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ABSTRACT: Weshave previously discussed the simulation of networks of

queues for general characteristics of passage times of a single job

type, using the regenerative method for simulation and the idea of H
_ tracking a distinguished job through the network.. We consider here, i
ﬂfﬁ::ffihfrom a somewhat different point of viewy passage time simulation in e ,
" —~ closed networks of queues having multiple job types. -Our,results 5 [ nthre %

provide a means of obtaining, from a single replication, point and LS :

interval estimates for passage times of the several job types. They

also yield a statistically more efficient estimation procedure for

passage times of a single job type.
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1. INTRODUCTION

We have considered in two previous papers (Iglehart and Shedler, (9],
[10)) the problem of simulating closed and finite capacity open networks
of queues, respectively, for general characteristics of passage times. A
passage time, defined formally in Section 3, is the time for a job to
traverse a portion of the network. In general, the calculation of passage
times comprises random sums of queueing times. In a closed network of
queues, when the passage time is a complete circuit or loop, we refer to
it as a response time. This paper presents a method for estimation of
passage times in networks having multiple job types, {i.e., networks with

stochastically non-identical jobs.

For closed networks, we introduced in [9] the notion of a distinguished
"marked" job. After arbftrarily selecting a job to serve as the marked
Job, we observe in the simulation the times at which passage (or respounse)
times of this job start and terminate. These observations are the basis
for construction of confidence intervals for the quantities of interast
associated with the limiting passage time. In [9] we considered passage
times in networks with a single job type. Under consideration here are
networks with multiple job types and the estimation of individual and
Joint characteristics of passage times over the several job types. The
type of a job may influence its routing through the network as well as
its service requirements at each center. For expository convenience, we
assume that there are only two job types in the network and we mark one
Job of each type. By tracking these two jobs, we are able to produce from

a single replication confidence intervals for a variety of passage time
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characteristics. The method of this paper can also be applied to networks
with only a single job type; the result is an alternative estimation scheme

to that proposed in [9].

2. NETWORKS OF QUEUES AND ASSOCIATED STOCHASTIC PROCESSES

We consider closed networks of queues with a finite number of jobs,
N, of two types, and assume that there are Nl [resp. N2] jobs of type 1
[resp. type 2] with N1+N2-N. In each network there are a finite number
of service centers, s, and a finite number of job classes, c. All jobs
retain their job type, but may change class as they traverse the network.
(Think of type 1 jobs as cubes and type 2 jobs as spheres, and let job
classes correspond to different colors. Then we permit jobs to change

color, but not shape.) Upon completion of service at center i, a type V

job of class j goes to center k and changes to class £ with probability

(v) W V)
Pij, ke’ {pij,kl'

given irreducible Markov matrix.

We assume that for v=1,2, P 1<i,k<s, 15j,Rsc} is a

The service times and service discipline at each service center are
as in [9] with the exception that they may also depend on job type. We
briefly review the situation. At each service center jobs queue and
receive service according to a fixed priority scheme among classes and
types, which scheme can vary from center to center. Each center operates
as a single server, processing jobs of a fixed type and class according
to a fixed service discipline. All service times in the network are
mutually independent, and at each center have a distribution with an

exponential stage representation (Cox [2], p. 314) with parameters which
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may depend on the service center, type and class of job being serviced,

and the '"state'" of the entire system. (We exclude zero service times
occurring with positive probability.) A job in service may or may not be
pre-empted (according to a fixed procedure for each center) if another

job of higher priority joins the queue at the center.

We restrict the present discussion to networks in which all service
times are exponentially distributed, and deal with distributions having
an exponential stage representation in the usual way by the method of
stages (cf., e.g., Gelenbe and Muntz [3]). To characterize the state of
the system at time t, we let Si(t) denote the (type, class) pair of the
job receiving service at center i at time t, i=1,2,...,s. If there are
no jobs at center i at time t, we set Si(t)-(0,0). We denote by

jl(i)""’jk(i)(i) the (type, class) pairs served at center i ordered by

(1) (i)
CE) o, G
3 3pca)

jobs in queue at time t of the various (type, class) pairs served at

decreasing priority, and let C (t) denote the number of
center i. We mark one job of each of the two types in order to measure
their passage or response times. As in [9], we view the N jobs as being
completely ordered in a linear stack, and let the vector Z(t) be given
by:
z(e) = (c}l) GRS O N TINY
k(1) 1

(s) (s)
(o] (E) ey B (t),s (&)) .
I (s) 3 5

The linear stack again corresponds to the order of components in the vector
Z(t) after ignoring any zero components. Within a (type, class) pair at

a center, jobs waiting appear in the linear stack in the order of their

Bk e




o] U —— s

T m—

arrival in the center, the latest to arrive being closest to the top of
the stack. Let Nv(t), v=1,2, denote the position from the top in this
linear stack of the type v marked job. Then the state vector of the

network is
X(t) = (Z(C);Nl(:) |N2(t))o t20 .

