
AU A 055 Vt; SYSTEM DEVELOPMENT CORP SANTA MON ICA CAL I F r i u LI -SOFTWARE ACQ U I S I T I O N MANAGEMENT GU IDEtj OO K2 COST EST .— —E T C(tJ)
MAR 78 P1 F INF E R , R M IS H F19029—75—C—LJ236

I J N { I A S S I F I L I) SOC-TM--5772/QO7/O2 £SD-TR—7a—1;c) N/I

_ _ _
__

U~i
_ _

__ si

~DU~E 60 DDE_
1/ I

— - — - —— - - — —
~~~~~~~~~~~ — —  — —

~~~rR_78_ r~4

~~~~
/
~ OFTWARE~~CQU1S 1TI0N~~ANAGEME NT GUIDEBOOK: 

_ _ _  _ _

~~~~~~~~~~~

.

Marsha /Pinfer
Russely’Mish
Syst~m De~~i~~ment Corporation

~~~ 2500 Colorado Avenue
~~~ Santa Monica, CA 90406

I

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR TECHNiCAL OPERATIONS
ELECTRONIC S~tSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

_____________ ______ —
~~

-

4,

LEGAL NOTICE

When U. S. Government drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fur&shed, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

C.
~~~~~~~~ Lu ~ U (1~&~1

JC*IN C. M(1~T—S)~TH J~1N T. HOLLAND, Lt Colonel , USAF
Project )~nager Chief , Techniques ~~gineeriflg Division

FOR THE CCWANDER

STANLEY P. ERESKA, Colonel, USAF
1’~ Director, Computer Systems ~ igineering

E~piity for Technical Operations
I

-
~~~~~~

4,

-~ - n~~r-,-r~~---

It

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGEN CY . A L T H O U G H IT

IS R E C O G N I Z E D THAT CERTAIN PORTIONS

A R E I L L E G I B L E , IT IS BEING RELEASED

IN THE I N T E R E S T OF M A K I N G A V A I L A B L E

AS MUCH I N F O R M A T I O N AS POSSIBLE.

-

- .

— - — -~~~~—~~~-- ~~~~~~~~~~~~ . t . - - - r -

UNCLASSIFIED
SECURITY CLASSIF ICA TION OF THIS PAGE (When Oct. Entered)

REPORT DOCU MENTATION PAGE BEFORE COMPLET !~~~ FORM
I . REPORT NUMBER 2. GOVT ACC ESS ION NO. 3. R E C I P I E NT S C A T A L O G NUM B ER

ESD-TR-78-140 ___________________________
4. TITLE (and Subt Itl e) 5. TYPE OF REPORT & PERIOD COVERED

Software Acquisition Management Guidebook :
Software Cost Estimation and Measurement

6. PERFORMING ORG. R~~~ORT NU M B E RTM-5772/007/02
7. A UTHOR(s) S. CONTRACT OR GRANT NjIM BER(.)

Marci a F. Finfer Fl9628-76-C-O236~
’

Russell K. Mish

9. PERFORMING ORGANIZA TION NAME AND ADDRESS ID. PROGRAM ELEMENT . P R O J E C T , TAS K
A R E A 6 WORK UNIT NUMBERSSystem Development Corporation ,

2500 Colorado Avenue
Santa Monica , California 90406
II . CONTROLLING OFFICE NAME AND ADDRESS 12 . REPORT DATE

Deputy for Comand & Management Systems March 1978
Electronic Systems Division ~~.I

A IUMBER OF PAG ES

Hanscom AFB , Massachusetts 01731 ____________________________
t .. MONITOR ING AGENCY N A M E & ADORESS(II af f f e r s n t from CootrollIn~ Office) 15. SECURITY CLASS. (of thi, report)

Unclassified

IS. OSCL A SSIF I CAT IO N1 00W NGRA OtNG
SCHEDULE

IS. DISTRIBUT ION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIB UTION STATEMENT (of the abat,~ ct entered In Block 20. II different from Repo”

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse eld. ii necessary and ldintIiy by block num ber)

Cost Estimation
Cost Proposal Evaluation
Cost Proposal Preparation
Parametric Models
Sof tware Cost E st imation

~~ A U S 1RAC T (Continue an rev e ree .id. if necessar y and ld.ntsfy by b loc k number)

~ he Software Cost Estimation and Measurement guidebook is designed to assist
Air Force personnel who are responsible for estimating and controlling the
cos ts of embedded software wi thi n command , control , and coninunications systems .
It provides a basic understanding of the current methodologies used in the
formation of Air Force and contractor software cost estimates. Insight is pro
vided into some of the problems (and reasons for the problems) associated wi th
software cost estima tes made by both Government and industry . The guidebook

—
.

-
DD

~~~~~~~~ 
1473 LOITION OF I NOV 65 IS OSSO. 

- ~
1ij

gf%_#d 

- I.



- —.

‘I

UNCLASSIFIED
SECURITY CI.ASSI FICAT ION OF THIS PAGE(*7..n Dets Ent.r.d)

P 2O.~~(contId)

di scusses the role of parametric models used in cost estimation and reviews
three experimental predictive models. It also discusses the process of
monitoring software costs and schedules while providing guidance to relevant
military regulati ons, specificati ons, standards, and supporting litera ture.
Much of the information and guidance provided is applicable to smaller less
complex systems, but in all cases, it should be tailored to the needs of
indivi dual projects.

I.

‘.4)

Iv,

SECURITY CLASS IFICAT ION OF THIS PAGE(IPh.n P.r. Fnt.,.4)

- - 
- -



PREFAC E

This guidebook was prepared by System Development Corporation under the
direction of the Computer Systems Engineering Di rectorate of the Electronic
Systems Division (ESD/TOI , formerly MCI), Air Force Systems Command. The
Software Cost Estimation and Measurement guidebook is one of a series of
Software Acquisition Management guidebooks intended to help ESD Program
Office personnel in the acquisition of embedded software for command , con tro l
and communications systems. The contents of the guidebook will be revised
periodically to reflect changes in software acquisition policies and practices
as well as feedback from guidebook users.

The Software Acquisition Management guidebook series is currently planned to
cover the fol lowing topics (National Technical Information Service accession
numbers for those already published are shown in parentheses):

Regulations , Specifications and Standards* (AD-A01640l )
Contracting for Software Acquisition (AD-A020444)

Monitoring and Reporting Software Development Status
(AD-AO l 6488)
Statement of Work Preparation (AD-A035924)
Reviews and Audits
Computer Program Configuration Management (AD-A047308)

Computer Program Development Speci fication (Requirements Specification)

Software Documentation Requirements (AD-A027051 )
Verification (AD-A048577)
Validation and Certifi cation
Overview of the SAM Guidebooks
Software Maintenance
Software Quality Assurance (AD-A047318)
Software Cost Estimation and Measurement
Software Development and Maintenance Facilities

• (AD-A0 38234)
Life Cycle Events (AD-A037ll5)

, 1.

*~~yised in March 1978

1

I



—

TABL E OF CONT ENTS

PREFACE 1
L IST OF FIG URES 4

SECTION 1 - INTRODUCTION 7
1.1 Purpose 7
1.2 Scope 7
1.3 Contents 8

SECTION 2 - PROGRAM OFFICE SOFTWARE COST ESTIMATION 9
2.0 Introduction ....,~~92. 1 Program Control 10
2.2 Work Breakdown Structure 16
2.3 Impact of Software Cost Estimation on Contract

Cost Type 18
2.4 Summary of a Survey of Program Office Software

Cost Estimation Procedures 24

SECTION 3 - OFFEROR’S COST PROPOSAL PREPARATION 29
3.0 Introduction 29
3.1 Cost Estimating Techniques 30

3.1.1 Analogy of Similar Experi ence 31
3.1.2 Quantitative Method 31
3.1.3 Percent-of-Other-Item Method 32
3.1.4 Rules of Thumb 33
3.1.5 Parametric Equations 33

3.2 Issues Impacting Software Development Costs   36
3.2.1 Compl exity of Appl ication 36
3.2.2 Total Software Size 38
3.2.3 Requirements Specification 39
3.2.4 Level of Change in Performance

Requirements 41
3.2.5 Documentation Requirements 41
3.2.6 Software Quality Requirements 42
3.2.7 Software Development Schedule 42
3.2.8 Type of Software Development Effort    45
3.2.9 Personnel Requirements 45
3.2.10 Development Methodology 46

3.3 Project Management and Scheduling Plans .    47
3.3.1 Task Segmentation/WBS Definition .    50
3.3.2 Scheduling of WBS Elements 51

SECTION 4 - ROLE OF PARAMET R IC MODEL S 53
4.0 Introduction 53
4.1 Parame tr Ic Model s 53
4.2 Models Versus Methods in Cost Estimation . . .  54
4.3 Development of Cost Estimation Relationships

(CERs ) 55

3 
~ Precedin g page blank 

-

4,



____ - — - - - .—.-•-— .-—— • - - • -— - — — — — - - - - -‘ --——
,..—‘—• -~~•-- - v  - - —

TABLE OF CONTENTS (cont’d)

Page

SECTIO N 5 - COST PROPOSAL EVA LUATION 59
5.0 Introduction 59
5.1 The Mechanics of Evaluation 59
5.2 Cost Analysis of Technical Activities 60
5.3 Cost Analysis of Technical/Financial

- Monitoring Activiti e~ 64

APPENDIX A - REFERENCES 67

APPENDIX B - SOFTWARE COST ESTIMATION MODELS 71
-

1.0 Introduction 71
‘ — L1~ Hahn & Stone Software Transfer Cost Estimation

‘
~~~echnique 71

1.1.1 Factors Considered in the Hahn & Stone
Model 71

1.1.2 Hahn and Stone Model 76
1.1.3 Suninary Evaluation of Hahn & Stone

Software Transfer Cost Estimation
Technique 83

1.2 Putnam General Solution to the Software Sizing
and Estimating Problem 86
1.2.1 Factors Considered in the Putnam Model 86
1.2.2 Putnam Life Cycle Model 86
1.2.3 Evaluation of the Putnam Model 91

1.3 The Tecolote Provisional Model for Estimating
Computer Program Development Costs 93
1.3.1 Factors Considered in the Tecolote

Model 93
1.3.2 Tecolote ’s Provisional Cost Model . . 95
1.3.3 Evaluation of Tecolote Approach . . . 101

APPENDIX C - GLOSSARY 107

APPENDIX D - OFFICIAL GOVERNMENT DOCUMENTS FOR COST ESTIMATION
AND MEASUREMENT 113

LIST OF FIG URES
Figure

Figure 1. Model System Acquisition Process 1
Figure 2. Typical Program Office 10
Figure 3. Phased Softwa re Cost Estimation 13
Figure 4. Work Breakdown Structure 18
Figure 5. Type of Contract vs Degree of Risk 20
Figure 6. Contract Type vs Risk Considerations for Software . . . 21

4

I
,,-

LI ST OF FI GURES

Figure

Figure 7. ASPR References Regarding Contract Type Selection . . 23
Figure 8. Survey of ESD Program Office Software Cost Estimation

Methods 26
Figure 9. Rules of Thumb 34
Figure 10. Estimated Distribution of Resources for a Medium-

Large Project 44
Figure 11 . Examples of Gantt, Project Network, and Time-Scaled

Network Charts 49
Fi gure 12. Software Transfer Considerations 73
Figure 13. Manual Transfer Tasks 77
Fi gure 14. Conversion Production Rates (Instructions or State-

ments/Man-Day) 82
Figure 15. Development Production Rates (Instructions/Man-Day) . 83
Figure 16. Division of Effort for Complete Redesign Task 84
Figure 17. Documentation Degradation Factors 84
Figure 18. Program instability Degradation Factors 85
Figure 19. Project Profile 87
Figure 20. Typical CSC Appl ication of Manpower to a Software

Development Project 87
Figure 21. Life Cycle Integral and Deri vative Curve Forms 88
Figure 22. Appl ication Software Life Cycle 89
Figure 23. Programming Rate Versus Difficulty 91
Figure 24. Basic Data for Tecolote Provisional Model 96
Figure 25. Fast Storage vs Targets Tracked 97
Figure 26. Operating Instructions vs Fast Storage 99
Figure 27. Del ivered Instructions vs Operating Instructions . . 99
Figure 28. Man-Months vs Operating Instructions 100
Figure 29. Man-Months vs Delivered Instructions 100
Fi gure 30. Inferred per Man-Month Factors 101
Figure 31. Summary of Provisional Software Estimating Relation-

ships 103
Figure 32. Adjustment Factor for Different Cost Factor Assumptions 104
Figure 33. ProvIsional Software Development Cost Model 105

SECTION 1 - INTRODUCTION

1.1 PURPOSE

The Software Cost Est imation and Measurement guidebook is designed to assist
Air Force personnel who are responsible for estimating and controlling the
costs of embedded software within command, contro l , and communications
systems. The information provided herein is directed speci fically towards
Air Force Program Office management personnel and a member of the Engineering
Division , referred to as the Software Director, who is generally responsible
for managing software acquisition . Much of the information and guidance
provided is applicable to smaller less complex systems, but in all cases,
it shoul d be tailored to the needs of individual projects.

This document recognizes and is compatibl e with Air Force 800 series
regulations and related concepts.

1.2 SCOPE

The information presented in this guidebook provides a basic understanding of
the current methodologies used in the formation of Air Force and contractor
software Cost estimates. It provides insight into some of the problems (and
reasons for the probl ems) associated with software cost estimates made by
both Government and i ndustry. It discusses the role of parametric models used
in cost estimation and reviews three experimental predicti ve models. It also
discusses the process of monitoring software costs and schedules while provid-
ing gui dance to relevant military regulati ons, specifications , standards , and
supporting literature.

It is recognized that the speci fic program procurement strategy impacts total
system acquisiti on costs as well as some of the activi ties required by both
the Government and industry regarding cost estimation , allocation , and expen-
diture . However, the discussion presented in this gui debook is based on the
model system acquisiti on process illustrated in Figure 1 , unless otherwise
noted.

~SARC DSAR C I I DSARC 1 11

A A A
PRO GRA M RATIFICATION R E V i E W
DE C I S I ON OR CISIO N DE CISION

C ONC E PTU AL “,RSE V A L I D A T I O N PHASE
FULL-SCAL E

PRUONCTION lA SFAtLA lIO~~OPERATiCR

SYSTEM AP P PROPOSAL [VALUATIO’4 RLQUIREMENTS[IART I PROPOSAiF E V A L U A T I O N 0051014 COOING 14 1 TE ST
ills SPEC S01JRCE SELECT TRADE OFF S SPEC 1S001CE SELECT CHE CK OUt I N TE G R A TI ON

£ £ £ £ £~~ £
AWARD OTt SOP ROUN D PER CON FQT

• Figure 1. Model System Acquisition Process*

*Adapted from Ref. [1].

Precedin g page blank

1~ - -

1.3 CONTENTS ft

The subsequent contents of this guidebook consist of four sections and three
appendixes , as follows:

• Section 2 - Program Office Software Cost Estimation. Discusses those
factors ass~~iited with the P0 that di rectly contribute to theformation of the system cost estimate, with particular emphasis on
the software element portion of that estimate . The topics covered
run from the end of the Conceptual Phase and subsequent program
decision to submission of the RFP for Full-Scale Development ,
including P0 Program Control , the Work Breakdown Structure , contract
cost type, and P0 software cost estimation procedures.

