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ABSTRACT : We~~ave pre;iously discussed the simulation of networks of
queues for general characteristics of passage times of a single job
type , using the regenerative method for simulation and the idea of
tracking a distinguished job through the network. - We consider here ,

7 - , ‘~~~ ° ; ‘ .from a somewhat different point of view t passage time simulation in (

closed networks of queues having multiple job types. -‘Our~
results

provide a means of obtaining , from a single replication , point and - _

interval estimates for passage times of the several job types. They
also yield a statistically more efficient estimation procedure for
passage times of a single job type.
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1. INTRO DLJ C~ ION

We have considered in two previous papers ( I glehar t  and Shedler , (9~ ,

[10)) the problem of simulating closed and finite capacity open networks

of queues, respectively , for general characteristics of passage times . A

passage time , defined formally in Section 3, is the time for a job to

traverse a portion of th. network. In general, the calculation of passage

times comprises random sums of queu.ing time.. In a closed network of

queues, when the passage t ime is a complete circuit or loop, we refer to

it as a response time. This paper pre sents a method for estimation of

passage times in networks having multiple job types , i .e . ,  networks with

stochasticall y non— identical job s .

For closed networks , we inLr oduced in [9)  the notion of a distinguished

“marked ” job . After  a rb i t ra r i ly  selecting a job to serve as the marked

job , we observe in the simulation the times at which passage (or response)

times of this job start and terminate. These observations are the basis

for construction of confidence intervals for the quantities of interest

associated with the limiting passage time . In [9] we considered passage

times in networks with a single job type. Under consideration here are

networks with multiple job types and the satimation of individua l and

joint characteristics of passage times over the several job types. Tb.

type of a job may in! luance its routing through the network as well as

its service requirements at each center. For expository convenience , we

assume that  th.re are only two job types in the network and we mark one

job ot each type. By tracking these two j obs , we ar. able to produce from

a single replication confidence interval s for  a variety of passage time
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characteristics. The method of this paper can also be applied to networks

with only a single job type; the result is an alternative estimation scheme

to that proposed in (9).

2. NETWORKS OF QUEUES AND ASSOCIATED STOCHASTIC PROCESSES

We consider closed networks of queues with a finite number of jobs,

N, of two types, and assume that there are N1 (rasp. N2
] jobs of type 1.

(resp. type 2] with N1+N2—N. In each network there are a finite number

of service centers , s , and a f in i t e  number of job classes , c. All jobs

retain their job type , but may change class as they traverse the network.

(Think of type 1 jobs as cubes and type 2 jobs as spheres , and let job

classes correspond to di f fe ren t  colors. Then we permit jobs to change

color , but not shape.) Upon completion of service at center i, a type ‘.