Under the exponential service time and Markovian routing assumptions, the
process X={X(t):t20} is an irreducible continuous time Markov chain with

finite state space E.

3. SIMULATION FOR PASSAGE TIMES
We specify the passage (or response) times for the two types of jobs

by eight subsets of E: Aiv). Aév). B{V). Bév) iV)

, for v=1,2. The sets A
and Aév) (resp. B{v), Bév)] determine when to start (resp. stop] the clock
measuring a particular passage time for the type vV marked job. We denote
the jump times of X by {nn:nzO}, and in terms of these, we define four
sequences of random times: {S}v):jzo} and {T§V):jzl}, for v=1,2. The

start (resp. termination] time of the jth passage time for the type v
V)
3-1

S}v) - inf{nnztjv): x(nn)eAév)

marked job is denoted by S {resp. T}v)]. Formally, we have for vel1,2,

» x(n_eat™}, y20
T}V) - 1nf{nn>s§fi: x(nn)cBgv). K(nn_l)éva)}- =1 .

The jth passage time for the type vV marked job is P;v)-va)-S§Bi,

j21.
Note that the definition of these times is a special case of the

corresponding times defined in (9]. This specialization still allows us

et ot ———- wTE—— v —




to deal with passage times in most networks of interest. For response

times of type Vv jobs, A{v)-Bév), Aév)-Bév), and ng)-T§v) for all j21.

At this point we depart from the method given in [9]. Let L(t) denote
the last state visited by the Markov chain X before jumping to X(t), and

set
v(t) = (L(t),X(t)), t20 .

The process V={V(t):t20} has a state space F consisting of all pairs of
states (i,j), i,j€E for which a tramsition in X from state i to state j
can occur with positive probability. In general, of course, the size of
the state space F is larger than that of E. The "Q-matrix" used in
generating the Markov chain V can be obtained easily from that for X.
Since X is an irreducible, positive recurrent Markov chain, so is V.
Clearly, the entrance times of V to a state (i,j)eF correspond to the
times of tramsition in X from state i to state j. For a type v job, we

define two subsets of F according to:
sV o {(i,3)eF: ieA{v), jeAév)}

™ o {(1,1)eF: 1er"), jenz(")} .

Thus the entrances of V to S(V) [resp. T(v)] correspond to the start (resp.

termination] times of passage times for the type vV marked job. Of course

(v)=T(v). This new set-up involving

for response times of a type Vv job, S
the process V permits a more straightforward consideration of passage (or

response times) than was the case in [9].




The argument employed in (8], Appendix 1, shows that for v=l1,2, PéV)

converges in distribution to a random variable P(v). denoted Piv)-O'P(v) 1
as n*®, and that the sequence of passage times for any other job of type

V also converges in distribution to the same random variable P(v). |
Moreover, the sequence of passage times of type v jobs (irrespective of

job identity) in the order of start (or termination) also converges in

p V)

distribution to « Our concern is with the estimation of

characteristics associated with these limiting passage times.

Estimation of E{R(l)} and P(R(l)sx)
To illustrate how simple the passage time estimation problem becomes

in the setting of the process V, we consider first the estimacion of
R

characteristics of a limiting response time, , of a type 1 job. For

this estimation problem, of course, it is not necessary to mark a type 2

%) R

Job. Since R We select a fixed state

1)

is a response time,

of S » which for convenience we designate state 0, and assume that

V(0)=0.

ht

Suppose first that we wish to estimate E{R The successive

(1)

entrances of ¥V to § constitute the start and termination of response

(L

b nx0, denote the time between

(€9

times of the type 1 marked job. Let R

(l). with the Oth entrance to S

the nth and (a+l)st entrances to S
occurring at t=0. Also, let (Vn:nzO} denote the embedded jump chain
associated with V. The random times (tn:nzl} and {§ :n2l} will denote

the lengths of the successive O-cycles (successive returns to the fixed




state 0) for V and {Vn:nzo}. respectively. Then the number of response
times for the type 1 marked job in the first O-cycle of V is

