutine SCOND; the form of
su b routine EVNTS is illustrated in Figure 3-3.

Subroutine OTPUT OTPUT provides a way for the user to obtain out put in addition to the standard GASP IV
summary report ; OTPUT is called prior to subroutine SUMRY and can be used as an
end-of-simulation event.

Subroutine UERR (KODE) Called by subroutine ERROR to allo w the user to print specific information if an error occurs .

Sub routine INTLC Can be used to initialize state variables and non-GASP variables; called in subroutine DAT IN
after all GASP IV data cards have been reed.

Sub routine STATE Defines state variables through a listing of difference or derivative equations or both; called by
subrout ine DAT IN (after INTIC is called ) and then by subroutine GASP to compute
current values of state variables; TNOW is the time to which GASP IV is t rying to
advance when STATE is called; DTNOW is the increment involved in the current up-
date.

Subroutine SCONO Called by subroutine GASP to determine if a state -event has occurred. State-eve nts are nor-

mally defined in terms of state variables cro ssing a prescribed threshold or a prescribed
variable with a tolerance specified for the amount of overcrossing. In SCOND , the user
must make ce rtain the value of the GASP IV variable ISEES is set to communicate if a
state-event has been passed (ISEES < 0), if no state -event has been passed (ISEES 0),
or if no state-event has been passe d but one does end the current step (ISEES > 0).

When function K ROSS is used , ISE ES is automatical ly set; the user should indicate throug h
the setting of a variable when a state-event occur s; the GASP IV ve ctor LFLAG can be
used for this purpose and the user can test LF IAG in the user written state-event rou-
tines; the IF LAG vector is not tested in GASP IV; after a return from EVNTS . subrou-
tin GASP sets LF LAG U) 0 for l 1 , N FLAG.

Subroutine SSAVE Called by ine GA~?’-i~.cU al!y to record system status; the value of DTSAV specified
the frequency with which SSA~VE1~-ieeHed as follows : ,

DTSAV <0 SSAVE called only at event times ¶ 
-

DTSA V = 0 SSAVE called at each accepted upd ate point , that is ,
at the end of each time step (which includes ill event times)

DTSAV > 0 SSAVE called each DTSAV time units and at event times
Through SSAVE the user collects the data desired for eventual pnnto ( ’~.

‘ The user norm ally also writes a subroutine for each type of event included in a model .

207

- -



—‘- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- -

2.3.6 SIMNUC

2.3.6.1 Purpose of Computer Program

The Basic Simulator (SIMNUC) is an integrated package of subprograms designed to
facilitate modeling and simulation of discrete stochastic systems in a manner similar to the
GASP IV simulation programs.

The following features characterize thi s package :

1. Model independence.
2. FORTRAN orientation - the user’s portion of a simulator can be programmed in

FORTRAN or, if desired , in assembly language.
3. Capability to produce event-oriented simulation models.

-
-

4. Availability of list processing and dynamic memory management facilities.
5. Capability to collect and display standard queue and sample statistics.
6. A full complement of random number generators.

The basic approach , which sometimes is referred to as a simulation-world-view , used to
model discrete systems for digital simulation with the Basic Simulator is the event-oriented
approach , which emphasizes decomposition of the simulation process into individual event
procedures , each of which describes all changes in the system caused by the occurrence of
the related event , just as was done in GASP IV.

2.3.6.2 Simulation Facilities

The Basic Simulator consists of the following functional software components :

1. Simulation Run Control,
2. Dynamic Memory Management ,
3. List Processing,
1. Random Number Generators,
5. Sample Statistics Processing, and
6. En~or Diagnosis and Reporting.

2.3.6.3 Program Organization and Simu lation Run Control

The components of the Basic Simulator are designed as independent FORTRAN callable

208

* — - -- —- - -

~
‘
~~~~~~~~:- ,

_ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_
~~~~~~~~~

_
~~~~~~~~ 17J

subprograms so that the user need only include those sub programs necessary fo r his
particular simulation. The Basic Simulator sub programs may, in tur n , require other
subprograms such as diagnostic routines. The only case with which the user must be

concerned is the Dynamic Memory Component . which is initialized if the List Processing or
Simulation Control Components are used. By including the block data subprogram .
SSDATX . all components except Dynamic Memory are initialized. Dynamic Memory is
initialized by a call to the subprogram MINITX.

As ind icated in Figure 2.3.6-1, the Mai n Program consis ts of two linearl y structured
program segments, which will be called the initia l izatio n and l’erm inalion Part s of the Main
Progr am.

The main function of the Initialization Part is to complete the following task:

1. Initialize a relatively small set of model-independent , Basic Simu lato r con trol

parameters. such as those used by the Simulation Control and Dynamic Memory
C o m p o n e n t s  ( t h i s  t a sk  is f u r t h e r  discussed in “Special Progr amming
Requirements”) .

2. Read input data and possibly print its summary ; the input data typically can be
divided into two categories: (a) the user-supplied simulation control parameters .
and (b ) model definition dat-a .

After reading all input data , the internal representation of model definition can be
completed—this action may require processing of the model definition data and
construction of various data structure s (such as tables, lis ts, etc. ) from the processed data.

3. Initialize the problem-dependent control parameters and data structures in order to
bring the system to be simulated to its initial state; this task may include (a)

creation , or definition , of sample statist-ic-gathering mechanisms. (b’l definition of
model dependent queues, (c) initialization of random number sequences.

4. Define all event coordination structures,
5. Schedule initial events .

The Dynamic Memory is initialized by calling the subprogram MIN ITX. Since MI NI TX
build s the Free List , it must be called before any other routine that assesses Dynamic

Mem ory subroutines, either directly or indirectly, is called .

The user must properl y define a labeled COMMON block. M F .MXXX. containing the

209

- - _ _



P

(~~

~~~~~ PROGRAM)~~~

INITIALI ZATION PART OF MAIN PROGRAM:
(1) Set d.pend.n t run control parameters
(2) Read input and com~ ete model definition
(3) Initialix. problem dependent parameters and data structures
(4) Def ln. all event coordination structures
(5) Schedule initial events

/

(~~~~~~~~~~~:1

\

_ _ _ _ _ _ _ _ _ _ _ _ _ _

.IEV ENT ROUTINESF
BASIC SIMULATOR]

OPTIONAL USER-
\ ,- SUPPLIED E R R O R

\ I EDSMRX: \,.... .. REPORTING
\ I SIMULA TOR J ROUTINE

\ I TERMINA T ION /,..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

___________________________________________ ____________________________________________

~~ i~URN~~~~M ‘
~1 S TOP )

r
TERMINATION PART OF MAIN PROGRAM:
( 1) Compute end-of-run statistics _____________

(2) Write end-of-run reports

-4
LSTOP D

Fi~ur. 2.3.S.1. Interface and structu re of th, main pro ram.

21()

- ~~~~~~~~~~~~~~~~ ~~~~

-‘

~~~~~~

—.————--

~~~
--- 

~~~~~~

—-
~~~ 

-~
-
~

-.



p

MENI OR Y vector for l)ynamit Mt’iuory storage space; the user must also specif y all required

equivalences and type’s for the variables used in setting up the l) ynunuc Memory f ramewo r k.

in the init ialization part of the mau i program , a separate eve’nt coordination structur e
must he defined by calling DEFCSX for each class of blockable events in the’ simulat ion

model.

:~ite’r all initialization is complete . the sinn ilation process is started b y calli ng the ’ sub-

program GOSIMX . This FOR’I ’R AX subrout ine execute’s the simulation run control func-

tions which can be stated as follows:

1. ‘l’ransfer the ’ run control from the init ial ization Par t of the Ma in l’rogram to the

Simu lation Process ( I t ’ ., events posted on the Future ’ Event l~ist 1-

2. Establish the’ first executable statement whic h follows the call to ( OSIMX .is the

• reentry point to the Main Program. -

3~ Post the event notice for the final event ~fo r terminating the simulation process) to
occur at a time ’ point which is to be expressed ii” terms of the ’ simulation tim e units.

The subprogram E1)SMRX is responsible for determining the ’ simulation terminat i on

conditions. Two type ’s of simulation termination conditions will be’ recognized :

1. Normal term ination of a simulation process, which te’chnically means the occurrence’
of the ’ f inal  ecent that has been present by the user ; and

2. Detection of an error condition.

.~fter the run control has been transfe’rred to the simulation process I, i.e’ , to  the’ t ’vei ’its
posted on the Future Event List) , it is returned to f-he Main Program on ly after a
termination condition of type one arises. Type 2 above refers only to those error conditions
that can be detected by means of the Error Diagnosis and Reporting Subroutine’s; many

other types of errors may arise’ during a simulation run , and they may remain undetee’ted ~~
these subroutines.

:~ S indicated in Figure’ 2.3.6-1, GOSIMX is invoked from the ’ initializati on Part of the’
Main Program (which means that it is a user-accessible subprogram), and Kl ) SM RX is
automatically called (i.e., without an explicit intei~ention by the user ’s part of t he

simulator) after one of the above-stated termination conditions arises-

-~~~~~~~~~~~
-—

~~~~- -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



P

I f the term ination is of type 2 . the user-supplied error reporting routine is executed , if

present , to provide the user with any partial resu lts that he may requ ire. The’ simulation
program is then terminated without return to the Termination Par t of the Main Program.

If the terminat ion is normal (type 1). control is returned to the Termination Par t of the ’
Main Program which follows the ’ call to GOSIMX. The statement immediatel y fo llowing the

~‘all to (~OS IM X can he’ considered to be’ the start ing point of the Termination Part of the
Main Program.

~s in the ’ case of the’ initialization Part , the functions of the 1’ermination Part are model
dependent and typically consist of the following tasks :

I - Compute ’ the end-of-run simulation statistics.
2. Write end-of-run reports.

fl it ’ computat ion of e’nd-of- ru n statist i cs includes those’ operations on amp le’ and queue
st at i s t ics  which can be’ pe’rformed only af t er  the’ t e rminat i on of flit’ simulat ion process, such
as obthuung final val ues for sample’ means and standard dev iat i ons.  Certain standard type ’s of

simp le’ and list i queue ’) stati st  i tS  can be gathere ’d during simulation by means of th e ’ facilit it’S
of the ’ Sample’ Sta t i s t ics  Processing and the List Processing (‘ompone-’nts , respective’ly .

The Sam p le S ta t i s t  ie~S Processing Components also contain subroutines for perform ing
the’ end-of-simulation computations on gathered statistics and for displaying computed
results.

2.3.6.4 Component Functional Description

The subprograms of the Basic Simulator are divided into six major groups, called
cc) in po nents. which perform the following functions: simulation control. memory
management , list processing. random number generation. prot-e’ssing of sample statistics , and
error diagnostics.

2.3.6.4. 1 Control of the simulation process

I’his st’c~t i & ) O  describe’s the ’ fae- i l i t i e’s iii the ’ Ra sit - Si mula tor  ivhost - t un& -t t on is to provide
t he’ use-r wi th  t ools fo r i i i i t  i a l i i in g  and controlling a simulation p iot -ess . (‘olle ’c twe’ ly .  tht ’se’
cont rol f a c i t i t  i t s  u-i ll he n’fe’rred to as the ’ Simu lati on (‘out  rol ( ‘emipone9lt S ’ C  1 of the ’
Basic Sinnilaic ’r.

-. ______________ .,j::=T~.~:Ti~.



--

The Simulation Control Component consists of programs to manage the orderl y
initiation of the simulation process , the transition from one event to another , and the’
termination of the simulation process. The Simulation Control Component of the Basic’
Simulator makes it possible to simulate concurrent processes by representing each process as
a sequence of events. In a simulation program , events are represented by the so-called event
routines. The occurrence of an event during simulation is represented by a data structure ,
called an event notice , which contains the following information about the event:

1. The future time-of-occurrence of that event ,
2. The’ entry point address of the corresponding event routine , and
3. Additional information , if any, to he passed to the event routine.

The last itt ’m provides the capability to pass input parameters to event routines.

• 2.3.6.4.1.1 Functional Description. Since control of the Basic Simulator is exercised by
following the next-event principle , as in GASP IV , the user ’s portion of the simulator
software consists of a master (main) program and of the so-called event routines , each of
which r epresen ts an event type in the d yna mic model of thea system under consideration .

An event routine must be coded as a FORTRAN subprogram without arguments.
Parameters are’ passed to it by means of the event notice , or by common blocks. Each event
routine is responsible for the disposition of the event notice which invoked it . It may either
reschedule the event notice with the subprogram SCI-IDEX or free the dynamic memory
block containing the event notice. The event routine is also responsible for scheduling any
successor events. A RETURN statement must always be used to exit from an event routine.
This causes the transfer of contro l to the event routine which is to be executed next. The
user’s portion of the simulator may contain additional subroutines which are invoked from
the main program or from the event routines.

A simulation run starts by transferring the control to the initial segment of the main
program whose function is to perform various tasks associated with the initialization of
simulation. Defining the lists to be used in simulation , setting up mechanisms for statistics
collec ti on , or reading and preprocessing of model data are examples of initialization tasks.
Once this has been done the run control must be passed to the Simulation Clock Manager~
The latter is a mechanism , consisting of severa l subroutines of the Basic Simulator that are
not explicitly accessible to the user , whose main function is to manage the Futu re’ Event .
List , a major data structure used by the Simulation Clock Manager. The functions
performed by the Simulation Clock Manager subprograms are to:

213

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

- :~~~~~~~~~ ::- ~~~L : - ~~~~~~~~~~~~~~

- , ~~~~~~~~~~~~~~~~~~~~~~
-‘ ~~~~~~~~~

- — — --

~~ :~~~~: ~— — Ti

- Re’triev e’ the’ notice ’ of the most immin e ’u (future ’ event which now he’eomes th e ’
en rre ’n t e ’e’.’u (1:

2. Advance’ the ’ simulation clock to the time value indicated on the ’ re’t .rte’ve ’d e’vent
not ice’;

3. Transfer the’ run control to the ’ e ’t’(’I l f r outine which handles all events o f th e’ ty pe ’ to

which the’ curr e’nt eve’nt belongs;
-t - Ge’ne’rate’ and post future ’ e’vent notices during the ’ execution of the e’ve’nt routine ’;

and
5. After the execution of the event routine is completed . return the’ run control to the

Simulation Clock Manager , which then recycles the steps (a) through (e) .

‘l’he simple’ simulation control scheme’ described above’ is not sufficie’nt for logically

more’ e’oinp k’x modeling situations which , for example , may require :

1. Suspension of the execution of an event routine , if a test performed after ente ’ring it

indicate ’s that the logical conditions for its further execution do not yet exi st; or

2. (‘ancellation of an event notice already posted on the’ Future Event List.

The Simulation (‘ontro l Component contains faci lit it’s for handling these’ two above’

described situations. The first one is handled by means of the so-called event- coordinati on

structures which are’ lists used to store’ the notices e)f suspended events. Sub programs are

provided for defining such a structure’, for suspending an event by placing its notice’ on f-lie ’
appropriate event coordination structure ’, and for releasing all ewent notices currently on a
specified event coordination structure . Similarly, a subprogram is provided for cancelling t .h ’
notice on the ’ Future Event List of a future failure event.

2.3.6.4.1.2 SSC SUBROUTINES The Simulation Control Component of the Basic

Simulator contains the following subroutines:

1. GOSIMX — Start the Simulation Process,

2. ENTR YX — Get the Entry Address to a Subprogra m,

3. SCHDEX — Schedule an Event ,
-I. CALLEX — Get thy Entry Address of the Calling Program ,

5. DEFCSX Define an Event Coordination Structure 4
6. BLCKEX — Block an Event Notice ,
7. RLSEEX — Release an Event Notice,
8. FINDEX — Get the’ Pointer to an Event Notice .
9. (‘ANCI X — Cancel an Event Notice , and

10. TIMEXX — Read the (‘lock~

214

- - • - - .-~~~~-----~~~ — -~~~~- - -.- - - _ _ _

p

ln itia li za~ ion of the simulation process , which technically means transfer of control
from the’ user ’s main program to the Simulation Clock Manager , is the function of GOSIMX ,
the’ first of the above te’n subroutines, Hence , GOSIMX must be called from the user ’s main
program after the ’ completion of tasks associated with the initialization of simulation, Once’
the simulation control is passed to the’ Simulation Clock Manage r , appropriate user-supp lied
event routines are called by the Simulation (‘lock Manager according to the event notices
peeste’d on the’ Future ’ Event List until the end-of-simulation time ’ is re ached. At that instant ,
the’ Simulation (‘lock Manager returns the execution control to the user ’s main program ,
with the reentry point being the first statement following the call to GOSIMX.

The’ remaining subroutines , following GOSIMX in the above list . are normally called
from the user-written event routines to perform Various simulation control functions such as
posting a future event notice , blocking and then releasing an event , cancelling a posted e’vent
not ice, getting the current simulation time , or getting a pointer to an event routine.

2.3.6.4.1.3 GOSIMX — Start the Simulation Process. This subroutine trigge’rs the’
simulation process l)y executing the ’ transfer of control from the’ user ’s main program to the ’

S imulat ion Clock Manager : it also sets up a rns’t’hanism for r eturning th e ’ control to the main
program at the ’ end of the simulation process. Control is re’turne’d to that state-’ment in I-he
mai n pro gram which follows the call to GOSIMX. More specificall y, GOSIMX pe ’rforn -es the
fol lowi n g tasks:

I - Transfer the program-run control from the initialization part. of the’ main program to
the Simulation Clock Manager (the latter may he’ thought of as being a simulation
control mechanism which is not exp lici tly accessible to the user) .

2. Establish the first executable statement which follows the cal l to GOSIMX as the
reentry point to the main program.

3. Post th e ’ Eve’nt Notice ’ for the final simulation event which will re’turn control to the ’
main program,

-I - Specify the’ entry point of a user-supplied subprogram which is to be e’xecuted in the ’

e’vent of an error e’xit termination of the simulation process.

The call statement for GOSIMX contains two arguments. The first argument is used to
specif y the’ time of te ’rniinat ion of th e simulation, If a user-supplied subroutine is to he
e’xecute ’d before the termination of the simulation process due to a detecte’d e’rror. the’
second argument must contain a pointer to that subroutine; otherwise , it - must have zer e~
value.

215

--

-

• iTTT~~I~~~
- - I ~~~~~

- - - - - -
~~~~~~~~~~~

-•
~~~~ ~~~ -


-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.3.6.4.1.4 ENTRYX — Get the Entry Address to a Subp rogram. Subprog ram

ENTRYX computes an entry point address of (pointer to) a FORTRAN subprogram.

2.3.6.4.1.5 SCHDEX — Schedule an Event. This subprogra m places an event notice on
the Future Event List. The arguments of SCHDEX contain user-supp lied information ,
specify the time when the event should occur , and normally contain the entry point address
of the event routine.

2.3.6.4.1.6 CALLEX — Get the Entry Address of the Calling Program. When invoked
in a subprogram , CALLEX computes the entry point address of the program which called
the subprogram.

2.3.6.4.1.7 DEFCSX — Define an Event Coordination Structure. This subprogram is

used to define an event coordination structure (ECS). A separate event coordination
structure must be defined in the initialization phase of a simulation run for each logically
distinct class of blockable event notices in the simulation model. The arguments of DEFCSX
include the name to be assigned to the ECS, and the pointer to be used for all future
references to this ECS.

2.3.6.4.1.8 BLCKEX — Block an Event Notice. This subprogram is used by an event
routine to block its own current execution by putting the event notice for itself on an
appropriate event coordination structure. A blocked event remains on an event coordination
structure until subroutine RLSEEX , described in the sequel , is called to release it. BLCKEX
returns the execution control to the calling event routine which is blocking itself; hence,

further execution of this routine must subsequently be hal ted by a RETURN statement.
The arguments of BLCKEX include a pointer to the event coordination structure on which
the notice is to be plac ed and a timin g parameter used by RLSEEX in order to determine
the time at which the released event is to be rescheduled.

2.3.6.4.1.9 RLSEX — Release an Event Notice. This subpro gram is used to release all

event notices that have been blocked on a specified event coordination structure.
Technically, the release of blocked event notices means computing new future occurrence

times for the blocked events , putting these time values in the event notices , and then moving

these notices to the Future Event List.

2.3.6.4.1.10 F I N D E X  — Get the Pointer to an Event Notice. This sub prog ram searches
for a specified event notice on the Future Event List ( FEL). If FINDEX succeeds in locating

this notic e, it computes and returns a pointer to the notice; otherwise , this pointer is given

zero value.

216

_  -

~~ 

—-  __. - - -  - — . - - ~~~~~~~ —.-—-‘--— ~~~%.~_
—_______

~,i_ ~. ~~---- - - ~- 
-



~T I~~ T

/

2.3.6.4.1.11 CANCLX — Cance l an Event Notice. This subprogram is used to cancel a
specified event notice on the Future Event List. The event notice is specified by giving its
pointer , which may be computed by using FINDEX or obtained by some other means,

2.3.6.4.1.12 TIMEXX — Read the Clock. This program computes the current value of
the simulation clock (time), which is a standard-length integer.

2364.2 Memory management

The Dynamic Memory Management Component of the Basic Simulator provides the user
with the capability to manage dynamically during the program execution a vector of
COMMON memory so that blocks from the vector can be temporarily allocated to the user’s
program and then deallocated (freed) when no longer needed. This memory management
method makes it possible to reuse the same storage many times for different purposes
throughout a simulation run , and thus not only to minimize total program storage
requirements, but also to increase the size of the simulation problem that can be handled.
With this method of memory management, the following allocation is used :

1. A block in dynamic memory must always be allocated (deallocated) by appropriate
action in the program , and

2. An allocated block can be accessed only through a pointer which is set up at
allocation time.

2.3.6.4.2.1 Functional Description. The Dynamic Memory Management Component
allocates storage from a vector called MEMORY which is contained in the labeled COMMON
block MEMXXX. The user’s program accesses a block allocated from Dynamic Memory
through a pointer associated with that block. At any instant of program execution , the
vector MEMORY consists of two types of blocks: those that are allocated and currentl y in

use, and those that are available for use. All deallocated blocks are chained together into a
list called the Free List. It is the user’s responsibility to put memory deallocation requests in
appropriate places in his prog ram.

When the program requests a block of certain size, the Free List is searched to find a
deallocated block of suffic ient size. The search /allocation strategy works as follows: during
the search , physically adjacent blocks in the Free List are coalesced into a single large block;
the requested block is allocated from the first sufficiently large free block encountered in
this search. If no such block can be found , further execution of the simulation prog ram is
terminated .

217

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- ‘— .,—-v,’-— — .-~ —,~• —,------,- ~~- ___-.-v___ - —r. - - - 
. -

~~~~~

- - - -

2.3.6.4.2.2 DMMC SUBROUTINES. The Dynamic Memory Man agement Component
consists of the following subroutines:

1. MINITX — Initializ e Memory ,
2. MEMALX — Allocate Memo r y,
3. MEMFR X — Free (Deallocate) Memo ry ,
4. M EMZOX — Store Zeroes in Memory ,
5. MEMDPX — Dump Memory ,
6. MCOPYX — Copy Memory , and
7. MSTATX — Write Memory Statistics.

To use these subroutines, the user must properly define a labeled COMMON block ,
MEMXXX , containing the MEMORY vector for Dynamic Memory storage space; the user
must also specify all required equivalences and types for the variables used in setting up the
Dynamic Memory framework.

2.3.6.4.2.3 M I N I TX — Initialize Memory. MINITX is used to initialize the memory
vector as the Free List from which blocks of memory are to be allocated . The arguments of
MINITX are the length in words of the memory vector specified by the user and the length
in words of the desired block modulus.

2.3.6.4.2.4 MEMALX — Allocate Memory. This subroutine is used to allocate a block
of memory from the Free List. The user’s portion of an allocated block is automatically
zeroed . If such a block cannot be allocated due to the lack of storage, simulation is
terminated.

2.3.6.4.2.5 MEMFRX — Free (Dea llocate) Memory. MEMFRX is used to free an
allocated block of dynamic memory in order to return it to the Free List.

2.3.6.4.2.6 MEMZOX — Store Zeroes in Memory. The subroutine MEMZOX can be
used to store zeroes in all user-available words of a specified Dynamic Mem ory block.

2.3.6.4.2.7 MEMDPX — Dump Memory . The subroutine MEMDPX can be used to
dump the contents of Dynamic Memory for program debugging purposes.

2.3.6.4.2.8 MCOPYX — Copy Memory . This subroutine can be used to create a copy of
the contents of a block of Dynami c Memory and return a pointer to the block of Dynamic
Memo ry containing the copy . The contents of the original block are unmod ified.

J
218

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— — -~~~~~~~~~ --



2.3.6.4.2.9 MSTATX — Write Memory Statistics. The subroutine MSTAT X writes the
Dynamic Memory statistics for the line printer. These statistic s are:

1. The size of the memor y vector ,
2. The maximum number of words which were allocated at any time until the call to

MSTATX , and
3. The number of words currently allocated.

2.3.6.4.3 List processing

This section discusses list processin g facilities available to the user. The List Processing
Component (LPC) of the Basic Simulator provides tools for handling two types of list
structures , doubly linked lists (queues ) and indexed lists. In addition , the LPC contains
subroutines for collecting standard list statistics.

2.3.6.4.3.1 Functional Description. All lists maintained by the List Processing
Component use the facilities of Dynamic Memory both for storing list heads and list
elements. For both types of lists, the list head is created and maintained exclusively by LPC
subroutines. In both cases, the list to be processed is identified to a List Processing
Component subroutine by means of a pointer to the head of that particular list (such
pointers will be called list-head pointers ).

To initialize (create , define) a list , the user ’s program must set aside a variable which is
to function as the list-head pointer for that list; then appropriate action must be taken to
create the list-head, which differs for each type of list.

2.3.6.4.3.2 LPC Subroutines. The list processing subroutines available to the user are
listed below. For convenience , these subroutines are divided into two groups, those for

• process ing doubly linked lists and those for handling indexed lists:

1. Subroutines for Processing Doubly Linked Lists:
a. LTDEFX — Define a List ,
b. LTADDX — Add an Element to a List ,
c. LTDMPX — Dump a Linked List ,
d. LTFNDX — Find a Specified Element in a List ,
e. LTNXTX — Find Next (First) Element in a List, and
f. LTRSPX — Remove a Specified Element From a List.

219

-- 
- _______  ~~~~~~~I_ -. - -



T~.Jii± r~
— - - - - -

~
-
~- - -

2. Subroutines for Processing Indexed Lists :
a. DSADDX — Add a New Member to an lndexed List ,
b. DSDMPX — Dump an Index ed List ,
c. DSNXTX — Return a Pointer to a Specific Member of an Indexed List , and
d. DSPRGX — Purge an Indexed List.

2.3.6.4.3.3 Processing of Doubl y Linked Lists by Means of LPC Subroutines. Every
element of a doubly linked list consists of two parts , those being a fix ed-length part
followed by a variable-leng th part . The fix ed part of an element alway s consists of three
words , whic h in the indicated order , contain the forward pointer , the backward pointer , and
the time when the element was added~ o the list.

LTDEFX — Define a List. This subroutine creates a standard list head for the list being
defined and then stores in it information which defines and initializes the new list. It returns
a pointer to the newly created list head. The list-head pointer of a doubly li nked list points
to a table of standard format.

LTADDX — Add an Element to a List. This subroutine adds a new element (a block
stored in Dynamic Memory and pointed to by the input a~~ument bkpt r)  to the list
identified by the list-head pointer ltp tr. Addition of a new element is done by properl y
linking it with the elements already in the list and by modif y ing the list-head . The insertion
position relative to other list elements is determined by means of the queueing discipline
code of the list , which is located in the list.head . Thus , the code value:

1. LIFO causes the new element to be added to the logical front end of the list ,
2. FIFO causes the new element to be added to the logical back end of the list ,
3. LOH I causes the new element to be placed logically in front of the first element

with a rank value larger than that of the new element , and
4. HILO causes the new element to be placed logically in front of the first element

with a rank value smaller than that of the new element.

LTDMPX — Dump Contents of Linked List. This subroutine is used to write the
contents of a Linked List according to a user-su pplied format.

LTFNDX — Find a Specified Element in the List. This subroutine searches the list in

the direction of the decreasing rank of its elements to find the first element which contains
a specific value not necessarily the rank ) stored in the specified word of the list elements.
On finding such an element , the subroutine return s a pointer . elp t r , designating thi s element.
If none is found , elptr is assigned a zero return value.

220

LI. ~~~ . 

- — :III;:_ ~~~~~~~~ ~~~~ . ~~~~~~~~~~~~~~



-- —— .
~~~
-—- ---

~~
---- --- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--- .— - -.--

H

The pointer points to the list-head of the list to he searched . The type of the test value
data must be the same as that of the tested quant i ty .  The argument specifies the offset of
the word in every list element whose value is to be compared with that of data . ‘like ’ element
fou nd by subroutine LT FNDX may be removed from the list - by a call to subroutine
I.TRSPX.

LTNXTX — Return the Pointer to the Next (First ) Element I n a List. Given the pointer
e!ptr  to an element i i i  a specified list , this subroutine returns the pointer to the element
which is logica lly next (i.e. . which is of the nex t lower rank) after the one pointed to by t u e
e’lp tr. I f the user sets the input argument elptr  to zero , then the routine returns the pointer
to the first element of the list. If such an element (first or next ) does not exist , then nxt p t
has a return value of zero . The list is specified by i ts list-head pointer l tptr . ‘l’he element
found by subroutine LTNXTX may be removed from the list by calling subroutine

- 

LTRSPX.

LTRSPX — Remove a Specified Element From a List. ‘l’his subroutine removes the
element pointed to by the pointer elptr from a list specified by the list-head pointer ltptr . If
t ’Iptr is set equal to zero , then the logically fi rst element is removed. This subroutine can be
used t~~

- remove elements found by subroutines LTFNDX or LTNXTX.

2.3.6.4.3.4 Processing of Index ed Lists by Means of LPC Subroutines. The list-head is a
vector: the firs t component of this vector contains a ~ounte r which specifies the number of
elements currently in the list ; subsequent components of this vector contain the pointers to
individual elements of the list. The user communicates with the indexed list through the
list-head pointer.

Four subroutines for handling indexed lists are available. These subroutines are
described next. Contrary to the case of doubly linked lists , there is no special subroutine for
initializing an indexed list (i.e., for creating the list head for such a list); this is done by
assigning the first element to the list to be created .

DSADDX — Add a New Element to an Indexed List . This subroutine adds a new
element to an indexed list identified by the list-head pointer lp tr. The element to be added
must be a block stored in Dynamic Memory ; the input pointer . elptr , must be pointing to
the storage area of that element.

DSDMPX — Dump Contents of Indexed List. This subroutine is used to write the
contents of an Indexed List according to a user supplied format.

221 

_ _ _ _
-_ .-

~~ 
- -- ;- ~~~~2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


DSNXTX — Retu rn a Pointer to a Specified Element of an Index ed List. Subroutine
DSNXTX retrieves the pointer elptr to the jth element of an existing (nonempty) index ed
list whic h is identified by the list-head pointer lp tr . The jth element is specified by assigning
J as the value of the inpu t argument, index , where 1 s~ J ~ N (where N is the number of
elements currently in the list).

DSPRGX — Purge an Indexed List. This subroutine deallocates from Dynamic Memory
the storage blocks occupied by the list-head and by all elements of the indexed list
identified by the list-head pointer Ip tr . Then the subroutine sets the pointer lptr to zero. If
the subroutine is entered with a list-head pointer value of zero , control is returned to the
calling program .

2.3.6.4.4 Generation of random numbers

The Random Number Generation Component (RNGC) of the Basic Simulator prov ides
the user with subroutines for producing sequences of random numbers from nine standard
distributions commonly used in simulation. In additio n, it contains three subprograms for
generating random numbers from continuous or discrete distributions defined by the user.

2.3.6.4.4. 1 Functional Descriptio n. Each RNGC subprogram—with the exception of
the generator of random numbers havin g unifo rm distributio n over the unit interval
(subprogram RANDOX)— caUs RANDOX to generate one or several uniformly distributed
random numbers needed for computation of its own output. Thus , a sequence of random
numbers from a nonuniform distribut ion always represents the result of no one sequence of
random numbers from a uniform distribution. The first number is such a sequence; U0 must
either be furnished by the user or else it is automatically provided by the Basic Simulator
during standard initializ ation of simulation.

To give the user some control over generation of the sequences of uniformly distr ibu ted
random numbers which are to be used to generate random numbers fro m other
distributions , a labeled COMMON block is made available to the user. Each component of
the vector ISTART is associated with one and only one RNG C subprogram: initia lly, it
must contain the seed for the underlying sequence of uniformly distributed random
numbers; subsequently , it is used to store the generated successors of that seed . It is
conceivable that the user may want to use the same generator subprogram to pr oduce
several sequences concurrently durin g simulation. This can be done by using an appro priate
component of the vector ISTART to store the values associated with generati on of each
such sequence. To summarize the above ideas, the elements of vecto r ISTART contain the

222

—
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~ -- .- -~~~~—~~~- ----- - - ----- :- - - --~~~~ ,- - --— - -—- -

-

- -~ —-—~~-
- — - -—— -

~~~~~

-- -—-

initial (seed ) and subsequent values that are used to propagate each needed sequence of
uniformly distributed random integers . Some sequences of this type do not show up
explicitly in simulation , for they are used as underly ing sequences to produce random
numbers from other distributions; the others are used , per Se, in simulation.

The Random Number Generation Component consists of the following subprograms :

1. RANDO X — Random Number from Uniform Distribution Over the Unit Interval .
2. RMBINX — Random Number from a Negative Binominal Distribution.
3. RMCCPX — Random Number from a User-Defined Discrete Cumulative

Distribution.
4. RMDCPX — Random Number fro m a User-Defined Discrete Cumulative

Distribution.
5. RMDRWX — Random Number from a Bernoulli Trial.
6. RMERLX — Random Number from an Erlang (Gamma) Distribution.
7. RMEXPX — Random Number from an Exponential Distribution.
8. RM ICPX — Random Integer from a User-Defined Discrete Cumulative Distribution.
9. RMIUFX — Uniform ly Distributed Rando m integer f rom a Set of Consecutive

Integers .
10. RMNRLX — Random Number from a Normal Distribution.
11. RMPSNX — Random Number from a Poisson Distribution.
12. RMUFMX — Uniformly Distributed Random Number from a Specific Interval.

All these subprograms are FORTRAN FUNCTIO N subprograms . With a single
exception , they return a single output quantity, which is either a single-precision floating
point number or a standard-length integer. The only exception is RANDOX , which besides
producing a floating point random number , also generates an integer-valued uniform random
quantity. The use of each subpro gram is discussed next.

2.3.6.4.4.2 RANDO X — Rando m Number from a Uniform Distribution Over the Unit
• I nterval. Norma lly, RANDOX is used to generate a sequence of single-precision floating

point values , [Un] which represent random numbers uniformly distributed over the unit
interval (0 ,11. The secondary use of RANDOX is to produce a sequence of random integers ,
[I~ l , uniformly distributed over an interval defined by the computer word size.

2.3.6.4.4.3 RMBINX — Random Number from a Negative Binomina l Distribu-
tion. RMBINX computes a random number from the negative binominal distri bution with
parameters (P , N); i.e., given (1) the number N of successes in a sequence of independent

223

~

- - - - — -  — - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~

Bernoulli trials (i.e. , each trial has only two outcomes—a success or a failure) and (2) the
constant probability P of success in each trial, this subroutine generates the number of
failures before the Nth success is observed.

2.3.6.4.4.4 RMCCPX — Random Numbers from a User-Defined Continuous Cumula t iv e
Distribution. Given the tabular approximation

(X(I), Y(I)) for I = 1, 2, . . .

to a cumulativ e probability distributio n function y = F(x) of a continuous random variable
X , this subprogram computes a random number XR from the range X (1) ~ X(N).

2.3.6.4.4.5 RMDCPX — Random Number from a User-Defined Cumulative Distribu-
tion. Given the tabular approximation

(X(l), Y(I)) for I = 1, 2, . . . ,N

to a cumulative probabi lity distribution function y = F(x) of a discrete random variable X ,
this subprogram computes a random number XR from the set of values [X(1), X(2),

,X(N)) .

2.3.6.4.4.6 RMDRWX — Random Number from a Bernoulli Trial. A Bernoulli trial
represents an idealized experiment which can have only two observable outcomes , such as a

success and a failure, to be represented here by 1 and 0, respectively. Denote the probability
of a success in a trial by P; then the probability of a failure is 1 — P. Given the probability P
of success, this subprogram returns 1 (success) with probability P and 0 (failure) with
probability 1 — P. The value of the input argument P must be in the range 0 ~~ P ~~~ 1.

2.3.6.4.4.7 R M E R L X — Random Number from an Erlang (GAMMA) Distribution. This
subprogram produces a random number XR from the Erlang (A , N) (or equivalently from
the gamma (A , N)) distribution. Here , the positive real number A is the mean of the
distribution; the positive integer N specifies the number of independent- exponential random
variables, each from the exponential distribution with the mean A/N , whose sum represents
a random variable fro m the Erlang (A ,N) distribution. Thus , a random variable XR from this
Erlang distribution has expected value E(XR) A and variance Var (XR) = A2f N.

2.3.6.4.4.8 RMEXPX — Random Number from Exponential Distribution. This subpro-
gram computes a random number from the exponential distribution with parameter A. If

224

—----•- .•--------- ,--- --

p!~r-~~ ~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

—--—
~~~~

XR represents such a random number , then the expected value E(XR) A and the variance
Var(XR) = A

2
.

2.3.6.4.4.9 RM I CPX — Random Integer from a User-Defined Discrete Cumulativ e Dis-
tribution. This subprogram computes a random integer IR from a discrete cumulativ e distri-
bution defined by the user over a set of consecutive integers. Such a distribution can be
represented by a set of ordered pairs.

• 2.3.6.4.4.10 RMIUFX — Unf iform ly Distributed Random Integer from a Set of Consec-
utive I ntegers. Consider an integer valued random variable X which is uniformly distributed
over the set

IA , I A+ 1 . .. , IB

of consecutive integers; that is, if lB — IA = N — 1, then

P (X = x) = 1/N forx 1A , I A + 1 , . . . , IB
P (X = x) = 0 for all other values of x.

Given the values of IA and IB , this subprogram selects a random integer IR from one of the
N equally probable values , IA , IA +1 , . . . , or IS.

2.3.6.4.4.11 RMNRLX — Random Number from a Normal Distribution. This subpro-
gram computes .~ random number from the normal distribution with the mean value A and
with stand ard deviation B.

2.3.6.4.4.12. RMPSNX — Random Number from a Poisson Distribution. This subpro-
gram generates a random number X from the Poisson distribution with the mean value A.

2.3.6.4.4.13 RMUFMX — Uniformly Distributed Random Number from a Specified
I nterval. This subprogra m computes a random number from the uniform distribution over
the interval [L , R].

The values of L and R must satisfy the inequality L ~ R.

2.3.6.4.5 P rocessing of sample statistics

In simulation of discrete-stochastic systems , a substantial port ion of the output observed

225

-_ _

_ _ _ _ _ _ _ _ _ _ -~~ - -- - -~~~~~~~~ -~~~ ~~~~~•- -- - ~~~~-~~-- — - --fl - --- -•~ - • -

by the simulator is collectable and expressible in the form of standard sample statistics, such
as sample means, standard deviations , extreme values, or frequency distribution tables. This
section describes the subprograms, collectively known as the Sample Statistics Processing
Component (SSPC) of the Basic Simulator , whose function is to collect, process, and dis-
play, when told to do so, standard sample statistics for specified observable phenomena.

2.3.6.4.5.1 Functional Description. The sample statistics which can be obtained during
simulation with the assistance of SSPC subroutines for an observable phenomenon consists
of summary data and of an optional frequency distribution table. The latter can be built up
in severa l alternative modes. The statistical summary data contain sample size, mean , stand-
ard deviation , and range (i.e., its minimum and max imum values). The frequency distribu-
tion table shows how sample values are distributed over a specified set of continuous
intervals.

As stated below in the description of SSPC subroutines , a frequency table can be built
up in one of the three possible modes, the diffe rence , normal , or time-weighted mode.
Furthermore, an entry to be added to a frequency table may optionally be multiplied by a
weight coefficient. The latter option is available only for the first two modes of frequency
table construction , the difference or the normal mode.

In the normal mode sampling for a frequency distribution table, the sampled value is
first weighted by a multiplicative coefficient (if required—otherwise, the value of multiplica-
tive coefficient- can be thought of as being equal to one) and then added to the proper
interval of the table.

-

If the difference mode is used to build up a frequency distribution table , the entry
add ed is the weighted or nonweighted difference (depending on the weighting option)
between the current sample value and that observed the last time This sampling mode can
be used to study distribution chan ges or rates of changes in a recurring phenomenon.
Sampling in the time-weigh ted mode is performed as follows . The sample value to be added
is first multiplied by the amount of time which elapsed since the last sampling instance for
the frequency distribution table under consideration; next , this time-weighted value is added
to the table as in the norma l mode. Thus , the time-weighted mode can be used to stud y
phenomena such as the distribution of storage occupancy.

Generating and displa ying a frequency distribution table requi res three functions. First ,

the table and the other sample statistics must be defined and init ialized at the beginning of

226

•
_ _

~~ - - -- — - _ _ _

- — - ~~~ —•—•—-—- —.—‘•—-,—•-— — — ----—. — ————— —‘~~— —-— —-- — -—‘ .- — —- - — —— -

simulation. Nex t, each time a quantity to be added to the table is generated in the simula-
tion process, its value must be examined to find the appropriate position (range scgment) of
the table to which this value belongs and then the frequency of the position must be
incremented . Similarly, one must update the quantities which are being generated to (‘om-
pute the sample mean, standard deviation , and extreme (minimum and maximum) values.
Finally, at the end of simulation , computation of the above-mentioned sta tist -k’ s must he
completed and then the results must be displayed by writing a computer-prmted report . The
Sample Statistics Processing Component provides three subroutines, described below , to
accomplish these three functions.

2.3.6.4.6.2 SSPC Subroutines. The Sample Statistics Processing Component consist-s of
the following three subroutines :

I . ‘I ’BDEFX — Define/ initialize the sample statistics,
2. THDATX — Update the sample statistics , and
3. TBOUT X — Complete and output . the sample statistics.