job of class j goes to center k and changes to class L with probability

We assume that for v l 2 , P { p
~~~k~

: l�i,k�s, l~j,i�c~ is a

given irreducible Markov matrix.

The service times and service discipline at each service center are

as in (9] with the exception that they may also depeLicI on job type. We

brief ly review the situation. At each service center jobs queue and

receive service according to a f ixed priority scheme among classes and

types, which scheme can vary from center to center. Each center operates

as a single server , processing jobs of a fixed type and class according

to a fixed service discipline. All service times in the network are

mutually independent, and at each center have a distribution with an

exponential stage representation (Cox [2), p. 314) with parameters which

-
. 
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may depend on the service center , type and class of job being serviced,

and the “state” of the entire system. (We exclude zero service times

H occurring with positive probability.) A job in service may or may not be

pre—empted (according to a fixed procedure for each center) if another

job of higher priority joins the queue at the center.

We restrict the present discussion to networks in which all service

times are exponentially distributed , and deal with distributions having

an exponential stage representation in the usual way by the method of

stages (cf., e.g., Gelenbe and Muntz (3]). To characterize the state of

the system at time t , we let S~ (c) denote the (type, class) pair of the

job receiving service at center i at time t , i l ,2,...,s. If there are

no jobs at center i at time t , we set S~ (t)u.(O~O). We denote by

the (type, class) pairs served at center i ordered by

decreasing priority , and let ~~~~~~~~~~~~~~ ( t)  denote the number of

~k( i)
jobs in queue at time t of the various (type, class) pairs served at

center i. We mark one job of each of the two types in order to measure

their passage or response times. As in (9], we view the N jobs as being

completely ordered in a linear stack, and let the vector Z(t) be given

by:

Z(c) — (c~~ (t ) , . . ., C U ) (t ) , S (t ) ; . . . ;
~k(l) ~1

(t ) , .  ~~~~~~~~~ ( t) )  .
a k(s) ~1

The linear stack again corresponds to the order of components in the vector

Z(t) after ignoring any zero components. Within a (type, class) pair at

a center , jobs waiting appear in the linear stack in the order of their

J
~ --~ - - - ~____ i~~~~i_ __ 
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arrival in the center , the latest to arrive being closest to the top of

the stack. Let N
~

(t), v.1,2, denote the position from the cop in this

linear stack of the type v marked job. Then the state vector of the

network is

X(t) — (Z( t),N1(t),N2(r)), t~O

Under the exponential. service time and Markovian routing assumption., the

process ~—{X(t):t~O} is an irreducible continuous time Markov chain with

f i n i t e  state apace E.

3. SLMWATION FOR PASSAGE TIMES

We specify the passage (or response) times for the two types of jobs

by eight subsets of E: 4’~
) , 

~~~ ~~~~ ~~~~ for v.1,2. The sets (v)

and 4J) (reap. 3~v) , ~~~~ determine when to start [resp stop] th. clock

measuring a particular passage time for the type v marked job. We denote

the jump times of ~ by {fln
:n�O}, and in terms of these, we define four

sequences of random t imes : {S~
’
~~:j~O) and tT~

’
~~:j~ l}, for v—].,2. The

start (rasp. termination] time of the jth passage time for the type v

marked job is denoted by S~~j (reap. ~~~~~ Formally , we have f or v.1,2,

— inf(n~~T~
’
~~: x(n~)€ A ~~~ X(%_1)eA~~~}, p0

— in!{~~>S~
’
~~: X(T

n
) B

~
’
~~ ~~~~~~~~~~ 

j�l

The jch passage t ime f or the type V marked job is ~~~~~~~~~~~~~ j�l.

•1 Not. that the definition of these times is a special case of the

corresponding times defined in (9]. This specialization still allows us

-~~~~~~ 
- - - . - - —  -~~ 

- --~~- .~ - —-~ ~~~~~~~~~~~~
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to deal with passage times in most networks of interest. For response

times of type V jobs, ~~~~~~~~~ A~~~’B~
’
~~, and S~~~’T~~~ for all j~1.

At this point we depart from the method given in (9]. Let L(t) denote

the last state visited by the Markov chain ~ before jumping to X(t), and

set

V(t) — (L(t),X(r)), t�O

The process ~~{V(t):t~O} has a state space F consisting of all pairs of

states (i,j), i,jeE for which a transition in ~ from state i to state j

can occur with positive probability. In general , of course, the size of

the state space F is larger than that of E. The “Q—inatrix ” used in

generating the Markov chain ~ can be obtained easily from that for X.

Since X is an irreducible, positive recurrent Markov chain, so is V.

Clearly , the entrance times of ~ to a state (i,j)EF correspond to the

times of transition in X from state i to state j. For a type v job , we

define two subsets of F according to:

s~
’
~ — {(i,j)€F: itA~”~ jEA~

’
~~}

— {(i,j)EF: iEB~~~ 
~~3

(V)
}

Thus the entrances of ~ to [reap . T~
’
~~] correspond to the start (reap .

termination] times of passage times for the type V marked job. Of course

for response t imes of a type v job , s~~ u,T1)). This new set—up involving

the process ~ permits a more straightforward consideration of passage (or

response times) than was the case in (9].