61-1

(1)
N - 1 (1)
1 j;% v es™}

and the sum of the response times in that cycle is simply
(1)
N =1

1
1
nr A Ré :

n=0
We denote the analogous quantities in the kth O-cycle by Nél) and T
Since V is a regenerative process, fue pairs of random variables
(.,

Provided that E{R

Nél)):kzl} are independent and identically distributed (i.1i.d.).
(l)}&w. a renewal argument (cf., [10)) shows that

g(RV)} - E{rl)/E{N{l)} : (3.1)

At this point, the standard regenerative method arguments (cf., [7]) can

(1)

be used to construct (based on n cycles) the point estimate ?YNl

)y,

and an

associated confidence interval for E{R

=(1) (1)
R 1

discrete time estimation method suggested by Hordijk, Iglehart and

Here ?;(Tl+...+Tn)/n and
= (N +...+N§l))/n. For this problem, we could also employ the
Schassberger (6]; this would shorten the computation time and increase

statistical efficiency.

If we are interested in the distribution function, P{R(I)Sx} of R(l).

we proceed as above, but define in addition the i.i.d. sequence of random

variables (Yk:kzl}. where, for example,




i

Nil)
A R T 0 D
n=1 n

€9 aelld

Then the point estimate of P{R'"“sx} is just Y/ , and we obtain

confidence intervals in the usual way.
Escimacion of E(R?} and E(rR(¥)

Now suppose that we wish to estimate the expected passage time for
type 2 jobs, E{R(z)), as well as E{R(l)}. Response times for the type 2

marked job start and terminate at the entrance times of V to the set

S(Z)-T(z). Let Néz) denote the number of entrances to 5(2) of V in the
kth O-cycle. For example, in the first O-cycle
9, -1
n$) . EE 1 (2)
1 ¥ e85 °
=0 n

Alcthough we are able to begin the simulation at the start of a response
time for the type 1 marked job, in general a response time for the type 2
marked job is underway at time t=0. Similarly, at the end of a O-cycle,
a response time for the type 1 marked job terminates, but a response time

for the type 2 marked job is still underway. After n O-cycles,
(2)

(2)
N TN

response times for the type 2 marked job have started and

the sum of these response times is approximately T +...+tn. The error in

1
this approximation is due to the partial response time at t=0 which is

3
{2)+...+N§‘) and the last response time which is counted,

not counted in N
but does not terminate before the end of the nth O-cycle. Since the point
estimates and confidence intervals here are based on large sample theory

(strong laws and central limit theorems), these errors are negligible for

n large. In fact, the errors due to the two response times at t=0 and at




S

PRSRESSRRI. =

the end of the simulation run compensate for each other. Again, we have

S-)):kkl} and the ratio formula

i.i.d. pairs of random variables {(l‘k..‘lL

g(r‘¥} - s(rl}/s{uiz)} ; (3.2

&> Y | wm wnl D
provided that E(R{*) }<o. The point estimate of E(R?)) 1s I/N('). and we

can use the standard regenerative method to obtain a confidence interval.

Estimation of E{R(l)}-E{R(z))
(1) _(2)

Suppose now that we wish to estimate r -r , where r

L) g(r (1))

S Ut
and £'2<5(R??). Wa can take as a point estimate the quantity

(?f§(l))—(?/§(')), but need a dbivariate central limit theorem in order to

produce a confidence interval. To this end, we let

4) S 2 L))
2k Tk ' Nk

and
2
&k
F
® @
R

for kal. (Ve take all our vectors to be column vectors.) The random

vectors {gk:kzl} are 1.i.d. since each I is only a function of the kth

K
O-cycle. Furthermore, equations (3.1) and (3.2) imply that E(gk}-g.