At the begiiming of a simulation program , the user nui st t’al l TBl)EFX to init ialize th e
statist ics collection for each sample in which he is interested . Then, as samp le obsei~at ions
are generated during a simulation run , the subroutine TBDATX is repeatedly called to
accumulate and update sample statisti c s. At the end of the run , TBOU’l’X is called for each
sample under consideration to complete computation of sampli’ statistics and then to out -
m it - t h ’ results. ‘l’Iw use of each subroutine is discussed next.

2.3.6.4.8 Error diagnosis and reporting

The objective of (-he Error Diagnosis anti Reporting Component (El)R(’) of the Basic
Simulator is to provide the user with tools for debugging his simulation program. This
component consist-s of three basic types of subroutines:

1. ~~~~~ for providing execution traces and for writing diagnostic messages.
2. Those for checking operational parameters of the Basic Simulator.
3. l’hose for pr inting I-he (‘ontents of dat a structu re s used in the simulation.

The subroutines of I vpe two are not - directly accessible to the user but an’ select-ed by a call
to the debug control routine (or by default) .

The error diagnosis and reporting routines are described below.

227

_________________ —.-~ -;
— - ~~ ~~—--

-
- -• a~ii


~~~~~~~~~
-- 

~~~~~~~~~
- •.:~~~~~~~

-- —

~

-_-- .-- - -

~

.-‘ —----_ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- -

~~~-
-1- — -— -

-
I EDRC Subroutines:

2.3.6.4.6. 1 DEBUGX — Select Debug Control. This subroutine is used to st’it’t’t tlit’

level of parameter checking and execution trace in the Basic Simulator. lt may he cal led us

often as desired during the simulation. I f it is never called , default values are used .

2.3,6.4.6.2 D IAGNX — Write a Diagnostic Message. ‘l’his subroutine is USed to writ i ’ a
diag nostic message and to optionally terminat~’ further execution.

2.3.6.4.6.3 TRACEX — Write a User Trace . ‘l’his subroutine is used to writ e a user trace

message containing the name of the calling routine , the simulation time , and the value of an

input quan t i t y .

2.3.6.4 .6.4 DSDMPX — Write Contents of Indexed List. This subroutine is used to

w r it e (1w content -s ot an I nilexed List according to a user supplied format.

2.3.6.4.6.5 LTDMPX — Write Contents of Linked List. ‘l’his subroutin e is used to wri te

the contents of a Linked List according to a user supplied format -

2.3.6.4 .6.6 MEMDPX — Dump Memor y. I’lw subroutine \ I I ~ iI l)PX can be used to
dump I-he contents of Dynamic Memory for program debugging purposes. (‘aIling this sub-

rout ine has (hi ’ following effect: The contents of all allocated blocks , i ncluding their block

si/t ’ , wil l he printe d . i’he block size and pointer fields will (~~ ‘ printed for all blocks in the
Free List . ‘l’ht ’ conti’nts of those blocks that cannot be identified as clearly being of one of

th e tw o types (i t ’ ., either allocated or else (ret ’) will be printed in conjunction wit-h error
recovery attempts. Each word will be printed both as a standard-length intege r anti in

machint ’ format.

2.3.6.4.6.7 MSTATX — Write Memory Statistics. ‘I’hi’ subroutine r~IS1’:Vl’X writ e s the
l)ynamic Memory statist ic s for the line pr inter. These statistics are :

1. ‘l’he size of the memory vector,

2. The maximum number of words which were allocated at any time until the cal l to
MS’l’ATX , and

3. The number of woni s currently allocated .

2.3.6.4.6.8 PKTPRX — Write Contents of Dynamic Memory Block. I’his subrout ine is

used to write th e cont i ’nts of a block of itynniu t e memory. The block is pr ii i t t ’t t hot-h as a

standard-lengt h integer and in machine fo rmat .

- -S.-
. -

.
~~ ~~~

-

—— -S

— - - . 5 . -~~~~~ -~~~~~~~~~~~ — S~~~~~ --S.~S —~~~~~~ - - ~~~~~~~~ -S-—-~—- - ,_-—-—’-S - -
~~~~~ - ,

2.3.6.4.6.9 PKTWRX — Write Contents of Dynamic Memory Block. ‘I’his subroutim’ is
used to write the contents of a block of (lynamic memory according to a user supplit ’d
format.

2.3.6.4.6.10 RPWRTX — Write Data. ‘l’his subroutine is use’d to writ e any cont iguous
data according to it user supp lied format -

SECTION 2.3 BIBLIOGRAPHY

GASP IV

Gre’en , ‘1’. “GASP IV Listing of ‘I’itpe l)i rectory, GASP Source , DPM Source’, SNK Subrou-
tines, DAt SIM Source,” LI npuhlished :~ FA L document , 1977.

Pritskt ’r , :\ ., and Man , B. ‘‘The GASP IV Simulation I ‘anguage’ ,’’ ,Jo hn \ViIe ’y & Sons, Inc.,
New York , 197 I .

SIMNUC

Texas I nstrume’nts , Inc ., (ist.rs Ma n an! fo r  I *xsic Sini a in (or ( ‘omp u ter Program , 1)allas , ‘l’t ’x -

us, no date.

2.4 DISTRIBUTED PROCESSOR/M EMORY SYSTEM NETWORK SIMULATION SYS-
TEM

2.4.1 Introduction

The advent of the minicomputer , and subsequently the microprocessor and microcom-
puter , has placed a great deal of emphasis on the utilization of’ multiple computing elements
in avionics systems. The relativ ely small size of minicomputers and microcomputers allows
them to perform specialized , localized tasks while providing, in many eases, added perfor-
mance over more general purpose computing systt’ms. Multiplexed data buses have further
provided the opportunity for computing elements to share resources and to provide the
redundancy that can extend system operations in critical situations.

These added capabilities , provided by what may he referred to as distributed systems ,
present the system designer with some added complexities as well. Questions regarding how
to partition the avionics tasks among several processors, the selection of the architecture of

the processor interconnections, the information transfer rat-es between pro(’essors, the ’ ~‘oor-

229

It___ . - 
-__ — - ~~~

. -~~
- ~~~~~~~ -~~~~~~~~

- -
~~ :~ — ____ . —k-- ~. ~~~~~~~~~~~ .__.

~..______ I_____. _~.— . 
~~~~~ L~~~~__~~~ _ ..


rr -
- .

-
- — _ _ _ _ _ _ _ _ _ _ _ _ _ _

dination of information transfer , and the security and reliability of the overall system are
more difficult to answer because of the large number of potential system configurations.
Further, the basic information system design must be chosen early in the design process if a
top-down design approach is to be followed. It is therefore essential to be able to explore
the basic parameters of a distributed processor architecture by simulation so that perfor-
mance parameters for indiv idual processors, sensors, and information display elements can
be specified.

The Distributed Processor/Memory (DP/M) System Network Simulator (SNS) provides
the necessary tool to explore some of the tradeoffs available to the designer of distributed
systems. The SNS is a discrete event-oriented high level traffic simulator written in ANSI
standard FORTRAN. The SNS is built around a nucleus of model-independent utility rou-
tines (SIMNUC) which are not simulators in themselves, but are used to create a simulator in
conjunction with the avionics software task specifications and topological organization spec-
ifications of a given avionic system.

2.4.2 DP/M Hardware Architecture

The DP/M system concept is essentially the use of varying numbers of simple, homoge-
neous processor/memory elements (PE’s) applicable to a wide range of avionics system
processing problems. Architecturally, these PE’s can be used as standalone uniprocessors or
they can be configured in a distributed network as shown in Figure 2.4.2-1. Serial-time-
division-multiplex (TDM) buses interconnect the network. Two levels of busing are pro-
vided : a Global bus can interconnect each PE in a system network and a Local bus can
interconnect multiple PE’ s clustered together to perform a given function. This cluster of
PE’s is referred to as an Affinity Group (AG). Input /output (I/O) for a given P/ E to an
external device is via its local I/O interface unit. While other more complex bus structures

might be postulated, the structure provided by DP/M allows investigation of a number of
important avionic information processing and control structures.

Although it is not necessary to know the structure of the PE’s in order to use the SNS,
such knowledge is useful in order to appreciate the architectural variations possible with
DP/M SNS and their application to real avionic s situations. Four functional modules make
up the DP/M PE as shown in Figure 2.4.2.1. The Bus Interface Unit (BIU) is the basic TDM
data transfer interface to the processor and memory . The BIU translates bit serial data into
parallel words and transfers data and statu s informatio n to the PE processor and memory.
The processor module is the instruction-sequencing and data -processin g portion of the PE.
The memory module prov id es necessary program instruction and data storage , and can be

230

________________________________-

p

CLUSflR GLOBAL

_ _
-

1 L 1SEN$OR I/O
I LOCAL BUS
L ~~~~~~~~~ LOCAL

AFFINITY GROUP —I 1—~
BUS

~~ INTERFACE_(_..... GLOBAL

I I
~~~~~~~~~~~~~ AND TIMING

I MEM O~~~] 
LOCAL I/O 1

Figure 2.4.2-1. DP/M system architecture.

accessed by the other PE modules: the BIU , the processor, and the I/O interface. Memory
access is local to a PE; i.e., access by another PE or shared memory is not part of the DP/M
concept. The Input /Output Interface Unit (I OIU) of the PE permits digital data , command
and status information transfers between the PE and the external devices in the avionics
system.

An example of the type system envisioned for implementation with the DP/M
architecture is shown in Figure 2.4.2-2. Note that the structure provides for a redundant
Global bus. In this example , two Affinity Groups are formed by PE3-PE4 and PE 5-PE6 -PE7.
Interface to sensors/effectors is illustrated via IOIU’s in the PE ’s and subsystem interfaces
external to the DP/M system.

2.4.3 Bus Control Protocols

2.4.3.1 Modified Round-Robin Message Broadcast

During the period the DP/M SNS has been in use at AFAL , two bus protocol algorithms
have been implemented . The first is a modified “round-robin ” slotting technique which

231

- 

- - -- ____________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
-

_______ -
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

- - -

~~

~

.--- -
~~~~~

-
~~~~

-
~~~~

- - -  -

E-IIII-
~;Tt~tu~~~

H4~~
H<

~i

:~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~w(fl U. o l  ( d O  :- J kk_ ~ 
_ iL _ ~~

_ :ThJ ~
_ _

W~ O

I I~~~~~
i

_ _ L_ J

232
‘I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _J:
~~~~~~ .~~~~~~~~~~~~~~~ L~~~~~T:


provides for simple advancing of the “bus control slot” from PE to PE in a predetermined
order among the total set of PE’s attached to the bus. Each bus transmission, referred to as a

message, is terminate d by the transmitting PE. Message termination is denoted by placing an
end-of-message, or message-sync signal on the bus immediately following the last data bit in
the message. If a PE cannot transmit data when it receives bus access, it merely “passes”
control to the next subsequent bus-controlling PE by transmitting on the message-sync
signal. A variable length message may be transmitted , although the maximum length of a
Global bus message is eigh t data words. Messages transmitted by any PE can be received by
any other PE , since PE’s are always in a “listening” mode when not transmitting (at all times
other than its bus slot) . This “broadcast” method is implemented , as described in
subsequent sections. by providing unique input/output message designators for each PE.

—
2.4.3.2 MIL-STD-1553A

The second bus protocol algorithm implemented by DP/M SNS is that specified by
MIL-STD-1553A (Aircra ft Internal Time Division Command/Response Multiplex Data Bus).
The basic difierence between the 1 553A protocol and the round-robin protocol is that data
transfers occur only between two PE’s, one specif ically designated as a transmitter and the
other as a receiver. Three word formats are defined for the protocol: (1) Command word .
(2) Data word, and (3) Status word. One PE must be designated as a bus controller as shown
in Figure 2.4.3-1. Note that the Remote Terminal s (RT ’s) and Bus ControUer each
correspond to a PE in the architecture of Figure 2. 1.2-1 . Sole control of information
transmission on the bus resides with the controller , which initiates all transmissions.
Transmissions are performed in a half-duplex , asynchronous manner. Three message formats
are permitted:

1. Controller to RT transfers,
2. RT to controller transfers, and
3. RT to RT transfers.

In controller to RT transfers, the controller issues a receiv e command to an RT followed
by the specified number of data words. The RT , after message validation , transmits a status

word back to the controller. For RT controller transfers, the controller issues a transmit
command to the RT. After command verification , the RT transmits a status word back to
the controller followed by the data words. In the case of RT to RT transfers, the controller
issues a receive command to RT-A , followed by a transmit command to RT-B. The RT .B

then transmits the same format as in controller to RT transfers.

233

-

~~~~~~~~~~

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ .— - —~
— —-- ~~~ :-~~

- --

~~ T~~~~~:
-

~~ ~~~~
--

~~~~
- :  

-- T

I--j z

22 a~

I I
I I 

.

H------ - 

-

• I I#) QI
_ _ _  _ _ _ _  _ _ _ _ _  .5—f I

I _ _ _ _ _ _ _

I~~~~ I
I 

I 
_ _ _  _ _ _

I I  ‘II , 1 -$ — 2r - 

—

I .- - —

I I tu~~ — UI

- — — I-
.4

I — —
I ’  _ _  _ _  ‘4

‘U
I ..- 

‘Is
__ I 

- 

--
I i j

I I II I iI I
I I~~~I I ,

P 234



The implementation of both bus protocol schemes, round-robin and 1553A , provides
the system designer with the opportunity to explore some basic tradeoffs in bus traffic
overhead versus flexibility and assignment of executive functions to PE’s, among others.
Included in the tradeoffs are the inherent architectural differences of the two bus protocols.
The 1553A, for example, does not allow local buses.

2.4.4 Avionics Software

The hardware architecture represents one-half of the distributed avionics system design
problem, the other half is obviously the software. The DP/M SNS assumes that the system
designer will partitio n the executive and applic ations software into suitable tasks for some
given hardware architecture. The SNS then provides the designer with the capability to
analyze and evaluate:

1. Processing element characteristics/capabilities,
2. Number of resources in the system,
3. Local and global bus configuration,
4. Inter-PE communication technique ,
5. PE Bus protocol communication technique, and
6. Executive control technique.

2.4.4.1 Applications Software Functions

The SNS is predicated on the representation of software modules by a directed graph ,
such as Figure 2.4.4.1-1 . A directed graph consists of a set of nodes and a set of directed
edges between these nodes. A node is used to represent a set of computations which , once
initiated , can run to completion without waiting for completion of another set of
computations also represented by a node. An edge from node i to node j means that, upon
completion of the computations represented by node i, the computations by node k can be
initiated . The implementation of a conditional branch in this model is accomplish ed by an - -

exclusive-OR symbol (~~ . Use of the symbol in conjunction with node i implies one of the
following conditions:

Upon completion of the computations associated with node i, only one of the set of
successor nodes can be initiated . —

Completion of only one of the nodes associated with an incident edge is necessary for
initiation of node L

235

- 
—~—~~~~ -- 

- 
~~~~~~~~~~~~~~~~ - - - :~~__~_ - : - ~~~~~~ — -~~ -—--~~-~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ - - . - - - - — ----- -,-.- -- —
-
~~~~~~~~~~~~~~~~~~ _

P

Figure 2.4.4.1-1. Examp le of dire cted grap h.

In Figure 2.1.4 .1-1, completion of node 1 indicates that nodes 2 and 3 can he initiated .

Upon completion of node 2, either node 4 or node 5 can he initiated , and the completion of

only one of these is sufficient to initiate node 7. Node 8, on the other hand , requires the

completion of both node 6 and node 7 for its initiation. Stated differently, nodes 2 and 3

are successors of node 1, and nodes 6 and 7 are predecessors of node 8.

With respect to avionic mission processing, three levels of directed graphs can be used.

At the highest level , a node repre sents a mission- or pilot-oriented function such as

navigation. For any given function , a set of nodes or options may exist to effect the

function. These nodes are referred to as subfunctions (e.g., navigation modes can include

inertial navigation, Loran , or doppler navigation) . The intent of the subfunction definition is

to coincide with the normal division and classification of avionics computer programs. At

the lowest level , a subfunction is represented by a set of related tasks. In the DP/M

Executive structure , a task represents an executable application software module.

The representation of software execution sequences via a directed graph concept has a

particular advantage within the DP/M concept. The subfunction directed graph reveals

potential process construction options in allocating tasks and program to PE’s. If any one

set of tasks must be partitioned among several PE’s, the options available in allocating this

236

L - ~~~~ — - -~~~
— -c-—- --— - —

~ -_~.___ — ___________
__________________________ - ~~~~~~~~~~~~~ —~~~ . _~~~~~~~~ _a.~~~~_ —-- -~~~~

-
~~~

:- -. -



-:~~~ ~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~

--
~~

-
~—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~~~~~~~~

P

software to PE’s are clearly defined within the graph. Data sets that are passed from one
task to another represent Local bus messages if their respectiv e tasks are not collocated in
the same PE. Likewise, collocated tasks need not generate bus traffic with their data
interchanges.

The software task representation convention used by SNS is shown in Figure 2.4.4.1 -2.

Each task is assigned a unique I .D. number . P-(N). The task execution time must be
estimated from knowledge of the task size and processor speed or known from actual tests.
The frequency of execution (cycle period) is also specified . All intertask information
received by the task remove spare or generated by the task is defined in terms of a message
number and the number of words in the message. In addition , local I/O is also specified by
the number of words in the message.

The DP/M simulator assumes that the system designer will partition his system along the
lines of mission functions and subfunct ions, although this need not necessarily he the case.
For example , such a set of functions might he:

1. Navigation ,
2. Landing,
3. Air Data,
4. Flight Control ,
5. Fire Control ,
6. Vehicle Defense,
7. Stores Management , and
8. System Management.

These functions might be further divid ed into subfunctions , where Navigation migh t
include:

1. Loran,
2. Inertial strapdown,
3. Kalman Filter ,
4. Air Mass,
5. Wind Estimate , and
6. Steering.

The Loran subfunction might have tasks to simulat e:

237

-i — _ _~~~.‘-.-— - -- -——— — ——.—~ ------~~
-

~~~~~~~~~~~~~~~~~~~~~ -~~~---.-—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -



--5--.- ~ —--—5-5-,-,--- -- 
- 

- — —~~

INT R AFUNCT IONAL
PRE DECESSOR (DATA)

MESSAGE NO.
(NUMBER DATA WORDS)

INTE R FUNCT I O NAI. I/O INPUT
PREDECESSOR (DATA) DATA (NUMBER

EXECUTI ON TIME OF WORDS )
(OPS/CYCLE )SOURCE

MESSAG E N O. 
__________________________________(NUMBER OF DATA

WORDS )

TASK 1.0.
P—(N)

CYCLE PERIOD
(pm) I/O OUT.

S DEST INATION , 7 PUT DATA
INTERFUNCT 1ONA L ,~~ (NUMBER
OUTPUT OF WORDS )
MESSAGE NO.
(NUMBER OF INTRAFUNC TIONA L
WORDS ) OUTPUT MESSAGE

NO. (NUMBEROFWOROS)

4 
~ 1. OCAL BUS PATH (ROUND.ROBIN PROTOCOL ONLY)

— —* GLOBAL BUS PATH

- I/O DATA PATH

Figure 2.4 (1-2. Directed preph task representation.

238

~~~~~~~~~~ ~~~~~~ ~~~~~~~ ~ . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— — SS ~~~~~~
-- -5- --— - -

~~~~~~~~~~~~~~~- -- ~~~~~~ -~~- - —
~~~~~~~~~~ -—--- 

-- - . ..— - - - — — - - -5- - - —

1. Receiver interface (P- il),
2. Bearing angle/expected time (P.12) differenc e,
3. Time difference to Lat ./Long. (P-13),
4. Delay time correction/velocity information (P-14), and
5. Universal Transverse Mercator/Output Display (P-iS).

The directed graph for the Loran task might be as shown in Figure 2.4.4.1-3.

FUNCTION: NAVIGATION
SUBFUNCTION: LORAN

16 968

P—12 — — P—8 1 , 83 (4)
40 .000

P— 8 1 • 81 (2) 8 (4)
S.-
‘S.

14 . 362

8 (4)
7 (l)4 (4)

200

P-i l
6 (l)

1 692
.1_

p ‘
~~~ P—1 3RCVR , (5) RCVR . (4)

10 (4)

200

P—8 I,16(4 ) • — — 
—

Figure 2.4(1-3 Loran subtanction directed graph.

239

I 
-

~~~~~~~ - 
- _

~~_~~~~~~ _~~~~~~~~
_

-

-~~~~
-~~~ ~~~~~~~~~~~~~ ________

_ _

L

2.4.4.2 Executiv e Software

The use of distributed Processing Elements (PE’s) in the DP/M system concept dictates
the need for a method of scheduling activities, transferring bus messages between PE’s and
general system control. These operations are referred to as Executive f~inctions and are
provided by the SNS.

The subfunction directed graph (Figure 2.4.4.1-3) contains the necessary information
from which the Executiv e can determine task-scheduling conditions (based upon required
predecessor events) and inter-task communication. Two types of directed graphs can be used
to describe avionic functions: the sequential graphs and the parallel graph. A parallel graph
reveals where within the execution segments of code parallelism can be used. A sequential
program graph removes parellelism and shows transition path s from one start node to an end
node with multiple nodes emanating from a single node having an associated probability of
transition. Data derived from other types of graphs can be used to derive Executive design
parameters; however , the Affinity Group (AG) concept is most effectively used when
parallel graphs are used for scheduling purposes. Another desirable feature from the
Executiv e design viewpoint is to allow specif ication of the size of a task (i.e., number of
instructions , word s of memory , execution time) to be flexible. Ideally, tasks will be
identifi ed in a way to encourage increased system performance. It is not the intent of the
DP/M Executive design to require a certain (minimum) number of tasks to be created for a
subfunction. If a subfunction can be most efficiently controlled by the Executive as a single
task , this option is available. If a subfunction has a potential (or requirement) for
parallelism, the Executive has a method of facilitating control of multiple PE’s executing
code for the different tasks of the same suhfunction. It follows that , as avionic subfunctions
are assigned to PE’s, one PE will contain the subfunction start-node. This task would receive
any “subfu nction initiate’ commands, and start the execution cycle for the given avionic
software algorithms.

The DP/M Executive structure prov ides two levels of control: the Global Executive
(GEX) and the Local Executive (LEX). Functionally, the GEX assumes the role of system
monitor and scheduler. It enforces subfunction interrelationships and is responsible for
system performance by coordinating those software programs required to affect mission
avionic functions for the pilot and aircraft . The LEX is a PE-oriented function responsible
for sequencing and controlling tasks assigned to a PE. The LEX is concerned with scheduling
those tasks assigned to its PE , based upon successful satisfaction of all the tasks’ given
predecessor conditions. The Executive control hierarchy for DP/M is shown in Figure
2.4.4.2-1. This figure does not represent the indiv idual routines within the Executive; rather,
it shows the inter-relationships between major functions in the executive control hierarchy.

240

- - -- - - -5— - - - . -5 - . - - —-- -5. — --—-5 —~~ —- ~~~~~ - — ~~ _~~ —


~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
‘

p
H

SUBFUNCTION ACTIVATE/COMPLETION
MODE MESSAGES TIME

1 SU~~F UNCTION
I INIT IATE 4 -

SUB~ UNCTION COMPLETE

T\ SK ...~J t _ ~~~
TASK COMPLETE

INITIATE 1~
1_1

TASK + 1/0

•
_

FIgure 2.4(2-1. Executive cont rol hierarchy.

24 1

..
~;.-

~~~~~~~~~~~~~~~~~~ - =
~~~~~~~- -— ~~~~~ •,j.•_ — 

— --5-

—

— —5- --
_——

~~~ S_ S_ __ __S_S ~___ ___



- 
~~T 

~
I1I

~

p

The Globa l Executive ’ initiates a subfunction when all the suhfun et ion predecessor
requirements are’ satisfied and when it 15 time ! for it to run. These predecessors . in addition
to start time ’ wouki he activation messages fro m one or more other subfuncti ems. The’

initiate ” message is transmitted by the GEX to the Local Executiv e on the Global bus. The
Local Executive in the PE which contains the start node of the subtunction recognizes this
message and , if all predecessors to (-hat start mode are satisfied , it initiates the task. The’ task
will execute , and should it generate a data set , it will call the t F ~~ for the dispos ition of the ’
data set. The’ LEX takes the necessary action to route the message t.ver th e Local or Global
bus or returns contro l to the task immediat ely should the message be for a task co.resid.’nt
in the same P E . The LEX message handler always re’leas.’s control bac k to the task. When a
task completes , it returns control to the Local Ex ecutive , and the’ cycle repeats. Once’ r.
subfunction has been time’ initiated by the Global Executiv e, it will run to completion under
the contro l of the Local Executive(s). Should an I /O device ’ be connected to a PE , i t is the ’
responsibility of the task which uses (-his 1/0 device to control this 1/0 de’v ice’. This does not
preclude ’ the existence’ of a common 1/0 handler routine which is used by mu lti ple tasks.

2.4.4.2.1 LEX functional design

The DP/M system has a homogenous se’t of LEX modules in each PE . The relationship
among the modules of the LEX is shown in Figure 2.4.4 .2-2. Each LEX initiates tasks ,

honors output message requests from tasks , and routes messages and data for the tasks. The’
LEX is table-driven , thereby maintaining the modular nature of the DP /M system and

providing separation of syste m logic and application software modules. A Local Executive’
data base (or the LEX ta bles) in each PE contains all information pertaining to the correc t
initializatio n and control of the tasks within that PE.

Major routines found in the LEX include :

1. The Bus Interrupt Serv ice Rout ines which serv ice interrupts produced by incoming
messages on the Local and/or Global bus.

2. The Task Scheduler composed of five sub-modules which service differe nt aspects of

the ’ scheduler func tion. The Task Schedu ler is responsib le’ for determ ining which
tasks hav e satisfied their predecessor requirements and are , hence , ready to Lw given

control.
3. The Dispatcher module which transfers contro l to the highest priority task in the 

—

dispatcher queue.
4. The Output Message Inter pre tor module’ which is called by an applications task

when it needs output message serv ice. Th is module returns contro l to the (ask aft -er
servie’ing the request.

242 

- - - - ~~~~~—~~~ -—~~— -~~‘~~~~ --~~~~~~~~~~~ ‘ ‘  - - ‘
~~~~~

— - - ‘ r — - ‘ ‘- ..“- - -— - ‘ ~~-- ~c - --

H
INPUT BUS MESSAG E INTERRUPT

• PIT INTERRUPT

-

2 7 6

3 8

/
I TASK I

/ NODE DEFINITION S

I - BUS INTERRUPT SERVICE

b

2 - TASK SCHEDULER
3 — DISPATCHER

4-OUTPUT MESSAGE
4 2 INTERPRETER

5 - MESSAGE TRANSM I TTER
• 6 - INTERVAL TIMER SERVICE

7 - MONITOR
8 - ERROR DETECT/RECOVERY

OUTPUT MESSAGE
COMPLETE 5
INTERRUPT

Figure 2.4.4.2-2. LEX module end task lnterrdstlonshlp.

____ -.

243

-5- - .- , -

~~~

• •.- - ---— --•-5••— - --5.~——.- - .— - .’ - • -—•.

p

5. The Message Transmitter Module which is invoked by the Output Message Complete
lnterrupt from one of the bus int erfaces. The module is able to output data
autonomously over the appropriate Local or Global bus should such a req uest be
posted in its service queue.

6. The Interval Timer Service Module which is invoked when a hardware Programmable
Internal Timer (PIT ) interrupt occurs . This is an error condition indicating that a
task has taken too long to complete . The module returns an appropriate status to
the error monitor module for disposition.

2.4.4.2.2 GEX functional design

The Global Executiv e schedules time-dependent subfunctions in the DP/M system. A
time-ordered linked list provide s the GEX with the relativ e times to schedule every
time-dependent subfunction in the system. A “go” message is generated by the GEX to a
subfunction only if other predecessor conditions for the subfunction have been satisfied
when it is time to run the subfunction. The GEX data base (or tables ) contains all
information pertaining to the initialization and control of all time-dependent subfunctions
in the DP ’M system. Figu re 2.4 .4.2-3 diagram of routines used by the Global Executive.

The GEX Scheduler is invoked by an tn t e’rrupt from the PI T. The schedulin g algorithm
processes a time-ordered linked list of subfunc( tons that an’ candidates for scheduling by the
GEX scheduler.

All the LEX modules described previousl” torm a par t of the GEX . Certain GEX
modules such as the Complet ion Status Monit or and the’ Activate /Deactive subfunct ion
monitor can be scheduled by the LEX in the Glo ba l E xecutive PE in the same manner as if
they were application tasks.

The Completion Status Monitor module of the GEX is schedu led to run when a
completion message is receiv ed from a subtunction. This module’ supplies this information
to the GEX scheduler.

The Activate/Deactivate (subfunction) Monitor of the GEX is scheduled when an
activate/deactivate subfunction message’ is received over the Global bus. Like the ’
Completion Status Monitor , the activate/deactivate monitor sup plies this information to the’
GEX scheduler.

The Mode Change Detector module is scheduled when a mode change command is

244 

-— - - -- —

— ~~— ~~— —-—~~
-.------ --—- —~~ .—‘ 

-
~~~ - 

~~

_ _ _
—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T T - -~~~: - - ~-~~

p

GEX 

1

I I I

MONITOR 

1 
LEX I SCHEDULER1

COMPLETION CLOCK
STATUS UPDATE
MONITOR ROUTINE

ACTIVATE !
DEACTIVATE
MON I TOR

MESSAGE
OUTPUT
MODULE

MODE
CHANGE
DETECTOR

Figure 2.4.4.2.3. GEX block diagram.

received over the Global bus. A mode change command provides a quick method of
initiating a new set of subfunctions such as might be involv ed when the pilot selects a master
function switch on a control panel and causeb multiple subfu nctions to become active.

2.4.5 DP/M SNS Simulation Control

The SNS, being constructed of SIMNUC model independent routines , has the same
general cha ra cteristics as SIMNUC and GASP IV. That is, SNS is a discrete event-oriented
simulation system. Unlike a continuous system where transitions from one state to the next
are a continuous function of time, transitions from one state to another in a discrete system
occur at discrete points in time. Distinguishab le state transitions are called events.

245

L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~--.:-_~

_ -

- - - - - ~~~~~ e - z ~~ T~~z-—- —--~-—~ ~~~~~~~~~~~~~~

Event-orien ted simulation systems emphasize a detailed description of the steps that occur
when an individual event takes place.

The sequence by which this event-oriented simulation tak es place in SNS is illustr ated
by Figure 2.4.5.1.

The Simulation Control Algorithm (SCA) controls simulation time, maintains the
Future Events List (FEL), and provides any ancillary system routines. The heart of the
simulator is the Future Events List , a chronologically ordered list that contains event
notices. Associated with each event notice is an activity routine that simulates the actions of
the particular event to be modeled. The SCA removes the first event notice from the FEL ,
advances simulation time to the time associated with the event , determines the activity
routine associated with the event and passes contr ol to it. Simulation time may be advanced
to the time associated with the nex t FEL entity since the FEL is chronologically ordered ;
thus , there can be no event befo re the first element on the FEL. Time is therefore
determined by the sequence of events and not by some fix ed interval.

________________ _____________
DESTROY

SELEC T~~ ACTIVITY -
~~~ EVENT NOTICE

ROUTINES

SIMULATION NO IF ACTIVITY 
—

CONTROL CAN BE
ALGORITHMS 

FIND® 
DONE 

YES 

TEST

____________ CHANGE ___________

SYSTEM IMAGE CHANGE

PLACE ON GATHER GATHER
WAITING QUEUE I I STATIST IGS

—I _ _ _ _  —

SCHED UL E ITS CREATE NEW
EXECUTION EVENT NOTICE

Figure 2.4.5.1. Simulation control structure.

246

- 
-~~- ~5.-~ --5 —-

~~~~~-——-———~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~ -
.. ~~~~~~~ -

—‘-5— -—-.- -5---- -5-,— ,—-.---- ,-- -- --—-,- —--—--—----- -5—-—~--, ~~~~~~~~~~~~~~~~
- -

Each activity routine performs essentiall y the same task. First , it destroys its event
notice , after extracting any pertinent information , by returning it to dynamic memory .
Next , the activity must determ ine, via its data structures, if all precedence relationships have
been satisfied. If not , the activity is placed in a waiting queue until such time as the
constraints are satisfied. If all constraints are satisfied , the activity may be executed, thus
changing the state of the system. Necessary statistic s are then gathered. Finally, a new event
notice is generated , a time for the event to be executed in the future is computed, and the
next event notice is re turn ed to the SCA to be placed on the FEL. The SCA then removes
the next event from the FEL and proceeds in the same manner as before.

2.4.6 DP/M SNS Reporting Capability

A family of data collection and report generation programs are provided with the DP/M
System Network Simulator. These programs provide the capability to selectively collect data
on and generate rep orts for the various system parameters under investigation for a
particular DP/M system configuration and /or avionic mission segment. Both the collection
and dispensation of data as well as the generation of reports are controlled by user specified
parameters. In general , the user has four options: (1) no data is collected and no reports
generated , (2) data is collected and saved , but no report generated , (3) data is collected and
report generated but data not saved , (4) data is collected and saved , and reports generated.
Data saved on magn etic tape may be processed at a late r time. In fact , this saved data may
be used at a later time to compare results of two or more different simulation experiments.
The particular options available are discussed in detail in the following sections.

Data collection and report generation occur at three distinct levels: (1) event level , (2)
sample period level, (3) post simulation level. At each of these levels, reports concerning bus
performance, processor loading, executive performance , and number of avionic tasks
processed may be selectively generated .

2.4.6.1 Event Level Reports

Event level reports consist of those reports that are generated at the completion of each
simulation event. An event level report provid es a single line output that indicates the
current event execution. These reports are used to provide an event-by-event trac e of the
flow of the simulation throughout a particular simulation experiment. For example:

** EVENT ROUTINE “NAME” AT TIME “NOW ” PR OCESSING “N”

247

-
- - - - -~~~~~~

—— -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~-

- __ i: - 
- 

-

~~~~~~~


__ - - —- --~~ - - -

~~~~~~~~

. -

~~~~~~

--—-

~~

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~

-

p

is an event level report . “NAME” is the name of the event routine currently executing.
“NOW” is current simulation time. “N” is the identification of the entity currentl y being
processed by the event. N is normally an avionic task or message identification number.

2.4.6.2 Sample Period Reports

Sample period reports consist of those reports that are generated at the completion of a
user specified sample time. Data are collected during a period of simulation time (sample
period ) and then reports (if specified) are generated at the completion of that time. Figure
2.4.6.2.1 is an example of a sample period report for a local bus. Figure 2.4.6.2-2 is an
example of a sample period report for a processor. The user may specify which reports are
to be generated.

In all report examples, times are measured in seconds. A minor frame is the user defined
sample period. A major frame is some user defined sample period that contains an integer
number of minor frames. Message numbers are those identifications assigned by the system
test data. Message lengths are measured in bits including all overhead bits. Origin and
destination are the message origin and destination processor identification numbers. Relativ e
time of start is measured from the start of the minor frame. Bus utilization is measured as a
percentage of total available bus bandwidth .

2.4.6.3 Post Simulation Reports

Post simulation reports consist of those summary type reports that are generated after
the completion of a particular simulation experiment. Post simulation reports provide a
concise summary of all data collected throughout the simulation. These summaries allow
rapid evaluation of simulation results without massive data reduction. If after initial
evaluation it is necessary to investiga te in further detail , sample period or even event level
reports may he utilized . The user may specify explicitl y which reports are to be generated
even though data were’ collected on all entities. Figure 2.4.6.3-1 is an example of the bus
decomposition report. The bus decomposition report shows the relative usage of the bus
bandwidth by each component of a message. Figure 2.4.6.3-2 is an example of the bus
loading bar graph. This graph shows the percentage of bus utilization during each sample
period. Figure 2.4.6.3-3 is an example of the bus utilization summary report . This report
summarizes the performance of each bus in the DP/M system during the complete
simulation experiment. This report is actually a summary of the sample period bus activity
reports. Also associated with the bus usage summary is a summary of all messages
transferred over that particular bus. Figure 2.4.6.3-4 is an example of the message util ization

248

-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

- 
- -



7:’
~~~~~~~~~~~~~~~~~

1~HIS PAGE I-S B~~T QUALITy FPAcrI~ 4BL~~~~~ ooir i~~tlUSkfF~D 1\) D.~C _____

-4 I 0 N • N ~~ N ~~ ~~ N • rn ,..1 •
O f’4 I P 0 0 • ~~ 0 ‘t 0 .0 0

I ‘O 0 0 0 0 0 0 0 0 * 0 *c0 I I • 0 0 0 • 0 0 0 • 0 0
N 4 1 I 0 0 0 0 0 0 * 0 0 0 0

~~~~~ W~~ I * 0 * 0 0 0 * 0 0 0 *
•Wi ~~~~I I • a 0 a 0 a 0 I * • 0
*0 Z $  I 0 0 0 0 * 0 0 0 I 0 0
* 3 1  I a * * 0 *a Z I  I * * . * * 0-
I I I 0 * * 0 * 0-
• W I  I W u a  0 0 * * 0 0
.0 x l  I (.5 13 0 0 * I * 0
.~~~ 

‘4

~~ 

) 4 -4  * * * 0 *
• 

4 ‘414 * * *
0 . I W W  0 * * * 0 *

~~ U. * P P  * N I  0 P P  * P P  * R U  *
0. .  ~~ l I E Z  * Z Z  a Z Z  I Z Z  0 Z Z  I Z Z  *
•N  0 1  I * 00  * 00  * 0 0  * 00  * 00  0
0.4 z I  I ~~~~~ * v.4- 0 0 — —  * ~~~~~ * *• ‘ I  I 00 0 I.- ’4 * I. V1 * ~..- ,4 • I. 44 * 1.14 *
• X I  I tL U. * . 4 1 4  * 414 * 4 1 4  * 4 ’4  * 4 1 4  0
a I I * z —  * z—  * z —  0 Z~~~ * Z a
• I I 0 -.X * -

~~~~~ * —~~~ * - X  0 IX  *a I I * 1—14 0 ~— w ~ * ~~~~~~~ * —~~~ a I—~~~ *
0 I I * VIZ * 4~~ I ~~~Z I V IZ * VIZ *0 I I * 114 * W - 4 * W 4 * W-4 0 W 4 0
• I I * 04 0 04 0 04 * 04 0 04 * ~o I I * I- 0 1.- * — * — a 1- * 0

• I I o r — o * 0 * * * * ~~
.

* I I l’- f lO* U. 0 IL * U. 0 U. 0 IA. 0-
• I I •* 0 * 0 * 0 * 0 0 0 *
I I I 00 * * 0 0 0- .0

I g’I o r . J - 4 X * 0 — ~~~ * O N X * O N Z * O N T *
a 0 - N 1- *0 I— O N I— *0 I— *0 I— 0- 0
0 ‘0 * (3 *4 (3 0 (3 *‘P ø *4 (3 * -

* 1 P I 4~~~4~~~ * Z 0- Z * Z 0 Z 0 Z * ~• I N I 0 0 0 UI * UI 0 UI * UI 0 UI * ~
• I 0 I 0 0- 0 * .1 0 -.1 * .1 * -.1 * .1 * a’
• ~ O N I 0 0 0 0- • * * * * .E.
• l O O V I l 0 0 01 0 1* * 0 * 0 a E
• I ‘ ‘ ‘ I I i * a 0 0 a a * p * a
O ~~~~~~~~~~~~~~~~~~ 0 * * * * * *a’) 0 W 0 * 4 Z N N* 4 Z 1 4 V % * 4 Z V I A * 4 2 . 4 ’ 0 * 4 Z $ 4 * .
• I UI I— UJ * UI -4 ~4 * UI — 00 * UI — (4 .-~ * U — ~ 0* uJ ~~ 0* ‘7

* ~~ N
4 1.-~~~~I — * Z — 0 0 0 X -. 0 0 * Z - - ’ - N 0* E ’ -’ N 0 * X N 0* I~~0 UI I P U P U 5 5 U . . X . . .* 3 4Q 0 *3 40 O *~~~~4 O 0 * 3 40 0 * 3 40 0 * ~~.

* • I • X 1 4 X* Z 0 0 0 * Z 0 0 0*~~~~0 0 0* Z 0 0 0* Z 0 0 0 * ~4• z I o l . d I Z v I I 1 4 0 • • • ..• a ’ .
• 3 I W I O Z 4 Z * W 0 0 0 W 0 0* 1 1 1 0 0 0 W 0 0 0 W 0 0* !
• Z I N I U I 4 4 4* 1 3 *1 3 *13 *13 0 ’.., * ~• I I 1 — W W W 4 , — 4 * 4 0 - 4 *4 *4 0 - 4 * .!‘

* ‘4 I II~
333I

~
1 - 0 1 4 * 1 4 O v I 0 1 4 * 1 4 *

U.