— ---—----—- - - — - . 
I
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The argumunt emp~.oyed in [81, Appendix i , stwws th at  ~or \~~1 11 (v)

converges in dis t r ibut ion to a random variable ~~~~~ denoted

as n-’~ , and that the sequence ot passage times tot .tn other job ot type

V also converges in distribution to the same random variable ~(v)

Moreover , the sequence of passage times of type V jobs (irrespective of

job identity) in th. order of start (or termination) also converges in

distribution to ~~~~~ Our concern is with the estimation of

characteristics associated with these limiting passage times.

Estimation of E tR ~~~ } and F (R ~~~~ x)

To illustrate how simp le the passage time estimation problem becomes

in the setting of the process ~ . we consIder first the estimation of

characteristics of a limiting response time , ft (l) , of a type 1 jc~b. For

this estimation problem, of course , it is not necessary to mark a type 2

job. Since R~
1
~ is a response time , s~~~—r~~~. We select a fixed state

of ~~~~ which for convenience we designate state 0, and assume that

Suppose first that we wish to estimatc E(R~~~}. The ~uccassIve

entrances of ~~ to ~~~~~~ cOnStitute the start and termination of response

times of the type 1 marked job. Let ~~~~ n~O , denote the time between

the nth and (&t+L)st entrances to ~~~~ with the 0th entrance to S’0

occurring at t0 . Also , let (V~ :n�~0} denote the embedd ed j ump chai n

associated with V. The random times (‘r :n�l} and (S :n~ l} wilt ,  denoten n
the lengths of the successive 0—cycles (successiv e returns to the fixed

- - ._-—.~ ~— - — .-——- ..-,,--- -. —
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state 0) for ~ and tV~~:n~~~} 1 respectively . Then the number of response

times for the type 1 marked job in the f i r s t  0-cycle of V is

61 1
,( 1)
1 — tV ~s”}j 0  n

and the sum of the response times in that cycle is simply

t
1

— E R~
1
~n 0

We denote the analogous quantities in the kth 0—cycle by N~
1
~ and tk~

Since ~ is a regenerative process, 
r .tS pairs of random variables

are independent and identically distributed (i.i.d.).

Prov ided that E(RU)}c~ , a renewal argument (cf., (101) shows that

E{R~
1
~) - E{t1

}/ E{ N~~~} . (3.1)

At this point , the standard regenerative method arguments (cf., (7)) can

be used to construct (based on n cycles) the point estimate T/N~
1) 

and an

associated confidence interval for ~~~~~~~ Here r— (r1
-s-. . .+r )/n and

For this problem , we could also employ the

discrete t ime estimation method suggested by Hordijk, Iglehart and

Schasaberger (6]; this would shorten the computation time and increase

statistical efficiency.

If we are interested in the distribution function, P(RU~~x} of

we proceed as above, but define in addition the i.i.d. sequence of random

variables (Y
k
:k�l), where , f or example,



S

(I,)N1
— E

n 1 .  n

Then the point estimate of P(R~
1
~~.x} is just Y/N~

’
~ , and we obtain

confidence intervals in the usua l way.

Estimation of E (R ~
1
~ } arid E {R~~~ }

Now suppose that we wish to estimate the expected passage time for

type ~ jobs, E(R~
2
~ ), as well as E(R~

’
~). Response times for the type 2

marked job start and terminate at the entrance times of ~ to the set

s~~~—T~
2
~. Let N~

2
~ denote the number of entrances to S~

2
~ of V in the

kth 0—cycle. For example, in the first 0—cycle

5 — 1
(2)N1 ~~ 

1
~Vn 0  ri

Although we are able to begin the simulation at the start of a response

time for the type 1. marked job, in general a response time for the type 2

marked job is underway at time c—O . Similarly, at the end of a 0—cycle ,

a response time for the type 1 marked job terminates, but a response time

for the type 2 marked job is still underway. A f t e r  ii 0—cycles ,

~~~~~~ .+N~
2
~ response times for the type 2 marked job have started and

the sum of these response times is approximately t~,+. . .+t~ . The error in

this approximation is due to the partial response time at t 0  which is

(2) C ’)not counted in N1 +. .+N1~ and the last response time which is counted ,

but does not terminate before the end of the nth 0-cycle. Since the point

estimates and confidence intervals here are based on large sample theory

(strong laws and central limit theorems), these errors are negligible for

n large. In fact , the errors due to the two response times at t— 0 and at

~~~~~~~~~ - —- --~~-~- - -- -- .-
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t~~e end of the s imu 1at’~~n run compensate t o t  each othe r .  A~ a~~i , we have

i.i.d. pairs at random variables and the ratio formula

- E(t 1}/ E1N~~~1 , ( 3 . .)

provi~ed that ~~~~~~~~~ The point est imate of E ( R ~~~ ) is ~~~~~~~ an d we

can use the standard regenerative method to obtain a confidence interval.

