AD=-A055 591 RESEARCH TRIANGLE INST RESEARCH TRIANGLE PARK N C F/6 1/3
AFAL SIMULATION FACILITY/CAPABILITY MANUAL. VOLUME I. EXECUTIVE=--=ETC(U)
JUN 77T R A HHISNANT- W H RUEDGERr R L EARP F33615-76-C-1308
UNCLASSIFIED AFAl =TR=77=11R=V0l =1

| 5
—. = '

i FOR FURTHER T T ;'JM

YOLUNETL. :

591@

ml SIMULATION Fltlll“/ﬂl’lﬂlll“ HMIIIM

0 ﬂiﬁ“ll“ ;JI'HI“ AND SYSTEMS AVIONICS DIVISION,
S
- i
o <ﬁ

RESEARCH TRIANGLE INSTITUTE
RESEARCH TRIANGLE PARK, N.C. 27709

o?@¢ 5

WJUN—777 ‘ éz'Z-‘/:/“’ / L /) @ 3 ./

C?l:}%)él" 76-C- Jdﬂ‘i’]

(32) AFAL |

DDC FILE COPY S

AD No.

TECH =77-118

FINAL 'e(EP.:I‘, FONFENIOD JULENT6 - gunﬂ
Teahrien [

: uaes

| Approved for public release; distribution unlimited. |
Richard A. /Whisnant, W, Howard/Ruedgej j

QZO Ronald L. /Earp Jame s /Hal.dt
= 2l -
, AIR FORCE di’ IONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

DA 10 1979
3¢~/ %@y‘ ‘78)

NOTICE

When Govermment drawinge, specifications, or other data are used for
any purpose other than in comnection with a definitely related Government
procurement operation, the United States Govermment thereby incurs no
responsibility nor any obligation whateoever; and the fact that the
govermment may have formulated, furnished, or in any way supplied the said
drawings, epecifications, or other data, is not to be regarded by implica-
tion or otherwise as in any manner licensing the holder or any other person
or corporation, or comveying any righte or permission to manufacture, use,
or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (I0) and is
releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

S J. GREE PHILLIPUL. STROTTNER, Maj, USAF

Project éngineer Chief, System Simulation Branch

FOR THE COMMANDER

ICHARD W. SMITH, Lt Col, USAF
Act'g Chief, System Avionics Division
Air Force Avionics Laboratory

Copies of this report should not be returned unless retwrn is required

by security considerations, comtractual obligations, or notice on a specific

document.

AIR FORCE/56780/16 May 1978 — 60

et e e

L e ¥ ARG L A Sl Dl SRR I S 5 A i s L

B - o G L s e i B A
& UNCLASSIFIED
{] SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
3 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
p ' i » T. REPORT NUMBER / 2. GOVT ACCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER
AFAL-TR-77-118, Volume I
i 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
9 Technical - Final Report
E | a::tafimulation Facility/Capability 20 June 1976 - 30 June 1977
} 6. PERFORMING ORG. REPORT NUMBER
. 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) ‘
: | Richard A. Whisnant, W. Howard Ruedger At
Z Ronald L. Earp, James Haidt : F33615-76-C-1308
F | - 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggRAAnosnLKEnE:&TT.N?;‘OBJEE&S'I’. TASK
Research Triangle Institute”
P. 0. Box 12194 2003-03-15 :
2 & 2 27709 003-03-1 4
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
y i July 1977
Air Force Avionics Laboratory 13. NuuBER{)F PAGES
AFAL/AAF, Wright-Patterson AFB, Ohio 45433 391
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CL ASS. (of thir report)
Unclassified
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

£~ Approved for public release; distribution unlimited.

H ‘7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

|
] 18. SUPPLEMENTARY NOTES —1

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

AN N ,‘

Simulation Digital Computers { |

Avionics Computer-Aided Design

Digital Simulation DECsystem-10 |

Avionic Simulation PDP-11 ;
2 BSTRACT (Continue on reverse side If necessary and identify by block number)

The Air Force Avionics Laboratory (AFAL) at Wright-Patterson AFB is the
focal point for development of new avionics technology for the Air Force. In
order to carry out this responsibility, a significant capability to simulate 1
physical avionics systems and components has been created by the AFAL :
divisions. Of prime concern is the effective use of these simulation facili- | 1
’ ties in the face of continually increasing performance requirements, ¥ et
DD , %", 1473 €oiTioN oF 1 NOV 65 1S OBSOLETE UNCLASSIFIED e .ou_,,—"

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

78 06 19 138

. —————— e s -

Vi

oot A ot e

{

SV

(Rt o

¥ A

o M o el Mg Sy

PR G A B S RS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

technological advances, and rising flight-test costs.(ff’r

————

i, S —
The usual approach to satisfy requirements for increased avionics performance

has been to place emphasis on the selection of the best subsystems available or

on the creation of new subsystems. However, allowing subsystem performance to

drive avionics system design results in inflated costs and problems in mainte-

nance and retrofit. Subsystems that are designed for maximum performance

become increasingly complex and are often incompatible unless interface require-

ments are considered early in the design effort. This effort requires not only

a conceptual plan, but a realistic evaluation of how the coupled subsystems

will interact under all critical flight conditions.

The trends toward consideration of avionics hardware from the systems' view-
point and toward the increasing use of modularized, digital hardware put in-
creasing demand on effective use of simulation facilities to ensure reliable,
cost-effective avionics systems.

This Facility/Capability Manual for the simulation facilities of AFAL has
been developed as a means for increasing the effectiveness of these important
technical resources.

The primary objective of this manual is to document the total simulation
capability in a manner which will serve several groups:

1. Those members of the AFAL directorate charged with planning or approval
of the simulation facilities.

2. Potential users with a need to understand the general capabilities and
limitations of the simulation facilities.

3. Actual users of the facilities with a need to plan simulations, document
input data, conduct or coordinate simulations, and interpret results.

4. Members of the AFAL staff who are involved in updating, enlarging, or
deleting simulation capabilities.

A secondary objective of this manual is to document the relationships
between the various facilities, which may enhance their interaction and, thus
improve the cost-effectiveness of the overall AFAL simulation capability.

The manual achieves these objectives by presenting introductory and summary
material in Section I and by presenting more detailed descriptive material in
subsequent sections. The contents of Section I address the Laboratory
capabilities from a planning/management viewpoint by relating the Laboratory
mission to present facility capability through the development of a conceptual
simulation class structure. The contents of subsequent sections of this manual
address specific facility/capability from a potential-user viewpoint. Both
hardware and software availability are documented. The technical level of
these sections is such that available capability can be determined and some
insight can be gained regarding user interface.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

3

: TABLE OF CONTENTS
Page
1 INTRODUCTION AND EXECUTIVE SUMMARY % 1
1.1 AIR FORCE AVIONICS LABORATORY: MISSION AND :
ORGANFPEATION | il e S b R dL L i o s e 2
1.1.1 Systems Avionics Division: Mission,... 3
1.1.2 Electronic Technology Division: Mission 4
. 1.1.3 Electronic Warfare Division: Mission 4
114 Reconnaissance and Weapon Delivery Division: Mission 5
3 1.2 SIMULATION CLASSSTRUCTURE 5
1.21 Level I, System Functional Simulations 8
1.2.2 Level 11, Discrete Event Simulations 9
1.23 Level 111, Scientific Simulations 10
1.2.4 Level IV, Interpretive Computer Simulations 11
1.2.5 Level V, Real-Time Dynamic Simulations 12
1.2.6 Level VI, Real-Time Sensor Signal Level Simulations 12
g | 137 Level VII, Special Purpose Hybrid 13
1.2.8 Digital Avionic Information System (DAIS) 14
13 ARALFPACIHEITIES o o o o i o e il o b s o i v 16
3 181 Systems Avionics Division (AVSAIL) 16
is 1.3.1.1 Hardware FEatures v v v v v v v v et et e e e e e ns 16
1.3.1.2 SOLEWHrO Featulos . o & o o v o o5 5 6% s 0 die b ele w e e e 21
13.1.3 Constituent Simulations 0. 23
1.3.1.3.1 Avionics evaluationprograms0 . e e e e .. 24
1.3.1.3.2 GASP IV simulationlanguage 25
1.3.1.3.3 Basic simulator (SIMNUC) v i it ittt e e 28
1.3.1.3.4 Distributed processor/memory system network simulation 29
1.8.1.36 Software design and verification system (SDVS) 32
1.3.1.3.6 Avionics simulation (AVSIM) 000 e e 34
1.3.1.3.7 Processor architecture (ISP) v vt 35
1.3.1.38 Communication system evaluation laboratory (CSEL) 36
1.3.2 Electronic Technology Division 37
1.3.3 Electronic Warfare Division 0000 37
1.3.4 Reconnaissance and Weapon Delivery Division 317
2 AVIONIC SYSTEM ANALYSIS AND INTEGRATION —————
LABORATORY (AVSAIL). ¢ . v it i it et e e e 38 s ;
Wite Suctisg ‘
2.1 AVBAILHOST FPACILITY . . ¢ « v v v ¢ 6 vv v va v e smwe o v 38 '
2.1.1 T e R L M e B s .
2.1.1.1 DECsystem-10 Core Facility MR e
2.1.1.1.1 L S A I 40 ™
o 211111 DEC-10 Central Processor and MainMemory 1 v,
3 — AVAIABILITY co0Ry
B A e SR
AVAWL, .! !;m-“\

2.1.1.1.2,6
21.1.1.26

2.1.2.2.2.2

TABLE OF CONTENTS (con.)

Bulk Storage .
User Interface

HardCopyDevices« vt v v vt vt v v v v 0 v oo o
DECsystem-10 processor features

Instruction Set
Processor Modes

............................

...........................

Processor Memory Management

Real-Time Clock
Fast Register Blo

...........................

oL e S S S o e e S R AT b

MUltiplexol Y/OIBUBR v« o o 0 oe Gl sl o me o al s i et 4 e e
Direct Memory Accessof Simulators
PDP-11 Satellite Computers+ o...

The DAIS simula

Ol o T e e e s et T e b e e

The RIS RMUIREOr & & o it o o o v e e s e e e
The cockpitsimulator’ v . v i i i e s
ThePicture Systenm) . o . v v v ot v vs v vie s o s mae s s a
b 30 e o 00117 e R P el i e At R S

DECsystem-10 Software
Feature and Operating System

Features . . .
Timesharing .

............................

............................

MUultiprOgraliming . & « o v v ov v o s vow v ws s N e e

File Protection

............................

Operatingsystom . « « ¢« i o % s v s ey Ry s s e e v e
COamMENA DECOTOE « @ - ¢« & v s % o s s b N s e sl

Scheduler . . .
Swapper . ..
UUO Handler .
Input/Output .
File Handler .

............................

............................

Real-time operating system features
Remote communications 00000000

Batch computing
Program Support

BOMWETE ' ¢ ic 0 6o b v vt b b € s e s

Higher order languagecompilers

JOVIAL . ..

DBMS
Utility software
MACKO ANTADIE ¢ vd v oim €00 06 i oo v et w0 6w ks e %k
Linking Loader

............................

............................

ey " o
A - 1 o ki -y % v e Wt v i 2 Y : " P ”
-~ A S LSS A T R i AL ST LT A . e - v o ol s
-~ gl ot i 5 Lo it 2
3

3
i
Y ! .
1 [
| i
3 | !
) |8
- TABLE OF CONTENTS (con.) |
Page
212223 . ProgramDebugfing . « . . i i« i «x oama wleiml e A wle w sl 81
2.1.2.2.24 Fils Manipulation . . . o o v s o & v ol e s G il G A - i 82
FE2Z2R FHaBARING o . i v vmon s e 46 et s el Bl 82 |
‘ 212226 Manuscript Editingot e 82
. |
2.1.3 Special Purpose Peripherals 83 '
2.1.3.1 ThePlcture System.« . . . o o 2o s oy Sl o Wl 83
b 2.1.3.1.1 Overview of interactive computergraphics 88
2.1.3.1.2 PICUIYE DICSERLALION. "~ v 0 s (e o v At e R S R -« T 88
2.1.3.1.2.1 Graphical Qutput Media 88
b 2:3:33.2.2 . . RefreshiRate . .0, v o i ne i oo ool ol moporainl ety R0, 88
b 2.1.3.1.2.3 e GeNeration - 0 o i T e ok et e i e e e, b 88
: REELAA . UTRRRERE. (5L e i e NN A Gig il Tk . O, 89
ié 223125 Picture Buffering« v i o v oo a0 SRe SO L - W 89
2.1.3.1.3 Picturedefinition: . - « « « ¢« v ¢ v ¢ s e v at G BN o e 920
2.1.3.14 Picture preparation’ o o o RIS ate L el s e s 91
2.1.3.1.4.1 Simple Linear Transformations 91
| 2.1.3.1.4.2 Compound Linear Transformations 91
! 18143 - Parapective: - 0 55 o oln v i bttt SRR R N RO o 92
! 2718144 WINAoWING .« i v i oaov 3w et st et eied bl e i e e s 92
{ 2.1.8.1.4.5 Conversionto ScreenCoordinates v v o v o o o o s 95
{ ¢ 213146 TextDisplay v Tit Tt VbR R N R 97
2.1.3.1.5 Picture interaction PR EE Tk ST b el Sh S A (i | e R Y 97
2.1.3.1.6 Overview of the Picture System hardware 98
2.1.3.1.6.1 The Plctura Controller’ . . ¢« « v o & o sl 300 W00 e o e 6 o s 98
] 2.1.3.1.6.2 Matrix ArithmeticProcessor ¢ it v e v 101
] 218163 TeminalControl . . . o . « o ¢ oo 656 swe v theln b o 102
v 217.3364 . THe RefreshBufer . . « « s v o v« o 5 o owisinrs 0665 & ale 104
2.1.3.1.6.5 CharacterGenerator ¢ ¢ ¢ ¢ ¢ ot o o v 0 o o o a0 o 0 1056
2.1.3.1.6.6 ThePictureGenerator ¢ ¢ ¢t i o e v v v o e o oo 105
23.81.67 ThePictureDISPIAY . « « « « s v o v o o v v o5 5 & & S 6 wlsi o s 106
2133168 DatgInput . o\« o v ae de s uee et TR IR e s e e 107
22.81.69 TheTwblotandPen . ¢ v « ¢« ¢ o o v ntd s av v oot onse us 107
2381610 ControlDMME . . o o w.v i v 5 oo & 0 55 e 8 NG ANYS @ a0 s 108
2.1.3.1.6.11 Function Switchesand Lights 108
2.1.3.1.6.12 AlphanumericKeyboard00 108
2.1.3.1.7 The Picture System Graphics Software Package. 108
2.1.38.1.7.1 User Subroutine PSINIT ¢t ¢ ¢ v vttt o v v o v a0 o 109
2.1.8.1.7.2 User Subroutine VWPORT ¢ ¢t ittt v o v v oo 109
| 21.31.7.8 User Subroutine WINDOW L PR 57 109
233174 UrSubroutineROT . « ¢ ¢ « vt v v o v e ed el G0 o v n 110
21.81.75 UserSubroutineTRAN ¢ ¢t i v 0 vt v vt e e e aeon 110
2.1.3.1.7.6 UserSubroutineSCALE ¢ttt v vt vt oo n e 110
2.1.8.1.77 UserSubroutinePUSHttt vttt 110
: 213178 UserSubroutinePOP « ¢ ¢ ¢ ¢ vt e vt v vt o000 o s 110
4 2.1.3.1.79 UserSubroutineDRAWZD ¢ s v vt vttt oo 110
' 2.1.3.1.7.10 User SubroutineDRAWSDt it vttt v v v v o 110

—

2.1.8.1.7.11
2.13.1.7.12
2.1.3.1.718
2.1.3.1.7.14
2.1.3.1.7.156
2.1.3.1.7.16
21.3.1.7.17
2.1.3.1.7.18
21.3.1.7.19
2.1.3.1.7.20
2.1.3.1.7.21
2.1.3.1.7.22
2.1.3.1.7.28
2.1.3.1.7.24
2.1.3.1.7.25
2.1.3.1.7.26
2.1.3.1.7.27
2.1.3.1.7.28
2.1.3.1.7.29
2.1.3.1.7.30
2.1.3.1.7.31
21.31.7.32
2.1.3.1.7.33
2.1.3.1.8
2.1.3.2
2.13.2.1
213211
2.1.3.2.1.2
21.3.213
213214
2.1.3.2.1.5
2.1.3.2.1.6
2.1.3.2.1.7
21.3.2.2
2.13.221
2.1.3.2.2.2
2.1.3.2.23
2.1.3.2.2.4
2.1.3.2.2.5
2.1.3.2.2.6
2.1.3.2.2.7
2.1.3.2.2.8
213.2.29
2.1.3.2.2.10
2.1.3.23
2133
2.1.3.3.1

TABLE OF CONTENTS (con.)

User SubroutineCHAR A
Usar Subrotiting TEXT . .« & v o « o 6 v 65 6 6 56 g s sl 5 5's s
User Subroutine INST i i i i it e e
User Subroutine MASTER
Usie SUbIoRtine DASH: . . & ¢ 2 & ¢ 56 x 55 v 56 K e s
User SUbroutin@ BEINK. . . ¢ o v« 56 6 vnion o a'e o s s & 4 s
Usor SUBTOUNNE SCOPE - . . ¢ v 4 ¢ v s s o hiwsnia as 6 s s s & s
User Subroutine TABLET
User Subroutine ISPDWN
Usar Subretine CURSOR . . . « ¢ « & €8 vivin @ ois % o4 & & 5 o
User Subroutine HITWIN i i i i it e e ..
User Subroutine HITEST v v vt v i v
User Subroutine NUFRAM
User Subroutine SETBUF
User Subroutine PSWAIT i i v vt v i v
System Subroutine BLDCON
System Subroutine P$AVEo 0oL
System Subroutine RTORE
System SubroutineP$DMA L L.
System Subroutine IBMATX
System Subroutine ERROR
Function Subroutine P$DIV oL
Function Subroutine PMUL
PIRRIIN BPREm GO 104 i N et el ik e e s e
VideoControlCenter . . « « « ¢ ¢ v o ¢ s vt 4 e'v oma « &« & « s

Video console
AC Power . .

............................

.............................

ROUGKHBE SWREBOY .« « « o« v ¢« 0 s v s 5 Bl b vinie o e v s
SYCEE T SRRl « o v« v o0 oon e O TR e s

Monitors . .
Cameras . .

.............................

.............................

VENG TEE SR o & o o o« iwic s aiane e v on i b a RAS K + e
Special Effects Generators 000000
FIYmgSpOt SCRIDAE . « . ¢ v« doc v i e A R b s
Raster Generator/Processor v v v v v vt
DR CORMOIE « . « « ¢ x o & ol 2 @il & W e e ws X s
Cathode Ray Tube (CRT) System

Video Detector

............................

PO COBMOIER. .« « & < ¢ &+ o e ale e i B v s e 3
VIOOG TRORME .. o v oy cin o5 WUEERAN SVt s d v v
FERCEE IR = s o 2w s e NI AR sk o e
IO OIS & - « : - 5k s s A AT R e 8wt
SAnneE VRIS Contrel . « . « « v v s ek as e e v s e s
SRR CORRIOL .« 5 5 x s oo W e ABELTE et i T b R

Summary . .
Cockpit . . .
Introduction

110
111
111
111
111
111
111
111
112
112
112
112
1138
113
118
113
113
113
113
113
113
114
114
114
115
115
115
119
122
123
125
127
128
129
129
130
130
131
132
132
136
136
136
137
138
138
138

: TABLE OF CONTENTS (con.)

e

T

Page

2.1.3.3.2 SIMUINOE TROTIRION & . o e i o o TR R s e S 138

} 2.1.3.3.2.1 DECSEtemT0L . oo alnl N AL T AR T S R s v Bl 140
2.1.8.3.2.2 PDP-11/45 Computer Interface 141

; 2.1.3.3.2.3 Out-The-WindowDisplay 141
2.1.3.3.2.4 Ramtek Display Generateyso 0. 141

2.1.3.3.2.5 Cockpit Functional Hardware 141

2.1.3.3.3 An example test configuration, ... 144

i 2.1.3.3.4 Futuredevelopmentt 146
2 2.2 AVIONICS EVALUATION PROGRAMS 149
221 AEP Program Capability . . . « ¢ ¢ 4 ¢« 4 v w o v sis susm v 0wt 149

2213 Air-to-Ground Mission Analysis Programs 149

2.21.2 Weapon Delivery Error Analysis Program 150

2.2.1.3 Target Acquisition Analysis Program 152

2.2.1.4 Air-to-Air Mission Analysis Program 153

2.2.1.5 One-on-One Dogfight Analysis Program 154

2.2.2 Interactive Graphics Capability 154

2.2.3 PROEEaniSeTID o e e e e e e e et e e 164

5 2.2.31 Bhight/Profile b ione i il Sy Rk i it i i s emsis e 57w 164
1 22.82 Functions, Subfunctions, Modes, and States 164
2.23.2.1 Air-to-Ground functions and subfunctions 165

2.2.3.2.1.1 Scheduled Maintenance ittt e e e 165

2.2.3.2.1.2 ONIBRACE =, =i v e fobeaaie ot Rl s L e b s 166

2.2.3.2.1.3 BUOE L e tne e vt e b e I e e e ety Pl uPa v 166

2.23.2.1.4 P o R S e S TR S S R RN 167

00 0 S BN T S T P e o R | gt p e I RS 167

2.2.3.2.1.6 FPOMURRION - o 55 v < d o s sHe s vrelainntoi orabe womm hisds & & « 168

2.2.3.2.1.7 INGUIZREION: . o o vt 5 ol mtidiihve o yaitis sathuines (¥ FONer o B Ao, o s 168

2329218 Navigation Update . o o v v o« v 6w abim sle oivis el asisn & s o 168

228819 . Commontcations o « . « o .« v ovd oid iy N GO SR s e 168
XTI SvivabIltY o oo oo s S s e e e AR a6 168

2282111 Taget AcQUIBIHOR . . « o ¢ .5 6 + v v a s s R s & e 169

2.2:3.2.3.12 WeaporwDEHVEEY o o v o 56 v w0 mn 5 E wos s 6w s A e e e s 169
STI2VET Fargul « . o 0 vt ws n it e s DR e M T e 169

2.2.3.2.2 Air-to-air functionsand subfunctions 169

2.2.3.2.2.1 Navigatfon Function .« . . &« a6 o nie oo o widhs wcammis von o 169

2.2.3.2.2.2 Interflight Communications Subfunction 170

2.2.3.2.2.3 External Communications Subfunction 170

4 2.2.3.2.2.4 Fuel Utilization Subfunction 171
2.2.3.2.2.5 RefuelingSubfunction0 171

2.2.3.2.2.6 Visual Detection Subfunction 171

2.2.3.2.2.7 Radar Detection Subfunction 172

2.2.3.2.2.8 IR Detection Subfunctiono 173

2.2.3.2.2.9 Target Identification Function, 173

{ 2282210 EngsgementFunetion i v ovcven oo oo 174

2.23.2.2.11
2.2.3.2.212
2.2.3.2.2.13
2,2.3.2.2.14
22.3.2.3
2,233
22331
2,23.3.1.1
2.23.3.1.2
2.2.3.8.2
2.2.3.3.2.1
2.2.83.2.2
2.23.3.23
2.23.3.24
2.2.3.3.2.5
2.2.3.3.2.6

2.3
2.3.1
23.1.1
2.3.1.2

2.3.2

2.8.2.1
2.3.2.2
2.3.2.3

233
2.3.3.1
2.3.3.2
2.3.3.3
2.3.3.4
2.3.3.4.1
2.3.34.2

2.3.4
2341
2.3.4.2
2.3.4.21
2.3.4.2.2
2.3.4.2.21
2.3.4.2.2.2
2.3.4.2.23
2.34.23
2.3.4.2.3.1
2.3.4.2.3.2
2.34.233

TABLE OF CONTENTS (con.)

Formation Subfunction .

Weaving Escort Maneuver Subfunction

Weapon Detection Function

Mandatory Operations Function

Modes and states
Aircraft Equipment

......................

Special air-to-ground sections L0

Airframe Section
Propulsion Section
Special air-to-air sections .
Airframe Section
Propulsion Section
Radar Section

......................

......................

......................

......................

Radar Main Beam Clutter Filter Section

IR Detector Section . . .
IR Optics Section

GASP IV ¢ o v o

......................

......................

......................

Models, Systems, and Simulations 00000

Foatares .. s < a5 s

Discrete, Continuous, and Combined Simulation

GASP IV Philosophy . . .

Data Storage and Timing Requirements
Method of Simulation Programming
GASP IV Functional Capabilities

GASP IV Definitionsand Procedures
An Overview of Subroutine GASP

Model Status Definition and
State Variable Definition .
Time Advance Procedures
Discrete simulation
Continuous simulation . .

GASP IV Subprograms . .

CODEEGL o e, & s PO

......................
......................

......................

GASP IV Storage Requirements and Limitations
Functional Breakdown of GASPIV
Time advance and status update (subroutine GASP)

Initialization
Subroutine DATIN
Subroutine CLEAR
Subroutine SET
Data storage and retrieval .
Subroutine FILEM (IFILE)
Subroutine RMOVE | . .
Subroutine CANCL (NTRY)

......................

......................

.....................

Page

174
174
175
175
176
176
177
177
178
178
178
178
179
179
179
179

180
180
180
181

182
184
184
185

187
189
192
192
194
194
194

195
195
196
196
196
198
198
198
199
199
199
199

T ARG,

| N TABLE OF CONTENTS (con.)
Page
2.3.4.2.3.4 Subrantine COPY (NTRY) o« i » wiivblonaalie o saies o s 200 |
23424 Location of state conditionsand entities 200
2.34.24.1 Function EROBS . & . oL ainll cllitheicivnn kiatnl o nl sl s n s s e 200 |
2.3.4.24.2 Fonction: NEINEY . .« v il i Sn oot gt S @ U ehe s als 201 |
2.3.4.25 Data collection, computation, and reporting 201
2.34.251 SHBMOBHNECORUT v vy v e ek e ST s el 201
234389 SobroutheTIMST . © « 0 ale i il oy s v 201
2.3.4.2.5.3 SULIOUEDE TEMSA « . o i a v e e s e e A s e 202
2.3.4.2.54 SUbrSutNe HIRPO . oy o i v v s 4 A et b A i a by e 202
2 2.3.4.2.5.5 SUBOUERG QREENL. (i s ot o i 6 e AT e et e et 202
2.3.4.2.5.6 Subroutines PRNTQand PRNTS 203
23402657 SubautineSUMRY . : ¢ ¢« iv v tas wdv vy e e vin s 203
2.3.4.26 Program monitoring and errorreporting SR 203
2.3.4.2.6.1 Subroutine MONTR ¢ x ¢ v « v v o 650 s v s s s s 856 on o oo 203 :
23430603 - Subroutite BRROR . ¢ 0« v 60 e v aia el o e s s v s 204 :
; 2.3.4.2.7 Miscellaneous support ¢ . . ¢« v bttt e e e e 204 1
* 2.3.4.2.71 Functions SUMQand PRODQ 204
2.3.4.2.7.2 FOROUOI GERABL - o o s e e e WA e g A 205
2.3.4.2.7.3 SUDIMURNA GBLAY o c'v v v v Wi v e e ke A s W e e 205
2.3.4.2.8 DUDIY BUDIOURINEE. ¢ o v v s G s e e T e e A e e 205 j
2.3.4.29 Random deviate generatorso e e 205 :
4
‘ 2.3.5 User-Written SUbroutineso vttt ot 206
2.3.5.1 Subroutine Descriptions 0000000 c e 206
2.3.5.2 IpUS POl o o oo s R e v e e s e A 207
2.3.6 (11,7115 (5 Bl g el TR S | S s T R S S 208
4 2.3.6.1 Purpose of Computer Program 208
4 2.3.6.2 Simulstion FacilMEE . @ o o i c v e e v b e s e 208
: 2.3.6.3 Program Organization and Simulation Run Control 208
2.3.6.4 Component Functional Description 212 i
; 2.3.6.4.1 Control of the simulation process 212 ’
2.3.64.1.1 Functional Description 0000 213
506413 BOUSUBICUMNGE < civiv § vV d e e g e N s 214
2.3.6.4.1.3 GOSIMX - Start the SimulationProcess 215
2.3.6.4.1.4 ENTRYX - Get the Entry Address to a Subprogram 216
2.3.6.41.5 SCHDEX -ScheduleanEvent 216
2.3.6.4.1.6 CALLEX - Get the Entry Address of the Calling Program 216 :
2.3.6.4.1.7 DEFCSX - Define an Event Coordination Structure 216 1
2.36.4.1.8 BLCKEX-BlockanEventNotice 216
2.3.6.41.9 RLSEX - Release an Event Notice 216
i 2.3.6.4.1.10 FINDEX - Get the Pointer to an Event Notice 216
2.3.6.4.1.11 CANCLX -Cancelan Event Notice v 00 217 3
2364112 TIMEXX-ReadtheClock ¢ ¢ttt vt vt v vt v 217 '
2.3.6.4.2 NOLY WY Vs F i e Ve v s e e v 217 {
2.3.6.4.2.1 Functional Description vttt i i 217 i
{ 2.3.6.4.2.2 DMMOSUBIOUHA® « « « « '« Vs s VT vasdv s svvmums v 218

2.3.6.4.2.3
2.3.6.4.2.4
2.3.6.4.2.5
2.3.6.4.2.6
2.3.6.4.2.7
2.3.6.4.2.8
2.3.6.4.2.9
2.3.6.4.3

2.3.6.4.3.1
2.3.6.4.3.2
2.3.6.4.3.3

2.3.6.4.3.4

2.3.6.4.4
2.3.6.4.4.1
2.3.6.4.4.2

2.3.6.4.4.3
2.3.6.4.4.4
2.3.6.4.4.5

2.3.6.4.4.6
2.3.6.4.4.7

2.3.6.4.4.8
2.3.6.4.4.9

2.3.6.4.4.10

2.3.6.4.4.11
2.3.6.4.4.12
2.3.6.4.4.13

2.3.6.4.5

2.3.6.4.5.1
2.3.6.4.5.2
2.3.6.4.6

2.3.6.4.6.1
2.3.6.4.6.2
2.3.6.4.6.3
2.3.6.4.6.4
2.3.6.4.6.5
2.3.6.4.6.6
2.3.6.4.6.7

TABLE OF CONTENTS (con.)