~ I — — w UI UI UI * &4 0 * (4 ,— * ‘40 0 14 P’ * 14 1 *
I— ~~ 3 3 3 UI (3 UI * w p. 0 UI E~I 0 UI ~~ 0 UI (4 0 U (4 *o w I 3 I V I ç r o o 1 3~~ ø o x U P O X N e z S U e z P U O X P 5 *I x . 4 ’ 4 4* 0 0 0 * 0-

*4 0 1 W W I 4 ~~.,- ,-- 14~~~ 1 4 0 4 ‘— 0 4 1-. 0 4 1-~ *4 1- *4 *
• 3 U . X 4~~~~4~~~ 3 5 I 4 W 1 4 00 4 * 0 4 *0 4 0 0 4 0 0 ~~ *
* I~~~~W 4 I s . 0 . Q . W X W 0 U . 4 W * U . ‘ O W * U . 4 W * U . W * U . d U O
*0 .0 I 0 ~- X 4 I - I . Z X * — 3 * — 3 * — 3 * - 3 0 1 - 3*
1 1 4 4 4 (U . 1 1 43 3 3 0~ *4 V I W 0 4 V 1 W 0 4 , M W 0 4 1 4 W 0 4 % # I W *
* W Q W I 1 - P- I W 0 0 0 l- VI U . * 0 3 * 0 3 0 0 3 *Q 3 0 0 3 0
•0- lJ ~~~~I 4 ~~~I 1 3 V I w 0 * l — P I L 0 0 P I L 0 0 0 - N U . 0 0 0 -U U . 0* N U . 0 0
0 W t I W O I 4 Z Z X W 0 *5 . 0 O s . 0 *5 . a o s 0 *0. a 0
* Z 4 3 1 1 - 1 3 Z I V I 0 0 0 t 3 4 X*X . - 0 1 - * — ~~~ p. * .~~ o — e — x . —*
*0 Z J v , 4 - .) 1 4 Z 0 s — * 4 1 — W 3 * 4 1 — W 3 0 4 1. W 3 0 4 1 —W 3 * 4 0 - W 3 *
0).- I00. 0- UI I W 3 X Z Z X .J V1 Z 0 1 4 Z I— *0 4 . .X I X ,~~~I .~~~ .a
0 . J > 4 1 4(4 0 1 - 0 - 0 - U .t I . J 0 0.J 0 * 0 . 1 c oo - . . ~~~.0 . j 0 *0 . 1 0 0
• 3 - 4 I 4 3 1 0 0 0 * UI * UI * UI * UI 0 UI *•XI U . I I L a ,~~,I X ZW W 0 w W ~~~~Z * W W) . Z I W W > Z * W W ~~~~Z * W W > Z 0
* L J J Z I 4 3 3 1 3 X Z t 5* 13 0 *I I 13~~ a ’ 0 0 1 3 1 3” 0 * ’. 3 (. 5 0 * ’. 3 1 3— 0 *
*v1 4 4 - 1 4 _ I Wl W x z I.- P- - 4*4 4 1. . • -4 4 1.. * 4 4 0 - * 4 4 0- * 4 4 1 -’ *• o I o (u ’ a 1 3g . ’ 4 ’ 4 . 4 uj . ’ 4 ’ 4 4

~~~
• , 4 ’ 4 4 w• ’ 4 v , 4w . n ’ 4 4 w .

• Z 1 4 II Z 0 - 4 1 4, c Z U IZ Z W * ’ 4 1 4 . , J X* 1 4 V 0.J * ‘ 4 ’ 4 4 X* ’ 4 v~~. . I E0 V I’ 4 . J X*

249

~-::~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -

~~~~~~~~~

-

~~~

-

-~~~~

-

~~~~~~~

-

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ais PAGE Is BEST QUALITY pT~ACflC.AB~&*

~~~~ ~)PY !1J~$IS~t~D 1’Q D~Q ~~~~~~

I” I 0 1 0 0 0$ o~ o o *
* I~
.- I 0 $ 009-~~~ t

~~~ 0 $
U~ o~~ ie’~~3
0 $ ‘$‘ .3 *0

*U% I • **0 $— ‘ 0 N U $ U *
* I *
* I P~~I-’ I- I’. ** I N
* I W w W W a
0 I U U U U 0 00

tI ll UI w w e
UI UI W (U ‘,4 4~~

* f W
.. $~~~~ W W I 11
* (. 1 i~~~ x **. 4 ~~~~~“ ‘4 I ‘~~V~~*
* I Z 0 - ~~~I L U W *

* I UI
* Wa. I >. ‘4 4*
* X 0 I ‘4 -PI (/~~#

* 4 1— $,n14*
* ~~~ Ifl I I UJ W *
* u.
* I— I * .

* I (~~* t
* $ 0 0 1 4 I Z Z* a
* I Z a . ‘4 I’- (4 — * !
* ,a ~~W I’ .- 1 4 10 1 0* ~• IZ ~~~ I ’ 4 1 0 I 0t~~*-

~~~~ * I $ 0  I IZW- * ~
* I t Z  $ 0Z~~~* e
* ZO 0 0 010  ~~— D *  ~~.

• 0 0~~~~~ $ a’4 I- *
* — ~~~~~~~~~~~~ .4 * .9
* I 1 0 -  0 N r~J I .4 101 * ~~,

* I ‘4 0 00 $ ~~..J I —  *
* l ,.4 d o o o i —  f . 3  * ~~.
* 1 ‘ ‘ ‘ ‘ I J  i~~~~m m *  E
• I- I 000 0 $~~~ 1 0 -  * ‘.~~
* $ 0 -  l~~~ *• N I- $~~~ * t4

* W * N

* ~ )‘. (.D * (a’

* 0 W N N N I I It ~ .4 * ~~
‘

* ~‘~~~ $ $ X  $ 0  V~ *
• ( M I  I a ’ .  UI I X  (#0 * ~
* W $  I ) —  X IU i  UI * ~~,

* U I  0 I Z  X I I N*  L~
* 0 $  0 W W  I- 00 *
* ~~ $ • u X  0
* 0. ~40 ‘-‘WZ I 0 W W *

* >~- X - ’ 4  I ‘t
~~ —~~~~ 4-4 *

I WW 0 - (~* U .  I (MU 0
• U  a’a X ~~~~ I I U W *
* Z t I l l  (# 0 > 4 0 .  I Z X *
*1- 0 I *
* 0.4 0-. ~ 0 . W( ) (M P U t  l. a
•W I - $ W W I  ~~~ ‘0 0Z  I z z*

~ ~~o > I — — a
* .~~I X I  ~~1- 0 . ’—wt ~ I ZOO
* Z  I ~~~I— I W A .  ~~ X I 0 I O(~~** O - . 3 lZ  I i M 4 ” - $ Z I U J.- .
~~~~~ I 1 - I  Z~~~X U1- I W O  I Z~~~~**0- I.- W~~~ I “~~o C W a ’~ X W I  “O*
*4 ~~~ X ’ 4 t UJ 0- ..J W ‘il l a
* 3 4 1 - I .I- .ñ-0..J W~3 U. U.. *
~~~~~~~ ~~‘~~I O Z ) . - 0.- O .3 00 *
* X W ~~~U. I aa’ v0 -.4 a-. 

~~ Z *I ‘4~~~ ~~~~~~~O V I D ~~~~~~~ W J . j ..j -.J $ . J Z  W W *
• 0. 0 0  0~~-4 -’4 - 4 ’ 4 I  —— ~~~~~~~~~~~~~~

*~~~X ~~~~ ZI- 1- I- 0- I c $  Z E*
*A . O I U J  D 0 0 0 0 I  > 4 1  D D*
* 0 U I Z~~~ Z I— 1- I- I- I 4 X I  Z Z - ~

250

I - 
fr 

____________________

— -~~ - ~~~~~~~~~~~ ~~~~~~~~~ 

- 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~~~~.=- _ . — --- - -  
- ~~

-- -



____  
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~: ~~~~ 

-- ‘

- II(V PI~AGT1CØI~
Th IS PAGE ~-s BEST QUALI~
ThJM COPY ~Uh~1USliED TO DD~Q

* I ** 0 * *
* I

0 - 4 i 0 * *
•

. *~~~ i 0* *
*

$
4* *0 *

* ** *4 *
* ** 0* *
* *4 I * 0 *
* I *4 t * 0 *
* 1 *0 * 0 a
* I *0 ’ * * a
* I ** *
* I 0 * • *0 *
0 $ * 4 * 4 *
* I ~~~~ I •~~~ *
* I *~~k 0 * *
* I ** 0* *
* ** *0 *
4-, * *e J I **~~~. *
* ** ** Q. *
* I I ** *
*)~~~1- 0 - 1- * * **

• * z z Z z** I ** Z Z ZZ 0
*14 *iU ~~~~ W 0 ’ * 1 4 I * 0 (4 W W W U . I *

u u uO 0~~* D I * * D ~~~~~~~~~~
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~l a~~~~ c i c~~~~* I4~~U W W 0* ~~~* I W U J UJ UJ 0

* 0.0.0 . 0 .0 - 4 I ** . . J I 0 . A . 5 .0.~~~
‘0 . 3 0 4 . 3 $ 0 0 4 $ *
*4 ~~Q~~~ * * 4 $ * * ~~~~~l ~~~~~~~~~~~4 p - . IA r . 4 0 0 U I 0 * 0 1 ~~~~~~ ‘0~~~~ *
*0 . , . . * *0 I * *.J I • 1 •
0 . 3 1 ~? 0~~t O 0 - * ..J * * (,~ I Q’.(fl~~ 4 (~J *
* ~~~~~~ * 0 *0 3 *

*~~~~, * * ~~~~g * * ~~~~$ *
*0 1 * * 0~~ * 0 0 1 *_
0 (1.. , 14 /~~** U. I ~#‘$**u. 1 4 1 4 1 4 1 4 1 4* g
0 I 0 0 . 0 .* * 0 . 0- 0 I a .0 . 0 . 0 . 0 .* o.
*Z I ~~~~~~~~~~~~~~~~~~~ I c a * * Z cO~~~~o).~~~~~* E
* O I ~~~~~~~~~~~~~~~~~~ I ~~~0 - * 0 ~~~~~~~~~~~~~~~

* * I * *_ * ‘5
* 1.- I ~ø0~ O ’.0 t * 4 1 - J 0 * 1 - I 4 0 - . ,1~~4 *
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~l .4’~~~~~~*
* 1 4 1  • . .. .* * t . 4I ‘* * ‘. i~ 1 1 1 1 1*
0 0 l  0U~~’ J 1 ~~4 * *0  I 0 * 0 0  U~~t’j~~4 0 0 *  •.:

**0 .~~ * 0-0. (‘J N *
a Z I  * * ZI  **~~~ * (

~~
* 0 0 1  4*0  * ~~

‘

4 0 * L ) I * * t ~ *
* 11.1 1 * * WI  * *w  *
*0 1 0 * 0 1  * 4 0  *
* I 0 *  I 0* a
* 4~.) I II II II II II * * ‘.) I II * * L) II II H II II *
4 — I  **~~~a t  * *~~~ ** u I  0*u .~~ **u .  *
O IL. UI * *U .  **U. UI *
0 <  4 0 u  * 4 <  * 0 4  4 O U  0
*~~~ * — 4 Z 0. 4 * ~~~ *4~~~
*1- 4 w >- ’4 4e 4 o-- I * 0 -h - I 4W ) .-4*
* Q X V $ J* *  I *0  0 I V I l.~~*

• 01.4 * * 1 4 I  * 4 1 4  *O D I  ~~~~~~~~~* * D I  * * D0 0 O O* * ~~~~I • * ~~ 0 0 0 0*
* ~~~~~~~~~~~~ * I 0 *
* *0  •* *
* I 0 00 0 * 0  I 0 *  0 0 00 *

* I UI U) UI UI * 4, * * $ UI UI UI UI *
* P.1 P.1 P.1 ‘-1 * * $ * * I P.~J 01 P.1 I”.) *• I U — — — — * * I U * * I U — — — —  *
* I _J .J .J . .J**  I * *  1 U I . . J. J . 3*
* P U. — — — — * * I U. * * I U. — — — — ** IU. i . . - I— 0- ’—~~~* I ~~. * *  IU. t— I-- 1--1-*
* I 4 D~~~~D D * *  < 0*  I 4 ~~~~~ D D D*
• I~~~ ** I~~~~* *  I~~~ 4
4 P.- (J LI U (J * *  J ,.- **  I .— U U U U*
* 

.
~~ * $ * * — — — — *

* .3U. U . U . U .**  I . 1 * 0  ..J U.U.U..U.*
* 4 U . U .IA. L L .* *  1 4 * 4
* I 1- 4 4’ 4 ’ 4~~~-~~~~ I~~— * *  1 1- 4 < 4 4 *
* I 0~~~~~~~~~ k *  I o •*  I 0 - c ( o~~~~c g *
• 1 0 - 0 -1- 1 - 1- 0 *  I p — * *  $ 0 - 0 - i —1-1-*

251 —

_ _ _ _ _ _ _ _

-~~~~~~~~~ ~~~~~~~~ —k - ~~~~~~~2t ~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

TillS PAGE IS BEST QUALITY PRACflCL$zt
~~~~~~~ 

0O~X I a~uSkf~~ It) ~D~Q
~~~~~~~~~~~~

• ‘t —  .0 . 1 . . .. . . .  . 0*
* 0 -  0 0-0

a”
*

* 0 *

*
• .~~ a
• 0. I I a
* ~~ 

. . . . . . . . . .0*•
I *

e m $
a . .  P

I *
I *

* 4~ I *
* 0  *

‘a
a • I • I S S S I • .0*
•
• I *
* I *• *a
* 

0

* *

* *
• (.4 *
* D 6 S , ,i .• ~~~~~~s .  .0*• ~~ X 4 .1~-*

a. * a”

* 
a

* ~~~~~~ 
.0

* ~~~~ * C
0 *• — Z ** ~~O * —
* 0.— I *
• ~~~1-Ø • • • • i . . .•  . 0*
* 

W ’4N  P.1*
* ~~~~~~ *
• — a
*• * P.1
~~ 4 1 -  *
• X~~ ~o ~~ -*
* X ~~ * .!‘

* ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * U.

• 1 / IZO . I • S S • • • • 5 0 *
• (11 P s J0 O 0~~~~0~~~~ 0P . J 0 *
: -~~~~ A Q - 4O - 4 o - 4 O I AO *
* 

1-~~~~ S I . , . .. .  I I *
* 

— U I  Ifl 0 r’~~0 m 0 m 0 % n 0 *
• > a .  *O W—  *

*• 40 0 0 0 0 0 0  0 0 0 0 •
• 04  I.) 0000 00 (.3 0
: 00
o I-. UI ~~ LI III Q (4~ C) U~ (-3 U~ 

(3 IA1 I *
• (4 — (.3 i3 — .-4 P.4 P.4 ~~ t’fl 1 .4 *
• W~~~~P-. 0 0000 0 0 0 0 0  *
• I— S • 5 5 1 5 1. . .  *
* 0 0 0 0 0 0 0 00 0  *a
,0 *
a —
* 1 -  *
* 4  4
* ...~ z — P.4 la’I .4 Ifl .0 0- ~~ 0’ 0 ** ~~~~~~~~~ -4 *1 *0 *
* 

(.4 ~ ., I -.4 •-‘. —4 ~~4 — ~~4 -4 — —4 _I I a
• 1 1 . 4 $  *e~~~ X I  1 *
* 0 .  I 1 *
* 0  • • $  S l s I S s S•  . ‘ I *

-1’ 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_________ - - _~~~~~~~~~~ - ~~- — -~~~~~~~~~~~~~~~~ ---- --

:~~~~~~~~~~~~~
--
~~

.

~~

~~~~~~

-

TflI S PAaE l~ EE~ T QL~ L I i Y  ~~~~~~~J .
~~~ 1’L~~ 1~~~~) 1\) ~DC

“

• •~~~4 (4 . 0~~~ 4 0 — l I_ I 5 - 4 1*
.0- 0 $ 0 *

0 $.z *

*
0 uj W (1.1 UI UI UI

•~~~~~~W 1 $ 2: 2: 1 2: 4
.~~~‘D .) 4 4 .4 .4 .4 .4 9
* ~~ ~~ c~ ~~
* 0. U- U. U. U. II. U. 9• *• I U.2~~~~~UJ~~I ~~ c~ *

I 00 00 00 0 0 *
.4 H I < Z d Z Z Z *
* •. I — — 1~ — — *w I 2: 2: *• • — X I (U *..4 .4 X ’ ~~EN ~ 4 *I — I *
0 _I a
• -‘ 0.. 0 0 *• * 0 U.. U. *
* 1 UI LU UI UI U II
* 14 ~,> : 2: 2: 2: 2: 0
* .4 .4 .4 .4 4

~, 1- ~~ *
*

3 U.. L~ U. U. U. U. *
* ~~~ 0 0*

* 0. ~~~~ ~~~~ c~ C~~0* ~
* ~~ UI 00 ~~ -40 0 0 0 00 - 0 .* a’
* 0 ~~ ‘ -, ~~ 0 ~~

-~ 0 P- ..) r4 0’ * ~* U. 0< ~~~0 .4 4.4* -
a 0 2 :0 2 :0 2: 2: *
•)- S S S *
* ~~ 00000 0 0 * E
• < Z Z Z Z * ~• 2: — — — — — — * =
* 2: ~ * .2
* 3 I 3 3 3 3 * ~* (.4 0 0 0 0 0 0 * .~~I 11 11 II Pi ll II N * ‘B
• Z IP. i * ~• 0 I~~~ * J
• — 1 0 - 0 U) 0* ~~
• 0- 0 UI I— 114*
* 4 O ON LU I.- 0- 1— 10 ~~
: I— ,.- — ~~~~~~

*
— ~ I • • ~— — 2: a ’a ’ * ~~

* -J 0 ~‘.1 1.40 2: 4 2: * P.4
* — 2: 1.4 Z (#1* .
* I— (.4 Z 4 Z * ~* 3 Z 4 ~~ 4 * •!‘

4 W UI W~~~ 0.. ~~- * U.

*
14 0 ~~- 3 3 3 1-

* 3 I II II II II I— UI UI U) UI *
• ~~ 0 3 3 3 W C) U J *
0 - U I 140 Q Q0 .4 C)*
* 1 4 Z ? Z UI .4 ‘4 4 *
* 4 0 00 0 0 - i... 0-- VP Li) 1 4*

• U -a’.. 4 3 3 D V I UI 1 4*
• UI 0- 0-. I— 140. 0. 0. UI 2: UI *

II 2 : 4< 4 141- I— — X X C
* (4 .4 P.4 r..4 ~ w 3 3 3 0— *
* (U UI t — — ~~~ —).: 0 0 0 1- 14 U. *

• *~~~ 14 w 0*
* — I U I — . — — U.Z Z Z W 0— *1- 0 1- 0 -1- 01) Q 00 ~~ IC
*0 < 3 3-3 Z C) - C
* — I— 14 Ui UI U) 0 2: 0 *
0 1 - 3 (414 (4 W Z ~~ Li) Z *
* 4 .< ~~~~~~ ce -... .- — 114*
0 .3 0- ~~~~~~~~~~~~ 10- 0— h— U. U. .3*
:~~

3 0 *
•2: ~~~W Z 2 : Z Z 2: UI 114*
. 1- 0 3 3 3 3 0 2 : I 0*
* 1 4 ~~ .1 < 1 2 : ..j Z 2: 4 1- 0. 4*
• O I 4 & — — < — — C)
0 2 : 0 . I 0 - W X Z 1-)(Z W~~~ Z
:a . w 1 0 > 4 — 04 — >114 114 > 0
* 0 ’ ~~~~t 1 - - 4- Z~~~~~ I p-. X . 2 : 1 4 .4 5 . 3 4 *

253

-~~ — ~~~~~~~~~~ -

~
- . . -

~~~
_z _

~~~~~~~~~ -—~~—~~~~~~~ -- ~~~—--


- - — ~~
-..

~~~ - .- -—.—~ -
~,—.- -~~‘ 

- -

r 

- - 

~~IS ?AGE IS BEST Quj~~~ 

-

~~~~ C~~~ ~~ is~~~ r~

•.4N I 0 I . • s I • •0) s~~~ .* ~ • ~ S • s _ I •~~~ •* • s S I I •_ I • •Q
el- 1 0 1 * * *
• ‘~ 1 0 1 0 * *
•~~ I~~~~I * •O N 1 0 1 * * *
• ~ 1 0 I w w a U) (U 0 w ** u ’ W I . I 2: 2: * * 2: • 2: 2: *• o O I e I 4 4 * 4 4 * 4 4 *• 4 1 I 2: 2: • 2: 2: • 2: 2: 0
• 0 . 1 I U. U. a U. U. a U. II. •
• I I * • *
• I I 2: 2: * 2: 2: a 2: 2: *
*0 I I 0 o a 0 0 * 0 0 0
0 - 4 I I I UI Z 2: * UI 2: 2: a Pd 2: 2: *

- I c . I P- . — • p. -S * .4 — — a
*~~~ I UJ I 0 x 2: 0 0 2: 2: * 0 2: a
* 4 1 2 : 1 0 * o a 0 *
0 ’ I I 0 N * 0 N a 0 _I N 0
• N p h - i 0 0 0 • ~~ *

H
• I I I 0 • • I 0
• . 4 1 0 .) 0 a o a 0
o I o I o • *o 0. I UI UI * LU LU * U) UI *
* I ’ 4 I 2: 2: 0 2: 2: * 2: 2:
• I I 4 4 * 4 4 * 4 4 *
* ‘ 4 1 1 - I 2: 2: * 2: 2: • 2: 2: 0 a
* 3 l 2 : I U U. U. * I U. U. 0 U U. U. 0

* !• ~~~i o i a
* I 0 .~~~ 2: 2: 2: * 2: 2: 2: a 2: 2: 2:
* 2 : I u a I 0 0 0 0 0 0 0 * 0 0 0 *
* 0 1 2 : 1 --. ~ -, • — ~ • — ~~ * E

- . * U . I I 14 < 4 * ‘4 4 4 * 0.4 4 ~~ • E
* I I 14 2: 2: • ‘4 2: 2: * 14 2: * ~
* - I I — a — • * -
* 2:~~ I 2: 0 C) * 2: C) C) * 2: (3 * C

• 4 1 I ‘4 2: 2: * 1.6 2: 2: * ‘4 2: 2: * °

* 2: (I N 0’ — — * ~ m 2: — — * 0 2: — — 0
0 2 : 1 I N 4 2: 2: • N 4 2: 2: * 0 1 . 14 2: 2: * E
* 3 1 I ~ 03.030* 2: U I 3 3 0 0 . 4 2: 43 .~0 3 N * -.

* ‘ 4) I 0- . 40O~~~~..4 * 0-~ -~~0 00* I- .0000~~~* ~
* I I 0 0 0* 0 0* ... 0 0* —
• 2 : 1 I U. 0 0 0* II. 0 0* U. 0 0 0*
* O l I 0 0 0 0-0 0 0 0* 0 0 0 0*
• ~~~I I I 0 0 0* II 0 0 0* I 0 0 0* ~• ‘ 4 I I 2: ~ ~ 5* 2: • • .* 2: • • •* a’

* ‘4 1 I 00- 0 0 0* 00. 0 0 0* 00- 0)0 0 0* ~~• I I 2 :W C) a 2 : W C) •2 : IUC) *
• 2 : 1 I W 0 - - -Z * 0 1 4 0- 2: *W l — Z * ~
* ‘4 I I ~~ 0 UI • ~~ I— UI * ~~ I— UI * ~~a Z~~ l x - ’3 * Z — ,3 * X ..i • ó
* d i 3 2 : U J 1* 3 2 : 0 N 0 * 3 2 : I N 0 * ~ .

• 2 : 1 1 2 : 1 4 * 2 : 1 4 *2:14 N 0 r4
• 1 - I I 2: W UI U J • 2: Ui UI 1 4* 2: U) UI 11*
* l o I w - 4 3 9 3 * W 4 3 3 3 * W 4 3 3* ~
* W I . 1 0 2: (Li (Li 0 1 4 * 0.3 2 : Ui UI W * t 3 2: (14 UI W * ~
• 0 1 0 1 4 1 - 3 3 * 4 0 - 3 3 3 * 4 0 - 3 30 ..~ Q * 1 4 0 0 0 * 1 4
*1.4 1.6 1 I t f l W O - N * L i P W 0 P . 10) *L 4 UJ P - . 4 N
* 4 1 4 1 I W 0 0- 0-. 0.- 0- * uJ O P. 1- 1- o~~a W Ø 0) 0- 0— 1-.
a u w I 1 2 : 4 3 9 3 * 2 : 4 3 3 3 * 2 : 4 3 3 3*
* x l I ‘4 0. 0. 0 * ‘4 a. 0 0 .0 ‘4 0. 0. 0 *
* 1.- 1 0 1 2 : 1 4 0- 0- P -* 2 :’ 4 I— 0- 0 - 0 2 : 1 4 0— I— — 0
0 1 4 I l O W 3 3 3*0111 3 3 3 * 0W 3 3 3*o w w I 1 .2 : 0 0 0* U. 2: 0 0 0* 1 1.2: 0 0 0*
*0— 1 2 : 1 l I S P 0 * III
* I I ,.’4 Z 2: 2:0)-VP 2: 2 2* 0 . 14 2: 2: 2*
*2 I 1 - I~~~~~~~~ 0 0 0 *2 : W 0 0 O * 2 : W Z 0 0 0*
*0 S $ 4 Z o - •4 2 :j . . . * 42 : 0 . . *
0 — 10- I 2 : — C) (U UI 14 * 2 : — C) w w w *2 : — C) U LU
*0- $~~~~~I Z o - z 2 : 2 : 2: Z * E S - Z 2 : 2 : 2: 2 : 0 2 : 0 -2: 2 2 : 2:
04 1 4 (3 LU 0— — 1 * 3 LU — s * 3 UI 0 —
*3 1 0 - IV P U . ..J 4 0 - 0-- 0 * 1 4 U . . J I— 0— 0 - 0 1 4 1 1.3 0. 0— — a
*9 1 1 4 1 0 0- 0- 0 0 0-
~~ I 1 w LU 4 2 : 2: 1 1 4 0 W U 4 2 : 2: W O W UI 4 2 : 2: 1 4
— I , - I O t O Z Z 3 3 0 4 0 2 : 1. 3Z 2 3 3 1 3 0 0 2 :Q Z Z 3 3 (4
* 1 4 1 2 : 1 4 W 4 X 2: d * d W 4 — X 2: 4 * 4 W 4’ — Z 2: 4*
• I 0 I ‘4~~~ .11 0 0- — 2: * “• ~~ ‘41.3 1- — 2: * ‘4~~~~’4 C) 0.- 2: a
*2 : 1 0 . 1 ‘ 4 2 : 1 4 —’ 4~~~ 2: W * ’ 4 X L i 0... 4#0)C 2: U I * ’4 2 : 1 4’4 X 2: 1 1*
•a I 11.1 W 3 L U 2 : I U4 —. >* L L I 3 W 2 : 1 L 14 — ~~~ * W 3 W 2 : W 4 — >0
00 ‘1 2 : 1 2 : 2 :2 : 0 0 2 :2: .4*2:2:2:002:2: 4*2:2:2:002:2: .4*

254

LI

-.-_- _ r ~-~-i-- —~~~~
- - - T T T - ___ _

~..- . -
- —

~ -
~~~~~~~~~~~ -- - - -- ----- - -

~~~~~ -~~-— ~~~~~—
-- - - -- - 7

--i

summary report. Reports for each bus may be selected by the user. Figure 2.4.6.3.5 is an
example of the processor utilization bar graph. ‘l’his graph shows the percentage of processor
utilization by interrupt serv icing, system (executive) programs , and example of the
processor utilization summary report applications programs. Figure 2.4.6.3-6 is an example
of the processor utilization summary report . This report summarizes the utilization of each
processor in the DP/M system during the simulation experiment. This report is actually a
summary of the sample period processor usage reports.

2.4.7 Simulation Control Namelist Specifications

‘the user defines the architecture of a given system to the DP/M simulation through a set
of namelist specifications. Simulation output information desired by the user iii the form of
reports (as described by Section 2.4.61 is specified through simulation control card images.
These specifications are supplied to DP/M in the following order:

1. Report Control Specification Data .
2. Avionic Task Definition Data.
3. BUS Performance and Connectivity Definition Data .
-1 . Task to Processing Element Assignment , and
5. Subfunction Scheduling !)efinition Data.

Each of these input specifications is briefly described below for the case of the round
robin bus protocol as an example of the user input required to run the DP/M SNS.

2.4.7.1 Report Contro l Specification Data

The card images for run control and report printing are given in Table 2.4.7 .1-1. Data
p 5,-ms are .~‘lf-explnnatory except for the following notes:

l ord #2 FwId #5 — This flag produces a trace print and memory dump of internal data
- - - o h - .i t Iofl.

- ,. .-i. i at; TheM’ numbers control a trace print each time an event routine of
- ~ 1* ~ entered . Allows control of PE number 1 thru 16.

- I h .-- .~ ‘nimht ’rs indicate the writing mode selector for the various

-- ~~

-

~~~~~~~~~~~~~~~~~~~~~~~ 
— 

~~
--- ___

p

THIS PAGE

•d~’4 •0  . • • • S I S S S SO  0
0?- 0 0 0
*~~ *I I *I

4*
*%f W 2:0
.00 I
* .4
* 0. I
* 0 • ‘ I

* **0 1 4*
**  I 2*I 0*

— I — *a-. I
*- e. I 4*

a_ S I
*
* 0-0 *
* 0*
* 2: 4 *
• 0 ‘4 4 4 4 ‘4 I *
* 14 4 ‘4 4 4 4 1 1 *
* ‘#1 4 4 .4 ‘4 .4 I a
* UI 4 4 4 ‘4 4 1 4*
* U 4 4 ‘4 4 .4 I *

- -  0 0 4 4 4 ‘4 4 *
* ~ 04 .4 .4 .4 .4 .0 *
* a . 1 9- 4 .4 ‘4 4 .4 ‘4 *
* A. 4 .4 4 4 ‘4 2 *
* .4 .4 4 .4 4 4*  a
a 0~~~ -4 4 4 .4 .4

4 a u . 0) 4  .4 4 4 .4
* I d  4 -4 .4 4 0*
* — 2 1 4  4 4 ‘4 ‘4
* ~X 0 i 4  .4 4 ‘4 4 0 *
* 0 — I d  ‘4 4 4 ‘4 *
* 0. 0 - 0 4 . 4  . 4  . 4 . 4 .0 1 4*
* w 4 r . 4 d 4 .4 .4 4 4 2*
* X P 4  4 .4 4 4 4 1 4*
* ‘4 4 4 .4 ‘4 - *  ii4
• 2- I  4 ‘4 ‘4 4 4 1 4*  ~
* 0 ‘4 4 ‘4 4 4 )~.*
* 4 4 4 4 ‘4 4 *
* ~

,.. 3 14 14 14 14, 14 *
* .4 14 14 14) vi N O
a “4 0.~ 14 14 ‘4
* — Z0 . . . S • • • • . .0141 *
• .3W  0 0 0 0 0 0 0 0 0 0)  *
• U ‘* ‘0 -.t O 4 0 ..P 0 . t O  a
0 ~ S • I S S I S S I I  0
* 3 W  _ S0 0.~.~0 40-l 0 *
* ‘4 ‘4 ‘4 ‘4

J O
-.0

*4 0 -  0 0 0 00 0 0 00 0  > 0
•IJ 3 0 0 00 0 0 0 0 0 0  2 :*
* 0 w  0 0 0 0 0 0 0 0 0 0  111*
* p-. 2 :2  0~~~ 0 ’ 4 0 A O ’ 4 0 ’ 4  1 4 0*
*140.. 00 I~~’4 m o ~i4. .t 0
,‘wu o —  0 0 0 0 0 0 0 0 0 0  I—*

5 .  5 5 5 5 • S  5 ~ 0*
• 0 0 0 0 0 0 0 0 0 0  3*
* 2: 2 : 0
*0a s-i W a
*0  0 - 0
*4  2*a __a 2 ~~ 1 .4 0 )  O P — c O O 0  ~m *

‘-5 *
0 *0 — 4  *

* 2: -4 -~ - 4 -4 .~ ..d .i ~ . ~ l *
* 1.4 *
* 2 :  2: *
*0 .  *
* O s .  • S 5 I S S S S S S  S .

2~~

~ 

~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~ ---


T
~J

TillS PACF 1:; ~~~-T QUAI L~ Y I
-~x~M C~~~ I F’i i~..\lSlL~l) lU

a -..’ _S 0 5 5 ~~~ 4 -O” 5 , 0 .0 0*O P s 0 0 ..4 O P’.. 0
*~~ 0 S S S I *

*ON NP.
*~~ 0 *
*14W 5
*00 0 l i i i *
* 4 *
• 0. 0- 1- 0- 0- *
* Z Z Z Z N 0 0 *
* W W w W *U U U L) 0 00*
* 1 N 2 : 2 : 2 : 2 : UI W W *
0” W W W W 14

U) 0 0 . 0 . 0 . 3 1 4 1 4*
•~~4 5 — — 0
* 5 5 UI 2 :5*
O N I- (4 *a — a ‘4 1 4 1 4*
* N 0. 2: W W *
* 0 U) 0 (4 *
• 2: 0- > ‘ 4 4 *
• 0 (1) ‘4 14 1 4*
* 14 1 4 1 4*
* 14 0-
* UI 2: 2 : 5*
* U 0 *
* 0 0. 4 0 0*
* 2: W ‘4
* a. 2: 4 0- ‘4 .— i-i a

• ‘0 0- 1 . 4 0 50*
• 2: 4 0 0 (4*

:1 * 0 0
0 U. Z 02:3*

• * 2 :0 0 0 0 0 . - .— 0* g

* ~~- 0 o~n r - — 0-
0 2: — P’— .t Co 0-. .4 *
* No-.’ 0.1

* 2: ‘4 ON.0 04 — ‘0
* 5 P-I 000-0 — -.1 *
* 3 — S S S S .3
0 14 .3 00 00
* — I- 3 0
* 2: 0- 3 *
* 0 3 W *
* —)- 0 *
* I— W 0 0 0 I I N 2: ‘4 0
* 4 2: 0 *
* 04 — UI 14 *
* — 0- 2: Ua UI *
* .3 0 — 2:
* .- W W 0— 00 *
• 0— 0 C.)Z 0 1414*
* 3 . w 2 0 W W ’ 0
0 0 >0-2:4 ,t (40*

4 4 *
1 4 W WWI ’ - C) I 1 4 1 4
0-4 0- ~~ tJ 0 I ~-~) 1 4*
0 tJ 3 — 5 2 : I W W *
* 0. 1 4> ’ 4 A . 5 2 *
* 0— 5 N 0 — 2 : 2 : **14) 0 & W 0 1 4 # 0 0 (4 *
• W C) UI 3 1 4 OZ Z Z*
*0- 2: 2: 2 :0)- I
• — 2:0 . 0 .W 2: 2:0*

* 2 0- W e . - 2 : 0 0 (4 *
* 0 2: U).- .
* 0. Z 2 : Z~ .)I- W - 0 2 : 3*

* 1- S W . i- Q-
~* 4 ‘4 W) — .JW 14 *

*3 I. W 3
3 141 0Z)- O- 0 .3 00
* 2 — 1 4 4. . . ~~~2: *0 0- 4 3 2 : 2 :*
* 1 4’) 2: W .J.J.J .3 3 5 W W .

* 0 ~~ 4 ’ 4 4 ’ 4 ._—
* 2: a. 2 : 0 - 0 . 0- 0 - ‘4~~ 2 : 2*
0 UI 30 0 0 0 >4 3 3
0 0 5 2: 5 2 0 - 0 - 0 -0- .4 2 .2 : 2*

257

fr -

- -

—
—

~~~~
- 

- 
-



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,-.--

~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~ T ~VT~1

TABLE 2.4.1.1-1. REPORT CONTROL SPECIF ICATION DATA

Field R/t. Punch
No. Columns Adj. Format Descri ptionN alue

CARD #1

1 1-8 L A8 CARD NAME - ‘CON TROL ’
2 9-10 A 12 CARD SEQUENCE # = 01
3 11-1 2 2X
4 13-80 L 11A4 RUN ID/ DESCRIPTION

CARD #2

1 1-8 L AS CARD NAME = ‘CONTROL ’
2 9-10 A 12 CARD SEQUENCE # = 02
3 11.12 2X
4 13.24 1 3A4 ADDITIONAL RUN ID
5 25.30 R 15 DEBUGCONTROLFLAG

(1 , TRUE) r -

6 31-35 R 15
7 3540 5X
8 41.50 R 110 SIMULATION START TIME
9 51.60 H 110 SIMULATION END TIME

CARD #3

1 1-8 1. A8 CARD NAME -CON TROL ’
2 9-10 A 12 CARD SEQUENCE# ’03
3 11.20 lOX
4 21-36 R 1611
5 3140 4X
6 41-56 R 1611 STCFLG FLAGS
7 57.60 4X

• 8 61-76 1611 WRC FLAGS

258

___________________ - -
TII~~~

______--

- -~~~~ ~~ ---- -- -
~~~~~~~~~~~~~~~~~~~ •

S
•.

0 = No print , no write to output file
1= Print
2 = Write to output file
3 Both

The columns are assigned to output reports as follows:

61 — Sample Period Bus Report
62 — Sample Period Processor Report
63 — Event Level Report
64 — Bus Decomposition Report
65 — Bus Utilization Summary Report
66 — Message Transmission Summary Report
67 — Processor Utilization Summary Report
68

- 
— Not Used

H 76 -

Observ e that card s 1 and 2 identify the run and control the dump of initialization data . Card
3 controls the data collection and report printing.

2.4.7.2 Avionic Task Definition Data

Software tasks and their relationship to one another in terms of the directed graph and
message structure described in Section 2.4.4 are specified by namelist data sets. All symbols
start in column 2 of the data card image. Variable list values must be separated by commas
with no imbedded blanks. Order within the namelist data sets is not important. Those
variables with default values are optional and may be omitted. The namelist data items are
given in Table 2.4.7.2-1.

Additional Executive Modules can be added to the SNS by defining them as tasks. in
order to do so, executive modules are defined by task definition data sets as described by
Table 2.4.7.2-1, task to PE assignment data sets as defined by Table 2.4.7.4-1, and , if
necessary , subfunction scheduling data sets as shown in Table 2.4.7.5.1.

259

k - - 
- , ~~~~~~~~~~~~~~~~~~~ - ~LiII~



-~~~ 
- - - —

~~~~~~~~~~
- -

~~~
-- - - --—-- - - T 1

TABLE 2.4.7.2-1. AVIONIC TASK DEF INT I ON DATA

Default

Variab le Descri ption Value/Restrictions

As many of the following data sets as there are tasks:

STOEFN Start namelist data set descriptor
LAST .True. If last task definition
TASKID Task identi fication number
NPR EO Number of predecessors to task 032
DELTA Inverse of rep. rate (period) 2 -1
TNAME =40H Description of task (up o4 O characters) Blanks

NUMSUC Number of successor tasks 0
SRID List of succ usor task ID:
RTYPE 16-bit word s of memory used
NUMBS Number of run time branch successors 0
BSID List of run time branch successors
NIMSG Number of input message required by task 0
IMTYPE List of input message types
XTIME Tasks execution time in proce ssor clocks 0

SEND End namelist data set
SMTBD Start namelist data set
NUMMSG Number of output messages generated by task

SEND End namelist data set

As many of the followin g namelist data sets as specified by NUMMSG:

SMDEFN Start namelist data set
TYPE Message type 0

L ENGTH Message length in words exclusive of overhead 0

NUMD ES Number of destination tasks 0
T ASKI D List of destination tasks

PHASE Transmission time 0

PERIOD Period of m essage transmission 1

PRTY Priority of message 0

CCLEN Control length 17

SOURCE Source (0 0

DENS Densi ty 0

SE ND End namelist data set

260 j
_____ ~~~~~ - - -~~~~~~~~~~~~~~~

~~~~~~ A ~~~~~~~~~~~~~~~~~~~~~~ -~~ 
..-~~~~

—

I

2.4.7.3 Bus Performance and Connecti vity Definition Data

Specification of the number of processing elements (PE’s) in the system, their
identification and the bus performance is defined by user as in Table 2.4.7.3-1. Affinity
groups are specified similarly as shown.

2.4.7.4 Task to Processing Element Assignment

Tasks to be executed by each processing element are assigned task by task as depicted in
Table 2.4.7.4-1. The order of task execution in a given processor is resolved by the processor
executive based on predecessor/successor relationships defined in Section 2.4.7.2 .

TABLE 2.4.7.3-1. BUS PERFORMANCE AND CONNECTION DEFINITION DATA

Var iable Default Value

SGBDEF
TOTPE = Total number of PE’s in DP/M System

GBCI. = List of PE numbers that define the global bus connectivity
in the order for contro l to be passed.

SLOTH = Total number of elements in GBCL

WSIZ E = Bus data word length (equal to the sum of processor data 16
word length plus error checking code leng th plus data
word sync leng th)

BITPRD Bus bit period (sec/bit) 1

MSYNC Message sync signal length (bits) 3

GAPIME = Inter-message gap time (sec) 5

SEND
One set for each affinity group to be defined:

$LBDEF
NUM PE = Number of PE’s in this affinity group

PECON List of PE numbers that define the local bus connectivity
In the order for contro l to be passed

B 16T H = Total number of elements in PECON

LAST • .TRUE., use If 1 t affinity group definition

SEND

261

~

- - - -

~~~~~~~~~~~~~~~~~~~~ .:~~~ 
-
~~~~~~~~~~~ =~


TABLE 2.4.1.4-1. TASK TO PROCESSING ELEMENT ASSIGNMENT DATA

One set for each processor assignment to be defined :

SO E F I N E
PEID = Processor ID having tasks assigned to it TASKS = List of tasks lOs to be assigned to the processor

NUMTSK = Number of tasks to be assigned to the LAST = .TRUE., use if this is last processor assignment
processor definition

SEND

TABLE 2.4.7.5.1. SIJBFUN CT ION SCHEDULING DEFINITION DATA

As many of the following data sets as there are subfunctions:

$FNDEFN Sta rt namelist data set descriptor SFPE ID of PEW s with subfunction start mode

RUNT Time at which subfunction gets first ‘go
p message (,~s) LAST .TRUE. If last subfunction definition

tIER Iteration period of subfunction (us) ID Numeric identity of subfunction

NUMPE Number of PE’s with subfunction starting mode SEND

2.4.7.5 Subfunction Scheduling Definitio n Data

Subfunction scheduling definition allows time-dependent subfunctions which are to be
scheduled by the global executive to be defined as entries in a time-ordered list. Namelist
specifications are given in Table 2.4.7.5-1.

SECTION 2.4 BIBLIOGRAPHY

Consolver , G., et al., Distributed Processor/Memory Architecture Design Program , Texas
Instruments, Inc., Feb. 1975, AFAL-TR-75-80.

Texas Instruments, Inc., User ’s Manua4 Computer Program, DP/M System Network
Simulation System, Feb. 1975, Code Identification No. 96214, Unpublished .