Estimation ~~~~ E(R~~~}—E{R~
2
~ )

Suppose now that we wish to estimate r~
’
~ —r ”~~ , where r~~~—E {R~~

”
~)

and r E t ~~”~~}. We can take as a point est imate the quantity

but need a bivariate central limit theorem in order to

produc e a confidence interval. 1’o this end , we let

-. (v)  — — ~
v)

N ~Y)
k

and

- 
.,~~~~~~ ) J

for k�1. We take all our vectors to be column vectors.) The random

vectors t
~ k

.k_l} are i.i.d. .ince each is onl y a funct ion  ~~ the kth

0—cycle. Fu~thermore , equations ¼3.t) and ~3 .2 )  imçly that

Denoting the transpose of k by Z~ , 
let 

~
=E k~~

}— (o
~~

} be the covariance

~~trl~ of the ‘s. Assuming that the elements of are finite, we have

the central limit theorem

“4 ~~~~~~~ ,
k-I

— _i 
..— — —-  — —
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wnere  N~ O .~~) is a mu lt t v ar i at e  normal r andom var i ab le  u~~ h :ero mean vect or

an~ cova riance m a tr i x  ~. We can r ewr it e  e~ u a t i u n  L i . 3 )  in the t o r n

— 

~
) ~~~ — 9 N ~Q,~~) . ~3~ 4)

N~~
’t Lt ~~N~~

’ )-r~~’ }

Since ~~
v) ..E~~

(v)
) with probability one , we can replace an~

outside the b r aces b y E ( N~~
0 } and E {N~~~ } in equation (3.4) and not change

t~~ e result. This is an application of the continuous mapping theorem

(c.m.t.); see ~il1irigslev [1], Theorem 5.1. Ne xt  apply the c.m .t. to this

altered form of equation ~3.3) using the cont inuou s map~’i~~

~~~1~x? l ~~~~1
), x~1 E(N~~~~) to obtain

.—~~(l) (1)
j 11 — 

— __ . •
~ 

(
~~ 

“—~~ N~3,a~a ’~ (3.5)
Lr/N )—r —

where a L l ~ E i N ~’~ }. 1,’Et~~~~~~) .  N ote  chat ~run equation Li.5) we could

const ruc t a sL~ u~ taneous co nfidence interval f~ r (r~~~ , r ’~~~).  FiLial ly,

a t h ir d  application of the c .m . t .  yields

~~~~~~~~~~~~~~~~~~ [{(T /N )_ (t/N )}_(r(1) _r (2))] ‘—4 N C) ,1) (3.6)

where

— 011/E (N } + c,~/E {N~
’
~} —

We can use the central limit theorem of equation (3.6) to construct a

confidence interval for r~
1’
~—r~~~ , provided chat an estimate for the

constant ~‘ is available. Using the classical method (ct.., Iglehart (5~),

we can estimate c from the sequence of observations taken in the n

of the process \~. This estimate for ~‘ appears in the Appendix.

L
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A special case of the situation jus t  discussed is when the two types

of jobs are the same; in this case there is only one job type, but we

elect to mark two jobs. Let ~~~~~~~~~~~ r / ~~’~~, and

Then we can use the method of multiple estimates of Heidelberger [4]

applied to equation (3.5). For any vector ê— (811$2) with 8l+82u~1, we have

(~ hJ2 /0(~ )) (~ ‘~~—r) “.4 N ( 0 ,l)

where c2 (~ )”~~’ (aZa ’)~~. Next we select that value of ~~, call it f, which

minimizes a2(~) subject to ~ ‘~ —i , where r(1~1)• It turns out that  ~~~ j~

given by

—

and

(3.7)

Since ~“(l ,0) is one possible value of ~, using is guaranteed to yield

a variance reduction over that obtained by marking just one job. Again,

of course, we must estimate the variance o
2(~*) given in equation (3.7)

from the observations recorded.