• Section 3 - Offeror’s Cost Proposal Preparation. Concentrates on
the vari ous offeror tasks associated wi th preparing a software
cost. proposal in response to an RFP for Full-Scale Development. This
section presents an overview of the numerous software cost estimating
techniques used , the project-dependent factors that impact software
development costs and analyses , and task specification and scheduling
with regard to the WBS.

• Section 4 - Role of Parametric Models. Discusses the use of para-
metric models in software cost estimation . Provides information
regarding the development of parametri c models. Discusses their
strengths and weaknesses.

• Section 5 - Cost Proposal Evaluation. Provides information for use by
the P0 in offeror cost proposal evaluation. It also discusses issues
relating to the requi rements and procedures for cost reporting and per-
formance measurement of command , control , and communication system
acquisition du ring Full-Scale Development.

• Appendix A - References. Presents a list 0f numbered references.

• Appendi x B - Software Cost Estimation Models. Discusses and evaluates
three experimental software estimation models.

• Appendi x C - Glossary. Defines specific terms and acronyms used in
this guidebook.

• Appendi x 0 - Official Government Documents for Cost Estimati on and
Measurement. Lists Government documents that impact software cost
estimation and measurement.

8

F

SECTION 2 - PROG RAM OFFICE SOFTWARE COST ESTIMATION

2.0 INTRODUCTION

In a typical system development effort, the Requi red Operational Capability
(ROC)* is analyzed to determine if a solution is feasible and affordable with-
in current budget and technology constraints . The former is determined
through the medium of Li fe Cycle Costing (LCC). LCC is the Government’ s total
cost of owning a system, subsystem, or component over its ful l life . It in-
cludes development , production , operation , and support costs. From a system
point of view , ICC estimates are required in support of program decisions .

While program decision-making is a continuing process throughout the system ’s
life cycle , the groundwork is laid during the Conceptual Phase leadi ng to the
first decision to proceed into the Validation Phase , made by Defense System
Acquisition Review Council (DSARC) for major systems.

By the end of the Conceptual Phase,** an acquisition strategy is developed (by
the P0) which is compatibl e wi th the program’s prelimi nary performance,
schedule , and projected costs. This strategy is developed , in part , by
obtaining and evaluating system descriptions , ground rules , constraints , and
assumptions upon which the cost estimates are based. In addition , available
historical data is analyzed to substantiate the projected costs of the new
system.

During the Validation Phase, performance, schedule , and estimated costs are
further validated and refined . The software element and its functions are
more clearly identi fied to provide a more defini tive basis from which to pro-
ceed with the software cost estimating process. The major objective of the
Val idation Phase is to assure that the system chosen for Full-Scale Development
is both technically and economi cally feasible. Another resul t is a better
definition of the program characteristics pertaining to system performance ,
cost, and schedules . This section discusses the refinement of the software
cost estimate during the Validati on Phase.

*Recently replaced by General Operati onal Requirement (GOR).

**The Conceptual Phase generally terminates wi th DSARC mi l estone 1. DSARC 1
permits the Secretary of Defense to endorse or redi rect a major weapons
system. A Decision Coordination Paper (DCP) is prepared to support DSARC
reviews , and contains system information regardi ng operationa l needs , system
performance, and associated program cost data . Whenever a DSARC is not re-
quired , similar reviews are held at the Air Force level .

9

4’
-

In the same way that a procurement strategy may not rigidly adhere to the
optimum model , the specializations within acquisition management may not be
consistent for any given program ’s acquisition. The discussion presented in
2.1 describes the generic activitie s conducted by the disciplire of Program
Control with emphasis on those activities closely associated with derivation
of the software cost estimate. The activities of Program Control are brought
together by the Work Breakdown Structure (WBS) (see 2.2) which describes the
relationship of system costs, tasks , and products . The determination of
contract cost type in relationship to the degree of risk in the system is
discussed in 2.3. A synopsis of P0 activities concerned wi th deri vation of
the software cost estimate is presented in 2.4.

2.1 PROGRAM CONTROL

Program Control is a functional organization within the P0 which is charged
with the business operations necessary to the acquisition of a system. It is
responsible for the system cost estimate , including developing, monitoring,
and assessing schedules and furds for the program at various stages of its
life cycle. This activity includes obtaining software cost estimates which
are used to evaluate the cost effectiveness of system tradeoffs and contractor
cost proposals for the Ful l -Scale Development Phase . These activities result
in the preparation and maintenance of the schedule and financial requirements
data contained in the Program Management Plan (PMP), DCP , and other system
documentation . The contents of the sy~tem Cost estimate and its formulation ,however , depend to some extend on the specific type of program and acquisition
strategy .

The relationship of Program Control to the typical PU is shown in Figure 2.
Program Control may be organized by function (i.e., financial management
and discipline management). Its organizational structure is determined
by the compl exity of the program and the prerogatives of the Program Manager
(PM). The specific responsibilities of Program Control are not altered by
its internal organization . A more detailed description of the organization
and functions of Program Control is presented in Chapter 6 of AFSCP 800-3.

[PROGRAM MANAGER I

SYSTE S CONFI URATION PROGRAM MANA EMENT
ENGINEERING MANAGEMENT CONTROL SUPPORT

PROCUREMENT [VRO~UCTION [TEST & I INTEGRATE D LOGISTICS
SUPPORT I MANAGE MENT I EVALUATION [SUPPORT

Figure 2. Typical Program Office (see Ref. [2])

10

4’

- - - - - . -

- -~~~~ - - -~~~~ • - --—- - - - - - - — - - ---- ----- ------ -. -- - - - - - -~~ •--- -~~-- ~~r -~~ •- ~~~~~ — --~~~~~~~~~~

Preparati on of the software cost estimate should be an iterati ve process. As
the program advances in time and detai l (i.e., system requi rements are defined
and validated, alternatives and tradeoffs are studied and resolved , and a
feasible approach is ascertained), additional and more definiti ve information
becomes available which is necessary for obtaining realisti c cost-to-complete
or total cost estimates.

AFS~M 173-1 provides a comprehensive guide for cost estimating in support ofsystem acquisition activi ties. In Ref. [1], Doty (1) recommends points in the
life cycle when estimates should be made, (2) discusses algorithms for estimat-
ing software development resources and time requirements , (3) points out techni-
ques for assessing the feasibility of the proposed program, and (4) describes
pitfalls to be avoided in making use of the cost estimates in program management.

Since the process of estimating software development resource and time require-
ments is a complex task requiring in-depth knowledge of each program , there is
no simple approach that can be given in this , or any other guidebook, which
will guarantee valid software cost estimates. The following steps are gi ven

• as a general guide to the tasks necessary to prepare the cost estimate, and
should be used in conjunction wi th other Air Force gui dance, industry guide-
lines , and experienced personnel : N

• Define the Objectives Of the Software Estimation Task. This
task includes the detailed pl anning required to support the
preparation of the software cost estimate, including determining
the applicable items of the program WBS, the method of software
acquisition , the i nformation necessary to support definition of
software requirements , and schedule constraints.

• Define Personnel, Resources, and Time Requirements Needed For
the Software Cost Estimation Process. This task includes
i denti fying the team of people responsible for making the soft-
ware cost estimate, as well as allocating adequate resources
for pl anning and coordinating.

• Descri be the Software Requirements. Initially, this task will
be directed at scoping the general software requirements. How-
ever, as more sys tem information becomes available , softwa re
requirements will become less ambi guous and more detailed . This
task should also include documenting software—related assump-

• tions made and definitions derived basic to the cost estimate.
The level of detail provided in the description of softwa re
requirements is dependent on the objectives established in the
initial task. Therefore , it is important that the initial
planning activity provide for adequate resources (manpower and
time) to allow for accumul ation and refinement of system Infor-
mation necessary for software requi rements analysis.

11

4,

• Identi fy the Software Cost Estimation Techniques To be Used.
Confidence can be increased in the resultant software estimate
if several diffe rent techniques are used during the Iterative
process of cost estimation preparation. For exampl e, modeling
techniques should always be augmented by analysis of histori cal
data obtained from analogous sys tems. Expert opinion obtained
from more than one expert will temper subjective bias or
insufficient recall. (Software cost estimation techniques are
described in more detail in Sections 3 and 4.)

• Compare and Refine the t~erived Software Cost Estimates. This
task should include resolving inconsistencies and ambi guities
in the accumul ated data. Care should be taken to generate a
conservati ve, but realistic , cost estimate . Rules-of-thumb
or historical cost data should be used for comparisons of
functionally similar systems in the refinement process. Program-
dependent characteristics , such as schedule constraints , con-
current hardware development, and completeness of software require-
ments , should be assessed to determine incompatibilities or con-
flicts which may perturb or alter assumptions upon which the
software cost estimate was based. In addition , this task should
examine the estimate for compl etenes!; that is , it should include
provisions for both Government in-house costs and contractor
development costs.

Because of the difficulty of accurately estimating software development costs,
especially at points in the system acquisition life cycle where adequate
technical information is not yet available , an iterative cost estimation
process is the only mechanism by which the Government can expect to obtain
reasonably valid cost estimates .

Cost estimates may be prepared at any point in the acquisition cycle, but it
4

is important to have an estimate at the following decision points :

• Program Decision (between Conceptual and Validation Phases)

• Ratification Decision (between Val idation and Full-Scale
Development Phases)

• Production Decision (between Full-Scal e Development and
Production Phases)

FIgure 3 depicts summary Information for developing estimates of computer soft-
ware costs within the system acquisition framework. The data presented in
Fi gure 3 demonstrates that as more information becomes available to the soft-

• wa re cost estima tor , some of the ambiguities that Initially exist in the for-
mation of the software cost estimate are resolved. The consequence Is an
increase In confidence of the estimate .

12

- - - -

.7

- —

REQUIRED REQUIRED
ESTIMATE USE TECH NICAL IN PUT S FINANC I AL INPUTS SIZING BASIS

—

® Initial Program • To formulate Life Cycle • Conceptual System Definition I POM • Total number of object
Budgetary Estimate Costs and Design—to-Cost • init ial Software Sizing Instructions

thresholds Estimate(Conceptual Phase)
• RFI
• Feasibi lity & Risk

Assessmen t

0 Independent e To assess program . WBS I POM • Total ntalter execut-
Va lic’atton Cost feasibility; used in: • Performance Specification . DCP/PM Resources Annex able object instruC- •
Estimate , SRR Results I Advanced Procurement Plan tions minus data

- POPI
(Val idation Phase- - APP 1 ~~~ a reas
prior to REP Release , - DCP/PN • Source Selection Plan

or Program Decision) - Resources Annex RFP
• GFI/GFM
• CDRL
• CRISP

~J Independent Full • To evaluate the • Hardware/Software/Firmware i DCP/PM Updates , Total number execut-
Scale Development contractors ’ proposed Tradeoffs I POM able object inStruc-
(ESD) Cost Estimate Costs • Feasibility and Risk • Evaluated Cost and schedule tions minus data

Assessment control System proposed areas for reusable
(Ratification Decision

• SDR(s) Resul ts thresholds codePhase)

® Update of FSD Cost p To update and monitor I POll Results . DCP/PM Updates • Total number source
Estimate development costs I CUR Results a SAR (if required) code instructions

(From Pre l imi nary S ECP Aeview S POM

Design Review to S CPCI Testing Rev iew • Approve Cost/Schedule Contro l

remainder of S FCA System Thresholds

development) S PCA S Monitoring of Cost/Schedule
• FQR S ECP Cost Analysis

S Monthly estimates of cost
to complete

LEGEND
APP - Advanced Procurement Plan REP - Request for Proposal
CUR - Critical Desi gn Review SAR - Selected Acquisition Review
CURL — Contract Data Requirements List SDR - System Design Review
CRISP - Ccn~ uter Resources Integrated Support Plan SRR - System Requirements Review
DCP /PM - Dec i sion Coordinating Papers /Program Memorandum WBS - Work Breakdown Structure

SOW - Stat ement of WorkECP - Engineering Change Proposal
GFI /GFM - Govern ment Furnished Info r..at lon/Gov ernment Furnished Material
PDR - Preliminary Desi gn Review
POM - Program ObjecUves Memorandum
RFI — Request for Information

; -C

4,

1 •
•-

-

E— COST ESTIMATORS TO
SIZ ING BAS IS % ERR OR GOVERPIIEST At~DjNtXj5rqy OTHER CC ’MENTS

• Total numbe r of object • Up to 200% si zIng error S Government: I A life-cycle cost estimate
instructions • 62% resource estima te - for Conceptual Definit i on S Industrial input may be used

error 0-7 people either informal ly or through
0-1 68 man/months an hE!.

- for Prog ram Dec i s ion
3—7 people
9—63 man/months

• Contractor
- generally none

• Total number esecut- S Up to lOOt sizing error • Government: S Independent cost estimates
able object instruc- S 62~ resource estimate - 10-20% of contractors for each approach need to be

lan tions minus data error FSO Costs developed if competing contractors ’
areas S Contractor a pp roac hes a re w idel y divergent.

- lO- 20~ of :ontractors • Design-to-Cost targets to sub-
ISO Costs for each program lsvel (if applicable)
contractor used need to be developed.

5 LCC estimates are also updated.

• Total ouster esecut- • lip to 75% sizihg error • Government None
able object instruc - S 62~ resource estimate

- 20—40% of contractor s
edule tions minus data error FSL) costs
d areas for reusable S ContractorS (see Figure 3 of

code Ref. [1]).

• Total number source I lip to 50C sizing error. • ~~~ Estimated Actual Costs will
code instructions improving to zero at be made and compared with contrac-

project completion tor estimates.
~ 51. resource estimateControl

error
edule

)St

Figure 3. Phased Software Cost Estimates
(Adapted from Ref. [1])

13

I
F - 4’

_ l • _
- .

To support major program decisions -or to reduce uncertainties that may exist
wi th respect to program elements , the P0 can obtain an Independent Cost
Estimate (ICE)* from an independent Government team (e.g., the ESD Cost
Analysis Division) or other outside agency (e.g., the MITRE Corpora tion , a
Federal Contract Research Center). Generally, the independent estimator uses
a parametric equation based on an established cost estimating relationship in
which the projected size of the software is a key element. Because the P0
general ly provides the estimator with the projected softwa re size , the
independence of the ICE is questionable because it ‘is based on the same para-
meter as the estimate generated by Program Control. The usefulness of the ICE
will be improved if the independent Government team derives its own estimate
of softwa re size because of the extreme importance of this parameter to cost
estimates.** The P0 has the final responsibility for accepting or rejecting
the ICE.

Program Control is also responsible for cost and schedule status reporting for
approved programs. This task include s analyzing data to determine contractual
financial progress as wel l as maintaining information concerning the current
adjusted target cost/price and adjusted ceiling pri ce.

Another Program Control responsibility incl udes tracking costs associated with
program changes . This may include coordi nati ng plans , changes, or modifi ca-
tions wi thin the program to achieve cost and schedule goals specific to the
program. The number and size of changes [i.e., Engineeri ng Change Proposals
(ECPs)] for any given system general ly cannot be determined in the early
stages of program planning and software cost estimate preparation. Clearly,
ECP5 should be expected in all system acquisiti ons. Further, they will impact
total system cost. A large ECP may require a new cost estima te to be made to
support evaluation of the ECP submission if it requests new system functional
or performance requirements. In addition , program cost change histories n&ist
be maintained to reflect contract performance in terms of actual costs,
estimated costs , and changes in system functional /performance requirements .