MINITX - Initialize Memory S
MEMALX - Allocate Memory
MEMFRX - Free (Deallocate) Memory
MEMZOX - Store ZeroesinMemory
MEMDPX - Dump Memory A TG IV N
MCOPY X -~ Copy MEIMOIY & . o v 4 o = o o alio 3wk oial 6 s = s
MSTATX - Write Memory Statistics
LIREDrocessing. © < : o5 5 o i we f oo e e e e
Functional DIesctipliOn o o« lv o i o a6 i e ot e IR R e e e b
ERE Sabroutings! . i o it d v e e e R R S R . et
Processing of Doubly Linked Lists by Means

Sl EPC Subroutines . . « « v« = o ans 5 i s e et s e i # e
Processing of Indexed Lists by Means

Of BPC SOBEOURINOE v 4 e s b it o e R R o
Generation of random numbers
Fanclional Desctipion. it « o 5 o o v (0 vl ie s i eitisal o0 s e
RANDOX - Random Number from a Uniform Distribution

OVortho Uit IRtAIvaY . o o« v o wiin v e torte T s el e & e
RMBINX - Random Number from a Negative

Binominal PIStEbUTION: « ¢ & 5 o 5 w0 o 0 5 e @ e s & e e e
RMCCPX - Random Numbers from a User-Defined

Continuous Cumulative Distribution
RMDCPX - Random Number from a User-Defined

Cumulative Distiibalion . « & « o 4 5 she cie a0 v el b s e @
RMDRWX - Random Number from a Bernoulli Trial
RMERLX - Random Number from an Erlang (Gamma)

DIsTDURION .~ i v v o vb w e e s e b e s e e e et e e e
RMEXPX - Random Number from Exponential Distribution
RMICPX - Random Integer from a User-Defined

Discrete Cumulative Distribution
RMIUFX - Uniformly Distributed Random Integer

from a Set of Consecutive Integers
RMNRLX - Random Number from a Normal Distribution
RMPSNX - Random Number from a Poisson Distribution
RMUFMX - Uniformly Distributed Random Number

from a SpecificInterval00 00000
Processing of sample statistics
Functional Description . . . ¢ v o v v v 0 o v s v 0 0 o 50 v s e
SEPE SUbrottines = o vw v v 6 v Ve mev s e SeN 6w mgs
Error diagnosisand reporting00
DEBUGX - Select DebugControl
DIAGNX - Write a Diagnostic Message
TRACEX -WriteaUserTrace ¢ . ¢ v v v v v v v v
DSDMPX - Write Contents of Indexed List
LTDMPX - Write Contents of Linked List
MEMDPX -DumpMemory ¢ v v v v v v v v v v v ou
MSTATX - Write Memory Statistics

218
218
218
218
218
218
219
219
219
219

220
221
222
222
223
223
224

224
224

224
224

R A PR R S5 S SRR oy

1
{]
|
b | TABLE OF CONTENTS (con.)

Page
2.3.6.4.6.8 PKTPRX - Write Contenis of Dynamic Memory Block 228
2.8.6.4.6.9 PKTWRX - Write Contents of Dynamic Memory Block 229
2.36.46.10 RPWRTX-WriteData ¢ 0 i ittt vt v 229

2.4 DISTRIBUTED PROCESSOR/MEMORY SYSTEM NETWORK
SIMULATION SYSTEM . % & . c & s a s o v s 5 5 s siia, st s o s . 229
24.1 1317 oo (3 (1 (o) 9 Tt A s e e e s R Lo o e 229
2.4.2 DP/M Hardware Architecture 230
24.3 Bus Control ProtoCols . . v o v s oheiieh eisl e 6 ha 8 e ae s e 231
2.4.3.1 Modified Round-Robin Message Broadcast 231
2.4.3.2 MIESTDEABESA & o oi v vie o it 5 5l 5 5 e toie e ds it okrst s % W 233
2.4.4 AVIONICESOLEWAYE o« i o o i u v @ e e e s s e e f et s 236
244.1 Applications Software Functions 235
2.4.4.2 BxecutivoSOTEWALS . « « < ¢ & v o v s s s v e e e e e e e 240
k. 24421 LEX funictional deBIgn . o civms sioianne @ asiia ol e saaes . wily s e 242
| 2.4.4.2.2 GEX functionaldesign 244
24.5 DP/M SNS Simulation Control 245
- 2.4.6 DP/M SNS Reporting Capability 247
2.4.6.1 Event Level Reports 247
2.4.6.2 Sample Period Reports v v vt v i u e 248
2.4.6.3 Post SimulationReports 00 e e e e 248
2.4.7 Simulation Control Namelist Specifications 2656
2.4.71 Report Control SpecificationData 266
2.4.7.2 Avionic Task DefinitionData 269
24.13 Bus Performance and Connectivity DefinitionData 261
24.74 Task to Processing Element Assignment 261
2.4.7.6 Subfunction Scheduling DefinitionData 262
2.5 SOFTWARE DESIGN AND VERIFICATION SYSTEM (SDVS) . . . 2638
2.6.1 BDVS OBIECUIVEE - v be v v 5 e oy ol i W o 8 sh (82 35 55808 5 & b 263
2.56.2 SIIVEICVEEVIEW. oo i hile s & & 6 cvmeyre st ot b & @asias 8 b man e & 263
2.6.2.1 SDVS Control Program (CP) . « v v ¢ ¢ v 4 o 0 v v 0 0 v 0 v o o o o 266
2.6.2.2 Software Management Program (SMP) 265
2.6.2.3 File Generator (SWG) ¢« . v i v b v vt e e e e e 266
2.5.2.4 Scenario Generator (SCG) ¢ v i v vt b e 266
2.6.2.56 Simulation Control (SCP) ¢ i v v v vt vt e 2617
2.6.2.6 POSt RO EAWIPREY « o ¢ w5 vonpa o 5 5 cor 06 a00 o 05 306 5 5 267
2.6.2.7 DAIS Simulators (ICS, SLS,DBS,EES) 267
2.5.2.7.1 Interpretive Computer Simulator (ICS) 268
1 < 2.6.2.7.2 Statement Level Simulation(SLS) 268

xi

2.6.2.7.8
2.6.2.7.4
2.6.2.8
2.5.2.9

2.6.8
2.5.3.1
2.6.3.1.1
2.5.3.1.1.1
2.6.3.1.1.2
2.6.3.1.2
2.56.8.1.3
2.6.3.1.4
2.6.3.1.6
2.5.3.1.6
2.6.8.1.7
2.5.8.2
2.56.3.2.1
2.56.3.2.1.1
2.6.3.2.1.2
2.6.3.2.1.3
2.6.3.2.2

2.6
2.6.1
2.6.1.1
2.6.1.2
2.6.1.3
2.6.14
2.6.1.5
2.6.1.6

2.6.2
2.6.2.1
2.6.2.2
2.6.2.3
2.6.2.4
2.6.2.6
2.6.2.6
2.6.2.7
2.6.2.8
2.6.2.9
2.6.2.10
2.6.2.11
2.6.2.12
2.6.2.18
2.6.2.14

i i i e L

i
R e e SRS o

TABLE OF CONTENTS (con.)

Data Bus Simulator (DBS)
Extermal Environment Simulation (EES)
Snapshot/Rollback
Hot Bench Computer Loaders (HBCL)

Uaag SDVR 00 L s G e v S
Modesof Operationo v o
File generationmode
1 D)) o R SR S T S R v P O
FHOTYDAE .« v ¢ iic i v v s sie nov s) e e
Set-up and run simulationmode
Post RunEditmode
Rollbackmode v v v v v vt v v vt v
Delate MOUE ¢ o & 5 o v 5 & % 6w w0 s e
Supervisormode 00
BogoRtmade R S e g s iy o
SDVS User Languages
Simulation Control Language (SCL)

Configure Section ~ « . < « v v v v vV e e Gy e s

BIGORISACHON o o v o e oo e ey e
Time-Zero Section ¢ v v v v v v vt 0w
Data Processing Language (DPL)

AVEIND. © e 0 e n e 6 S R e Sy By e .
Executive (Control) Module Software

.......

.......

.......

.......

.......

Multiple Entry Points and Adding New Applications Models

PRESCENARIO ¢t oo evevnoenas
MAIN 00 vl e v s e o e we e e R S,
SBCENARIO . . ¢ o« vy vov v o mos thie s € b
RXECE | 00 Wl i o DL b Ry ey Y b g
DIRECTOR/CALIPER

Simulation Model Set Description 0000

Airframe (AFM1) 0 v oo
Flight Control System Model (FCS)
Air Data Computer Model (ADC)
Accelerometers/Gyros Model (ACGY)
Simulated Pilot Model (SIMP)
Synthetic Mission Generator Model (SMGM)
Target Simulation (TGT)
Attack Radar (ARS) v v v
Radar Altimeter (RALT) ¢« v v v v v v
Random Noise and Error Generation (NERR)
Relative Geometry Model (REGE)
Weather (WEAL1) v v v v v oo
Atmosphere Simulation Model (ATM2)
Reference Model for Inertial Navigation System (RMIN)

xii

.......

.......

.......

.......

.......

P

R R

i et bt e -

iy R P 14 "
_—

G Ot SIS W s i AP DI ot i

T "
R

S " o, - I E— & TP
o il i Rl v B kit A ARSI iS50 ANy .o I SART S

S

-

2.6.2.15
2.6.2.16

2.7
2.71
2.7.1.1
2.7.1.2
2.7.1.8

2.7.2
2.7.2.1
2.7.2.2
2.7.2.3
2.7.24
2.7.2.6
2.7.2.56.1
2.7.2.6.2
2.7.2.56.8
2.7.2.5.4
2.7.2.5.6
2.7.2.6
2.7.2.6.1
2.7.2.6.2
2.7.2.6.3
2.7.2.6.4
2.7.2.6.6
2.7.2.6.6
2.7.2.6.7
2.7.2.6.8
2.7.2.6.9
2.7.2.6.10
2.7.2.7
2.7.2.8

2.7.3

2.7.8.
2.7.38.
2.7.8.
2.7.8.1.
2.7.8.1.
2.7.8.
2.7.8.
2.7.8.1.
2.7.3.2

2.7.8.2.1
2.7.3.2.2
2.7.3.3

it b i bt 00 s 0
SOV N

TABLE OF CONTENTS (con.)

Page
Inertial Reference Unit (IRU) 0o v v 3831
Flux Valve Model (FLUX) ¢ v i i i i it v v v 334
PROCESSOR ARCHITECTURE(ISP) 388
SpecificSimulations o0 0L e e e 339
The PDP-8 Simulation 0 v i it it v e e v e 341
The INTEL 8080 Simulation 341
The DAIS Processor Simulation 341
The CSL/ISPLANGUAEe . . . ¢ ¢ ¢ v v ¢ v v v o v o o v v a0 v v oo 3843
oAl CRBrBOtars . v @ v x v L w Wk 4 s s ks b s 343
100 (T 019 (e aabraleie eI S e S AT T i s S e 344
N R T L i T e AL RO N 18 6, A 344
Progra;mi StIUCHUFe . . v « v h s v d a W e v e s b ey v e s s 345
The Declaration Section v ittt 3456
StorageGlamants™ . . - U o h G e v v s W s s A A e s s s 346
Externaldeclarations0 00 c e 346
Overlay declarations 346
Proceduredeclarations 0L Lo 0o e e e e 3417
Macrodeclarations . . . « ¢ ¢ ¢ v ¢ v v ¢ 8 v v e s e w e e s e 347
TheAction Section . . . « 4 « ¢ v v o v s v ¢ ot e e an o veas 347
Assignmentstatements 0000 o 0o oo 348
(01577 1 (o) ¢ el i G S R e Bl S e e I N 348
Nested eXpressions . . . « . v ¢« v v v v vt v u et e e s 349
Conditional statements 0000 u o e 349
Relational expressions 0o o oo 349
The I atRlamant « « « ¢ o o 5 6§ s 5 8 8 % w5 %08 Nhv 4 o % 8 w8 349
The DECODE statement« ¢« v v v v vt v v v v o oo 350
Flowof controlstatements v vt v vt v v v 360
U150 e e il i S SR e el it S B o e Al AP 38560
METORIN (v v v s v Vo e s R S e R 360
TheControl Program « ¢ v o o . v s o v o 0 v ot o o o s 351
The Register TransferOperations 361
Processor Simulation o 0 o v oo e e 361
The Computer Simulation Language Compiler 361
ThesyntaX grapPh « « ¢ ¢ ¢ ¢ ¢ 6 v 6 v s 08 s 08 00 v o8 880 v 362
THREDRIBEE . ¢ o o v v v v v e Sy ALk S % A A 363
Theayntax analyser . . . ¢ . . ¢ ¢ o o o o o8 s v s o0 0 s oo s 363
Codegenetation . . v ¢ s v o v o v v vdm s u e vnm oEn s 363
Compileroutput« ¢ v vttt i it e e e e 364
ERTORQOtOCHON « « « « v+ v ¢ ¢ ¢ ¢ b Ve e N E CE s s s e s 364
Compiler modification 0o 366
CodeCeneration . . . ¢ . ¢ ¢t ¢ttt v ettt oo 0o v 366
Storageallocation 0o oo e e e 3567
Brecutablocode . « o ¢ s ¢ ¢ v ¢ 53 v 5 ¢ o8 €8 8 L0 v e ey 368
BIOIEHON . o ¢ o6 s v e e Y e LR R LR s N 368

xiii

e e il

2.7.3.3.1

2.7.3.8.2
2.7.3.3.3

2.8
2.8.1

2.8.2
2.8.2.1
2.8.2.1.1
2.8.2.1.2
2.8.2.1.3
2.8.21.4
2.8.2.2
2.8.2.2.1
2.8.2.2.2
2.8.2.2.3
2.8.2.3
2.8.2.4
2.8.2.5

2.3.3

2.8.3.1
2.8.3.2
2.8.3.3

2.8.4
2.84.1
2.8.4.2

TABLE OF CONTENTS (con.)

Page
Simulation control considerations el % 358
Processor description methodology 858
The general controlprogram 000w 360
COMMUNICATIONS SYSTEMS EVALUATION
LABORATORY . v o v o v v aie s wi s v i snl i tal S o bkl s s » 361
15,17 o0 1 (o1 (5] o G e e I L F e 361
Signal and Interference Generator 364
]340 G 05 00 U5 0 Tl e S B e O e Rt o O O o 366
17 (oL o oY ¢ R e S e T 366
ID-CONVERTATR L . o il o v e s sl i es s e s daiwe e s 368
A O U A O AT e e arreis, St ey dast oAt el s s s A s . & 368
PYPeR OFERCILOIR . o i/v s i o e o e e e ek e eiR e (e & e 369
RE CoOMDINGISI 5 a0 o 6 o0& o 6is o v msiss 5 8 ses el e i s 8 s 369
UHF, L-band and X-band combiners 369
K:hand COMDINGE ! . "« vlc &« s e siis e 0w s el T e ey e 372
Exciter/combiners interface 372
Bageband'SOULCES: « « v o o a w5 s e Saeiie e s 5 v e e e e e 374
PigitallController - ¢ o < i vl de v h 6 s e ke e e s 3175
Nlustrative Experimental Configurations 376
Programmable Data Terminal 380
ERH/PN MOAGIN. . e i ile o v v 5 oiis a1 o erion e g s s st 382
Programmable Signal Processor ¢ .00 e 00 385
Applicationof thePDT v v v v v 386
Additional Communication Equipment 388
Satellite Communication Equipment 388

Video Transmission and Display Equipment 390

™~

LIST OF FIGURES
Page
1.11 AFAL organiZation v & i v s i e cov vw © 0k ke e e s e e e e 3
1.2.8-1 Simplified block diagram of DAIS ITB facility 15
1.3-1 AFAL simulation facility organization AFAL/AVSAIL/AVSIM 17
1.3.1.11 DEC-10 system host simulation processor hardware 19
1.3.1.2-1 DECsystem-10, user’'sview e . 21
1.3.1.3-1 DP/M system architecture 29
1.3.1.3-2 SDVS functional organization 33
2.1-1 AVSBAIL architecture . . « & &« v o s v v« % o oe o0 o 0w ois 39
21111 Address computation scheme for KI-10 processor 47
2.1.1.31 DAIS simulator (GT-44A) i i i it i e 52
2.1.1.3-2 DAIS simulator (GT-44B) 53
2.1.1.3-3 DAIS simulator (GT-44C) v i v v i 54
2.1.1.34 102 (T G Rl el st SR Tl e R M S RO 56
2.1.1.3-5 ThacockDib SIMUIALOR o /. o0 0 & 4 6 o sie o a s o5 o ke & o, s 57
4 2.1.1.3-6 The Picture System simulator 58
! 2.1.1.8-7 The Video Center simulator 59
$ 2.1.2.11 DECsystem-10, user’'sview v i v e e e e 60
3 2.1.2.1-2 The resident operatingsystem 64
3 2.1.2.1-3 Remote communications L. 70
i ¥ 2.1.2.2-1 J78/1 compiler Structure 76
{ 5 2.1.3-1 Special purpose peripherals functional configuration 84
g 2.1.3.1-1 Ehe RICtHRaISUBIEIN: vonive it o e & oacv v Stest al v ol 5 WA 8 bt & e 85
£ | 2.1.3.1-2 The Picture display and tablet 86
1 2.1.3.1-3 An operator flying thesimulation 87
' 2.1.3.14 Three-dimensional perspective projections onto a
two-dimensionalplane 000l e e 92
2.1.3.1-5 Two-dimensional clipping 0o 93
2.1.3.1-6 Frustum of vision showing the eye position in relation
to an arbitrary coordinateaxis 000 94
2.1.3.1-7 Partial screenviewport0l e e e e e 96
2.1.3.1-8 Full screen viewport ¢ . ¢ vt v vt e 0 e e u b e e e 96
2.1.3.1-9 Functional configuration of Picture System 99
2.1.3.2-1 THe VIGEGCERET « v o < viv v b o s w5 wonian ts om0 8 @ bs v s 4 116
2.1.3.2-2 Video cotsolelayott . « o o o v i v sw s w0 w s s e 117]
2.1.3.2-3 Standard videosignal 0 o ool 118 f
2.1.3.24 POWDEROREIOL < cv c 5 v v % b v inn o n S R N Rt e W 119 ‘
2.1.3.2-5 o S T G TR R sty (o i AR R 120 |
2.1.3.2-6 ROUIIIESWIHOHOE . . < oo v v s o v o b b b ks Sl e 0 k% 5 0 121
2.1.3.2-7 SYNCTUCestuighals o o s o coan v ve v 5 6w oo s m® o6 vy 122 4
2.1.3.2-8 MOBROETYIME . © o o v v vv 5 s vasvvones susese s s 124 |
2.1.3.2-9 CAMOTABYREIN = o ¢« v+ o o v % oow iy o 6 vom % o 6 o 8 & o 8 & 4w 1256 |
21.3.210 Videotaperecordersystem 127 |
2.1.3.2-11 (2 L O 1) SR S I O S T G SR 131 1
2.1.3.2-12 SERVOBTIIOI o o v & vy st woren s i & Syt o ¥ e 5 & & 4 & 133 |
2.1.3.2-13 VIO PYOCHIIOL "« & & i & o 5w @0 v sow 0w A L N & B 134
2.1.3.3-1 The cockpitsimulator o0 v v i i i e v e 139

R R

2.1.3.3-2
2.1.3.3-3
2.1.3.3-4
2.2.1.1-1

2.2.1.21
2.2.2-1

2.2.2-2
2.3.2.3-1
2.3.31
2.3.3.111
2.3.6-1
2.4.2-1
2.4.2-2
2.4.3-1
24411
2.4.4.1-2
2.4.4.1-3
2.44.2-1
2.4.4.2-2
2.4.4.2-3
2.4.6-1
2.4.6.2-1
2.4.6.2-2
2.4.6.3-1
2.4.6.3-2
2.4.6.3-3
2.4.6.34
2.4.6.3-5
2.4.6.3-6
2.5.2-1
2.56.2.7-1
2.5.2.7-2
2.6.2.7-3
2.6.2.7-4
2.5.3.2-1
2.6.3.2-2
2.5.3.2-3
2.6-1
2.6.2-1
2.6.2.1-1
2.6.2.2-1
2.6.2.3-1
2.6.2.4-1
2.6.2.5-1
2.6.2.6-1

LIST OF FIGURES (con.)

System hardware block diagram,
Typical Vertical Situation Display (VSD) format
Typical Horizontal Situation Display (HSD) format
Sample output for the AEP air-to-ground mission

ANAIVAISIDIOUIRIT 0 ¢ e e o i sls 6 ke s sy e aae e
Sample weapon deliveryoutput o000 L
Application of interactive graphics to existing

bateh PROGYAIE; v o o e o e e e e e e e e e
Sample execution of the AEP interactive program
Basic modes of GASPIVcontrol
Layout of main program v 0o e e e
Descriptive flow chart of subroutineGASP
Interface and structure of the main program
DP/M System Architecture
Example DP/M application 000
1553 A multiplex data bus architecture
Example of directedgraph 0000
Directed graph task representation,
Loran subfunction directed graph 0000
Executive control hierarchy
LEX module and task interrelationship
GEX block diagrhm! . - & o el G e s s e s e e e
Simulation control structure oo
Sample period busreporto oo
Sample period processorreporto .
Bus decompositionreport o0
Busloadingbargraph « . < ¢ v ¢ ¢ . 0 0o vt v e et e e 0 e e
Bus utilization summary report L0000
Message transmission summary reporto
Processor utilizationbargraph 000000000
Processor utilization summary reporto
Hierarchy of SDVSsoftware
ICSinputsandoutputs oo
SLSinputsandoutputs ¢ . o0 vl e b e e e e e
EES data interfacediagram00 000
SDVS/keyboard model interaction
Sample SDVS flightprofile
Sample SDVS SCLprogram ¢ . v v v v v v v v v v v v v s
Sample SDVSDPL program 0 v v v v v v v v o v
AVSIM simulation structure o000
Majordatapaths . . ¢ ¢ « ¢« ¢ ¢« @ v v v v e n e v e s e s
AFM1 input/output block diagram 0.
FCS input/output block diagram
ADC input/output block diagramo
ACGY input/output block diagram
SIMP input/output block diagramo
SMGM input/output block diagram 000

2.6.2.7-1
2.6.2.8-1
2.6.2.9-1
2.6.2.10-1
2.6.2.11-1
2.6.2.12-1
2.6.2.13-1
2.6.2.14-1
2.6.2.15-1
2.6.2.16-1
2.7.11
2.7.3.31
2.8.111
2.8.1-2
2.8.1-3
2.8.2-1
2.8.2.11
2.8.2.21
2.8.2.2-2

2.8.2.2.3
2.8.2.2-4
2.8.2.5-1
2.8.2.5-2

2.8.2.5-3
2.8.2.5-4
2.8.2.5-5
2.8.2.5-6
2.8.3-1

2.8.3.2-1
2.8.3.3-1

LIST OF FIGURES (con.)

TGT input/output block diagram
ARS input/output blockdiagram
RALT input/output blockdiagram
NERR input/output block diagram
REGE input/output blockdiagram
WEAL1 input/output blockdiagram
ATM2 input/output blockdiagram
RMIN input/output block diagram
IRU input/output block diagram
FLUX input/output blockdiagram
Procedure for generating a processor simulation
Simulation control program executionflow
General communication system block diagram
Conceptual models of two types of communication channels
Transponder blockdiagram,
Overall block diagram in signal and interface generator
Block diagram of RF exciters
General block diagram of RFcombiners
Detail of combining operation in UHF, L-band,

and-X-hanid cCOMDINEIS: @ i e % & m s s, s ban sihmiel o & s e e s
Detail of combining operation in K-band combiner
Exciter/combiner interrelationship
Typical LES 8/9 operation
CSEL configuration for testing K-band air-to-ground

communication channel through LES8/9
CSEL configuration for testing K-band ground-to-air

communication channel through LES 8/9
User configuration for testing K-band/UHF

air-to-ground communication channel through LES8/9
CSEL configuration for testing UHF/K-band

ground-to-air communication channel through LES8/9
CSEL configuration to perform RPV jamming experiments
Programmable data terminal block diagram
Programmable signal processor functional block diagram
Programmable data terminal configuration

simulating LES 8/9

...........................

xvii

e ki

O e B R B e el el el
\)\)(lﬂuf—wkéb-‘vl-‘lél.\'ah-"-‘l"x'al\‘;l'\?*"wmv-‘v-‘-db-‘

o bo = 1O e (o 1D =

0

WO WO N NN NN -
DO b b b e bk b e PO b

OrOn B e e e e L0000 Lo RO R s e B e e b b B RO

1O 19 19 19 19

2.6.2.1-1
2.6.2.2-1
2.6.2.3-1
2.6.2.4-1
2.6.2.5-1
2.6.2.6-1
2.6.2.7-1
2.6.2.8-1
2.6.2.9-1
2.6.2.10-1
2.6.2.11-1
2.6.2.12-1
2.6.2.13-1
2.6.2.14-1
2.6.2.15-1
2.6.2.16-1
2.8.4.1-1

LIST OF TABLES

Page
SimulationLievels « « & o o h s ok S R R R L . e s 6
SHulRONGIREEER © v s Al s e e e s A v e e 7
BEG-TOT7 Performance o S 0 0 e e e 41
Disk Drive System Characteristics 42
Magnetic Tape Drive Characteristics 43
Processar Modes . i i w4 e n s e et e R 46
PDP-11 Processor Assignments, 50
PDP-11 Processor Comparison Table 51
130 {50 2 oY LA o1 a0l @oTa (<1 DR o B L e et B L e R B 63
Video Console Components v v v v v v .. 118
Console Power DIStrbUION = ¢ ¢ v o 0 h s i b s e e e e 120
DAC Control Bunetions ot . i L e s s L s s 137
A/G and A/A Functions and Subfunctions 165
Definitions of Commonly Used GASP IV Variables 193
Functional Breakdown of GASP 1V and User Subprograms 197
Random Deviate Generators . « .« o x5 « 5 v o5 5 v 8 5 ses h e aia 206
Description of User-Written Subroutines 207
Report Control SpecificationData 258
A vionic Task DefinitionData 260
Bus Performance and Connection Definition Data 261
Task to Processing Element Assignment Data 262
Subfunction Scheduling Definition Data 262
EES Periodiec Modals . « ¢ &« v i o v s i v s e e s s 273
EES Cockpit Control Demand Models 274
AFM1 Input/Output Nomenclature 301
FCS Input/Output Nomenclature 304
ADC Input/Output Nomenclature 307
ACGY Input/Output Nomenclature 310
SIMP Input/Output Nomenclature 312
SMGM Input/Output Nomenclature 315
TGT Input/Output Nomenclature 318
ARS Input/Output Nomenclature 321
RALT Input/Output Nomenclature 321
NERR Input/Output Nomenclature 324
REGE Input/Output Nomenclature 326
WEA1 Input/Output Nomenclature 329
ATM2 Input/Output Nomenclature 329
RMIN Input/Output Nomenclature 333
IRU Input/Output Nomenclature, 336
FLUX Input/Output Nomenclature 336
Performance Parameters of 10-Foot K-Band
P3N T A R e R et R T L e 389

xviii

s

- o

SECTION |
INTRODUCTION AND EXECUTIVE SUMMARY

The Air Force Avionics Laboratory (AFAL) at Wright-Patterson Air Force Base is the
focal point for development of new avionics technology for the Air Force. In order to carry
out this responsibility, a significant capability to simulate physical avionics systems and
components has been created by the AFAL divisions. Of prime concern is the effective use
of these simulation facilities in the face of continually increasing performance requirements,
technological advances, and rising flight-test costs.