262

- - j~~~~~~~~~~~~~~
_

~~~~~
w_ _,_ - --

-j  
-—- - - - — - -



2.5 SOFTWARE DESIGN AND VERIFICAT ION SYSTEM (SDVS)

2.5.1 SDVS Objectives

The Software Design and Verification System provides necessary non-real-time software
tools to aid in the development , testing, verification , and maintenance of avionic mission
software. The SDVS was created as an integral part of the Digital Avionic Information
System (DAIS) progra m, and an understanding of the utility of SDVS is aided by an
understanding of the objectives of DAIS. The DAIS concept proposes that the processing,
multiplex, and display functions of avionic systems be common and service on an integrated
basis all of the usual subsystem functions such as navigation , weapon del ivery , stores
management, flight controls, and communications. The DAIS program has attesi -ed to
demonstrate the feasibility of this concept in order to eliminate some of the proliferation of
non-standard avionics and permit the Air Force to assume the initiative in the specification
of future Air Force avionics.

Since the use of common hardware and software for acquisition of sensor data,
processing of mformation, and provision of display information is critical to the DAIS
concept (or to any other computer-oriented system concept), the software design and
verification functions in the context of any particular processor architecture, are vital to
success. The SDVS thus assumes a vital role in the design of future avionics systems. The
following description attempts to describe SDVS in a general context rather than entirely
within the DAIS framework , since it has a broad applicability to avionics system design.

2.5.2 SDVS Overv iew

The design of the SDVS is based on the program hierarchy shown in Figure 2.5.2-1.
Note that the DEC system-lO operating system and utility routines are utilized by the
SDVS. All of the SDVS programs are arranged in three levels. A program can be called only
by a program of a higher level, and it , in turn, can call only programs at a lower level.
Programs on the same level have no direct interface and must pass information through a
program at the next higher level. The SDVS is written primarily in the JOVIAL-73 language
and employs structured programming techniques. Other source languages are Cobol and
Fortran.

The SDVS Control and Software Management Programs, though shown at the top of
the hitrarchy, are actually a collection of utility routines that are used by all the second
level programs. The exception is the SDVS Control Program function that interacts with the

263

— — --  
- 

~~- 
- 

~~~ -~~--- 1~~. . . .. - -  -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~

— -
~ ~~~~

~~~~~~ 
-_~,-_.-_____,-__,=----~-----_~-.--~w_--’—,.—- — —--—---,-- -_-_ -_--

~

_--

4ij.i

[]~1 —th u

_ _ _ _ _ _  

-
~j iD~ —L~I

I. + d ‘I
26-I

I, 
______________________________ - - -~~~~~~~~~~~~~~~~~~~ --~~~— ~~~~~~~~~~~~~~~~



~~~~~~ -~~~~--~~- - -  - -
~~ ~~~~~~ -- —- - - - -~—--.‘—--‘-- -- ~~~~~~~~~~~~ ‘—.-- ‘~~~~~ --- ---~- - — ~---

~~~

- -

~~~

-

~~

--

~

— -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ y

user and selects the mode of operation. The hierarchy diagram , as drawn , represents a
functional organization rather than the exact contro l interfaces between the var ious pro-
grams. A brief statement of the function of each of the programs follows.

2.5.2.1 SDVS Control Program (CP)

This program interacts with the user in determining the desired mode of operation and
then transfers control to the appropriate second level routine. All host processor functions
are performed by this program (1/0 handling, calling the system compiler , etc.) and are
based on conversational commands input by the user from the File Generation mode and
from second-level program requests. it will also submit simulation runs into the batch
system.

2.5.2.2 Software Manage ment Prog ram (SMP)

This program maintains and provides controlled access to all SDVS files, it prov ides the
capability to store, retrieve, interrogate, and protect these files by building and maintaining
file catalogs containing information about the files. Examples of such information are user
file name, intern al file name, file type, program version number and revision number .
creation date, security lock , and author.

To manipulate effectively the File Management data base, this program performs three
major processing tasks as follows :

1. File Retrieval — Whenever a file from the File Management data base is required by
one of the SDVS programs, the SMP will be invoked to retrieve the file via the SDVS
Control Program. It will use the retrieval data supplied to it to interrogate its file
catalogs and locate the internal name of the requested file. This internal name will
be passed to the SDVS CP, which will use it to actually locate and retrieve the file
from secondary storage.

2. File Disposition — When a new file is created by an SDVS progra m or a user , it must
be placed in the File Management data base under control of the SMP. The program
which generates the file (e.g.. Scenario Generator, Simulation Control , etc.) issues a
file creation request . This request contains the qualified name under which the file is
to be controlled , the file type, and the name of the person responsible for the file.
The request is passed to the SMP where the data contained in the request is used to
create a new catalog entry for the file. The cataloged f i l e is then written to
secondary storage by the SDVS CP.

265

- - —----
_________ i

-~~- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —--- .1 A~;1I~

- - - - - --- ---- — -------- - ------ - -‘—_.~ --.-w— — - - - —,-w , ~~
— —- - - - - - —--.. — -~~~~- ~~~~~ _._~~ -~- - L - - — - - ~~~~~~~~~

- - - -
~‘~~‘i

H p

3. File Protection — The third major function of the SMP is to provide security locks
on the files such that a given file can only be accessed by someone possessing the
matching security key. Each programmer has security protection over his files until
his software has been completely tested and is ready to become par t of the official
syste m. However , the project manager always has read-only access to all files in the
data base.

2.5.2.3 File Generator (SWG)

This program processes file manipulation commands input by the user. The following
commands illustrate some of the functions provided :

HELP — List the format of all SDVS user commands
ACCESS — Make available a specific file , version , revision for processing
EDIT — Perform text editing on a file
TRANSLATE — Compile a J73 program
COPY — Copy a file onto anoth er file name
NEXT-VERSION — Generate a new version from the previous revision of the version

specified
PRINT — Print a file on the system hard copy device
CREATE — Create a new file
ENTER — Enter a file from the host computer into the SDVS catalogs
OUTPUT — Output a file from SDVS to the host computer

The File Generator does not actually perform these functions itself (e.g., TRANSLATE,
EDIT, ACCESS, etc.), but rather passes the user’s requests to the SDVS Control Program
which passes them to the DEC10 monitor and/or the Software Management Program.

2.5.2.4 Scenario Generator (SCG)

This program is divided into two program translators, a Simulation Control Language
(SCL) translator and a Data Processing Language (DPL) translator. The SCL defines the
user’s simulation scenario to be executed ; the DPL defines the data processing to be
performed on simulation data. The SCG is executed by a conversational command to
translate either an SCL or DPL file. The Scenario Generator retrieves the desired file from
the SMP catalogs, translates the source code, and catalogs the translated test case in the SMP
catalogs.

266

‘- -‘I

H

2.5.2.5 Simulation Control (SCP)

These programs are used to sequence a simulation scenario defined by a translated SCL

program. They initialize the necessary simulators (ICS , SLS, data bus , environment) for

execution, load the users mission software to be tested , perform rollbacks, and execute a

simulation by invoking the various simulators.

2.5.2.6 Post Run Edit (PRE)

The Post Run Edit program provides the user with the ability to analyze the data
recorded on a Rough Output Tape (ROT) during a simulation run. The Post- Run Editor
accesses the user.specified translated Post Run Edit directives file. The directives specify
what data is to be selected from the ROT , what analysis is to be run on that data, what

format is to be used to display the analysis results, what user routines are to be used , and

what devices are to receive the output files created by the Post Run Editor. The Post Run
Editor provides tabular printouts , interactive displays and data plots based on user
directives. An important feature is the ability for a user to write an analysis routine in
JOVIAL and have it execute within the framework of the Post Run Editor.

2.5.2.7 DAIS Simulators (ICS , SLS, DBS, EES)

The programs simulate the DAIS hardware. Each of these programs simulates
appropriate events (e.g., execution of an instruction , a bus transmission) upon direction of
the Simulation Control Program. The programs are:

ICS — Interpretive Computer Simulator
SLS — Statement Level Simulator
DES — Data Bus Simulator
EES — External Environment Simulation

While the first three of these particular simulations have been written particularly to

simulate the DIAS hardware, a brief statement of their function provides additional insigh t

into the capability provided by SDVS. Further , the External Environment Simulation
provides a simulation of avionics, airframe, and environmental conditions which interact

with the soft ware being simulated by either ICS or SLS, so that EES is not DAIS-specific ,

but can be utilized with any software simulation.

267


~~~~~~~~‘ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.5.2.7.1 Interpretive Computer Simulator (ICS)

The purpose of the ICS is to provide a functional simulation of a computer (in this case
the DAIS Hot Bench Computer) in the absence of the actual computer. The ICS is a
software module of the overall SDVS system and executes mission software written for the
actual computer in order to expedite debugging, integration and execution of these
programs. Multiple compaters can be simulated with the ICS software. The individual
computers are simulated serially by the ICS, but the clock is advanced in a manner to
simulate parallel operation of multiple processors.

The ICS simulates the operation of a computer at the instruction level. The instruction
set is simulated in such a way that the resulting contents of registers and memory is the
same as would result from actual operation of the computer. Instructions are simulated one
at a time, and input/output operations are carried out with other simulation models (e.g. ,
the EES models) after each instruction. The simulation includes operations of input/output ,
all addressable registers and memory. Instruction execution times are passed from the ICS to
the Simulation Control Program in order for the computer execution times to be
coordinated with other aspects of the simulation; control is returned to the SCP after each
instruction. Figure 2.5.2.7.1 illustrates the interface of the ICS with other m odules of the
SDVS system.

2.5.2.7.2 Statement Level Simulation (SLS)

Whereas the Interpretive Computer Simulation simulates computer software execution
at the instruction level , the Statement Level Simulation simulates software execution at the
JOVIAL source statement level. The SLS interacts with the JOVIAL compiler to produce
DECsystem.10 code corresponding to one JOVIAL statement at a time. Multiple SLSs may
run concurrently in SDVS in order to simulate multiprocessor systems. Simulated execution
time is provided by the JOVIAL compiler based on statement execution times prov ided by
the programmer. The SLS uses these times to provide a rough synchronization between
concurrently running SLSs. An illustration of the interaction of SLS with the modules of
SDVS and the JOVIAL compiler is provided by Figure 2.5 .2.7-2.

2.5.2.7.3 Data Bus Simulator (DBS)

The DAIS-oriented simulations described in th is section allow the simulation of a
multiprocessor architecture with data transfer via a multiplexed data bus. The data bus is
assumed to interconnect the processor with sensors through intelligent remote terminals and

268

— — - ----— — - — --~~~~~~~~~~ ——-~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ - - -

11— c]A0 A055 591 RESEARCH TRIANG&.E INST RESEARCH TRIANGLE PARK N C F/S 1/3AFAL SIMULATION FACILITY/CAPABILITY MANUAL. VOtLNt I. EXECUTIV E—ETC C U)
.JUN 77 R A WHISNANT. W H RUEDSER, R I. EARP P33615—76—C—noB

UNCLASSIFIED SCSI —T R—77~~I iA ~~~~~l —I

4cr5

I

I

/1

P

z

~~z_ 1

A A A
(I)

• uJ•
-J

U
U,I- k. 0zc, o

>
w C,

uJ
U. 0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
a

Hzo ~‘• 1 I-
0. a

C’, 0 ~

U, N Q ~d

A A A A

- -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _  ~
••

~~~ • •
~~ • L

-

z
0

I
_ _ _ _ _ _ _ _ _ _ _ _ _

w w
~~~~~~~ ~- 

~~~ t2~

:~ : :° :~ :A A A A A AZ 2
Ui 2§
2
Ui U 0a ui

-
~I I’

S — ~~~~~~~ — — — — ———
z z

2° ~ 2

ft U
_ _ _ _ _

_ _ _ _ _
_ _ _ _ _ _ _ _ _ _

270


~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.. ~~~~~~~~~~~~

to conform to MIL-STD-155A bus protocol. The DBS is thus essential to a simulation of
mission software interaction with the external world represented by sensors/actuators.

The DBS simulation is set up by the user , using SCL, by providing four types of
information:

1. Values of SDVS variables which control the attributes of the dat.a bus such as
transfer rate and gap time ,

2. Values of SDVS variables which define the remote terminals addresses and
suhaddresses ,

3. VaLues of var iables which etft~et the simulation of data bus hardware errors , and
4. VaLues of SDVS variables which cause the initiation of interrupt services which are

associated with data bus interrupts .

These variable descriptions also suggest the functions performed by the DBS. Additional
insight into the interface between DBS and the SLS, ICS , and EES is provided by Figures
2.5.2.7.1, 2, and 3 in this section.

2.5.2.7.4 External Environment Simulation (EES)

When the mission software modules being simulated are those which would normally
require interaction of the software with avionics hardware (e.g., air speed data or airframe
dynamics parameters), the hardware with which such interactions would take place is
modeled by the External Environment Simulation. Specifically, EES provides the simulation
of the environment as represented by the areas of mission profile , aircraf t , and fligh t
dynamics models, environmental models, and sensor models. The relationship of the EES to
the other SDVS modules is shown in Figure 2.5.2.7-3. The EE.S receives inputs from the
mission software being simulated via the data bus or executive simulation, all of which are

J being sequenced by the Simulation Control Program. The EES models compute the required
data and return it to the mission software simulation. The Simulation Control Program may
also record model outputs on the Rough Output Tape as directed by SCP.

The EES models, which are derived from the same basic set as those described under
AVSIM (Section 2.6) can be called on either a demand or periodic basis. The EES models
are listed in Table 2.5.2.7-1. Their function Is to simulate aircraft position and external
world state. Models may be called on a user-specified periodic basis or they may be called on
a demand basis when the Data Bus Simulation makes a request to store data into or extract
data from that model’s variables. Similarly, models of the switches available to the pilot in

271 
t

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~


—
~ ~~~~~~~~~~~~~~~~~~~~~~

I

?

Ui

-a

•

A A

ii i i I J I
Ui

W
j

ihI
i~~~

! Ii ‘ H

272

TABLE 21.2.7-I. EES PERIODIC MODELS

Model Name Function of Model

Airframe (AF t) Utilizes linear aerodynamic coefficients to
model airframe dynamics In 6 degrees of
freedom.

Atmosp here (A TMO) Simulates atmos pher ic conditions such as
temperature, pressure . and w ind.

Dop~ er (DOP L ER) Simul ates do pp ler radar measuring ground
speed and draft angle.

Earth (EARTH) Models rotatin g oblate spheroid earth to
provide aircraft to earth data in fligl~t.

Ground (G ROUND)

Inertial Measurement Set (IMS) Models ASN-90 IMS by computing north-
east-ve rtical incremental velocities and
accepting gy ro-torquin g pulses .

Propsi (PROPEL) Calculates thrust of TF41-A .1 engine as
function of mach number and altitude.

Air data compu ter (ADC) Models tree sir temperature , static pressure
and imp act pressure as a function of
altitude.

the cockpit simulator (Section 2.1.2.3) are provided in EES. Switch models are listed in
Table 2.5.2.7-2. Interaction of these models with SDVS is illustrated by Figure 2.5.2.7-4. A
status word indicating the status of the keyboard and a switch position is entered into
common for use by software simulation programs.

The EES also provides the user with two options for specifying aircraft position
data : either from a dynamic model or from a data tape. Depending on the altitude of the
aircraft , either the GROUND or AIRPLANE model is called when the user chooses the
model option. When the data tape option is chosen, position data is input from a tape whose
nam e is specified in a DATA-TAPE statement. In this case, the user can input also the

number of periodic cycles between update of the flight profile data from tape.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



TABLE 2.S 2.7-2. EES COCKPIT CONTROL DEMAND MODELS

Model Name Function of Component Modried

Master Mode Panel Switches (MMPSW) Selec t one of 15 mission segments (e.g.. preflight , takeoff .
dimb, radar bombing)

Integrated Multifunction key board (I MFkS) Select one of 7 processor functions (e.g. . communication ,
sensors)

Data Entry Keyboard $w,tchss (DEKSW ) keyboard entry of data (0.9, ENTER . CLEAR) .

Vertical Situation Display Switches (VSDSW ) Horizontal/V ertical Situation Display Swap, 2 spares

Hor izontal Situation Display Switches (HSDSW) Select F u R , Radar, Rang. up/down, Ttack up/down, chart
Multipurpose Display On. Switches (MP D1P) Select vertlcal/multipurpose/horizontsl/other display
Muttipurpoie Display Two Switches (MPO2P) Select v.rtical/multipurposs/horizontal/other display

Multi function Keyboard (MFK) Select one of 1 processor functions (e.g. . communications ,
sensors)

Procoesor Control Panel Switches (PCPSW) “Reconfigure’ or “start” processor
Armament Panel Switches (APSWS ) Select jett ison, fusing, and guns higIVIow

Sensor Control Unit Switches (SCUSW) Select Fu R , sorters, laser, radar, etc.

Flight Control Stick Switches (FCSSW) Control trigge, armament release , target-
waspon, pltch/~oll trim, etc.

Left Console Panel 2 SwItches (LCPES) ~elac t fl ight control and electrical power
Tunctions

Left Console Panel 10 Switch’s (LCPOS) Air-sir initiate and air ignite switches

COMMON

sobs 5WIJCN

KIYI DA ~ D

Figure 2.5 2.74. SDVS/keyboa,d model hiterestlo..

274

—~~:~~



2.5.2.8 Snapshot/Rollback

The Simulation Control Language includes a SNAPSHOT statement that , when executed
during the course of a simulation , results in saving the state of the mission software , the
code executors, the data bus model , and the environment models. A snapshot can be
performed based on a conditional event. (e.g., WHEN A >  50 or B < 30 THEN PERFORM
SNAPSHOT), or at periodic intervals as defined in the Simulation Control Language.

The user (-an later initiate a rollback via the SDVS Rollback mode to any simulation
snapshot point and rcstart the simulation from that point. In resta rting a simulation , the
user can mod ify his test case files to delete or add new conditions to be evaluated ,
reinitialize mission software and environment model data , and add or delete SCL control
blocks (sub routines).

2.5.2.9 Hot Bench Computer Loaders (HBCL)

The HBCL performs the task of loading J73 and HBC Cross Assembler object files into
one or more simulated computers. The user specif ies the files, and how they are to 1w
loaded , through the SCL CONFIGURE statement (Section 2.5.3.2) . The resulting load map
is produced in the simulation run ’s log file. Also, the user can request that the Loader
generate an ASCII file . readable by the Hot Bench Computer Bootstrap Loader , which
describes the core image load ed for an ICS simulation run.

The SCL CONFIGURE statement allows the SDVS user to specify the type of
simulation (either SLS or ICS) and the object files to be loaded and executed on one or
more simulated computers. The object files may be mission software procedural (both
executive and application modules), COMPOOL, and/or uncataloged files. For cataloged
procedural files, the SCL Compiler will automatically configure ai.y COMPOOLS referenced
by that file which have not previously been configured. The list of REL files to be loaded on
each simulated computer (the File Directory) will not contain duplicate files, except for
library files. A library file can be specified more than once on a single computer to resolve
undefined external references which exist at that point in the load.

Also, through the CONFIGURE statement, the SDVS user can optionally specify the
starting load addresses for each file’s data and code segments for an ICS load. This feature
does not apply for SLS loads.

275 

- — 
—____________

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



2.5.3 Using SDVS

2.5.3.1 Modes of Operation

The various programs described in Section 2.5.2 are invoked by entering one of the
seven basic modes of the SDVS. These modes may be executed in either conversational or
hatch format depending on the user ’s needs. The desired mode is selected upon entry to the
SEWS by typ ing ~

‘ R Sl)VS~’ as ill ustrated below.

R SDVS
WELI’OME TO SDVS VER.3B(76061 1) . YEAR , MONTH , DAY

( LOGS NAMES L14370 ASSIGNED TO THIS SDVS RUN )
SI)V S IS REA L )Y . WHICH MODE OF OPERATION IS DESIRED ?

PLEASE ENTER NAME OR iNITIALS OF ONE OF TIlE FOLLOW iNG:
FILE GENERAT I ON (FG)
SET UP & R U N  SIMULAT ION ( StI RS )
POST RU N EDIT ( P RE )
ROLLBACK (RB )
DELETE MODE (MANAGER ONLY ) (DM )
SUPERVISOR MODE (MA NAGER O N L Y )  (SM )
LOGOFF (LOG)

Based on the user reply , one of the modes will be entered by SDVS and the desired
operations can he performed.

2.5.3.1.1 File generation mode

l’he File Generation mode provides the necessary tools and configuration management
aids for maintenance of all files .issociated with the development, test, and verification of
software . An extensive cataloging system is maintained for a number of diffe rent types of
software controlled by SDVS including ; mission software , SDVS test case lilt’s (defining
simulation scenarios and data collection requirements) , environment and aircraft models,
and post simulation data reduction anti analysis programs. Manipulation of files cataloged in
SDVS is provided for 1w a number of conversa t ional commands (e.g., edi ting, compiling,
printing , etc.) listed in Section 2.5.2.3

2.5.3.1.1.1 File Structu re. Each fu r’ I y Pt’ is cataloged by Sl)VS on a version revision

27fl

__ ~~~~~~ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  

_ _ _ _



- ‘T — - - _____

basis. For examp le . w hen the user creates a mission softwute ’ lilt’, it is cataloged as version 1 ,
revision 0 and stored in a “baseli ne’ (ii e” ’ . A s  the ’ user ed i ts  the’ tilt ’ in later sessions. he’
e’rt’ate’s a numbe r of revisions. Each rev ision re’sults in the edited changes being cataloged as a
uni que record in the ’ “di fference file ”’ for tht ’ particular file ’ version. At any point , he may
combine ’ all or part of the revis ions associated with a particular version and make ’ a new
version with the conversationa l NE X T -V EIt SION command. Under SDVS the user c’an
acc•’ss an~’ versio n and revision number for a file sinc e’ t’ach Ki)l’l’ session gene rates a un ique ’
en try in the difference ’ file’ for a I)ar t it~ular file version . In interpre ’ting eonve’rsationa l
commands, SI)VS will interroga te’ th e’ Configuration l~ianage’mt’nt Catalogs to dete ’rmine ’ if
the user has authority to ac’c’ess the desired fil e us established under the superv isor mode’.

2.5.3.1.1.2 File Types, There’ art’ thre e’ basic file ’ types maintained by SDVS: mission

softwa re’, si mulation test case, and post run edit. Severa l other file ’ typt ’s are’ described by
the SE)VS Use r ’s Manual. Each of the three basic types is described briefly in the follow ing.

‘l’he SE )V S catalogs provide configu ration control for the~ development , test , and
maintenance of the mission software’. The’ user has the capability to create’ and edit JO\’l:\l,
code’ and {‘OMP(X)L data tilt’s. SDVS . in response’ users commands, will automatically li nk
COMPOOL data file’s to program file’s in the ’ catalogs. The ’ user is able ’ to produce’ listings .
save’ newly created anti updated files , and invoke the JOVIAL J73 compiler or the’ I):~1S
processor assembler. The SDVS will automaticall y catalog all revisions made to a mission
sof tware file , and c atalog object module’s from successful compilations.

The File Generation mode of SDVS operation also provides the’ user the’ capability to
create, modify , and translate source test ease files containing Simulation Control Language’
(see Section 2.5.3.2) statements. These source test case file’s provid e the directives, which

define the initialization and contro l of a simulation run including sequences of operations .
failure conditions , outputs to the rough output tape for post processing in the Post Run
Edit Mode , etc.

The user inputs to build test case files are of two types. Conversational Language’ and
Simulation Control Language. The user enters Conversational Language’ commands to enter
the appropriate file handling mode of operation , i.e., create , edit , print, copy, etc. The’ test
case files themselves will contain statements in the Simulation Control Language which are’,
at user request , translated to an internal form for later use in directing a Simulation run.

The primary output of building test case files are the internal test case files which are
used to control the initial ization and execution of simulation runs. En addition , the user

277

I 
_ _ _ _ _ _ _ _____________________ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ .. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~
“

~~~~

‘

~~~~~~~

‘

re~ce ’ivt ’ ’ tnte ’ rac t i~ ,‘ output:.  during file ’ ma ni t t u lu t  ion . ~ucli  .i~ 5i k c t ’S~~t i t ~ c on ipic t i ( ) I t  a un t

error mt ’ssa ct~~.

l ’ht ’ tc~’t c ase ’ t l t re ’ct  ivt ’~ file ’ wi l l  rt ’fe’reuce ’ i n t s s n n i  -.~‘f t  war ~ t i l t ’~ t h at  arc ’ t o  he ’ i t 5 , ’ci  t h e

simula t io n .  I t  will  provide ’ d irective ’s I t ’  cent ra t e  th e ’ roug h outp ut tap e w h t ~ lt e~ i l l  I c ,

. i t t . i l vz t ’el af t e ’r  the ’ sim ula t ion  run is c’omp le ’tt ’ . I’hc ’ t e s t  c ase ’ dt rt ’c ’t t ~ t ’ sourc e’ and n t ri i ~
f i I t ’~ are n iaint~iine’d in the ’ SI)\’S file ’ cat a h ’1~s.

l h  F’i le ’ (~ e’u t r ’ ra t  ion motto of SD\’S operation also pros’ ide’s the use’r wi t  ii t h e ’ c a t ‘aI t t l t t  V

to  ~‘re ’at t . modify , and translate ’ senire ’t ’ l’ e t s t  Run  Edit  directive ’s fi le ’s t ha t  ~ II c c  a in

~t . i t en t t nt  iii the ’ 1)ata Proce ’ssunc l .angung e ’ whi c h , at tl se ’r request are t t~ LI l5I . i t t ’ t~ t

in t e rna l  form for inp ut to t h e ’ l’et ~ t R u n  Editor.

I’he’ pnmary output  ~~ this  mode’ of ope ’rat ion arc ’ the inte rnal P11 F dir ec t iVe ’~ fi le ’s t h a t
ir e used in the ’ Post R u n  Editor SI)\ ’ S mod e’ t o  perform data e’dtt ing fein ~’t tOf l s  ot

particular rough output t , iI ’e ’ ~ze ’nt ’ratr ’d by :i simulation run.  In addition . t h e ’ user ~v il l  c t l c t a i n

t n t e ’rae ’t i ve outputs , such .is suece ’ssful comp le’t ion and e’rror i e ’ssne~e’s dt i r t ng  the ’ file ’

man ipu la t io n  and tr ansl at  1cm procesS. ‘l’he’ PR F direc ’tiv e’~ file ’s, Source’ and int e ’rn al . .tr ~
cataloged hv SI)\ ’S .\ PRE eiire ’ct ive’s file ’ may be’ specified by the’ user in .t test case’ file ’ t o

he’ automaticall y run at the ’ end of a simulation run.

2.5.3. 1.2 Set-up and run simulation mode

This mode’ of operation is used to submit a simulation run based on a te ’st case’ directive ’s

file that has pre’viously been created and translated . The’ user inputs for this mode of

operation include:

I . Specification of either disk or tape ,
2. Specification of the test case’ file,
3. Maximum simulation time ,
4. Post Run Edit Prompting commands,
5. Time of day or delay time for executing the simulation SDVS will automatically:

a. Retrieve the test case file and load the specified mission software for simulation ,
b. Inter act with the machine operator to mount the necessary tapes,
c. Perform initialization commands spec ified in the user’s test case,
d. Execute the desired simulation scenario and produce a Rough Output Tape

(ROT), and
e. If specified in the test case, automatically transfer control to the Post Run Edit

mode and perform post run data analysis and editing on the simulation data .

278

-. .

~ 

~~~~~~~~~~~~~~~~ -~~~~ --- __


-.——- .—.—‘.—-—-—————— — .—. —.-—.—-,.—‘.‘——..— - -—‘-—.--- .—~— —— .—--- —- . —.———.— ..— .— .s.._,._..— . ~~~~~~~~~
.—,—- ----- .

~
. -... ———— -. ‘——-,—-—‘—--——-. ..—‘- -

p

ft c’ simulat ion run is always perforine ’t I in the hatch mode’ e’ve’n t t m i t iate’d front an
interact t~ c te ’rnt inal .

2.5.3.1.3 Post Run Edit mode

t ile ’ Pe i st It un Edit m ode’ pruv ides the ’ user v~ ith the’ abilit y to analyie ’ the’ data recorete’d
ou t a R ocigh Out ‘at l . i i ’e during a simu lii t ion run. l’he’ Post R tin Et li tor , u e e ’s~ cs the ’
115c r st c e .cif le ’et t ra i t s lu te ’tt Post Run F d t t directiv e’s file ’ . ‘l’he’ direet tve’s spee ’if ~’ what d ata is to

‘‘ se ’let te I from the ’ HO’l’, what analy sts ~s to be’ run on that data , what format is to ht’ used
to cl~s~’I , i~ t h e ’ , iu laIvsN results , what user routine ’s are ’ to be L i sesh . and what ete ’ Vte ’c ’5 are’ to
r t’ e ’ t ’tv c’ t h e ’ on i t f ile ’s cre’ii t c ’tl cv th e ’ Post H tin Eel fl or. l’he ’ Post Hun Editor provide’s
t ,ehuta r printouts . i t l t c ’rl ie ’ t t vc ’ clt spl.iv ~ . auth t heta p lots hase~t on user dire ctiv es. .\n important
eatu re ’ is the ’ a h c t t t t v for a user I t) write ’ an analy sis routin e ’ t t t JOVI A l . and have ’ it e’xecute ’d

wi t It a t t h e ’ fr am e ’~e or k of the ’ Post Run Ed itor.

2.5.3.1.4 Rollbac k mode

The’ n ilihack funct ion pre iv alt ’s the’ use’r with the’ capability to restart and reru n an S1)\’ S

~.iniulation from a point during a previous simulation run as stored on a snapshot tape’

~Sect ion 2. ~.2.$) . ‘L’he’ user may change the test case’ to obtain additional out put or alter
e’ \ t S t L u tg e’onditions , following the’ point saved on the snapshot tape. The’ etser clot ’s this by

ge’ne’rating a Rollba ck test case file’ which is me’rg ed with tite’ one used for the ’ e’arlie’r
simulation by S1)VS. The’ user will input a specification of the’ Rollback test case file to 1cc ’

used and the’ original Test Case File’. The’ outputs of this mode of Operation are a simulation
run that (i f changes we’re’ not m ade in the’ test case file~ will exactly match the previous One’.
Change’s may he made to provide further analysis of a simulation run that is of special
interest.

2.5.3.1.5 Delete mode

‘l’his mode el f operation is only available to the SDVS manager and provides him with
the capability to delete tiles from the various SDVS catalogs. This function was made’ a
manager level function to allow manager level control over the disposition of all files.

2.5.3.1,6 Superv isor mode

This mode, like the Delete mode, is av ailable only to the SDVS manager for
con figuration control purposes. One of the features of the SDVS file management scheme is

279

~~ ~~‘ ~~~~~~~~~~~~~~~~ ---
~~ ~- rj 1-

~~~~~~~~~~I;~j~~~ 
-



P.

.

that be’fort ’ a Use’i t itav ge’i te ’r i~~t ’ any file’ at F ile’ e’ite ’mc e tloi t  itl .kte’ . spe’c ifi cetti ecns must hil iV e’

been created for that  file ’, iitc ’le i etiutg t he ’ provision e d  .1 l i s t  e el ti ,. e ’rs who an’ auth or i ie~l Ice

w r i t e ’ I C ’ g ., e’r eeete’ it~e’W V t ’rsiOflS) ott the ’ file’ anti, if te pp r t lpmia t c . a list of users who  are free’

elfllV to read it - i’he’ creation of (ti e ’ speci fm cat tee ns i t i t i st  h ’t ’ pt’rfe’rme~1 from Supe rvisor mode’.

I’Iiis uico de c -an l et’ e’n te ’n’d only he y an Sl)\’ S user legged in on h it’ special Ma nage ’r

progTa ntnl e ’r nun it ee ’r.

In Supervisor mode’, st at e’me’nts in tht ’ (‘onve’rsat ional Language ’ will he e’nte ’re’d . t ) i i t ’ of

t hese statc’mt ’nts wit1 allow the’ mautag e’r to create’ spe’c’ifi ’.’ations for a p&i~ti cLilLLr file ’, anti

e’nte ’r the’ i ntl uel l i s t  of use’rs who hav e ’ author ity  to react and or wr ite ’ that fi le ’. .\not.h e’r
s t j t e ’iit e’ii t  ,elloee s the’ maflflge ’r t e~ change’ the authority of a user front ‘‘ react only Ice

F ~
‘ react wri te ”’ or v i c e ’ V e ’riL e . or ledel new users to the’ list of authorized users , or remove ’ users

from the ’ list - Both of these’ cienimnantls may be’ coinp le ’te ’lv ~pe’t’ifit ~~t b y the’ user or he’ tlt1 i~.

e’le’ct t e e  hi’ part ially elt e’itt ire’ly pr eemupte ’d for the uie’ce’~sary information.

There’ is ‘eu t l ~’ One’ IV pe of output to the’ authorized user front Supervisor mode’. l ’hti s

output ~oiis t st s of infortuat ion re’l. eye ’e h Ic ’ he ’ user ~ih it eUt the ’ result of proce’i~sifl g his  request.
l’his might be a clt’scnption of any synt ax e’rror that has been clt ’tec ’tt ’d by Sl)\ ’ S or an

inehe ,it ion that att e’fl’or occurred wh i le ’ the re’que ’st was bt ’tng proe’t’s~e\t , or ~e t t le ’s~ igt ’

ind icating that  the ’ re’que’st was s,iti s f i t ’t t .  l’he’ spc’ctfic ’ation files and th e ’ lists ~ t au (hor i :e ’d

Users are’ inacc ’e’ssitele’ to any SL) ~’S user whether in Supervisor moth’ or n ot .

2.5.3.1.7 Logoff mode

:~fte’r e’\it  from ~inv ot’ t h e ’ ,ihcev e ’ mode’s c e t  SL)~ ’S opt ’r ,itioii . t h e’ user wi ll ht’ prompted

to se’tt ’t ’t a mode’ of Sl)~’ S unt i l  the’ user selects LOt~O FE . I. ’ pen se’I et’ttflg SI ‘i\ ’ S 1AX O FE .
- 

. the ’ use’r u s t iut’ri e’d as to whe ’tht ’r he’ cle’st re’s the transaction log to let’ printed . e’Xe ’e’pt that the

log is ,i twavs  print ed in hatch mode’.

2.5.3.2 SDVS User Languages

‘l’he’ File Generation mode of Sl)VS utilizes two special languages , Simulation t,’c-entrol

I .autetu age’ (St ‘L and Data Pro c’e’ssii~g Language’ (1)11 L 1 to prov ide’ S IVc’ S user a simpl e’ titl e1

e’ft ’e’c’tive ’ means of structuring sut t t i i I i i t ie ~ns and obtain ing rt ’stul t s eeC those’ simuli tt iot is . .\

map e er f u n c t i o n  of SD\’S. in acict it te en he ) prov id ing a tOc ~l tot nutnage’iue’nt e)t sot t w: ere ’

cte ’ve’lop me’nt , is to  ifll lll e ’IUe’flt se et t ware ’ ‘.tui te i l l t t t d ) i ls .  l’he ’ l i t t t i te ’d ele’sc’rtpt ielfls and c’~ at up le’s

of St ’l, and 1) 111, . which follow , an’ important to  an appre ’t ’iat ie)n of the ’ nature ’ of siniu lat iem

e~i th SDVS.

250

— 
. 

- 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

:

:,.,,, ~~
-

2.5.3.2.1 Simulation Control Language (SCL)

The SCL is a programming language. Programs written in this language are compiled by
the Scenario Generato r (Figu re 2.5.2-1), loaded by the Hot Bench Computer Loader and
int erpretively executed by the Simulation Control Program (SCP). The SCL provides the
mechanism for the user to control a simulation by specifying initial conditions, scheduling
events to occur based on time or conditions , and specifying output to he generated .

The SCL language syntax is patterned after the JOVIA L langu age and can be categorized
into (1) non-executable statements , (2) sequentia l sta tements , and (3) asynchronous
statements. The non-executable statements are used to convey (‘ontro l information to the
simulation system such as:

1. The mission software to be simulated ,
2. The flight profile tape to be used,
3. The Post Run Edit prog ram to be executed after the simulation ,
4. The variables to be traced ,
5. The type of computer simulation (JCS or SLS), and
6. The type of rollbac k (and time).

Certain sequentially executed statements provid e many of the capabilities of
conventional pro gramming languages such as FORTRAN , PL -1 , and JOVIAL. Other
sequential statements direct the Simulation Control Program to perform a simulation-related
function. These statements are used to:

1. Assign values to variables ,
2. Transfer control to other statements ,
3. Evalua te a logical express ion and execute one’ of two statements dependin g on the

value of the expression ,
4. Activate simulated compute rs ,

• 5. Collect data,
6. Turn traces on and off , and
7. Terminate the simulation.

Asynchronous statements are not executed sequentially; they are executed asynchronously
as the result of a user .specified condition becoming true. In a sense , the true state of the
condition behaves as a software interrupt that triggers the execution of the statement.

281

)
__________ _______________________________ __________

- •
-~.- ~ •

-.- ~~~~~~ ~~~~~~~~~~~~~~~ - I _ , .~~ --- ~~~

_ _ _ _ _ --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• l i t  afl t i e ’i pf l t t e e i i  c i t  ,iii e’~~.t iiip le ’ of the ’ use ’ ce f  5& ’l~. ,e le rie ’f e’~~l el a iea t  t ern  ‘ cC t lic ’ t h i s i c

structure ’ eeC an S( ’l~ s in i t i l a t i e c i t  ai lel a e ’u rs eei ’y eh e ’se r i l e t  i e i i l  e c t ’ the ’ S( ’l, coin m ait els us in ee r cl e’ r ,

.\ si mulation in St ’l. is e ’on figui’e’e l e’e t he ’r a s an ‘‘ mi t  cat lest e ’ase’ .’’ at wiii e ’li ( l ie’  S( ‘I -

sta (t ’iflt ’flt s ti re ’ s t ruc tur ed  ( 111c c  t l i r e ’e’ dis t i nct Scs I t e en s ( e ’tie ’lt of which is o p t t e e i i a l  I. cl i  as a

• “ rollback t e ’st e ’tt5e’ ~~it Ii t W e l  se’e’t i el i l S .  ‘l’he ’ eh iS i ’ t i SS i e l i l  lit ’i’e es-i ll he’ li i i iite ’d to the ’ “ ne il  ta l t e ’st

e a se ’ . ’’ ‘l’hose’ se’ c ’ t iOn s whi ch appear in the m it  ial te ’st e ase ’ must do S e C at ( h i ts  orde’r

I ‘e i t t h i ~ ti re ’ se’e’t ion,

• 2. BIue ’k se ’e ’ t i c e i t . anti

.~. ‘l’ iflt e ’ ;.e ’r c ’ se ’e ’ t i oi l ,

l’lte ’ e ’t e i i t t g t i i e ’ se~ ’ t ie ) i i  e e i i l t . i i i i 5  a eh e ’Se ’r t I l t i t l i l  ec t  the ’  ~eI t ss i o i i  So ftware ’ and SI )V S f i le’ s

tha t  t ire ’ te e le e ’ loaeie ’el for the ’ si mula t ion .  ‘Fbi ’ block sect io n e c e t u t a t r i s  ( l i e ’  t t e ’ f i i i i t i e e i i  ee f  all

te le ee ’ks that ar e ’ to he ’ re’fe’n ’ne ’e’ei , ‘l’he’ t iine ’ -l. ’l’ de sect te e n contains st a t c’me ’nt s that m i t  mal i , .e’

v .i r t , mhele ’s . pi’eev ~dt ’ s imulat ion ti m ing informat ion tim ’ e’oitt i’ol data rc’c eerti in g te net a i it t lys is .

• 2.5.3.2.1.1 Configure Section. ‘F lit ’ configure ’ ses.’ti em consists el f elite ’ cit  more ’

( ‘ON ElI; I t Ry ~r I NI ‘Li I )E statements. It allows the ’ user to spe’c’if ~ the ’ type eef sinu ilat meen

I e’ith e’r SLS or I(’Sl amid the ’ MS\\ modules to lets loaded and ‘xe’cute ’d. ‘I ’ht ’ simulat ion e’an be’

ctenftgu reti in one ee f two modes of operation , eithe r ‘‘standalone ”’ cit ‘‘full-blown . ’’ In the ’

standalone mode’, the ’ uSe’r may specify NI SW app lic ’atiot e modules to he’ executed on e’ithe’r

otie’ SLS or one’ IL’S code’ proe’e’ssor. Iii the full-blown mode , MSW Exe’cutiVe Application

module’s mtiay lee’ specified for a m ax imum of iS Hot Bench Computers (all SI ES’s or ICS’,).

The’ sam e’ MSVe module ’ can be’ spe’eifie’t t for loading onto more’ than one’ cod e pro ee’ssor. For

e’xamp le’ , the command (‘ON FIGu RE ASSIGN I MSW-I 1 1/ 3  specifies a standalone’ mode’

sta te ’nie’nt le’ve’ t simulation of an MSW module 1/1/3 (file ’/v t’ rs ion/ re ’viSion ). The’ statt’me’nt~

CONF iGURE PROCESSOR/ICS

speet’ifies the lnterpre ’t ivt ’ Computer Simulator. Assignment of MSW modules to a l)Fe)c’CssOr

iS iic ’c’omplishr’d bY 11 CONFIGLJIt K ASSIGN state,mrtent .