Program Control ’s program cost/schedule management responsibilities are brought
together through the selection and use of the WBS. The WBS provides a frame-
work for the Government’s cost estimate, the contractor ’s response to the RFP,
and the contract cost collection and reporti ng system. Because this vehicl e
is an important tool to many Program Control functions , It is descri bed in
more detail in 2.2. In addition, a discussion of some of the problems in
applying the WBS to sys tem acquisitions Is presented in 5.3.

*An ICE represents an estimate of costs to be paid by the Government for a
program segment. The scope of the estimate depends on the purpose of the

4 ICE , and may Include costs for the entire system or some program element
(e.g., software).

**Actual size estimates have been observed to exceed esti mated size estimates
by 200-300 per cent.

15 Preceding page blank

.7

2.2 WORK BREAKDOWN STRUCTURE

A WBS is a hierarchical and graphi cal representation of the tasks and products
that comprise a system acquisition , e.g., “a product-oriented family tree
which completely defi nes the project/program. A WBS displ ays and defines the
product(s) to be developed or produced and relates the elements of work to be
accompl i shed to each other and to the end product” (see Ref. [3]). The speci-
fic role of the WBS in software cos t estimation and measurement is to provide
a basic framework and coordinati on point for planning , technical management ,
resource all ocation , and cost estimates. The WBS requires that each deliver-
able product’s costs be visible for efficient contract control*. it also
provides a basis for auditing each offeror’s management control system after
contract award. Each element in a WBS level should represent non-overlapping
subdivisions of products or tasks. A more detailed discussion of the WBS is
presented in Appendix A of Ref. [4]. See also MIL-STD-881A.

The upper levels of the hierarchical structure of the WBS (as prescribed in
MIL-STD-881A) are defined as follows :

• Level 1 represents the enti re defense materiel item (i.e.,
the overal l collection of tasks and products of the system) .

• Level 2 represents major eleme nts of the system (e.g., an
aggregation of services).

• Level 3 represents subordinate -elements to Level 2 (e.g., a
type of service).

The number of level s speci fied in a WBS for a gi ven system depends upon the
type of system acquired and the level of work the Government desires to
monitor and control . A primary objective of the WBS is to derive the con-
tracted work effort into manageable units . Depending upon the size and com-
plexity of a specific task, the WBS may be extended to many lower level s to
reflect how the work is to be accomplished . In structuri ng the lower levels
of a WBS, the work effort is generally categorized as follows:

*However, not all software developed for a specific system is visible for
contract control . Support software (e.g., compilers , and Program Support
Libraries) is often not a contractually-specified CPCI. Since applicati ons
software may incur severe slippages when support software development is
delayed , there may be no indicati on of the probl em unti l late in the pro-
gram due to the lack of visibility into the devel opment progress of non-
deliverabl e software. In additi on, total software development costs for
each given system cannot be accumulated and achieved ‘if support software is
non-deliverable. It would appear that for both contract control and
accuracy in historical cost data recording, support software should be
a~ contractually specified CPCI.

16

.7

r

• Individual tasks resulting in a speci fic end product (i.e.,
work packages).

• Support effort or work not resulting in a final product (i.e.,
level of effort).

• Factored effort directly related to other identified tasks (i.e.,
apportioned effort, such as quality assurance).

The Contract Work Breakdown Structure (CWBS) is ‘the complete WBS for a
specific contractor . It comprises the selected- project summary WBS elements
included in the contract work statement. The individual contractor can extend
the CWBS to lower l evel s to reflect the way in which his work is to be performed .
As such , the CWBS should:

• Display and define the products to be developed and the
services to be performed.

• Relate the tasks to be accomplished and their relationship to
each other and to the end product.

• Al low for the unique identification of each task which may reflect
the overall hierarchy of project tasks , and provide a mechanism
for cost accounting for each partitioned task.

A preliminar y CWBS is derived by selecting a subset of the project summary
WBS and extending the elements to a level lower than Level 3. A preliminary
CWBS must be included in each RFP for every contract planned (see Figure 4).

The WBS is used throughout the system acquisition cycle. Initia lly, the pre-
liminary project summary WBS is used by the Department of Defense (DoD) to
define Government tasks and products , appropriate contractor tasks and products ,
and to support program approval . During the Validation Phase, the WBS forms
a framework for preparation of the Statement of Work (SOW), although the SOW
generally defines the details of tasks to a greater specificity than the
preliminary WBS . The use of the WBS , in conjunction with the Ful l -Scale
Development Phase cost accounting procedures described in Section 5, allows
for control over the reporting of contractor technical status and resource
expenditures . The WBS can also provide the mechanism for acquirin g historical
data in a cost element data base. A data base of this nature will provide
qualitative values that would enable P0 personnel to realistical ly price
types of software (e.g., support software or data base management systems)
with current and comparable data obtained from analogous systems/subsystems.

17

- ,
— ~~~~~~~~~~~~ rt ~~ - r ~~~~~~~~~ --~~~~~~~~

ELEcTRoNICs
LEVEL I SYSTEM

1
_________ _________ I

[~~~
IEM PROJECT PRIME MI5SION SYSTEMS TEST OPSRATIONAL sITE

LEVEL 2 MANAGEMENT TRAININ G PROO~~~T & EVALUATION DATA A CTIVATI ON

LEVEL 3 MANAG E~S N T snvvics~~~
j ______________

EV~~~~~~ ION
TECHNICAL

cONYRTJ

‘1 ~ ‘r~~~~~~~~ i —-1 II ~
I I I I I ‘ II ENGINEERING

L4 I l_ I I ~..l I DATA
I I I I I I I I I i
L _ _ _ _ _J IL J I L _ _ _ _ _ J L J

I I _________

I I I
I I I i
I I

MANAGEMENT

• I • DATA I I I
U I _ _ _ _ _ _ _

I —
~~~~

I~~I I I I
I .-

~ 
I (SAYS

I I I I DEPOSITORY

~~~~~~~~~~~~~ L I ________  ~~~~~~~~~~~~~

Figure 4. Work Breakdown Structure (see Ref. [3]).

2 .3 IMPACT OF SOFTWA RE COST ESTIMATION ON CONTRACT COST TYPE

The level of confidence in the software cost estimate should directly impact
the contract cost type selected . Although there are no unique contract types
for software development , the type of contract selected for the acquisition
of software has a direct effect upon the types and amounts of information

• needed by the P0 for cost estimation and contractor selection. The quality
and quantity of information availabl e for software cost estimation directly
impacts the l evel of confidence in the estimate . Further , confidence
in the estimate is reduced if the information on which it is based (i.e.,
the functional/performance requirements) is imprecise or is likely to change
between the time of procurement and completion of software development.

18

I

Cost Reimbursement contracts should almost always be used for Validation Ph ase
contracts. Full-Scale Development contracts range from Cost Reimbursement
to Fixed Price. Such contracts include tailored variations in incentives
and awards related to fee or profit determination. The selection of contract
type for software depends upon the following considerations :

• Procurements which do not yet have approved or authenticated
Computer Program Development (Part I) Specifications should
normally have Cost Reimbursement contracts. This al l ows both
the Government and the contractor some latitude to make timely
accommodations to changing requirements.

• Procurements based upon approved or authenticated Development
Specifications may have Fixed Price contracts. However, this
type of contract usually makes it di fficul t for changes in per-
formance requi rements, costs, or schedules to be accommodated
by either the Government or the contractor in a timely manner.

• Procurements for Full-Scale Development of software usually
invol ve chang ing engineering requirements because of changing
mission and performance requi rements . These changes often occur
as hardware and software development proceeds concurrently. It
is frequently cost effective to correct.,.~ystem functional/performance oversights in the softwa re ra ther than the hardware .
This type of software change may occur as late as System Develop-
ment Test and Evaluation (DT&E) when the ~~~~~ is checked out .
To allow both the Government and cont’vit~’fors to more f1exib1~’incorporate required changes , a Cost Reimbursement contract is
recommended for most Full-Scale Development contracts. Changes to Fi xed
Pri ce contracts can also be handled through Fixed Price ECPs .

• Procurements for off-the-shelf software are often appropriate for
Fi xed Pri ce contracts, provided the steps to qualify the software
are clearly understood.

The final selection of a contract type should resul t in one which will give
assurance of contract performance in a manner most advantageous to the Govern-
ment, having considered and al lowed for reasonable contractor technical and
cost risks. Fi gure 5 depicts summary informati on on the degree of risk and
type of contract selected. Figure 6 presents a more detailed presentation of
the contract type and risk consideration .

19

HIGH RISK/LOW CONFIDENCE RISK SHIFTS HIGH DEGREE OF
IN STATED REQUIREMENTS & FROM GOVERNMENT CERTAINTY IN PROGRAM
ESTIMATED COST TO CONTRACTOR AND ESTIMATED COST

CPFF - Cost I CPIF - Cost 1 FFP - F i rm
Plus Fixed I Plus Incen- I Fixed Price
Fee [t ive Fee j

CPAF - Cost FPI - Fixed
Pl us Award Price
Fee_ Incentive

Figure 5. Type of Contract vs Degree of Risk

Figure 7 presents an abbreviated list of perti nent ASPR references. Inese
references provide and lead to defini tive guidance in determining and selecting
an appropriate type of contract in the best interests of the Government and
one which will provide a contractor wi th a reasonable hedge against technical
and cost risks . The risks are related to the confidence in the job defini-
tions as documented in specifi cati ons and in the SOW as well as to the confi-
dence in the technical feasibility of the tasks to be performed wi thin the
proposed schedul es.

Al though risk taking and risk analysis are part of the free enterpri se system
and infl uence most business decisions , the risks involved in the acquisition
of software appear unusually high. This may be due , in part , to the l arge
portion of money allocated to the software element of major weapon systems*.
Many of the contractual issues concerning options and risks in acquiring soft-
ware are described in Ref. [5]. There is a distinct difference between risks
of a ‘pecifi c software development project as compared to a “high technologi-
cal risk” . On the one hand , a fairly simpl e software appl i cation may contain
risks to either the Government , as purchaser , or the contractor, as developer.
The risk , in this case, may be any identifi ed area that potentially impacts
the cost estimate in terms of increasing or decreasing those costs . Risks
may be classed as cost risks (e.g., rate projections , overtime , technical

*The Worl dwi de Military Command and Control System (WWMCCS) is projected to
spend over $722 million on software, $100 million on hardware; the Safe-
guard System spent an estimated $467 million on software; and the Minute-
man System spent $124 million on Software (see Ref. [6]).

20

—

FIXED-PRICE COST-REIMBURSEMENT
GREATEST RISK ON CONTRACTOR GREATEST RISK ON GOVERNMENT

FIRM FIXED- FIXED-PRICE COST-PLUS I
PRICE INCENTIVE INCENTIVE-FEE I

Fair and ReaSonable price can be established - Where cost unce rtaintieS exist and there is the ~ UNCERTAIN TIE
at Inception . e.g., possibility of cost reduction and/or performance

— Reasonably definite design or performance i~~rovements by given contractor (1) a degree of Development and tes t when incentive formula (1) 1ev

spec if ica tions cost responsibil i ty (ii) a positive profit can provide positive incentive for effective where I
incentive , management. Where feasible , use oerformance IneaSur

— Realistic estimates incentives together with cost and schedule eva lu a
— Adequate coegetition Firm Target Type: firm target and final profit incentives , under
— Vali d cost or pricing data that adjustment formula can be negotiated ini ti al ly object‘

~~ provide reasonable price coe~arisons Successive Target Type: initial target can be defini0.

Level of effort resea rch contract negotiated, but finn final targets cannot; measur
sufficient information wi l l be available early
enough in performance to set final goals.

Initial fixed-price places 100% responsl— Firm Target: target cost; target profit; price Target cost; target fee; m inimum and maximum Nego ti
bi lity and risk on contractor ceiling; and profit adjustment formula fee; fee adjustment formula (formula appl i ed mum fe

at end of performance) is evaSuccessive Targets: initial target cost andIn
target profit; price ceiling; firm target profit
formula; and production point for application to

4’ get either a firm target and final profit4,.-
forexi la or a fixed-price contract.In

Ui

Adequate Contractor Accounting System Required ~~ ADE
Government contractor must agree on fixed— Must determine (I) that this is least costly Fee Lim itations (Same
price at inception contract type and (ii) that any other contract

~ If FFP level of effort , agreement must be type is i~ 3ractic al . Used for development and Production & Services Final
R&D to dir

reached on Identification of effort and production procurements. of a
‘ ntjeber of men-hours. F ,rmula should provide incentive effect ive - deve l

ness over variation in costs throughout have
the ful l range of reasonable foreseeable
variation from target Cost ,

DETERMI NATION AND FINDING

e None Contracting Officer 1
Adverti sed or Negotiated Procurements Negotiated Procurements Only NEGOTIATED PROCUREMENTS

GOVERNNEIII AUDITING
Preferred over all types May also use perfo ’mance or delivery
Ninim ,~s adeinistration incentives , where feasible. Can u

appro
and o

* metho

COST-RE IMBIJRS EMENT
GREATEST RISK ON GOVERNMENT __

EE 1 COST-PLUS I COST-PLUS
AWARD FEE J FIXED—FEE

UNCERTAINTIES IN PERFO~BIANCE - - IMPOSSIBLE TO ESTIMATE COSTS F~RNLY

t when incentive formula (1) Level of effort for perfo nnance of services Term Form : research , preliminary exploration ,
e ince ntive for effecti ve where mission feasibility is established , but or study when level of effort is initially
feasible, us e oerfo nnance measurement of performance must be by subjective unknown (or deve lopm ent and test when a CPIF
with cost and schedu le evaluation; (I i) wo rk which would have been placed 15 in~ ract ical)

under anothe r typ e of contract if perfo rmance Completion Cone : research or other development
objectives could be expressed in advance by effort when the task or job can be clearly defined .definite milestones or targets suscept ible of or definite goal or targe t expressed , and ameasuring actua l perfo rmance . s pecif ic end prod uc t required.

- fee ; minimu m and maximum Negotiated estimate of cost: a base fee; max i- NegOtiated estimate of costs; fee fixed initi all y
formula (formula applied mum fee; the criteria against which performance except for changes in the work or services required .

Ice) is eval uated; resulting in an award fee .

ADEQUATE CONTRACTOR ACCOUNTING SYSTEM REQUIRED
ions (Same ~ee l imitations as CPFF and CPIF) Fee Limitat ions

:es Final fee determination by Government not subject - 10% estimated cost
to disputes clauses . CPAF is not for procurement - 15% estimated cost
of a major system categorized as either engineering

tide incentive effective- development or operationa l system development which Not for development of major weapons once
in costs throughout have undergone contract definition , explorations indicate engineering development

reasonable foreseeable is feasible.

~et cost.

— DETERMINATION AND FINDINGS BY CONTRACTING OFFICER (EXCEPT FOR COST-SHARING) S.

(Same as CPFF and CPIF)

NEGOTIATED PROCUREMENTS ONLY. ‘COSTS’ DEFINED IN ASPR XV
GOVERIII4EMr AUDITING AND AEMINISTRATIVE SURVEILLANCE

Can use combination of CPAF/IF or CPIF/AF as Least contractor responsibility for costs ; least
appropriate to reflect degree of subjectivity preferred contract type.
and objectivity of performance measurement
method.