The usual approach to satisfy requirements for increased avionics performance has been
to place emphasis on the selection of the best subsystems available or on the creation of new
subsystems. However, allowing subsystem performance to drive avionics system design
results in inflated costs and problems in maintenance and retrofit. Subsystems that are
designed for maximum performance become increasingly complex and are often incom-
patible unless interface requirements are considered early in the design effort. This effort
requires not only a conceptual plan, but a realistic evaluation of how the coupled sub-
systems will interact under all critical flight conditions. New technology in components for
avionics systems continually suggests new system implementations, which must be explored.
For example, there is a distinct trend at the present towards digital techniques in all aspects
of electronics. Microprocessor technology has promoted greater utilization of software for
functions previously performed by hardware, The trends toward consideration of avionics
hardware from the systems' viewpoint and toward the increasing use of modularized, digital
hardware put increasing demand on effective use of simulation facilities to ensure reliable,
cost-effective avionics systems.

This Facility/Capability Manual for the simulation facilities of AFAL has been
developed as a means for increasing the effectiveness of these important technical resources.

The primary objective of this manual is to document the total simulation capability in a
manner which will serve several groups:

1. Those members of the AFAL directorate charged with planning or approval of the
simulation facilities.

2. Potential users with a need to understand the general capabilities and limitations of
the simulation facilities.

3. Actual users of the facilities with a need to plan simulations, document input data,

conduct or coordinate simulations, and interpret results.

4. Members of the AFAL staff who are involved in updating, enlarging, or deleting

simulation capabilities.

A secondary objective of this manual is to document the relationships between the
various facilities, which may enhance their interaction and, thus, improve the cost-
effectiveness of the overall AFAL simulation capability.

The manual achieves these objectives by presenting introductory and summary material
in section i and by presenting more detailed descriptive material in subsequent sections. The
contents of section 1 address the laboratory capabilities from a planning/management view-
point by relating the laboratory mission to present facility capability through the develop-
ment of a conceptual simulation class structure. The contents of subsequent sections of this
manual address specific facility/capability from a potential-user viewpoint. Both hardware
and software availability are documented. The technical level of these sections is such that
available capability can be determined and some insight can be gained regarding user
interface. For more detailed simulation facility capability and utilization, the reference
documentation should be consulted.

Each of the divisions within AFAL has been assigned a major section heading within the
manual organization. Thus, section II describes the capability/facility resident within the
Systems Avionics Division; section III those within the Electronic Technology Division;
section IV those within the Electronic Warfare Division; and section V those within the
Reconnaissance and Weapon Delivery Division. Because of time and funding constraints
under the current contract, the extent of the manual has been limited to the simulation
facilities within the Systems Avionics Division. It is anticipated that the manual will be
expanded in the future to include the remaining AFAL Divisions.

1.1 AIR FORCE AVIONICS LABORATORY: MISSION AND ORGANIZATION

The Air Force Avionics Laboratory is the principal development organization within Air
Force Systems Command (AFSC) for new avionics technology. The primary responsibility
of AFAL is to provide the USAF with the products and expertise required for the acquisi-
tion of the best possible avionics systems. To meet this responsibility, AFAL maintains a
base of avionics technology and develops and demonstrates cost-effective avionics systems
and subsystems to improve operational capabilities in navigation, communications, elec-
tronic warfare, surveillance, reconnaissance, and weapon delivery. As required, the labora-
tory provides technical assistance in the systems-acquisition process to all elements of
AFSC, and to all USAF elements in the operation and modification of avionics equipment
in the inventory.

The laboratory is organized into four major technology groups, as shown in the
organization chart in Figure 1.1-1. System and device development is conducted in the
Systems Avionics, Reconnaissance and Weapon Delivery, Electronic Technology, and
Electronic Warfare Divisions, The mission of each of these is discussed briefly in the

following paragraphs.

AFWAL COMMANDER

]
TECHNICAL PROGRAMS
& APPLICATIONS OFFICE
AIR FORCE AVIONICS (XP)
HIEF SCIENTIST
" (CA) LABORATORY
(cc) RESOURCES MANAGEMENT
L OFFICE
(DO)
RECONNAISSANCE &
RYSERNG Mytintcs WEAPG.J DELIVERY
DIVISION
LA DIVISION
(RW)
ELECTRONIC TECH ELECTRONIC WARFARE TECHNICAL SERVICES
NOLOGY DIVISION DIVISION DIVISION
(DH) (WR) (TS)

Figure 1.1-1. AFAL organization.

1.1.1. Systems Avionics Division: Mission

The Systems Avionics Division develops concepts and methodology for the architecture
of advanced avionics systems. Research and exploratory development are conducted in the
areas of information handling, processing, and transfer; display and control; subsystem
design and optimization; subsystem and functional integration; and electromagnetic trans-
mission links. Programs within the Division develop and demonstrate advanced concepts of
avionics subsystems integration, automation, and information processing, display, control,
and transfer. In-house capability is being developed to define, demonstrate, and test digital

3

avionics and to provide the hot-bench facility and expertise necessary to achieve this capa-
bility. The Digital Avionics Information System (DAIS) is an example of such a program.

1.1.2 Electronic Technology Division: Mission

The Electronic Technology Division maintains centers of excellence in radar and micro-
wave technology, laser and electro-optic technology, and microelectronics. The Division
conducts basic exploratory research and advanced development programs in these areas to
support the needs of AFAL and its application divisions. In the area of microwave technol-
ogy, program objectives include identification and development of the technology of micro-
wave avionics devices, sensors, and systems to improve their performance, reduce their costs,
and evaluate alternative development paths. The Division seeks to expand the electro-optic
component technology base, providing new devices to support a wider range of applications,
as well as offering solutions to Air Force requirements. In the microelectronics field, objec-
tives associated with reduced cost of ownership, increased performance and reliability, ease
of maintenance, and increased ability to withstand stringent operating conditions are pur-
sued by recognizing and exploiting emerging concepts and technologies to assure rapid
transition of new devices and circuits into the Air Force inventory. Materials, such as [I[-IV
compounds and heterogeneous structures, which show promise for advanced signal-
processing applications, are explored, as well as specific materials applications, such as
bubble memories.

1.1.3 Electronic Warfare Division: Mission

The Electronic Warfare Division conducts exploratory and advanced development pro-
grams in the technical domain of electromagnetic warfare. The Division participates in
advanced planning to provide effective guidance for the Division mission and to provide
timely transition of exploratory and advanced development programs into effective military
hardware. In carrying out its mission, the Division maintains electronic simulators, such as
the Electronic Defense Evaluator (EDE) and the Dynamic Electromagnetic Environment
Simulator (DEES). Technical areas of interest include, among others: analysis of threats,
projecting scenarios, modeling the effects of electronic warfare on penetration effectiveness,
and performing tradeoff evaluations; performan.e of electronic warfare technique analysis
to generate EW effectiveness data; development and demonstration of the military worth of
countermeasures for defense of aerospace vehicles against threats utilizing optical or elec-
tro-optical guidance or fire control systems; and development of advanced techniques, tac-

tics, and equipments for manned aircraft to penetrate or enter a hostile air environment.

1.1.4 Reconnaissance and Weapon Delivery Division: Mission

The Reconnaissance and Weapon Delivery Division conducts exploratory and advanced
development programs to demonstrate improved aerospaceborne reconnaissance, navigation
and weapon delivery capabilities for present and future Air Force tactical and strategic
weapon systems. The Division conducts studies and analyses of potential concepts, sub-
system requirements, aerospaceborne reconnaissance, navigation, target acquisition, fire con-
trol and weapon delivery avionics subsystems, and provides promising completed explora-
tory efforts for incorporation into those subsystems. Another Division function is identifica-
tion of areas of technology in its area of interest, which require development by other
AFAL organizations. Also, the Division maintains a group for dynamic mobile evaluation of
software for aerospace inertial/reference subsystems and a group for dynamic and environ-

mental evaluation of avionic sensors, subsystems, and systems.

1.2 SIMULATION CLASS STRUCTURE

In the same sense that avionic hardware development tends to proceed within the
narrow confines of the functions and performance of specific subsystems—for example, a
radar or voice communication radio—simulation capabilities also tend to be developed for
aid in design of certain specific subfunctions of avionics. In recent years, however, the
opportunity for and desirability of the integration of avionics subsystems into a functional
hardware system have presented the necessity to examine the tradeoffs required by the

system-integration process.

While the simulation capabilities that are a vital part of subsystem design are as neces-
sary as ever, simulation of systems at a higher aggregate level become equally important. In
fact, a hierarchy of simulation capabilities becomes desirable and necessary to insure that
overall system performance meets mission requirements and that each subsystem satisfies its
own subrequirements. When simulation is viewed from the perspective of assessing the total
avionic function as an integrated system, it is convenient to structure it to parallel a top-
down-system design procedure that results in maximizing total system performance.

This section presents a conceptual simulation architecture encompassing several levels of
simulation support related to the avionics design and integration process. The rationale for
this architecture was originally developed for the Avionic System Analysis and Integration
Laboratory (AVSAIL) facility (Section 1.3.1) in the Systems Avionics Division. However,
the architecture is designed to encompass a total system approach to simulation of avionics,

rather than a subsystem approach, so that it is a useful framework for relating the function

of simulation facilities/capabilities in other AFAL Divisions as well. As may become appar-
i ent, such a class structure must occasionally be warped slightly to fit an individual case, but
in general it provides a useful framework for both laboratory management and user. By
categoncally locating given simulation capability within such an architecture, it makes it
convenient for facility management to plan for controlled expansion of capability and also ‘
for the potential user to select and review only those capabilities which are relevant to the
H simulation detail required for his particular system design task. These categories are listed

below in Table 1.2-1. Table 1.2-2 shows applications, outputs, and examples of the various

levels as configured at the Avionics Laboratory.

TABLE 1.2-1. SIMULATION LEVELS

RESEEERAISII——

Level | — System functional Level V — Real-time dynamic
Level Il — Discrete event Level VI — Real-time sensor signal level
Level Il — Scientific Level VIl — Special purpose hybrid

Level IV — Interpretive computer

{

 § These various simulation categories may operate as separate capabilities for designers
i whose problems fit a particular level, or where evaluation is needed of a specific proposed
% configuration. The designer may also use the categories as a continuous system of levels

' ‘ starting at the broad view and proceeding to finer levels of detail. Iteration may occur

i among any of the levels at any point in the simulations.

At the broadest level of Systems Simulations, the designer looks at functions and ob-
tains general, variable, probabilistic outputs. At Discrete Event Simulation, the exterior
boundaries of the proposed system become more specific. At this level the designer gains an
understanding of what the hardware in the proposed system would look like and how the

A subsystems would interconnect and communicate. In Scientific Simulation, the software is

added in the form of algorithms, and the entire system is placed inside an external environ-

1 ment model group so that flight conditions may be reproduced. In Interpretive Computer

Simulation, the subsystem algorithms would be changed to actual flight codes. In Real-Time
Dynamic Simulation, an actual subsystem interconnects with the simulation and replaces a
model. Most of the proposed avionics system would continue to be in modeled form since

this test concerns the integration and interface of a single subsystem. In Real-Sensor Signal

Level Simulation, groups of functional hardware would replace groups of models for a
complete system integration test. The external enviroament remains modeled and inter-

: i ; e
faced, but actual sensors may also be stimulated to carry the environmental simulation to
further details.

2o S e

Classes

l.

System Functional

TABLE 1.2-2. SIMULATION CLASSES

Applications

e e e e

System Analysis

System Design

System Requiremeiits
Definition

System Level Trade
Studies

Outputs
Performance
Parameters/ Limits
Sensitivity Thresholds
Criteria Requirements
Mission Scenarios
System Reliability

P IV.

Examples

AEP
Cost Models

B .

Functional Avionic
Representation

Control/Display Evalu-
ation

Phase IV & V of OFP

OFP/Flight Computer
Integration

Parametric Analyses Estimates
fi. Oiscrete Event Computer System Processing Requirements P Simnuc
Capabilities CPU Sizing DPM
Thloughqut Analyses : Bus Loading GASP IV
1/0 Requirements Loading i
Information Transfer System Level Timing
Requirements Loading
Benchmark Testing
System Time Line Analysis
fil. Scientific Navigation/Sensor/Flight Closed Loop Navigation rSDVS
Dynamics Interactions Qperation AVSIM
Algorithm Verification Ideal Weapon Oel.
System Performance Evaluation
Evaluation Statistical Data Collection
Subsystem Design Processor Characteristics/
Design
Mux System Design
System Software Develop-
ment
Interpretive Detailed Timing Evaluation | Detailed Timing of SDVS (ICS)
Computer Fine Grain System Inter- Command/Discretes Processor
action Detailed “Debug” Aid Architecture (ISP)
Flight Computer Code for Flight Code
Evaluation Preliminary Hardware
Detailed Design of Proc- Timing Evaluations
essor/Mux Subsystems
Real-Time Man-In-Loop Evaluations Mission Scenario AVSIM
Dynamic (cockpit only) Evaluation
OFP & Flight Computer Sensor Modeling Verifi-.
Interaction cation

ki

ki it i

St

TABLE 1.22 SIMULATION CLASSES (con.)

Classes Applications Outputs Examples
Vi Real-Time Sensor i System Integration End-to-End Signal Flow DAIS
Signal Level Avionic Sensor Testing
Interface Verification Hardware/Software
Integrated System Dynamic Inter-
Testing action
Dynamic Simulation Completely Instrumented i
Testing of Sensors Integrated System Tests 1
+ Phase (V & V of OFP : 1
ViI. Special Purpose A-J Signal Structures Verified A-J Signal CSEL
Hybrid Les 8/9 Support Structures :
GPS Support Performance vs. Channel
L RPU Data (ink Design Characteristics

These simulation levels are discussed individually and in greater detail in the following

paragraphs.

1.2.1 Level |, System Functional Simulations

oy

System simulations are a starting point for defining, in system terms, the avionic func-
tions needed. In a computer simulation of the functional capabilities of an avionics system,
analyses of the many options available provide the systems designer with a means of deter-
i+ aing the optimum avionics configuration for a selected mission, Mission requirements are
first analyzed and allocated to specific functions and modes of operation for each phase of
each postulated mission. Appropriate hardware configurations are then defined, and the
operating characteristics specified to create a system simulation model. A computer analysis
is then made to evaluate the performance of each configuration relative to various mission
requirements. Overall mission performance, as well as candidate system cost-effectiveness,
are elements of such an analysis.

Typically, the system designer defines the characteristics applicable to the desired air-
craft type and avionics system configuration; then he selects the mathematical models

necessary to accomplish the simulation from AVSAIL's library of simulation software. He

may then successively modify the configuration by deleting or adding various subsystem

models.

—— e -

e

Comparision of the simulation runs and the system performance requirements will sug-
gest tradeoffs, which could result in modifying the initial system design. These modified
configurations may then be subjected to additional simulation analysis.

The system designer may vary numerous model characteristics and determine the effect
of the changes on overall system performance. Hé may utilize various configurations to
examine the operation of each avionics subsystem and gain an understanding of the func-
tional performance necessary to insure that the system is responsive to primary mission
requirements. Thus, with AVSAIL's capabilities, the system designer can examine the ef-
fects of varying the system’s configuration in a logical and orderly manner, prior to
construction of hardware prototypes. In general, this level of simulation explores and com-
pares different modes and options for implementing the mission functions. Hundreds of
simulated missions can be examined in a few minutes. Once mission functions have been
established, further refinement of the system design may be accomplished with more de-
tailed levels of simulation.

1.2.2. Level Il, Discrete Event Simulations

Discrete event simulations are used to investigate the functional and physical configura-
tions of a proposed avionics system and provide analysis of information-processing loads and
transfer requirements. The designer is able to evaluate and analyze time sequences and the
effects of system degradation. He looks at the proposed system configuration, and he can

make comparisons of various configurations.

Given a specific configuration of avionics subsystems and the detailed performance
requirements of each, the simulation defines the capability required of the airborne pro-
cessor and determines the flow of information between each of the subsystems. An analysis
of the amount of information flow at any given point in time provides data on gross system

timing and enables the designer to reallocate functions as necessary.

The simulation also permits examination of the information-processing cycle for the
avionics system by relating each operation to airborne processor time for comparision with
established time boundaries. For each function, the designer can determine total time used,
including processing time required or processor speed required for desired performance.

Accuracy requirements may also be analyzed.

Various methods of interconnecting subsystems can be examined. The simulation per-

mits examination of trial subsystem interconnections to determine the information flow

timing. The designer thus identifies peak loading conditions and excessive information de-
lays.

The simulation also establishes boundaries on the amount of information flow between
any subsystem and any processor or termination point at any given time. This results in the
questions: What should be allocated to an airborne central processor? What processing
should be broken up and allocated to local points in the system?

If, after trying partitioning alternatives, the simulation result calls for impractical air-
borne processor capacity or speed, then the proposed avionics system may not be a valid
solution for the mission in terms of current hardware technology. However, this type of
result would suggest the need to iterate with the system functional simulation, trying other
modes and configurations. Feedback and interaction among various types of simulation is a
conventional usage of AVSAIL in design and analysis.

The proposed partitioning may or may not be satisfactory; if not, modification or
reconfiguration is necessary. The designer continues to experiment with various ways in
which the system can be interconnected. When he has modeled a workable system, he has
defined the hardware in terms of operating characteristics, hardware interconnection, and

‘information flow. He has also examined information flow rates and has established general

boundaries on the amount and speed of airborne processing required. His next step is to
model in detail all the elements of the system.

1.2.3 Level Ill, Scientific Simulations

Scientific Simulations involve the use of detailed models for both hardware and software
in a proposed avionics system. This level provides an opportunity for comprehensive evalua-
tion of the proposed system’s operating logic, performance, and timing, and permits exami-
nation of tradeoffs between hardware and software. The physical partitioning of the pro-
posed system is validated, and hardware specifications and software algorithms are devel-
oped.

The detailed mathematical models of specific subsystems are constructed to include
functional performance and to accept input and produce output signals. For example, a
chosen model of an inertial subsystem would produce signals, which would correspond to
the velocities it should sense over a particular period of time during a simulated mission.

The mathematical models are combined with a detailed information-transfer scheme and
with trial software models; the entire simulation is also embedded within environmental

7 T TR T

!

{ models. The ¢ 'l environmental simulation includes validated models of airframe.

; rotating earth and atmosphere so that the system under test can receive realistic signals and

produce results that can be accurately analyzed for functional performance.

Aside from a close look at hardware elements and partitioning, software development

{ for the proposed avionics system is begun in Scientific Simulation by providing an operating

i bl s A gt i

environment to try algorithms in dynamic situations. The designer can then evaluate the

performance of a particular navigation algorithm under given conditions.

Since the system elements are modeled in detail and accept realistic inputs, the simula- I
tion also provides accurate outputs in the form of actual signal levels. After suitable f
|

algorithms are tested and potential hardware/software tradeoffs are identified and chosen, ‘

detailed specifications are generated for both hardware and software.

1.2.4 Level IV, Interpretive Computer Simulations

Interpretive Computer Simulations are similar to Scientific Simulations, but software
analysis is performed at the airborne processor instruction level for detailed flight-program
development and an examination of fine-grain hardware and software interactions. The
timing of all airborne-processing functions is recorded for analysis.

The Scientific Simulations examine various airborne software algorithms operating with
detailed models of the hardware and the environment. At the Interpretive Computer
Simulation level, the simulations examine complete airborne software coding, operating
with similarly detailed models of hardware and environment. A compiler in the simulation
computer generates the machine code so that the model of the airborne processor can
operate with bit-by-bit simulation of each machine-level instruction. Feedback with other
types of AVSAIL simulation may be required to refine the software coding.

Since the analysis is very detailed, the simulation is focused at critical processing points
in the mission, examining short segments of airborne processor operation. Several hours of
simulation are typically required to evaluate a few minutes of flight time.

Actual execution of flight code instructions provides a thorough analytical method for
evaluation of software accuracy and identification of timing problems. The most common
objective of this simulation is to support the development and validation of flight code.

11

1.2.5 Level V, Real-Time Dynamic Simulations

The primary purpose of Real-Time Dynamic Simulation is to test actual hardware
operating in real time with accurate, detailed simulation models of the proposed avionics
system and the environment.

Any actual avionics subsystem may be exercised to examine its real-time interactions
with the total avionics system. This level of simulation is used to support integration of the
particular subsystem with the proposed avionics system. For example, an airborne
processor, loaded with the flight code it will run, can be driven by the simulation. Inputs
would be provided to the airborne processor hardware by the simulation models. The
models would also accept outputs from the hardware under test and interact realistically
with the system.

The environmental simulation provides the hardware under test with a realistic operating
environment, including all flight information references. A comprehensive example is the
operation of a cockpit with controls and displays hardware, either to examine the hardware
interfaces and interactions with the rest of the avionics system or for a man-in-the-loop
study. The simulation will accept the control inputs and drive the displays according to
model outputs, including the environment simulation. A video scanning and mixing
capability provides realistic display background synchronized with the modeled airframe
and environment. The sampling of controls and the driving of displays occur in real time at

the cycle time of the proposed avionics system.

Except for such questions as the effect of dynamic maneuvering loads, Real-Time
Dynamic Simulation can produce avionics system debugging results previously obtainable
only through expensive and time-consuming flight test. For this level of simulation, actual
hardware replaces one or more simulation models for validation of one subsystem at a time.

1.2.6 Level VI, Real-Time Sensor Signal Level Simulations

Real-Time Sensor Signal Level Simulations are the basic tool for total system
integration. Groups of simulation models such as those used in Real-Time Dynamic
Simulation would be replaced by multiple functional groups of actual hardware run together
in real time for an integrated study. Whereas Real-Time Dynamic Simulations concentrate
on a single item or a single closely related group of hardware, this integrated simulation level
exercises and examines complete functional sets of hardware subsystems. For example, all
hardware which will operate on information transfer and processing may be tested together.

12

R o o

A complete external environment is simulated to the avionics system under test, and the
AVSAIL simulation computer is capable of providing appropriate stimulation to actual
sensors so that overall performance of the system may be evaluated dynamically and
realistically. Where it is not practical to present a computer-generated signal to an actual
sensor (for example, where aircraft motion must be detected), the sensor output is modeled
to conform with the missions and mission environments being evaluated. Modeled signals are

injected as early in the system test as is practical.

Complete groupings of hardware are operated in a simulated real-time mission to study
integrated performance, to verify that all hardware interfaces operate properly. and to
validate the system software under simulated flight conditions. Virtually all mission modes

can be examined using validated models of earth, atmosphere, and airframe.

AVSAIL complete system integration tests complement flight testing, particularly in
software validation and hardware debugging. These simulations can replace such basie
checkout procedures previously accomplished only in flight testing; subsequent flight tests

can concentrate on validating dynamic performance.
1.2.7 Level VII, Special Purpose Hybrid

While not necessarily a ‘“level” per se, the capability to perform special purpose
simulations is a necessary requirement in systems design. Under the Special Purpose
category, the Avionics Laboratory has developed the Communications Systems Evaluation

Laboratory (CSEL).

CSEL has been developed to assist the U.S. Air Force in the analysis, synthesis, and
modeling of its communications and data links, and to provide a cost-effective means for

dynamic evaluation and comparison of advanced techniques and systems.

Current Air Force communications links between aircraft—both direct and via
satellite—operate in the ultra high frequency (UHF) or super high frequency (SHF) radio
bands. As new user requirements evolve, new communications systems and data links, such
as the Lincoln Laboratories’ LES 8/9 satellites, are being designed to handle them. However,
new systems and innovative equipment are, in themselves, not enough to handle the
ever-increasing user requirements; there is a corresponding need for change in such related
areas as frequency bands of operation, signal structures, and modulation techniques. The
CSEL, by providing the proper computer hardware/software mix, offers a dynamic
evaluation tool that will provide the capability to observe and evaluate the performance of

such advanced communications and data systems.

13

1.2.8 Digital Avionic Information System (DAIS)

The various levels of simulation resident within AVSAIL allow the user not only to
select the appropriate degree of sophistication to satisfy his application, but more
powerfully, to assemble various levels in order to broaden interactively the available
simulation capability. Additionally, the user may choose to sequentially select various
simulation levels as he moves through the various phases of system design. In the following
discussion, the DAIS project is presented as an example of the manner in which AVSAIL
can support the various programs resident within AFAL by virtue of this simulation level

structure.

The purpose of the DAIS project is to demonstrate a coherent solution to the problem
of proliferation and nonstandardization of aircraft avionics, to develop and test in a
hot-bench configuration (known as the Integrated Test Bed) the DAIS concept, and to
permit the Air Force to assume the initiative in the specification of avionics configurations
for future Air Force weapon systems acquisitions. The DAIS design approach reflects a total
system concept that is functionally oriented rather than hardware oriented.