-t Te AR T ~ (Y ~
Denoting the transpose of Z, by Z;, let I S(zkgk} {oij} be the covariance

matrix of the Z, 's. Assuming that the elements of § are finite, we have

Tk A

the central limit theorem

-1/2 .
Pl 3 =>NQY (3.3
k=1

i e i

i it
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where N(0,%) is a multivariate normal random variable with zero mean vector

and covariance matrix . We can rewrite equation (3.3) in the form

1/2 'TV'“){(?/&'(“)qm}] £
ki S ’ N QD) . (3.4)
lx‘“)t(r/u(z))-r(~)}
Since §(V)*E{N§v)} with probability one, we can replace T gua ¥

outside the braces by E(Nil)} and E{N§2)} in equation (3.4) and not change
the result. This is an application of the continuous mapping theorem
(c.m.t.); see Billingsley (1], Theorem 5.1. Next apply the c.m.t. to this

altered form of equation (3.3) usiang the contiauous mapping

hgxl,xz)-(xl/n{xfl)}, leE{Niz)}) to obtain
1/2 (?yi(l))_r(l)
T ey (@) = NQ.ats) (3.9)
(/N )=p "

where 2-(1/E{Nil)}, l/E{Ni;)}). Note that from equation (3.5) we could
1) r(l)).

construct a simultaneous confidence interval for (r s Finally,
a third application of the c.m.t. yields
23 o 2
@0y LEAED)-EN®)- P @) w3 n(0,1) (3.6)

where

G* - clllsszil)} + 022/52{N§2)} s 2012/(E{N§1)}E{N{2)}) :

We can use the central limit theorem of equation (3.6) to construct a

W_.@

confidence interval for r , provided that an estimate for the
constant O is available. Using the classical method (cf., Iglehart [5]),
we can estimate O from the sequence of observations taken in the n O-cycles

of the process V. This estimate for ¢ appears in the Appendix.




A special case of the situation just discussed is when the two types
of jobs are the same; in this case there is only one job type, but we
elect to mark two jobs. Let r(l)-r(z)-r. f(“)-?yu(“), and T _(?(1)’?(2)).

n an n
Then we can use the method of multiple estimates of Heidelberger [4]

applied to equation (3.5). For any vector g-(Bl.Bz) with Bl+32-l, we have
@?/08)) @'2 -0 => N0,

where Uz(ﬁ)-ﬁ'(ggg')ﬁ. Next we select that value of 8, call it g*, which
minimizes cz(g) subject to fB'e=l, where e=(1,1). It turns out that g* is

given by

8" = (1/(g'ata' )} (ale) e
and
o?(g) = 1/{e' (aza") ™}

A~~~

el . 3.7)

Since $=(1,0) is one possible value of §, using ﬁ* is guaranteed to yield
a variance reduction over that obtained by marking just one job. Again,
of course, we must estimate the variance oz(g*) given in equation (3.7)
from the observations recorded.

(L)

Estimation of P{R Sx}—P(R(Z)Sx}

(l)sx}-P{R(z)Sx} for a given

Finally, we consider the estimation of P{R
value of x. This is the most difficult of the problems we treat. Since
the value of x is fixed throughout the discussion, in general we suppress
in our notation the dependence of x. Again we form O-cycles based on the

response times for the type 1 marked job. Here, however, when a 0O-cycle

ends, we do not know whether the response time for the type 2 marked job




r—

in progress will be less than or equal to x. Thus, with respect to the
response times for the type 2 marked job, the O-cycles used previously do
not create the i.i.d. blocks needed to establish a central limit theorem.
Instead, we form new cycles by grouping together a geometrically
distributed number of consecutive O-cycles. Let Ti-rl+...ri. izl, and
T,=0. We let s, denote the time of the last entrance of V into S(Z) during

0

the ith O-cycle; s, is the start time of the response time for the type 2

i
marked job underway at the conclusion of the ith O-cycle. Set Ai.{Ti—si>x}

and pi-P{Ai}' Since the O-cycles are i.i.d., the events (Aizizl} are

also, and Py"P for all i2l. We assume that at the start of the simulation
the value of the response time for the type 2 marked job underway is

greater than (the fixed) x. This corresponds to the begiuning of one of Hh
the new "super-~cycles" we are constructing. I1f we let y denote a geometric i

random variable with distribution given by i;
n-1 &
P{y=n} = (1-p)" “p, n=l ,

then the length of the first super-cycle is simply tl-rl+T2+...+rY. The

——

number of response times for the type V marked job started in this

e

super~cycle is niv)-va)+...+N§v). Successive super-cycles are detined {

in an analogous fashion. Define the sequence {Yév):kzl} to be the number
of response times terminating in the kth super-cycle which are less than é
or equal to x; for example &
n(v)-l
™ . 12 L (V)
1 =h {Rk sx}