Figure 6. Contract Type vs Risk Considerations for Softwa re

21

—
-~~~~~~~~ -~~

- -

problems , technical performance, GFE interface problems , schedule/milestone
slippages or constraints , special cl auses , prime/subcontractor relationships ,
facilities , etc.) or fee/profit risks (e.g., fee/profit incentives , cost-
shari ng i ncenti ves, restricti~ons on costs, performance incenti ves , technical !schedule restriction on performance incentives , etc.). A high technological
risk*, on the other hand , is the risk associated wi th a particular attempt
to employ a computer or software in the solution to a problem that has here-
tofore not been sol ved via the computer. In other words , the problenVsolution
may be beyond the current state-of-the-art of computer technology .

In formulating the RFP, all high technological risks should be clearly i denti-
fied as wel l as any non-obvi ous technical risks. All risks should be addressed
in the Full-Scale Development Phase proposal by the prospective contractor via
the Computer Program Development Plan (CPDP).

Formal Advertising 1-300.2
2—102

Negotiation 1-300.3
3-200

Types of Contracts 3-401
3-402
3-404 (Fixed Price Type)
3-404.2 (Firm Fixed Price)
3-404.4 (Fi xed Price Incentive)
3-405 (Cost Reimbursment Type
3-405.4 (Cost Pl us Incentive Fee)
3-405.5 (Cost Plus Award Fee)
3-405.6 (Cost Plus Fixed Fee)
3-803

Special Types and Methods 4-101
of Procurement

Fi gure 7. ASPR References Regarding Contract Type Selection

*Ref. [4] states that “The following software capabilities are likely to
have technical risk;
a. Certifiably correct control of access to data of different security

classification and in different “need to know” categories ;
b. Automatic detection and correct reporting of equipment and software

errors, and
c. Automatic reconfiguration and recovery of the system from errors,

incl uding transition to and from degraded modes of operation .”

23 Precedin g page blank

9.

1. .

Although certain types of contracts may limi t the Government’s liability , the
contract type may also have the effect of obscuring the ability to track or
collect total software development costs. Most Fixed Price contracts provide
littl e actual cost visibility to the Government, except where progress pay-
ments are applicable. However, this is not the case when additional software
development funds must be obtained via ECP. Al though this type of additional
funding requires a change to a specific functional/performance requi rement,
costs for each change must be tracked.

Ref. [5] discusses some issues related to procurement planning and types of
contracts. It states the need for each procurement to be appraised to deter-
mine the issues (specific to the program) that impact contract type determina-
tion.

2.4 SUt4IARY OF A SURVEY OF PROGRAM OFFICE SOFTWARE COST EST MATION PROCEDURES

The procedures for developing the system-cost estimate , par t icu lar l y the
software-related portion , consists of a logical progression of activities
which update the orig inal estimate as supporting data are acquired during the
system ’s life cycle. This approach requires relevant historical data from
analogous sys tems to form a basis for estimating initial costs. It further
requires well informed software cost analysts and system designers to make
engineering cost trade-off studies to determine cost differences between the
system being acquired and analogous systems represented by histori cal data.
While it is important for eacn software cost estimate to be realistic because
it is a major component of the total allocated budget , the lack of availabl e
data on which to base comparisons with historical system cost data make it
susceptibl e to gross error. The software cost estimate can seriously impact
all decisions associated with a major weapon system . For that reason , i t is
important to derive a software cost estimate which is continually reevaluated
and updated as additional information becomes available during development.

The software cost estimation process wi thin the PC can be considerably improved
wi th dedi cation to a systems approach which combi nes somewhat independent
parts of the problem into an integrated methodology . Components of this
methodology must necessarily include :

• Employing and educati ng qualified personnel with experience and
knowledge of both the system acquisition and software development
process. Understanding the complexi ties of acquiring and develop-
ing a major weapon system must necessarily draw upon information
accumulated from both wi thin the militar y organization and the
software undustry.

24

.~

• Evolving a sys tematic cost estimating procedure which defines
a seri es of steps provi ding for :

- Dt~finition of the objectives of the software cost
estimation task.

- Definition of personnel , resources , and time requirements
needed for the software cost estimati on process.

- Description of the software requi rements.

- Identi fication of the software cost estimation techniques
to be used .

- Comparison and refinement of the Software cost estimates.

• Deriving gui delines on the sizing of software based on technical
eval uation of the functional performance requirements of the system
software .

• Collecting and analyzing software cost data from new and existing
sys tems based on comon definitions of data parameters to provide
a historical cost element data base for derivation of cost esti-
mating relationships and determination of factors which impact costs.

• Deriving and validating cost models supported by analysis of
the historical cost data base.

• Ensuring that the procedures for software cost estimati ng are
rigorously and methodically followed .

A survey of the software cost estimation process wi thin the ESD environment
was conducted recently (see Ref. [6]). Thirteen unidenti fied POs representing
a diversity of ESD programs were contracted. Their responses are suninarized
by this author in Figure 8, and shows that a systematic approach for develop-
ing software cost estimates wi thin the P0 does not really exist. Many of the
programs did not have any records to show that the software segment had been
costed. Those programs that did deri ve a softwa re cost es timate used varyi ng
techniques with inconsistent degrees of success . Al though some programs were
successful (see Program A in Figure 8), the methodology used does not appear
to have impacted other programs ’ software cost estimating techniques . It is
important for the level of technical detail concerning the software element to
be accumulated and refined over the program life cycle. This includes docu-
menting the assumptions made and cost estimati ng techniques used . In addition ,
the P0 must employ knowledgeable and experienced personnel in the software
cos t estimation process. Lacking a standard and val idated approach for soft-
ware cost estimating requires that the P0 use cost estima tors who can draw
upon analogous experience .

25

4’

PROGRAJ4 IN-HOUSE ESTIMATION METHOD FOR SOFTWARE COSTS COI’VIENTS
A • Decomposition of the software package to Estimated program size in instru-

program modul es, ranging in size from tions = 160,000; actual number to
600-85,000 instructions, date = 156,000.

• Using a mean productivity rate obtained Estimated cost 20% less than
from a previous SOC study (325 JOVIAL actual .
instructions/month), total software
cost was derived.

B . A special team used analogy to existing New system was to replace existing
system which new software/hardware was system.
to replace.

• Parametric technique (e.g., Tecelote
Model) based on number of instructions
derived from the analogy .

c • Support contractor developed~system The estimate may have ensured
design Identifying 17 software modules sufficiency of budgeted funds ,
by function . but the interattons resulted in

• Estimate of effort in man-months for a hi gh estimate which may have
also caused erroneous manage-each module , resulting in a total ment decisions to be mademan-month effort of 138-205 man-months. elsewhere in the program.

• Additional 25% added to original
est imate resul t ing in 173-256 man
months or $830,000 to $1 ,270,000.

• P0 increased origina l estimate to
• $2.4 million due to uncertainties

in cost estimates .
s PU again increased estimate to$3.8

million to take into account program
uncertainties .

0 • No available data concern ing the ori g- Contractor ’s estimated software
Thai cost estimate. size was 20K instructions with a

computer core size capacity of
1 32K instructions . Two years after
cont rac t award, software size was
174K , i.e., a 900% increase in
number of instructions.

E • P0 obtained software estimate size which Due to inconsistent definition of
was based upon a decomposition i,ienti- terms, conanunication between the
fying functional modules from 200-50,000 P0 and the cost analyst led to an
instructions in size . erroneous software cost estimate,

which was fortunately discovered
• P0 multiplied the estimate by 1.5 to and corrected.ensure that it was not optimistic.

• P0 used $150/instruction arriving at
$33 million .

I —~

1-’