The heart of the DAIS system is the redundant time division multiplex data bus shown
in Figure 1.2.8-1. This bus allows information from the aircraft subsystems (e.g., avionics
units, stores management, power control) interfaced by remote terminals (RT) to be
communicated along the bus and to a set of shared DAIS processors through Bus Control
Interface Units (BCIU) in the processors. Mission software, developed through simulation
with the Software Design and Verification System (SDVS) in non-real-time interaction
(Levels II and III) with aircraft and environmental models, can be exercised in real time in
the ITB facility. For example, a pilot flying a simulated cockpit views a simulated,
computer-generated scene and interacts with displays in the cockpit generated by DAIS
mission software. The aircraft external environment and flight dynamics are simulated by
models executed by the host computer in a Class Il simulation. During such a simulated
flight, the mission software/processor performance is monitored by the Super Control and
Display Units (SCADU), while the bus performance is monitored by the Bus Monitor Unit
(BMU). The results of the Level V simulation can then be compared with those predicted by
earlier non-real-time simulations at Levels I to IV. System performance is, thus, verified in
the laboratory instead of in the field. Many of the simulations utilized in the DAIS ITB have
application to other avionics system developments and are described in Section 2.0 of this

manual.

p—

*Aupaey g1 SIva jo wesbeip yaojq payydwig °L-g-z'| ainbirg

¥ Nid

s
H 7 il £ 11ndwod
w (40sS)
3 — sauiewio; erep >
__ £ T SUIsIsAtqns v
2 pelejnung
m vIEI £ 10883501d
& Siva
g A_ £ Navas _.] %
s o (01 23q) =
£ —— oo
g [veatn i P s o 150w
o o | [
Siva s u
1 ZNAavas -...ﬂ..t.::l.“ 1onuod 158}
Oy
J_ LN T h o S
L1y | s0m320.d ()
siva 1051u0d uonty
1 NAvs e - L
B | wdwo) yyesday
L
$IPOW WISAS
\~ J QM NUoIAY
— ©iep
(QdN-GSA (33A)
-GSH-ONH) (s1310043 e L oW
sAe|dsip pue -%ONS) $1013U0D jonuos | p—" SA OmlL
Honuod 31va enuew 1d¥0D) oepiA O
SIVG AL171Jvd4 1HO0d4dNS

1.3 AFAL FACILITIES

The hierarchy of facilities for simulation at the Avionics Laboratory may be
schematically depicted as shown in Figure 1.3-1. Major laboratory facilities, such as the
Dynamic Analyzer Complex (DAC), AVSAIL, and the Electronic Warfare Simulation
Facility (EWSF), are operated by AFAL divisions and constitute laboratories subdivided
essentially by generic application. Each of the laboratories has varying degrees of further
division into component facilities and capabilities, as for example is illustrated for AVSAIL
in Figure 1.3-1. These major components may be utilized in various configurations to
simulate specific systems or subsystems. The physical facilities of the AVSAIL DEC-10 host
computer, Picture System, Video Center, and Cockpit are shown in conjunction with
AVSIM DAIS models to provide a real-time simulation of the DAIS system. Alternatively,
other models may be employed by AVSIM, along with dedicated hardware to simulate an
F-16 aircraft fire control system.

The facilities and capabilities of the Avionics Laboratory are of a complexity and
versatility so great that the range of potential applications cannot be fully described in a
manual of this limited extent. It is rather the intent here to describe the capabilities and
facilities themselves so that the user may himself be led to envision the applications. The
following paragraphs present a brief overview, with additional details provided in manual
sections for each major facility.

1.3.1 Systems Avionics Division (AVSAIL)

The AVSAIL facility has been configured particularly for implementation of all of the
simulation classes previously described. In order to convey the flexibility and power of the
AVSALIL laboratory, the host facility is described in the following sections. The scope of the
description is limited to those aspects of the facility which have significance to the conduct
of simulations, rather than to an exhaustive exploration of capability. Discussions of the
basic computer and peripheral hardware configuration, the operating and utility software
capabilities, and the constituent simulations now resident in AVSAIL are provided.

1.3.1.1 Hardware Features

The AVSAIL laboratory is structured around a Digital Equipment Corporation
DECsystem-10 mainframe computer. As depicted by Figure 1.3.1.1-1, the DEC-10 has a bus
architecture, which provides both a memory bus for processor-memory and direct memory
access communications and an input/output bus for processor-peripheral communications.

16

REGUS SIS ATAR. S s SIS

‘WISAV/1IVSAV/1V 4V uoneziuebio Apaey uonejnwis 14y |- 2nbiy

ALITIdVE
NOILYINWIS

JUViHVMm
JINOHLI3TI

JINNKWIS
Al dSV9

‘“I“' H‘

rd
suaon 7 /.
0y |/
\\\I'l\
<\ vﬁ\ WISAV
1149303\ g

X371dN0D
HISATVNY
JIWVNAQ

~ \w
HILNID S _ \\\\

030IA WILSAS | 7~ S1300W
uNLdIsSOH &/ SIva

_ ’

01-330

5
)

st Sl b

A wide range of peripheral input/output devices, as described subsequently, are provided to
handle batch, timeshare, and real-time program development and execution requirements. A
unique feature of the AVSAIL configuration is the eight-channel Direct Memory Access
(DMA) capability provided for access by a complement of eight PDP-11 series
minicomputers. The PDP-11's serve to interface specific simulations (e.g., the F-16 Fire
Control Computer simulator) to the DEC-10. An overall hardware system diagram is
provided in Figure 1.3.1.1-1. The central processing unit (CPU) for the AVSAIL DEC-10
consists of dual KI-10 processors, with the configuration being designated as a DEC-1077.
Each CPU module is an independent processor, and programs can operate in parallel, one
program per processor, thereby increasing the average throughput speed. The AVSAIL
DEC-1077 memory capacity is currently four 64k word modules (DEC MF-10G) of 950ns
core memory and 512K words of Ampex ARM 10LX memory. Word size is 36 bits plus
parity. The dual KI-10 processors and memory modules are directly interfaced by the

memory bus of the DEC-10, allowing maximum utilization of memory and easy expansion.

Bulk storage is available on both multisurface cartridge disks and magnetic tape. All disk
and tape units are interfaced to both the I/O bus and to the memory bus. The system
currently provides four RPO3 disk drives and four RPO4 disk drives. Storage capacity of the
RPO4's is 20.48 million words; for the RPO3's, the capacity is one-half that of the RPO4's.
The available magnetic tape drives also provide a choice of performance. Four TV1OA-E
nine-track drives operate at 45 ips, and four TV40 drives operate at 150 ips, providing a
range of transfer rates from 9K to 120K characters per second.

The DEC-10 facility provides for onsite and offsite access both for development of
software and for its execution. Currently, onsite facilities include 25 CRT alphanumeric
terminals, two local CRT graphic display terminals, and two minicomputer-based data-
acquisition systems. In addition to these physical terminals, the DEC-10 monitor software
supports up to 48 virtual terminals or “pseudoteletypes,” which allow jobs to control other
jobs.

Offsite access to the DEC-10 is through the DC75 Data Communications System (Figure
1.3.1.1-1), which provides a maximum of eight synchronous, 9,600 baud lines. Maximum
aggregate data rate is 30,000 bps. Currently, 4,800-baud full-duplex leased lines connect the
AVSAIL laboratory through this interface with the Armament Development Center, Eglin
AFB, Florida, and the Naval Weapons Center, China Lake, California.

Two line printers provide high-speed (1,250 line/min) output from the DEC-10. Graphic
hard-copy output is available from a Calcomp Model 563 plotter. This high-speed,

18

& T ———— e |
w
= . ‘ 1
m 04y vody | | vodu 04y __,
%sia wsia | | wsio %SI0 M
£95 20149 0101 HoLO1 01-HY 2014y 20INL
s 43110 y3ovay ¥3ILNIYd HILNIYd 1041NOD 1041NOD 1041NOD
m dW021V3 ayvo INn NN %sia nsia 3dv1
5] el 1 | |
mo
32 801-AX olve olva
= T0H1INOD 1041NOD 1041NOD
m H3110Wd
- N8 0N LlLI
= o
8 | 20190 | 20110 |
m
a 32V4H3ILNI J0L-VQ
2 sng JIV4HILNI
= AHOWIW AHOWIW
= 133410
(=]
-
<
. =
: =
3 m §
$ 4 = = §— 9
¥ = £0-10 01-40 0L-XW oL4a 01-40
. m HILIMS 13INNVHI X31dILINN 13aNNvHa | | 13nnvHI o)
“_ sna o/ vivo AHOW3W viva viva
; m o]
; 8 0N o
® 40SS3704d || HOSS3ID0U4
] 2
i -
p
3 7 .
= §
ik
3 Yy
= 9 n)
- 3
[9 <
- X101-WHY 901-4W 901-4W 901-4W 201-4N
b1 AHOWIW AHOWIW AHOWIW AHOWIW AYOWIW —
M_ NS X9 R 399 3 ¥9

"IHVYMAUVH H0SS3J0Hd NOILYINWIS LSOH W3LSAS 01-330 "L-L°L'E'L 34N9Id

Jnl JIV4HILNI 3IV4HILNI | 1§
W3I00W SNONOYHINASY SNONOYHINASY 1VI01 &
[3
m m S3ININ8 S3NINS $INIT8 S3aNINS S3ANIT 8 S3INI 8 S3ANIT 8 S3ANIT 8 — [8
53 P S DT T DL LR LRREE T SNONOYHINAS 8
m M 949420 | 949420 949420 | 849420 g49.9a | 849¢9a g49.9a] 849290 \.’._bll_tl
o m
= v3-9.42a v3-8.3a v3-9220 v3-9.20 11-80
3IV4H31NI JIV4H3ILNI
SNOILYIINNWWOI SNOILVIINNWWOI
Ll SNONOHHINASY SNONOYHINAS Si/ti-dad
va-943a 220
= __l{ 1531 H3ANN JHYMAHVH HO SHOLVYINWIS |
w Fe——— e —e | en o-——y nll-"llJ ﬂ"cll-le = e (- -
=] ! 1 ') £ ') ' HE '
| iz : Hidaes & LT EANR 1T |
: R : b2 ' 'y = [iy]]
il EEREIETE] N VP m-l‘ e e aw - .ilJ.llL SRR _ SRn— |
=: | ——— sasnaon[— 11-40a ||_|]
m 4 2
m 0Z/11-dad | 0S/i1-dad Sb/11-d0d 0b/11-d40d 0b/11-dad ov/11-dad 0v/i4-d0d ov/L1-d0d
a 8 L 9 5 4 £ 4 1
401-vNa 401-VNO 401-VWQ 401-VINGD 401-VYNQ 401-YWNQ 401-VYINQ 401-VING
‘ &1 .) g als)| 1 i |
3
A :
IAMT oinL ovnl oinlL oinL olnL o!——vmn._
idvVl advl idvl 3dvl 3dvl J01-VNG
. T v 3 1 T ¥l
3
. e £04Y £0dy | | cody £0dY
Se nsia NSia asia isia
> 1 | i)\
- o 4 - -
>
w
P
= 04y 04 t0dy 04y
isia nsia nsia b £ 1]
I e - o — L A F -

drum-type, pen and ink plotter uses 31-inch paper and operates at up to 300 steps per
second. Card input to the system is available through a 1,200-card-per-minute reader.

1.3.1.2 Software Features

The wide variety of computing requirements demanded by the several classes of
simulations carried out within AVSAIL are satisfied by the flexibility and scope of the
DEC-10 software package. This software package provides for the concurrent operations of
timesharing, multistream batch, real-time, and remote communications. These multifunction
capabilities allow multiple users, both at AFAL and at remote locations, to perform all of
the tasks necessary to create new simulations, modify existing simulations, and run those
simulations as if they were individual users. The system allows a maximum of 48 users.

From the user’s viewpoint, the DEC-10 may be thought of in terms of (1) input device
and software which he has written or which act on his software, as in Figure 1.3.1.2-1; (2)
the operating system software, which controls system resources; and (3) the system
hardware which was previously described.

ﬂ
ACTUAL MACHINE
| cPu lr —1] 1/0 DEVICES I :—— (HARDWARE)

———u———————-——————*;———

SHAREABLE SERVICE /0 |
| RESOURCE REQUEST SERVICE | - ”‘;‘;m’::: EM
| | aLLocaTor HANDLER ROUTINES :
L E—— omme r GENES GNP CINED GENED GEEND GINED GEEED CTENES TANED GEED cume Snen o leEN—. == e
r S NS U GENED GEED G S = j ME
| USER PROGRAMS | e METHODS OF
' INCLUDING e N

COMPILERS | TTT INPUT PUT
J ASSEMBLERS
EDITORS |
: UTILITIES |
DEBUGGING AIDS
NON-RESIDENT

| SUPPORT PROGRAMS j_ SOFTRANE

Figure 1.3.1.2-1. DECsystem-10, user’s view.

21

The DEC-10 has several capabilities, which increase the utilization of system resources in

a multiuser environment. First, the timesharing capability allows resources to be shared
among users. Users are not restricted to a small set of system resources, but instead are
provided with the full variety of facilities. By means of his terminal, the user has online
access to most of the system’s features. This online access is available through the operating
system command control language, which is the means by which the timesharing user
communicates with the system.

Through the command language, the user controls the running of a task, or job, to
achieve the desired results: create, edit, and delete files; start, suspend, and terminate a job;
compile, execute, and debug a program. In addition, since multiprogramming batch software
accepts the same command language as the timesharing software, any user can enter a
program into the batch run queue. Thus, any timesharing terminal can act as a remote
job-entry terminal.

With the command language, the user can also request assignment of any peripheral
device (magnetic tape, DECtape, and private disk pack) for exclusive use. When the request
for assignment is received, the operating system verifies that the device is available to this
user, and the user is granted its private use until he relinquishes it. In this way, the user can
also have complete control of devices such as card readers and punches, paper-tape readers

and punches, and line printers.

When private assignment of a slow-speed device (card punch, line printer, and paper-tape
punch, and plotter) is not required, the user can employ the spooling feature of the
operating system. Spooling is a method by which cutput to slow-speed device is placed on a
high-speed disk or drum. This technique prevents the user from consuming unnecessary time
and space in core while waiting for either a device to become available or output to be
completed. In addition, the device is managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations experienced by these devices are equalized.

Second, the DEC-10 has the capability to make maximum utilization of memory. The
DEC-10 is a multiprogramming system; i.e., it allows multiple independent-user programs to
reside simultaneously in memory and to run concurrently. This technique of sharing
memory and processor time enhances the efficient operation of the system by switching the
processor from a program that is temporarily stopped because of 1/0O transmission to a
program that is executable. When core and the processor are shared in this manner, each
user’s program has a memory area distinct from the area of other users. Any attempt to read
or change information outside of the area a user can access immediately stops the program
and notifies the operating system. Because available memory can contain only a finite

22

——
oy T N

number of programs at any one time, the comp'iting system employs a secondary memory,

usually disk or drum, to increase the number of users serviced. User programs exist on the
secondary memory and move into memory for execution. Programs in memory exchange
places with the programs being transferred from secondary memory for maximum use
available main memory. Because the transferring or swapping takes place directly between
main memory and the secondary memory, the central processor can be operating on a user
program in one part of memory while swapping is taking place in another. This independent,
overlapped operation greatly improves system utilization by increasing the number of users
that can be simultaneously accommodated.

To further increase the utilization of memory, the operating system allows users to share
the same copy of a program or data segment. This prevents the excessive memory usage that
results when a program is duplicated for several users. A program that can be shared is called
a reentrant program and is divided into two parts or segments. One segment contains the
code that is not modified during execution (e.g., compilers and assemblers) and can be used
by any number of users. The other segment contains nonentrant code and data. The
operating system provides for shared segments to guarantee that they are not accidentally

modified.

Third, the DEC-10 has the capability to manage the storage of user program and data
files consistent with the multiuser environment. The mass storage devices available are
shared among users, and, thus, the operating system must insure independence among the
users; one user’s actions must not affect the activities of another unless the users desire to
work together. To guarantee such independence, the operating system provides a file system
for disks, disk packs, and drums. Each user’s data are organized into groups of 128-word
blocks called files. The user gives a name to each of his files, and the list of these names is
kept by the operating system for each user. The operating system is then responsible for
protecting each user’s file storage from intrusion by unauthorized users. The operating
system lets, the user specify protection rights, or codes, for his files. These codes designate if
others may read the file, and after access, if the files can be modified in any way. Files are
assigned protection levels for each of the three classes of users; self; users with a common
project number; and all users. Each user class may be assigned a different access privilege, so
that there are eight levels in each of the three user classes. This file protection scheme results
in a three-digit access code for all files.

1.2.1.3 Constituent Simulations

Within AVSAIL several varied simulations are resident and available to the user. These
include: Avionic Evaluation Program (AEP); a general, event-driven hybrid system

23

simulation program (GASP IV); Distributed Processor/Memory System Network Simulation
(DP/M SNS); Software Design and Verification System (SDVS); Avionic System Simulation
(AVSIM); Instruction Set Processor (ISP); and the Communication System Evaluation
Laboratory (CSEL). These simulations, available in the AVSAIL laboratory, provide a
generic simulation capability applicable to all phases of avionic system design and
integration. The nature of each one is described briefly in the following paragraphs. More

detailed descriptions are given in other sections of this manual.
1.3.1.3.1 Avionics evaluation programs

The interactive Avionics Evaluation Program (AEP) is a collection of avionics
performance-assessment models. AEP provides convenient and systematic assessment of
avionics in the mission environment. The program is designed to be flexible and easy to use
with emphasis on realistic consideration of the operational environment and the generation
of useful data. AEP can be utilized for analysis of most air-to-ground and air-to-air missions.
Individual programs contained within AEP include air-to-ground and air-to-mission analysis,
weapon-delivery error analysis, target acquisition analysis, and a one-on-one dogfight
analysis. These programs are implemented in a conversational, interactive mode, thus
providing a powerful analytical tool available to users by means of dial-up terminals. They
are, therefore, available throughout DOD and to contractor organizations as well.

The air-to-ground mission analysis program evaluates the performance of a flight of up
to four aircraft through a specified number of days of operation. The aircraft proceeds along
an externally generated nominal trajectory through the mission phases of takeoff, navigation
to the search area, search, attack, and return to base. Consideration of ground service
requirements is included. Monte Carlo techniques are applied to Mean Time Between Failure
(MTBF) data for the defined avionics throughout the mission to determine which subsystem
modes are functioning, resorting to backup modes and mission aborts as required.

The weapon delivery analysis routine is a program for determining the distribution of
impact errors for a weapon system utilizing unguided, unpowered bombs. The routine is
capable of accommodating almost any weapon delivery mechanization under the
assumptions of:

1. Flat, nonrotating earth,
2. Linear transformation of component error sources to impact er~ors, and
3. Normal distribution for all error sources.

The AEP target acquisition model is a modified version of the Multiple Airborne
Reconnaissance Sensor Assessment Model (MARSAM II). MARSAM II models the sensor
system and the operational environment in detail. It contains models for displays, lenses,
filters, and film. It considers the impact of image motion compensation, platform
stabilization errors, backscattering, and atmospheric effects on sensor performance. The
human observer is modeled in terms of ability to perceive the target as a function of size and
contrast, display signal-to-noise ratio, presence of confusing objects, and time in the field of
view. Available outputs from MARSAM II include detailed sensor system performance
parameters and associated probability measures of detection, recognition, and identification.

The air-to-air AEP analysis program is a Monte Carlo simulation of two opposing aircraft
flights (up to four aircraft in a flight) through an entire mission. As the flight progresses, it is
influenced by hardware failures, refueling, communications to airborne or ground
controllers, enemy aircraft detection capability, identification requirements, and weapon
capabilities. When one side detects the other, that flight pursues a course directly at the
other flight and fires when the weapon constraints are satisfied. The encounter is considered
only until both sides have detected the other. At that time, the relative positions and
headings are stored for output so that users can determine which side has the relative
advantage.

A separate, deterministic air-to-air program permits analysis of the dogfight encounter.
It simulates an engagement between two fighter aircraft. The logic for control of aircraft
maneuvers is based on lag pursuit and energy management. Lag pursuit implies that each
aircraft attempts to get on the tail of the other. Energy management control implies that the
aircraft seeks a velocity and altitude for best turning performance.

1.3.1.3.2 GASP |V simulation language

A simulation language provides the structure and the terminology to facilitate the
building of simulations. GASP IV is such a computer language; it helps the user to build
computer simulation programs that can be both the model of the system and the analysis
vehicle. Thus, this program can be thought of as a model of a system and as a generator of
statistical data about the model of the system.

As a programming language, GASP IV gives the computer programmer a set of
FORTRAN statements designed to carry out the most important functions in simulation
programming. Modeling concepts are translated by GASP IV into FORTRAN routines that
can be easily used. GASP IV has five distinct features that make it particularly attractive as a
simulation language:

26

e e e

1. GASP IV is FORTRAN based and requires no separate compiling system.
2. GASP IV is modular and can be made to fit on all machines that use a FORTRAN
IV compiler.

3. GASP 1V is easy to learn since the host programming language is usually known, and
only the simulation concepts need be mastered.
GASP IV can be used for discrete, continuous, and combined modeling.

5. GASP IV is easily modified and extended to meet the needs of particular
applications.

Simulation is divided into two categories: discrete change and continuous change. Note
that these terms describe the model, not the real system. In fact, it may be possible to
model the same system with either a discrete change (hereafter referred to simply as
discrete) or a continuous change (continuous) model. GASP IV is designed to accommodate
both categories of models, separately or combined. In most simulations, time is the major
independent variable. Other variables included in a simulation are functions of time and are
the dependent variables. The adjectives discrete and continuous refer to the behavior of the
dependent variables. Discrete simulation occurs when the dependent variables of the model
change discretely at specified points in simulated time. In continuous simulation the
dependent variables of the model may change continuously over simulated time. In
combined simulation the dependent variables of a model may change discretely,
continuously, or continuously with discrete jumps superimposed. The time variable may be
discrete or continuous.

GASP IV is a language that can be used for discrete, continuous, or combined
simulation. In GASP IV the most important characteristics of combined simulation, which
arise from the interaction between discretely and continuously changing variables, are easily
modeled. In general, this interaction takes one of three forms. First, discrete changes may be
applied to “continuous’ variables. Second, achieving specified conditions for a state variable
may cause an event to occur or to be scheduled. Third, the functional description of
continuous variables may be changed discretely.

GASP IV specifies that the status of a system be described in terms of a set of entities,
their associated attributes, and state variables. The GASP IV simulation philosophy is that a
dynamic simulation can be obtained by modeling the events of the system and by advancing
time from one event to the next. This philosophy presumes a broader definition of event
than has normally been used in discrete-event languages:

An event occurs at any point in time beyond which the status

of a system cannot be projected with certainty.

R s i

vy

ppe

In GASP 1V it is useful to describe events in terms of the mechanisms by which they are
scheduled. Those that occur at a specified projected point in time are referred to as
time-events. They are commonly thought of in conjunction with ‘“next event” simulation.
Those that occur when the system reaches a particular state are called state-events. Unlike
time-events, they are not scheduled in the future, but occur when state variables meet
prescribed conditions. In GASP 1V, state-events can initiate time-events and time-events can

initiate state-events.

The behavior of a system model is simulated by computing the values of the attributes
at event times. The time-step increment is automatically determined by GASP IV, based on
the equation form for the state variables, the time of the next event, and accuracy and

output requirements.

The key to event simulation is the ability to organize events so that they are executed
within the computer in an order corresponding to that which would occur in the real
system. This preserves the time relationship between simulated and real events. Ordinary
programming languages are unsuited to this task because they operate in a strictly sequential
manner; there is no way to tell a FORTRAN program to ‘“do something later’. without
building special subprograms. GASP IV provides these subprograms.

Every GASP IV simulation model consists of: (1) a set of event programs or state
variable equations, or both, that describe a system’s dynamic behavior, (2) lists and matrices
that store information, (3) an executive routine that directs the flow of information and
control within the model, and (4) support routines. These form an operating computer
program whose performance reflects that of a simulated system. A GASP IV program is
made up of subprograms linked together by an executive routine that organizes and controls
the performance of the subprograms.

GASP 1V is organized to provide eight specific functional capabilities:

Event control,

State-variable updating using integration if necessary,
Information storage and retrieval,

System state initialization,

System performance data collection,

Program monitoring and event reporting,

Statistical computations and report generation, and

0 w3 Gy ooy D e

Random deviate generation.

B i bt e bl e o e Ll dith

The functions provide the user with a very general tool with which to build simulations.
For example, GASP IV language provides the basis for the Basic Simulator (SIMNUC)
described below, which in turn has been used to build the Distributed Processor/Memory
simulation available at AVSAIL.

1.3.1.3.3 Basic simulator (SIMNUC)

The Basic Simulator (SIMNUC) is an integrated package of subprograms designed to
facilitate modeling and simulation of discrete stochastic systems in a manner similar to the
GASP IV simulation programs.

The following features characterize this package:

1. Model independence.

FORTRAN orientation; the user’s portion of a simulator can be programmed in
FORTRAN or, if desired, in assembly language.

Capability to produce event-oriented simulation models.

Availability of list processing and dynamic memory management facilities.
Capability to collect and display standard queue and sample statistics.

S @ B W

A full complement of random number generators.

The basic approach, which sometimes is referred to as a simulation-world-view, used to
model discrete systems for digital simulation with the Basic Simulator is the event-oriented
approach, which emphasizes decomposition of the simulation process into individual event
procedures, each of which describes all changes in the system caused by the occurrence of
the related event, just as was done in GASP IV.

The Basic Simulator consists of the following functional software components:

Dynamic memory management,
List processing,

Simulation run control,
Random number generators,
Sample statistics processing, and
Error diagnosis and reporting.

i

ek’ it .

1.3.1.3.4 Distributed processor/memory system network simulation

The advent of the minicomputer and the microprocessor has made available to the
avionics system designer highly compact and versatile computational capabilities that can be
both physically and functionally distributed among avionics equipments. Used in
conjunction with multiplexed data buses, these processors make up distributed processing
systems presenting new challenges to the system designer.

The Distributed Processor/Memory (DP/M) System Network Simulator (SNS) provides
the necessary tool to explore some of the tradeoffs available to designers of these
distributed systems. The SNS is a discrete, event-oriented, high-level traffic simulator
written in ANSI standard FORTRAN. The SNS is built around a nucleus of
model-independent utility routines (SIMNUC) which are not simulators in themselves, but
are used to create a simulator in conjunction with the avionic software task specifications
and topological organization specifications of a given avionics system.

i 1
o (SANSER. | nen
r I i sUsS Y
nl I #E [E ([
|
2EN00R 1 : [__J !
| LocALBUS |

LOCAL

AFFINITY GROUP sus -~
s INTERFACE GLOBAL
L l BUS
PRIORITY AND TIMING

I

LOCAL 1/0

1

Figure 1.3.1.3-1. DP/M system architecture.

The DP/M system concept is essentially the use of varying numbers of simple,
homogeneous processor/memory elements (PE’s) applicable to a wide range of avionic
system processing problems. Architecturally, these PE’s can be used as stand-alone
uniprocessors, or they can be configured in a distributed network as shown in Figure
1.3.1.3-1. Serial-time-division-multiplex (TDM) buses interconnect the network. Two levels
of busing are provided: a Global bus can interconnect each PE in a system network, and a
Local bus can interconnect multiple PE’s clustered together to perform a given function.
This cluster of PE’s is referred to as an Affinity Group (AG). Input/output (I/O) for a given
PE to an external device is via its local I/O interface unit.

The SNS, being constructed of SIMNUC model-independent routines, has the same
general characteristics as SIMNUC and GASP IV. That is, SNS is a discrete, event-oriented
simulation system. Unlike a continuous system where transitions from one state to the next
are a continuous function of time, transitions from one state to another in a discrete system
occur at discrete points in time. Distinguishable state transitions are called events.
Event-oriented simulation systems emphasize a detailed description of the steps that occur
when an individual event takes place.

During the period the DP/M SNS has been in use at AFAL, two bus protocol algorithms
have been implemented. The first is a modified ‘“round-robin’ slotting technique, which
provides for simple advancing of the ‘“‘bus control slot”” from PE to PE in a predetermined
order among the total set of PE’s attached to the bus. Each bus transmission, referred to as a
message, is terminated by the transmitting PE.

The second bus protocol algorithms implemented by DP/M SNS is that specified by
MIL-STD-1553A (Aircraft Internal Time Division Command/Response Multiplex Data Bus).
The basic difference between the 1553 A protocol and the round-robin protocol is that data
transfers occur only between two PE’s, one specifically designated as a transmitter and the
other as a receiver. Three word formats are defined for the protocol: (1) Command word,
(2) Data word, and (3) Status word. One PE must be designated as a bus controller, and
transmissions are performed in a half-duplex, synchronous manner. Three message formats
are permitted:

1. Controller to remote terminal (RT) transfers,
2. RT to controller transfers, and
3. RT to RT transfers.

The hardware architecture represents one half of the distributed avionics system design
problem. The other half is the software, obviously. The DP/M SNS assumes that the system

designer will partition the executive and applications software into suitable tasks for some
given hardware architecture. The SNS then provides the designer with the capability to
analyze and evaluate:

3
2.
3.
4.
5.
6.

The SNS is predicated on the representation of software modules by a directed graph

Processing element characteristics/capabilities,
Number of resources in the system,

Local and global bus configuration,

Inter-PE communication technique,

PE Bus protocol communication technique, and
Executive control technique.

consisting of a set of nodes and a set of directed edges between these nodes. A node is used
to represent a set of computations which, once initiated, can run to completion without
waiting for completion of another set of computations also represented by a node. An edge
from node i to node j means that, upon completion of the computations represented by
node i, the computations by node j can be initiated.