Estimation of P {R x }—P{ R~
2
~~ x}

Finally , we consider the estimation of P {R~
1
~ �x}—P ~R ’2

~~ x) for a given

value of x. This is the most difficult of the problems we treat. Since

the value of x is fixed throughout the discussion, in general we suppress

in our notation the dependence of x. Again we form 0—cycles based on the

response times for the type 1 marked job. Here, however, when a 0—cycle

ends , we do riot know whether the response time for the type 2 marked job
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in progress will be less than or equal to x. Thus , with respect to the

response times for the type 2 marked job , the 0—cycles used previously do

not create the i.l.d. blocks needed to establish a central limit theorem.

instead, we form new cycles by grouping together a geometrically

distributed number of consecutive 0—cycles. Let T~— r 1+...r~ 1 i~l, and

T0—O. 
We let denote the time of the last entrance of ~ into S~

2
~ during

the ith 0—cycle; s~ is the start time of the response time for the type 2

marked job underway at the conclusion of the i th  0—cycle. Set A~.(T~—s~>x}

and p~~P(A
1
}. Since the 0—cycles are i.i.d., the events (A

1
:i�lI arc

• also, and p~—p for all i�l. We assume that at the start ot. the simulation

the value of the response time for the type 2 marked job underway is

greater than ( the  fixed) x. This corresponds to the beginning of one of

thu new “super—cycles” we are constructing . If we let y denote a geometric

random variable with distribution given by

P(y”n} — (1_p)fl~1p,  n�1

then the length of the first super—cycle is simply t
1—T1+r 2+...+r~ . The

number of response t imes for the type V marked job started in this

super—cycle is ~~~~~~~~~~ . ~~~~~~ Successive super—cycles are defined

in an analogous fashion . Define the sequence 
~~k

” :k~l) to be the number

of response timee terminating in the kth super—cycle which are less than

or equal to x; for example

~(v) 
E

Observe that by the def inition of a super—cycle , the first response time

of the type 2 marked job terminating within a super—cycle must be greater 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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than x. Thus the sequence of ~~
2h I~ are i.i.d. Of course, the

are i.i.d. also, as are the n~~~ ’s and 42)~ s. We can now form the

bivariate central limit theorem analogous to equation (3.5), namely

[(~(l) ,ç(l))p{~(l)~~}~
~~~1~~

’2 

2 2 ~~~~~~~~ N(0 ,b(x)~~(x)b ’ (x) ) ,

L(V~
2
~/n~ ~)—P{R~ ~sx)J

where ~(x)”(lIE{n~~~}, i/E{42~ }) , and ~(x)’~{a~~(x)} with

—

Finally, by the same argument used in equation (3.6), we obtain

(flh/2 /a(x)) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~4~N(0 ,l) , (3.8)

where

~2( )  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We can estimate the quantity ~(x) from the observations in the n

super—cycles using the classical method ; see the Appendix . Then we

construct confidence intervals for P{R x —PCR~
2
~~x from equation (3.8)

in the usual way.

4. EXA~~ LE AND NUMERICAL RESULTS

To illustrate the technique of the previous section for estimation of

response times , we consider a simple closed network of queues having two

types of jobs and two service centers; see Figure 1. There are N jobs in

the network , N1 jobs of type 1. and N2 jobs of type 2. Upon completion of

setvice in center 1, a type V job joins the queue at center 1 (with

Ii 
_________________________________________________________ 

________________ 
~~~~~~~~~~~~~ ~~~~~~~~~~~~ --~~~~—~~—~~~~~ 

—
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probability ‘I’~~~
) or (with probability ~~~~~~ joins the queue in center 2.

Upon completion of service at center 2, jobs join the queue at center 1.