Observe that by the definition of a super-cycle, the first response time

of the type 2 marked job terminating within a super-cycle must be greater
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) W

's are i.i.d. Of course, the Y
(2),
k

than x. Thus the sequence of Yiz
are i.i.d. also, as are the nil)'s and n s. We can now form the

bivariate central limit theorem analogous to equation (3.5), namely

=(1) —(1) (1)
R [(y a o prMex)

ey s = N(Q,b(x)E(x)b' (x)) ,
(Y(Z)/n(z))-P{R(z)Sx}] R

where h(x)'(l/E{n(l)}, llﬂ{n(z)}), and L(x)={ag,  (x)} with
1 1 13

Qij (x) = E{[Yii)-nii)P{R(i)Sx}][YJ(_j)-n](_J)P{R(j)Sx}]} .

Finally, by the same argument used in equation (3.6), we obtain
@270 (@D AW TP 7Dy erP x-pr P b))

=3 N(0,1) , (3.8)

where
P = (0y, 00 /EXa D Doy, ) /B2 P D= 20,, ) /B P 1E Yy

We can estimate the quantity o(x) from the observations in the n
super-cycles using the classical method; see the Appendix. Then we
construct confidence intervals for P{R(l)sx}-P{R(z)sx} from equation (3.8)

in the usual way.

4. EXAMPLE AND NUMERICAL RESULTS

To illustrate the technique of the previous section for estimation of
response times, we consider a simple closed network of queues having two
types of jobs and two service centers; see Figure 1. There are N jobs in
the network, Nl jobs of type 1 and N2 jobs of type 2. Upon completion of

service in center 1, a type V job joins the queue at center 1 (with




e e kv AL - ST ST YR AT —

| 14

(v)) or (with probability l—w(v)) joins the queue in center 2.

probabilicy U}
Upon completion of service at center 2, jobs join the queue at center 1.
At both service centers, type 1 jobs have non-preemptive priority over

type 2 jobs. Jobs of the same type at either of the centers receive

service in order of their arrival at the center. We assume that all

service times are mutually independent; jobs of type Vv at center i receive
service which is exponentially distributed with parameter Aiv). The
(limiting) response time R(v) for type vV jobs that we consider in this

model is the time measured from when upon completion of service at center 2,

a type V job enters the queue at center 1, until the next such entrance

by the job into the queue at center 1.

In this model, there are two job classes, class 1 jobs at center 1

and class 2 jobs at center 2. Each center sees both job types, but only

V)

one job class. The irreducible Markov routing matrices P are of the

form

) I (1)
o [ 1-

1 0
Since type 1 jobs have priority over type 2 jobs at both centers, the
(type, class) pairs ordered by decreasing priority are jl(i)-(l.i) and
jz(i)-(Z,i), i=1,2, For this model, it is sufficient to take as the

component Si(:) in the vector Z(t) the type of job in service at center i

at time t, rather than the (type, class) pair. Then we can define the

vector Z(t) as

R - —— i , — 4
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2(e) = € (8,68 (03,8, (0,652 () 0 $M (0318, (0))
where, for i=1,2 and v=1,2,
ci\)) (t) = number of type V jobs in queue at center i at time t,
and

Si(t) = type of job in service at center i at time t

0 if center i is idle at time t .

Letting Nv(t), v=1,2 denote the position from the top of the type Vv marked

job in the linear job stack, the state vector for this model is
X(t) = (2(t),N, (£),N,(r)), t=0

Letting L(t) denote the last state visited by the Markov chain 5-(X(t):t20}

before jumping to X(t), the vector V(t) is
v(e) = (L(t),X(t)), t20

For N=2 jobs, the state space E of the process {X(t):t20} has six

states and is

E= {(0,0,0,1,0,1,2,1), (0,0,0,0,1,2,1,2), (0,0,1,0.0,2,1,2)}

v {(0,0’2)0,0,1’2.1), (1!0’190501012’1)! (olllz’o)olo|ll2)} .

The subsets A(l) and Aél)

1
the type 1 marked job are

of E defining the start of response times for

At < ((0,0,0,1,0,1,2,1), (0,0,2,0,0,1,2,1)}

Aél) = {(0,0,1,0,0,2,1,2), (0,1,2,0,0,0,1,2)} .

——— g~ -
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Similarly, the subsets A and A

§2) of E defining the start of response

(2)
2

times for the type 2 marked job are

at? = ((0,0,0,0,1,2,1,2), (0,0,1,0,0,2,1,2)}

Aéz) = {¢0,0,2,0,0,1,2,1), (1,0,1,0,0,0,2,1)} .