The representation of software execution sequences via a directed graph has a particular
advantage within the DP/M concept. The subfunction-directed graph reveals potential
process construction options in allocating tasks and program to PE’s. If any one set of tasks
must be partitioned among several PE’s, the options available in allocating this software to
PE’s are clearly defined within the graph. Data sets that are passed from one task to another
represent Local bus messages if their respective tasks are not collocated in the same PE.
Likewise, collocated tasks need not generate bus traffic with their data interchanges.

The use of distributed PE’s in the DP/M system concept dictates the need for a method
of scheduling activities, transferring bus messages between PE’s and general system control.
These operations are referred to as Executive functions and are provided by the SNS. The
subfunction-directed graph contains the necessary information from which the Executive
can determine task-scheduling conditions (based upon required predecessor events) and
intertask communication. The DP/M Executive structure provides two levels of control: the
Global Executive (GEX) and the Local Executive (LEX). Functionally, the GEX assumes
the role of system monitor and scheduler. It enforces subfunction interrelationships and is
responsible for system performance by coordinating those software programs required to
effect mission avionic functions for the pilot and aircraft. The LEX is a PE-oriented
function responsible for sequencing and controlling tasks assigned to a PE. The LEX is
concerned with scheduling those tasks assigned to its PE, based upon successful satisfaction

of all the tasks’ given predecessor conditions.

|
t
|

The Global Executive schedules time-dependent subfunctions in the DP/M system. A
time-ordered linked list provides the GEX with the relative times to schedule every
time-dependent subfunction in the system. A “go” message is generated by the GEX to a
subfunction only if other predecessor conditions for the subfunction have been satisfied
when it is time to run the subfunction. The GEX data base (or tables) contains all
information pertaining to the initialization and control of all time-dependent subfunctions
in the DP/M system.

A family of data collection and report generation programs is provided with the DP/M
System Network Simulator. These programs provide the capability to selectively collect data
on and generate reports for the various system parameters under investigation for a
particular DP/M system configuration and/or avionic mission segment. The collection and
dispensation of data, as well as generation of reports, are controlled by user specified
parameters. In general, the user has four options: (1) no data is collected and no reports
generated; (2) data is collected and saved, but no report generated; (3) data is collected and
report generated, but data not saved; or (4) data is collected and saved, and reports gener-
ated. Data saved on tape may be processed at a later time. In fact, this saved data may be
used at a later time to compare results of two or more different simulation experiments.

Data collection and report generation occur at three distinct levels: (1) event level, (2)
sample period level, (3) postsimulation level. At each of these levels, reports concerning bus
performance, processor loading, executive performance, and number of avionic tasks

processed may be selectively generated.
1.3.1.3.5 Software design and verification system (SDVS)

Software tools to aid in the development, testing, verification, and maintenance of
avionic mission software are provided by SDVS. Simulations available under SDVS are
non-real-time. The SDVS was created as an integral part of the DAIS program, and the user
will encounter some constraints imposed by the DAIS concept. Since the use of common
hardware and software for acquisition of sensor data, processing of information, and
provision of display information is key to the DAIS concept, the software design and
verification functions, in the context of any particular processor architecture, are vital to
success. These same considerations for software integrity are common in some degree to all
avionic software developments. Thus, SDVS can play an important role in software
development.

The basic functions provided by SDVS are depicted by Figure 1.3.1.3-2. Configuration
Management refers to provisions for control of all files associated with the development,

B eSS —

S———

TSRO —.

sovs

FILE og:m:u CONFIGURATION
MANAGEMENT s o MANAGEMENT
[’ i
TESTING AND
USER
VALIDATION
st LANGUAGES
1
[1 [L.
SUPPORT sovs POST RUN ":::,‘,m' ,,,;;’;L‘,“
FACILITY SIMULATORS PROCESSING LANGUAGE LANGUAGE

Figure 1.3.1.3-2. SDVS functional organization.

test, and verification of software. An extensive cataloging and security system is provided
for the various types of software maintained by SDVS. A set of interactive conversational
commands is provided by the File Management function; these commands enable the user to
perform various file manipulation activities necessary during software development. In
interpreting these commands, the Configuration Management catalogs are interrogated to
determine if the user has file-access authority and, if so, the type of access authority.

Software Development Manageiment functions are divided into two groups. In order to
test software efficiently and comprehensively, an easy-to-use man/machine interface is
necessary to facilitate the specification of the simulated environment, data to be recorded,
and the required processing of simulation data. Two special purpose languages, the
Simulation Control Language and the Data Processing Language are provided by SDVS for
these purposes. Testing and validation of software are facilitated by several tools provided
by SDVS, the first being the support facility function, which is DAIS-specific and not
directly applicable to other software development programs. A second testing and validation
software function is provided by four simulators. These simulators model processor and bus
performance in the execution of mission software:

Statement Level Simulator,
Interpretive Computer Simulator,
Data Bus Simulator, and

External Environment Simulator.

e

33

prec TR

s

S —

The External Environment Simulator is quite general and applicable to any avionic
software development. The other three would have applicability, depending on the
similarity of a given software program to that of the DAIS program since they simulate
DAIS hardware. They are of interest, of course, from the standpoint of the testing and
validation concepts they illustrate and their potential adaptability to other programs.

The function provided by Postrun Processing is that of sorting, editing, analyzing, and
outputting simulation data from the various software simulations. The Rough Output Tape
generated during a simulation run is processed and output to the user by this function.

i

1.3.1.3.6 Avionics simulation (AVSIM)

AVSIM is a simulation facility that affects avionics system evaluation, validation, and
integration by dynamic digital simulation of the airframe, flight controls, and avionic
equipments of a generic high-performance tactical fighter. Currently, the objectives of this
facility are:

To test and validate operational flight programs under realistic flight conditions,
To affect digital avionics system integration,
To identify hardware/software problems in prototype avionics systems, and

L o

To recreate flight problem areas through dynamic simulation.

AVSIM is capable of simulating the navigation, penetration, and weapon-delivery phases
of an attack fighter mission, either individually or compositely. The AVSIM user configures
his aircraft, sensor complement, environmental characteristics, and target characteristics by
linking individual simulation models into an overall simulator structure. The AVSIM
simulator currently has real-time, non-real-time, man-in-the-loop, and self-contained modes
of operation. The user has the option to use resident (F-16) software developed by General
Dynamics, Ft. Worth; to use resident (A7) software obtained from the Navy; or to develop
his own by utilization of resident creation routines.

In the example of the resident software, the airframe is configured by selecting either an
F-16 or an A7 aircraft model; an appropriate flight control system dependent on desired
complexity; and self-contained (synthetic mission generator/simulated pilot), prerecorded,
or real-time cockpit inputs. The sensor complement presently available includes the radar
altimeter, the attack radar, and (may be extended to include) electro-optical sensors. Flight
environment is incorporated by using models that provide simulated air data inputs,
accelerometer and gyro outputs, representative weather effects, atmospheric perturbations,

34

Al

inertial outputs, and magnetic heading. Auxiliary software integral to the total simulation
includes an inertial reference, geometry effects, and the ability to introduce noise at various

points.

AVSIM is hosted by the DEC-10 facility at AFAL and is linked to peripherals such as
the cockpit and display generator by means of a DMA channel to satellite PDP-11's. AVSIM

software consists of control modules and apphcation models. The control software provides
file manipulation, sets up the simulation configuration, provides initialization, implements
man/machine interface, and controls overall the execution sequence. The application models
provide aforementioned sensor data, external physical conditions, ete. Also contained with-
in the software are data acquisition and analysis modules, which accumulate and edit data

for validation analysis.

AVSIM programs are coded largely in ANSI-FORTRAN in an attempt to make the
software flexible, modular, and transferable. DEC system FORTRAN-10 features as well as

' DEC-10 assembly language are also used to a lesser degree.

1.3.1.3.7 Processor architecture (ISP)

The ISP processor simulation facility enables a user to describe computer processing
units at the register transfer level and, from these descriptions, to quickly set up interactive
simulations of these processors. A language, CSL/ISP (Computer Simulation language) was

developed as a dialect of Instruction Set Processor language (ISPL) from Carnegie-Mellon

University. A compiler produces DEC-10 code from the CSL/ISP source, and the user then
runs this code from a control program, which he constructs by modifying a model general
purpose simulation control program. A methodology is included for creating simulations
from manufacturers’ instruction set descriptions.

The processor simulation program can, from a description of the register transfers of a
comptter, produce a simulation of that computer. This program may be broken into three
general areas. These include: a formal language compiler with which to describe register
transfer level processes, a code generator to produce DEC-10 code from the output of a
compiler for that language, and a general purpose control program with which to drive the

simulators produced from the compiler.

The compiler uses a set of register transfer operators, called X'T-op’s, to produce a set of
pseudo-imstructions, which can be interpreted by the DEC-10 assembler's (MACRO) macro

facility. The macros, which were written to produce DEC-10 code from these

B —

e i S S

pseudo-instructions, produce optimized code and comprise a universal library, which is

searched during assembly.

Simulations are controlled by a program with which the user can interactively set
registers and memory locations, load memory. set breakpoints, ete. The control program
causes instructions in simulated memory to be executed by repetitively calling on the

simulator to execute a single instruction,

The behavior of a processor is determined by the nature of its individual operations and
the sequence in which those operations occur. This sequence is generally governed by a
stored program, which resides in the memory of the computer and the set of interpretation

rules which the processor applies to the program.

Although the above format is commonly used to describe digital computers, ISP does
not limit the user to a particular type of description. Thus, ISP can be used to deseribe
register transfer systems in general; digital computers are a subset of such systems which
interpret an instruction set. Other devices, such as buses and device controllers can also be

described in ISP,
1.3.1.3.8 Communication system evaluation laboratory (CSEL)

CSEL is a combined hardware/software facility designed to analyze, synthesize, and
model advanced communication systems. The laboratory centers about a computer-based
simulation facility, which is capable of creating a variety of hostile RF signal environments
at UHF and L-, X-, and K-band. To this facility may be interfaced, for testing and
evaluation, either laboratory-model communication hardware, actual communication
hardware, or a combination of elements of both. To aid in the construction of laboratory
communications systems, CSEL provides a high-speed, programmable signal processor and a
spectrum of communication equipment, including modems, terminals, and antenna systems.

It is important to note that the simulation facility just mentioned, called the Signal and
Interference Generator, produces simulated signal environments in the appropriate RF band.
Thus, it qualifies as a hardware simulator, control over which is exercised dynamically by a
digital computer operating in real time. Initial configuring of the simulator is also performed
through the digital controller by means of a series of user commands, which the system
software interprets and translates into control signals to the communication hardware.

Interfacing communication terminals to the Signal and Interference Generator RF

hardware then provides a realistic test bed for the terminals, in which one can not only

36

P B s v e s o

.

troubleshoot the equipment but also test its performance with respect to such

environmental effects as jamming and fading. The user can specify these effects with relative
ease and can vary them readily from one test run to the next, thereby obtaining a complete

characterization of the performance capabilities of his equipment.

A typical application of CSEL is illustrated by the tests performed to determine the
suitability of the LES-8/9 communication satellites for use with the Airborne Command
Post. In these tests, CSEL was used not only to troubleshoot Ka-band communication
hardware, but also to ascertain the vulnerability of the communication system to various

types of jamming.

To accomplish these goals, CSEL was equipped with appropriate K-band and UHF
communication modems, terminals, and antennas. This configuration allowed use of the
communication satellite in a laboratory system equipped with a qualification model of the
AN/ASC Ka-band airborne communication terminal, together with antenna systems, to
establish communication links with LES-8/9. This equipment, when combined with the
Signal and Interference Generator, allowed the realization of actual satellite communication
channels ir'o which were introduced controlled-interference efforts in the form of jamming,
fading, and doppler. To reinforce this capability, the high-speed signal processor, called the
Programmable Data Terminal, was programmed to simulate satellite processing when

LES-8/9 were unavailable to use.

Current emphasis in CSEL is shifting toward a study of the performance of
communication systems linking remotely piloted vehicles with air- and ground-based
command posts. To this end, the facility is being upgraded to include the elements of a
video processing and display capability. Future studies envisioned for CSEL involve satel-
lite-based navigation systems and the performance they obtain in a hostile environment.
1.3.2. Electronic Technology Division

To be included in a future version of this manual.
1.3.3 Electronic Warfare Division
To be included in a future version of this manual.

1.3.4 Reconnaissance and Weapon Delivery Division

To be included in a future version of this manual.

37

e T TR e

SECTION I
AVIONIC SYSTEM ANALYSIS AND INTEGRATION LABORATORY (AVSAIL)

2.1 AVSAIL HOST FACILITY

The AVSAIL host facility has been configured particularly for implementation of all the
simulation classes previously described. In order to convey the flexibility and power of the
AVSALIL laboratory, the host facility is described in the following sections. The scope of the
descriptions is limited to those aspects of the facility which have significance to the conduct
of simulations, rather than to an exhaustive exploration of capability. Discussions are
provided of the basic computer and peripheral hardware configuration and performance, the
operating and utility software capabilities, and the communication interfaces to onsite
simulators and offsite users.

The concept of AVSAIL encompasses all of the analysis and integration functions
necessary to create innovative avionics systems. These functions are best illustrated by the
discussion of the simulation class structure in Section 1.2 of this manual. One of the more
important aspects of the AVSAIL concept is the need for a simple interactive interface for
the user of the laboratory host facility. The complex nature of the problems which may be
investigated in this laboratory imply many users over extended periods of time. The systems
being designed will be subjected to evolutionary modifications, necessitating comparisons of
performance of components and systems at various stages of the design. In order for the
AVSAIL facility to provide the degree of interaction and flexibility required to simulate a
wide range of systems and operational scenarios, the facility architecture of Figure 2.1-1 was
proposed.

This architecture demonstrates the explicit requirement that the user be allowed tec
address the simulation facility without regard to facility manégement and control
constraints. This is achieved by use of appropriate interface structure, which translates user
requirements into facility inputs interactively. The focal point of the simulation facility
architecture is the simulation control program, which addresses the various simulation levels
and handles the control and response files according to user requirements.

A set of simulation models is available to the user in the model data base. Models
currently available are described in this manual and others may be added as required. The
user may modify model parameter values for his particular simulation needs, modify
models, or create his own models and add them to the data base. Such modifications or
additions to the data base would be under the supervision of the facility manager, however.

38

R N RN SNSRI |

NOLLVINWIS
1A 13AN

‘UMY VYSAY |1 T unbiy

NOLLYINKWIS
1A 13ATT

NOLLVINKWIS
A T3AIT

NOILLVINNIS
AM1IAN

$3714
1041NOD
NOILVINWIS

NOLLYINWIS
1 13A37

NOLLYINWIS
HI3AN

NOLLVINWIS
173A37

$374 3sva viva
3SNOdS3H 1300W
NOLLYINWIS NOILYTNNIS
WVH904d
T0HLNOD
NOLLVINWIS

3Iv4H3LNI
FAILIVHEILNI
43sn

39

g) Rl Al 5

SRS AR

In order to simulate a system or component, the user would create a simulation control
file that would specify such items as flight scenarios, system configuration, model selection,
model parameters, simulation time frames, data recording, data analysis, and component
performance or reliability. The simulation control program then accesses the model data
base, configures the simulation, runs the simulation, and records the outputs as defined by
the control file. At the completion of the run, the simulation response file contains a record
of system performance parameters defined by the user in a format compatible with all
models in the model data base and with outputs of other simulation levels so that the results
of other past or future simulations may be compared with current results. This allows
parametric studies or evolutionary designs to be carried out through the mechanism of

simulation.

The simulation control program is responsible for control of computer facility hardware
and software resources for both real-time and batch simulations. The user is not required te
directly interface with the management functions of an executing simulation or the data
generated by the simulation. This allows the facility management to control the software
implemiented on the facility so as to ensure compatibility of all levels of simulation. The
user interactive interface, on the other hand, provides a flexible means for structuring
simulations of a wide range of avionic systems and analyzing their results in a manner best
suited to the purposes of the individual users.

While the concept of AVSAIL just described has not been fully implemented for the
overall system as described by Figure 2.1-1, it has been implemented within some of the
major software packages, such as the Software Design and Verification System (SDVS? and
the AVSIM avionic simulation package.

2.1.1 Hardware

As can be seen from subsequent discussions of specific simulator and software programs,
significant simulation capability already exists, whose use requires little, if any, knowledge
of the AVSAIL laboratory hardware capability. However, the planning and integration of
new simulators or the execution of major software simulations must be done with the host
facility constraints in mind.

2.1.1.1 DECsystem-10 Core Facility

2.1.1.1.1 System description

The AVSAIL laboratory is structured around a Digital Equipment Corporation DEC-10

40

|
:

mainframe computer. A wide range of peripheral input/output devices, as described
subsequently, are provided to handle batch, timeshare, and real-time program development *
and execution requirements. A unique feature of the AVSAIL configuration is the |
eight-channel Direct Memory Access (DMA) capability provided for access by a complement
of eight PDP-11 series minicomputers. The PDP-11’s serve to interface specific simulations
(e.g., the F-16 Fire Control Computer simulator) to the DEC-10. An overall hardware
system diagram is provided in Figure 1.3.1.1-1, and the major elements are briefly described ;

below.

2.1.1.1.1.1 DEC-10 Central Processor and Main Memory. The central processing unit
(CPU) for the AVSAIL DEC-10 consists of dual KI-10 processors, with the configuration
being designated as a DEC-1077. Each CPU module is an independent processor, and

e ot i

programs can operate in parallel, one program per processor, thereby increasing the average
throughput speed. Other performance characteristics of the DEC-1077 are given in Table
2.1.1.1-1.

As shown in Figure 1.3.1.1-1, the DEC-10 memory is made up of 4 DEC 64K modules,
and an additional 512K words of Ampex ARM-10LX memory, for a total of 768K words.
Word size is 36 bits plus parity. Each of the memory modules, as well as the CPUs and data

1 channels, are interfaced via the memory bus. The structure of the memory bus gives the
central processor and high-speed data channels simultaneous access to separate memory
modules and allows each to operate at its own speed. The memory bus system allows each
data channel to transmit full 36-bit words in parallel at a speed of 1 million words per
second. In total, the memory structure operates at rates of up to 10 million characters per

second when 1/O devices and processors are simultaneously transferring data.

TABLE 2.1.1.1-1. DEC-1077 PERFORMANCE

Memory size (min - max) 128-4096K Instruction times (us)

No. of instructions 378 Fixed point add 15
Instruction look-ahead Yes Fixed point multiply 4.1
Virtua memory Yes Jump 1.1
Memory interfeaving 2 or 4 way Single precision floating point added 3.6
Index registers 4X15/CPU Double precision floating point added 16
Accumulators -4X15/CPU 1/0 bus band width, words/s 370K

Memory bus hsndwidth words/s 4000K

2.1.1.1.1.2 Bulk Storage. Bulk storage is available both on multisurface cartridge disks
and magnetic tape. All disk and tape units are interfaced to both the I/O bus and to the
memory bus.

The system currently provides four RPOS3 disk drives and four RPO4 disk drives. The
RPO3's and RPO4’s are separately interfaced as shown by Figure 3.1.1.1-1. Some
performance characteristics of these disk drives are given in Table 2.1.1.1-2. Storage
capacity of the RPO4’s is twice that of the RPO3's, and transfer rate is nearly triple that of
the RPO3's.

Magnetic tape drives available also provide a choice of performance. Four TU10A-E
9-track drives operate at 45 ips and four TU 40 drives operate at 150 ips, providing a range
of transfer rates from 9K to 120K characters per second. Additional performance data is
given by Table 2.1.1.1-3.

2.1.1.1.1.3 User Interface. The DEC-10 facility provides for onsite and offsite access for
both development of software and for its execution. Currently, onsite facilities include 25
CRT alphanumeric terminals, 2 local CRT graphic display terminals and 2 minicomputer
based data acquisition systems. In addition to these physical terminals, the DEC-10 monitor

TABLE 2.1.1.1-2. DISK DRIVE SYSTEM CHARACTERISTICS

Characteristic RPO3 Disk RP04 Disk
Disk drive capacity 10.24 million words 20.48 mitlion words
Transfer rate 15 us/word 5.6 us/word
Access time:
Track-to-track 1.5 ms 7 ms
Average 29 ms 28 ms
Maximum 55 ms 50 ms
Organization:
128 words/sector 128 words/sector
10 sectors/track 20 sectors/track
20 tracks/cylinder 19 tracks/cylinder
400 cylinders/pack 411 cylinders/pack
Number of heads 20 19
Number of recording surfaces 20 19
Number of disks 1" 12
Number of drives/controller 8 8
Number of drives/system 32 32
Maximum storage/system 1.96 billion characters 3.92 billion characters
42

TABLE 2.1.1.1-3. MAGNETIC TAPE DRIVE CHARACTERISTICS

Characteristic TU10A-E TU40
Tape speed 45 ips 150 ips
Transfer rate at:

220 bpi 9K char/s 30K char/s

556 bpi 25K char/s 83.4K char/s

800 bpi 36K char/s 120K char/s
Recording technique NRZI NR2I
Nomial interrecord

Gap:
9 track 0.6 in. 0.6 in.

Rewind time (2400 ft) 195 66s

software support up to 48 virtual terminals or “pseudo-teletypes” which allow jobs to
control other jobs. Normally a job is associated with a physical terminal, but the
pseudo-teletype function allows jobs to be initiated and controlled by other jobs. A
controlling job sends the same kinds of commands to its subjobs as would be sent by a user
at a physical terminal, and the monitor does not distinguish jobs controlled by a physical
terminal from those controlled by a pseudo-teletype. The physical user interface is thus
expanded by software to increase system throughput potential. The physical terminals just
described are interfaced to the DEC-10 through DC76-DA Data Communications System
(Figure 1.3.1.1-1). Asynchronous lines operating at 300 baud connect to the terminals,
although interface capability is for 9,600 baud maximum line, and a maximum aggregate
transfer rate of 30,000 bps.

Off-site access to the DEC-10 is through the DC75 Data Communications System
(Figure 1.3.1.1-1) which provides a maximum of eight synchronous, 9,600 baud lines.
Maximum aggregate data rate is 30,000 bps. Currently, 4,80 baud full-duplex leased lines
connect the AVSAIL laboratory through this interface with the Armament Development
Center, Eglin AFB, Florida, and the Naval Weapons Center, China Lake, California.

2.1.1.1.1.4 Hard Copy Devices. Two line printers provide high speed output from the
DEC-10. The 1,250 line per minute LP10FA is a 132 column format printer with a 64
character EDP font. The LP10HC provides the same performance, but has a 96 character
scientific font. Graphical hard copy output is available from a Calcomp Model 563 Plotter.
This high speed, drum-type pen and ink plotter uses 31 in. paper and operates at up to 300
steps per second. Card input to the system is available through a CR10E 1,200 card per

minute reader.

PFIRSIRSI S

IR SISO

2.1.1.1.2 DECsystem-10 processor features

In order to convey some of the power of the DEC-10, some of the more important
features are described in the following paragraphs. These features will be of more value to
the user initiating a major new simulation than to those using or modifying slightly existing

simulations.

2.1.1.1.2.1 Instruction Set. The KI10 has 378 instructions, an extremely large
repertoire which provides the flexibility required for specialized computing problems. Since
the set provides so many instructions to choose from, few instructions are required to
perform a given function. Assembly language programs are therefore shorter than with other
computers, and the instruction set simplifies the Monitor, language processors, and utility
programs. For example, compiled programs on a DEC-10 are often 30 to 50 percent shorter,
require less memory and execute faster than those of comparable computers.

In addition to these instructions, the DEC-10 provides 64 programmable operators, 33
of which “trap” to the Monitor (Monitor calls) and 31 of which trap to the user’s core area.
The remaining instructions are unimplemented and reserved for future expansion. An
attempt to execute one of these unimplemented instructions results in a trap to the
Monitor.

The instruction set, despite its size, is easy to learn. It is logically grouped into families
of instructions and the mnemonic code is constructed modularly. All instructions are
capable of directly addressing a full 256K (36-bit) words of memory without resorting to
base registers, displacement addressing, or indirect addressing. Instructions may, however,
use indirect addressing with indexing to any level. Most instruction classes, including
floating-point, allow immediate mode addressing, where the result of the effective address
calculation is used directly as an operand in order to save storage and speed execution.

The half-word data transmission instructions move a half-word and may modify the
contents of the other half of the destination location.

The full-word data transmission instructions move one or more full words of data from
one place to another. The instructions may perform minor arithmetic operations such as
forming the negative or the magnitude of the word being processed. The five byte
manipulation instructions pack or unpack bytes of any length, anywhere within a word. The
logic instructions provide the capabilities of shifting and rotating, as well as performing the
complete set of 16 Boolean functions on two variables.

44

BRI

The KI10 processor implements instructions to perform scaling, negating, addition,
subtraction, multiplication, and division upon numbers in single-precision and
double-precision floating-point format. In the single-precision floating-point format, 1 bit is
reserved for the sign, 8 bits are used for the exponent, and 62 bits are used for the fraction.

Special KI10 instructions provide the capability of converting fixed-point formats to or
from floating-point formats. Two sets of instructions are provided to perform this function:
one set optimized for FORTR AN and a second set optimized for ALGOL.

The arithmetic testing instructions may jump or skip, depending on the result of an
arithmetic test and may first perform an arithmetic operation on the test word. Instructions
are also provided to modify and/or test using a mask and/or skip on selected bits in an
accumulator. Program control instructions include several types of jump instructions and
the subroutine control PUSHJ and POPJ instructions.

Input/output instructions govern all direct transfers of data to and from the peripheral
equipment and also perform many operations within the processor. Block transfer
instructions handle bulk data transfers to/from I/O devices.

The KI10 has hardware for processing both single-precision and double-precision
floating-point numbers. There are eight double-precision instructions and three
fixed/floating conversion instructions. A double-precision word consists of the sign, an 8-bit
exponent and a 62-bit fraction. This gives a precision in the fraction of 1 part in 4.6 x 10'8
and an exponent of 2 to a power of from -128 to +127.

2.1.1.1.2.2 Processor Modes. Instructions on the DEC-10 are executed in one of two
modes depending upon whether a mode bit has been set. Programs operate in either User
Mode or Executive Mode. In Executive Mode operations, all implemented instructions are
legal, addresses are not relocated, and all core locations are accessible. The monitor operates
in Executive Mode and is able to control all system resources and the state of the processor.
In User Mode operations, addresses are relocated, certain instructions are illegal, causing
monitor traps when executed, and address references are confined within two program seg-
ments.

The KI10 further divides Executive and User Mode operation into two submodes each.
User Mode is subdivided into public and concealed submodes and Executive Mode into
supervisor and kernel submodes. For each 512-word page in the system, information is
stored in a table maintained by the operating system which specifies whether a page can be
accessed or altered, and if it is defined to be public or concealed. The Executive and User

45

i

“,r.<_,-..rw.-y._.mv.—_.—-<—-w—

Modes subdivide on the KI10 according to whether the active program is running in a public
or concealed area. Within User Mode are the public and concealed submodes; within
Executive Mode, the supervisor and kernel submodes. These mode features are summarized
in Table 2.1.1.1-4.

2.1.1.1.2.3 Processor Memory Management. The KI10 provides memory address
mapping from the program’s memory address space (referred to as the effective address) to
the physical memory address space by substitution of the most significant bits of the
memory address. This mapping provides access to the entire physical memory space which is
16 times larger than the maximum user address space. The user’s effective address space is
256K words addressed with 18-bit addresses; the physical address space is 4,194,304 deci-
mal.