At both service centers , type 1 jobs have non—preemptive priority over

type 2 jobs. Jobs of the sane type at either of the centers receive

service in order of their arrival at the center. We assume that all

service times are mutually independent ; jobs of type V at center i receive

service which is exponentially distrIbuted with parameter ~~~~ The

(limiting) response time for type V jobs that we consider in this

model is the time measured from when upon completion of service at center 2,

a type V job enters the queue at center 1, until the next such entrance

by the job into the queue at center 1.

In this model, there are two job classes, class 1 jobs at center 1

and class 2 jobs at center 2. Each center sees both job types , but only

one job class. The irreducible Markov routing matrices are of the

form
I (s.,) (v)1

l~~ j— 
1 0

Since type 1. jobs have priority over type 2 jobs at both centers, the

(type , class) pairs ordered by decreas ing priority are j
1
(i)”u(l ,i) and

j2(i)— (2,i), i—1 ,2. For this model, it is sufficient to take as the

component S~ (t) in the vector Z(t) the type of job in service at center i

at time t, rather than the (type, class) pair. Then we can define the

vector Z( t) as



~
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Z( t) — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where , for i—l ,2 arid v—1 ,2,

c~~ (t) — number of type V jobs in queue at center i at t ime t,

and

S~(t) — type of job in service at center i at time t

0 if center i is idle at time t

Letting N
~

(t) ,  \)“1,2 denote the position from the top of the type V marked

job in the linear job stack, the state vector for this model is

X(t) (Z(t),N1
(t),N

2
(t) ) ,  t~0

Letting L(t) denote the last state visited by the Markov chain X (X(t):t�0}

bef ore jumping to X(t), the vector V(t) is

V(t) — (L(t),X(t)), r�0

For N—2 jobs, the state space E of the process {X(t):t�0} has six

states and is

E — {(o ,o ,o ,l ,o ,1,2 ,1), (0 ,0 ,0 ,0 ,1,2 ,1,2) ,  (0 ,0 ,1,0 ,0,2 ,1,2) 1

u {(o,0,2,0,0,1,2,].), (1,0,1,0,0,0,2,1), (0 ,1,2 ,0 ,0 ,0 ,1,2) 1

The subsets 41) and 41) of E defining the start of response times for

the type 1 marked job are

41) — ((0 ,0,0,1,0,1,2,1) , (0 ,0,2,0,0,1,2,1)1

41) — ((0 ,0,1,0,0,2,1,2),  (0,1,2,0,0,0,1,2)1
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Similarly , the subsets 42) and A~
2
~ of E defining the start of response

times for the type 2 marked job are

42) — {(o,O ,O,o,l,2,i,2 ) ,  (0,0,1,0,0,2,1,2)1

42) — {(o ,o ,2 ,o ,o ,l ,2 ,1), (1,0 ,l ,0 ,O ,0 2 ,1)}

Since and R~
21 are response times, B~~~”A~~ and B~~~ ’A~~

’, \)1,2;

see Figure 2. It is easy to check that the state space F of the process

(V(t):t~0) has nine states. The subsets ~~~~ of F defining the starts of

response times for the type V marked job are

— {(O ,o,O,j,o,l,2,1,o,0,1,0,0,2,1,2) }

U

and

~(2) 
— {(o,o,o,o,l,2,l,2,o,0,2,o,o,l,2,1)}

u {(O ,0,1,O,0,2,l,2,l,o,l,o,0,0,2,l)}

respectively ; see Figure 3. Here we use the enumeration of the six states

of E given in Figure 2. Thus, e.g., (1,3) denotes the state

(0 ,0,0,1,0,l,2,1 0 ,O,1,O,0,2,l,2)€F.

Results obtained by simulation of this model for

and 41)~
.
~
42),

~A2
..5, with N 2 , appear in Tables 1—4. With

these parameter values, there is one type 1 job and one type 2 job. The

routing and service requirements of the two job types are the same; the

two jobs differ only with respect to the non—preemptive priority given

(at each center) to the type 1. job. The simulation used the congruential

uniform random number generator described by Lewis , Goodman , and Miller
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[11], with exponential service times obtained by logarithmic transformation

of the uniform random numbers. Independent streams of exponential random

numbers (obtained from different seeds) were used to generate individual

exponential holding time sequences.