Figure 8. Survey of ESD Program Office Software Cost Estimation Methods*

~~~~~~~~ by author from Ref. [6].

26

~1



PROGRAM iN-HOUSE ESTIMATION METHOD FOR SOFTWARE COSTS COMMENTS

F • No internal software estimate was prepared . This program invol ved engineering
changes involving software modifi-
cation to an existing system.

Analysis focused on the contract-
• or ’s software est imate for each

ECP .

• A joint software cost estimate was Although the productivity factor
prepared by the P0 and ESD Cost was obtained from unsubstantiated

• Analysis Division by decomposition . data , the total cost of software

• Productivity rate of 10 instructions/ ~~~~~~~~~~~~~~~~~~~~ 30%

day/prograniner was used.

H • Estimate was derived from a decompo- Large module size may Indicate a
sition process, but at a very gross lack of knowledge of software
level (i.e., the smallest module requirements.
size was 12K instructions).

I • No data available. Dlfflcul t to learn from exoerience
• ___________ __________ w i th a lac k of hi stor ical data .

J • No data available.

K • MITRE and P0 Engineers estimated number All three estimates were very
of instructions and an engineering close , providing the PU with
estimate of resources/modules to yield a higher level of confidence
cost estimate #1. in the estimate.

• The estimated number of instructions
were mul tipled by a cost per instruc-
tion factor of $44 to yiel d cost
estimate #2.

• By analogy , cost estimate #3 was
derived .

L • Sole source contractor estimated The estimates were close.
number of instructions which was
then correlated with previous SDC
productivity data for cost estimate
# 1.

• Using analogy and projection of
software growth, cost estimate
#2 was prepared.

N • No data available. Contractor ’s cost proposal used
decompos it ion an d types of effort

• required to develop each module,
using a productivity factpr of
three man-hours/instruction + $15.!
instruction for documentation.

Figure 8. Survey of ESO Program Office Software Cost Estimation Methods (cont’d)

27



- -  -— - -a~~ -- r

1’

The concl usion reached following the survey and analysis of ESD cost estimating
procedures follows :

“In 1976, DoD managers will be making decisions concerning the
acquisition of an estimated $3 billi on of software.. .Based upon
the research findings , there appear to be some major problem
areas which inhibit the development of accurate and reliable
software cost estimates . . In estimat ing software cost , there
are three possibl e sources of error. The first source of error
is due to the element of change in the future which makes cost
a random variable. A second source of error is the estimating

• technique itself.. .The third source is the non-uniform and unskilled
application of a cost estimating technique . Regardless of how

• good a technique is , an accurate estimate may-only be obtained
if the technique is properly used ” (see Ref. [6.]).

28

L



V

SECTION 3 - OFFEROR’S COST PROPOSAL PREPARATiON

3.0 INTRODUCTION

This section presents information concerning the offeror activities associated
with deriving and submitting a cost proposal in response to an RFP for a Full-
Scale Development Phase contract.

Full-Scale Development Phase RFPs vary si gni~icantly in content* because of
the differences in acquisition strategies , C’~ system functional/performancerequirements , program costs , schedules , and variations in the quality of
Development (Part I) Specifications. This causes great variability in the
amount of time and money allocated to the development of the technical and
cost proposal for Full-Scale Development. When there is a Validati on Phase,
it is implemented most effectively by having contractors compete for the Full-
Scale Development effort. The Validation Phase is the ideal time for contrac-
tors to develop a CPDP and SEMP. That way, they each evol ve a design approach
su pported by tra de stud ies , management plans , and su pport plans . In the event
there is no Validation Phase, the amount of manpower allocated to developing
an optimum top-level desi gn approach in response to an RFP depends to a great
extent on the respective financial positions of the competing offerors. The
effect of the different acquisition strategies and the financial positions of
the offerors are demonstrated by the l evel of technical detail and supporting
studies in the proposed system design . Estimated costs for system develop-
ment are more realistic when they are based on a thorough understanding of the
technical prob lem to be solved , and the proposed solution has been deri ved by
examination of alternative system designs in terms of cost, schedule , and
performance requirements . For that reason , the system acquisition strategy
should take into consideration the requirements necessary for producing a
realistic cost proposal in response to an REP .

*For exampl e , (RFP(s) for Ful l -Scale Development should include an authenticated
System/Segment Specification developed during the Conceptual and Validation

• • Phases as wel l as the authenticated Devel opment (Part I) Specification. The
contract specification will be the authenticated Part Is providing they have
been approved and authenticated at the end of the Validation Phase. If the
Validation Phase was conducted in-house , the CPCI Development Specification ,
developed by Air Force personnel , will accompany the RFP . If the Valida tion
Phase had competitive contractors evolving a design approach , the Development
Specification that was developed during the Validation Phase is placed on
contract. If there was no Vali dation Phase at all , no Development Specification
accompanies the REP as it will be developed and produced by the winning contrac-
tor early in the Full-Scale Development Phase.

29

4,-



This section is applicable to the offeror ’s cost estimation process regardless
of the specific acquisition strategy . Although a competitive Validation Phase
allows for more extensive technical analyses and cost-performance trade—offs,
the cost estimation process is essentially identical once the design approach
has been formulated . in 3.1 , various cost estimating techniques used by

• i ndustry are discussed . In 3.2, an analysis is presented of the many issues
which impact software development and complicate the estimator ’s ability to
accurately predict costs and schedules. In 3.3, the offeror’s methods for
representing the scheduling of the work packages is discussed .

3.1 COST ESTIMATING TECHNIQUES

A number of cost estimating techniques are used wi thin the software industry .
They are often referred to by different names , are sometimes used in combina-

• tion , or are slightly different in purpose or appl i cation . This discussion
briefly describes the major techniques currently used .

The purpose of an offeror’s cost proposal is to present his estimate of
the costs (along wi th a reasonable profit) to develop a technical solution
to a given set of performance requi rements within a schedule acceptable to
the Government. To prepare an accurate and complete cost estimate , a contrac-
tor must perform the following tasks :

• Develop a technical solution (i.e., a top-level system design)
which is responsive to the SOW/RFP functional/performance
requirements , including a logical and consistent definition of
the tasks , work packages , and products necessary to produce
the operational software representi ng that system design.

• Apply costing al gori thms or cri teri a to estimate the costs
associated wi th each of the elements deri ved above.

Generally, the project definition process decomposes the total software
development task into units small enough to be more accurately examined for
purposes of subsequent cost analyses . Decomposition of a total development
project i nto its consti tuent parts is almost always a prerequisite to other
cost estimation techniques*. (This does not necessarily imply that the
top-level system desi gn evolved by the proposal team becomes the contractual
basel i ned design . Rather , this process is a validation of the offeror’s
requirements analysis.) It may be useful to decompose a system into software

4 elements (i.e., programs and subrouti nes) or work units (i.e., design , code,
and test activities). A possible resul t of this decomposition is a more
accurate cost estimate . An estimate of total devel opment based on an aggregate

*Charl es Lecht (see Ref. [7]) asserts that the analysis of system requirements
must identify not only the requirements to be sati s fied and the activities
to be performed, but also a means of recognizing completion of acti vities ,
thereby requiring a comprehensive decomposition of a software system and
extensive project planning .

30

4,



of smaller estimates, where each is made on a constituent part, may have a
smaller error because the error in each is smaller. If the cost estimates for
the constituent parts are made independently and as prec i se as possible , then
it is statistically possible for random errors to cancel out each other.
However, if each estimate contains padding, the aggregate estimate will be too
large .

3.1.1 Analogy of Simil ar Experi ence

The analogous cost estimation technique bases the cost of the proposed soft-
ware system, or portions thereof, on costs actually requi red to produce one
or more similar software segments. Adjustments to the deri ved cost estimate
are made for any di fferences that are found between the- new system and exist-
ing ones. For the analogy costing technique to be effective , the software
function/performance requi rements must be quite similar. In addition hardware
characteristics of the existing and proposed systems must be carefully evaluated
to determine the relationship of the software systems. The total elapsed time
for development of both software systems must also be examined .

The analogy method of cost estimating is one of the most widely used techniques
in the industry . Since this estimating method depends upon data obtained from
similar projects, it is valid only when supported by a cost element data base
that contains cost data as well as a selective set of each development project’s
hardware/software/schedule characteristi cs. If software contractors do main-
tain such a data base , it generally contains sensitive information whi ch is
open to scrutiny only by selected corporate personnel , and not necessarily the
people preparing the cost estimate. However, few comprehensive cost element
data bases of this nature actually exist wi thin the industry . In lieu of a
cost data base , this method rel ies upon the cost estimator ’s skill in making
analogies as well as his recall ability . While knowl edge of similar software
application areas and familiarity with the responding organization ’s capabilities
and performance on previous projects is a valuable asset , reliance on the
ability to recall functional/performance/cost characteristics of systems over
time is a poor substitute for a cost data base.

The analogy method has been criticized for both the lack of a valid historical
data base of performance , cost, and schedule data , and the non-linear relation-
ship between system cost and system software size which perturbs analogous
comparisons . However, the analogy approach has proven to be fairly accurate
If the development projects are relatively small and similar in operational
characteristics , and if adjustments arr~ made for growth and improvements in
technology and management of software development.

3.1.2 QuantitatIve Method

This cost estimation technique divides the total software development effort
(including support and other non-deliverable software) into work packages or
units , which may be performed by a single individual. Once the total effort

31 



is subdivided , the number of work units is multipl ied by a previously
determined cost-per-unit factor or productivity factor, deri ved from estimates
of software complexity and project duration. Often the quantitative method is
iterated as progressive levels of detail on the system are available. Software
development factors unique to the project are often evaluated , reduced to a
singl e weighting factor, and used to modify the derived estimate. This method
relies heavily upon the ability to estimate total number of instructions and
programmer productivity .

This type of cost estimating method has been espoused by Wolverton , Aron , Meyer,
and Weinwurm (see Refs. [8, 9, 10, & 11]). A basic disadvantage of the many
versions of this technique is the subjective assessment of the weighting
factor used to modify the derived estimate . Also problematic is the previously
determined cost-per-unit factor because it is not always clear what that cost
includes (i.e., direct labor , direct labor plus overhead) and the unit (i.e.,
machine instruction , source statement) is often incomparable between develop-
ment projects. This cost estimation method also needs to be supported by a
valid cost data base consisting of comparable and consistent project data from
which factors, such as productivity ,* may be realisticall y determined . This
method also relies heavily upon the individual estimator ’s experience and
ability to evaluate each software development project in terms of the i nternal
contractor environment in which it will be performed.

3.1.3 Percent-of-Other-Item Method

This cost estimation method determines the net develoDment time in terms of
man-days . This figure is obtained by calcul ating the development time
necessary for the detailed desi gn of CPCs, code of CPCs, generation of test
data , test of CPCs , and document preparation. Analysis and design of the
CPCI are omitted from the estimating algorithm which le~ds one to believethat this method of cost estimati ng is unsuitable for C” systems. The com-
plexity of the functi onal/performance requirements of weapons software demands
that resources be allocated for CPCI analysis and design activiti es and that
the schedules devised for CPCI analysis include realisti c time budgets . Once
the net development time is calcul ated , other project-dependent characteristics

*Software productivity figures are extremely sensitive to definitions so
they are often non-comparable. Programmer productivity is generally a ratio
of the number of deliverable instructions (source or object) produced by the
average programmer per unit of time . The number of non-deliverable instruc-
tions are also items affecting cost. Complexity of the software and ~hofceof programmi ng l anguage may be important factors in deriving a productivity
ratio. Productivity can be defined in quantitative terms from measures in
a data base if software development data is kept current and accurate . In
addition , data parameters reflecting the software methodologies used in the
various phases of the development process must be recorded in order to
ascertain their effect on the productivity ratio.

32

4,-



(e.g., program complexity , programmer know-how , and programmer job knowledge )
are analyzed and weighted to establish the net orogram development time
estimate . The net develorunent time estimate is then further modified to
account for the factors of other system time (time required for the design ,
test, installati on , and maintenance of the software system), project-loss
time (time which is charged to the nroject, but which is non-producti ve or
indi rectly productive), and non-project time (time which is spent on activities
not related to the project).

This method has been criticized for both possible and probable error magnifi-
cation since the net development time is the base for a]] subsequent calcula-
tions and may contain gross errors. The skill requi red on the part of the
estimator for assigning weighting factors to project-dependent variables
(e.g., programmer know-how , programmer job knowledge) may also be a source
of error besides obscuring comparability of cost data because of subjective
bias .

3.1.4 Rules of Thumb

Numerous software development guidelines , or rules of thumb , have come into
existence in the process of estimating development costs . Rules of thumb
may be examples of individual or collective experience and may be close
approximations of actual resource/schedule requi rements. Rule of thumb
estimates are often used in conjunction wi th other estimati ng methods.
Figure 9 identifies typical rules of thumb .

3.1.5 Parametri c Equations

A parametri c equation is a mathematical representation , or function , used to
project the cost of a proposed system by using variabl es, or parameters,
which have been analyzed by previous software development experiences and
for which a known , or quantified , rel ationship exists . The types of variables
used in parametric equations are generally cost i tems, such as technica l man-
power, support and management manpower , and computer resources. Statistical
methods generally used in parametric equati ons include scatterplot analysis ,
correlation analysis , analysis of variance/covariance , multiple regression
analysis , and factor analysis. Parametri c equations can be used for compara-
tive analyses , but the unreliability of the original cost parameter values
makes the absol ute costs essentially useless.

33

4,

L . . -



In
VI C —
-C C 4.’ 1))
4.’ ..- S. 4.1

~ 4.’ 0 0 . Il)
4.) 0 0 4- ‘0C Z a )  ~ “ In ‘0
a) I C  S. LU . C 0)
~0 ~~~~ 

4) 4.’C a) ~ 4) 4)
C ‘0-C In 4) 0. 

~~ ‘0 C- In
W—~~~~~J C4J *1 ~~ £. a)G)
0.. I

~~ ‘‘S-’0 I)) 5. a) ‘0 C~a)~~~ .— E 04— V I a )  ‘0 E 5. 0 0.
0 a) 10 a) ‘4- 5.. Q CI S. C
- 0 #~~O C’4- .-. ‘00 — 4- 0 0.

C O ~~~ . L J ’ 0  ~~ S. I S.. ‘010
In a) 4- ~~ .C- 4.’ ~ 0.. E 0- 4.’ >
-C~~ - C’~J 0 4.) 0 ‘0 ‘0 ‘0 C a ) C
4.’ S.. 14~ I ‘ 0 I n  4—.- 5. ‘0 ‘4- ‘0 4~) a) ~~ 0
C- a) 0 ~~ a) 0)4.’ C ~~ C E
o 0. ~~ 4—’~- 010 ~~ a) 0_a) I. 41

~~ 0 S.~~~ S. E W O I n a ) I 0
a) D —. 4-. 0. S. 0 0. In.— 10.0 5..

C ~~~OV ’ 4 a) 0 5... 0 1 0 a ) . C -E CI
10 In i i~ U) ~~ 5. .C- ‘4- -.— >0. ~~~ ‘0

~~ >1 E a) ~~ ~~ 04’ ‘00. a) ~~ 4.’10 ‘00. 5.. ~~ S.. .C > ~~ C C
C~) 4.’ a) ~~~>, .11~ .C 4’ a) C 0 X I-~ti) in .C- 0. .— 0 4’ C ~~ C) 5.
0 ~C >, 4.) I 4) C- C . 4) 4.’ C-
4’ 5/) C .C- 4) 4) 0) 0 ~~ S. VI .0 10 4.1 0)

~C 0 4’I n 10 C C  ~~- a ) a ) E 4 ’ C~~~
~~ S. .Q~~~~~~ C O O

1 0 1 0 ’  01 0~~~ 0 5- ‘0 E ~~~~~~~~~I S.. C ~~ 5.. )C ~~ C 4) ~ E E ~~
.. -~~In 0)V0 ‘0)0 5.10 ~~~~~~

‘0 EC 0~~~~ ’n c0S .  a ) # ’— -. I n’ 0  4’ ‘ S -4 ) 0 5 - C - ’ 0 S . - 0. E I n C . 0 C- S- X I n C 0.~~~ In
4’”- 0.— 0E0- .0. E 5- 0 5 - 0C )  >,# ‘ E O S .

54 54 VI 4-I I ‘0 a) 0).... 0 .C- 5/) C —I = a)
U) 54 C ~~~ >~ 

. S. I/) 41 — I S. ~~ 4) 04-’ 5. 4’ 0 ~54 54 • IS) C).— 5/) ~C a) E 0 I ‘0~~~ 
C) C 1 0 5 . -  ‘0 0. C .C ~~ .C- >,

54 54 . C 4 1 1 0  ~ VI ~ 4) 0 ~~ 0 0. U ~~.. 0 C) ~~.. C)4~ ‘0 In
Z C’~) 54 I’) 54 C’) 54 r. in 0 ~ S. S. E 0 4.’ 5.. . .

~~ In = ~ In ~ C S.. a)
Q U) r-. U) CO ‘0 a) ‘ 0 0  0. 0)41 ‘0-~~ In 0. ~

C..- In .— S. -.. 0 5- 0 a) C) dl
,c’.j ~~,— I , -  

~~~~0)54 4-’ E 0 I n5 . > >~ -.00-S.- 0.~~ V I S -~~~~ S..30’0
4-- ‘ I I - ~~ 0 C 0 5.. C- C).~— In In 0 0. ~ 0.0 5.. C- 0 C- 4’ 5- .C-

C) 0)’ 0)’ VI .0’0~ 4— 05.) 0. — C 0.0 S. 50 CC 0 CC ~ 4— I— I 0.0.
C C) C- C) C C) a) S. C- ~ 0 C
C) C .

~
. C) C .

~
.. C) C In ~~ C C C 0.’-. 5/) 0 a) = a) a)

C C- ..~ C C~~~ C C S.- >, ~~ C) C) C) 41 > > a) I—
LU C~~~

4) C . 4) C .~. 4) — 4) 4.1 .r.. .
~
- 4) 4.’ 4.) .C- — a) — -I-’

...i ‘0~C
(/1 ‘0~0 In ‘0~C UI ‘0~ C Ill In In In 0 In In)< C) a) a) 4) ‘4-

~~ .— 0 4) — 041 ‘ — 0 4 1 C O d) ‘0 41W 0 4 1 4) .,
~ .‘ 3 5. 3 4-

~~ 0.5.) 4-- 0.. 5.) 4- 0.5.)4- ‘~ 5.) 4- ~~ 5.) 4- 4-- 5/) 5..) 4— C- 4- U. 0
4-

‘I,

~~~~ I = cs~

‘4- IV. — 4.. ~~~ 14-
4) a) ~~~ a) 5. ~~ 5. U) 4)

a) Co ~~ 5.. .— ~‘,5—) ‘0 1—I I.-)
4) a) a)I). 4) a)

di a) 4) C • a) - 5 ..  a)
a) VS In 04- In S - Il- In
UI +)W — O W  a) —

LU .‘ Il l C S. .4 ~~ I))
5.) .~~ 0 4) C..—. 5.

C 0 ‘fl > - a )  r.r~~~G) C d i  a)
~~ 0 0 .— a) 5.. m a) 0 1 0  >.,

• ~~ 5. S. 4) 0 I n  0 C~)In S.- In 4)
5/) -~ Co ~~~~~— E s... ’--

4,

0
I’,

‘04) I.~.‘0a) 0 5..50 S - C O

—. 4-4) 0t 0. I n I n 4 )
• C O I n‘0 a)4 - ’ E

ov,w ‘ 0 4 - a )
E~~’ ~~~~~~~~~~LU

OU.
— 4’..JCC(/) 
~~~~~~~~~~ 0 a ) .— o

•0>’ 5.)

34

4
—

4
4

-

—_ - - _________:_,___ __

~

___:__ _:•___ - - 2 - ~~.~: -

a) CD
10 S. Sn
4) 10 In (‘4 4-’

I 3sn In 4) VI
I (dl I n 4 C 4.) C I 0

C- ~ 5-4- 0 C- -.--- C) 5.)
0 50 O) O ~ .- ..J U,

5/) 4.d 41 4) N. 41
C- ..- ‘0 a) 4) CD C I

C- 10 0- I n 0 4-’ 41 .— C) C) 4) C-
10 C- 41 C UI 4) LU — C 0

4— 0 0 .— >, 4’ a) ~ -.
I— LI ~- 0. (/5 In 41 0 C- VI 3 0 -.

)< 4.1 0. >1 4) 0 0 ~) a)
X a) C- ‘0CC S. (/1 4-I 5.) .- -— C) 0) 1.
4) ‘0 0 a) (dl 4’ • > C- > 10
— 0. .C- .~~ C .C- S. >- 0) ‘0 4’ 4) •.- a)
0. 41 l— .— 10 4’ 4) 5/) U +1 14.

~~ 0. C)

~ 0 0- .C- C) C- 5.. C- ‘0 >~ 0
5.))(0.4-- 41 5. ~~ 4) S. . 4- , C)

5..) a) CC .C- C) 4) 0 41 CD 10 ‘0
1< 41 -C (I) ~~ 5.) 5. 4 1 >)

a) 0. C 4) C- 4-~ ci S. ..- 0)0 0 4-’
In 5. 0 4 1 ’ 0 -~ ~~ .1-I 0 4- 0 4-’ 0 C C- 4- 4— 4-
C C E 0 ,C 0- 0 CD C ‘4- C-
O Z 5.) 4— 41 VI ~~ .C- 4) 0 4~ >i 4-U.

0) 0 C .1. 1 VI 14.. 41>1 a)... 10 0
4-’ 4) 5- 4) 5< 5.) 0 In .- 4) 0 ~ 10 4— 0 C) 0
0 S. CC S. Q) -,- C 41 C 0 CD LU a)
~ CC ~~~ . — a) 4.’ 0 ~.- C- In 0 4 5.. C- ‘0 5 . .4..)
S. In 0.5.. 0 In .441 4) CD C 0 5. ID 4-I ~~~
41 In C- (dl 4) ‘0 4-’ C- C- C) ‘0 ~4- CE ‘ D C
(dl C- Id) 0 C- 4) 0 - 5. 0 0 C) 0 10 VI ~~ 4- -.. 4) 0
C 0 C- .~~

. 0 S. C..) 4) ‘0 .- C) 0. - —. >1 In -,- = Q
41 0 4.1 -.- CC VI 4’ 5.. 4’ C) 5.. 115 ‘0 >, a) 5<
C- 4.”.— ID +-’ a) ’-’ C 4) 0 . - -C - 0) a) a) C D I D C) 9a)a)
O C) ‘0 4.1 0 1 0 1 1 55- ‘-I 4-I ~4 > m O) I C) I D s C - C)
E C) V ‘0~~~ 0 4) 0 a) C- 5.. S. -~~ 4) ~~~ 10 C- I 0. 0-C) l5
I C) 0 .