The memory mapping process utilizes the most significant nine bits of the effective

address as an index into the appropriate page map (User or Executive) in memory. The data
located by the index provides 13 bits which are appended to the least significant 9 bits of

TABLE 2.1.1.1-4. PROCESSOR MODES

User Mode

Public Submode

Concealed Submode

e User programs
e 256K word address

All instructions permitted unless
they compromise integrity of
system or other users

Can transfer to concealed submode
only at entry points

e Proprietary programs

e Can READ, WRITE,
EXECUTE, or TRANS-
FER to any location
labeled Public

Executive Mode (Monitor)

Supervisor Submode

Kernel Submode

o Performs general management of system

Performs those functions that affect
one user at a time

Executes in virtual address space
labeled Public

o Performs 1/0 for system
e Performs those functions
that affect all users

the effective address in order to form the 22 bit physical address. Also provided are three
bits which indicate what type of memory requests are allowed to the page in question (one,
read-only, proprietary, etc). If this scheme were implemented exactly as outlined above,
every user memory reference would require two actual memory references: one to obtain
the memory mapping data and another to obtain the user’s mapped memory reference. In
order to reduce the number of actual memory references to nearly the same number as
required by the program, an associative memory mapping unit is used in the KI10 as
illustrated by Figure 2 1 1.1-2.

The Monitor assigns the core area for each user by loading the various page tables,
setting up the trap locations in the user page map, and responding appropriately when a trap
occurs. The Monitor provides memory protection for itself and each user by filling the page
tables only with those entries which are allowed to be accessed. A zero access bit in the page
table will cause reference to the associated page to initiate a page failure trap to the
Monitor. The TOPS-10 Operating System utilizes the KI10 and page maps to create one or
two segment programs. The major benefits of the paging capability are a smaller unit of core
allocation (512 words instead of 1,024), the freedom to scatter the pages of a segment
randomly through physical core (avoiding core fragmentation and the overhead of repacking
core), and the opportunity to execute a program when all of its pages are not in physical
core (i.e., a virtual memory capability).

2.1.1.1.2.4 Real-Time Clock. The DK10 Real-Time Clock provides high-resolution
timekeeping for time accounting, time-base maintenance, periodic high-frequency inter-

EFFECTIVE ADDRESS

256K WORDS
9 9 18BITS — 542 PAGES

r_J

9 13

32 ASSOCIATIVE PAGE
WORDS MEMORY TABLE

4096K WORDS
13 9 22BI1TS 8192 PAGES

PHYSICAL ADDRESS

Figure 21.1.1-2. Address computation scheme for KI10 processor.

47

SRS,

rupts, and interval timing. The clock provides 110 us resolution and a choice of up to 2'8®
; possible timing intervals, so that interrupts can be programmed at intervals from 10 us up to
2.6 sec.

In addition to an interval register, the DK10 has a frequency counter which counts the
pulses of an internal + 0.01 clock kHz, or an external clock having a maximum frequency of
400 kHz. The clock also includes a comparator network which provides a running
comparison between the frequency counter and the interval register. When the frequency

counter reading equals the total on the interval register, a program interrupt is generated and
the frequency counter is automatically reset so that it can time the next interval.

The clock, which is assignable to any interrupt channel, can be used to pace real time,
monitor, or other functions performed in either Executive or User Modes. Clock updating is

! interlocked with the DATALI instructions so that it can be read correctly at any time by the
K110 without losing a clock pulse.

2.1.1.1.2.5 Fast Register Blocks. General-purpose registers are another DEC-10 feature
that help improve program execution. These sets of fast integrated circuit registers can be
used as accumulators, index registers, and as the first locations in memory. Since the
registers can be addressed as memory locations, they do not require special handling
instructions. Four sets of 16 fast registers are included in the KI10. Program switchiné time
for the KI10 between register stacks is 2.5 us. On the KI10, different register blocks can be
used for the operating system and individual users. This eliminates the need for storing
register contents when switching from User Mode to Executive Mode. Also, a critical
! real-time program is able to maintain its own register block for handling data and interrupt

sequences at maximum speed.

2.1.1.1.2.6 Multiplexed 1/O Bus. The DEC-10 Multiplexed 1/O Bus provides a 36-bit
full-word parallel path between memory and an [/O device for purposes of control or
low-speed data transfer. To initiate high-speed data transmission directly between memory
and a device connected to the memory bus, a control word is first transferred over the 1/0
bus to the buffer of the high-speed device controller. Then, on command, entire data blocks

are moved directly to or from memory with a single instruction.

The I/O bus may also be used as a control and data path to/from a large number of
low-speed 1/O devices. Transfer is performed in 36-bit words in parallel at speeds of 370K
words/s on the KI10. Thus each data transmission instruction moves one word of data
between memory and the buffer of the device controller. When block input or output
instructions are used, entire blocks of data are moved to or from the device with a single
instruction.

48

2.1.1.2 Direct Memory Access of Simulators

The AVSAIL laboratory is designed to facilitate testing of hardware/software systems in
a simulated real-world environment. The systems under test may include hardware and
software only, or, alternatively, human (pilot) interaction with a simulated external
environment may be included as a system component. An example might be the testing of a
fire control computer and its software with a human pilot flying in a simulated cockpit as he
views the target on a computer generated display. Fire control computer and software are
real, but the aircraft dynamics and the target display must be simulated with the proper
time relationships. In the AVSAIL laboratory, the DEC-10 computer provides the simulated
environment by executing models of that environment. The interface between the DEC-10
and the system under test is provided by multiple DEC PDP-11 minicomputers that allow
more than one system simulation, or complex multicomputer simulations, to be connected
simultaneously to the DEC-10. As shown in Figure 1.3.1.1-1, there are currently eight
PDP-11's interfaced to the DEC-10. Four of these are devoted to various aspects of the
DAIS program, one is devoted to interfacing the F-16 Fire Control Computer Simulator,
one to the cockpit simulator currently being used with DAIS, one to the Evans and Suther-
land Picture System, and the eighth to the video center.

In order to interface muitiple PDP-11’s to the DEC-10, hardware and software features
have been provided to allow the PDP-11"s to transmit and receive data from the DEC-10.
The basic mechanism for data communication is a 4K word memory “window” in the
DEC-10 memory. The location of the window can be specified by any DEC-10 program and
addressed by the PDP-11 computer. Provision for an 18-bit address has been made by
hardware modifications to the DMA-10C Direct Memory Access Controller. The memory
“window”’ is formatted to provide storage of ‘“to’’ and “‘from’’ data and window identifier
information. Data are stored in the window at each simulation frame or upon interrupt from
a PDP-11. Data transfer to and from the PDP-11 is under PDP-11 control.

A special software program, resident in the DEC-10, handles data formatting as required
by the different word sizes of the two computers (i.e., 36 bits for the DEC-10 and 18 bits
for the PDP-11). This software also provides the functions of interrupt handling from the
PDP-11's and the real-time clock.

2.1.1.3 PDP-11 Satellite Computers

Eight Digital Equipment Corporation (DEC) PDP-11 computers are employed within the
DEC-10 Host Simulation Processor Hardware in order to provide an interface for each of
eight system simulators with the Host Hardware. Each interface is operated in a pseudo

49

s R SRR e

real-time asynchronous interrupt mode via a Direct Memory Interface Controller. The
output of the memory controller is coupled to an MX-10 Memory Multiplexer prior to
connection to the DEC-10 memory bus. The speed of the multiplexer and direct memory
access bus operation is fast enough that each satellite computer appears to be operating in
real time to the user. Each system simulator computer can in this manner provide data to
common memory blocks of the DEC-10 system. This data can then be shared throughout
the facility. The assignment of simulator processors is given in Table 2.1.1.3-1.

The PDP-11 series of computers are well suited to use in a simulation facility primarily
due to their single or UNIBUS structure. The UNIBUS is a single, high-speed, bidirectional,
asynchronous communications path within each of the PDP-11 computers. It allows all
system components and peripheral devices to communicate directly without central
processor intervention. This direct communications means that the PDP-11 does not require
1/O instructions. The same instruction that performs a register-to-register transfer within the
central processor performs:

1 a memory-to-device-register transfer,

2 a memory-to-memory transfer,

3. adeviceregister-to-memory transfer, and

4 a device-register-to-another-device-register transfer.

Therefore, the key point is that a peripheral device can be communicating with memory
at the same time the processor is performing computational operations.

All PDP-11 system elements connect directly to the UNIBUS in plug-in fashion. The
asynchronous nature of the UNIBUS means external devices can be tied into the system
without regard for individual operating speed. The UNIBUS permits system expansion to
any level without revision of the present system. Also, as the full UNIBUS technique is

TABLE 2.1.1.31, PDP-11 PROCESSOR ASSIGNMENTS

System Simulator PDP Computer System Simulator PDP Computer
a) DAIS (GT-44A, Figure 2.1.1.3-1) 11/40 e) F16 Simulator 11/40
b) DAIS (GT-44A, Figure 2.1.1.3-1) 11/40 f) Cockpit 11/45
c¢) DAIS (GT-44B, Figure 2.1.1.3-2) 11/40 g) Evans and Sutherfand Picture System 11/50
d) DAIS (GT-44C, Figure 2.1.1.3-3) 11/40 h) Video Center 11/20

50

e G SR

DSEVIRRES SR8 W VSRR O Pt Sl (st Sl S S SR s

common to all PDP-11 systems, peripheral devices can be freely interchanged from system
to system without the need for special interfaces.

All PDP-11 processors use the same basic instruction set. Programs developed on the
PDP-11/40 of DAIS are immediately usable on the PDP-11/50 of the Picture System.
Common software incurs no conversion problems as needs increase. Programs developed on
any PDP-11 will serve all anticipated systems, regardless of the specific model. A processor
comparison table for the 11/40, 11/45, 11/50, and 11/20 is given in Table 2.1.1.3-2.

2.1.1.3.1 The DAIS simulators

A A i A RN o b AT G AN N A LRI 57

The four PDP 11/40 computers associated with DAIS are employed as shown in Figures
2.1.1.3-1, -2, and -3. Two of the simulators have configuration A shown in Figure 2.1.1.3-1.

TABLE 2.1.1.3-2. PDP-11 PROCESSOR COMPARISON TABLE

Processor Type 11/20 11/4G 11/45 11/50
Stack processing Yes Yes Yes Yes
Programmable stack limit No Optional Yes Yes
General registers 8 8 16 16
Reg-to-reg. transfer 2.3 us 900 ns 300 ns 300 ns
Hardware floating point No 32 bit (opt) 32, 64 bit (opt) 32, 64 bit (opt)
Max memory size (bytes) 56K 248K 248K 248K
Memory type Core Core BIPOLAR* BIPOLAR

Mos* MOS
Core Core
Effective memory speed 980 ns 1000 ns 300 ns 300 ns
500 ns 500 ns
1000 ns 1000 ns
Memory parity Optional Yes Yes Yes
Memory management No Optional Yes Yes
Processing modes 1 2 (opt) 3 3
Auto hardware interrupts Yes Yes Yes Yes
Auto software interrupts Yes** No Yes Yes
Power fail/auto restart Yes Yes Yes Yes
Real-time clock Optional Optional Yes Yes
Programmer’s console Yes Yes Yes Yes
Hardware bootstrap Optional Optional Yes Yes
Serial line controller Yes Yes Yes Yes

*A POP 11/45 used with BIPOLAR and/or MOS memory becomes the equivalent of a PDP 11/50.

**Automatic interrupts are possible through the use of software TRAP programming.

51

T = I

ﬁ N I T . . ’ T ——

u (Vib-19) s0enuss Siya “L€°1°L T unbyy

| SONY
! 3AIH0 ¥$10
1 OHOMVIIWZ'L
M i
3 ’ SONY
3 Hrx
; .m 3IAIY0 XSIO ¥31S1934
w* GUOMVIIN Z'L 1IN XIVIS
3 S e S
| [3113y
& a-ting d1LIMN dLIMN N11IW LIND
N I113WHLINY
¥ LINN %2012 %3012 S118 91-%91 LELLERS &)
f 39V4HILNI 4311041N0D ERELT) 319V AHOWIN -
i 1041N0J SNE usia -WVHI0Ud -‘WyH90ud 3402 01N 0
2 ANIWIOVNVIN
it) AHOWIW
L A
] 4
; SNEINN L
{ R
9NISSII0Ud
! IVHINID
i LLA 1o P SAZELN
33Vi43IN) owildod
i 01-55333V NN %2012
{ AHONIN AVdSIO WIy3Is 318VN 43I0v01
m 133410 3403 SNONOYHINASY WYHI0Ud 4vy151008
| ‘ T I
f _ TLIMA 7]
|
, Avidsia IVNINY3L
01330
34038 CETC Y
L Ad03
B - auvH
Nid
i 1H9N
¢

e e

i

27 Nk 3

(8 ¥b-19) J0enwss S|yQ €1 1T by

SOy

JAIH0 ¥SIO
QYOMVIIN I

saxy niLw e
IAIHO %S10 SLI8 91-N9L 43181934
QUOMVIIW Z 1 AUOW3IW RSy RS
40
1 U
oty FLIMN a1 niLdw A
. N1IRHLIEY
IIVIHINE %3013 %3013 S1B 9N G30miixa
051N0D S8 431104100 3evW 379vK AHOWIN
¥Si0 WYHI0Yd WYHI0Ud 3803 ol
\ 1NINIFVNVIY
AYONIN
1oy
snaINn)
3MISSI208d
WHINI)
o 1A wa P BAZOLN
o0v/11404
$5320V 39V4U3LNI 3NN ¥201
AHONIN AVigsia wiy3s 18VN ¥30v0?
123u10 24038 SNONOYHINASY WYHI0Ud 4vu151008
H 28R
01930
otv1
AV14si0
3405 WNINEL
¥ILNIYe
T Ad03 DUVH
sit
N3
HaN

53

‘(3 vp-19) s0enwis S)yg €-£°1°1T anbiy

saxy
3N ¥SI0
QUOMYIIN 7|
SONY
330 3AQ ¥s10
ﬁ QYOMYIIN 7}
atiny e sAZSLN (S1e] _S_u
33v4u3m Hhﬁ.wﬂ:
0153322V n SuS NS
AHOW3IN ¥311041N02 Y3 ¥3avol AHOWIN -
133u10 810 SNONOUHINASY dvu151008 3403 o
; Y . NLINH LYY
030N31X3
snsINn i Liox
uun
4 INISIIIONY
[TT7) 410 Himy 7] vyiNg)
39v4u3Im 39viuaim
AYONIN I %2013 n owildad
1404 AVgsia iu3s 3lVN iu3s
i3 3408 SNONOUHINASY WYY9084 SNONOUHINASY

54

et il

This configuration utilizes 16K of 16-bit core memory as well as 2 1.2 megaword disk
memory systems. Configuration B shown in Figure 2.1.1.3-2 employs 32K of 16-bit core
memory, 2 1.2 megaword disk drives and a bootstrap loader memory. Configuration C
shown in Figure 2.1.1.3-3 contains only 16K of 16-bit core memory, however, it also
utilizes 2 1.2 megaword disk drives.

2.1.1.3.2 The F16 simulator

A PDP 11/40 computer is used with the F16 simulator as shown in Figure 2.1.1.3-4. The
basic memory provided for this configuration consists of a 24K word by 16-bit core
memory, and a 1.2 megaword disk memory system. The 11/40 is used in this simulator in
order to control the Fire Control Navigation Panel, and Fire Control Computer simulator. It
also receives Flight Control Stick and Throttle data as inputs and provides control informa-
tion to a local Head Up Display CRT.

2.1.1.3.3 The cockpit simulator

The cockpit simulator utilizes a PDP 11/45 as shown in Figure 2.1.1.3-5. In this
configuration a high-speed 28K by 16-bit MOS memory as well as a 68K word by 16-bit
core memory are used. The 11/45 processor provides control and data for the Horizontal
Situation Display and Vertical Situation Display as well as the control stick and associated
lamp and keyboard displays. These controls and displays are all lccated within the simulated
cockpit.

2.1.1.3.4 The Picture System

The Picture System may be interfaced and controlled by any PDP-11 computer. Picture
Systems have been interfaced to PDP-11/05, PDP-11/35 and PDP-11/45 computers with
various standard DEC peripherals including disks, DECtapes, megtapes, printers, etc. The
standard Refresh Buffer requirements is 8K of 36-bit words. An additional 8K of Refresh
Memory may be obtained to provide a 16K Refresh Buffer.

The Picture System currently employs a PDP-11/50 as shown in Figure 2.1.1.3-6. Inthis
configuration, two core memories of 16K and 44K each are utilized as well as 32K of MOS
memory.

2.1.1.3.5 The Video Center

The Video Center currently employs a PDP-11/20 as shown in Figure 2.1.1.3-7. This

55

e b

solejnuiss 91-4 p-£°1'LZ ambly

WY ocv1
QYOMVIINZ 'L 1ndM TYNINY3L
3AI4G ML AdDICHYH
810 ¥3LIUMII0
"
AUOWIN
aLy si180 uuﬂﬂw_s e e
39v4u3LN wSS3
Aviesio :m....\uct ce"_._-ea ¥311041N03 ETCETELY Tvunig I V18IS :-._..ws Ewue:
SNOINVIIIIEIN o %10 SNEINN 3504uNd SDORBIONALY
7]
L ELY
% y NOIL40
11W17 ¥IVIS
EXTET)
NOILJ0 138
NOLLINYISNI
030M31X3
snaINn sox
LINN SNISSII0N4
IVHLINID
b K k ovildad
L 4 T t stida
LA viiba Aline BN SAZSIN
1INV 7041N0D 1nd1n0/10dM
TYNINY3IL NOI .—(0;481 N3oon 3320V
310m3Y 1041803 HUM VI3 H0SS32044 ERAZLETL AHOWIN ¥3avol
olvma TvSUIAINN 14 -33V4H3LNI AVIdSIO 321A30 133410 4V4181008
[ECARUTES .==mﬁua 131IVHVe
H UIA 420¢ 219VN
si330 0L
149 WYHI0Ud
: 1H9I4 HILNIWOIININ
S TVNOILVY340 aINVN

AHOIT

56

Sl e ol el

e RS-

‘so3ejnuis 3143209 ayy °'G-g°}° 2 2anbiy

01 930
1
a 605u/80SY aem 051A
0L VWO ELLLD) AVdsia
3IV4HIINI JAIN0 3dV1 9VW -
10
01 W3LSAS 330 »s
4 P itaa SLIE 91 N82
v-1102 ouny cwﬁ_(wnw: M AHOW3W SOW
2IND s
43iaviy IAINO &
auv) 34V1 9VW o~
sne
T X4 LIWW e
14y
S118.91-%89
11ad 1041802 S AHOWIW 3H0) w1
ML
041N0D usia 3V4H3IN ¥05$330u4
4iaviy 106403 I Sony
ayv) 34V1 OVW SNONOYHINASY 9NILYO14
M * TN
%’ %3013
vsnainn & ¥ L3 AJN3ND3Y4
£
1134 1041NOD -
HINNd 11d1 1Ny LiNn
/430v3Iy a1L180 (€) T0H1NOD H3I110H1INOD INISSII0Ud
3dv1 Y3dvd 30V4HILNI HILNIYd ¥sia TVHINID
1IN 391A30 ETL
vyl
i = L N“nﬁs_.._. SH/itL d0d
HINNG 119VWNNVYHI0Yd (40 1]
/430v3Y 3IAIN0 dvH1s 10u8
3dV1 H3dvd ¥S10 018VI0
WNIWEIL vr- 2041 %
31034 ¥3LNIYd £0NY
TVSHIAIND LN QA 26N AV1dsIO NN 3AIM0
NouviNawo3s | | E30vOn el saallenistic

57

*J0)e(nus WaSAS 21md1g 8y | "9-£°) ") T ainbiy M
S0y]
3Ala 1
NSia
QYOMVOIW £
z1
0Ny
mnﬁu IVNINYAL
Y3LNIYd
ot-23a QYOMVO3IW
b i AdOD QUVH
a-Liy iia —— LM
it Rt SN SUEE SL18 9191 %2070
=
AyCRE 311041N0D) ¥3avol i At AdOWaw [[ADN3ND3BS
193ui0 iy ann
%sia dvu181008 -OUHONASY
LLAM IN3W
-3OVNVW
AHOWIW
" tldd
S— HOSS3I00Hd
ANIOd
e L1y 3-LIAN oz_:-—.”““
HOd 118 9L
R i JOUINOD SL18 919y e
1NdLNO/LMdNI Y3Lv3Iday v bt
SS300V AUOWIN SNBINN H3avay ey ONISS3IO0NUd
1934ia 131IVHEVd ayvdy IVHLINID
08/11 dad
W3LSAS
3¥NLOM 182
.CWA“—.Pa Haavay
OGNV SNVA3 auvd

Joepnuns 21ua) O3PIA 34 “LE°L LT 3anbig

oLOVSH
W3LSAS IVNIWYIL
o.Nmo 03aIA JINOHLNIL
g-118a g-118a 11a
39V44ILNI 3-LLAW
01-S330V JOVAUILNI IIVAHILNI 3NN S118 91-%82
AYOWIW 391A30 391A30 IVIY3S SNON AHOW3IW
123410 IVH3IN3D) CELED) OUHONASY 3409
LS
ICECE] e
AYOW
[A 4
s VA-LLV
1INN
ONISS3IO0Hd
[i IVHINID
viiya aLi1ua giLya 1124 CATE)
TOULNOD 138
3JIV4UILNL 39V4UILNL 39V4HILNL HINNG NOILONBASNI
3J1A30 301A30 391A30 /M30vV3y OILIWHLINY 0Z/11 dQd
IVHINID AvHaN3o IvHINID 34V1 U3dVd Q3aN3LX3
S09d
HONNd
/yaavay
3dvi
y3dvd
S — — —_—

configuration employs only 28K of 16-bit core memory as the 11/20 is used primarily to
control the Flying Spot Scanner and to control switching at the Video Console.

2.1.2 DECsystem-10 Software

| 2.1.2.1 Features and Operating System
| 2.1.2.1.1 Features

The wide variety of computing requirements demanded by the several classes of
simulations carried out within the AVSAIL laboratory are satisfied by the flexibility and
scope of the DEC-10 software package. This software package provides for the concurrent
operations of timesharing, multistream batch, real time, and remote communications. These
multifunction capabilities allow multiple uses, both at AFAL and at remote locations, to
perform all of the tasks necessary to create new simulations, modify existing simulations,
and run those simulations as if they were individual users. The number of users on the

system at any one time depends on the total computing load.

From the user’s viewpoint, the DEC-10 may be thought of in terms of: (1) his input
device and software which he has written or which act on his software, as in Figure
2.1.2.1-1; (2) the operating system software which controls system resources; and (3) the

—————————— e ——

ACTUAL MACHINE]
: :c’l’__f 1&".‘.":]""3 :" (HARDWARE) T

‘ _Jr R :
’ r—-—n ————————--————-r——! 3
! SHAREABLE SERVICE)
‘ I RESOURCE REQUEST SERVICE — oragm::;r EM
i | | aLLocaTor HANDLER ROUTINES :
E L — S r G GEEND CENNN, S GENGED GREED WEEND SN S —— mams mwes cump § mm—mw eSues Rl
i ' USER PROGRAMS | INCLUDING METHODS OF
i | COMPILERS i TTT INPUT INPUT 1
,, | ASSEMBLERS
: EDITORS |
| UTILITIES |
| DEBUGGING AIDS pp—
' SUPPORT PROGRAMS j SOFTRARE

Figure 21.2.1-1. DECsystem-10, user’s view.

60

svstem hardware which was previously described. The DEC-10 has several capabilities which
increase the utilization of system resources in a multiuser environment. These are described
in the following three sections.

2.1.2.1.1.1 Timesharing. The timesharing capability allows resources to be shared
among users. The timesharing environment utilizes processor time and system resources that
are wasted in single-user systems. Users are not restricted to a small set of system resources,
but instead are provided with the full variety of facilities. By means of his terminal, the user
has online access to most of the system’s features. This online access is available through the
operating system command controi language, which is the means by which the timesharing
user communicates with the system.

Through the command language, the user controls the running of a task, or job, to
achieve the desired results: create, edit, and delete files; start, suspend, and terminate a job;
compile, execute, and debug a program. In addition, since multiprogramming batch software
accepts the same command language as the timesharing software, any user can enter a
program into the batch run queue. Thus, any timesharing terminal can act as a remote
job-entry terminal.

With the command language, the user can also request assignment of any peripheral
device (magnetic tape, DECtape, and private disk pack) for exclusive use. When the request
for assignment is received, the operating system verifies that the device is available to this
user, and the user is granted its private use until he relinquishes it. In this way, the user can
also have complete control of devices such as card readers and punches, paper tape readers
and punches, and line printers.

When private assignment of a slow-speed device (card punch, line printer, paper tape
punch, and plotter) is not required, the user can employ the spooling feature of the
operating system. Spooling is a method by which output to a slow-speed device is placed on
a high-speed disk or drum. This technique prevents the user from consuming unnecessary
time and space in core while waiting for either a device to become available or output to be
completed. In addition, the device is managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations experienced by these devices are equalized.

2.1.2.1.1.2 Multiprogramming. The DEC-10 has the capability to make maximum
utilization of memory. The DEC-10 is a multiprogramming system; i.e., it allows multiple
independent-user programs to reside simultaneously in memory and to run concurrently.
This technique of sharing memory and processor time enhances the efficient operation of
the system by switching the processor from a program that is temporarily stopped because

61

of 1/O transmission to a program that is executable. When core and the processor are shared
in this manner, each user’s program has a memory area distinct from the area of other users.
Any attempt to read or change information outside of the area a user can access
immediately stops the program and notifies the operating system. Because available memory
can contain only a finite number of programs at any one time, the computing system
employs a secondary memory, usually disk or drum, to increase the number of users
serviced. User programs exist on the secondary memory and move into memory for
execution. Programs in memory exchange places with the programs being transferred from
secondary memory for maximum use available main memory. Because the transferring, or
swapping, takes place directly between main memory and the secondary memory, the
central processor can be operating on a user program in one part of memory while swapping
is taking place in another. This independent, overlapped operation greatly improves system
utilization by increasing the number of users that can be accommodated at the same time.

To further increase the utilization of memory, the operating system allows users to share
the same copy of a program or data segment. This prevents the excessive memory usage that
results when a program is duplicated for several users. A program that can be shared is called
a reentrant program and is divided into two parts or segments. One segment contains the
code that is not modified during execution (e.g., compilers and assemblers) and can be used
by any number of users. The other segment contains nonreentrant code and data. The
operating system provides for shared segments to guarantee that they are not accidentally
modified.

2.1.2.1.1.3 File Protection. The DEC-10 has the capability to manage the storage of
user program and data files consistent with the multiple-user environment. The mass storage
devices available are shared among users, and thus, the operating system must ensure
independence among the users; one user’s actions must not affect the activities of another
unless the users desire to work together. To guarantee such independence, the operating
system provides a file system for disks, disk packs, and drums. Each user’s data is organized
into groups of 128-word blocks called files. The user gives a name to each of his files, and
the list of these names is kept by the operating system for each user. The operating system is
then responsible for protecting each user’s file storage from intrusion by unauthorized users.
The operating system lets the user specify protection rights, or codes, for his files. These
codes designate if others may read the file, and after access, if the files can be modified in
any way. Files are assigned protection levels for each three classes of users: self, users with a
common project number, and all users. Each user class may be assigned a different access
privilege, so that there are eight levels in each of the three user classes as described by Table
2.1.2.1-1. This file protection scheme results in a three-digit access code for all files.

62

TABLE 2.1.2.1-1. FILE PROTECTION CODES

Protection Level Access Code Access Privileges

No access privileges
EXECUTE ONLY
READ, EXECUTE
APPEND, READ, EXECUTE
UPDATE, APPEND, READ
EXECUTE
2 WRITE, UPDATE, APPEND,
READ, EXECUTE
1 RENAME, WRITE, UPDATE,
APPEND, READ, EXECUTE
Least protection 0 CHANGE POSITION, RENAME,
WRITE, UPDATE, APPEND,
READ, EXECUTE

Greatest protection

W as T~

2.1.2.1.2 Operating system

In order to have some better appreciation for the manner in which the resources of the
DEC-10 are managed, it is helpful to examine the nature of the operating system alluded to
by Figure 2.1.2.1-1. The resident operating system is made up of a number of separate and
somewhat independent parts, or routines (Figure 2.1.2.1-?). Some of these routines are
cyclic in nature and are repeated at every system clock interrupt (tick) to ensure that every
user of the computing system is receiving the requested services. These cyclic routines are:

1. The command processor, or decoder,
2. The scheduler,
3. The swapper.

The command decoder is responsible for interpreting commands typed by the user on
his terminal and passing them to the appropriate system program or routine. The scheduler
oo wdes which user is to run in the interval between the clock interrupts, allocates sharable
Catems resources, and saves and restores conditions needed to start a program interrupted by

“k he swapper rotates user jobs between secondary disk memory and core memory
Lig whie b obs should be in core but are not. These routines constitute the part of
Cotems that allows many jobs to be operating simultancously.