2.5.3.2.1.2 Block Section. The block section is made up of either block section

statements or INCLUDE sta tements. There are five kinds of blocks , each bounded liv

BEGIN and END delimiters :

1. Control block ,

2. Repetition block ,

282 j

~ 

•~ T ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - —



- ~~~~~~ ~~~~~ 

- 

- 

— 

~~~~~~~~~~~~ 
r - ~~~ ‘

~~

‘

~~~~~~~~~

p

3. liPS bloc k ,
.1. RO’l’ bloe’k , and
5. Mane uver hlcx’k.

Coittro l block statements may ht ’ divided into four groups:

I . I tn e ’onditj onal stat ,e ’nit ’rits ,

2. (.‘omtdi t iona l statements ,
3. IN statement , and

-1. PE RFORM state’ment.

• The unconditional statements are SETVALVE , SNAPSHOT , TERMINATE and a

limited PERFORM statement. The conditional statements are’ WHEN , WHENEVER ,
WH iLE , IF and a limited IF used only in a repetition control block or EFS block. The

WHEN statement contains a condition and a substatement. The first time the condition
• become’ true, the substatement is executed . The WHENEVER statement also contains a

• condition and a subst.a tement. Everytime the condition becomes true , the substatement is
executed. The WHILE statement contains a condition , a repetition frequency and the name
of an SCL procedure. Until the condition becomes false, the SCL procedure is performed
repeatedly at that specified rate . The PERFORM statement schedules execution of a
specified block either once , for the current time , or repeatedly, starting with the cur rent
time until a specif ied time.

A repetition block is a control block that is restricted to certain kinds of statement s. For
example , it must be used instead of a control block when executing a complex PERFORM
statement or a PERFORM statement that is the dependent statement of a WHENEVER or
WHILE statement. The EFS block contains exactly the same kinds of statem ents as
repetition contro l block , but EFS blocks are meaningfu l only in standalone mode.

A ROT block consists of a list of one or more variable names separated by commas . For
example ,

BLOCK ROT-EXAMPLE
BEGIN

S:IO1,I02,103
END;

defines variables 101 , 102 , 103 whose values are to be recorded on the ROT .
‘a ’

• 
r • l~L•L ~~~~~~~~~~~~ ~~~~~~~~~ •~~

•• 

:~~•.• ~~~~~~~~~~~~ ~~~~~~~~ . •— •  — .



F”. ‘ 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

- “

~~~~~~~~~~~~~~~~~~~~~
—--—-—---

~~
- - - - - -

~~~~~

--- ----

~~

-

The’ nian euver block consists of a sequence of one or more assignments to External
Environment Simulator (EES) variables. For example ,

BLOCK MAN .EXAMPLE
BEGIN

• E :ALAT O.,
E: ALONGcc,0.

END;

de’fines initial values for two liES variables , ALAT and ALONG.

2.5.3.2.1.3 Time- Zero Section. Three types of statements may appear in the time-zero
section :

1. Initialization statements,
2. Control statements, and

• 3. Include statements.

The I N I T I A L I Z E statements include INIT iAL I ZE , ACT iVATE , TRACE-LIST ,
DATA-TAPE and POST RUN EDIT. The I NITIAL I ZE statement is used to assign values to
SDVS, mission software and liES variables at the beginning of a simulation. The ACTIVATE
statement specifies start times for the various computers defined in a simulation. The
TRACE-LIST specifies those SDVS, MSW and EES variables whose values are to be traced
dur in .~ a simulation. The DATA-TAPE statement gives the name of a tape from which liES
data is to be read during simulation. The PO ST RUN EDIT statement gives the name of a
file of post i-un edit directives that are to be processed by the Post Run Editor at the
completion of the simulation run ,

To illustrate the use of the SCL in testing mission software , consider the development of’

a new navigation algorithm , NAy , that has been created and compiled in the SDVS mission

software file catalogs . The user is inter ested in generating a fligh t profile such that . the SDVS

~mvioru c and sensor models will generate realistic nav igation sensor data for input to the NAV
routine ’.

Figure 2.5,3.2.1 is a pictorial representation of the following flight scenario:

1. Takeoff is at latitude 35° , longitude 117° with a thrust command of 1 200 t ud et l i l (tS.

2. When the’ X velocity ~~‘ 170 fps, pitch the aircraft u t 2 /second.

2$-I

- -•- ;:~ —~~~~~~~~~~
-- —~~ ~~~~~~~~~~~~~~~~~~~~~~

—

~~~~~~~~~ A.



S -~~~~~ 
-
~~~ 

~~~~
—

~~~~~~~: 
—

~~~~~~ • • --~~~~~~~~ • - -~~ - • - ~~~~~ - .— —
---“ •-~~~~ -~~~- - ‘  - -  •

~~~~
—-- - —-

~~~
•.

Ill ~ —

m m  ~~~~~~

H

I
• •‘~~~

i
1~

4 ‘I~~• UT w
I I  i-’ *~~~

285

- - I ~~~~~~~~~~~~~~~~~~~~~~~ —.-~~~ 

— — - 

~~~~~~~~~~~
- ;

- -~~~~~~

i_ i

3. \Vhen t he p itch angle ~
- 20 . mainta in that p itch.

-I. When altitude ’ cxc(’e’(ls 10,000 l e e ’t . level the ’ air craft by set ting a negat ive ’ P i t c h r a t e - .

~~ . Whe ’n the pitch angle is less than -zero , terminate ’ the simulat ion.

[‘si ng the Si)VS SCL . the use’r builds a test case file to specif y:

1. The flight profile ’.

2. Data to be recorded for post processing.
3. Sensor daLe to lx’ used by the NA\ ’ routine.

Figure 2.5.3.2 -2 is an SCL program for thi s examp le. The reader should note the

following points in this sample program :

1. The CONFIGURE statement spec if ies the STANDALONE mod e which allows a user
to interface directly with environm ent model data via an EFS (Executive Functiona l

• Simulation) block instead of using the real DAIS executive softwar e’. it also specifies

the SDVS simulator (the SLS) and the files to be loaded (version 1 revision 0 of
NAy).

2. The EFS Control Block (EFS -NAV -I NPUT) defines the assignment of environment
mode sensor data (denoted by the prefix E:) to variables in the program , NAV.
These assignment statements will be executed periodically at 32 times per second
prior to executing the NA~’ routine as defined by the statement.

PERFORM EFS -NAV-INPUT EVERY .03125 UNTIL 1000;

3. The INCLUDE statement allows the user to copy in other test case files to be
included as part of the test case,

4. The ROT .SIM-DATA block defines model and mission software position data that is
to be recorded once a second as defined by the statement,

PERFORM ROT .SIM -DATA EVERY 1 UNTIL 1000;

5. The CON- INIT block defines all the initial conditions at ground zero . These
assignments are executed by the statement,

PERFORM CON -INIT ;

6. The statements defining the mission profile correspond to the flight profile
illustrated in Figure 2.5.3.2-1.

286
S
S

_ —— - - •

- —‘~~~~~~~~~~~ ‘
—

— —--~
- —

-.---

~~~

- .—--- - -—.--

~~

. 

~~~r-~~” 
- -• - --- .- -. •--—--- ,— • - ----.-

P

“ I

•0

,.-
~

E

~ : ~~
~~~~~~~ ~~~~~

, ! ~~~~~~~~~~ I~~° : ~ ~~~~~~~~a ‘,~~~ 
- 

— a ~ ‘- — —I ~~~~~~~~~~~~~U — — o 4 ~~ a ~. a —
~

a~~, — . ~-

~ I ~~a I 4 g
N ~ ~~ w — • — — •

h .!!~ ,
~~~

~
-

~

‘ ~~~~~~~~~~~.

,
5 J 1• — — x . g x z r z z z: zI .

~

U ~~~~~~~~

287

•

J

P

2.5.3.2.2 Data Processing Language (DPL)

An SDVS simulation generates a volume of data collected at numerous points in a
simulation. With the SCL, the user can specify both conditional and unconditional events
that result in the output data to a Rough Output Tape. This tape contains all the simulator
trace outputs , a load map of the mission software for each DAIS processor , run time error
and warning messages from the various simulators , data from the env ironment models and

mission software defined by the user , etc., as they occur in simulated time. Figure 2.5.3.2-2
illustrates the use of a Rough Output Tape (ROT) block defining the variables to be
recorded every second during a simulation. From the vast volume of data , the user must be
able to sort out and display the informati on in a meaningfu l format.

The SDVS Data Processing Language has been designed to provide the SDVS user with
an easy-to-use , flexible tool to select for analysis , printout , or plotting the specific
parameter data he desires. In selecting data to be output , the user does not hav e to worry
about conversion of mission software or environment model data from binary to the correct
output format; this is all handled automaticall y by SDVS. To determine the correct formats ,
SDVS reads the symbol tables generat ed for mission software and environment model
programs by the JOViAL and FORTRAN compilers , and extracts the necessary
information. This SDVS tool removes much of the drudgery sometimes associated with data
analysis. The DPL provides the following user oriented functions:

1. Generation and editing of data files containing user defined variables from the ROT.
2. A PRINT capability to output generated data files to the printer.
3. A DISPLAY capability to output informa t ion to the user ’s interactiv e termina l.
4. A statistical package to compute statistical information of simulation data.
5. Automatic generation of plots based on collected simulation data.
6. Execution of user supplied analysis routines using a simulation ROT.

The use of DPL is illustrated by the DPL prog ram of Fi gure 2.5.3.2 -3 that can be used
to process data collected in the S L example shown in Figure 2.5.3.2-2. This DPL program
is used to print out the environmenta l model and mission software NAV data. This data will
be printed on the line printer , and will be analyzed by a user routine , error analysis , to
determine the mission software error. This error is then plotted as a function of time.

The reader should note the following points from this sample program:

1. The CONFIGURE statement specifies the user routine to be executed , and its
language’ (JOVIAL).

288

— — ..~~~~~~~~~~~ ~~~~~~~—.---— _ .~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .

~

— -

~~~~~~~~~

-,-. -,-•-.-.-.- -----.—- —---- ---—----- ,-w- • 

~~~~~~~~~~~~~~~~~~~~~

I’ P

EXAMPLE OF SOVS POST RUN PROCESSING

“THIS POST.RUN-EDIT PROGRAM IS USED TO PRINT OUT THE”
“ENVI RONMENTAL MODEL AND MISSION SOFTWARE NAV DATA FROM’
“A SIMULATION RUN. THIS DATA WILL BE PRINTED ON THE LINE”
“ PRINTER, AND WILL BE ANALYZED BY A USER ROUTINE , ERR OR”
“ANALYSIS , TO DETERMINE THE MISSION SOFTWARE ERROR. THIS”
“ERROR IS THEN PLOTTED AS A FUNCTION OF TIME”

“ SPECIFY THE USER ERROR-ANALYSIS ROUTINE”

CONFIGURE USER-ROUTINE JOVIAL ERROR-ANALYSIS / I/O;

“GENERATE THE DATA FILE, NAy-DATA . CONTAINING”
“THE PARAMETERS IN ROT BLOC K. ROT.SIM-DATA ,”

GENERATE NAy -DATA ROT-SI M.OATA;

“ DE FINE THE DATA FILE CONTAINING THE OUTPUT OF THE USER”
“ROUTINE. THIS OUTPUT IS THE NAVIGATION ERROR FOR LATITUDE. ”
“LONGITUDE , ALTITUDE , AND THE SIMULATION TIME, TIME”

FORMAT NAy-ACCURACY
BEGIN

FLOATING: LAT.ERR ,
• FLOATING: LOW-ERR ,

FLOATING: ALT-ERR .
FLOATING: TIME

END;

“ PRINT OUT ALL THE MSW AND EES NAV DATA”

PRINT NA V-DATA;

“EXECUTE THE USER ROUTINE , ERROR-ANALYSIS , WHICH COMPUTES”
“THE NAVIGATION ERROR”

“INPUT FILE: NAy -DATA”
“OUTPUT FILE: NAy -ACCURACY”

EXECUTE ERROR.ANALYS IS

NA V-DATA: PdAV-ACCURACY :

“PLOT THE COMPUTED NAVIGATION ERRORS AS A FUNCTION OF TIME’

PLOT NAy-ACCURACY SIM-TIME . LAT .ERRIRAD-DEG)
TITLE ’LATITUDE ERROR VS TIME’
XLA BLE ’TIMEISFC!’
YLABLE ’LATITUDE ERROR (DEG)’ ;

PLOT NAV-ACCURACY SIM-TIME, LOW-ERR(RAD-DEO)
TITLE- LONGITUDE ERROR VS. TiME’
XLAILE ’TIME(SEC)’
YLABLE ’LONGITUDE ERROR (DEG)’ ;

PLOT NAy-ACCURACY SIM-TIME , ALT-ERR
TITLE&ALTITUDE ERROR VS. TIME’
XLABLE~ TIME(SEC)’
YLABLE ’ALT ITUDE ERRORIFEET)’ ;

Fipre 2,5.3.2’3. S.mpls SOVS DPL pro pam.

289

~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••



P

2. The (;F:NER ATE statement is used to create a data file , NAV - [)A TA , which incl udes
- 

all the data on the ROT block , ROT.S1M-DATA.
3. The FOR MAT statement is used to define the format of the data file

(N AV .A CCI7RA CY) which is computed by the user’s routine,

4. The PRI N T statement will automatically print out all the data contained in the data
fi le. NAV -DATA. The output is in a tabular format and is time tagged.

a- The PLOT commands shown allow the user to specify the plot title , the axis titles ,
and any desired data couversions, The user could also specify the X and V axis
lengths , the minimum and maximum X and V values allowed , and any biases to be
added or subtracted from variables to he plotted .

SECTION 2.5 BIBL IOGRAPHY

TRW Defense and Space Systems Group, “The Software Design and Verification System
(SDVS), ” Final Report for Period 17 June 1974 to 30 June 1976 , Contract
F336 15-74-C-1159.

TRW Systems Group, “Software Design and Verification System, Phase 111,” User ’s M an ual ,
11 June 1976,

TRW Systems Group, “Software Design and Verification System (SDVS) Requirements
Document ,” 15 August 1975, 6404.D-91.

2.6 AVSIM

AVSIM is a simulation facility that effects avionics system evaluation , validation , and
integration by dynamic digital simulation of the airframe, fligh t controls, and avionics
equipment of a generic high-performance tactical fighter. The objectives of this facility
currently are to:

1. Test and validate operational flight programs under realistic flight conditions,
2. Effect digital avionics system integration ,
3. identify hardware/software problems in prototype avionics systems, arid to
4. Recreate flight problem areas through dynamic simulation.

AVSIM is capable of simulating the navigation, penetration, and weapon delivery phases
of an attack fighter mission both individually and compositely. The AVSIM user configures
his aircraft , sensor complement , environmenta l characteristics, and target characteristics by
linking individual simulation models into an overall simulator structure. The AVSIM sirnu-
lator currently has real-time , non-real-time , man-in-the-loop, and self-contained modes

290

• • — ~~~~~ ~~~~~~~~~~~~~~~~~~ ::_ z ~_ 
~~~~ — ~~~~~~~~~~~~~~~~~~~~~~ —~~~ - ,‘~~- ~~- • - —


p

of operation . The user has the option of using resident (I” -161 softwa re developed by
Genera! l)ynamics of Ft. Worth. using resident (A ?) software obtained from the N a vy, or of

develop ing h is own by utilization of resident creation routines. In the example of the
rt ’st(lent software , the airframe is configured by selecting either an F.16 or A7 aircraf t

model , an appropriate flight control system dependent on desired complexity, and selecting
self-t-ontained (synthetic mission generator/simulated pilot), pre-record ed , or real-time
cockpit inputs. The sensor complement presently available includes the radar altimeter , the
attack radar , and (may be ex tended to include) electro-optical sensors. Flight environment is

incorporated by utilization of models that provide simulated air data inputs , accelerometer
and gyro outputs , representative weather effects , atmospheric pertur bat ions, inertial
outputs , and magnetic heading. Auxiliary software in tegral to the total simulation includes
an inertial referen”e, geometry effects, and the ability to introduce noise at various points.
AVSIM is hosted by the DEC-10 facility at AFA L and is linked to peripherals such as the
cockpit and display generator by means of DMA bus to satellite PDP-lls. AVSIM software
consists of control modules and application models. The control software prov ides file
manipula tion , sets up the simulation configuration , provides initialization , implements
man-machine interface, and controls overall execution sequence. The application models
provide aforementioned sensor data , external physical conditions, etc. Also contained
within the software are data acquisition and analysis modules that accumulate and edit data
for validation analysis.

AVSIM programs are coded largely in ANSI-FORTRAN in an attempt to make the
soft ware flexible , modular , and transferable. DEC system FORTRAN-b features, as well as

DEC-10 assembly langu age, are also u sed to a lesser degree.

The software module structure for AVSIM is shown in Figure 2.6-1. The software is
organized to perform the two primary functions of set-up and execution. Subfunctions
within program set-up include the use of “ENTRY.BLD” in the creation of new applications
models and the use of “PRESCENARIO” to establish a new simulation configuration by
creating a new “EXECUTIVE ” where application model complement , sequence, and
sequence rate are specified. Actual run-time initializatioii and parameter modification is
achieved in “SCENARIO” . These are discussed in greater detail in the following paragraphs.
A d istinction is introduced into the discussion at this point to differentiate between the
executive or control software and the applications model software.

2.6,1 Executiv e (Control) Module Software

The executive or control modules provide the superv isory software necessary to create ,

291

•~~~~~~~_~~~~~•_ _ _ ____~~._ ~~~~~~~~~~~~~~~~~~~ .,,L~~ ‘~~~~~ ~~~ - -

-

~~

-

~~~~~~~

-- 

~~ 
—.--—--  

~~~~~ ~~~~~~~~~~~~~~ ~~~T~ - --T~

YES CREATE
NEW MODELS

CREATE
FIL E NAME No

(TECO) 1 CREATE YES
ENTRY. 81.0

__ J
NEW EXEC

RUN
ENTRY POINTS 7 NO PR E SCENAIU O

(AT APPLICATIONS 1
(MODELS 3 RUN ~AAA’

SUPER
IN ITIALIZE .
MODIFY MAIN

~~~~~~~~~ TER3 COMMON:FOR

COMMON’ —

SCENARIO —I I 

( EX ECRN ~~~~RELATED ______________

MODULES

DIRECTOR
ENTRY
POINT
STRUCTURE

I CALP
I CALMP

APPLICATIONS
MODELS

INPUT E OUTPUT

Fiivrs 2.6-1, AVSIM simulation structure .

292

- —
~~~~

—-
~~~

_. __ -~
,---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ _ _ _ _ _ _ -— ~~~~~~~~ ~.- .__-_ ~~~_ -

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
p

~.‘t ~t p .  ,uetl e’xet ’ute the app licat ions soft  war c~ l’hese m odule ’s provide file n eanip ul at i on .iuel

contro l . scLc~- t ion of the ’ option s to ‘.‘ run . t i n t  t a t  I: at iou operat or Input  e’dit t u g. ehagnost Ic
i n format ion , s imulat ion luoni to ruig ,  e’xet ’ti t ion se~I uence’, and e’xee ’ut io n e’ont rol .

Of pa rt ic ul a r iiete ’rest to the ’ user who is e’reat lag a new simulation configuration .er. ’ the ’
rOUtin es ‘ K N l R  I .t i l . L ) ’ ’  and ‘‘PR F:s( ’KNA R I O ’’ . .‘~s de’~ ’ribt ’d below these ’ provide ’

~-~i p . t h t l t t v  to s t ructure  th t ’ entry po int featun ’ in ne ’w app licat io ns models and to configur e ’ a

model set by ge’ne ’raung ,i new ‘‘ I ’X Kt ’’’ , r. ’spe~’t n .‘tv the ’ ~ o m odule’s of pr inc ip le interest

to th e ’ user .it r un - t ime  an’ the ’ ‘‘ I” lR EC l’OR’’ and the ’ “S( ’KN :\R 10” . These provid e
man-nuich Inc to t  .-r t ace  during program e’xe ’cut ion and set-up ,  respectively. l’hese’ and other
c’\c ’c ut  iv. ’ and support softw are ’ an’ described in th e’ fol lowing sec t t ou ts .

2.6.1.1 Multiple Entry Points and Adding New Applications Models

F:.~~h mode’l mak e ’s u s e ’ of the ’ l”t)R ’l’R ;~N - 10 t’eature to l ink into a subroutine at a

pred e’te’r mined posit ion in the’ subrout in e ’ source’ c ode. ‘ l’hc ’s~’ entry pounis in-c’ ziddre’sse’d 1w

t he’ Intuit ’ of th e ’ appr opriat e ’ subrout ine ’ to which either ‘ IN ’’ . ‘‘Ii”’ . or ‘‘ KX ’ ha~.’ been
.ippe ’nde’d . l ncse ’ represent source code ’ modules wi th in  the last subroutine , which prov ide

for “ t i n t  ial iz .at ion ’’ 
~i. e. , default specificat toni ~

‘ teletype ’’ i.e .. operator update of the

de ’f ,tuli  v , i lu t ’s if ele ’siivtl) . .ifltl ‘‘ .‘\.‘e’ut c t e ’ . . set t in g the act ual run parutnle ’t ers to e’it her the

spt’cifie’d cle ’ma ul t value ’ or to the ’ updated value) . l” or .‘xample , ii l ink  to F’CSIN would enter

subrout ine ’ L” & ’S .it an appro pr iate place t~~ access th e  prespe’t’ified default  parameter li st . .\

suhseque’nt l ink  to FCSEX would set the run pari inie’t er tc ~ the  accessed det ’ault value. ‘l ’he ’se

entr y po ints  an’ created at the’ same time a new applicat ion model is created throug h the use
of FNl ’R \‘ .BLI) as de’s’ribed in the Computer Programmer’s Manual ,

Adeli t ionall~’ , where’ a new app licat ions model is created , sLiblflodtilt ’5 I N( ’:~1.L . I N EX ,
EX . MODELS , and IN I ’fl ’M must be’ revised , ‘I’hese’ modules essentially e’xe’rc ’lse the ’ mode’l

st’tts) through the entry point linkages discussed above. For example’, lNC:~l.l, act ivate ’s the

u nit  lalizui t k’ii “ I N ”  programs for the model set sequentially t hus , calls to the new model

must he included for each of these’ subprograms. in sonic inst ance ’s it is Possible to disturb

execution or initialization logic if the call is improperly p lae’ed with the’ source code’.

2.6.1,2 PRESCENAR IO

PR ESCENAR1O is it simple routine usexi to configure a simulation by constructing new ,

or modi fying existing, EXEC subroutines ~i.e., create’ or modif~’ the EXTER NIL state’mt’nt

_ _ _ _ _ _  - 
~ - - -



P

~k’ Il ui~n~ t he m o d e’1 set i - Hv t h e’ tis~’ of se~ cii ~‘omnninds t~ hich c j u t  be cnt e ’re’d at . iu i v  u t i n o

te ’r i n imial , t he  eise ’r ~; tu t ’

I t, ’ot i t ti . ~u u r . ’ t i c ’~t sitnuL it ions new l - \  I- & ’) .

~ Examine ’ cx I s t t u i ~ e’onfigt i rti t ioui s ,

d Iit’le te ’ configu ra t ions no longer ne’e’e h’d. .iutd
- I Star t a simulation using any one ’ of the ’ ,‘xisi Ing con f igum~~t tons.

I’he commands and their functions are bri e fly :

I - CR E.-\ I F  cr, ’at s a ne’w e’xecutive ’ wi th  the name’ EXE(’n .FOR

~~ . t ) lR l” i, l’OR I Ii ~ts .itw all c ’\ t ’t’Ut l V t ’S and their s t atus ,

3. EX ECE ‘ l’F — compiles , loads , and execute’s simulation with the’ new EXEC . ‘l’ht ’
name’ of the ’ EXEC is specified in the argumen t list.

4. HELP - list all commands available and their syntax .

5. KILL - — exits PR E SCENAR 10, stores all system information. l)oes not execute

simulation.

6. RL YB O I ’T — deletes any all ex ecu ti ves specified as arguments.
7. TYPE — type’s out alt models and their frame rate’s for any all execut ives.

The Programmer ’s Manual should he consulted regarding e’onimand mnemonic and

argument (s) .

PRE SCENA RIO is entered with the command ‘ R U N  PRE S( ’N. ” Aft e’r syste m status
f lags , the sy stem response ~***(‘OMMAND! ~~ *‘‘  is returned. The’ user then selects the’
command appropriate to his objective and en ters it.  The logic in prt’se’enario is very simp le

and e’onsists of:

***~~ * BEGIN

* GEl’ A COMMAND FROM USER

* I)ETERMINE WHICH COMMAND WAS GIVEN
* CALL THE PROPER COMMAND ROUTINE
* IF NOT A KILL , GO TO BEG iN

RETURN

The Genera l Dynamics software documentation indicates that PRE SCENAR 1O possesses
a tutor mode selectable by the user at set-up time. However, RTI review of available source
code did not immediately evidence this capability.

294

— - _ _ _  ~~~~~~~~~~~~~~~ 
- —



_
~~~~~~

,_

j
PH

2,6.t3 MAIN

‘l’his mod ule’ has two primary functions. i’lw first is the’ e’st,ahlish me’nt of program data
t r n f f i e ’king by l1ll’811S Of i’xt .’uis iv ’ e’OifllflOfl block de f in itkm . The second is (li e ’ call t o

‘‘S(’ EN A It 10’’ or ‘‘1) 1 It K(‘T() It ’’ moelu Ic’s . A le’sse’r fune ’tiem performed by “M A I N ’ ’ is the ’
i m m i t ni l i i , a t urn e f I () file ’s .

2.6. 1,4 SCE NA R I O

l’ii e ’ S(‘E N A R 1(1 re cv i . Ic ’s t l i e ’ Ito a- rca I - t i nit’ m i t t i ’m face’ fen ’ mun— nt ae ’h inc e’e clu f t til l Ic’ at ion

during the j ai l in l iza t ic cu m stag .’ of a s imula tor run. ‘I’hie ’ oln’i’~llor util i ze ’s t he S(’ENA U 10
at es tel t em load , in t iu i It ,, e ’ , and i crel ‘are’ t i t e ’ si inn h i t or fi ii’ o~ ti ’i’tit i e tut . S(‘EN A It I t) .‘nal mli ’s I he ’

upe’l’at or l e t s.’Ie ’ct a SCEN A I(I t) i~.’l1 sor st ihsv st . ’mu e’e) l i f W Ur ~i t i c t l i fl’t) f l i t i t i ’ A \ ’S IM libr ary
I .ase’e I e in a I tree k’ t e ’rnt iitt ’d c cui f ig i i rat j e in (i i i l i i i ’ EN K(ale idu Ic) . ‘l’iic ’ eipe’rat or has t h e’ op t i e f t

of t u s u u i ~ ste ir c ’el (eh ’l ’auIt) It aranu ’t . ’r s or of i i i p t i t t i i i g a parant e ’te ’r set of his own. I a ig e ’ scale ’ —
pa r afli e ’t .‘rtm ci (Ie ’I e ’h :utges ar.’ generally handled other than at se’t -ti l l I’\’ program
me)(Ii f i . ’at ion. SCEN AR I() makes cx tensive ’ u s.’ of t ite ’ m u l t i p le’ entry feat Lire ’ e)f the ’ I) E(.’
FOfl ’l’ HA N— l I) (s i ’. ’ ~tn’ri ’ehi ng .‘H ’,’ t if l f) em ~ie IehiItg Iii ’W apph ie ’tit .ioit s fli oele ’ls for deta i l) .

S(’EN .~ U to also provide ’s t i m e’ ope ’rator wit -li t in ’ ab i l i ty to double cheek and verif y his
inpu t . (‘onim,’nts an’ provided for many ant .ieipate ’d ei i ’e ’rn t or mistake’s as we’ll as for

assist am ’.’ iii set t j ag t ip lit. ’ sint u la t or run ant i eleve ’lop iutg (li e ’ S(’KN AR 10. If ii given opt ion

is se’l,’e ’tc ’e l , iti for n iui t ion e ic ’fin ing those iuoele’ls wh ie ’h an’ re ’eiuirc ’ei to imple ’meut t that e ij) t io fl
is I m re m vi.Ic ’el to t it. ’ e lft ’r at or by me’ans et f an etpt.iemal t u t o r mode’.

‘I’ll.’ s imulator opc ’rnte r can cx pc’.’t i cc lie’ rc’qtiir .’d to advise’ SCEN 11(10 of the ’ fol lowing

inpu t~ options:

I - Monitor (‘onsoic’ Operator Moth’ (Tutor e,r Set-li p),
‘2. Airfra me’ Mode’ (SeIf-(’ontaine’d or M a n —I n — I .001)),

~1. Subsystem In formation ,

‘I. Sensor Options ,
ii. Ilardwnrc ’,
6. ‘I’argc’t Options ,
7. W eather Options ,
8. Parameter Options , or

9. Perform I lenlseke’eping Funt’tiens,

296

‘S ~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~ ~~~~~~~~~ _~ . —,-.

—

~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~-~~~—‘- ~~~~~~ —~~~~ - -~ -‘---- --‘ L.A



Output  from t h e’ S( ’KNARIO gut ’s to the etir e’ctor , sensor models, subsyste m models ,

and 1 ‘0 sub-program data initialization file ’. DIRECTOR table ’s which provide ’ for prope ’r
execution of the’ loaded models are set up from SCENAR I O output. ‘l’he DIREc”I ’OR the’ii 

—

unu ’rface’s wi th  SIM SL I II and CALPM in order to 1w synchronized with t ime DEC- 10 real time

clock or the DAiS fli ght I roce’ssor.

2,6,1,5 EXEC

‘l’he’ h iri tnu iry function of thi s module’ is te) set up the (real time ’ ) model suite. ‘l’his is

ae’e’omplished by defining those’ ele’ment.s desired in an Externa l statement. Generally , the

models art ’ st’k’cte’d from th e’ :~V SIM libra ry ( rurre iit ly F-i 6 or A7 representations ) but as

stated previously may be user input. This module ’ also initialize ’s configuration parameters .

2,6.1,6 DIRECTOR /CALIPER

‘rhe 1)1 REC’I’OR is the ove’rnll simulation monitor and provides the int erface ’ between
SCENARIO (i.e., program set-upi and tltt ’ l)EC- 10 Re’ai- ’I’ime Operat ing System (i.e..

program e’xec Lttion) . Monitoring tasks include se’he’d u hiutg t.h e’ exee ’ution of se’nsors ,

stihsyste ’m mode’ls, I .0 int erfaces , data acquisition , and analysis models. ‘l’h rough

coordination with SCENAItI O , tas k and priority table ’s are’ constructed that provide’ for the ’
simulator to e’xt ’e ’ti te ’ the ’ prop ’r models in the proper sequence’. ‘l’he use’r comniunie.’ate ’s

with the ’ l)IRI ’X”l ’OI( te provide ’ c ontrol. This includes ini t ia lizat ion , h old , or reset, et c.

1)1 It EC’l’OIt allows (lie ’ user to specify the  following simulation pararne’ters :

I . Sense’ swit c’Ii to halt the’ SIITILi hit or ,

2. Sense’ switch to allow real-time’ analysis ,
3. Run time’ l imi t ,

-I . Frame’ time ’ (time ’ fcr 64 ite ’I’utt it) fls to e’xecute ’),

5. Total nun ibe’r e f frames , and
(~~. I)MA number th e’ simulation is synchronized to.

1)1 REC’I’OR outputs includ e’ task prior itie ’s , s~we’iaJ .‘ve’nt t iming,  e ’t c . , to the’
1)E(’ - 10 Rt’al- ’i’ime’ Executive ’. ‘l’racking information is se’nt hec  the (‘R’I’ d isplay such ( lin t th e ’
operator is aware of progre’ss and iuite ’rmedi ate ’ re’sults. ‘l’race’bae ’k messages are’ e’xt ens iV e’ in

non-real-t ime ’ simulat ions wit h sense’ switehe’s on.

‘I’lw 1)111 E(”I’OR interfa ces with  (lie’ re ’al-t ime’ clock thremgh assembly lautguage ’ program

SIM( ’.O and emp loys a t line’ slie ’e’ e’one’e’pt for se’que ’ne’ing models as imple’me’itte ’el iii

sub re tut in e  ( ‘AU ’

‘~96

I~_. 
~—~~_-- — ...~~ .__~~

- 
- — -—- -- -,  — ‘ -‘~~~~~~ - --~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

.
~~ 

. — -



¶ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

-

~

----- -- 
. ,

~~~
.

2.6,2 Simulation Model Set Description

Gene ’ra lly, a given simulation is configured by selecting appropriate applications model

libraries representative of either F-16 or A7 tactical fighter scenarios. As discussed

previously, alternate applications models may be user supplied , providing proper program
interface is maintained. ‘l’his section delineates model sets currently available and includes
individual model descriptions for the F-16 library developed by General Dynam ics. The

discussion is intentionally brief and the user is referred to the references for more detail,

The F-16 model set developed for AFAL by General Dynamics includes the following

resident modules:

Airframe ,
Flight Control System,
Air Data Computer ,
Accelerometers and Gyros ,
Simulated Pilot ,
Syn thetic Mission Generator Model ,
Target Simulator ,
Attack Radar ,
Radar Altimeter ,
Random Noise and Error Generator ,
Relative Geometry ,
Weather ,
Atmosphere,
Reference Model for INS Control ,
Inertial Reference Unit , and
Flux Valve.

Figure 2.6.2-1 depicts the major paths for transferring data between the various models.

The A7 model acquired from the Naval Weapons Center at China Lake , California , has been

adapted for AVSIM. Approximately 23 modul es are resident on the DEC-10 host. Of these,

13 have been selected by AFAL to represent the DAIS simulation scenario. These are:

Airframe,
Aerodynam ic Model ,
Propulsion ,
Earth ,

297

Pt

.
J~~~~

-‘
~~~~~~:-

- - -
~~ ~~~: z:~—m~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

a

“ 43 I- - Ia-J4 — 2 4g
9 a
— 2 ~2

~EI
4

1~a a ;z .. .  ~~~ ~~ o J -
~~

— 
I

* 11. -.~ I—~ 1 
“ -.1 4

a “ . 0 cJ“ I in w c.,~~~

-

~~~~ 
I

—
4

H’ 298

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ --. -~~.

.

~~~~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.


- .-----— — .--. —.- ‘S --~~-—~~—~~
,.-- -.

~~~~~~

lnert”l Measurement System ,

Attc.
Target ,
Radar Altimeter ,
Forward Looking Radar ,
Air Data ,
Doppler , and
TACAN.

2.6.2. 1 A irframe (AF M 1)

The Airframe model provides the capability to evaluate the effects of airframe dynamics
on system operation. The model utilizes linear aerodynamic coefficients to provide vehicle
dynamics for six degrees of freedom. It incorporates Mach number variations of the
aerodynamic coefficients and Mach and altitude variations of the flexibility factors. Variable
gross weigh t and moments of inertia can be included through fuel flow integration and store
configuration status, Figure 2.6.2.1-1 is an Input/Output Block Diagram of AFMI with the
source of each input listed on the left while the disposition of each output is listed on the
right. Additional Input/Output nomenclature definition is contained in ‘I’able 2,6.2.1-1
below .

2.6,2.2 Flight Control System Model (FCS)

FCS is the mathematical model of the flight control system electronics , which includes
augmentation (CAS), stability augmentation (SAS), and a command following autopilot.
The CAS and SAS systems are provided to augment the control and stability of the basic
airframe. The command following autopilot accepts commands in attitude and altitude for
vehicle contro l when the cockpit simulator is not used. FCS also contains a simulation of
the mechanical control surface actuators.

The major functions and/or procedures contained in the FCS subprogram are :

1. Stability and Control Augmentation , and
2. Command Following Autopilot,

The stability and control augmentation function provides the compensation networks and
feedback paths to improve vehicle control and to provide the proper stability characteristics.
Pitch rate, normal acceleration , and angle of attack provide the feedback in the longitudinal

299



,i

SMGM FLUX
—~~~~

VELC PSI

CALP RALT
-~~~~

TIMEX PHI. THETA

_____________________ 
AIR FRA ME ____________________

COCKPIT ADC
_ _ _ _-

~ 

-~~~

THRCON AFM 1 
ALPHD . AMACH.

____________________ 
BETAD

I
ATM2 .....iii4

PHI . PSI, THETA
PRESRA , vs L

r
F~ S

ALPH D, PH ID.
____________________ L THETAD

[
__________________

ACCNY, ACCNZ,
I QDOT, R DOT, SAVEP,[ SAVEO, SA VER

RMIN

R MIN All , A12, A13. A23,
—

~~~~ A33, EOSQ, [iSO,
H, WA [250. [350, PHI,

________________________ ~~~~~~~ PSI , SAVEP, SAVEQ,
SAVER . SAVEU. SAVE V.

FCS
SAVEW, TEOE1, TEOE2.

_______________________ ____
TEOE3, TE1E2, TE1E3.

A L R D F , DELTAF , DELTHA , TE2E3, THETA, UA.
DELTSB , R DRD , T LDF UDOT. VDOT, WDOT

Fi~ur. 2.6.2.1~I. AFMI inp ut/o utput block diigram.

300

___________ —5— — --

H

TABLE 2.8.2.1-1. AFMI INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Descri ption Units

ALRDF Aileron deflection degree
DELTAF 6F Flap def lection degree

DEL IHA 6 Ha Different ial horizonta l tail deflection degree
DEL TSB Speedbrake deflection degree
(3 g Earth gravity ft /s2
H h A irplane altitude (double precision) ft
PRESRA P/Po Air pressure ratio
RDR D Rudder deflection degree
TH RCON — Throttle input from cockpit
TIMEX t Elapsed time since start of simulation run
TLDF 6H Horizontal tail deflection degree
VEIC V~ Airplane velocity command ft /s
VS a Speed of sound ft/s
WA — Wande r angle degree

Output Data
All a 1 I Direction cosine matrix element
A12 a 12 Direct ion cosine matrix element
A13 a 13 Direction cosine matrix element
A23 a23 Direction co sine matrix element
A 33 a33 Direction c osine matrix element
ACCNY A~ Lateral acceleration at the C. (3. g

CD
ACCNZ A,.~ Normal acceleration at the C. 6. g

“CD
ALPH D a Angle of attack degree
AMACH M Mach no.
BETAD Sidesl ip angle degree
EOS(] ([0)2 E0 squared
E1SO (E 1)2 E1 squared
E2SCI ([2)2 E2 squared
E3SO ([3)2 E3 squared
PHI Airplane roll angl. red
PHID Airplane roll angle degree
PSI Ai rplane yaw angle red
0001 First urn , derivative of q tad/s2

RDOT First time derivative of r rid/s2

SAVEP p Body ax is roll rite red/s
SAVEQ q Body ax is pitch rate red/s
SAVER r Body axis yaw rate red/s
SAVEU u X axis airplane velocity WRT earth ft/s
SAVEV v V axis airplane veloci ty WRT earth ft/s
SAVEW w Z ax is airp lane velocity WRT earth ft/s
TEOEI T w o x E O x E l
TEOE2 Tw oxEO x E2

301

- - - - -— --
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~ - ,.- - - - 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


TABLE L6,Ll~1. AFMI INPUT/OUTPUT NOMENCLATURE (con.)

Output Data

FORTRAN Name Math Symbol Description Units

TEOE3 Two x EQ x [3
TE 1E2 Tw o xE Ix E2
TE1E3 TwoxE l x E 3
TE2E3 Two x E2 x E3
THETA Airplane pitch ang le red
THETAD Air plane pitch angle degree
UDOT u X axis airplane acceleration WRT earth ft/s2

VDDT V axis airplane acceleration WRT earth ft/s2

WDO T w Z axis airplane accele ration WRT earth ft/s2

channel , while ~‘aw rate , roll rate , and lateral acceleration are used in the lateral -directional
channel.

The command following autopilot accepts guidance signals from the SMGM to fly the
airplane when the cockpit is not utilized . The autopilot commands normal acceleration and

roll rate through the control augmentation system to null the guidance signals. The value of
the logic keys KEY LAP and KEYDA P determine if the autopilot is utilized and , if so, which

command signals from the SMGM to implement. The logic definition is shown below.

KEY LAP (Key Longitudinal Autopilot)
=1 No longitudinal autopilot
=2 Altitude command

3 Pitch attitude command
= 1 Incremental pitch attitude command

KEYDAP (Key Directional Autopilot)
= 1 No directional autopilot
=2 Bank angle command
3 Heading command

=4 Incremental heading command

Figure 2.6.2.2-1 is an Input/Output Block Diagram of FCS with the source of each input
listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.2-1.

302

- ~~~~~~~~~~ -~—-~~
-

-~~-
--

~~ ‘—-— ~~~~

——.
~
—--.,—,..

~
——..—-— --~-~.— —.- —..— ..— — , - —-,.-—-.~ . ~ —— - - - — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ i? ~~ ~~~ -‘ -5-- - --~ — , - - - - - - . .--- - .- .- -- - .

H-

ADC
—an

PRA L, QCN

ACGY

ANA AVA p~
FLIGHT

OG, RG
CONTRO L

F SMGM SYSTEM
L

A LTC, ANCC, PHIC.
L PSIC,THETC FCS

COCK PIT AFM 1

BRD , CFLAPS,
__

ALRDF , DELTAF ,DASIN , DATRIM ,
DELTHA , DELTSS,DESIN , DETRIM . RDRD, TLDF

DRSIN, DRTRIM

AF M1

ALPHD. PHID.
THETAD

RMIN
-

~~~~

H,PSIGT

SIMP
-aw

ALTC. PHIC,
PSIC , THETC

Whsn mieslon is directed by SMGM.

Figure 2.12.2-1. FCS input/output black diagram.

303

—. ~~~~~~~~=--—~--~ --- ~~~~
. - --.. ~~~~~~~~~~~~~~~~~~~ - ----.- --.- . -  .--~~ 

-



~

TABLE 2.1.2.2- 1. FCS IN PUT/OU TPUT NOM ENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

AL PHD a Angle of attack degree
ALTC h

~ 
Altitude command ft

ANA A N. Norma l accelerati on at the accelerometer g
ANCC A~~. Normal acceleration command g

C
AYA ~~ Lateral acceleration at the accelerometer ft/s2

BRO — Speedbreks deflection ang le from cockp it simula tor degree
CF LA PS Flap command from cockpit simulato r
DASIN Ai leron stick input from cockpit simulator
DATR IM Ailero n trim input from cockpit simulator red
0 [SIN Elevator stick input from cockpit simulator
DETRIM Elevator trim input from cockpit simulator red
DRS IN R udder pedal input from cockpit simulator
DRTR IM Rudder trim input from cockpit si mulator red
H h Airplane altitude ft
PG P Airplan. roll rate from ACCY degree/s
PHI C Roll command signal degree
P1410 0 Airplane roll angle degree
PRAI . 

~ 
Static pressure from ADC lb /ft 2

PSIC Headin g command degree
PSIGT 

~ 
Ground track heeding degree

(ICN Impact pressure from ADC lb/ft2

06 q Airplane pitc h rate from ACGV degree/s
HG r Airp lane yaw rite from ACGY degree/s
THETAD Airplane pitch angle degree
THEIC Pitch commend degree

Output Det.

ALRDF Si A ilero n deflection degree
DELTAF 5 F Flap deflection degree
DEITHA ~ Ha Differential horizonta l tail deflection degree
DEITSB 6SB Speedbrake deflection degree
RDRD t r R udder deflection degree
TLDF 5 H Horizontal tail deflection degree

2.6.2.3 Air Data Computer Model (ADC )

The ADC subprogram is the mathematical model of the air data computer and

important air data sensor dynamics. The ability to degrade their performance of the model
through the use of the NER R model on sensor inputs is included .

304

I
________________ -- ~~~. 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --. 
. .

~~
-— -

The purpose of the Air I)ata Computer model mathematical operation is to provid e’ air
data sensor information to an actual air data computer (hardwart ’~ and or use the same

information in simulating air data computer functions. The major functions in the’ :~DC

subprogram area are to:

1. Prov ide the air data s ’nsor inputs :
Air Data Computer Model ,
Static pressure ,
Total pressure, and
Indicated temperature~ and

2. Calculate the air data outputs :
Pressure altitude ,
Pressure altitude rate ,
Mach number,
True airspeed .
Free air temperature, and
Indicated airspeed.