In the simulation results of Tables 1—4, the return state defining

0—cycles of the response time for the type 1 job is the state

( 0 0 ,2 ,0,0,1,2 ,1,0,1,2 ,0,0,0,1,2). This corresponds to a response time

for the type 1 (marked) job starting when the type 2 (marked) job is in

service at center 1. Table 1 summarizes results of the simulation and

reports point estimates and 90 percent confidence intervals for the

quantities ~{a~
1
~ }, E {R~

2
~} and E{R ~}—E{R~

2
~} over a range of number of

cycles of the type 1 marked job. Theoretical values for these quantities

are shown in parentheses. Thus, for examp le, 100 cycles of the type 1

marked job were observed in the simulated time interval (0,903.00) and

there were a total of 446 transitions in the continuous time Markov chain

{L(t):t~O}. A total of 130 response times for the type 1 (marked) job

were observed along with 56 response times for the type 2 (marked) job.

For the quantity E{R~
1
~)~ 7, the point estimate 6.946 was obtained , and

the 90 percent confidence interval had half—length 0.6334. Note that for

E(R~
1
~} and ~~a’2

~), all of the confidence intervals surrounded the

theoretical values. In the case of E{RW)~.E(R
(2) ), the confidence

intervals based on equation (3.6) also surrounded the theoretical value.

Tab le 2 gives results obtained for P{RW�x}, with x 4 , 8, 12, 16 and 20.

— ____
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In Table 3 we give , for the several values of x, point and interval

estimates for P{RW sx)~P(R
(2)

�x}, based on the use of super—cycles and

equation (3.8). Thus, for x ’ 4 , 100 cycles based on response times for

the type 1 job resulted in 37 super—cycles defined by response times for

the type 2 job greater than x. Note that the number of cycles for the

type 1 marked job has been fixed , and for each x the estimates for

P{R~
1
~�x}—P(R~

2
~~x) computed from the resulting random number of

super—cycles.

Table 4 contains estimates of the quantities P(R~
2
~�x} obtained from

the standard regenerative method applied to these super—cycles. An overall

observation from Tables 2 and 4 is that the lengths of confidence intervals

obtained for P{R~~~~x} and P{R~
2
~~x} are roughly comparable.

5. CONCLUDING REMARKS

The discussion in Section 3 concentrated on problems associated with

the estimation of characteristics of response times for the two types of

jobs. The estimation of characteristics of two passage times, or one

response time and one passage time, is in general easier. This is because

there is the possibility of forming, from 0—cycles based on one type of

job, super—cycles which terminate when no passage time of the other type

of job is underway.

We have considered explicitly only the case of two job types. The

estimation methods of Section 3 apply equally well to networks having more
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than two job types. The state space which results from the augmentation

of the vector X(t) (by components to track a marked job of each of the

job types) is of course larger.
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TABLE 2

Percentiles of Type 1 Response Times in Closed Networks of Queues
With Two Job Types. N3 l, N2—l , ~‘— .75 , A 1—1 , k2— .5. Return