~
_ a) ~~ 5- 3 V I 1’ (dl a) 4) U. 0 0. l O C - 0- 0. E

50 C.— .— ..- 0-.— 4.1 ‘0 4) 4’ 414.1 0.5. 0 In 0) X ‘0 C- ID C
E 0 -.. 0.— 0- 0. In a) 3 U. C- 4) C C 4) >~L) .C- a) C)-.. a) 4.1 ~~~

E In 0 -0 - C C 0. >15 - 4-’ 0) a) 41 a) ‘-I In 0- 4-~ 4-’ >10 In ... 4) 4)
= — S~ CC 0. CC 5 /5CC 4- 5. > 1 4 1 0 41 a) 5- E C.. 0. 4) II) 41 41 4) 4)
I— In~~~ C C V 0 ’ 0 5 - 4) 5 / 5’0 C- OlIn • . -‘00 UC)41’ l- C > 1 0

5.. 0 a) . In CLC t/~ 3 4) ‘~~ ‘0
100) .C- S. E 115 10 C).~- a) •.- 4) 4-.

U. ~~ = 41 4)9-. VI C 0 4.1 > U.) I U.) 0. C) 4— C) I 0 ~O 0. IOU. 0 U. 0 0C) 0 .- 41 -.- a) -.- 419-. - 10 0 C .4-I S. 0. 5- ‘.l
>1 4- -.- 4-I C- 4’ .C- S. 0 I 41 I >~0. 0 5- ID 0 >, 0 4) >, ~ InU) 4-’ 4— C -.- ‘0~~~

05/) 4.’ 410. ~~ a) E 4’ >14.’ 0. 4 1 C C
LI.) 5 - C - 4) 5.. 0- >, ..- ~~ 5.4) 0) C 4-’ 5..
-.1 ~~~‘0 ‘0 4) 0. In 0 S.. r -> C 0 5 - 4) 9 - C CS’-
~~ 03 0) 0 0. ~ 10 4) ‘0 C~~~ 4) 3.C 3 .- a) 4).C
~~ U. I- ~~ I/l C) (I) LU ~~ 5-U. 4- 4-4- 4 - U . 4— 5 -4-

(‘-4
vs — 0) 0)
— 5.-I 5-.’ I

. 9 - 4-.
— 14.. Il- 4. a) a)
ID 4) 4) U ~~
—4-I 4) a)

4) 1_I q~
a) di 4) 0) •‘-

(‘~ 4) 4) 0) U) VI 44..
•C’~J In In In

LU 5-...’ .—
5-) 4) C
~~~ >. >~ C >, ‘01_I

~~ ‘0 9- 4.1 0 41 5. 5..C’)
C) 5 - a )  0 S. 0 0
1/) (0 CD CC C) E 505-.’

‘0
34,

(0 0
5/)

C
14.. 0

5.) 0 .,..

CC 4’
0. >, ‘0

4-’ 4-I 4C
LU 5<
~~~LU 4)
0....) ..-

0. Si

U) .-.4-
C.)

UJ CCC
•

35

I

3.2 ISSUES IMPACTING SOFTWARE DEVELOPMENT COSTS

Commencing with studies performed by System Development Corporation and
Planning Research Corporation (see Refs. [11 through 15]) in the early l 960s,
the factors the’- impact software development costs and schedules have been
examined on many occasions . Several factors have been identified by research
groups or col lective opinion (e.g., , the October 1974 El ectronic Systems
Division/Government/Industr y Software Costing and Sizing Workshop). The
result of al) this analysis is a large store of documentation , little
consensus , and a disappointin gly small advance in the state-of-the-art of
software cost estimation. Indirect benefits have resulted from the wide-
spread recognition of the need to determine what effect (or relationship) the
various software development variable s have on the cost of acquiri ng and
supporting a system. To develop improved software cost estimating
relationships , it is recognized that a cost data base containing a collection
of consistent and comparabl e data must be available for statistical analysis .*

The following paragraphs present a brief condensation of some of the major
factors thought to impact the software development process. A brief overview
discussion of these factors can be found in Appendix III of Ref. [16]. In
addition , a comprehensive and recent discussion of these factors is presented
in Ref. [1].

3.2.1 Compl exity of Application

The complexity of software under development is one of the more important
factors impacting the development process in general , and costs and schedules
in particular. Compl exity effects programmer productivity as measured in
output per unit of time . Programer productivity varies with the type of
development job, and therefore , accuracy of productivity estimates is
questionable. The exact relationship between programmer productivity and
complexity of the application is unknown because of the creative nature of
the task , the external attributes of each software problem , unique individual
differences, and the variabiUty of terms in measuring output per unit of
time . Consequently, the exact relations hip of programmer productivity and
program complexity is unknown , and will probably remain a subjective assess-
ment for some time .

*Rome Air Development Center (RADC) is currently in the process of establishing
a data repository of software development parameters consistently collected
from a wide range of development projects. The purpose of the RADC repository
is to gather user experience for the study of software development (specifi-
cally, software reliabilit y , programer productivity , and software develop-
ment costs) by members of Government, industry , and academia.

36

‘I

The complexity of a particular software application affects many other aspects
of the development process (e.g., design and testing). For that reason , it
is often quantified by subjective assessment or by rule of thumb and included
in costing algorithms . (See Figure 9 for rules of thumb concerning compl exity
of software applications). The deri vation of a software complexity index or
assessment involves the determination of the application ’s characteristics arid
may be the most important reason for identifying the particular type of soft-
ware appl i cation , but even within a particular application there are numerous
other factors (e.g., quality of functional/performance specifications) which
may complicate quantifying the complexity of the application.

A complex appl ication that may invol ve innovative or high -risk technology
should be so identified in the RFP if possib le .* In any case the offerors
should identify any areas which they detect as high risk in their proposal . The
offeror ’s technical proposal should demonstrate his appreciation of the
complexity of the problem by his estimate of required man-months and his
allocation of time to complex development activities. A brief discussion
of high risk technological areas may be found in Appendix III of Ref. [16].

Doty , Ref. [1], suggests the following guidelines for resource allocation :

• In estimati ng productivity rates for avionics app l icat ions , the
cost estimator shoul d assign separate (and ascending) productivity
rates for development of on-board flight programs , simulation ,
an d au toma t i c tes t equi pment, in tha t or der .

• Command and control developments should be considered to have an
approximate 40 percent decrease in productivity rates due to their
real-time requirements , their large size (an average of 500,000
object words) and complexity of contro l flow relative to software
with simple flow of control .

• Business application devel opments show a higher productivity rate
than non-business applications. Al ternative size or cost
estimating algorithms may be appropriately based on the number of
input/output items or the number of processing transactions for
business application estimates .

• Scientific application development should use a l ower productivity
rate for cost estimation because of their use of compl ex
computationa l algorithms , although the productivity rate in these
developments is hi ghly dependent on other factors such as use of
a Higher Order Language (HOL), real-time requirements , and Central
Processing Un it (CPU) time and memory constraints .

*An example of hi gh risk technology is formal program veri fication .

37

Brooks , Ref. [17], presents data which suggests that productivity rates may be
impacted more by the choice of a HOL than by the complexity of the application ,
(e.g., the use of a suitable HOL will increase productivity rates no matter
how complex the applications).

3.2.2 Total Software Size

Another important component of any software development project is the esti-
mated size of the software . Doty, Ref. [1], states , ‘ Estimating the size of
software programs has proven to be the most difficult aspect of, and the
source of greatest error in , analyses to project resource requirements of
software development. The size parameter is used in nearly all cost estimating
models and numerous studies have been performed in an attempt to identify the
relationship between software size , costs , and schedules . However , in spite -

-

of its general use , there are numerous problems associated with software size
effects. Basically, the problems are as fol l ows :

• Software size estimates are generally given in number of object
instructions ; however , some estimators define instructions as
being source statements . Proponents of source statement usage
argue that since source statements represent the programmer ’ s

- output , productivity rates should reflect programmer output per
unit-of-time . Others insist that object code , being the output
of the compiler , measures programming output more accurately.
Because the programmer constantly changes and corrects his source
program , he produces more source code than appears in the final
product. Therefore , it is easier to measure the final number of
object code instructions in the software than the programmer ’s
total output. One may use either object or source statement
measurements , but not both , and the distinction must be clearl y
made . Because source statements offer a more stable statistical
unit , size estimates should be based on number -of source statements .

• The use of a HOL source statement productivity rate does not
generally differenti ate the HOL used. Not all HOLs can be
used wi th the same facility for all applications.

• The expansion ratio deri ved for HOL may vary between HOL ,
• compilers for the same HOL , or different operating systems.

This consideration is i mportant when sizing estimates are
based upon analogous and existing software.

• The software cost estima te must be based in pa rt on the total
number of instructions needed for delivery of the contracted
product. The estimated number of instructions used may include
software that must be developed but not delivered. This is
especially true in weapons systems where a large amount of

38

_ _

software is needed to support the development of application
software. Such software may consist of compilers , simulators ,
utility tools , test tools , library systems, and other support
programs . Comparisons with analogous development projects clearly
must account for the possibl e inclusion , or exclusion , of both
del i verable and non-del i verable support software in the costing
process.

• Although it is commonly accepted that the size of the software
(whether measured in lines of code , number of del i verable products ,
or number of program units) is related linearly to cost , a
standard productivit y rate used for small development efforts has
littl e relationship to the productivity rate derived for large
systems where intercommunication and coordination are not measurable
attributes of a productive day. The manpower required to build a
complex C3 system is enormous , requiring tasks to be divided into
sub-tasks and sub-subtasks . The effort required for interconinuni-
cation and coordination between all tasks increases the time
required and subsequently costs . Brooks , [Ref. 17], states , 1’If
each part of the task must be separately coordinated with each other
part , the effort increases as n(n-.l)/2.” In this instance n is
the number of separate tasks.

“Since software construction is inherently a systems effort (an exercise in
complex interrelationships), the communication effort is great and it quickly
domi nates the decrease in individual task time brought about by partitioning.
Adding more men then lengthens , not shortens the schedule. ” (See Ref. {l7].)

3.2.3 Requirements Specification

The Computer Program Development (Part I) Specification for a CPCI is deri ved
from the System Specification . This derivation may be accomplished by
Validation Phase contractors or in-house personnel , depending upon the
acquisition strategy. The types of requirements defined must be examined for

- - both feasibility and impact on the al locat~on of resources to the development
• project. In addition , the completeness , complexity , rigor, and compatibility

of the CPCI performance requirements must be appraised .

According to Ref. [1], the fol l owing types of performance requirements affect
productivity in respect to given standards and , therefore, time and costs :

• Special displa y programming for displ ay equipment and plotters
may result in a 10—30 percent decrease in productivity .

• Real-t ime operation where response times may be critical may
result in a 25-70 percent decrease in productivity .

39

• CPU time constraints may reduce productivity by 25-57 percent.

• Memory size constraints may reduce producti vity by 15-30 percent.

• Concurrent development of the hardware components required to
interface wi th the CPU in the operational environment may result
in a 20-55 percent decrease in productivity .

It is recognized that the quality of the functional/performance requi rements
has an enormous impact on the development process, especially costs and
schedules . Too little detail allows for ambi guities in interpretation.
According to Ref. [1 3, the effect of vague operationa l requirements on pro-
ductivity and , therefore, time and costs, is as fol lows:

• Command & Control - 25 percent decrease.

• Scienti fic - 50 percent decrease.

• Utility/Business - No effect because operational requirements
for these programs are usually adequately defined before design.

Hi ghl y deta i led functional/performance requirements usually result in a
spec i f icat ion of des i gn implementation for a particular performance require-
ment . The eventual effect of specifying the design in the Development Speci—
f ica tion is to shift greater responsibility for the desi gn of the end product
(and perhaps cost) to the Government. If the contractor implements a design

• according to design specifications that are later found not to satisfy a
functional/performance requirement, the Government must eventually pay for
redesign through ECPs , since the original design was so specified by them .

No widely used and acceptabl e requirements analysis language for requirements
specification curr ently exists although several requirements and design
languages are emerging in the industry , including the Computer Aided Design

• and Specification Analysis Tool (CADSAT formerly CARA), the Software
Requirements Engineering Methodology (SREM), and the Specification and
Assertion Language (SPECIAL). When these tools become more reliable and
available , the requirements specification process may have less of an impact
on development costs and schedules .

40

3.2.4 Level of Change in Performance Requirements

During software development, the contractor must expect some change in
performance requirements. Depending upon the volume , extent, and frequency
of the changes , the software development process may be severely interrupted
or altered . Each change processed by the contractor will have the effect of
making some aspect of the partially completed product obsolete . If the
Development Specification-~ are of poor quality (i.e., incomplete , inconsistent ,
or vague), the software cost estimator must real i ze that changes in require-
ments will result, although the impact of change on the development project

• is generally not an issue addressed by the cost estimator. Because contract
types differ (i.e., Fixed Price or Cost Reimbursement), the contractor must
consider the provisions necessary for processing changes , costs associated
with change provisions , and the specific type of development contract. The
impact of change on development costs and schedules must be evaluated for
each change processed.

3.2.5 Documentation Requirements

Documentation requirements for a system acquisition are very costly* and for
• that reason the Air Force Acquires only that documentation which is specifi-

cally required. However, some software acquisitions requi re an inordinate
amount of documentation. Just as one analyzes the components which determine
the resources necessary for the development of software (i.e., complexi ty,
size , schedule duration and adequacy , stability of requi rements, and multi-
contractor interfaces), so must the cost estimator analyze the cost factors
impacting the preparation and acceptance of requi red documentation.

I t The estimator must consider the documentation requi rements of the speci fic
desi gn approach outl i ned in the contractor ’s technical proposal . Further , he
must be aware that when a CPCI is specifically designated by ESO for procure-
men t, it may resul t in an unreal istic prol iferation of configuration manage-
ment , program control , and technical progress documentation . Section 2 of
Ref. [18] discusses the probl em of numbers of CPCIs , as does Section V of
Ref. 119].

*The Government/Industry Software Sizing and Costing Workshop states that
documentation costs approximate 10 percent of the total software develop-
ment cos t , or $35-$150 per page , depending upon the amount and complexity
of the analysis required in document production.

41

Delivery and acceptance of documentation depends to some extent on its time-
• liness. In estimating schedules and resources for tasks, the cost estimator

must consider the delivery dates of documents in relation to other mi l estones,
availabilit y of information requirements (i.e., supporting documentation data
obtained from decision points), and the resources required for documents pre-
paration.

3.2.6 Software Quality Requirements *

Software quality attributes have undergone extensive examination by both
Government and industry . Ref. [36] discusses software quality factors, their
definitions , associated relationships between the factors, and uses for
identifying the trade-offs between the conflicting quality factors in deter-
mining the product’s required capabilities and performance characteristics .
Quality attributes such as reliabilit y and maintainability , are currently

• being specified by the military in terms of performance requirements. However,
these types of quality requirements are not yet absolutely quantifiabl e in
the current state of software technology , and their specification in a
performance requirement generally results in a subjective interpretation
rather than an objective measurement upon which acceptance of the product
depends . Another problem of specifying quality requirements in a software

• procurement is that many of the software quality characteristics are in conflict
with each other, e.g., modularity and efficiency . Because it is difficult to
reconcile such conflicting requirements , the software engineer may be forced
to make arbitra ry, but less than optimum , design decisions . Yel another
problem is the lack of standard criteria for quality metrics , such as test-
ability or portability . The overall effect of the imposition of quality
requirements on the develop~nent process appears to be increased costs fordevelopment activities , but decreased costs for maintenance and support
activities . (See Ref. [1]).