The air data sensors provide the signals necessary for the air data computer to calculate
its output quantities. Idealized sensor signals are either received from other models or
calculated from input quantities.

Static pressure and free air temperature come from the Atmosphere model as standard
day table look-up values. Angle of attack and sideslip angles are calculated in the Airframe

model from airplane velocity components. The other air data input, impact pressure, is

calculated in the sensor model as a function of the Mach number obtained from the airfram e

model. After these signals are shaped in the sensor module they enter the’ Air 1)ata
Computer module as sensor output signals. These signals are driven through a lag transfer

function to simulate system lags. Sensor noise and bias errors may be incorporated by
setting IRNADC = I and defining the rms noise and bias levels.

The air dat-a computer cak-ulates the desired air data output parameters from the ’ sensor

signals. These computations are performed in flight by an analog or digital computer

utilizing equations similar to those implemented in this simulation.

Figure 2.6.2.3-1 is an Input/Output Block Diagra m of :~IX’ with the source of each

305

:~: ~~~~~~~~~~~~~ —— ——— — -
.

___________ ~~~•,••~
, .
:~~~

- . ~~~~~~~~~~~~~ ~
- -

~~ ~~~~~~~~~ T~~~ T- -~-—--’-~~~---
~~~~~~~~~~~~~~~~ 

-.- - .

J FCS

[ 
PRAL ,, OCN

AIR

____________________ 
DATA

AFM1 COMPUTER

ALPHD , AMACH, BETAD 
ADC

ATM2

PRES 1, TEMP

N EAR

NEA R , OUTPUT

COMMON DATA

ALPSTR.
• BETSTR. HPDSTR,

HPSTR, M$STR,
TMA L. TMcSTR,

VTSTR

Figure 2.12.31. ADC lmgut/svtput Mock diagram.

306

-



-; —~ i~ - T I ~~~ ~~~~~~~~~~~~

input listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.3.1 below.

2.6.2.4 Accelerometers/Gyros Model (ACGY )

ACGV simulates the linear accelerometers and gyros by corrupting “true” acceleration ,
roll, pitch and yaw . It considers sensor location on the airplane, and significant sensor
characteristics I deadbands, limit.s , noise, and bias) . These characteristics may be specified or
bypassed by setting the logic key KEYAG to one or zero , respectively.

The Accelerometers and Gyros sensor simulation consist of three submodules. One
submodule accounts for the effects of locating the accelerometers at other than the center
of gravity of the vehicle. This module is utilized regardless of the value of KEYAG. The
other two submodules contain the significant sensor characteristics, which may be specified
or bypassed . Random noise and bias errors are included in the model by specifying the
appropriate logic keys and the rms noise and bias levels. Noise and bias are specified for each
individual sensor.

TABLE 2.6.2.3-1. AOC INPUT/OUTPUT NOMENCLATU RE

Input Dita

FORTRAN Name PMth Symbol Description Units

ALPH O a Angle of attack degree
AMACH N Mach no.
BETAD 8 Sideslip ang le degree
PRES1 P5 Barometric pressure lb/ft 2
TEMP Tm Air temperatu re

Output Data

AEAS Vi’ ADC indicated air speed kt
ALP STR a’ AUC angle of attack degree
BETSTR ~t’ ADC sideslip angle degree
HPDSTR Hp’ ADC pressure alti tude ret. ft/s
HPSTR Hp’ AO C pressure att itude ft
MSTR N’ ADC Mach no.
PRAL P .  ADC static pressu re lb/ft 2

51 2QCN qc ADC imp ct pressure lb/ft
TMAL TmR. AOC free air temperature IRankine)
TMCSTR T,~~. ADC fre, air temperature (Centi grade)
VTSTR V1. ADC true .ir spesd kt

307

‘~.
.-‘ ~:E: 

-. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ —


:~CG\’ firs t determines “true ” (i.e ., uncorrupted) value ’s of t he normal acceleration ANI

.end the lateral acceleration AYI at the sensor location , using the sensor displacements
DX:~N and D Y A N from the center of gr avity of th e plane , and the tru e values of normal
and lateral ,u’ .e ’lt ’rat ion (at the center of gravity) input from the Airframe Model. It also
sca le ’s the input true value’s of the angular roll ra te p, pi tch rate ’ e~, and yaw ra te r from
rad iiins second to degrees! second. ACG V then corrupts AN I, AY I . and pitch , roll , and yaw

rates (QU , PG . and RU) by introducing errors due to deadbands , limits , noise, and bias . ‘I’he
subroutine contains options to bypass the error computations. ‘l’he options are selected by

set t ing the flags KE\ ’AG and I RN A EG . a~ follows:

1. If K:~i:~G 1, errors based on the sensor deadbands and limits art’ computed.
2. If KEY :~G 0 , de’adbands are ’ not computed.

3. If lRN :\EG ~ 1. errors based on the sensor noise and bias arc computed .

4. I f I R N A E G O, these errors are not computed.

The accelerations (either normal or lateral) as corrupted h~’ the ’ sensor ’s de’adband are’

ele ’t e ’rmine’d by the ’ funct ion DBNI) . Using this function , the ’ acceleration is set to zero if t h e’

input Crue ’ value ’ of a~’ ’ele’ratioii is with in the (leatfl)and. If th e input tru e ’ value ’ is outs ide ’ the

i.le ’a&Ih aiid . the ’ ou tpu t value ’ is toun d by subtract ing the deadh and from the ’ input true’ value’.

Figure 2.6 .2. -I - I is an Input O u t p u t Block Diagra m of ACGY wi th th e source’ of eac h

input listed on the left whi te ’ th e disposition of each ou tpu t is listed on the righ t . Addi t io na l

Input Output nom enclature def in i t ion is contained in Table’ 2.6.2 .4-1 below.

2.6.2.5 Simulated Pilot Model (SIMP)

‘I’his model provides simulated pilot steering dynamics to modify the steering commands

to the flight control system when the mission is directed by the sy nthetic mission generator
(SNIGM1 . The’ Simulated Pilot m odel for the simulation program is rt ’pr sented as a singl e’

module ’. :~ titop iIot guidance’ command signals are modified in the ‘pilot model to simulate

the ’ human pilot steering dynamics. ‘l’he’ model includes a transport lag . a neuromuscular lag,
a le’ad-lag function and a gain parameter . All inputs to the’ simulated pilot originate in the
Sy ntheti c ~lissicm (e nerat or model. Subroutine SIMP is t’alle’d 1w subroutine D 1R when

SIMP is require ’d. S1MP communicates with SMGM , (‘ALP and F CS through common
variables . Outputs from SIMP are the’ command signals which arc put into the common data

file and subs& ’quentlv are’ availab le to the flight control system.

308

_ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



~~~~
— —

~
—-

~
-‘ j

~~~~~
-. T r :~~~~

—
~~ ’---

I’

~
-1

F RM IN

AcCELEROMETERS

AND

GYROS

________________  
ACGY

AFM1

ACCNY , ACCNZ, FCS
000T. RDOT. ANA~ AYA.SAVEP, SAVEQ . 

PG OG RGSAVER t

NERR

NERR OUTPUT

Figure 2.6.2.4.1. ACGY input /output block diagram.

309

_ _ _  -



I

TABLE 2.6.2.4~1. ACGY INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbo l Description Units

ACCNY A Lateral acceleration at the C. G. g
~CG

ACCNZ A ,.~ Normal acceleration at the C. G.
CG

G g Earth gravity ft/s2

0001 q First time derivative of q red/s2

ROOT r First time derivative of r red/s2

SAVEP p Body axis roll rate red/s
SAVED q Sody axis pitch rate red/s

• SAVER r Body axis yaw rate red/s

Output Data

ANA AN’ Normal acceleration from ACGY g
AYA A~’ Lateral acceleration from ACGV ft/s2

PG p’ Airplane roll rate from ACOY degree/s
QG q’ Airplane pitc h rate from ACGY degree/s
HG r’ Airplane yaw rate from AC GY degree/s

Figure 2.6.2.5-1 is an Input/Output Block Diagram of SIMP with the source of each
input listed on the left white the  disposition of each output is listed on the right. Additional
Input /Output  nomenclature definit ion is contained in Table’ 2.6.2.5-1 below.

2.6.2.6 Synthetic Mission Genera tor Model (SMGM)

The’ SMG M controls the generation of simulated aircraft movement characteristics when
there is no “real” man in the loop. Guidance Command outputs can be used to directly
drive the Autopilot model (Option I) or they can be routed through a Simulated Man model
(Option II)  in order to introduce the dynamics of pilot response delays. Options for SMGM
profiles are as follows:

1. OPTION I
In Option I the SMGM generates a “fligh t environment” based on an input fligh t profile.

In this option , the airframe model is used to supply the following inputs to the Refer-
ence Model for Inertial Nav igation (Lt MIN):

a. airplane pitch angle,

310 

——.-



“,

~~~~~~~~~~~~~~~~~

p

SIMULATED
SMGM

PILOT

ALTC. PHIC ,
PSIC. THETC

SIMP

FCS

ALTC, PHIC ,

PSIC, THETC

H

Figure 2.1.2.5.1. SIMP input/out put block diagram.

311

_______ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



-: - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘
~~~~ T~~~~: ~~~~~~~~~~~ ~~~~~~~

•-
~‘•_~~~

. .-.

TABLE 2.6.2.5-I. SIMP INPUT/OUTPUT NOMENCLATURE

Input Data

FOR TRAN Name - Math Symbol Oescnptio n Units

ALTC h5 Altitude command ft
PHIC Rol l command degree

PSIC Ib c Headin g commend degree
THETC Pitch command degree
TIMEX — Elapsed time since start of simulation run

Output Data

ALTC Altitude command ft
PHI C 

~c Roll command degree
PSIC Heading command degree
THETC Pitch command degree

h. airplane roll angle ,
c. airplane yaw angle ,
d. three body linear accelerations ,
e. three body linear rates,
1. three body angu lar rates ,
g. true airspeed,
h. five direction cosine matrix elements , and
i. ten quaternion parameters.

The flight control model is used to driv e the airframe model, and the autopilot is used to

drive the fligh t control model. Commands from the SMGM to the autopilot are :

a. ALTC — altitude command ,
h. ANCC — acceleration command ,
c. PHIC — roll command ,
d. PSIC — heading command , and
e. THETC — pitch command .

In addition to the above commands , the velocity command , VELC , from SMGM is

channeled directly to the airframe where VELC is th~ control input for the’ autothrott le ’.

312

-

~ 

—---- - •- . . —.~~~~~~~~~~~ -

- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -



~~~~~~~~~~~~~ 
‘

I

2. OPTION II
Option II is the same as Option I except that the response delays of a simulated pilot
shall be applied to commands prior to feeding the commands to the autopilot.

Figure 2.6.2.6-1 is an Input/Output Block Diagram of SMGM with the source of each
input listed on the left while the disposition of each output is lis ted on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6,2.6-1 below.

2.6.2.7 Target Simulation (TGT)

The Target model is a service model that functions with the Relativ e Geometry model,
Weather model and the sensor models. The function of the Target model is to permit
simulated target positions and signatures to be sent to the Target Detection Sensor models
(i.e., radar and E/O). The target characteristics simulated include target and background
radar cross sections and background radiances. The model functions include derivations of

• target positions from movement profiles for the simulation of moving targets and
computation of radar background cross sections. Specifically, it performs the following
logical functions:

1. It provides the location of each non-moving target to the Relativ e Geometry model .
2. It computes and provides the location of each moving target to the Relative Geom-

etry model.
3. It computes the radar ground return cross section to be supplied to the Radar

model.
4. It provides the logic to control the comparison of target location with sensor

coverage in order to minimize the number of times the in coverage test must be
performed.

The location of each non-moving target is TGT model input data and is stored in the
data common where it is available for use by the Relative Geometry model. The non-moving
target location data is provided in terms of latitud e, longitude , and altitude above sea level.
The target model shall generate the current location of the moving targets in accordance
with a moving target profile which is stored as initialization data. The initial position of the
target is specified in terms of latitude and longitude. The target profile shall commence
when the initial point is within some maximum range RMAX2 . The current location of the
moving target is then computed and passed to relative geometry in terms of latitude,
longitude, and altitude.

313

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ ~~~~~~~~~~

--

~~--- ~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _  - 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

-

~~~~

- --

~~~~~~

A FM1

VEIC

SIMP

AL TC. PHIC . PSIC.
CALP

SYNTHETIC L THETC

~ MISSION
TIMEX ___________________

GENERATO R FCS

MODE L
ANCC

SMGM

RMIN

All . A12, A13.
A23. A33. EOSO.

E1SQ. E2SQ.
E380, PHI ,

PSI. SAVEP. SAVEQ.RMIN SAVER , SAVEU .
SAVE V, SAV EW,

G
• ______________________ TEOE3, TE1E2,

TE1E3. TE2E3,
THETA , UA.

UDOT, VDOT,
WDOT

FIgure iSLI E SMOM I.putloutp.t block dilurem.

314

____ _____

•

-

~~~~~~~~~~~~
-
~~~
-.

--—- -
• - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -

TABLE 2.6.2 6-1. SMGM INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Descripdon Units

6 g Earth gravity ft/s 2
TIMEX t Elapsed time since start of simulation run

Output Data

A l l a 1 1 Direction cosine matr ix element
A12 a 12 Direction cosine matrix element
A13 Direction cosine matrix element
A23

~23 Direction cosine matrix element
A33 a33 Direction cosine matrix element
ALTC h

~
Alt itude command ft

ANCC A N Normal acce leration command g

EOSQ (E0)2 E0 squared
E1SQ (E1)

2 E1 squared
E2SO (€ 21

2 E2 squared
E3SQ (E3)

2 E3 squared
PHI Air p lane roll angle red
PHIC p5 Roll command signal degree
PSI Air plane yaw angle red
PSIC Heedin g command degree

• SAVEP p Body axis roll rate red/s
SAVED q Body axis pitc h rate red/s
SAV ER r Bod y axis yaw rate red/s
SAVEU u X axis airplane velocity WRT earth ft/s
SAVEV v V axis airplane velocity WRT earth ft/s
SAVEW w Z axis airp lane velocity WR I earth ft/s
TEOE1 — Two x EOxE l
TEOE2 — Two xEO x E2
TEOE3 — Two xEO x E3
TE1E2 — Two x El x E2
TE1E3 — Two x EO x E3
1E2E3 — TwoxE2 x E3
THETA e Airplan . pitch angle red
THETC Pitch command degree
UA UA True airspaed ft/s
UDOT X axis airp lane acceleration WRT earth ft/s2

VOOT V axis airplane acceleration WAT earth ft/s2
VEIC Vc Airplane velocity command ft/s 2

WDOT 2 axis airplane acceleration WRT earth ft/s2

315

t
__________ _____________________

~~ —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~

-
~~

-
~~

•-
~~

- •
- -

•


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 
~~~~~~~~~~~~~~~~ 

,

Figure 2.6.2.7-1 is an Input/Output Block Diagram of TGT with the source of each
input listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.7-1 below.

2.6.2.8 Attack Radar (ARS)

The Attack Radar model is a model that functions with the service and reference models
to produce a simulation of a generic attack radar. The model simulates the following modes

• and functions of the attack radar:

1. Air-to-Ground Search ,
2. Air-to-Ground Ranging,
3. Air-to-Ground Level Bombing/Fix taking, and
4. Air-to-Air.

In the air-to-ground search mode, ARS provides the following functions:

1. Drives the antenna in a simulated search scan ,
2. Determines signal level of any targets with in the radar beam ,
3. Computes radar range to target , and
4. Computes noise output signal, weather signal, and signal + background + noise.

In the air-to-ground ranging mode, ARS provides the following functions:

1. Generates antenna azimuth and elevation pointing signals,
2. Drives the’antenna to the simulated azimuth and elevation angles,
3. Determines signal level returned from the target ,
4. Computes radar range to target , and
5. COmputes noise output signal, weather signal, and signal + background + noise.

In the air-to-ground level bombing/fixtaking mode, ARS provides the following
functions:

1. Accepts cursor positioning commands from the cockpit ,
2. Drives the antenna in a simulated search scan,
3. Determines signal level of any targets within radar beam,
4. Computes radar range to target , and
5. Computes noise output signal , weather signal , and signal + background + noise.

316

~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

-_ _

• -

• -

h

• REGE WEAl

T RANGE

NTGT

TARALT

TARGET

SIMULATION

• TGT

ARS

BXSEC
R E F L

- TARALT
TXSEC

REGE

NTGT
TARALT

CALP TAR LAT
______________________ TARLON

TIMEX

Figure 2.6.2.7-1. TGT input/out put block diagram.

317

~~~~~~~~~~~~~~~~



- •- -• -• -~~~~~~~~~~~~ _ _ _ _ _ _  r ~~~~

-

~~

- -

~~~

- - • •• - - -

~~~~~

- •

~~~~

— -
-
- - :—:-:: — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE 2.S2.7-1. TGT INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Osscnpt ion Units

TIM EX t Elapsed time since start of simulation run
TRA NGE — Range to target ft

Output Data

BXS EC Radar background cross section ft 2

NTGT — Number of targets defined
ON — Target in-coverage fl ag
REFL

~R Radar rein reflection
TARALT — Target altitude ft
TARLAT — Target latitude red
TARLON — Terget longitude red
TXSEC °T Target radar cross section ft 2

• In the air-to-air mode, ARS provides the following functions:

1. Determines which air-to-air submode is active (A/A search , A/A acquisition/manual

designate, A/A acquisition/autodesignate , A/A track);
2. A/A search

a. Generates antenna scan positions (single-bar scan or multi-bar scan),

b. Determines signal level of any targets within radar beam ,
c. Computes radar range to target , and
d. Computes noise output signal , weather signal , and signal + background + noise ;-

3. A/A acquisition/manual designate
a Accepts cursor positioning signal from cockpit ,
b. Drives antenna to designated position ,
c. Determines signal level of any target within radar beam,
d. Computes radar range to target , and
e. Computes noise output signal, weather signal, and signal + background + noise;

4. A/A acquisition/autodesignate
a. Places cursors upon nearest target,
b. Drives antenna to designated position,
c. Determines signal level of any targets within radar beam,
d. Computes radar range to target, and

318

4 _____________

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• -. ------
—

— -~ -~~--•~ .‘— 
~~~~~

—.————-r ~~~~~~~~~~~~ ~~~~~

r-- •
~
-.-

~

e. Computes noise output signal , weather signal, and signal + background + noise;

5. A/A track
a. Locks antenna on predesignated target ,
b. Determines signal level of target ,
c. Computes radar range to target , and
d. Computes noise output signal , weather signal , and signal + background + noise.

Figure 2.6.2.8-1 is an Input/ Output Block Diagra m of ARS with the source of each
inpu t listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.8-1 below.

2.6.2.9 Radar Altimeter (RALT)

The Radar Altimeter model is a sensor model that functions with the service and
reference models to produce a simulation of a generic radar altimeter. Provision is made to
vary the radar altimeter antenna parameters and the roll and pitch limits through which the
altimeter will f unction without large error. Provision is made to simulate both random and
bias errors .

The inputs to the radar altimeter consist of true values of airplane pitch and roll angles,
altitude above sea level , elapsed time , and altimeter on/off signal. RALT begins by
determining whether aircraft attitude enables an accurate measurement by a radar altimeter.
If the aircraft is to receive an altitude measure, first the true value of altitude above the
earth plane is determined; second , this value is corrupted as in a hardware radar altimeter;
and third , an ‘altitude-good” is returned to the system. Output data from the radar
altimeter model consists of the radar altitude above terrain and the output-good signal. All
data is transferred via common blocks. Figure 2.6.2.9-1 is an Input/Output Block Diagram
of RALT with the source of each input listed on the left while the disposition of each
output is listed on the right. Additional Input/Output nomenclature definition is contained
in Table 2.6.2.9-1 below.

2.6.2.10 Random Noise and Error Generation (NERR)

The function of the Normal Error Generator is to provide random and bias error variates
to perturbat-e simulation signals in other models. The model employs a pseudo-random
number generator to produce i.he normal variates generated and stored in an off-line (non-
real-time) initial ization program. The real-time program calls the normal variates from

319

- - -
~~~~~ ~~~~~~~ i _ •. ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -



. T~~~~~~~~~~~ ’ ’ ~~ ~~~~~~~~

RMIN

ACT

TGT

BXSEC
REFL —

~~~~
TARALT
TXSEC ATTACK

RADAR

MODEL

REGE COMMON DATA

ARS
(TAR ANAZPO, RAPO,,
TAZ — ANELPO. SIGOUT ,

TEL ONOISE . SIGR ,

TRANGE RAG000,,STNR

WEAl

RACLT

RAPLT

CA LP 1
+—.

~
TIMEX

J

Figure 2.623-1. ARS input/output block diapam.

320

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 

~~~~~~~~~~~~~~ .

_ _

~~~~~~~~~~~~~~~~~~~~~

_

~~~~~ 
- -

~~~~~~

J p

TABLE 2.1.2.0-1. ARS INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

A LT h Airplane altitude ft
BXSEC Radar background cross section ft 2

IT A R — Selected target
RACIT — Length of LOS segment to target in layer 2 ft
RAPRT — Length of LOS segment to target in layer 3 ft
REFL 

~R Radar rain reflection coefficient
TA RA IT — Target altitude ft
TAZ — Target body azimuth ang ie red
TEL — Target body elevation angle red
TIM EX t Elapsed time since start of simulation run s
TRANGE — Renge to target ft
TXSEC °T Target radar cross section ft 2

Output Data

ANA ZPO — Azimuth position of antenna red
ANELPO — Elevation position ol red

• ONOISE — Output noise voltage V
RAG00 0 — Radar good fleg
RAPO — Output range to target ft
SIGOUT — Outputsignal voltage V
SI 6 R — Weather si~~el output voltage V
STN R — Signal-to-noise ratio

TABLE 2.6.29-1. RALT INPUT/OUTPUT NOMENCLATUR E

Input Data

FORTRAN Name Math Symbol Descriptio n Units

H h Airplane altitude ft
PHI Airplane roll eagl e red
RAHSTA — Radar altime te r on/off signal
THETA 8 Airplane pitch angle red
TIMEX t Elapsed time since start of simulation nm

Output Data

RAH H Radar altimeter output altitude ft
IA LTGO — Radar altimet er output .good signal

321

- —- ~~~~~~~~~~~~~~~~~~ ~::~~~~~~
— —~ 

—- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~



~~~~~~~~~ J~ T:~~ —L: ~

¶ 
CALP

r 
TIMEX

RADAR

ALTIMETER

COCKPIT

R A HSTA R A LT

J COMMON DATA

I IALTGO. RAH

AFM1

PHI. THETA

RMIN

Figure 2.12.9-1. RALT input/output block diagram.

322

- 
--

~~~~~~~~~
- ,

~~~~.-~—
- - -

- - - --.—----—~~~~~ , - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ - J-~ ~_~~
--

~~~~


--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~T~~~~~-r— 

~

-

~~~

- - - -- -
~~~~~~~~~~~~~~~~

-
~~
--

~~~ ~~~~

RANDOM

NOISE
4.

AND

ERROR

GENER ATION

NERR

CALLING ROUTINE CALLiNG ROUTIN E

•1
BIAS.SIGM I NE RROUTPUT

Figure 2.12.10-I . N ERR Input/output block diagram.

323

_ _ _ _

_ _ _ _ _ _ - -
- —

—
- -~~~~~~~ ‘-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.—
~~ - - ~~~~~~~~~~~~~~~~~

____ —~~~~~~~~~~~ --~~-, - —- ----,,-~~ - - _ _ _ _ _ _ _

storage , performs a scaling operation , and adds ‘h’ bias error to t I i t ~ called error variat e .
Each v ar ia t e called 1w the normal error program is essentiall independent of an other

var iate called previously or subsequently.

‘t’ht’ Normal Error (~enerator as a service subprogram which is called whenever aiw of th e

1 other models need a normally distributed random number . ‘l’he generated error var iates art ’
outputs of th e funct ion N E R R . Each vtu-iate is a single number that contains the random
noise component as well as a bias component that establishes th e mean of the error. Figure
2.6.2 .10- i as an Inpu t /Outpu t Block !)iagrn m of N E R R wit -h th e source of each input listed
ttn the left while the disposition of each output is listed on the ri ght . . ~ddit -ionatl
Inpu t -‘Output nomenclat nrc al ef in i l ion is contained in Table 2.6.2.1 0—1 below.

TABLE 2.6.2.10-I. NERR INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

BiAS’ Normal variate bias
SIGN’ Normal variate scale tactor

Output Date

NERR — Scaled normal veria t, (rse l variable)

Argumsnts of FUNCTION NERR.

2.6.2.11 Relative Geometry Model (REGE)

Relat ivi’ (~eontetrv computes the “true” (‘art esian components, azimuth angles , and
ck’va t U iii .1 ugh ’s ~if all targets and fix points. ‘I’hcse coordinate s ii re corn I au tea I in t hi’ locally
level sy stem and in the airplane body sy st i ’m . ‘l’he coordinates are computed in subrou tint ’
R. \ N(- Subrout inc R E (E defines the argument list for H AN (L calls H AN (L and passes I he
rcsuUs of H A N(~ ‘s cadcu laa t -ion s I () th e proper target or fixpoinl - H E(K also conlains an
extrapolation ioop which updates the coordinate values between calls to H AN t .

l~igurt ’ 2, 6 .2 .11-I is an inpu t /Outp u t Block l)iagram of U Ft K wit Ii I hi’ soimrt ’a’ of ,‘aiii
input listed on the left while th e disposition of each output is listed on the r i gh t , Addit ional
Input/Output nomenclat u n ’ di ’f init ion is contained in Table 26.211 - 1 below.

2-I

~~L ~~~ ~~-

~~T~~~~
’
~~

’”—’- ~~~~~~~~~~~~~

‘H
TARL~~~ TAR LON

R F i ~~~T~~~ NGE , I
RELATIVE

GEOMETRY

— MODEL

ARS

TAZ TEL - •

FIXIN REGE TRANGE , ITAR

NFIX ,ZALT,
ZLAT . ZION COMMON DATA

______________________ PAZ. PAZLL.
PEL. PELLL .

TAZLL , TELLL ,

XFIX , XF IXLL .

XTARG , XTARLL .
_~~~~ YFIX . YF IXLL .

YTARG , YTARLL ,

ZF IX . ZFIXLL .
ZTAR G, ZTARLL

RMIN

C, CS, PX. PY,
RN, RPPX, RPPY.

VXE, VY E, VZ

Figure 2.12-11.1. REGE input/output block diagram.

325

--
_.

________________________________ - .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-‘ _ —
~~:~‘ _ _

T fl’ I

TABLE 2.6.2.11-1. REGE INPUT/OUTPUT NOMENCLATURE

Input Oat.

FO RTRAN Name Math Symbol Descrip ti on Units

C C~1 Locally level-to-ea rth direction cosine matrix
CB CB~1 Bod y-to-locally level direction cosine matrix
NFIX  — Number of fixpoints defined
NTGT — Number of targets defined
PX Vehicle rate, X axis red/s

P
y 

Vehicle rate , Y axis red /s
RN ~~~ 

Range to present position , Z axis ft
RPPX R ppx Range to present position , X axis ft
RPPY R ppy Range to present position , V axis
TARALT — Target alti tude ft
lARIAT — Target latitude red
TARION — Target longitude red
VXE V xo X axis velocity WRT earth ft/s
VVE Vve V axis vel ocity WRT earth ft/s
VZ V1 Z axis velocity WRT earth ftfs
ZAIT — Fix point altitude ft
ZLAT — Fixpoint latitude red

ZION — Fixpoint longitude red

Output Data 
-

PAZ — Fixpoint body azimuth angle red
PAZIL — Fixpoint locally level rzimuth ang le red
PEL — Fixpoint body elevatk - angle red
PELL I — Fixpoint locally level elevation angle red
RFIX — Range to flxpoint ft
TAZ — Target body azimuth angle red
TAZL L — Target locally level azimuth angle red
TEL — Target body elevation angle red
TEL LI — Target locally level elevation angle red
TRAN GE — Range to target ft
XF IX — Fixpoint body X-coor d . ft
XF IXLL — Fixpo int locally level X-coor d . ft

XTARG — Target body X-coord . ft
XTARLL — Targ et locally level X-coord. ft
YFIX — Fixpoint body Y-coord . ft
YF IXLL — Fixp oint locally level Y-coord. ft
YTA RG — Target body Y-coord . ft
YTAR IL — Target locally level Y-coord. ft
ZFIX — Fixpo int body Z-coor d . ft
ZF IXLL — Fixpo int locally level Z-coo ,d . ft
ZTARG — Target body Z-coor d . ft
Z’TARLL — Target locally level Z-coord. ft

- 
- --- 

-- - =~~-



‘

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ -‘1

2.6.2.12 Weather (WEAl)

The weather model shall compute the lengths of the line-of-sigh t segments through each
of three weather layers for all defined targets and fix points. The model assumes three layers
of definable height and thickness.

The test engineer shall specify the thickness of each layer before the real-time simulation
begins. The layers are concentric with the earth sphere and are uniform over the earth ’s
surface. The conditions inside each layer (attenuation and scattering coefficients at various
wavelengths, rainfall rates, etc.) are specified during set up; WEA 1 does not deal with these
conditions and addresses only the geometry involved . Procedure WEA1TT is used to
initialize this weather model.

Figure 2.6.2.12-1 is an Input/Output Block Diagram of WEAl with the source of each
input listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.12-1 below.

2.6.2.13 Atmosphere Simulation Model (ATM2)

The objective of the model ATM 2 is to simulate atmospheric conditions that affect the
flight of the F-16 aircraft , such as tempera ture , pressure, and wind.

ATM 2 is designed to compute air temperature , pressure density and speed of sound as a
function of altitude above sea level for use in the Airframe, Air Data Computer, and sensor
models. All inputs are provided by the Reference model for INS control. Airplane altitude
can vary from sea level to 80,000 feet in the atmospheric model. The temperature is
calculated from temperature-altitude data represented by linear line segments and the alti-
tude of interest that determines which segment is being operated on. The temperature is a
model output and also an input to the calculation for the speed of sound.

Figure 2.6.2.13-1 is an Input/Output block diagram of ATM2 with the source of each
inpu t listed on the left while the disposition of each output is listed on the right. Additional
Input/Output nomenclature definition is contained in Table 2.6.2.13-1 below.

2.6.2.14 Reference Model for Inertial Navi gation System (RM IN)

The Reference model for Inertial Nav igation System Control (RM IN) provides true or
reference values of inertial acceleration , velocity and position (latitude and longitude) for

327

-- —_ — ~~~~~~~~~~~~~~~~~~~ _ _

_ _ _ _ _ _ _ --
— - - - J - ’

~~~~~~~~~~~~~~~~~~~:: ____

-~~~~ REG E

TRANGE RFIX
lIAR, IFIXR

WEATHER

____________________ MODEL

H TGT

~~ WEAl
TARALT

ARS

RACLF , RACLT.

RACRF , RACRT ,
RAPRF , RAPRT

RMIN

I-
H

[ FIX IN -

I-
ZALT

Figure 2.6.2.12-1. WEAl input/output block diagram.

328

—

~

—---- -------- —- -- 
~~~~~~

—-— — ---
~~~~~~~~~~~~~~~~~~

-——
~~~


-
‘

~~

-

~~~~~~~~~~~~~~~

_

~~~~~
;T-

~~

’ - T : - ~~T~7~ ~~~

TABLE 2.6.2.12-1. WEAl INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

H h Airplane altitude ft
IFIXR — Selected fixpoin t index
ITAR — Selected targ et index
RFIX R F Range to f ixpo int ft
TARALT h1 Target altitude ft

• TRANGE RT Range to targot ft
ZALT hF Fixpoint altitude ft

Output Data

RACIF — Length of LOS segment to fixpoi nt in layer 2 ft
RACLT — Length of LOS segment to target in layer 2 ft
RACRF — Length of lOS segment to fixpoint in layer 1 ft
RACRT — Length of LOS segment to target in layer 1 ft
RAP RF — Length of LOS segment to fixpoint in layer 3 ft
RAP RT — Length of LOS segment to target in layer 3 ft

TABLE 2.6.2.13-1. ATM2 INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

6 g Earth gravity ft/s 2
H h Airplane altitude ft
RM R~~1 Radius of the earth plus airplane altitude ft

Output Dat.

DENS 1 p Air densit y slugs~ft 3
PRES 1 P Barometric pressure lb/ft
PRESRA P/Po Air pressure ratio
TEMP I Air temperature R
TEMPRA — Air temperature ratio
VS a Speed of so und ft/s

329

____ -
— ._

T~~~~~~~~~~~~ ~~~~TTT ~~~~~~~ T~~~~~~~~ ~~~~~~
-- -- ,

AFM 1

PRES RA , VS

ATMOSPHERE

MOD E L ____________________

ADC

ATM2
PRES 1. TEMP

RM I N

I—
I G, N, RM

RM IN

1 vs

[COMMON DATA

‘1 DENS 1

Figure 2.6.2.13-1. ATM2 luput/eulput Mock diagram.

330

_ _ _ _ _

use throughout the simulation. Outputs of RMIN are accepted as those of a wander angle
mechanized inertial navigator operating with no errors. These reference values are used as
inputs by sensor models and are corrupted to provide indicated or sensed values. Principal
inputs to RMIN are body axis linear accelerations, velocities, angular rates (referenced to a
fiat , nonrotating earth reference frame), direction cosines, and quaternion parameters from
the Airframe model.

Initialization of RMIN is important and is accomplished by a separate routine, RMIN IN ,
before real-time execution begins. Figure 2.6.2.14-1 is an Input/Output Block Diagram of
RMIN with the source of each input listed on the left while the disposition of each output is
listed on the right. Additional Input/Output nomenclature definition is contained in Table
2.6.2.14-1 below.

2.6.2.15 Inertial Reference Unit (I RU)

The purpose of the IRU model is to simulate the outputs of the Inertial Reference Unit
sensor components which are triads of accelerometers and gyros, with sensitive axes
properly oriented , and mounted on a gimballed platform. The Inertial Reference Unit is the
primary source of data for navigation of the aircraft. The accelerometers provide data from

- which velocity and position are determined while the gimbals provide altitude information.
The gyros, together with their torquing system, aid in keeping the platform locally level
when precession occurs. Naviga tion information is processed from IRU sensors onboar d the
aircraft using a computerized navigation mechanization called an Operational Flight Pro- —

gram (OFP).

The IRU model simulates accelerations from the platform accelerometers and attitude
angles from the platform gimbals. The IRU model takes as inputs true attitude from the
airframe and locally level components of inertial acceleration from RMIN , and corrupts
these true values with gyro and accelerometer (component) errors. IRU component error
source parameters and platform tilts must be initialized. The outputs of the IRU model are
indicated (simulated) platform accelerations and gimbal (attitude) angles for use by the
Navigation OFP. The IRU model can be altered to accommodate a strapdown inertial
reference unit (SIRU) during the growth phase. In a strapdown system, the gyros and
accelerometers are rigidly mounted to the aircraft body axes instead of a gimballed
platform. Inputs to the SIRU model would then require body axis angular rates and body
axis linear accelerations instead of attitude and inertial accelerations referenced to a locally
level coordinate system.

331

--

_ _ _

_ _ _ _ _ _ _

-

_ _ _ _ _

-~~~

COMMON DATARMIN Ilnitlallzatlon)

VG, A LAT, ALONG
- - VXE . VYE , vZ , C,

____________________cB, WE 1, TWOAE,

CE , RPPX , RPPY,
WEAl

RM , PX, PY , ERX , REFERENCE
ERY , ERZ , DEG H

MODEL
-~~~~

FOR

ACGY

INTERNAL G

NAVIGATION FcS
SYSTEM

PSIG T, H

— AFM 1
DIR

-—

—
WA, H, G

DI ___________________

___________________ RMIN ATM2

G, H RM, RPPX ,
AFM 1 RPPY

UDOT . VDOT, WDOI , ___

RALT

SAVEU, SAVEV, H
SAVEW, SAVEP ,

SAVEO , SAVER , ___________________

THETA , PHI , PSI, I ARS
EOSO, E1SO. E2SQ, —~*E3SQ, TEOE 1, TEOE2, I H

TEOE3, TE1E2, _____________________

TE1E3, TE2E3,
Al1, A12, A13, REGE

A23, A33 —s
cB, C, PX, PY, VXE,

VVE , VZ, RM, RPPX,
RPPY

IRU

AXL , AYL, AZL .
WX , WY, WZ ,

G

Figure 2.6 2.14-1. RM IN input/output block diagram.

332

~ --~ -

TABLE 2.6.2.14-1. RMIN INPUT/OUTPUT NOMENCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

All a 11 Direction cosine matrix element
A12 a 12 Direction cosine matrix element
A13 a13 Direction cosine matrix element
A23 a23 Direction cosine matrix element
A33 a3~ Direct ion cosine matrix element
EOSQ (E9)1 E0 squared
EISQ (E 1)2 E1squared
E2SQ CE 2)2 E2 squared
E3SQ (E3)2 E3 squared
PHI Airplane roll angle rad
PSI ~

, Airplane yaw angle rad
SAVEP p Body axis ro ll rate red/s
SAVED q Body axis pitc h rate red/s
SAVER r Body axis yaw rate red/s
SAV EIJ u X axis airplane velocity WRT earth ft/s
SAVEV v V axis airplane velocity WRT earth ft/s
SAVEW w Z axis airplane velocity WRT earth ft/s
TEOE1 — Two x ED x El (quatern ion parameter)
TEOE2 — Two x EO x E2 (quaternion parameter)
TEOE3 — Two x ED x E3 (quaternion parameter)
TE1E2 — Two x El x E2 (quaternion parameter)
TE1E3 — Two x El x E3 (quaternion parameter)
TE2E3 — Two x E2 x E3 (quaternion parameter)
THE TA e Airplane pitch angle red
UDOT U X axis airplane acceleration with respect to earth ft/s2
VDOT V axis airplane acceleration with respect to earth ft/s2
WDOT Z axis airplane acceleration with respect to earth ft/s2

Output Data

ALAT -t’ Present position latitude degree
ALONG x Present position longitude degree
AXL Axi X locally level acceleration ft/s2

AYL A~~1 V locally level acceleration ft/s 2
AZL AZL Z locally level acceleration ft /s2
C C,. Locally level-to-earth direction cosine matrix
CB CB~1 Body-to ’ocally level direction cosine matri x

2G g Earth gravity ft/s
H h Airplane altitude ft
PSI DR ‘~‘D Drift angle degree
PSIGI *6 Ground track angle degree
PX Vehicle rate , X axis red/s

Py Vehicle rats . V axis rid/s
RN Range to present position Z axis ft
RPPX R

~~x Range to present position X axis ft

333

_ ~~~~JL-~~-_ i ~~~~~~- - - - -~~~-

TABLE 2.6.2.14-I. RMIN INPUT/OUTPUT NOMENCLATURE (con.)

Output Data (con.)

FORTRAN Name Math Symbol Descr ipt ion Units

RPPY R 0~~ Range to present position V axis ft
VG V9 Ground speed ft/s
VXE V xe X axis veloci ty with respect to earth ft/s
VVE V~5 V axis velocity with respect to earth ft/s
VZ V2 Z axis velocity w ith respect to earth ft/s
WA — Wander ang le degree
WX X axis angular rate rad/s
WY V axis angular rate red/s
WZ Z axis angular rate red/s

IRU component error source models are statistical in nature , with the range of inputs
being large enough to model a variety of IRUs. All modeled error sources accept outputs
from a random noise generator subroutine which produces normally distributed noise that is
dependent on a user-specified mean and standard deviations. All modeled IRU error sources
are normally included in each iteration and run ; however , the user can delete any error
source variable.

Figure 2.6.2.15—i attempts to show the interaction of this model with other elements of
the real-time model set. The sc,urc e model of each input is listed on the left while the
disposition model is listed on the right. Additional nomenclature definition is contained in
Table 2.6.2.15-1 below. -

2.6.2.16 Flux Valve Model (FLUX)

The Flw(Valv e sensor (one of the nav igation models) provides a source of magnetic
heading; that is, if the magnetic variation corresponding to the present aircraft position
relative to the earth is known , true north can be approximately determined by using a flux
valve output. A typical flux valve output is a noisy analog signal , which is smoothed by
using the AFRS directional gyroscope.

The flux valve model, FLUX , simulates a source of magnetic heading which can be used
for navigation. As shown in the Input/Output Block Diagram of Figure 2.6.2.16-1. FLUX
receives inputs of true heading from AFM 1, magnetic variation , and flux valve noise
standard deviation from the user initialization to produce flux valve magnetic heading,

334

- - --— - _-_— - -
~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~ 
~~~~~~

- -
~~~~~

—-- ---- 

~~~~
-

~~~~~~~~~~~~~~

p

AFM1

PH I , PSIP, THETA

INTERNAL

REFERENCE

UNIT

I R U

RMIN OFP

AXL AY L, AZL , AXP, AYP, AZP,
- - I 

G wx wv PHIl , PSIPT,
- - ‘ w~ 

‘ THETI

N E R R

NERR OUTPUT

Figure 2.LLIS-1. IRU input/output block diagram.

_ _ _  

—

~~~~~~~~~~~~


,rT - - - . ~~~~~
“

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -------,-——-- -

p

TABLE 2.6.2.15-1. IRU INPUT/OUTPUT NOMENCLATURE

Input Data

FORT RAN Name Math Symbol Osecr iptien Units

AXL A X locally level acceler ation tti~
2

AVL A~ 1 V locally level acceleration ft/s
AZL Azt Z locally level acceleration ft/s2

G g Earth gravity ft/s2

PHI Airplane roll angle rid
PSIP Airplane yaw ang le plus wander ang le red
THETA e Airplane pitch angle rid
WX X axis angular rate (LI/I) rid/s
Wv V axis angular rate ( LI/I) rid/s
WZ 2 axis angular rite (LI/I) rid/s

Output Data

AXP ~~~ 
Platform acceleration, x axis ft/s2

AVP A~ Platform acceleration, V axis ft/s 2

AZ P A
~ 

Platform acceleration, Z axis ftJs2

PHIl Indicated roll angle red

PSIPI ,s’~,, Indicated azimuth angle rid
4 TH ETI 8~ 

Indicated pitch angle red

TABLE 2.6.2.16-1. FLUX INP UT/OU TPUT NOME NCLATURE

Input Data

FORTRAN Name Math Symbol Description Units

PSI True heading rid
PSIMV — Magnetic variation degree
SIGMV — Noise standard deviation degree

Output Data

PSI N I ‘~ mi Flux valve indicated magnetic heading degree

* User input for initi al ization only.