{ e aperating svstem gre invoked only by user programs and

|
§ 1
N
!’\ : i
1
OTHER ROTATING
: Tys DEVICES MEMORY
r—l——_q-————— ——————————————————— 1
| _ , [
| SCANNER OTHER ROTATING I iwpur/oureur
: SERVICE SERVICE MEMORY T : AOUTIISS
| ROUTINE ROUTINES HANDLER :
Liclimanen - 2T (AT dheie R
oI
uuo FILE
HANDLER HANDLER
— — — ——— %
P I b
‘ ‘ 3 i
| ' COMMAND swapren [|
1 | DECODER |
| | \ ,
VIRTUAL
1 : MEMORY | cveue
! | SERVICE 1 Mene
| ROUTINE SCHEDULES |
1 \ AND {
| RESOURCE |
I ALLOCATOR f
|
B i e S i i o e e 5 A e e L e o e e e e i J
USER
PROGRAM

Figure 2.1.2.1-2. The resident operating system.
are responsible for providing these programs with the services available through the
operating svstem. These routines are:

1. The Unimplemented User Option (UUO),
2. The input/output routines, 3

3. The file handler. i
The UUO handler is the means by which the user program communicates with the
operating system in order to have a service performed. Communication is by way of 4

programmed operators (also known as UUO') contained in the user program which, when

executed, go to the operating system for processing. The input/output routines are the

routines responsible for directing data transfers between peripheral devices and user

i el

programs in core memory. These routines are invoked through the UUO handler, thus saving
the user the detailed programming needed to control peripheral devices. The file handler
adds permanent user storage to the computing system by allowing users to store named
programs and data as files.

2.1.2.1.2.1 Command Decoder. The Command Decoder is the communications link
between the user’s termina! and the operating system. Because all the requests for system
resources are initiated via the command decoder, it is the most visible part of the system to
cach user. When the user types commands and/or requests on his terminal, the characters are
storedd in an input buffer in the operating system. The command decoder examines these
chavacters in the buffer, checks them for correct syntax, and invokes the system program or
user program as specified by the command.

Un each clock interrupt, control is given to the command decoder to interpret and
process one command in the input buffer. Given that the command is a legal one, several
actions are possible. For instance, a command must be delayed if the job is swapped out to
the disk and the command requires that the job be resident in core; the command is
executed on a later clock interrupt when the job is back in core. If all conditions as specified
by the legality flags are met, control is passed to the appropriate program.

2.1.2.1.2.2 Scheduler. The DEC-10 is a multiprogramming system; i.e., it allows several
user jobs to reside in core simultaneously and to operate sequentially. It is then the job of
the scheduler to decide which jobs should run at any given time. In addition to the
multiprogramming feature, the DEC-10 employs a swapping technique whereby jobs can
exist on an external storage device (e.g., disk or drum) as well as in core. Therefore, the
scheduler decides not only what job is to be run next, but also when a job is to be swapped
out onto disk or drum and later brought back into core.

All jobs in the system are retained in ordered groupings called queues. These queues
have various priorities that reflect the status of each job at any given moment. The queue in
which a job is placed depends on the system resource for which it is waiting and, because a
job can wait for only one resource at a time, it can be in only one queue at a time. Several
of the possible queues in the system are:

1. Run queues for jobs waiting for, or jobs in, execution,
2. T1/0O wait queues for jobs waiting for data transfers to be completed,
3. I/O wait-satisfied queues for jobs waiting to run after data transfers have been

completed,

4. Resource wait queues for jobs waiting for some system resource,
5. Null queue for all job numbers that are not currently being used.

The job’s position within certain queues determines the priority of the job with respect
to other jobs in the same queue. For example, if a job is first in the queue for a sharable
device, it has the highest priority for the device when it becomes available. However, if a job
is in an I/O wait queue, it remains in the queue until the I/O is completed. Therefore, in an
I/O wait queue, the job’s position has no significance. The status of a job is changed each
time it is placed into a different queue.

In additon, data transfers use the scheduler to permit the user to overlap computation
with data transmission. In unbuffered data modes, the user supplies an address of a
command list containing pointers to locations in his area to and from which data is to be
transferred. When the transfer is initiated, the job is scheduled into an I/O wait queue where
it remains until the device signals the scheduler that the entire transfer has been completed.

In buffered modes, each buffer contains information to prevent the user and the device
from using the same buffer at the same time. If the user requires the buffer currently being
used by the device as his next buffer, the user’s job is scheduled into an 1/O wait queue.
When the device finishes using the buffer, the device calls the scheduler to reactivate the job.

2.1.2.1.2.3 Swapper. The swapper is responsible for keeping in core the jobs most
likely to be run. It determines if a job should be in core by scanning the various queues in
which a job may be. If the swapper decides that a job should be brought into core, it may
have to take another job already in core and transfer it to secondary memory. Therefore,
the swapper is not only responsible for bringing a job into.core but also responsible for
selecting the job to be swapped out. The swapper periodically checks to see if a job should
be swapped in. If there is no such job, then it checks to see if a job is requesting more core.
If there is no job wishing to expand its size, then the swapper does nothing further and
relinquishes control of the processor until the next clock tick.

2.1.2,1.2,4 UUO Handler. The UUO handler is responsible for accepting requests for
services available through the operating system. These requests are made by the user
program via software-implemented instructions known as programmed operators, or UUOs.
The UUO handler is the only means by which a user program can give control to the
operating system in order to have a service performed. The user informs the operating
system of his requirements for /O by means of UUO’s contained in his program. The actual
input/output routines needed are then called by the UUO handler.

66

2.1.2.1.2.5 Input/Output. Since the operating system channels communication
between the user and the device, the user does not need to know all the peculiarities of each
device on the system. In fact, the user program can be written in a similar manner for all
devices. The operating system will ignore, without returning an error message, operations
that are not pertinent to the device being used. Thus, a terminal and a disk file can be
processed identically by the user program. In addition, user programs can be written to be
independent of any particular device. The operating system allows the user program to
specify a logical device name, which can be associated with any physical device at the time
when the program is to be executed. Because of this feature, a program that is coded to use
a specific device does not need to be rewritten if the device is unavailable. The device can be
designated as a logical device name and assigned to an available physical device with one
command to the operating system,

2.1.2.1.2.6 File Handler. The disk file handler manages user and system data; thus, this
data can be stored, retrieved, protected, and/or shared among other users of the computing
system. All information in the system is stored as named files in a uniform and consistent
fashion, thus allowing the information to be accessed by name instead of by physical disk
addresses. Therefore, to reference a file, the user does not need to know where the file is
physically located. A named file is uniquely identified in the system by a file name and
extension, an ordered list of directory names (UFDs and SFDs) which identify the owner of
the file, and a file structure name which identifies the group of disk units containing the file.

Usually a complete disk system is composed of many disk units of the same and/or
different types. Therefore, the disk system consists of one or more file structures—a logical
arrangement of files on one or more disk units of the same type. This method of file storage
allows the user to designate which disk unit of the file structure he wishes to use when
storing files. Each file structure is logically complete and is the smallest section of file
memory that can be removed from the system without disturbing other units in other file
structures. All pointers to areas in a file structure are by way of logical block numbers rather
than physical disk addresses; there are no pointers to areas in other file structures, thereby
allowing the file structure to be removed.

All disk files are composed of two parts, data and information used to retrieve data. The
retrieval part of the file contains the pointers to the entire file, and is stored in two distinct
locations on the device and accessed separately from the data. System reliability is increased
with this method because the probability of destroying the retrieval information is reduced;
system performance is improved because the number of positionings needed for
random-access methods is reduced. The storing of retrieval information is the same for both

67

. 3

sequential and random-access files. Thus a file can be created sequentially and later read

randomly, or vice versa, without any data conversion.

To the user, a file structure is like a device; i.e., a file structure name or a set of file
structure names can be used as the device name in command strings or UUO calls to the
operating system. Although file structures or the units composing the file structures can be
specified by their actual names, most users specify a general, or generic, name (DSK) which
will cause the operating system to select the appropriate file structure. The appropriate file
structure is determined by a job search list. Each job has its own job search list with the file
structure names in the order in which they are to be accessed when the generic name is
specified as the device. This search list is established by LOGIN and thus each user has a
UFD for his project-programmer number in each file structure in which LOGIN allows him
to have files. File storage is dynamically allocated by the file handler during program
operations, so the user does not need to give initial estimates of file length or the number of
files.

2.1.2.1.3 Real-time operating system features

The multiple simulators attached to the DEC-10 (Figure 1.3.1.1-1) which require
software simulations to be carried out by the DEC-10 in real time, as well as handle the
attendant data transfer between the DEC-10 and the PDP-11s, call upon the real-time
capabilities of the operating system. The operating system must allocate system resources
dynamically in order to satisfy the response and computational requirements of real time
without affecting the simultaneous operations of timesharing and batch jobs. As part of its
normal operation, the DEC-10 operating system satisfies this response requirement by
overlapping I/O operations with processing time and by reacting to a constantly changing
system load.

At the same time, each user of the computing system must be protected from other
users, just as the system itself is protected from all user program errors. In addition, since
real-time systems have special real-time devices associated with jobs, the computing system
must be protected from hardware faults that could cause system breakdown. And, because
protection is part of the function of the operating system, the real-time software employs
this feature to protect users as well as itself against hardware and software failures. Inherent
in the operating system is the capability of real time, and it is by way of calls to the
operating system that the user obtains real-time services. The services obtained by calls
within the user’s program include:

1. Locking a job in core,

T —p

ot el

2. Connecting a real-time device to the priority interrupt system,
. Placing a job in a high-priority run queue,
4. Initiating the execution of FORTRAN or machine language code on receipt of an
interrupt,
5. Disconnecting a real-time device from the priority interrupt system.

Memory space may be occupied by the resident operating system and by a mix of
real-time and non-real-time jobs. The only fixed partition is between the resident operating
system and the remainder of memory. A real-time job may need to be in memory so as not
to lose information when its associated real-time device interrupts (since there may not be
sufficient time to swap-in the job). The job can request that it be locked into core.

The real-time user can connect real-time devices to the priority interrupt system,
respond to these devices at interrupt level, remove the devices from the interrupt system,
and/or change the priority interrupt level on which these devices are assigned. There is no
requirement that these devices be connected at system generation time. The user specifies
both the names of the devices generating the interrupts and the priority levels on which the
devices function. The operating system then links the devices to the operating system.

The real-time user can receive faster response by placing jobs in high-priority run queues.
These queues are examined before all other queues in the computing system, and any
runnable job in high-priority queue is executed before jobs in other queues. In addition, jobs
in high-priority queues are not swapped to secondary memory until all other queues have
been scanned.

2.1.2.1.4 Remote communications

The DEC-10 allows the simultaneous operation of multiple remote stations. Software
provisions differentiate one remote station from another. By utilizing peripheral devices at
various stations, the user is provided with increased capabilities as shown in Figure 2.1.2.1-3.
For example, data can be collected from various remote stations, compiled and processed at
the central station, and then the results of the processing can be sent to all contributors of
the data.

2.1.2.1.5 Batch computing
In addition to the timesharing and real-time capabilities available on the DEC-10, batch

computing is provided by the GALAXY-10 batch software. GALAXY-10 batch software
enables the DEC-10 to execute up to 128 batch jobs concurrently with timesharing jobs.

*SUOREIUNWWOD 3joway °g-1Z°LZ unbiy

3n3ano
n
m.—:ua.ﬁ anano HONNJ an3ano
YOLVu3d0 daivn 43110 3dvi HONNd
W3LSAS y3dvd auvd

“ il
: 222277 | 1 uaownww | '
" = T R '
-] | waisas ! :
¥3sn HoLve _ | ey | .
z ¥31004ds ¢u“ozo&2
j u3sn HoLVE ¥3LL0W B g 0
' + o
~
T.. H¥3LL0Wd 3dV1 Y3dvd
* _ .
$3N3AN0D ANV OL H3100dS
g o HONNd YVD Thrkiogi e
ONIUVHSINLL
T uaooss | (z 0L dn) (zoLdn) u3100s | |
P 1NdNI HONNd QYYD) |u3iNiud InN u3LNISd 3NN
ONIYVHSIWIL NOILV1S TVHIN3D
Ly¥3sn ¥310048 Y3INIYd 4310048 L
- ONIYVHSINIL 1NdNI y3aviy oci aNm Y3INIEd INM
NOILVLS 31OW3Y

e b A e e o it - H Al

Just as the timesharing user communicates with the system by way of his terminal, the
batch user normally communicates by way of the card reader. (However, he can also enter
his job from an interactive terminal.) Unlike the timesharing user, the batch user can punch
his job on cards, insert a few appropriate control cards, and leave the job for an operator to
run. In addition, the user can debug the program in the timesharing environment and then
run it in batch mode without any additonal coding.

The GALAXY-10 system consists of a series of programs: QUASAR, the system queue
- manager and scheduler; SPRINT, the input spooler; BATCON, the batch controller; and the
output spoolers, LPTSPL and SPROUT. The input spooler is responsible for reading the
input from the input device and for entering the job into the batch controller’s input . aeue.
After the input spooler reads the end-of-file and closes the disk files, it makes an entry in
the batch controller’s input queue. The batch controller processes batch jobs by reading the
entries in its queue. The control file created by the input spooler is read by the batch
controller, and data and nonresident software commands are passed directly to the user’s
job.

QUASAR is responsible for scheduling jobs and maintaining both the batch controller’s
input queue and the output spooling queues. A job is scheduled to run under the batch
controller according to external priorities, processing time limits, and core requirements
which are dynamically computed, and according to parameters specified by the user for his
job, such as start and deadline time limits for program execution.

The output spooling programs improve system throughput by allowing the output from
a job to be written temporarily on the disk for later transfer, instead of being written
immediately on a particular output device. The log file and all job output are placed into
one or more output queues to await processing. When the specified device is available, the
output is then processed by the appropriate spooling program. These spooling programs may ‘
be utilized by all users of the computing system. ’

2.1.2.2 Program Support Software

The preparation of software programs in both assembly language and in several higher
order languages is facilitated by the various utility programs and compilers supported on the
AVSAIL DEC-10. The basic features of each of these support programs are briefly
summarized below.

i

T

s i i

i 2 iy o L3 i
S SLC RS BRSO RS R S L i)

2.1.2.2.1 Higher order language compilers

A wide range of higher order language capability is supported by the DEC-10 AVSAIL
facility. Languages available include JOVIAL, FORTRAN, APL, Basic, COBOL, and others
as subsequently described. The descriptions, other than for JOVIAL, are brief since these
languages are widely used and documented.

2.1.2.2.1.1 JOVIAL. The JOVIAL language is the Air Force standard language for
command and control software, and the level I subset of J73 is supported with a compiler
on the DEC-10.

JOVIAL had its beginnings in 1958 and, as the acronym (Jule’s Own Version of the
International Algebraic Language) implies, is similar to ALGOL in many ways. Subsequent
modifications over the years have left it substantially different, however. The introduction
of JOVIAL brought with it a number of innovative software features. It was the first
language (and until PL/I, the only one) to provide good facilities for simultaneously
performing scientific numerical computation and nontrivial data handling, while at the same
time it could also be used in general information handling areas. A second contribution is
the use of COMPOOL (COMmunication POOL) as a central source of data description. A
third contribution was its practical usage as its own compiler, and finally, it made a
significant contribution in terms of allowing the programmer great flexibility for controlling
storage allocation when he needs to, but not requiring him to do so otherwise. It is not
within the scope of this manual to define the JOVIAL language. Readers familiar with
FORTRAN and ALGOL will find many similarities. A few distinctive features of JOVIAL
are mentioned here to differentiate it from other higher order languages.

JOVIAL is a procedure-oriented, problem-oriented, and problem-defining language. Its
basic objective is to provide a language for use in solving large, complex information
processing problems. Possibly the most distinctive feature of JOVIAL related to this basic
objective is the COMPOOL. The COMPOOL is a facility which allows for creation of one or
more preprocessed common data base descriptions. The COMPOOL source, as defined by a
COMPOOL directive and declarations, contains two types of information. First, data declar-
ations which are common to two or more programs may be described in a COMPOOL. In
addition, any external procedures or functions may be declared in the COMPOOL. The
COMPOOL process involves essentially a compilation of the COMPOOL source, creating two
forms of output. One output is a relocatable object module containing space reservation for
the data delcared in the COMPOOL and any presets defined for this COMPOOL data. The
second output is a special file containing names declared in the COMPOOL and their

attributes for use by the compiler during subsequent compilations which refer to the names
declared in the COMPOOL.

Another feature of J73/I worthy of note is the absence of input/output statements.
Communication with JOVIAL programs is via the compool data base. Directives are
available for accessing auxiliary source files, however.

Certain features of the J73 data declarations are of interest. J73 supports three basic
data structures: items (scalar variables); tables of one to seven dimensions; and blocks.
Scalar items, tables and blocks may be grouped in blocks. Data may be allocated to one of
three levels. The primary and most permanent data is reserve data. Only those values that
are left in reserve data upon exit from a procedure are guaranteed at re-entrance to that
procedure. Procedure data values are not valid after exit from the containing procedure. The
final level of data is based data. No storage is allocated for based data by the compiler.
Based data describe a structuring of data, a template, which may be relocated dynamically.
This relocation may be performed by declaring a default base—an item whose value is to be
used as the address—or at each reference by using a formula whose value is the address. The
allocation level to be ascribed to data is indicated by an allocation specifier in the
declaration. J73 also provides for packing of table items at three levels: no packing, dense
packing, or medium packing. The level of packing implies the extent to which more than
one item is stored in a computer word.

The J73/I subset provides two types of statements; statements that compute values and
statements that control program flow. Statements may be named or not and may be either
simple or compound (delimited by BEGIN - END). Program control statements include
GOTO, STOP, RETURN, IF-ELSE, WHILE and a particularly powerful FOR-Loop
construct which is, roughly FOR (control variable), BY (increment phrase), THEN
(replacement phrase), and WHILE (terminator phrase). The BY, THEN, WHILE elements
may appear in any order.

The J73 language is program and procedure-oriented and a procedure call statement is
included. The J73 compilation may be a program that is invoked by an operating system or
a procedure called from a program or other procedure. Within a compilation (program or
procedure), internal procedure declarations may be nested to any level. Within a program, a
stop statement is used to terminate a program or procedure and returmn to the system. A
return statement may not be used within a program but may be used within a procedure.

Some additional insight into the nature of JOVIAL is provided by the following brief
discussion of the J73/1 compiler which is composed of a data base, a set of seven logical

73

T

e e o GRS Gl 6

processing phases, and an executive program which supports input/output, phase loading,
and commonly used utility functions. Interphase communication is via the global data
blocks, tables, and files that comprise the compiler’s data base. The structure of the J73/1
compiler is presented in Figure 2.1.2.2-1. Descriptions of the compiler compenents are
provided below.

The Compiler Executive (ECEX) is a collective name for those procedures which remain
resident throughout a compilation. Resident procedures are of three types:

1. Host Computer Operating System Interface Routines where routines are coded in
assembly language; they support phase loading and file input/output and must be
completely recoded to rehost the compiler;

2. A collection of conversion and data manipulation procedures, and compiler
debugging procedures which output symbolic dumps of compiler files and tables; the
conversion and data manipulation procedures are coded in assembly language, and
debugging procedures are coded in J73/I;

3. ‘A collection of symbol table service procedures which search and create symbol
table entries; these procedures are coded in J73/1.

The Control Card Interpreter (CCI) reads and processes control card command
statements for the compilation. Examples of options selectable by a command statement
are: target computer identity, input and output file names, and listing options. CCI is
currently coded in assembly language.

The Compool Input Processor (CIP) is called after control card interpretation to process
compool directives. CIP presets the symbol table with entries from the compool files named
in the compool directives. The process consists of reading a compool file’s directory,
searching for specified entities, obtaining the specified entities from the body of the
Compool File, and constructing the appropriate symbol table entries.

CIP is coded in J73/I. Except for certain data declarations, it is host computer
independent. CIP and other target independent compiler modules access a global table
(TRGPARM) of target parameters, such as bits per word, bits per byte, and address size, in
order to generate target-specific output.

Syntax analysis is performed by the Analyzer (ANZR). ANZR translates dynamic
statements to Polish postfix form in the Intermediate Language (IL) file, translates
declarative statements into symbol table entries, and copies constant presets and
cross-reference information to the code file. ANZR is coded in J73/I.

74

a1mangs sepdwod /gLr L-22°4T 8nby

NS
1J3ra0

JINIY3I43H
$S0HD

1NION3430 139HVL e B
ANION3430 1SOH «

}J
394nos
34

1nd1n0 »““...“o

1004W02 3114 3009 3

402 «»1103 +N902 ._._ 41201V E.. an

ERIE] ()34
1ndNi 1ndNI
3J4nos 1004W00

75

«J3X3

B

NILSAS
9NILVH340
1SO0H

The Allocator (ALOCTR) is responsible for assigning relative storage addresses for data

declarations recognized by ANZR as as result of a procedure or compool compilation.
ALOCTR is coded in J73/1.

There is one Optimizer/Code Generator pair for each compiler target machine. An
Optimizer/Code Generator pair is referred to as COGN. COGN operates in a two-pass
manner within a single phase. Optimization is performed during the first pass where the IL is
translated to a modified IL. Code generation and register assighment are performed during
the second pass, where the modified IL is transformed into the Code File.

The Editor (EDIT) reads the Code File and produces the relocatable object program file.
EDIT also optionally generates an edited object code listing and a cross-reference listing.
There is one EDIT phase per target computer.

The Compool Processor (COP) executes only in a compool build compilation. It
executes after EDIT and transforms the symbol table contents into a Compool File for later
inclusion in compilations which refer to compool-declared entities.

The major compiler data base elements include the Symbol Table, Compilation Control
Block, Intermediate Language File and Code File. The Symbol Table consists of a
fixed-length hash table and a variable-length set of entries that describe the structures and
constructs that are derived from source language parsing (e.g., source-program-declared
tables, blocks, and procedures) and that are produced to assist the compiling process (e.g.,
compiler-generated labels and items). There are two types of symbol table entries: name
entries and attribute entries. Some attribute entries describe source program entities which
have names, such as variables, procedures, and labels. Since names are variable in length, and
since more than one entity can bear the same name, the name part of a symbol table entry is
maintained separately from the related attribute information that describes the entity.

The Compilation Control Block (CCB) is a small core-resident block of data used for
communication between the compiler executive and the phases, CCB is a collection of items
such as symbol table chain headers, a bit vector describing compilation options, and the
current statement number.

The Intermediate Language (IL) File represents the executable statements of a program
in Polish postfix form. It is produced by the syntax analyzer phase, and is read by the
optimizer/code generator phase. The IL was designed to simplify optimization and code

generation. It has the following characteristics:

 —

AD=A055 591 RESEARCH TRIANGLE INST RESEARCH TRIANGLE PARK N C F/6 1/3 -
AFAL SIMULATION FACILITY/CAPABILITY MANUAL. VOLUME I. EXECUTIVE==ETC(U)
JUN 77 R A UHISNANTa W H RUEDGER» R L EARP F33615-76-C-1308

UNCLASSIFIED AFAl «TR=77=11R=V0I =1

1. The IL is, in general, language and machine independent;

2. All conversions are explicitly expressed in the IL;

3. The IL is, in general, nonredundant; for example, a FOR statement is expressed in
terms of simpler statements such as assignment, IF, and GOTO.

The Code File (CF) is used for three purposes: (1) it contains name set/use information
produced by ANZR for the cross-reference listing; (2) it contains variable preset values
produced by ANZR; (3) it contains the target machine instructions produced by the Code
Generator. The Code File is read by the Editor.

2.1.2.2.1.2 FORTRAN. The FORmula TRANslator language, FORTRAN, is a widely
used procedure-oriented programming language. It is designed for solving scientific-type
problems and is thus composed of mathematical-like statements constructed in accordance
with precisely formulated rules. Therefore, programs written in the FORTRAN language
consist of meaningful sequences of these statements that are intended to direct the
computer to perform the specified computations. DEC-10 FORTRAN-10 is compatible with
and encompasses an ANSI standard. FORTRAN-10 also provides many extensions and
additions to this standard which greatly enhance its usefulness and increase its compatibility
with other FORTRAN language sets. Extensions include subroutines which allow the
FORTRAN user to do real-time programming. With these subroutines, the time-sharing job
can dynamically connect real-time devices to the priority interrupt (PI) system, respond to
these devices at interrupt level, remove the devices from the PI system, and change their PI
level. Use of these routines requires that the user have real-time privileges and be able to
lock his job in core.

FOROTS, the FORTRAN-10 object-time -system, implements all program data file
functions and provides the user with an extensive runtime error reporting system. An
additional feature is that the association between FORTRAN logical units and the file
descriptions to which they refer may be either made within the source program or deferred
until runtime. DEC-10 FORTRAN-10 also supports FORDDT, an interactive program that
is used as an aid in debugging FORTRAN programs.

2.1.2.2.1.3 ALGOL. The ALGOrithmic Language, ALGOL, is a scientific language
designed for describing computational processes, or algorithms. It is a problem-solving
language in which the problem is expressed as complete and precise statements of a
procedure. The DEC-10 ALGOL system is based on ALGOL-60. It is composed of the
ALGOL processor, or compiler, and the ALGOL object time system. Any errors made in
writing the program are detected by the compiler and passed on to the user.

7

The ALGOL object time system provides special services, including the input/output
service, for the compiled ALGOL program. Part of the object time system is the ALGOL
library, a set of routines that the user’s program can call in order to perform calculations,
These include the mathematical functions and the string and data transmissiorr routines,
These routines are loaded with the user’s program when required: the user need only make
a call to them. The remainder of the object time system is responsible for the running of the
program and providing services for system resources, such as core allocation and
management and assignment of peripheral devices.

2.1.2.2.1.4 APL. A Programming Language (APL) is a concise programming language
especially suitable for dealing with numeric and character array-structured data. APL is a
completely conversational system which tends to increase programmer productivity and
expertise by allowing the user to interact with the APL system and his running programs,
APL is rich in operators that facilitate array calculations. This higher-level programming is
accomplished by suppressing much of the programming detail inside single APL operators,
One operator may be used to sort a vector of values in ascending order, thereby making
“sort” a primitive operation rather than a tedious subroutine. APL is intended for use as a
general data processing language as well as a mathematician’s tool.

2.1.2.2.1.5 BASIC. The Beginner’s All-purpose Symbolic Instruction Code, BASIC, is a
problem-solving language that is easy to learn because of its conversational nature. It is
particularly suited to a time-sharing environment because of the ease of interaction between
the user and the computer. The BASIC language can be thought of as divided into two
sections: one section of elementary statements that the user must know in order to write
simple programs, and a second section of advanced techniques for more powerful programs.

The BASIC system has several special features built into its design:

1. BASIC contains its own editing facilities. Existing programs and data files can be
modified directly with BASIC instead of with a system editor by adding or deleting
lines, by resequencing the line numbers, or by combining two files into one. The
user can request a listing of all or part of any of his files on either the line printer or
the terminal.

2. At the editing level, BASIC allows various peripheral devices to be used for storage
or retrieval or programs and data files; within a program, information can be read
from or written to the terminal and to the disk (in the latter case, either sequentially
or by random access);

3. Output to the terminal can be simply formatted by tabs, spaces, and column

78

- e
ST TS R

_7.'(il

e e

headings or more precisely formatted by using the advanced PRINT USING
statement;

4. BASIC has statements designed exclusively for matrix computations;

5. An advanced string handling capability includes a concatenation operator, substring
and search functions, and other string intrinsic functions; mathematical intrinsic
functions are contained in BASIC, along with methods by which the user can define
his own functions.