3.2.7 Software Development Schedule

The offeror ’s cost estimate is based upon a specific project definition , a
plan and schedule for task performance , a set of mi xed personnel skills ,
necessary assumptions about many of the factors known to impact the develop-
ment process, and his individual casting rules . The entire cost estimation
process must be iterative because all of the variables (especially schedules)
and the relationships between those variables are unknown at the onset of the
process . In addition , there is a practical need for the al location of
resources to be appropriately spread over the entire development cycle and be
so specified in the cost proposal to facilitate preparation of a time-phased1-.• budget.

*For more information on software quality requ i rements, see MIL-S-52779(AD)
and Ref. [37).

42

- I.

4,

The total amount of calendar time allocated for software development has a
si gnificant impact on costs . Much analysis has been performed on the rela-
tionship between total development time and total development costs . The
cost estimate for software development must allocate resources over the total
elapsed time to:

• Plan for time-phased funding.

• Al l ocate resources for all explicit , deri ved , and implied tasks
resulting from the breakdown of requi rements .

• Account for costs that are a function of time and vary wi th the
time they are incurred (i.e., computer utilization).

• Manage the project wi thin budgeted resources and schedules .

Generally, the development schedule is a fixed constant. A cri tical component
of the derivation of the cost estimate is how the contractor specifies the
initiation and termination of identified tasks within the time constraints .
Because most development tasks are sequential in nature , they cannot arbitrarily
be compressed or reorganized wi thin the al l ocated schedule. In other words ,
the number and sequence of tasks to be performed in a gi ven time period will
indicate the manpower required to perform the total job.

There is little non—proprietary , quantitative data availabl e for effectively
measuring the cost impact of a less than optimum development schedule. There
is data available , however, depicting the relationship of program size to
development time . For instance , there appears to be an optimum man -loading
algori thm , loading above or below which will negati vely impact costs and
schedules . Figure 10 depicts the distribution of manpower for a medium size
software development project. Further , the following management implication
must be realized by cost estimators: -

“Management cannot diminish the development time of a system
without increasing the diffi culty . All changes take place in
the negative time direction. Development time is the most
sensitive parameter. It cannot be set arbitrarily by manage-
ment.” (See Ref. [20].)

The manner in which the contractor allocaths the time to specific activities
and individual skills is also of prime importance . Too little time and
effort spent in analysis and desi gn has an enormous impact on the eventua l
costs to subsequently correct design deficiencies . As development progresses,
it becomes mo re and more costly to resolve design errors.

43

I

& 4-

L

H

H . ,
H 0

H •
w~~o

H

— 0
N•

a,

~‘ S
— 1 • ..—

I - U-

N

F S,~.

I ’
I — -t —

I

44

There is an optimum man-loading as a
functi on of time in the development

pro-

cess, and deviations from the curve
by the addition of more manpower may

have an inverse effect on completion
time . This is due (1) to the natural

division of the work packaging~ below
which it is unprofitable to sub-divide

,

(2) to the amount of training required
of personnel assigned to do the work

,

and (3) to the amount of human interfacing and interCOnV%UPic3ti0’~
necessary

to produce a given product.

“Add-thg manpowe)L ~o a £zLte 4O~~tJAJCM p~tojec~:t maIz~Z ~Lt LctWL... • • -

The number of months of a project depends
upOfl its sequenti al - •

constrai nts. The maximum number of men depends upon the
number

of i ndependent subtasks . From these two quanti ties one can

deri ve schedules usi ng few men and ni re months . (The only risk

is product obsolescence.) One cannot, however , get workable
schedules USifl9 more men and fewer months.

More software pro-

jects have gone awry for lack of calendar
time than for all

other causes combi ned .” (See Ref. [17].)

The costs added to a late project by adding
manpower may be more than those

incurred by the additional manpower cost.
There may also be further costs

resulting from the additional training and coordination required . The

increased complexity in the devel opment process caused by
additional manpower

can cause the project to fal l further behind the schedule.

3.2.8 Tj~pe of ~~~~~~~~~~~~~~~~~~~~

Software development cost estimates vary
according to the amount of new code

to be generated~
transferred , or retrofitted .

Transferring an operational software system to
a new equipment configuration

is a cost estimati on probl em in which some
of the vari ables need to be

analyzed in a unique manner. (See Appendi x B for a discussion of the Hahn

and Stone software transfer model.) Costing indiv idual changes or retrofits

to an existi ng software system presents
other prob1ems~

esneciallY if the

developer is not familiar wi th the existing
system. The requirement for high

qua i~~Y
documentation accompanying the existing software

is obviously more

stringent for retrofit development efforts.
Costing software retrofitS must

-~ include analysis of the existing system,
decomposition of the retrofit require-

ments , and estimation of the costs of modify ing the existi ng programs to

interface wi th new software. At some point, the contractor may find that
it

costs more to retrofit the system than to
rewrite it.

3.2.9 Persoflfl~ l Re~ui re~meflt~S

Softwa re development is a highly analyti cal , and sometimes creative , endeavor

requiring indiv idual and collecti ve abstract reasoning to deal
with complex

problems . The issue of manpower in cost estimation
analysis is generally

45

reduced to deriving a productivity fi gure per manpower unit for an average
person wi thin a skill category. Due to the individual skill requirements of
each software development effort, a standard skill distri buti on ratio is not
possible to deri ve . However, the following rules of thumb have been
suggested (see Ref. [1]):

• The distribution of support personnel (i.e., management , clerical)
to system programmers and analysts is 20 percent support to 80
percent programmers/analysts .

• The effect of this skill distribution is to increase costs (i.e.,
per unit line of code) 25 percent.

Early System Development Corporation studies performed by Sackman , Erickson ,
and Grant (see Ref. [23]), reflect a variation in productivity rates for
experienced programmers of 10:1. Further , there was little correlation
between performance and experience. Many software contractors use internal ly-
generated productivity ratios for estimating software development costs , but
because of the numerous and unique combinations of factors inherent in each
development effort, the productivit y ratios may be no more than an average
guideline.

Perhaps the use of an application-suitable HOL is the factor most likely to
impact col l ective productivity averages . Programmer productivity has been
seen to increase by as much as a factor of five with the use of a HOL (see
Ref. [17]).

3.2.10 Development Methodology

Al though the development approach for software is generally the contractor ’s
responsibility there is a trend in current procurements for the implementing
command to specify the use of development methodologies to provide increased
visibility and control . A specific methodology is generally required to
ensure that the contractor is responsive to software quality factors, such
as maintainability . Certain development techniques (i.e., structured
programing) are perceived to increase productivity and l ower maintenance
costs. Al though there is little hard evidence that the use of specific
software engineering methodologies on large C3 systems will result in l ower
development and maintenance costs , the concensus of informed developers
supports the premise. There are , however , other factors that must be considered
by the contractor ’ in responding to the RFP that specifies how the software is
to be developed , including:

46

•
- _ _

•

H

• In what language is the software to be written? Although the program-
ming language selected can be considered part of the development
methodology , it may be chosen because of factors external to that
methodology . It has been observed that the use of a HOL increases
programmer productivity and , therefore, use of a HOL should decrease
development costs. However , some applications are constrained by
core space or time critical parameters , requiring that the software
be written in a Machine-Oriented Language (MOL). The use of a HOL
is preferable and should resul t in lower development and maintenance
costs .

• How is the software to be veri fied? When veri fi cation require-
ments include the use of an Independent Verification and Val i da-
tion (IV&V)* contractor or use of testing tools that have the
effect of veri fying that a certain percentage of the software
system statements have been executed within a gi ven set of test
cases , the contractor must expect increased development costs.

3.3 PROJECT MANAGEMENT AND SCHEDULING PLANS

A prime objective of the offeror ’s proposal preparation process is to
establish a framework of plans to demonstrate his methodology for monitoring
development costs and schedules . Plans are necessary for tracking project
schedules and costs, and for coordinating all activities necessary for
del i very of the product. Al though the project schedules are preliminary in
nature during proposal pr•eparation , the offeror must convince his own
management , as well as the procuring agency , that sufficient project planning
and analyses have been performed to verify that the product as specified can
be built within cost and schedule constraints. The project plan contained
in the Computer Program Devel opment Plan (CPDP), should demonstrate the
feasibility of developing the software within time and costs .

*An IV&V requi rement may be specified in two ways : (1) special tasking by a
separate organization wi thin the contractor ’s shop ; (2) an independent
agency or contractor different from the developer. The IV&V role is that
of an observer or testor whose purpose is to remove possible bias in
contractor test analysis. When an IV&V contractor is used in a procurement,
provisions for his free access to required information , documentation , test
tools , test facility , and source code listings must be assured. This requires
that contractual provisions be wel l defined so that each contractor’s responsi-
biliti es are fully compati ble.

47

4’.

Numerous methods ex ist for representing activities and their duration , although
generally, fairly simple schedule charts are inc l uded in the proposal. Bar
charts , which are used in production -management , have been repl aced by more

- • sophisticated scheduling representations that show complex interrelationships
of project tasks, subtasks , and products within a given time frame. Network
planning methods may be the optimum mechanism because they graphically repre-
sent the precedence relationships , or dependency of activities , in a more
disciplined manner. They can be used to determine the effect of schedule
changes of activities on those occuring later in the project. Figure 11
depicts exampl es of the Gantt, Project Network , and Time-Scaled Network charts .

In a large development project consisting of .perhaps hundreds of activities ,
it is necessary to reduce the project plan to a series of interconnecting
activities and events which result in a network model of the plan. Often
the magnitude of the project requires the contractor to organize the networks
by various subsystems or other divisions , corresponding to the different
levels of project management. The WBS provides an effective level of detail
for project network charts if it represents activities to the CPC-level .
Since the WBS is used in cost accounting and reporting , it is important for the
contractor to develop and represent the project schedule with WBS uniformi ty.

Generally, a complex network of events and cri tical path identification is
not submi tted wi th the proposal . The critical path in a network chart is
defined as the sequence of activities which consumes the most estimated time
in reaching the project’s end event. Slippage of activities along the
critical path will cause the end event to slip; thus activities on this path
require the most management attention to avoid slippages. Because critical
path analysis is a time consuming task in a large development project , this
type of analysis is generally derived from the initial project schedules
after contract award . This practice, however , may obscure important schedule
constraints that should be evaluated for their impact on development costs.

As noted , initial schedules and milestones are submitted for evaluation in the
CPDP when it is prepared by the contractor for inclusion in the proposal to
be used in source selection . In this case, the CPDP is i dentified in the REP
as a required proposal document. There may be some overlap of information
(e.g., schedules for milestones , i dentification of deliverabl es) in the CPDP
wi th information presented elsewhere in the proposal or eventual contract.
(See Appendi x C of Ref. [4]). It is important for this info rmation to be
consistent as well as correct.

4

48

.1

5 —

Acti,it~es
~~~~~~~~~~~~~~~~ Current Status

A I
7 /~~~

71/ 
_ _ _

1 1 1 1 1 1 1 1 1  TIme
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gantt Chart

In it i ated at
_____________________________________________________________..—

~~

comp1etion o~ 81

A2

/
3 2~~~~~®_ _  

82 
_ _  _ _

13)(~~ I

~~~~~~~~~~~~~~~~~~~~~~~~~_ _ _ _ _

02
(3)

Estimates

Project-Network C~~rt ~~~~~~~~DepictsPrecedence
R e l a t io n s h i PS

Al -o A2 ~~~~~~~~~ A3

82 ~~ E2~~~~~~~~~~El

81 ~_ _ _ _ _ _ _ _ _ _ _ 03I I I I I
Dl 02

In
Weeks0 1 2 3 4 5 6 7 8 9 10 11

IIm e .Scaled Network Chart
PathsFigure 11. Examples of Gantt , Projec t Network and

Time-Scaled Network Cnarts . (Adapted
from Ref. [21].)

49

I
-
- -

~~

• -

The scheduling of activities should be an iterative process that provides the
framework for detailing plannin g and scheduling upon contract award . All too
often , however , the schedule proposed is a superficial representation of the
most obvious set of required activities presented in a time span compatibl e
with REP time speci fication . This is especially true if there is no Val i dation
Phase. A Val i dation Phase al lows competing offerors to each evolve a detailed
SEMP and CPDP based on a greater knowl edge of all the computer-related activitie s
necessary to produce and implement a detailed CI design during Ful l -Scale
Devel opment, and with the knowl edge that their plan will be put in the Full —
Scale Development contract.

3.3.1 Task Se~~~ tation/WBS Definition

During proposal preparation the offeror must correlate his definition of
development activities with the SOW which is the source authority for defining
activities and against which the Preliminary CWBS corresponds . Generally, one
or more WBS elements must be defined for each CI to be used in cost reporting,
scheduling, and analysis. Depending upon the size of the system, or the
partitioning of the system into numerous CIs , WBS definition should generally
be extended below the CI l evel . (See al so Appendix A of Ref. [4].) The
extension of WBS~ elements should be done by the devel opment contractorwith P0 concurrence.

The offéror ’s proposed WBS definit ion of the software shoul d specify the
activities involved , and not just define the activity . That is , each WBS
element at whatever level should be a stand-alone activity which can be
schedul ed and costed as part of the total development cost . Further , the WBS
definition should represent an orderly flow of activity , providing visibility ,
control , and cost measurements for each specified activity . For example , in
most weapon systems there are several CPCIs identified in the design process
(e.g., the Satin IV program defined 68 CPCIs). If the contractor had defined
the CPC I in the WBS , he might have subdivided activities common to the develop-
ment of the entire software subsystem and not specific to a single CPCI.
These activities may include : preparation of the CPDP , design of the CPCI
interfaces , and development of the program support libra ry. It can be seen
that these activities should not be costed under each defined CPCI (in
Satin IV that would equal 68x3 additional costed activities) because these
activities have nothing to do with developing individua l CPCIs but rather the
entire software system.

50

I

The depth of the extended CWBS must be carried to a sufficiently low leve l to
enable the ccntractor to gain an understanding of the development tasks and
establish adequate visibility for both cost estimation and project plannina
purposes . The level specified should generally be dependent upon the
specifi c proposal , but at the same time , it must directly relate to the
activity needed to produce the end i tem. A hel pful consideration in determi n-
ing the WBS structure is:

1.6 theite. a~i ctc t~v~ty -~.n thL6 ~~~ wh~.ch i.4 common -to ctny o-the..-’z. -ta.oIz ?

When adequate time is spent in the analysis of an activity , there may be a
better understanding of the tasks involved. The additional analysis of tasks
wi thin an activity provides increased costing accuracy .

The WBS structure as reflected in the CPDP is intended to designate the organ-
ization or management structure for the software devel opment effort. During
the proposal preparation process it is useful to make an identification of
the organization responsible for each task. The effect of compatible WBS
activities with the organizational structure is hi gh traceability of resource
requirements (who gets what money , why, and when).

3.3.2 Schedulin g of WBS Elements

It is important to realize that there is a definite time-phasing, or distribu-
tion , of costs for each specific WBS element. The schedule must l evy time-
phased cost distribution insofar as possible for the specific procurement ,
since total cost cannot be divided by total time units and since each proposed
WBS element has its own resource requirements .