Since R(l) and R(z) are response times, Biv)-A{v) and Bgv)-Agv), v=1,2;
see Figure 2. It is easy to check that the state space F of the process

v)

{v(t):t20} has nine states. The subsets S of F defining the starts of

response times for the type V marked job are

A - {(0,0,0.1,0,1,2,1.0,0,1,0,0,2,1,2)}

s(
U {(ODO’Z'OIOillz’lloillzboioio’ltz)}
and

(2

S ) e {(0,0,0,0.1,2,1.2,0.0,2.0,0.1,2,1)}

v 100,9,1,0,0,3,1,23,1,0,1,0,0,0,2,1)) ,

respectively; see Figure 3. Here we use the enumeration of the six states
of E given in Figure 2. Thus, e.g., (1,3) denotes the state

¢0,0,0,1,0,1,2,1,0,0,1,0,0,2,1,2)¢F.

Results obtained by simulation of this model for w(l)-w(z)-.75,
X(l)~k(2)-k =] and A(l)-k(z)-k =,5, with N=2, appear in Tables 1l-4. With
1 1 1 2 2 2
these parameter values, there is one type 1 job and one type 2 job. The
routing and service requirements of the two job types are the same; the
two jobs differ only with respect to the non-preemptive priority given
(at each center) to the type 1 job. The simulation used the congruential

uniform random number generator described by Lewis, Goodman, and Miller

LT
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(11], with exponential service times obtained by logarithmic transformation
of the uniform random numbers. Independent streams of exponential random
numbers (obtained from different seeds) were used to generate individual

exponential holding time sequences.

In the simulatiqp results of Tables 1-4, the return state defining
O-cycles of the response time for the type 1 job is the state
(0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2). This corresponds to a response time
for the type 1 (marked) job starting when the type 2 (marked) job is in
service at center 1. Table 1 summarizes results of the simulation and
reports point estimates and 90 percent confidence intervals for the
quantities E{R(l)}, E{R(Z)} and E{R(l)}-E{R(z)} over a range of number of
cycles of the type 1 marked job. Theoretical values for these quantities
are shown in parentheses. Thus, for example, 100 cycles of the type 1
marked job were observed in the simulated time interval (0,903.00) and
there were a total of 446 transitions in the continuous time Markov chain
{L(t):c20}. A total of 130 response times for the type 1 (marked) job
were observed along with 56 response times for the type 2 (marked) job.
For the quantity E{R(l)}-7, the point estimate 6.946 was obtained, and
the 90 percent confidence interval had half-length 0.6334. Note that for
E(RM} and E{R(z)}, all of the confidence intervals surrounded the
theoretical values. In the case of E{R(l)}-E{R(Z)}. the confidence
intervals based on equation (3.6) also surrounded the theoretical value.

Table 2 gives results obtained for P{R‘Msx}, with x=4, 8, 12, 16 and 20.




T AT

e A S PR s v

18

In Table 3 we give, for the several values of x, point and interval

(l)Sx}-P{R(Z)

estimates for P{R sx}, based on the use of super-cycles and
equation (3.8). Thus, for x=4, 100 cycles based on response times for
the type 1 job resulted in 37 super-cycles defineq by response times for
the type 2 job greater than x. Note that the number of cycles for the
type 1 marked job has been fixed, and for each x the estimates for
P{R(l)Sx}-P{R(Z)sx} computed from the resulting random number of
super~cycles.

)

Table 4 contains estimates of the quantities P{R‘“’/s<x} obtained from
the standard regenerative method applied to these super-cycles. An averall
observation from Tables 2 and 4 is that the lengths of confidence intervals

obtained for P{R(l)Sx} and P{R‘P) <z} are roughly comparable.

5. CONCLUDING REMARKS

The discussion in Section 3 concentrated on problems associated with
the estimation of characteristics of response times for the two types of
jobs. The estimation of characteristics of two passage times, or one
response time and one passage time, is in general easier. This is because
there is the possibility of forming, from O-cycles based on one type of
job, super-cycles which terminate when no passage time of the other type

of job is underway.