336

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -

AFM 1

PSI

FLUX

VALVE

MODEL

F LUX

NERR OFP

NERR OUTPUT PSIMI

INITIALIZATION
1- -

~~~~

PSIMV, SIGMV

Figure 2.6.2.16-1. FLUX Input /output block diagram.

387

_ _  _  _

* ~~~~~~~~~~~~~
__—--



——-.--—‘
~ - 

-‘----—----— - --- - ---

~~~~~~~~~

--- —-.. - -
-

- .- — — -
~ - —,-------- ~~~~~~~~~~~~~~~~~~~~~~~~~ -. ------‘--r—- ~~~~~~~~~~~~~~~~~~~~

* ~~~~~~~~~~-- - - - —

which is routed to the nav igation model NA\’ - The source model of each in 1n~t is listed on
the left while the disposition model is listed on the right. Additional nomenclature
(lefmiti on is contained in Table 2 (3 .2.16-1 below.

SECTION 2.6 BIBLIOGRAPHY

Alle n , Byron. and (‘lema. J. K. . “lndepe ndent- \‘er i f ic ation ’Vali dat ion Support Software ,
presented at NAE (’ON-76 . l) avt on . Ohio. on Mar 18-20 , 197(3.

Anon.. “ (I)AI S) Phase I Simulation Models . Preliminary Draft , not dated.

F’issor. S. N.. and Morris , I). M .. “l)esign Specification for the F’-lG Independent Assessment
Simu lator .’ . \F ’Al. Internal Report , February 20. 1976.

General Dynamics , (‘omputer Program Development Speci fication for Soft u ’ar e f o r .1& ionie

.~vste?n Simulation and I) ynamic Validation , FZM-6197. Revision (‘. (‘ode Id ent if i cation
81755, Ju ly 15, 1976.

General Dynamics, Computer Programmer ’s Ma nual f o r Software for - I I I I i t i ie Simulation
and Th’namie Validatio n, FZM-6227 , Revision B, Codi’ Iden t i f i ca t ion SI 755 . -July 1 (3 ,

1975.
Genera? Dynamics. Corrput er Pro grammer’s Manua l for Software for l i - i o n i c Svst (’m

Simulation and Dy namic Validation , FZM-6227 , Revision C, Code Identif ication 81755,

Jul y 15. 1976.
Genera l Dynamics . Compu ter User ’s Manual for Soft war e for .4 t ’ionie Si mu lation an d

Dynamic Validation , FZM-6228, Revision 8, Code Identification 81755 . .JuIy 1(3 , 1975.
General Dynamics. Computer User ’s Manual for Sof t ware for Avionic Simulation and

Dynamic Valida tion , FZM-6228 , Rev ision C, Code Identification 81755, July 15. 1976.
Hall, C. W., “A -7E Simulation Software Report ,” NWC Technical Note 4070-41 April 1973.
Naval Weapons Center , “A-7CIE Simulation Computer Program Documentation ,” Technical

Note 404-1 49, January 1973.
Summers et al., “AVSIM — A Real Time Avionic System Simulation , ’ presented at AIAA

Digital Avionics System Conference , Boston , Massachusetts, on April 2-4 , 1975.

2.7 PROCESSOR ARCHITECTURE (ISP)

The Processor Architectu re (ISP) simulation facility enables a user to describe compu ter
processing units at the register transfer level, and from these descriptions to quickl y set up
interactive simulations of these processors. A language, CSL/ISP (Computer Simulation
language, a dialect of Instruction Set Processor language), was developed ass -.lialcct of ISPI.
from Carnegie-Mellon University . A compiler produces PDP- 10 code f’om the (‘SL/ISP

source and the user then runs this code from a control program which he constructs by

338

_ _. .___-._ .. ~r i..._ — — ~~~~~~~~~~~~
-
~ .~~ —

- -
~~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

modifying a model, general purpose simulation control program. A methodology is included
for creating simulations from manufacturers’ instruction set descriptions.

From a description of the register transfers of a computer , the processor simulation
program can produce a simulation of that computer. This program may be broken into three
general areas. These include a formal language compiler with which to describe register
transfer level processes, a code generator to produce DEC.10 code from the output of a
compiler for that language, and a general purpose control progra m with which to drive the
simulators produced from the compiler.

The eompiler uses a set of register transfer operators , called XT-op ’s, to produce a set of
pseudo instructions which can be interpreted by the DEC-10 assembler’s (MACRO) facility.
The macros which were written to produce DEC.10 code from these pseudo instructions
produce optimized code, and they comprise a universal library which is searched during
assembly.

Simulations are controlled by a program with which the user can interactively set
registers and memory locations, load memory, set breakpoints , etc. The control program
causes instructions in simulated memory to be executed by repetitively calling on the
simulator to execute a single instruction.

The behavior of a processor is determined by the nature of its individual operations and

the sequence in which those operations occur. This sequence is generally governed by a
stored program, which resides in the memory of the computer and the set of interpretation
rules which the processor applies to the program.

Although the above format is commonly used to describe digital computers , iSP dot’s
not limit the user to a particular type of description. Thus, ISP can be used to describe
register transfer systems in general; digital computers are a subset of such systems which
interpret an instruction set. Other devices, such as busses and device controllers , (-an also be
described in ISP.

2.7.1 Specific Simulations

Three simulations were developed as test cases for this project and are presented in this

section. They are the INTEL 8080 microprocessor, the PDP -8 minicomputer, and the 1).-IlS
- ‘eionics processor. The th ree simulations differ greatly in complexity, ranging from the
simple PDP.8 to the quite complicated DAIS processor. The general process showing how to
use the CSL/ ISP system to produce and run a simulation is shown in Figure 1.7.1-1.

339

~~~~-
-
~~~~~

- - .—- -
~

--
_ _ _ _ _ _ _ _

-~~ —----- -- —--- --. ~~~~ .— - -~ ~~~
- . - - -

:1

SOURCE

~~~~~~ G~~~~~)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

)

c
I
~;nJ~~~~~~~~ ~~~~~~~~~~

I~~~~~DE ~

‘
\ (EXTERNA T\

~~~ FILE~~~~) 
FILE

[DEC.MACRO DEC-MACRO
ASSEMBLER ASSEMBLER

CI~~~~~

E 

E

~~~~~

LOCATAB D CELOCAT AB LD

DEC LINKING
LOADER

INTERACTIVE
SIMULA TOR

Fiqurs 2.7.1.1. Procedu re for generating $ pr ocessor simulation.

340

~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~ ~~~~~~~~ 
__~~

__ _ii~~~~ . ~~~~~~~~~~~~~~~~~ 
.
~~ 

— ~~~~~~



_

~~~~~~~~
-

~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~~ T~~~T T 1 ’ ~~T~~T:-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ J

I

2.7.1. 1 The PDP-8 Simulation

The PDP-8 simulation was undertaken because of the simplicity of its instruction set ( i t
has six memory reference instructions and two micro instructions) and because of its wide
range of users. These reasons make it a usefu l demonstration example for the full use of the
simulation facility, from the CSL/ISP description to the simulation itself.

The processor descr iption includes the fetch cycle , the memory reference instructions
and one micro instruction. The input/output micro instruction was not described . Some
simple programs were loaded (from the output of the PAL 1O assembler) and run. The
PDP-10 to PDP-8 runtime ratio was about 90 to 1, well within the range of acceptable
simulation times.

2.7.1.2 The INTEL 8080 Simulation

The development of a simulation module for the INTEL 8080 microprocessor through a
CSL/ISP description was undertaken for two reasons. First of all , it was written in order to
check operations with a laz~e descr iption (>200 instruction routines). Secondly, it was used
to help test and debug the CSL/ISP compiler and the simulation control strategy . This
second reason was particularly strong since a simulator of the INTEL 8080 was already
available and results could be compared.

The simulator adheres to the description of the processor found in the INTEL 8080
manual (1NT74) with three exceptions.

1. The undefined operation codes are trapped by the simulator as errors. The manual
does not define the action of the processor for these operation codes.

2. One of the undefined operation codes was utilized as a break trap instruction. The
operation code used is 20 octal.

3. All input and output for any channel is directed to the terminal.

The execution speed of the simulation was timed and found to be 100 to 1 compared to
actual execution speed.

2.7.1.3 The DAIS Processor Simulation

This is the largest simulation implemented in ISP. The instruction set of the DAIS

341

— —=-~~~ —.--—~ -- .— —~~-—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



- ~~~~ -~~~~~~~~~~ - - ~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~ I--- ~~~~w -~~~~- -  -

p

processor , built for the Air Force by Westinghouse Electric Corporation , was described with
CSL and subsequently simulated. Neither the bus control equipment nor the direct memory
access eqipment was simulated .

The simulation extends beyond the machine described in the manual in two ways.

First , the interrupt system is modeled as described in the manual . However , the
simulator will respond by calling a routine within the control program if any of the
conditions for which interrupt responses are included occur when interrupts are disabled.
Thus, the user can either elect to include code in his programs to detect interrupt
conditions , or he may rely on the simulator/contro l program to inform him when these
conditions occur. The following interrupt situations are handled by the simulator :

- - 1. Illegal operation code (external routine OPERATION),
- - 2. Bound ary alignment error (external routine BOUNDARY),

3. Interval timer “A” interrupt (external routine TIMERA ),
4. Interval timer “B” interrupt (external routine TIMEB), and
5. Processor memory protect (external routine PROTECTION).

Second , a branch trace facility was added to the simulation package. Any branch which
alters the instruction counter (IC) is recorded in a 32-word table by the REMEMBER
routine of the control array . The contents of the control array (J.ADDRESS) can be
inspected by using SIX 12; index word , J.INDEX , points to the next word of the array to be
used. Entries are made in J.ADDRESS in cyclic fashion. Thus , the entry in the word
indicated by the contents of J .INDEX is the firs t of the entries in the array to have been
made. Each word of J.ADDRESS holds the location of the j ump instruction in the upper
half word , and the destination of the jum p in the lower half word. The SIX 12 typeout
format types these values in the form UPPER , LOWER at the extreme right end of the line
for each value typed .

Several instructions are simulated primarily by means of external routines written in
DEC MACRO assembly language. All of this external code is included in two external
modules. The two modules and the routines included in them are as follows:

1. Module FLOAT, source file FLOAT.MAC , relocatable file FLOAT , REL includes
entry points:
a. FA: floating add ,
h. FS: floating subract ,

342

- _ —~~~~~~~ 
_ _~~~~~~~~~~~~~~~~~~~~ 

j~~ _~~~~~ -__ - - - 

-



c. FNEG: floating negate,
d. FABS: floating absolute value,
e. FC: floating compare,
f. FM: floating multiply ,
g. FD: floating divide;

2. Module FIXED , source file FIXED.MAC , relocatable file FIXED.REL includes the
entry points:
a. MPY64: fixed point double precision multiplication ,
b. DIV64: fixed point double precision division.

The simulator executes one instruction for each call by the control program. The fi rst
step in an instruction execution is to look for and to respond to any interrupts that may be
pending if , and only if , interrupts are enabled . Following this, the simulator fetches the next
instruction into the pair of instruction registers IRO and IR1. The hulk of the simulator
performs instruction decoding, which begins after the instruction fetch is complete. The
decoding consists of a 16-way decode of the high order operation code digit; each of the 16
elements in the range of this DECODE is a 16—way DECODE of the low order operation
code digit.

Each simulation for each instruction assumes that IRO contains the operation code
portion of the instruction, and that IR1 contains the address portion of the instruction if
there is one.

2.7.2 The CSL/ISP Language 
-

CSL/ISP is a language for describing digital systems at the register transfer level,
including descriptions of the computer memory , registers, instructio n set, interrupt system
and input/output system. A program in CSL/ISP consists of two parts, a description of the
storage elements of the system, and a description of how the system operates on those
storage elements~

2.7.2.1 Legal Characters

CSL/ ISP input consists of a stream of ASCII seven-bit characters. The characters which
the compiler accepts include the alphabetic characters A - Z and a - z. The compiler makes
no distinction between upper and lower case alphabetic characters. In addition , the compiler
accepts the numerals 0-  9 and the characters [,] , <, >, (, ), $, ? , #, ‘, %, !, \, +, - , *1, =, ‘.,@,

- (left arrow, which is an underline character in some ASCII character sets), ., CR , LF ,

TAB. SPACE , and ,. All other characters are illegal.

343

_______________ 
_______________________________________________

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



‘r~~~ 
‘—

~~ 
— 

~
—‘

~~~
———‘

~
—

~
-—

~~~
--—-- -—-

~~ ~
‘—‘--—

~~ ,~~~~~~~~~~~
. 

-
~

---—--- __________________________________________________

- -U’- -~ ~~~~ — ~~~~~~~~~~~ 

—.-- — 
-.--- — -,---

~ 
—

~~~—~~~~
- -‘z~ — _ 4____

2.7.2.2 Identifiers

Identifiers are used as names of various computer components and as labels for
statements and procedure declarations in a description. An identifier begins with an
alphabetic character and is composed of any number and combination of alphabetic
characters (both upper and lower case), numerals and the period, “.“ . Names must be
distinct in their first six characters.

EXAMP LES:

Xl , xi , Sixteen, One.Step, P296. 1.

The names Pistepi and PISTEP2 are recognized as the same identifier.

The compiler accepts an extension to an identifier which can be used to give more
information about the symbol. The compiler treats the added information as a comment.
The syntax for this type of comment is:

identifier/string of characters valid in an identifier

The “\“ need not be preceded by an identifier , and all valid identifier characters which

follow the “\“ are ignored until a separator character is found . Thus, this construction can
be used to insert comments into the middle of a line.

EXA MPLES:
\THIS.IS.A.COMM ENT
\1 ! THIS IS A COMMENT TOO
SW.CON\CONSOLE.SWITCHES

Further examples are given in a later section.

2.7.2.3 Numbers

Numbers may appear in the input in binary , octal , decimal or hexadecimal form. Special

prefix characters indicate the base of the number which the subsequent numerals designate.
These prefix characters are:

binary ,

344

—

~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-



— ~~~‘‘-~ ~~~~~—,..‘rn--~c,—. -.-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ — — —

octal ,
Digit decimal,
% hexadecimal.

The compiler converts the input representation into an internal binary number which
cannot exceed 218 — 1

EXAMPLES:
103 is lO3io
1101 is 1310

#72 is 58io
%AF is 17510

The number %7FFFF cannot be correctly compiled because it exceeds 218 1.

2.7.2.4 Program Structure

CSL/ISP is a block structured language; a CSL/ISP program is a labeled block which
starts with a BEGIN and is terminated by an END. A CSL/ISP block may have a declaration
section. A nontrivial CSL/ISP program will generally have a declaration section followed by
an action section. The declaration section defines the elements upon which actions are
performed . The form for a block is thus:

PDP8 : BEGIN
optional declaration section
action section
END .

2.7.2.5 The Declaration Section

The declaration section permits the user to define the storage elements of the processor,

namely, registers and memories. These storage declarations may represent the registers and
memories of the computer being described , or they may be working storage for use in the

simulation. In addition , external procedures, internal procedures, and macro declarations
can be declared in the declaration section.

The declaration section occurs optionally as the first part of a block, and is delimited by

the reserved words

A
345


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- = - -

~~~

-- - - -

~1

D E C L A R E . . .ERALCED

tspel l declare backwards) . The declarations within the declaration section are separated h
semicolons. Extra semicolons may appear . and the final declaration iwed not be followed by
a semicolon.

2.7.2.5. 1 Storage elements

‘l’he sto rage elements of a computer which can be described in CSL ’ ISP are registers and
memories. The general declaration form for a register declaration is

name —Jnt range>
where mmze is any identifier. and bit ran ge is either an empty field , a number , or a pair of
numbers sepai-ated by a colon. Since the compiler generates a si mu la tor which stores each
register and each word of a memory in one DEC-10 word , register sizes may not exceed 36
bi ts, which is the size of a PDP-10 word .

:\ memory is an array of words all of which have the same bit specification. Its
declaration has the form

,ne,norv [word range] < bit range >

where memory is an identifier , word range is a single number or a pair of numbers separated

by a colon , and bit ra nge is the same as that for registers .

Other computer components such as I/O ports and switch registers can also be declared
as registers.

2.7.2.5.2 External declarations

To permit a control program and SIX 12 (the BLISS debugging system) to access the
storage of a simulated machine, memories and registers may be declared within an external
declaration subsection , the form being

EXTERNAL external declarations LANRETXE . —

Afl external subsection occurs as a declaration in a declaration section. Thus, it must be
separated by semicolons from the other declarations. Memories and registers are declared in
the external subsection just as they are declared outside it. —

2.7.2.5.3 Overlay declarations

Registers and memories may be defined in terms of other memories or registers which
have been previously declared. This allows one to define, for instance, the operation field of
an instruction register as a register itself.

346

---— ~~~ ~~~~~~~~~~~~~
- ;

-~-~---~~~~r1

‘I

In a similar manner , overlay s may be specified on memories. The constraints on memory
overlays are more complicated than those on register overlay s due to the DEC.10 assignment
of arrays. When a memory is declared , its words are assigned one word at a time to
consecutive DEC-10 words, so that , for instance, 4,096 twelve-bit words are assigned to
4,096 PDP -10 words. Memory overlays must be declared such that DEC-10 word boundary
crossings are not implied by the declaration.

2.7.2.5.4 Procedure declarations

Procedures manipulate the contents of storage elements. Their declarations have one of
the two forms:

name := unlabeled sta tement
name : block

where name is an identifier and is the name by which the procedure is called . The statement
or block defines the actions of the procedure.

2.7.2.5.5 Macro declarations

The compiler has a macro facility which allows the user to substitute strings of
characters for names which occur in his program. Macros may be declared with or without
parameters. A macro declaration has one of the following two forms :

MACRO name = string $
MACRO name (pl ,p2 ,. - . p n) = string $

where na me is an identifier . p 1 ,. . - ,pn are identifiers which name the parameters, and strzn~.’
is a string of characters which includes any character but the dollar sign , “6” .

2.7.2.6 The Action Section

The action section consists of a group of parallel actions which are separated by the
reserved word NEXT. A parallel action is a group of statements separated by sem icolons.
The interpretations of the sequence

statement 1 ; statement 2 ; statement 3
NEXT

347

:~~
-‘ -- -

~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

“ “  
~~~~~~~~~~

statement 4 ; statement 5
NEXT
statement 6

is that statement 1, statement 2, and statement 3 are performed simultaneously. After their
completion, statement 4 and statement 5 are performed. Finally, statement 6 is performed.

The semantic distinction between statements grouped for parallel execution and
sequences of such groups has been reduced to a syntactic distinction in CSL/ISP. In a
simulator produced by CSL/ISP , statements, whether separated by semicolons or NEXT
reserved word s, are executed sequentially.

The statements which can appear in the action section are of several types. Included
among these elements are register transfer statements, conditional branching statements,
jumps , procedure calls, return statements, and blocks.

2.7.2.6.1 Assignment statements

Transfers of data between storage elements are represented by assignment statements.

The general fo rm of an assignment statement is
target ‘-Z- comp utation

where targe t is a set of contiguous bits in a storage element which is to receive the result of
the computation indicated on the right side of the “<-“ . The computation is either an
arithmetic or logical operation on bits of storage elements , or it is simply a reference to bits
from a storage element. Any bit or contiguous group of bits in a register or memory word
may be accessed for the reading or writing of information.

2.7.2.6.2 Operators

Data in storage elements may be modified as a result of various unary and binary
operations on data in other storage elements. These operators are :

shift operators The value of the expression is shifted ,
NOT
AND EQV Logical operators including the logical complement NOT ,
OR
unary + and — Unary operators,
* / M O D
+ Binary operators.

348


~~~~~~~~~
-.

~~~
-

~~~~~~~~~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r~1

2.7.2.6.3 Nested expressions

The normal precedence for the operators may be altered by enclosing subex pressions in

parentheses . Because CSL/ISP is intended for use in describing the actions of di gita l devices,

the default operator precedence may differ from that in the normal higher level language

such as FORTRAN.

2.7.2.6.4 Conditional statements

There are two different conditional statements in the CSL/ISP language , namely, the Ii”
statement and the DECODE statement . Each of these state ments makes use of a relational

expression. The syntax and semantics of relational expressions are discussed in the following
section. Tha t section is followed by two sections which discuss the iF and DECODE

statements.

2.7.2.6.5 Relational expressions

A relational expression has one of the two following forms:
X relational operator Y .
x.

Both X and Y in the above forms can be arbitrary expressions involving shift , logical , and

arithmetic operators. The relational operators are :

LSS less than ,
LEQ less than or equal to ,
EQL equal,
NEQ not equal ,
GTR greater than ,
GEQ greater than or equal to.

2.7.2.6.6 The IF statement

The IF statement provides for conditional execution of any CSL/ISP action section. The

form of the IF statement is
If relational expression = > action section? .

The low order bit of the relational expression determines whether the action section

which follows the “ =>“ is executed .

349

_ _ _
_ _

2,7.2.6.7 The DECODE statement

The DECODE statement selects one statement from a list of statements for execution.
The form of the DECODE statement is

DECODE relational expression = > statement l i s t ? .

Th e val u e o f the relatio n al expression serves as an index valu e to determ ine which one of

the sta tements in the statement list is executed .

2.7.2.6.8 Flow of control statements

The flow of control in a CSL/ISP program is sequential. Statements are executed in the
order written , even if separated by semicolons to imp ly parallel execution. The flow of
control can be modified by three different statements:

1. Jump—jump to statement labeled by identifier ,
2. Procedure-call statement. and
3. RETURN -return to point of call.

2.7.2.6.9 Blocks

A statement can also be a block. A frequent use of a block is to include an extensive
action section as one alternative in the scope of a DECODE 4atement. A block includes an
optional declaration section followed by an action section , and therefore has the form :

BEGIN
Optional declaration section
Action section
End

The part of the program in which a declaration hold s is governed by the block in which it is
declared.

2.7.2.6.10 Macro calls

A CSL macro can be declared with or without parameters. A macro declared with no
parameters must be called with no parameters; a macro declared with parameters must be

called with parameters. A macro is called by using its name. Parameters follow the name,

enclosed in parentheses. The parameters are separated by commas. Extra parameters in a call

350

-~~~

are ignored , a nd missing parainett ’rs are rep laced b y the null st ring in th e expansion llroc(’ss.
:~ Inat’ro declared wi th parani(1ers must he called h

name (1
to use the null string for all parameters. Recursive macro calls . i nc luding ioops . are not
allowed . Fbi’ compiler detects an a t t empt to use mac ri ’s ri -cur sive l y and report s the name
(or names if a loop is involved) of t t ic offending macro(s) in the error message.

2.7.2.7 The Control Program

.‘t simple i t i t i t r o l program shoulu rel y on t he SIX 12 debugging package of th e Bl ISS
svst t- m for many of the fa ci l it u s which I t prov ides t i t a user. SIX 1 2 can int era ct with the

user i t t i i i s l ’ t z i v ant i a l t er the values of clohal anti own vnri~ihh ’s of BLISS aiid \ i .t(’l~
programs. l ’htis . SI X l 2 can he used to inspect meniorv and rcgi~;t er contents of i . imu lat i~t I
machine , alter those ~-aliies when necessary, and iii genera l . cout i-u I h. it Ii the debugging anti
use of a s imulator . l’he no rmal functions of a simple control program al-c :

(‘all a loader modul e which is writ t en specificall y for (-hat s imu lni or: th e loader is

wr i t te n to hi’ abl e to read a file prepared liv a ross—a ssembler l inki ng.loader svst i’m
w hit -l i produces a progr am file for the simulated computet-: the program fi lt ’ input
of ten include s a start ing address for execution , so that the loadi’r will often set the
inst ru -t ion counte r i~ ~ th e simula tor as well as loading code into its nwuiory -

2. Make per iodic calls on SIX 1 2 so tha t the user can control the simulation process.

2.7.2.8 The Registe r Transfer Operations

The register tr ansfe r operations which occur in the ‘—~inpu t file nami’~~.MA(’ output lilt ’
of th e (‘5!. ,’ I S!’ •‘.‘mp i h’r a i j i l which define the executable code of i-he simulation mod~tle are
known as X’l’.operations w i th in the compiler. In the ‘.~inpu t . FILE name~~.M AC file (he

general form for an X’l’-opernt ion macro call is
til)er ltt ioia (51W 1 - SItC2 , I)ES’l’~

‘vhe n- SIt(’ I ani I SlIt ‘2 are the sources for th e opt’rat ion, and l)ES’l’ is the destinat ion for
th e ri-stilt of th e operatio n involving SitU 1 and 5RC2. In some cases, the operands are
opt ii inal or I ake special forms.

2 7 3 Processo r Simulation

2 7 3 1 The Computer Simulatio n Language Compiler

I h.- i
- , it; t inte r Siniu lat ion I .anguagi’ ((‘SI ,) compiler is writ ti’n in the I l l , 1SS

:151

—

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . ..—.



irnp lt ’ni e’n (at ion language for the IThU- 10. The t’ornl)ili’r is organized into seven BLISS
modules. In each module , there is one primary routine and a collection of supporting
routines. The following table gives an overvieW of the compiler organization.

Module ~ imsey Rs~ (5 PW~~.y Fu.c~,n
CSGBL. main body Compil er initi alization m d

global declarat ions
CSPRS PRSE Lexically analyz e and pars.

the so urc. progra m

CSNAC DEFMACRO & Acce pt and expand micro
EXPMACRO definitions

CSSEM SEMANTICS Perform code generation
end semantic actions cone-
sponding to terminal
symbols

CSGEN GENERATE Perform code generation
and semantic actions co n e
,pond ing to syntactic
reductions during parsing

CSOPT OPTIM Reorder the code and opti-
mize the flow of control

CSOUT OUTTABLES Write out SYTABLE and
STTABLE for later auembly

The (‘SL -oniputer is a two pa ss compiler. 1)uring the first pass. compiler modules
(‘SP R S - (‘SM A(’, ( ‘S( K N - and (‘SSEM cooperat i’ to parse t In’ source program and t .ranslat c

it into an encoded version of the eventual output in the st atenwnt table . SVl’A 13! K. I )uring

(lii ’ second pass. t’onipili- r module CSOPT reorders (-lie code in S’ll’ABl ~E and Ol)ti flh i/.es the

flow of control. Finall y,  module (‘SOtl’l’ writ es out the  coflient s of tli~ sy mbol (ab le

( SYI’ABI.E 1 and th e statement tab le (STTABLE) for later assembly by th e l)EC assembler

MACRO.

2.7.3.1,1 The sy ntax graph

Parsing is done top-down and is table driven from a syntax graph. ‘l’lit’ graph is reduced

by facto ring common strings of leading symbols in a set of alternat ives for a production.

Recursive product ions art’ ri’cognii.ed fur furth er  simp lifi t -at ion and modes where values and

l inks are identi c al are el iminat ed. 



2.7.3.1.2 The parser

The routines which parse CSL are in the module CSPRS. Parsing is accomplished by an

implementation of a nonrecursive algorithm. The algorithm has been modified to eliminate
the pointer stack and to include recognition of missing right hand delimiters. The parsing
process deai s with two classes of objects: terminal symbols and recognized productions.
Terminal symbols are handled by the compiler module CSSEM and recognized productions
are operated upon by the compiler module CSGEN.

2.7.3.1.3 The syntax analyser

The routine PRSE performs the task of parsing the CSL source and of making calls to
the semantic routines SEMANTiCS and GENERATE in order to produce code. In order to
analyze the input , PRSE calls on the routine SCAN which fetches and analyzes the next
lexical unit , or lexeme, in the input. It does this by “sliding” a “window ” through the
source in order to set up the new current lexeme. In addition , this window positions itself
over the last two lexemes analyzed and over the next two lexemes past the current lexeme.
New entries conceptually are entered into the window from the right and disappear from
the left . A new entry is made when SCAN calls the routine GETLEX. GETLEX determines
the type of lexeme coming up either from its first character or from the value of the flag.
FLAGSTRING , which is set by the semantics when a macro definition is arriving on the
input. GETLEX then calls IDENT , NUMBR , OPERATOR or DERMACRO to fetch the
lexeme and set the window entry .

After the window has been advanced , the parser compares the value of the current
lexeme in the window with the value of the current node in the syntax graph . if they mat-eli
and certain other conditions are satisfied , the parser caUs the semantic routines to produce
code. Otherwise a new node is selected and the comparisons continue until the proper node
is located.

2.7.3.1.4 Code generation

The code generation process is controlled by the contents of various stacks , flags , and
other variables. The contents of these control variables are set by the code generation
routines and , in turn , control the actions of those routines.

All of the codes produced by the compiler are generated by calls to routine STATE of
compiler module CSGEN. Routine STATE responds to calls by placing an encoded from of
the eventual output in the statement table , STTABLE.

353

- -~~ -~~~~~ 
-r~~~~~~~



“.‘
~“~~

‘
~~ ~~~

“‘
~
‘
~~~~ 

~~~~

‘ 

~~~~~ ~~~~~~

—

~~~~~~~~~~~~

- —

~~

—--- - — — -

~~
‘--

~~

_ - ‘-  -
~~

-- — -
~
-
~~

-.-

p

2.7.3.1.5 Compiler output

Except for the listing file (<input file narne>.LST , produced by compiler m odu le

CSPRS), all output from the CSL compiler is produced by compiler module CSOUT. The
output consists of two files when the source file contain s EXTERNAL declarations and one
file when no EXTERNAL declaration occurs . Both output files are intended to be
assembled by the DEC assembler MACRO ; there is a macro library appropriate to each
output file.

The primary output file (<input file natne> .MAC) contains the internal storage
declarations and executable code for the eventual simulator; it should be assembled using
the macro libra ry CSL.UNV. The file produced when EXTERNAL declarations occur is
<input file name> .EXT; it contains storage allocation and ENTRY definitions for the
EXTERNAL variables and should be assembled using macro library EXT.UNV.

Compiler module CSOUT writes both of the above output files. The variable EXTRN
(one of the variables in the control array CSVAR) indicates when an external file is
necessary . CSOUT initiall y goes through the symbol table , SYTABLE , and writes the file
<input file nam e>.EXT and the storage allocation part of file <input file name>.MAC.
CSOUT then goes through the statement table, STTABLE , and writes the executable
portion of the <input file name>.MAC file.

2.7.3.1.6 Error detection

The CSL compiler can recognize many such errors and informs the programmer about
missing or extra program elements. The errors detected by the compiler fall into two classes,

syntactic and semant.ic errors. The following two sections discuss these two classes.

1. Syntactic Error Detection—a syntax error occurs when the structure of the source
program does not conform to the structure of the CSL language as defined by the syntax of
that language expressed in the file CSL1O.BNF. The most common source of syntax errors is

a missing terminal symbol such as “ ;“ or LANRETXE. The parsing process used by the
compiler is top-down , so that a definite goal symbol is not always known to the parser .
Hence, many errors of this type result , after a long futile search, in the message “parse

failure.” On the other hand , the CSL language contains many terminal symbols which must
always occur in pairs; the parser can detect the absence of the second member of such pairs
and point out the place in the program that it expects such a symbol to occur for a
successful parse. The parser is often wrong about the place in the program , but it is never
wrong about the absence of the matching terminal symbol.

354



I

In some cases, the compiler can determine that a “ ;“ or NEXT symbol has been misused.
Also, when the compiler expects an operator (eg., +, - , ‘i’, etc.), and finds something it does
not recognize as a valid operator , it reports a syntax error.

A symbol which begins with a digit and contains non-digits before a separator symbol
occurs will be reported as a number error.

2. Semantic Error Detection—a program can be syntactically correct and still contain
errors which the compiler can detect. The following describes the different semantic errors
which the compiler can detect.

The compiler reports a fatal semantic error when it detects a reference to a variable in an
expression which has not been declared at the point where it is referenced . When an
undeclared variable occurs as a jump destination , the compiler assumes that it refers to an
undeclared external procedure. The compiler lists all variables of this type at the end of the
listing file (<input file name>.LST) and on the controlling terminal.

The compiler reports a multiple declaration when it finds more than one declaration for
the same identifier within the same block scope. A given identifier can be declared as an
EXTERNAL variable only once in a program. Moreover , that same identifier may not be
declared as a local variable anywhere in the program .

The CSL language permits a user to declare and access array variables. The syntax for
both the declaration and access requires that an expression of some sort enclosed between
matching brackets, “[. . .1”~ 

follow each instance of such a variable . The compiler reports a
fatal semantic error when it finds a variable that was not declared as an array variable
accessed with an expression enclosed in brackets. The compiler Will report a reference to an

undeclared word if an array reference occurs with a constant subscript and the constant
used does not address a word declared for that array.

The syntax of CSL requires that all references to bits within a word or expression be
composed of literal constants. The compiler checks to see :

1. That all of the bits referred to in a reference are declared for the variable to which
the bit expression (<. .

2. That the bit numbers in a bit reference occur in the correct order; thus, if -- :~~
“ is

declared “A <7: 0>” and referenced “A <0: 2>”, the compiler will report a
non-fatal “bit access reversed” error;

3. The number of bits and words declared for an overl ay variable.

‘1 355



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.-~- - - -  — r - .’~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -

--

~

. - - - -

~ - -
T i

p

2 7.3.1.7 Compiler modification

The compiler for the CSL language is based on a table of the syntax of the language and

two auxiliary files prepared by the syntax analysis program GRPGEN.SAV .

One of these auxiliary files , CSL1O.EQV , permits the user GRPGEN to define equivalent

names for terminal symbols and production names. The second auxiliary file , CSL1O.NEG ,

permits the user to associate that which appears to be terminal symbols of the grammar with

items which his lexical scanner will recognize in the source program. In CSL , they are

NUMBER , IDENTIFIER , and STRING.

In general , the compiler can be modified in a fairly straightforward manner. If a syntax

change is made that inv olves new terminal symbols and new production names, ordinarily,

only modules CSSEM and CSGEN need be altered. Occasionall y a syntactic test may have to

be inserted into a parser to cause a search to proceed down a different path in the syntax

graph if some condition is not met.

The routines SEMANT ICS in CSSEM and GENERATE in CSGEN are simply long

SELECT statements. In SEMANTICS , the terminal name passed is compared with a list of

terminals. I f a new terminal is introduced into the syntax , its equivalent name must be

entered into the list. In addition , a call must be entered to a semantic routine for that

terminal . This routine is written to perform the table manipulation and code generation.

The routine GENERATE is also a long SELECT statement. The name passed to it is of a

production. Therefore , new production names which require semantic actions must- be

entered into this list and a call to the proper code generating routine must be made.

Ordinarily,  a new routine must be writ -ten for each new production name.

2.7:3.2 Code Generation

The output file(s) of the CSL compiler must be assembled with the DEC assembler

MACRO before linking them with a control program for use as a simulator. There are two

basic parts of the output:

1. Storage allocation , and
2. Executable code.

These two parts are discussed in the following sections.

356

-.—.---——— ~~~~~~-~~~~—.—- —~- ~~~~~~~~~~~~ ‘‘  r’~ ~~‘ ~~~~~~~~~~~~~~~~~~~~



P

2.7.3.2.1 Storage allocation

There are three classes of variables for which storage and names are required in a
simulation module:

1. EXTERNAL symbols ,
2. lnterna l variables, and
3. Compiler generated variables and constants.

The CSL language requires all EXTERNA L variables to have unique names, since these
names will eventuall y acqu ire definition through the use of the l)EC LINK program .
However, the block structure of the language permit-s multip le use of the names for internal
variables—those not declared EXTERNAL. The comp iler generates requirements for
temporary variables of two types. Since nonexternal names can be used more than once, and
since the MACRO assembler does not hav e a block structu re capability , all internal and
compiler generated variables (and constants) are assigned compiler generated names f o r  use
throughout the simulation module. Two diffe rent types of names are assigned to internal
variables:

1. User declared variables , constants , and pointer values are assigned names of the form
Tnn , where “nn ” is a decimal number ,

2. Compiler generated temporary variables (TEMP ’s and FLAG’s) are assigned iw nes of

the form %nn , where “nn ” is a decimal number.

For all but the array variables, the storage allocated by a storage allocating macro is one
word. For arrays, a word that contains the size of the array is allocated , followed by the
number of words declared for the array. The word that contains the size of the array is used

throughout the simulation to check for references outside the declared array.

The R E G I S T E R , LREGISTER , EXREGISTER , MEMORY , LMEMORY , and

EXM EMORY macros define an assembly time symbol of the form .<syrnbol name>, which
contains the number of bits intended for the variable. A symbol of the same form with value
zero is defined for CONSTANT, TEMP , and POINTER variables. (The’ value of the bit
length assembly time variables throughout the assembly process are generated by LENGTH
macro of the CSL compiler. )

Since symbols within MACRO are unique only to six characters, EXTERNAL symbols
should havc names unique to five characters (plus the prefix “.“) so that correct lengt h

information can be accessed during assembly of the executable code.

357 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~—~~~~
—-— :

~~~~~~~~~~~~



‘1

2.7.3.2.2 Executable code

The allocation macros use DEC-10 registers for temporary and fl ag variables as long as

they are available. The code generation macros optimize the code they produce when

temporary and flag variables have been allocated DEC-10 registers. Variables having lengths

of zero are accessed by word accessing rather than by byte pointers. Other than these two

steps, the code generation process is straightforward . The pointers generated by the

compiler all expect the address of the variable to be in register PREG , which is register 17

(Octal) in both the compiler and the macros. Accesses that use compiler generated pointers

are accomplished by loading this register before using the pointer. In other cases, a pointer is

generated as a literal during the assembly process.

2.7.3.3 Simulation

This section covers the considerations involved in utilizing a simulation module that has

been generated through the CSL.ISP compiler. A simulation control program is discussed

and specific simulations are described .

2.7.3.3.1 Simulation control considerations

The CSL/ISP compiler is used to process a register transfer level description of a digital

processor into an executable simulation module. Since there are no input and output

functions built into the CSL/ISP language, another module written in a language with

input/output support is needed to interface the simulator with the user. Also , since the

normal reason for use of this type of simulation is software or hardware evaluation , it is

necessary to have some debugging-type controls over the simulator. Such controls include a

complete display capability for all simulated memory and registers, single-step execution ,

and breakpoints.

2.7.3.3.2 Processor description methodology

The description method was chosen to provide the fastest execution time for a

simulation , while providing all the desired debugging control facilities. An underlying

feature of the method is that the simulator is a single-step routine. Each time the simulator

is invoked , it simulates a single instruction and returns. In this way, the control module can

manage the simulation on an instruction by instruction level. There are a number of reasons

for this choice. First , it was decided that the execution control loop should be invariant over

different simulators. Thus, it should neither be necessary nor desirable that the user code it

358

_____________________- -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
--

~ _ _

~~~~~~~~~~
- 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~T

(-

DECLARE EXTERNAL
MEMORIES , REGISTERS
SWITCHES AND TIMER

INITIAL IZATION

GO?
NO

EXIT

1: YES

COMMAND INTER P RETER

NO RUN CONDITIONS
SATISFIED

YES

CALL
SIMULATOR

Fi ur. 2.7.3.3-1. Simulation control proqmm .x.cution flow .

359

— ~~~~~~~~~~~~~~~ —~-— ~---=--‘~~ .~~~~~
— —

~~~~~~ -~~~~~ —-—~~~~ .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

into his description. Another reason is that the code generated by the compiler used for the
control program (BLISS-lO) produces a more efficient code than the CSL/ISP compiler.
Finally, the program has a better structure when the control and simulations functions are
separated into different modules.

Another feature of the description method is that interrupts are to be handled in the
simulator module. The reasons for this are very similar to those above. With these two
constraints on the processor descriptions , it is necessary to have the fetch and execution
cycle as the highest level process in the processor description. It should be noted that
interrupt can only be recognized at the beginning of an instruction execution cycle.

2.7.3.3.3 The general control program

The command set is based upon the console command set for the DAIS intelligent
Console. All commands consist of a single character and require zero , or two numeric or
single character operands.

The command set is almost totally independent of the processor being simulated and
provides all the desired debugging features except a tracing facility. It supports extensive
disp lay and modify commands for simulated memory and registers , and can support an
unlimited number of breakpoints.

The tracing facility could be implemented because the compiler generates fullword
instructions. The use of these instructions eliminates the use of flag bi ts in the simulated
memory words for the trace facility .

Another feature of the Simulation Control Program is the ease in which it can be
configu red for a new simulator module. The program has been structured in . such ~ way as

to minimize the amount of coding necessary to configure a Simulation Control Program for
a new simulator. In fact , 80 percent of the program is independent of the processor being
simulated . Figu re 2.7.3.3-1 shows the execution flow of a simulation utilizing this
simulation control module.

SECTION 2.7 BIBLIOGRAPHY

AFAL , “Processor Architecture Simulation ,” Contract No. F33615-74 -C-11 12 , Final
Report , June 10-30, 1976.

Graham , M. L , Peterson , L. J., and Rude , NI., User ’s Guide to CSL/1SP , Coordinated
Science Laboratory , University of Illinois . Urbana-Champaign , Illinois , June 1, 1976.

360

-- ~~~~~~~~~~~~~~~~~~~~~ ~~~ - - - - ~_T_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --~~ - - - - --- - - - - -
~~~~~~~~~~



~ r _ ’~~~ ~~~~~~~~~~~ 
— 

~~~~~~~~~ W~~~~~’~~ ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.8 COMMUNICATIONS SYSTEMS EVALUATION LABORATORY

2.8.1 Introduction

A framework in which to relate the capabilities of the Communications System
Evaluation Laboratory (CSEL) is provided in Figure 2.8.1-1. This figure depicts a standard
block diagram of a general communication system consisting of a transmitter (information
source, encoder, modulator , up converter), a channel , and a receiver (down converter ,
demodulator , decoder, and information sink). Of primary interest in this discussion are the
carrier systems involved~ thus, the appropriate carrier frequency associated with any of the
links of the system has been indicated in the block diagram . For completeness, it has been
assumed that appropriate antenna systems are associated with the transmitting and receiving
terminals.