State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000

0.2384 0.2536 0.2555 0.2641 0.2639
±0.0622 ±0.0417 ±0.0301 ±0.0217 ±0.0192

0.6692 0.6714 0.6717 0.6709 0.6802
±0.0683 ±0.0444 ±0.0308 ±0.0221 ±0.0201

P (R~
1
~ �l2} 0.8923 0.8786 0.8532 0.8769 0.8830

±0.0422 ±0.0293 ±0.0205 ±0.0159 ±0.0140

0.9461 0.9536 0.9594 0.9547 0.9605
±0.0311. ±0.0198 ±0.0135 ±0.0105 ±0.0088

P {R~~~~20} 0 .9923 0.9892 0.9915 0.9880 0.9898
± 0 . 0 1 2 7  ±0.0100 ± 0 . 0 06 1  ± 0 . 0 0 5 2  ± 0 . 0 0 4 3

• 

—
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A PP EN DI X

We first consider estimation of the variance constant appearing in

equation (3.6) which leads to a confidence interval for E C R ~~
’

~~~} — E{R ~~
2

~~ }.

aased on U cycles, for i—l ,2, co~npute ~~~~~ as an estimate of

E ( (Z~~~)
2} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

accord ing to

— s11 
— 2 1)4~~ + (~.(l))

2 ( i)

where

- 

~r E(t~~
) 2

- -
~r ~~~~~~~~~~~~~ I

and

~
-
~-y E(N~~~N”~

)2 
,

with

— ~~- ~~~T , 
j j(i) I 

~~~~~~ and ~
(i) ~-1

’~-(i) •

•J—l i_l i

Finally, compute e12 as an estimate of

012 
— var{T

k
}r cov{tk,Nk

} r c ov{rk, Nk }

+ r r ~
2
~cov{N ,N~

2
~)

according to

~~~~~~~~~-- 

—

~~~~~~~~~

• -

~~~~~~ •~~~~~•
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— — ~~(1)~~~(1) 
— ~~(2)~~~~ 2) 

+12 11 12 1.~ 22

where S~~~~~i ~~~ and ~~~ are as before , a~id

~22 — 

~-r ~~~~~~~~~~~~~~~~~~~~~~ -

i—I

Then est.mate ~
2 
according to

82 ~ll 
822 2812

— 

(~
( l)
)2 

+ 
(~ (2))

2 
—

In an analogous manner, we estimate the variance constant

appearing in equation (3.8) which leads to a confidence interval for

P (R (1 x}_P(R
(2
~~x). Based on n super—cycles , for  i 1 , 2 , compute

as an estimate of

— varCY~ }_2P(R U~~x}cov{Y~
i) 

~~~~~

+ ~~~~~~~~~~~~~~~~~~~~~~~

according to

1 
____ 

) /~~(i)\2 
~— s

~ i (x) — 2 (~
—
~
ij-) 

5g (x)  
~~(~~(i)) ~22 

(x)

where

stt) (x) — 
1 E(y (i) y (i) ) 2

i—i

— 
I. 

~~ (Y (i)_V(i))(n(i)_~
(i) )

- j — J .

and

— 

~r ~~~~~ (fl
(i) _~~~(i)

)
2

_j— l

~~~~~~~~~~~~~~~~~~~
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with

— ~ ~~~~(i) arid ~
(t )  I

j—i i— I

Finally , compu’e a12
(~

) as an estimate of

— cov(Y~~~ ,Y~ )—ptg~
1
~~x)covfi~

2
~ ~U) }

- P {R~
2 x}cov{Y ,n~

2
~ }

+ PCR~ x)P{R~
2 x}cov{n~

1
~ ~

(2 )

according to

a1, (x) — — (~4~-~-) 
s~~~~~ (x) — (

~~
) s~~~~ (x)

~~,‘.
— l)—(2 

) ~
‘22~~~

where s~~~ (x) , s~~~~(x) and s~~~(x) are a: beiore, ~iuJ

— ‘r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j—l

rhen estimate 0
2(x) according to

2 
&
11

(x) 822 (x) 2022 (x)
8 (x) — 

(—W )
2 + 
(~
•(2)
)
2 

— 
~~( l ) — ( 2 )  
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(I) Serv ices at centers 1 and 2 are not interruptable

(i i)  Routing for type ~ jobs determined by binary valued variable ç
~~~
’
~~

( i i i )  Type 1 jobs have non•preemptive priority over type 2 jobs

Figure 1. Closed network of queues with two job types.
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Figure 2. State transitions in Markov chain X and subsets of E for response
times R11
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We have previously discussed the simulation of networks of queues

for general characteristics of passage times of a single job type, using

the regenerative method for simulation and the idea of tracking a

distinguished job through the network. We consider here, from a

somewhat different point of view, passage time simulation in closed

networks of queues having multiple job types. Our results provide a

means of obtaining, from a single replication, point and interval

estimates for passage times of the several job types. They also yield

a statistically more efficient estimation procedure for passage times
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