We have considered explicitly only the case of two job types. The

estimation methods of Section 3 apply equally well to networks having more




than two job types. The state space which results from the augmentation
of the vector X(t) (by components to track a marked job of each of the

‘ job types) is of course larger.
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TABLE 2

Percentiles of Type 1 Response Times in Closed Networks of Queues
With Two Job Types. Nj=1, Np=1, Y=, 75, Al-l. Ag9=.5. Return
State is (0,0,2,0,0,1,2,1,0,12,2,0,0,0,1,2).

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000 j
PR <4} 0.23864 0.2536 0.2555 0.2641 0.2639 i
+0.0622 | +0.0417 | +0.0301 | £0.0217 | +0.0192 |
p(r P ss} 0.6692 0.6714 0.6717 0.6709 0.6802
£0.0683 | $0.0444 | 0.0308 | +0.0221 | +0.0201
p{rP<12) 0.8923 0.8786 0.8832 0.8769 0.8830
£0.0422 | $0.0293 | $0.0205 | £0.0159 | +0.0140
(P <16} 0.9461

0.9536 | 0.9594 | 0.9547 | 0.9605
£0.0311 | +0.0198 | £0.0135 | 0.0105 | 0.0088
p(rP<20) 0.9923 | 0.9892 0.9915 0.9880 0.9898

£0.0127 | $0.0200 | +0.0061 | +0.0052 | +0.0043
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A PPENDIX

We first consider estimation of the variance constant 02 appearing in

equation (3.6) which leads to a confidence interval for (R 1-e(r (P},

Based on n cycles, for i=1,2, compute 611 as an estimate of

Oz ™ E{(Zil))z} = var{Tél)}—Zr(l)cov{Tél),Nél)}+(r(l))2var{Nél)}

according to

811 =5, " 29(1)s§§) + (9(1))2s§§) 5

where 4

1 S, =2
P P VIR

=1
(1) _ L = (D5
8 == 3‘?-:‘1“1 D ENTD
and
(1) _ 1 < (1) =(i),2
82 " a1 ;ZI(NJ NSk s
with

n n
T-1 Jz_:lr y o B %jzlnj“) and £ - TFWD

Finally, compute 812 as an estimate of

(1) W)@ (2),

¢ K

= var(rk}-r cov{Tk,N cov{Tk,N

12

(1) _(2) (1) (3
+r r cov{Nk ,Nk }

according to
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= ] ~(l) ) _ ~(2) (2) (1),(2)
82 = 51y 82 81 +EUE s,

(1)

(2)
D

12

% (1) 501Dy () 5(2)
== Jz_“:l(u ) () )

where s and s are as before, auad

Then estimate 02 according to

5 51 8y, 28,

a2 * {2, T FFD

In an analogous manner, we estimate the variance constant oz(x)
appearing in equation (3.8) which leads to a confidence interval for

(1) +5 Y

P{R " =x}-P(R Based on n super-cycles, for i=1,2, compute Oii(x)

as an estimate of

(X) . var{i(i)} ZP{R(L)SX}COV{Y(L) (i)}

(1) (1 )}

+ (P{R " sx}) var(n

according to
y(L) (1)
8,0 = 8{p) () - 2(‘(1‘)) St +<Y(L)) o ()

where

oD o = L Zjl(Y“’ hind !
J-

(1)(‘)___2“(1) (1))(nj<1) sy
and

1n
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with
T 2L S g f O L W)
"=l J "=l h

Finally, compuZe Glz(x) as an estimate of
0)p(x) = cov{Y(l) (2))‘P{R(l)>x}cov{Y(2) (1))

- P{R( >x}cov(Y(l) (2)}
+ P{R(l) Y)P{R(Z)Sx}cov{nil).néz))

according to |

(l) ( )
‘ B - e NS R

Y -Y
+ Sanix)
(;(1)5(2) > 22

(x), s(l)(x) and s( )(x) are as before, aand

(L)

where sll
2(x) Z(n(l) (l))(n;“ ()) .

Then estimate ¢ (x) according to

800 8y 20,0

8%(x) =
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(i) Services at centers 1 and 2 are not interruptable
(ii) Routing for type » jobs determined by binary valued variable

(iii) Type 1 jobs have non-preemptive priority over type 2 jobs

Figure 1. Closed network of queues with two job types.
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(0,0,1,0021.2)
i\

(1,0,1,0,0,0,2,1)

Figure 2. State transitions in Markov chain X and subsets of E for response
times RV and R'?,
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Figure 3. State transitions in Markov chain V and subsets of F for response

times R and R,
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