The channel of the communication system in Figure 2.8.1-1 can take one of the two
forms shown in Figure 2.8.1-2. The first of these involves a single link between the

FANSM ITTER

f
RF

iuj
CHANNEL

RF
RECEIVER

—

____t

~

J IF
-

MODULATOR I DEMODULATOR

L________
., A ~~ I I ~ A AI~~~BASEBAND

ENCODER DECODER

+
_ _

INFORMATION INFORMATION
SOURCE SINK

Fi,vr. 2.8.1-1. Gsn~ aI communication system block dia~fam.

361

_ _
~

-
~ -

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

-

___-
~~~~~~~~~~~~~~~~~~:~~~~~~~~~~

- -- -.._

~~

- -

~~

- ‘--

~~~~~~~~~~~~~~~~

- 

~~~~~~~~~~~~1Z~~~~~::::-
-

p

>C.)

0

_ _ I!
ca I— z g

24 ~~~~ z —J -~~w 4 Lu -
~~

z E8 z 4 -~~

_ _ _ _ _ _ _ _
4

_ _ _ _

4
~~~

— Q

f

~~~~~~~~~~~~~~

_ _ _

I-;
_ _ _ _ _ _ _ I

I~~~~~~F I
I

_ _ _ _ _ _

362

—-_j -—-

—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



transmitter and receiver terminals while the second consists of two links separated by a
transponder.

In both cases, the sources of contamination are assumed to produce signals which
combine with the information-bearing signal and degrade its reception. in addition to
receiver front-end noise, the contaminating signals of primary interest are jamming signals
and cochannel and interchannel interference. Likewise, channel effects which degrade
reception are fadi ng, multipath , and doppler shifts. The block diagram of Figure 2.8.1-2 is
intended to show that the channel effects act together with the contamination sources to

- 

— corrupt the desired signal . in what follows , these factors are referred to jointl y as
environmental (i.e., electronmagnetic) effects.

The primary role of CSEL is to furnish the means of evaluating communication system
performance degradation because of these environmental effects. CSEL provides a user with
the capability of simulating the channel at his communication system terminal—with
hardware and in the appropriate frequency band , thus allowing him to create an RF signal

- 
I environment suitable to his application. With respect to Figu re 2.8.1-2, the fac ility includes

ha rdware  to generate known contaminating signals, to combine them with an
information-bearing signal and to subject the signals to various channel effects. In addition ,
CSEL allows the user either to simulate the transponder shown in the figure or, in certain
cases, to employ an actual (satellite) transponder.

As shown in Figure 2.8.1-1. the significant general-purpose capability of CSEL is the
creation of realistic communication channels , which , in turn , provides the user the ability to
test various communication concepts as well as to test actual communication gear . It is
implied that the equipment required to outfit a complete laboratory communication
system—antennas, transceivers, modems, and codecs—must . in general , be user-supplied ,
although CSEL does make available to users a variety of such gear.

Despite the general nature of (‘SEL prev iously described , the current thrust of CSEL is
directed at studying jamming and antijamming techniques for application to satellite
communication links. In addition , CSEL makes available the means of instrumenting
antijamming measures including programmed frequency hopping, Thus. in Figure 2.8.1-2,
the RF input signals can be thought of as spread-spectrum signals whose structure is
user-controlled .

An additional factor which currently limits the scope of potential application for (‘SEL
is its present emphasis on digit al communications systems (although purely analog systems

363

-_ - - - -  -~~ 
-_
~~~~~~~~~~~~i 

:-
~

_
~~~~~~~ 

—



are not ruled out of consideration). This is indicated not only by the presence of coders in

Figure 28.1-1 , but also by the fact that the hardware available for transponder simulation

consists of a digita l signal processor. Thus , system transponders , a block diagram of which is

shown in Figure 2.8.1-3, appear to function as coders even if the only operation they

perform is to reconstitute a digital data stream.

2.8.2 Signal and Interference Generator

The task of channel simulation in the Communication Systems Evaluation Laboratory is

performed by two pieces of equipment: the Signal and Interference Generator (SIG) ,

sometimes referred to as the K-band Terminal Simulator: and the Programmable Data

Terminal (PDT ) . Discussion of the latter device , used pr imarily for transponder . simulation ,

is postponed to the next section .

An overall block diagram of the SIG is shown in Figu re 2.8.2-1. This system , developed

by Computer Sciences Corporation , is capable of modeling var ious types of R F l inks and the

RF INPUT RFOUTPUT

_  _  

ci

RECEIVER TRANSMITTER

IF IF

DEMODULATOR MODULATOR

BASEBAND BASEBAND

DECODER CODER

Figure 2.8.1.3. Transponde r block diaqv am.

364

- — - T.. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - 
-
~~~


1r~ AD—AO 55 591 RESEARCH TRIANGLE INST RESgARCH TRIANGLE PARK N C FIG 1/~ N, ~AFAL SIMULATION FACILITY/CAPABILITY MANUAL. VOLUME I. EXECUTIVE—ETC (I))
JUN V R A W HISNANT, W H RUEDGER. R L EARP F33615—76—C—1308

UNCLASSIFIED SCSI — TR—7 7—It A— Vf l I — I iii

5~ 5
~sl

U
ENJO

GAT E
FILfl 0

8 78
ODE

I

EXTERNA L SOURCES

r ~~8ASEBAND IF

f [FM

1 1
~~~~~

——
~~~~~~

— —— ~

_ _ _ _ _ _

1 [
ACCESS 1]

I
_________ _________

I L-BAND

~ f PSK ~ ~~~~~ :
I

_ _ _ _ _
_ _ _ _ _

_ _ _ _ _

I l I x BA N 0 I I
j_ QSK

~~~~~
I 1

~I IJAMME ~!!]~I I I I I K . B A N D I I
I I I EXCITERS I I

~ 
J PUL ~— —— ‘ —— —~~~ s i

i i I COMBINERS— _

I SOURCES I I
DIGITA L

CONTROLLER

Figure 2.8.2-1. Overall bleck diagram in signal and interface generator .

signal environments associated with them. As the figure indicates, the SIG is composed of
four primary functional elements : (1) analog and digital baseband sources; (2) RF exciters ;
(3) RF combiners; and (4) a digital controller. In general , the digital controller , operating on
the basis of commands supplied by the user, is responsible for configuring the other

elements so as to model the communication links of interest. In addition , the controller
exerts real-time control over the operation of these elements during a test run.

With reference to Figure 2.8.1-2, the purpose of the SIG is: (1) to generate
contaminating signals including jamming and cochannel/inter-channel interference; (2) to
combine the contaminating signal with the information-bearing signal; and (3) to subject
signals to link effects, including f~ ling and doppler.* In general, the first task is performed
by the baseband sources acting m conjunction with up-converters located in both the

* Multipath , mentioned in the preceding section , is not instrumented , although plans to do so have been
discussed.

365



cx citcr s and the combiners ; the second task fails to the combiners ; and the third ‘ask is the

function of the (‘xciters . In the paragraphs which follow, the equipment realizing these tasks

is described in moderate detail.

The functionin g of thc major elements of the SIC having been described , various ways in

which these elements may he configu red are explored through two examples: the firs t

concerned with communication via a relay satellite; the second , with a remotely-piloted -

vehicle communication system.

Since the emphasis in what follows is on the functional aspects of the SiC , sonic liberty
is taken in the description of these elements with respect to their hardware implementation.
In addition , many of the interfaces available between user and system which provide
maintenance and debugging capabilities are not discussed to avoid comp lications which
might detrac t from the primary aim of describing how the SIC is used.

2.8.2.1 RF Exciters

The function of the RF exciters , three of which are included in the SIC , is to generate

modulated L-band signals. These signals can possess a variety of modulation formats , can he

equipped with anti-jamming capabilities in the form of frequency hopping, and can display

time-varying power levels to simulate fading.

A functional block diagra m of the RF exciters , shown in Figure 2.8.2.1-1, displays the

three basic functions of modulation , up-conversion , and attenuation they perform. The
exciters accept inputs from a numbe r of sources, some internal and some external to the

SIC , as the figure indicates. In general , external sources must he supplied by the user.

2.8.2.1.1 Modulators

With respect to their modulation (unction , the exciters utilize a 560 MHz signal gener-

ated by a phase-locked oscillator as the basic carrier. With some restrictions mentioned
below , an exciter can modulate th is carrier in any one of the following ways: continuous
wave (CW); frequency (FM); phase shift keying (PSK); quadraphase shift keying (QSK);

multiple frequency shift keying (MFSK’~; and pulse modulation (PUL). * In this context , (‘~~
‘

modulation refers to no modulation; the output of the modulator is simply the 560 MHz

carrier. Moreover , PIlL modulation re fers to pulse amplitude modulation. The type of

* The acr nnym* corv r,ipond Iii (‘~ (‘ docu m~ ntat .nn.

366

-~~~;_~~~~~~~~~~~~~~~~~~
__

~~
-- -::~, -, ~ .

- - -
~~-~~ 

_ _ _



I -

~~~

. -

-

.lr Q- 0I--r -,

z
I_ i
T

4 L ~

H _

x
‘U

1-0

367


~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~

-

~~

----

~

-

~~~~~

‘ p

modulation to Lw performed by an exciter is specified by the user through the digital
controller.

As Figu re 2.8.2.1-1 indicates, an exciter can also accept an IF signal input from an
external source, necessarily at 560 MHz. In this case, the modulation portion of the exciter
is effectively bypassed .

2.8.2.1.2 Up-converters

Having produced or been supplied with a 560 MHz IF signal , the exciter translates this
signal in frequency to L-band , corresponding to a carrier frequency in the band from 1,200
to 1,600 MHz. The precise frequency shift employed in the conversion varies according to
the output of a frequency synthesizer associated with the exciter. Under the supe~~ision of
the’ digital controller , the frequency synthesizer, in conjunction with an X 16 multiplier ,
provides a local oscillator which is dynamically tunable over the range’ of 1,760 to 2,160
MHz in steps of 16 Hz. It is by this means that a frequency-hopped signal is Produced
which , in addition , may be made to display a simulated doppler shift .

The’ process of creating a frequency-hopped , doppler-shifted signal takes place according
to user-specified “patterns. ” a pattern in this cast’ corresponding to a list of frequency
offsets to he’ applied to the ’ nominal L-hand carrier frequency assigned to an exciter. l’at-
terns are interpre’ted by the digita l contro ller tend used by it to dynamically vary the output
of the’ frequency synthesizer. ‘l’ht’ offset specified by any pattern item may persist in the’
synthesizer fro m 5 to 32,765 ms (in steps at. 5 ins), the same time for all items in a given
pattern but specified independently for that pattern by the user. The values of the pattern
items may 1w of any magnitude provided that they do not result in an out-of-hand fre-
quent ’y in either the exciter or the combiner (discussed below) into which it feeds . In
selecting frequency offsets , the digital controller chooses doppler pattern items sequentially
from the list supplied by the user , and hop pattern items , randomly. In both cases, a pattern
is limited to no more’ than 1.008 individual items.

2.8.2.1.3 Attenuators

The RF signal at the output of the up-converter is then passed through a variable
attenuator which is dynamically varied tinder the supei~ ision of the digital controller to
simulate the effects of fading. The selection of fade values by the ’ controller is also
performed with respect to a user-specified pattern analogous to that use’d for doppler shifts.
In this case, pattern items may specify from 0 to 35 dR of attenuation and may contain
1,016 items.

368

~~~~ ~~‘~~
___ 

~~~~~~~ —~~~~~~ -- 

—..
~~~

,. —



—~~- -~~
.—--- ‘- --—--,~~~~~ 

. -.—~~~~~—, ~~~~~~~~~~~~~~~~~~~~~~

2.8.2.1.4 Types of exciters

The three exciters of the SIC are labelled access 1, access 2 , and jamm er. Although very
similar in structure , the various exciters perform different roles in the SIC, hence the
difference in names. With respect to the exciter functions described above, the following
distinctions are noted between the access exciters and the jammer exciter: (1) the access

exciters will not perform PUL modulation; (2) the jammer exciter will not perform FM*

and MFSK modulation , nor will it perform frequency hopping and fading.

2.8.2.2 RF Combiners

The outputs of the exciters are routed to one of four RF combiners in the SIC where
they are translated to a new RF frequency, suitably attenuated , and then combined with
one another and with other RF signals originatin g from external sources. The four
combiners operate at UHF , L-band , X-band , and K-band , respectively.

A block diagram illustrating the combiner operation is shown in Figure 2.8.2.2-1. Of the
five input ports indicated in the diagram , three are permanently associated with the three
exciters and two are available for RF signals from external sources. The exciter inputs are
independently translated to carrier frequencies appropriate to the given combiner and
subsequently attenuated . Although neit .her the degree of frequency shift nor that of

attenuation is dynamically variable , as is the case in the exciters , both of these parameters
are user-selected to establish nominal signal frequencies and power levels.

2.8.2.2.1 UHF. L -band, and X-band combiners

The UHF , L-band , and X-band combiners are broken into two sections, uplink and

downlink , which , with respect to the combiner operation indicated in Figure 2.8.2.2-1,
operate independently. A more detailed block diagram of these combiners is shown in
Figure 2.8.2.2-2. Note that both access exciter inputs are directed to the same section of the

combiner , independently of the routing of the jammer exciter input. Note, moreover, that a
pair of external signal input ports are prov ided for both uplink and downlink section. In
each case, the signals pass through a switch whose status is user-selected .

Both uplink and downlink sections of the UHF and L-band combiners operate in the

* More prec isely, there exists no internal sou rce for f requency modulations of the ja mmer exciter ; .‘xternal
source s may be used, however .

369

~ 

1~~~ . —  ~~~~~~~~~~~~~~~~~



~~~~ 
-

~~

- -

~~

• .—

~~

-—- - -. .

~1
I-
0.
I-

. 1

r
370 F

Z T T ~~~ ‘
~~~~~~~~~~~

— = :~~

~~~ ‘ 
o...I—.

—i
~~~ 

‘•i I
I

-

-‘U

U.

371

____



P

same frequency band. For the UHF combiner, this band is 240 to 400 MHz; for the L-band
combiner , 1,200 to 1,600 MHz . * In the X-band combiner, however, the uplink section
operates in the frequency band 7,900 to 8,400 MHZ and the downlink section , in the band
7,250 to 7 ,750 MHz. In all cases the attenuation may be set to achieve from 0 to 99 dB of
attenuation.

2.8.2.2.2 K-band combiner

The K.band combiner is structured somewhat differently than the others. In the case of
this combiner , there is no strict differentiation into uplink and downlink sections; as a
consequence, some of the flexibility of the other combiners is sacrificed . Furthermore,
frequency translation of the exciter inputs places the signals independently in one of two
non.contiguous frequency bands—36,640 to 37,040 MHz or 37,840 to 38,240 MHz. Im-
plied , therefore , is that each of the mixing operations shown in Figure 2.8.2.2-1 actually
occurs in one of two parallel paths , the path utilized depending on the frequency chosen for
that exciter input.

The K-hand combiner differs in several other respects as well. As Figure 2.8.2.2.3
indicates , a switching arrangement exists whereby either of the following output
configurations may be realized : a single output channel fed by all the exciter and external
inputs; and dual output channels , one fed by the jammer exciter and external inputs and the
other by the access exciter inputs . In addition to this distinction , the combiner provides a
different attenuation scheme. In the first place, the individual attenuation associated with
the exciter inputs provides only 0 to 50 dB of attenuation; an additional 60 dB of
attenuation is achieved by a manual attenuator associated with the “combined output”
channel. In the second place, from 0 to 99 dB of attenuation may be applied manually to
one of the external inputs as the block diagram indicates. Although the user must set those
two extra attenuators manually, he is aided in this task by measurements supplied by the
digital controller.

2.8.2.2.3 Exciter/combiners interface

The interconnections between the exciters and the combiners are illustrated schemat-
ically by the switching network of Figure 2.8.2.2-4. In this diagram, no more than one
crosspoint. in a given row may be closed. It follows, therefore , that a given exciter may

• Currently the L-band combiner performs no frequency conv ersion 0n exciter inpu t-c. Modifications
currently in progress will alter this situation , t he overall effect of which will be to increase the frequency
band of this combiner to th e range 800 to 2,400 Mlix .

372

~

. -~~~~~---

—— r -rrr -------— - - -.



:-~~~~~~~~~ TJ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—--

~~

--.----‘-. .

0
z

80

4
I

fl~
373 

- ~~~~~~~~~~~~~~
-
‘

- ~~~~~~~~~~~~~~~~~ =



... : ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ T~~~~

ACCESS I ~ 4 )  4 ) 4 4 )

ACCESS 2 Q- -
~~~~~~~ -O -“ 

-
~~~~~~~

JAMMER _ _ _ _  - _ _ _ _  - --4 )- -

00 00 000  00
UHF L-BAND X-BAND K-BAND
COMBI NE R COMBI NE R COMBINER COMBINER

Figure 21.2.24. Eacit r/comb iner inUrrelationship .

be connected to at most one combiner. It is also to be noted , although the figure does not
show it , that the switches in the combiners , which direct access exciter inputs to uplink or
downlink sections. are ganged so that should two access exciter outputs be directed to
different combiners , they nevertheless would both he routed either to the uplink sections of
their respective combiners or to the downlink sections.

2.8.2.3 Baseband Sources

Five types of baseband signal sources exist within the SIC to achieve the types of
modulation mentioned earlier.

The first type corresponds to no signal source whatsoever, i.e., a ground connection to
the modulator of an exciter. The result is. therefore , CW modulation.

The second of these sources consists of two independent white noise generators paired
respective ly to the two access exciters. The output signal bandwidth of these generators may
be selected independently from the following list: 4 , 12, 20, 48, 144 , or 240 kHz .
Depending on the bandwid th chosen, the signal produced by a generator simulates that
obtained by frequency-division multiplexing from one to sixty voice channels, each 4 kHz
wide. This signal is then input to the corresponding exciter to produce FM modulation.

The third type of source consists of a pulse generator whose output drives an AM

374
I



P

modulator in the Jamtner ~~~it t ’r . r elucmg P t l  nic kt ula t ton.  Ih e  puI~e gt~tie rator ~s

ot output t ing .i periodi~- on II signal in whtc h both t h ’  oil-i  inie .iiid th e o ff- t im e niav he
selected indepeneh ’u lv from tlit ’ rangt ’ 0 5 to 32.7 t 7  . S ins in iii n~ment s of 0 5  lUs

11w fitial ~our ~e cc ’t i~~~ts of the frequcnc~’ syntht ’stLer itself . wh idil in addit ion to

~enc r .it ing fn ’quencv hop-i and dopp ler shitt~ , may also he’ programmed to pre~ tu e ’t’ ~it I”SK
modulati on.  l’tw modulat ing ~tgnal i s .igain specified by .i P at tt ’nl as arc t’rcquenev hops , the
onl~ diff e rence being .i fn’quencv o ffw ii m t t a  hon of it) k i i :  in th t ’ present case

i n .idditioti  io th e  interna l ii ~~ •~~~ ~u~i described , th e  ~ t (~ also mak e~. provis ion for the

s-on aec t io n of ‘x t ’rtial basel ’ait -t ~ourec ~ to affect  cit her analog F’M) or dti ~it al ~PSK . QSK
modet hit ion in an es~- it c r  l’he ina~or eoiisiderat  ion in qua l i fy  t u g  such .i Source’ for USC ’ w ith

the S i’. ~ t hat it pr oduCes a sign .il compatible ’ in b andwidth nid power level with t h oSe’
prod tu exi by th e int ern a l sourc es.

2.8.2.4 Digital Controller

l’he fu nct ion of supervising the elements described above is . as has been indicated , the
task at the digita l  contxoller. This role is filled ~~ ~ P1)1’ I i  ~ L) niiniconlputer with -1-1K of
memory . e’x te nded ant h met ic un it ,  and th e fo llowtng peripherals: dual cart ridge’ disk drive s .
a n iaguie ’tk - tape’ un it , an .\SR :13 teletype . two alphanumeric vi~ e’o disp lays , a ca n~ reader , a
paper tap e’ un it , a Itne pri nter , and an N I plotter. ‘l’he te letyp e and video display s provide

interact ive ’ interfaces with the sv stem.

L’he computer is programmed to accept from the’ user sequence’ of coniniamis which
pertain to th e’ va rious switches and parameters identifi ed shove. It interprets these
commands and roct~~ls to configure, in so doing, checking for any equipnieflt

mal functions. :~fte ’r performing the set-up task , the controller then supervise’s, in real-time.
the’ operation of the Sl(~ during an experimental run of the laboratory e’ommunication
sy stem , again monitoring equipment for malfunctions.

2.8.2.5 I llustrative Experimenta l Configu rations

One illustration of the u se’ of the SlU is provieled by the’ program for which I.’SEL was

originally formed , namely an investigation of the possibility of using the Lincohi
Kxperimcnta l S~teflites (LES) $ and 9 with the’ Advanced Air borne’ Command Post. The
satellites , operating at Ks-band ~36-$8 (~ liz ~ , an’ identified with the transponder in Figure’
28 . 1 -~~~~ they jle ’rform the functions characteristic of such a de’vt’e. incLud ing decoding and

375

p
-. -~~ _~‘ .~~~ ~~~- ~~~~~~~~~~~~ -~~~~ - - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~~~~ —- --— . --


~
_

recoding. It follows, therefore, that the communication channel of interest consists of two
separate links. The experimental setups described here actually use LES S or 9 to connect
(see Figure 2 .8.2.5- 1) to connec t these links; the next section describe’s simulating the
satellite with the Programmable Data Terminal .

Figure 2.8.2.5-2 and 2.8.2.5-3 show CSEL configurations appropriate for testing

air-to-ground and ground-to-a ir K-band communication channels which use LES 8/9 ,
respectively. The K-band modem and Ka-band terminal shown in the figures represent
qualification models identical to those proposed for actu al use. The 3-ft antenna is
controlled by the Ka-band terminals, the 10-ft antenna , by a PDP 11/45. All of this
equipment is part of CSEL. (See Section 2.8.4 .)

In Figure 2.8.2.5-2 , showing the air -to-ground channel , the signal transmitted by the
terminal is down-converted to 560 MHz and fed into one of the access exciters where the
fade and doppler are introduced . The output of the exciter is routed to the K-band
combiner where it is corrupted by a jamming signal generated by the jammer exciter. The
resulting signal is then transmitted by the three-ft antenna to LES 8/9.

The signal return ed from the satellite is picked up by the 10-ft antenna , preamplified,
and relayed to the receiver of the Ks-band terminal , from which the final output is
ob tai ned.

Figure 2 .8.2 .5-3 corresponds to the reverse procedure of that just described , Note that

K

//P

/Ka
\F/Ka

USER a1 USER a2

Figur. 2 8.2.5.1. Typi cal LES 8/9 operation.

376

- --- . - ~~~~~~~~~~~ .~~~

. .- -

1

p -

< Iii

-0 -0~~
a a

~~~~~~ .—
~~ I

— —  _ _

ifi
—I

I
~1iU
I’

11 1~

w

U

377

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~---~- 
— —~~~~~~~ i~~~ _: _________

— ‘, .—. .— .- .——,--—.—, —.- .—--— -.,-—__. .._~- -.—- - - “~ - -‘ - —-3.— - — ~~~~~~~~ . _. ._.. - - ... ~

10-FT DISK 3-FT DISK

JAMMER K-BAND
- ~ EXCITER COMBINER

FADE AND ACCE SS 1
DOPPLER -‘1 EXCITER
CONTROL

FRE QUENCY 1 Ka-BAND
CONVERTER

J
~~~ TERMINAL

Ka-BAND
MODEM

INPUT/OUTPUT

Figure 2.L2.5-3. CSEI. conf igur at ion for tesdn9 K band gro und-to-ak communicat ion
chinn.1 through US 8/9.

in both cases it is only the uplink which is jammed , since the directivity of the K-band

antenna renders jamming of the downlink difficult.

Figure 2.8.2.5-4 , on the other hand , depict.s an alternative air-to-ground communication
channel in which both up link and downlink are susceptible to jammin g, the latter because it
is at UHF instead of K-hand (the UHF terminal represents that at a ground command post).

To simulate this situation, one of the access exciters is used to generate a jamming signal ,

while the other continues to provide simulated doppler shift and fad ing. In all other

respects, however, the’ configuration shown is a direct analog of that In Figure 2.8.2.5-2.

378

_____  -- - ---- ——  -

— — — J__ ~~~
-.-~~ — — _-_.__t-- .— 

‘— — — .=—.~ -‘----- ~::—~:~



- - - -

t’. _____

c~Luw
00
Ox
<UJ~~~

CI ‘U I-
Iu . Z u.._
I X ~~ —

~~~~ i~~ ~ io ~~-
0 ‘U r~C.) g

C

I’
~~~~~ 

I

~~~~~~~~~

u.

(...

379

Figure 2.8.2.5-5 shows the experimental configu ration for the reverse ground-to-air
channel. Except for the use of UHF on the uplink to the satellite, this setup is identical to

Figure 2.8.2.5-3. it should be noted that both the UHF modem and terminal (ARC 15 1)are
part of the CSEL equipment inven tory .

‘t second illustration of the use of the SIC is provided by a communications system

currently being configu red in CSEL. The system of interest in this cast’ involves th~
transmission at imagery fro m a remotely-piloted vehicle (RPV) to a command post over an

L-band link. Of interest is the extent to which j amming affects the quality of received
images when various bandwid th reduction and compression schemes are used to combat it .
ln particular , it is desired to determine minimum signal-to-noise ratios which can b~
tolerated before the RPV can no longer be remotely piloted to a desired degree of accuracy.

To model th is channel on the SIC , the experimental setup of Figure 2.8.2 .5-6 is
currently used .* A video signal generated from the terrain board at AMR L is transmitted to

CSEL at AFAL. The received signal i~: demodulated and the resulting basehand signal input

to ~t Hadarnand transformer to reduce its bandwidth.

A TERRA(’OM transmitter operating at 1,825 MHz in conjunction with a frequency
converter produces a 560 MHz IF signal for input to the access 1 exciter. There the signal is

up-converted to L-band and faded , after which it is combined with a jamming signal in the

L-band combiner.

The output of the combiner is converted to 2,225 MHz for input to a TERRACO M
receiver. The output of the receiver is inverse-transformed , and after scan conversion,
display ed on a CONRAC display. The feedback path shown represents control of the terrain
board camera to simulate piloting of an RPV .

2.8.3 Programmable Data Terminal

The Programmable Data Terminal (PDT) developed by GTE Sylvania consists of a
Programmable Signal Processor (PSP) mated with a Flexible Frequency Hopping/Pseudo
Noise (F FH / PN) Modem. The function of this equipment in the Communication Systems
Evaluation Laboratory is pri marily that of simulating the operation of a (satellite)

tra nsponder of the sort pictured earlier in Figure 2.8.1-3. It should be noted at the outset .

• It shoul d be noted that lb .- mod ifi cation .. to th ,’ L-han d capabi liti es of th e S1(ment.on.’d earli er ti re
motivated by thi s experiment .

~1$t)

— -

T~~~~~~! ~~~~~~~~

-.

-~~~~~~-~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~
-
~~~

---- - —  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—

p

H __ I

‘5

a 1.
I’

>
1 ii

~~~~1 [  E 1  I-

_ _  _ _ _  _ _ _  

-

~~~~

II

1MW

381

_ _ _ _ _ _ _ _

4
.
- ------—

—

— ~~

JAMMER
EXCITER

FREQUENCY

ACCESS 1

L-BAND FREQUENCY I
CONVERTER EXCITER ‘1 COMBINER

~
1
L

CONVERTER I
_ _ _ L _ _ _

TERRACOM FADE
I TERRACOM

RECEIVER CONTROL
[

RECEIVER

HADAMARD [INVERSE
TRANS HADAMARO

_____ ____

FORMER

SCAN 1
CONVERTER

_ _ _ _ _ _
_ _ _ _ _ _ _ _

H

TERRAIN I~~
_
~._ j CONRAC

BOARD J L DISPLAY

Figum 2.1.21-S. CSEL configurat ion to pirform HPV jamming .xp.rimsets.

however, that the PDT is capable of operating in a stand-alone fashion as well. An overall
block diagram of the PDT is shown in Figure 2.8.3-1.

2.8.3.1 FFH/PN Modem

The FFH/PN Modem , as an element of the PDT, performs two general tasks: (1) the

down-conversion of wideband IF signals to produce both in-phase (I) and quadrature-phase
(Q) baseband signals; (2) the generation of wideband IF signals which are either FSK or
QSK modulation (or both). In both cases the nominal IF carrier frequency used is either 70
or 700 MHz. Thus the modem may, in principle , be interfaced directly to either a VHF or
UHF transceiver terminal. Likewise, the modem can operate in a wraparound fashion as
well.

382

-
- -‘

; z ~.~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~ -
~ ~~

-
-

p

0z

—
I I
I

II ~ liiI ~I ~~~~~‘-

I ~~%
U. U.

I ~

L_ — — — — — —- .

-t su
w~~J C.)

<I’ iii—

0

a

4

+

_ _ _ -_— —

a

-

~~~



~
“ ‘ ‘ ‘  ‘“~~~~~~~~~~~ ‘~~~~~~~ .“ ~~~“ - ~~~~~~~~~~~ ‘--~~~ .——— ---—--------—- r - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

si
~

Physically, the modem comprises two RF drawers which contain identical components
in the form of frequency synthesizers, mixers, and QSK modulators. Specifically, five func-
tional modules are identified in each drawer: receiver, receiver frequency synthesizer , re-
ceiver auxiliary generato r , transmit frequency synthesizer , and transmit auxiliary generator.
(The QSK modulator is located in the last named module.) Of these modules , it is only to be
noted here that the frequency synthesizers are perhaps the most important , since it is their
function to act as rapidly va rying oscillators needed both to down-convert and to generate
frequency-hopped signals.

The RF drawers are each contr olled independently by the PSP . Thus , with respect to
either drawer , the PSP generates transmit and receiv e contro l words which determine the
following model parameters:

1. Nominal receiver IF (70 or 700 MHz );
2. Nominal transmitter IF (70 or 700 MH z);
3. Receiv er bandwid th (narrowband or wideband );
4. Transmitter key (on or off) ;
5. Receiver synthesized fre quency;
6. Transmitter synthesized frequency.

In the last two items , there are available 224 different frequencies with which to process and
generate frequency-hopped and FSK signals. The synthesizers are capable of rapid shifting
from one frequency to another (at least every five ms). In addition to the items just
mentioned , the PSP can also pass a data stream to the QSK modulator.

The I and Q baseband signals produced by the modem are routed to the PSP throu gh a
commercial 12-bit Al D converter operating at variable samp ling rates up to 50 kHz. Before
being digitized , however , the signals , normally spanning a DC to 600 kHz video bandwidth ,
may be analog filtered if desired . Two low-pass filters , with cutoff frequencies of 1200 and
3500 Hz are currently provided. Alternatively, a user may patch in his own filter to process ,
for example , FDM signals.

A final component of the FFH/PN Modem is a noise test set which allows the user to
creat e a controlled signal-to-noise ratio on the 700 MHz input of either RF dra~~ r. Thus the
test set contains a noise source (nominal 110 MHz bandwidth ) and a combiner to s~m the
outpu t of the noise source and a 700 MHz signal. The corrupted signal is then sent to the
chosen IF receive port. _

384 ‘

4
_ _ _ _  -- — -



—~ 
_—.--- —--_- —_ --_ ----- _—n,--- 

~~~~~~~~~~~~~~~ ~~— ---- -- - --- - -—- ._- - -p 
~
-_- ~~~~~~~~~~ —- — —,----—------_-- _--_- -_ —

2.8.3.2 Programmable Signa l Processor

The PSP is representative of current digi tal compute rs of the same sort in its ability to
perform in real time a variety of high speed digi tal signal processing functions: detection ,
filtering. coding/decoding, etc. Thus, with respect to the FFH/PN Modem , the PSP is
capable of handling simultaneously the following functions: (1) detection of the digita l
data carr ied on the I and Q baseband signals; (2) generation of output digital dat-a to drive
the transmit frequency synthesizer (FSK modulation) and /or the quad raphase modulator
(QSK or PSK modulation); and (3) gener ation of frequency synthesizer control words to
enable the reception and transmission of frequency-hopped signals.

To accommoda te the thro ughput rate implied by these activities , the PSP has high speed
memory (500 ns cycle time) and a high speed arithmetic unit (8 ms for a 256-point complex
FFT). The machine uses 16-bit data words and 32-bit program words: currentl y 2,048 words
of both data memory and program memory are available. A block diagram of the PSP is
shown in Figure 2.8.3.2-1.

The PDP 11/20 (discussed above in conjunction with the S16) acts as a host computer
for the PSP. Thus , progra m development for the PSP can be carried out on the more
convenient minicomputer and the results entered directly into the PSP. In addition , data can
be passed between the two machines during real-time experimentation.

Complementing the digital I/O interfaces with the FFH/PN Modem and the PDP 11/20
are two serial interfaces for peripherals and three D/A outputs for analog displa y devices.
Finally, a modem control panel is provided for monitoring and controlling the entire PDT
operation through the PSP.

2.8.3.3 Application of the PDT

Use of the PDT to simulate the LES 8/9 satellites is strai ghtforward. With resp ect to
external hardware , one need only substitute frequenc y converters for the antennas shown in
Figures 2.8.2.5.2 through 2.8.2.5-5 , in order to convert between the RF frequency used
(K-hand or UHF) and 700 MHz. The PDT configuration appropriate to the application is
shown in Figure 2.8.3.3-1 , in which the operatio n to be perform ed by PSP software is

displayed as well. These operations , of course , are those mentioned at the beginning of the
pr eceding Section 2.8.3.2.

In addition to the LES 8/9 software , three other progr ams have been written to run on

the PDT. With these pro gr ams. the system can operate as:

385

I-
~~ .m~~

-r - — -~~


~~~~~~~~~~ 
- --

I.-

0
_ _ _  — — 0

-. —
U I Ui

_ _  ~~I T—I — 
~ Z E

~~~~ 
—‘—

-I
-

-. 4-. ,- .5

—l~~~~~~~~~ — —.~~~~~~~~

Iii
_ !~~1

L!i_ 4—
386

— —~-- ~~~~~~~— -~-


~~~
-

~~~~~~~
- --

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

H ii
ET1RI1 I~~fli~~l
L!
~U! 14Th!J

I ’  

-

_
I _ i—

~~~ I rjii -I
i riiiiiTi I i~~g i IL_ .1__J 11,1 LT_•_ 1J I II ~~ I I~ J a~~~~ ~~~~~~~~~~~~~~ , fl

ru L~f l r~~~~1 ~ 1 1 ~ I—— jI ~~~Ia

- o - °

387

--, -----
~~

-
~ p— -- --—--,--— --—~~-

1. A 75 bps, full-duplex , 8’ary FSK, slow frequency-hopping modem employing a rate
1’3 convolutional encoder and a Viterbi decoder;

2. A 75 bps, full duplex . 8’ery FSK, fast frequency-hopping modem employing a rate
1/3 convolutional encoder and a decision feedback , coset leader decoder:

3. A 2.400 bps, fti ll duplex ~epstzum vocoder .

2.8.4 Additional Communication Equipment

In addition to the general-purpose elements of the Communication System Evaluation
Laboratory described in the preceding two sections. are several hardware systems .
mentioned only in passing, which to a degree are special-purpose equipment but nevertheless
serve to solidify the capabilities of the laboratory. Most of this equipment was originally
assembled for the satellite communication experiments and includes the following
significan t items:

1. Ka-Band Airborne Communications Terminal;
2. SIIF Airborne Communications Terminal ; and
3. Rooftop Antenna Facility .

Additional equipment currently being assembled for the RPV experiments includes the
following:

1. TERRACOM L-Band Communications Terminals:
2. Motion-Compensated Video Scan Converter; and
3. CONRAC Display .

2.8.4.1 Satellite Communication Equipment

The satellite communication equipment just listed is intended for use in conjunction
with two satellite systems, DSCS II and LES 8/9. The former system operates at X-band
(up link . 8.040 8,280 MHz ; downlink , 7,315/7 ,555 MH z); the latter operates at Ks-band
(uplink , 38136 GHz; downlink , 36/38 GHz) as well as UHF (225-400 MHz) .

Except for the frequency bands which they use, the airborn e communication terminal s
are structured similarly . Thus each terminal is comprised of the standard three maj or

elements: up link transmitter . downlink receiver, and antenna system. Both systems use the
same 3-ft disk antenna (part of the rooftop facility), the scan of which is controlled 1w the
(track ing) receiver for spatial acquisition , and both prov ide automatic doppler compensation
of transmitted and received signals.

-
-

388

- _ _ _ _

—.-,-—----—-“ p—.- ~~~~~~~~~~~~~~~~~~~~ —~~~— .--- -- —- - — - -- - -

~~~~~~‘-

The Ku-band terminal transmitter  aet -cpts IF’ inputs at 700 and 952.4 Ml Iz. It
upconvt ’rts either to the receive frequencies of DSCS II.  ‘t’he receiver produces IF outputs at
870. 700, and 70 M h z  for LES 8 9  and at 700 MHz for 1)S(’S 11.

The SUF terminal transmitter accepts 1F inputs at 70 or 700 MHz and upconverts them
to DSCS Ii receive frequencies. The receiver performs the opposite function.

The major component of the rooftop antenna facil i t y is a 10-ft parabolic reflector .
desigrn’d to operate at K-band, with a cassegrain feed system utilizing an 11-in, hyperboli c
subrefl ector. The antenna is mounted on a Scientific Atlanta pedestal allowing variable
speed scanning through 360’ of azi mu th and 90° of elevation The entire unit is enclosed

$ within a high transmittance , inflatable radome. Significant performance ’ parameters of the
system are shown in Table 2.8.4.1-1.

The antenna pointin g system functions in one of four modes: designation , acq uisition .
active tracking, and passive tracking. The first mode, designation, refers to manual antenna
pointing. It is followed by the acquisition mode in which the antenna is scanned
automatically over a specified circular sector until the received signal exceeds a preset
threshold , at which point the search is terminated . The scanning pattern consists of 13
concentric circles covering 2.5 to 25 plan ar degrees.

In the active tracking mode. a comcal scan is used in which the main antenna beam is
mutated at 65 Hz by rotating the subreflector. By setting the squint angle to yield a
crossover loss of approximately 0.5 (lB . the system can achieve a tracking accuracy of 0.02
degrees.

TABLE 2,L4.I-t. PERFORMANCE PARAMETERS OF 10-FT K-RAN D ANTENNA

Diameter lOft
Dauien Gaia 5~~de
Sld.lobss -17 dB b*low peek
Polarization Both right- and left-hand circular
VSW R Lsssthsn l.S
RF Isolation 20 dO batween transmit and receive channels
Wriguids insertion loss Lees than 2 dO
Slow rats ±10 dives/s
Deem width 0.2 6ev,,
Frequency band TransmIt: 34-40 GHz

ReceIve: 34-40 GHz

389

— 

- — 

--—C-- . - 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .


In both the’ acquisition and act ive tr ack ing modes control over the antenna is exercised
by th e Ka-hand communicat ions terminal described above. in the? passive t racking mode.
however , the antenna is controlled by a PDP 1 1 4 5 minicomputer: thus , u si n g sate llit e

ref r act i on and ephe’moris data , the computer derives appropr iate ’ az imuth elevat ion data and
poi nts the antenna accord ingly.

2.8.4.2 Video Transmission and Display Equipment

Section 2.8.2.5 discussed the application of the SiC to the transmiss ion of imagery from
an RPV. ln order to perform experiments in this area, CSEL is being eqtiipped with selected
video processing and display capabilities , in addition to the TEll RACOM terminals,
described earlier , which enable transmission and reception at L-band , the facility is to

contain equipment required to study bandwidth reduction techniques (frame rate
reduction) and bandwidth compression techniques (two-dimensional image t ransformation) .

In the envisioned configuration, the terrain board camera (see Figure 2 .8.2 .5-6) is
capable of reducing both the numbe r of full video frames transmitted per second and the
scanning rate used for each. As a result , a bandwidth reduction is achievab le. At the display
console, the reduced f rame rate is adjusted by a PDP 11/05-based-moiion-compensa ted scan
converter. This device affect s interpolation between successive received frames to smooth
out the video display.

Between the two operations just described , each video frame is Hadamard-transformed
and the resulting coefficients truncated to produce a bandwidth compression of perhaps
10:1. After transmitting this signal over the simulated channel , an inverse trtnsform is
applied to obtain the input to the scan converter. Both the direc t and inverse Hadam ard
transforms are to be performed by special-purpose digital hardware now being constructed.

The equipment just described , when in tegrated with the SIC, will give CSEL a rather
unique capability in studying the ability of bandwidth seduction and compression tech-
ni ques to enhance the antij a m performance of video links.

SECTION 2.8 BIBLIOGRAPHY

Anon., “Communication Systems Evaluation Laboratory ,” AFAL internal document, no
date.

Anon., “Communication Systems Evaluatio n Laboratory ,” Computer Sciences Corp.. no
date.

390

~ IL~~~ - .~ ... ~~~ . ~~~~~~~~~~~~~~~~~~ - - -


~~~~
_ _ _

~~~
;;

~~~~~~~~~~~ _ 
- 

_~~~~
_ - ____  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

—

-

-

‘ p

Alwine , D. 0., et al., “K-Band Terminal Sim ulator ; Vol. I : Brief Description and Operating
Procedure, ’ AFAL-TR-74-8 1, Vol. 1. Computer Sciences Corp., April 1974.

Alwin e , D. 0., et al ., “K-Band Terminal Simulator; Vol. I I :  Hardware/Equipment Descrip-
tion ,” AFAL-TR-74-8 1, Vol. II Computer Sciences Corp., August 1974.

Aiwin e , 1) 0., et mm!., “K-Band Terminal Simulator: Vol. I I :  Software System User ’s Guide ,”
AFAL-TR-74-8 1, Vol. I I I , Computer Sciences Corp., May 1974.

Bradley. J. R., et a!., “K- Band Terminal Simulator; Vol. IV : System Software Manual ,”
AF ’AL.TR-74 .81 , Vol. IV , Computei- Sciences Corp. , August 1974.

• DeLe’llis , J ., et al ., “The’ Programmable Data Terminal (FF 1 1/PN Modem Modification), ’’
AFAL-TR-7 1-328 , GTE Sylvania , Inc ’ . February 1, 1975.

Gaugli ’r , S. P., “Data Link Simulation Programs ,” Contrac t No. F33615-75-6-1242 , Systems
Research Laboratories , Inc., October 1976.

I
~ •

r -

391

*U,$.Qovsrnmlre t Print ing O~t icss 1971 — 757-OSO/154