2.1.2.2.1.6 AID. The Algebraic Interpretive Dialogue, AID, is the DEC-10 adaption of
the language elements of JOSS, a program developed by the RAND Corporation. To write a
program in the AID language requires no previous programming experience. Commands to
AID are typed in via the user’s terminal as imperative English sentences. Each command
occupies one line and can be executed immediately or stored as part of a routine for later
execution. The beginning of each command is a verb taken from the set of AID verbs. These
verbs allow the user to read, store, and delete items in storage; halt the current processing
and either resume or cancel execution; type information on his terminal; and define
arithmetic formulas and functions for repetitive use that are not provided for in the
language. However, many common algebraic and geometric functions are provided for the
user’s convenience.

The AID program is device-independent. The user can create external files for storage of
subroutines and data for subsequent recall and use. These files may be stored on any
retrievable storage media, but for accessibility and speed, most files are stored on disk.

2.1.2.2.1.7 COBOL. The COmmon Business Oriented Language, COBOL, is an
industrywide data processing language that is designed for business applications, such as
payroll, inventory control, and accounts receivable.

Because COBOL programs are written in terms that are familiar to the business user, he
can easily describe the formats of his data and the actions to be performed on this data in
simple English-like statements. Therefore, programming training is minimal. COBOL
programs are self-documenting, and programming of desired applications is accomplished
quickly and easily.

DEC-10 COBOL accepts two source program formats: conventional format and
standard format. The conventional format is employed when the user desires his source
programs to be compatible with other COBOL compilers. This is the format normally used
when input is from the card reader. The standard format is provided for users who are

79

e i st

familiar with the format used in DEC-10 operations. It differs from conventional format in
that sequence numbers and identification are not used because most DEC-10 programs

require neither.

2.1.2.2.1.8 DBMS. The Data Base Management System (DBMS-10) is a facility of the
DEC-10 that permits the user to consolidate his data files into one or more data bases. A
data base is a collection of nonredundant data items that can be accessed by a variety of
programs and/or applications that have common processing requirements and functional
relationships. The data base is created and maintained through modules of DBMS-10. These
modules permit the user to structure the data in such a way that each application can access
in an optimum fashion, yet no data item is actually duplicated in the data base. This
arrangement is accomplished by the data administrator who structures the data base in a
manner such that each application can access it through a search pattern most suited to its
needs. Once the data base has been established, users can access the data through COBOL
programs containing special data base syntax.

2.1.2.2.2 Utility software

2.1.2.2.2.1 MACRO Assembler. MACRO is the symbolic assembly program on the

DEC-10. It generates machine language programs by performing the following functions:

1. Translating symbolic operation codes in the source program into the binary codes
needed in machine language instructions;

2. Relating symbols specified by the user to numeric values;

3. Assigning absolute core addresses to the symbolic addresses of program instructions
and data;

4. Preparing an output listing of the program which includes any errors detected

during the assembly process.

MACRO is a two-pass assembler. This means that the assembler reads the source
program twice. Basically, on the first pass, all symbols are defined and placed in the symbol
table with their numeric values, and on the second pass, the binary (machine) code is
generated. Although not as fast as one-pass assembler, MACRO is more efficient in that less
core is used in generating the machine language code and the output to the user is not as

long.

MACRO is a device-independent program; it allows the user to select, at runtime,
standard peripheral devices for input and output files. For example, input of the source
program can come from the user’s terminal and output of the assembled binary program can

80

PP SR s

g0 to a magnetic tape, and output of the program hsting can go to the line printer. More

1 commonly, the source program input and the binary output are disk files.

2.1.2.2.2.2 Linking Loader. LINK-10, the DEC-10 linking loader, merges
independently translated modules of the user’s program into a single module and links this
module with system modules into a form that can be executed by the operating system. It
provides automatic relocation and loading of the binary modules producing an executable
version of the user’s program. When the loading process has been completed, the user can
request LINK-10 either to transfer control to his program for immediate execution or to
output the program to a device for storage in order to avoid the loading procedure in the
future. |

While the primary output of LINK-10 is the executable version of the user’s program,
the user can request auxiliary output in the form of map, log, save, symbol, overlay plot,
and expanded core image files. This additional output is not automatically generated; the

| user must include appropriate switches in his command strings to LINK-10 in order to

E obtain this type of output. The user can also gain precise control over the loading process by

; setting various loading parameters and by controlling the loading of symbols and modules.
k | Furthermore, by setting switches in his command strings to LINK-10, the user can specify
the core sizes and starting addresses of modules, the size of the symbol table, the segment
into which the table is placed, the messages he will see on his terminal or in his log file, and
‘ the severity and verbosity levels of the messages. Finally, he can accept the LINK-10
: defaults for items in a file specification or he can set his own defaults that will be used
i automatically when he omits an item from his command string. LINK-10 has an overlay
facility to be used when the total core required by a user’s program is more than the core
s available to the user.

2.1.2.2.2.3 Program Debugging. The Dynamic Debugging Technique, DDT, is used for
on-line program composition of object programs and for on-line checkout and testing of
these programs. For example, the user can perform rapid checkout of a new program by
making a change resulting from an error detected by DDT and then immediately executing
that section of the program for testing. :

} After the source program has been compiled or assembled, the binary object with its
table of defined symbols is loaded with DDT. In command strings to DDT, the user can
specify locations in his program, or breakpoints, where DDT is to suspend execution in
order to accept further commands. In this way, the user can check out his program
section-by-section and if an error occurs, the user can insert the corrected code immediately.

81

N PO <

2.1.2.2.2.4 File Manipulation. The Peripheral Interchange Program, PIP, is used to
transfer data files from one I/O device to another. Commands to PIP are formatted to
accept any number of input (source) devices and one output (destination) device. Files can
be transferred from one or more source devices to the destination device as either one
combined file or individual files. Switches contained in the command string to PIP provide
the user with the following capabilities:

Naming the files to be transferred,

Editing data in any of the input files,

Defining the mode of transfer,

Manipulating the directory of a device if it has a directory,
Controlling magnetic tape and card punch functions,

D O R 0

Recovering from errors during processing.

2.1.2.2.2.5 File Editing. The Text Editor and COrrector program, TECO, is a powerful
editor used to edit any ASC11 text file with a minimum of effort. TECO commands can be
separated into two groups: one group of elementary commands that can be applied to most
editing tasks, and the larger set of sophisticated commands for character string searching,
text block movement, conditional command, programmed editing, and command repetition.

TECO is a character-oriented editor. This means that one or more characters in a line
can be changed without retyping the remainder of the line. TECO has the capability to edit
any source document: programs written in MACRO, FORTRAN, COBOL, ALGOL, or any
other source language; specifications; memorandums, and other types of arbitrarily
formatted text. The TECO program does not require that line numbers or other special
formatting be associated with the text. Editing is performed by TECO via an editing buffer,
which is a section within TECO’s core area. Editing is accomplished by reading text from
any device into the editing buffer (inputting), by modifying the text in the buffer with data
received from either the user’s terminal or some other device (insexting), and by writing the
modified test in the buffer to an output file (outputting).

2.1.2.2.2.6 Manuscript Editing. RUNOFF facilitates the preparation of typed or
printed manuscripts by performing line justification, page numbering, titling, indexing,
formatting, and case shifting as directed by the user. The user creates a file with an editor
and enters his material through his terminal. In addition to entering the text, the user
includes information for formatting and case shifting. RUNOFF processes the file and
produces the final formatted file to be output to the terminal, the line printer, or to another
file.

82

——

s g i

e Ml sl D

With RUNOFF, large amounts of material can be inserted into or deleted from the file
without retyping the text that will remain unchanged. After the group of modifications have
been added to the file, RUNOFF produces a new copy of the file which is properly paged
and formatted.

2.1.3 Special Purpose Peripherals

In order to provide the capability for simulations which assess the influence of human
factors on avionic system performance, the AVSAIL laboratory includes a simulated cockpit
and computer-generated visual displays of the external environment and the cockpit flight
data displays. The functional configuration of these elements of AVSAIL is shown in Figure
2.1.3-1. The elements shown are configured in three basic subsystems, which are referred to
here as (1) the Picture System, (2) the Video System, and (3) the Cockpit Simulator. Overall
communication between these special purpose peripherals is through the DEC-10 which
executes the simulation models. Capabilities of each of these three peripheral subsystems are
described in succeeding sections.

2.1.3.1 The Picture System

The Picture System is a standalone general purpose, interactive computer graphics
system which can display smoothly moving pictures of two- or three-dimensional objects
effectively in real time. The basic components of the system, manufactured by the Evans &
Sutherland Computer Corporation, are a DEC PDP-11; hardware processing units which
perform such functions as rotations, zooming, and perspective; an 8172-point Refresh
Buffer; a Picture Generator; a Character Generator; a 21 in. Picture Display; a Tablet to
facilitate picture interaction; and the software to support the system.

Figure 2.1.3.1-1 is an overall view of the Picture System interfuced with a DEC
PDP-11/50 computer. A close-up view of the Input Tablet, and 21 in, Picture Display (with
a typical display configuration) is shown in Figure 2.1.3.1-2. The tablet serves as the
standard, general-purpose, graphic input device in THE PICTURE SYSTEM. The tablet can
be used for positioning or pointing to the picture elements by use of a pen whose x and y
coordinates are read by the picture controller. In this manner, the tablet and pen can be
used to simulate functions, such as joy stick control, such that the operator can interactively
“fly the simulation.” An operator seated at the Input Tablet is shown *flying the
simulation” in Figure 2.1.3.1-3.

AYIeSI0
-MOONIM LNO

‘wonesmbyucs jeuonoun; seeydusd ssodind mEpeds |17 by

.:JSHS £IW0¥19313
INIATYS S
1 H 6314002
PEITER] A1IVL40 -
1041800
e vaInvd - | AVeSiO
AL MouLS
xXv03
0301IA
soNvIn0)
NOLLISO4 A X
LEELL]
ns
WILS4AS
UEL] YNNI
$40133r084 sv3
vivo
¥0133A a
AVISIO
HoLvinms
1144309
\ _ _ wiiecd
..
(013 ‘34w ‘GuvoRAIN |
‘WAL OSA GSH) | (313 "w3cany
VIVOAVISSIO gy ‘S4v14 “T1LLONKL) vavaaviema t
vive
10ULNOD 1HINS
$¥/11404 e -2 1330
*-—
(313 “TI0¥ WILk)
Vive AViSO

84

WwalsAg 2imMaig 3y) |-}'g’L°Z 3inbiy

Qa|qe) pue Aejdsip aunidg a4) 72| gL 2 A4nbiyg

‘uonejnwis ays buiAy 101esedo vy ELELT ainbiy

o

i s i

;

2.1.3.1.1 Overview of interactive computer graphics

Interactive computer graphics allows a user to dictate changes to the picture and see the
results immediately. The system time lag is a very small fraction of a second, and the user
gets the feeling that he is actually manipulating the picture itself in real time.

Computer graphics is a very broad subject, encompassing many details which are not
pertinent here. However, some appreciation of the more basic aspects, as represented by the
AVSAIL Picture System, will help to orient the reader. Four topic areas are presented in
subsequent sections: presenting a prepare picture, representing structures to be depicted,
preparing a picture of such structures, and interacting with the picture.

2.1.3.1.2 Picture presentation

2.1.3.1.2.1 Graphical Output Media. Output media fall into two basic divisions,
permanent and impermanent. Plotters and roster printers are examples of the first type,
which do not lend themselves to interactive applications. The cathode ray tube (CRT) is the
most widely used impermanent, interactive display device. Information is presented on a
CRT by directing a beam of electrons about on its phosphor coated face. The CRT face
emits light for an instant when it is struck by the electron beam and then turns dark. For
the picture to be visible it must be redrawn or refreshed very frequently. The refresh CRT
used by the Picture System can be drawn upon with a set of strokes at any position and any

angle.

2.1.3.1.2.2 Refresh Rate. Since the phosphor on the refresh CRT fades almost
immediately after it is struck by the electron beam, the picture must be continually redrawn
to be viewed. This rate at which it is redrawn is called the refresh rate, usually measured in
frames per second. If the picture is not redrawn frequently enough, the eye will notice it
fading between refreshes, producing an unsightly effect known as flicker. To avoid flicker,
the Picture System is refreshed at a rate which is greater than thirty times per second.

2.1.3.1.23 Line Generation. A line is specified by two end-points (x,y) and (x',v'),
expressed in the coordinate system of the CRT, called screen coordinates. The actual
movement of the electron beam between the two points is accomplished by a hardware
device called a line generator or a vector generator. A sophisticated line generator is also
capable of drawing lines with a program-specified mtensity, or even varying the intensity of
a line . from one end to the other. In this most general case, where line endpoints are
specified by the three coordinates (x,y,z), the intensity or brightness of lines can appear to

trail off in the distance, producing an illusion of depth. This technique is known as
depth-cueing.

2.1.3.1.2.4 Update Rate. The advantage of the refresh CRT is that it can show
smoothly changing pictures. Lines drawn on a CRT do not really move, of course, but the
illusion of motion is imparted by continually redrawing the picture of each frame with lines
at slightly different positions each time. The eye blends this sequence of slightly different
frames together into a smoothly moving picture such as a motion picture. The rate at which
these different frames can be displayed is called the update rate. In contrast to the refresh
rate which counts the number of pictures drawn per second, whether or not they are
changed, the update rate counts only those frames that are different. An update rate of
10-20 frames per second will provide smooth motion.

2.1.3.1.2.5 Picture Buffering. In the Picture System a refresh buffer provides storage so
that the refresh and update rates may be diffefént. Although refresh of 30-40 frames per
second is required to avoid flicker, update of 10-20 frames per second is adequate tc provide
smooth motion. In effect, each new frame is shown two, three, or even four times while the
next frame is being computed.

Data resident in a refresh buffer is called a Display File. Full frames stored in this buffer
may be read out and used to refresh the CRT any number of times before a new frame is
created. Typically, new frames are created 20 times a second and the picture is refreshed 40
times a second; i.e., each frame is shown twice. Thus, the presence of a refresh buffer allows
both refresh and update to proceed at their respective optimal rates and the system has a
larger line capacity than it otherwise would.

A potential problem area exists when a picture is refreshed from a memory which is
simultaneously being filled with a new frame, namely, that a picture displayed may consist
of some lines from one frame and some from another. This can produce a number of effects,
some very unsightly. To avoid this problem, the refresh buffer can be split into two separate
buffers, and update and refresh can be switched between the two in a way which avoids
conflicts. This is called double-buffering, and its only disadvantage is that the amount of
pictorial data which may be buffered is halved. In some cases this can place an unnecessarily
low ceiling on the line capacity. The alternative, single buffering, can be used to take
advantage of the entire buffering space when the effects are not too disturbing, usually

when the pictures shown are not highly dynamic.

2.1.3.1.3 Picture definition

Data ultimately deposited in a refresh buffer must originate in the memory of the
computer controlling the system. This computer-resident data is called a Data Base and may
be vastly different in form from the display file which emanates from it.

The data base contains the coordinates of points in the structure to be displayed, along
with instructions for interpreting those points. Along with coordinate informaticn there
may be pointers, substructure names, and other non-graphic information and attributes.

Points are the basic geometric entities in the data base. There are three basic instructions
for treating a point: move the beam to that point, draw a line to that point, or draw a dot
at that point.

The most straightforward way to specify the position of a point is simply to state its
absolute coordinates. An altemative that often introduces considerable efficiencies, called
relative coordinates, entails stating the displacement required to get to a point from the

previous point. Codes for common sequences like *“‘absolute, relative, absolute, relative. . . .’
can be made recognizable to facilitate handling tables of points.

If a structure to be displayed lies in a plane, it is simplest and most efficient to define it
using two-dimensional data, In this case it is typical to supply an x and a y coordinate for
each point in the structure, and then perhaps a single z coordinate which applies to all the

points.

If however, the structure is non-planar, it must be defined as three-dimensional data

where a coordinate triple of the form (x,y,z) is given for each point.

In general a (:ull computer word is devoted to each coordinate of each point and all
coordinates are expressed as integers. In the 16-bit computer, then, the largest expressible
positive number is 32767. This is sufficient for many applications, but the need to express
larger numbers sometimes arises. This need can be met, at the expense of some loss of
resolution in data definition, by employing an alternate means of expressing data called
homogeneous coordinates, Here a point (x,y,z) is defined by the four coordinates
(hx,hy,hz,h- 32767), where h is an arbitrary number between zero and one. It 1s apparent
though that resolution is lost; when h is 1/2, it is impossible to exactly express odd values
for the original coordinates. Smaller values of h impose a correspondingly greater loss of

resolution,

90

dpepm—

a7 TR (¢ P A T

- F S S g . - - e i .l et b . .t

It is customary to conserve core by supplying only the first three coordinates (hx,hy,hz)
for three-dimensional points, or just two coordinates (hx,hy) for two-dimensional points
(with a common value for hz), and to prespecify a fourth coordinate (usually referred to as
w) which applies to several such points.

2.1.3.1.4 Picture preparation

The data base is almost never identical to the display file because the base represents
some view of that scene. To create a display file, transformation of the data base is required.
In order to prepare a structure for display, it may have to be changed in size, position, or
orientation; it may have to be put in perspective as seen from a given vantage point; parts of
it may have to be removed to keep everything within a given field of view; and its
coordinate system may have to be changed to conform with the output device. All of these
steps can be expressed mathematically and implemented in software or hardware.

Fortunately, since many of the steps involved in picture preparation are invariant from
application to application, it is very worthwhile to implement them with special purpose
hardware. Any calculations unique to a given application can still be performed in software.
To meet the demand for fast frame creation, high performance graphic systems employ
special purpose hardware processors to implement the picture preparation steps. These steps
are described in the following sections.

2.1.3.1.4.1 Simple Linear Transformations. Linear transformations (rotations,
translations, scalings, etc.) can be described by parameters which indicate the type and
degree of information. If the transformation parameters are properly arranged into a matrix,
a vector of original coordinates can be multiplied by this matrix to yield a vector of new
coordinates reflecting the desired transformation.

A 4 x 4 matrix can represent any rotation, translation, or change in scale and can be
used to transform points represented by homogeneous coordinates or, as special cases,
two-dimensional or three-dimensional coordinates.

2.1.3.1.4.2 Compound Linear Transformations. All linear transformations can be
expressed as a sequence of simple translations, rotations, and changes in scale. A
transformation expressible only by such a sequence is called a compound transformation.
When a compound transformation is to be applied to a set of points, first a composite
matrix is formed by multiplying together matrices representing all the simple
transformations in the sequence, in the same order in which the data would have

91

encountered the original transformations, and then applying this composite matrix to all
points to be transformed. The process is known as transformation concatenation.

2.1.3.1.4.3 Perspective. The perspective operation entails computing a point projection
of three-dimensional points onto a plane representative of the screen, as depicted in Figure
2.1.3.1-1. Perspective can be applied to three-dimensional data by taking advantage of the
fact that the perspective transformation is expressible in matrix form: a perspective
transformation matrix can be included at the end of the sequence of rotation, translation,
and scale matrices to transform three-dimensional data into a two-dimensional perspective

representation.

2.1.3.1.4.4 Windowing. In some graphics applications, the data base is displayed in its
entirety on the screen, Often, however, a closeup of some portion of the data base is desired
and the rest is preferably omitted. Determining what to omit is so time-consuming in
software that it jeopardizes the dynamic movement of the picture.

The Picture System can address this so-called windowing problem by performing a
visibility check in hardware after the transformation stage and drawing only visible lines on

POINT 2

el e d

\
\
e A

POINT 1
ON SCREEN

e TR
AN
x
N

—\

Figure 2.1.3.1-4. Three-dimensional perspective projections anto a two-dimensional plane.

92

Tor——

WINDOW
ToP

- S WINDOW
3 BOTTOM

are passed on for display on the screen.

WINDOW
RIGHT

ol
et

A

L

*\\'/_

Figure 2.1.3.1-5. Two dimensional clipping.

93

: the display. One implementation of windowing is called clipping, and entails comparing all
lines with the boundaries of a program-specified field of view superimposed on the data
base. Lines or portions of lines outside the field of view are eliminated and only visible lines

In two dimensions, the field of view is a rectangle called a window, superimposed on the
plane of the data base. Clipping is easiest if the sides of the rectangle are parallel with the
coordinate axes; however, this presents no restriction since the effect of a rotated window
can be obtained by rotating the data in the opposite direction.

A window is specified by supplying values for its left, right, bottom, and top boundaries
using the same coordinate system used in the data base. Two-dimensional clipping is

diagrammed in Figure 2.1.3.1-5.

LINE LEFT INTACT BY THE
CLIPPING PROCESS

LINE SEGMENT REMAINING
AFTER CLIPPING PROCESS

LINE SEGMENTS REMOVED
BY THE CLIPPING PROCESS

LINE ENTIRELY REMOVED BY
THE CLIPPING PROCESS

Dt A B o Nl i

In three dimensions the field of view is a three-dimensional region. It may be a
rectangular volume, or, if its contents are to be seen in perspective, a section of a pyramid
called a frustum of vision. Such a frustum is shown in Figure 2.1.3.1.6 along with the
parameters necessary to completely specify it.

! Figure 2.1.3.1-6. Frustum of vision showing the eye position in relation to an arbitrary coordinate axis.

e e

In Figure 2.1.3.1-6 an eye positioned at point F along the Z axis is to see the portion of
the data base that lies within the frustum whose hither (near) boundary is at point H, yon
(far) boundary is at point Y, and whose side boundaries are determined, as in the

two-dimensional case, by the window left, right, bottom, and top boundaries at the hither
plane.

As in the two-dimensional case, lines are retained, completely eliminated, or partially
eliminated, depending on whether they are completely within, completely outside, or
partially outside the frustum of vision.

Another approach to windowing is called scissoring. Scissoring entails making available a
screen coordinate drawing space which is somewhat larger than the screen itself and then
intensifying only the lines and line segments actually on the screen. Scissoring is easier to
implement than clipping and does not take up time in the picture preparation stage. On the
other hand, scissoring permits an effective drawing area only slightly larger than the screen
as opposed to the vastly larger effective drawing area permitted by clipping. Another
disadvantage of scissoring is that the line generator spends time tracing out all lines, both
visible and invisible, which makes flicker occur more readily.

2.1.3.1.4.5 Conversion to Screen Coordinates. Coordinate data that is not rejected by
the clipping process is within limits determined by the field of view which may be of any
size and at any position in the data base definition space. However, it is generally
undesirable to display that data in a corresponding size and position on the screen. Rather,
the data should be properly scaled (or mapped) so that it fills some program-specified region
on the screen called a viewport. This can be accomplished by performing a final processing
step which linearly maps all data from the window to the viewport.

If the viewport is a rectangular region aligned with the screen axes, it can be specified by
supplying the screen coordinates for its left, right, bottom, and top edges. If the system’s
line generator can draw lines of varying intensity, a viewport may also specify the intensity
limits for the data displayed. These limits specify the intensities of the data at the hither and
yon boundaries and are called the hither and yon intensities. When the hither and yon
intensities are different, the intensity of the displayed picture elements varies between these
limits, allowing an illusion of depth to be imparted to the picture. A viewport is used to
specify the region of screen and the intensity limits for the data to which, in the most
general case, the frustum of vision is mapped. Figures 2.1.3.1-7 and 8 show how data may
be displayed within a viewport which is the entire screen or only a portion of it. Viewports
may also be utilized to map data into the coordinates of devices other than a display. For
example, viewport boundaries could be specified in the coordinate system of a plotter or

95

VIEWPORT

H.—-—-/- VIEWPORT

96

'...___._
|
|
|
\
I.t..__--
Figure 2.1.3.1-7. Purtisl screen viewport.

Figure 21.31-8. Full screen viewport.

——r

e g

similar device to provide the capability of obtaining hard copy output to the precision of
the plotting device.

An advantage of program-specified viewports is that several may be assigned in the same
program, each receiving different data. This technique proves convenient for many purposes
in graphics, such as showing different views of an object or views in different directions
from the same point on the same output device simultaneously.

2.1.3.1.4.6 Text Display. Almost all graphics applications call for the presentation of
alphanumerics on the screen at one time or another. It is possible of course to define
character shapes in the data base like other picture elements, and in fact, this is necessary if
characters are to be treated hke other objects, i.e., rotated, clipped, etc. However, it is
possible to derive efficiencies {from the foreknowledge of character properties when they do
not require such sophisticated treatment, by generating the actual strokes of the characters
just prior to drawing them and dealing only with character codes up to that point.

A hardware device which accepts character codes and produces the strokes comprising
the character is called a Character Generator.

To use the generator to draw a string of characters, a display program must first
stipulate character size, shape and orientation values; then position to where the string is to
begin and insert a set of packed character codes, called a text string, into the display file.
The Character Generator would then interpret the text string, look up the set of strokes
associated with each code, size and orient the strokes properly, and draw the characters on
the output device. Codes are packed into text strings as a memory conservation measure.

2.1.3.1.5 Picture interaction

Graphics applications require that the form or content of the picture be changeable by
the user. A number of input devices for this purpose have been made available.

Function switches and lights are attached to the computer in the graphics system. These
are toggle switches or push buttons from which polarity can be read. Each switch can be
assigned a meaning unique to the program.

Analog input devices, including control dials, are also used for interaction. These devices
offer one or more degrees of freedom over which a user can enter input values used for

translation, scaling, etc.

A versatile interactive input device is the Tablet and Pen, which is a flat rectangular plate
which may be positioned on a table in front of, or near, the display screen. Associated with
the tablet is a pen which may be moved about over the plate. Its position on the plate may
be read with fine resolution by the computer controlling the system. The computer can also
detect whether the pen is actually touching the plate and may also indicate if the pen is near
the plate. To tie pen motion together with a picture, a cursor is usually drawn on the screen.

This cursor is a small symbol which continually moves about in concurrence with the pen. It
soon becomes natural to guide the cursor to a desired position on the screen by an
appropriate motion of the pen.

The tablet can also be programmed to perform the functions of function switches or the
analog devices. In order to enable a tablet to perform the pointing function of typical light
pen, the system should be equipped with a hit test feature which checks all data as it
emerges from the transformation stage for proximity to the pen position. The user positions
his cursor over the target structure and initiates the hit test feature (perhaps by touching the

pen down). If a target structure is encountered, a flag is set which may be later tested or
may be programmed to cause an interrupt. This method of pointing has the advantage that

the target structure is marked in the data base, not the display file. It is often difficult or
impossible to backtrack from an entry in the display file to find its corresponding entry in
the data base.

The user of the tablet is allowed to sit in a natural writing position and at any desired
distance from the graphic display. This reduces user fatigue and improves operating
conditions.

2.1.3.1.6 Overview of the Picture System hardware

This section provides an overview of the hardware components which comprise the
Picture System. A functional diagram of the configuration of the system is shown in Figure
2.1.8.1-9. The user of the system will normally interface with these components by means
of the Graphics Software Package described in a later section,

2.1.3.1.6.1 The Picture Controller. The Picture Controller in the Picture System is a
Digital Equipment Corporation PDP-11 General Purpose Digital Computer. Software
available for the system includes a Text Editor, Macro Assembler, Linker, File Utility
Packages, Debugging Packages, and higher level languages including BASIC and FORTRAN.

The availability of these software systems and the Graphics Software Package provided with
the Picture System enable the PDP-11 to act as the Picture Controller.

PEN PICTURE
AND CONTROLLER
TABLET (PDP-11)
INTERFACE
CHANNEL
MATRIX
ARITHMETIC
PROCESSOR
REFRESH TERMINAL
BUFFER |=e— CONTROL
READ CHARACTER PICTURE PICTURE
Mga':tlivnv T —*| GENERATOR | "1 GENERATOR DISPLAY

The Picture Controller is used to:

L

Figure 221.3.1-9. Functional configuration of Picture System.

Contain the data base which describes the object(s) to be viewed,

Control the processing of the object coordinate data by the Picture Processor,
Perform all input and output required to facilitate graphical interaction,

Compute parameters for use in simulation of object movement, data representation,
etc.,

e coblad st

e N A O TP

|
]
|

e S—

5.

Perform all standard operating functions required by the operating system under
which the contro