During the course of proposal preparation , the offeror should evolve a
schedule for every identified activity (i.e., element) in the WBS structure .
Al though this is a time consuming and complex set of tasks , it will help in• i denti fying any deficiencies in the WBS structure as well as schedule i ncom-
patibilities . Tasks which exist over a long period of time must have resources
properly allocated for the enti re time (i.e., all identified tasks must be
funded for their duration). In addition , the schedule should support prenara-
tion of each Contract Data Requirements List (CDRL) i tem.

51

- -- . -

SECTION 4 - ROLE OF PARAMETRIC MODELS

4.0 INTRODUCTION

This section briefly discusses the use of parametric models in software cost
estimation. In addition , cost variables , used in Cost Estimating Relationsh ips
(CER5) are briefly examined . Al though the use of parametric modeling for
software cost estimation appeals to a large number of personnel both in Govern-
ment and industry , this method of predicting software development cost has not
yet met with a great deal of success. It is the intention of this section to
familiarize the reader with the subject of parametric modeling , not to provide
an exhaustive and conclus ive survey of the technique . A list of currently
~4 -ed parametric models includes:

• RCA ’s PRICE cost predicting model s

• The Putnam model

• The Tecolote model

• The General Research Corporation model

• The Hahn and Stone model

• The GTE-Syl vania method

Three specific examples of this modeling technique are presented in Appendix B.

4.1 PARAMETRIC MODELS

A parametric model for estimating the cost of a proposed software devel opment
project is an equation (or group of equations) which expresses a quantifiable
relationship of a software project’s cost to a number of cost variables .
Derivation of the relationshi p of the cost to cost variabl es is dependent upon
prior collection and analysis of historical cost data and project variables .
Using the quantification of the cost/cost variable relationship, new cost
estimates may be made by estimating~the values of the cost variabl es representing
the new systems and , subsequently, computing an estimated cost by inserting
the estimated cost variable rates into the cost estimating equation (i.e.,
parametric model). Parametric equations allow for relatively fast computation
of software cost estimates by varying the estimated cost variable values .

Parametric equations are often computeri zed, requiring little or no software
devel opment experience from thei r users . However , the equation expressing
the relationship of cost variables (i.e., a subset of the project characteris-
tics) to cost depends upon a valid and comprehensive software cost experience
basis (i.e., a software cost element data base). Such a data base must con-
tain a large sample of comparable (i.e., consistently defined and col lected

53
Preceding page blank

.1

as wel l as unbiased) data . Establishing and maintai ning a comprehensive data
• base of this nature, then , is necessary to develop a parametric model , and

requires an in-depth knowl edge of the software development process. By use
of statistical techniques (e.g., multivariate regression analysis , factor
analysis , correlation , and others) an equation is deri ved which represents the
effect of the observed cost variabl es on the dependent variable. This requires
that t~’ analyzers choose the correct independent and dependent variablesover a large sample of programing projects. The independent variables selected
however, are generally those variables which are easiest to measure or
quantify on an absolute scale.

It can be seen, then , that the use of parametric models for estimating soft-
ware development costs may be performed by a relatively inexperienced software
developer. Further , the relationship of project characteristics or cost
vari ables to cost as represented by the parametric model may or may not be
valid depending upon the comparability and quality of the data in the data
base and upon the statistical analyses on which the model is based . In
addition , the independent variables required of the estimator for the model
may not be the most important or the only variables impacting development
costs. The validi ty of a model should be demonstrated by its successful use
in estimating costs for a number of similar projects. Al though a parametric
model may be a useful and simple cost estimation technique , it is subject to
unreliable estimates and/or biased results. At best the use of a model shoul d
be in conjunction wi th a more comprehensive cost estimation method in which
parametri c modeling resul ts are combined wi th detailed analysis of the soft-
wa re ’s functional performance requirements in a specifi c work environment.

4.2 MODELS VER SUS METHOD S IN COST ESTIMATION

A model purports to descri be how and where a software project uses money
whereas a method gives di rections as to how to produce a cost estimate . One
can empl oy a model to produce the contents of an estimate by attempting to
analyze a software project in terms of the model . Or, one can employ a
method which gi ves di rections as to the form and use of documents and or

• supporting material needed for an estimate. Models dictate contents but
allow presentation in whatever form is desired; methods dictate form, and
force consistency among the several parts of documents, but allow the con-
tents of the cost estimate to vary widely according to the estimator ’s judge-
ment. Given the current state of the cost estimating art, models tend to
oversimplify the problem in order to tackle It, while methods tend to place
an overly large burden for tackling the problem onto the cost estimator.

Software cost models are usually of two types, aggregated and disaggregated.
In aggregated estimation modeling , the total cost is first derived and then
appropriate percentages are allocated to each part of the software develop-
ment. The allocation may be according to phases, activities , or products.
Each part can then be further divided into subparts and costs allocated in

54

•1

a top-down fashion. In disaggregated estimati on modeling, the software pro-
ject is decomposed top-down as before, but costing is not applied until the
total subset of software pieces are of “manageable size”. Costing these
pie_es Is presumed to be easier whenever analogous experience with similar
completed small pieces can be found. Once the pieces are costed, the total
cost is then derived in a bottom-up fashion. Aggregated estimation is by
far the easier because it appears to be simpler to allocate costs via
percentages than via absolutes. Unfortunately, aggregated estimation does
not reveal how the original total cost is to be derived, and this number is
generally the most difficult to determine reliably. Disaggregated estimation
is more diffi cult because the process of independently costing each piece
resulting trom the decomposition seems to require more ability , con fidence ,
and effort in detailing design considerations . However, more confidence can
be pl aced in the results of di saggregated estimation . In practice there is
probably a use for both techniques . Aggregated estimation shoul d be used for
quick , “seat-of-the-pants” guessing in prelimi nary pl anning while disaggregated
estimation should be used for formal cost preparation. A cost estimati on
technique , whether it be a model or a method, must consider constraints and
trade-offs inherent in the specific development effort. The major constraints
encountered duri ng software development are constraints in hardware (generally
from limited memory or limi ted execution speed), constraints in schedule, and
constraints in man-hours . If any of these constraints are stringent, the
quality of the software product and/or allocated resources will be impacted .
Ideally, a cost estimation technique should be constructed to provide accurate
cost estimates of the various trade-offs. Unfortunately, this capability is
found in few techniques.

4.3 DEVELOPMENT OF COST ESTIMATING RELATIONSHIPS (çERs)

The cost estimating method presented in Attachment 3 of AFSCM 173-1 outl ines
the steps for the development of cost estimating relationships . In addition
to specifying a methodology, it incl udes guidance on each of the i terative
steps . Because it clari fies the problems inherent in developing CER5 , it is
summarized below:

• Designate the Dependent Vari able. Since cost data for CERs
shoul d be collected via the Work Breakdown Structure (WBS),
this step incl udes determining which item at what WBS level
should a desired type and quantity of cost data be collected
for use in subsequent analysis. Difficulty in deciding the
usefulness of a component or functional cost subdivision can
be expected.

55

I

• Define the Desi9nated Dependent Variable. This task Includes
precisely defining the designated dependent variable identifi-

• fied in the preceding task. Because of imprecise definitions,
di ffering unit terminology, alternative methods of defining
costs, and incompatibility of historical cost data reported by
contractors an d Governme nt, the definition process is often
difficult.

• Select the Parameters to be Tested as Potential Independent
Variables in the CER. The selection of technical parameters
to be -statistically tested should be obtained from expert
sources and possess the following qualities :

- Measurable in quanti fiable terms
- Available for data collection
- Reflect performance characteristics rather

than design characteristics

In addition , when the variables reflect aspects of new tech-
nology, extrapolation of costs will be necessary.

• Collect Data on the Independent and Dependent Variables to be
Correlated. The data collection task Is a lengthy and
di fficult task which must ensure adequate quantities of
comparable, relevant, and high quality data.

• Using Statistical Analysis, Explore Relationships between
• the Independent and Dependent Variabl es. This step includes

identi fying the logical relationship between the dependent
variable and one or more independent variables. Various
statistical methods of analysis are useful, Including scatter
diagram association and correlation coefficients, which even-
tually result in formulating a preliminary functional relation-
ship from one or more candidate relationshi ps.

• Determine the Relationship that Best Describes the Data. This
step Includes estimati ng values for parameters In the candi date
relationships and choosing the relationship that best describes
the data. (Least squares Is a useful curve-fitting technique

• which Is readily available In automated form via regression
I t analysis programs.)

1: • Document the Results. Thi s step includes recording relevant
data about the CER in order for that CER to be used reliably
by others In costing other systems or resolving problems.

56

1

•

~

- - - -

• Validate the Relationship .* This step includes using the
model on several projects, col lec ting data on actua l costs
and values of independent variables, and then comparing the
actual costs with the estimated costs. The model may have
to be run with actual values of independent variables if
they differ from the values used in the original cost
estimation.

*Thjs step is not Included In AFSCM 173-1 .

57

SECTION 5 - COST PROPOSA L EVALUAT I ON

5.0 INTRO DUCTION

This section provides the PU wi th evaluation information regarding the software
cost proposal . Additional guidance on software contracting can be found in
Ref. ~5].

Contracting for software acquisition is a complex , interdiscipl inary activity ,
requiring expertise in contracting, finance, law, contract audit, work packag-
ing , engineering , and cost analysis. Statutory requirements concerning the
submission of cost data are contained in the Armed Services Procurement
Regulation (ASPR), Section III. Regulations governing contracting by DoD are
also contained in ASPR.

• General ly a contract is awarded to the lowest bidder if his technical proposal
meets minimum requirements . Award to the lowest bi dder may not be wise or
equitable. The low bidder may have grossly underestimated development costs
due to inexperience or inaccurate software cost estimation procedures. A low
bid may also be a reflection of the offeror’s lack of knowledge of the tasks
that must be performed. In other cases, a low bid is submi tted in anticipation
of follow—on contracts. Just because an offeror agrees to develop a Droduct
at a given price is no guarantee that the cost incurred during development
will equal the price stated. Excessively low bids may force the offeror to
make unwise or erroneous management decisi ons to stay wi thin costs. The
procuror should be aware that he is not necessarily protected just because he
may have negotiated a Fixed Price contract to develop a product. If the con-
tractor has grossly underestimated the job , he may choose , (or be forced) to
default or else to delay delivery, all at no benefi t to anyone. The end
result for the Government in this case, may be not only the anticipated costs
of the contract but also the additiona l costs incurred as a result of the poor
management decisions . (See Ref. [6).) The information in this section is
intended to provide a basis for evaluati ng the offeror’s cost proposal in
relation to the technical problems inherent in a system acquisition.

5.1 THE MECHANICS OF EVALUATION

An offeror’s technical proposal is evaluated by a source selection organization
• against a set of preestablished technical and management cri teria. It is not

directly evaluated against other offeror’s proposals. Generally, the RFP
states the importance of each major cri terion against which the offeror’s
proposal is to be eval uated. Eval uation criteria may include technical ,
management, and cost factors. The technical proposal eval uation nrocess
culmi nates in a numerical rating of each proposal , wi th at least some del inea-
tion of the significant advantages , disadvantages , and risks of each proposal .

59
Preceding page blank

L

The cost proposal is generally not included in this rating and is usually
evaluated separately by a team of cost evaluators , often outside the P0. The
purpose of separating the cost proposal from the technical proposal is to• avoid inexpert eval uati on of the dollar relationship to the effort.

In tracking the software cost estimate deri ved , first, by Air Force personnel
and , second, by offerors responding to an REP , many complexities and problems
are identi fied. The numerous program-dependent variables in all development
projects require the exami nation of many factors to realisti cally estimate
costs. Air Force evaluators must therefore be able to evalua te the l abor and
materiel components of the offeror’s cost proposal and delivery schedule wi th-
in P0-established constraints . The information needed to make such evaluations
should be accumulated and refined by P0 Program Control prior to receipt of
the offeror’s cost proposal. This information forms the basis of the Govern-
ment’s pricing objective and it should include cost and pri ce analyses ,
histori cal cost/price data , independent Government cost estimates, and economic
analyses. Its comprehensiveness can determine how thorough an analysis of the
offeror’s cost proposal can be made , and thus can impact the eventual success
of the contract award .

5.2 COST ANALYSIS OF TECHNICAL ACTIVITIES

Cost analysis is the review and evaluati on of the offeror’s cost data with
respect to the technical proposal to determine its reasonableness and accuracy.
This may be ascertained by examining the tasks proposed to develop each pro-
duct identified as a deliverable. The cost analyst must then coordinate his
examination of the offeror’s cost and schedule data with the analysis of the
offeror’s technical proposal in order to determine the accuracy of the cost
proposal . The schedule proposed by the offeror must reflect the allocation
of time to product development. Using the commonly accepted 40-20-40 rule
(40 percent analysis/design , 20 percent code, 40 percent testing), or other
rules of thumb , the cost analyst should examine the allocation of time to each
task to determine if the schedule is reasonable. Another factor to consider
in appraising the work packaging vs resource and time allocation is the compara-
tive diffi culty of the di fferent work elements . Some CPCIs , such as a control
or operating system, may be more complex and require more manpower for devel op-
ment. When the offeror has separated and costed each task and subtask , the
cost analyst is better able to determine the reasonableness of resource and
time allocations , especially for complex apnlications .

There are a number of support tasks required by every project to produce
:i deliverable product(s). These support tasks may include :

• Design reviews

• Computer program support library development

• Test planning for development , qualification , and integration
testing.

60

I

S
• Simulati on model development to validate design concepts

and approaches .

• Development of a test bed for simulation and testing

As he did for each deliverable product , the cost analys t should determine if
the specification of these tasks is complete and if the cost and schedule
data presented in the proposal reasonably reflect their performance .

Cost analysis also includes verification of cost data , evaluation of specific
elements of cost, and projection of costs to determine thei r overall effect
on the program . The latter includes exami ~tion of the total cost proposed
by the offeror in performance of all tasks specified in the SOW, including :

• Direct costs, including l abor costs (cost of performi ng all
tasks), travel and relocation costs , computer time , CDRL
pricing .

• Indi rect costs.

• Contingency costs.

• General and Administrative (G&A) costs.

• Fee.

The basic direct labor costs can be verified by examination of the offeror’s
tasking of explici t, deri ved , and implied customer requirements . These tasks
include all those necessary for generation and delivery of all CPCIs , and re-
quired support software, related documentation , and all other deliverable
data speci fied in the CDRL . The total set of tasks presented by the offeror
indicates his understanding of the work to be performed and the labor required.
The number and diversity of tasks for each software developmen t will vary ,
depending both on the requirements and the extent of the contractor’s respon-
sibility . For example , a prime contractor for a system/system segment will be
responsible for the complete set of development tasks, while a subcontractor
for CIs/CPCIs of a system segment will be responsible for a delineated set
of tasks . In addition , each software development effort has unique require-
ments which complicate the evaluation process. However, the time spent in
examining the offeror ’s specification of work packages can lead to the re-
jection of the offeror who does not understand the technical details of the

• software system.

Generally, the cost proposal does not elaborate on the cost estimation method
• used by the offeror, although sometimes the total number of instructions (in

either source or object code) is gi ven . Some, or all , of the factors di s-
cussed in Section 3 should have been taken into account by the offeror in the
deri vation of the total number of man-months needed to perform the tasks.

61

4’

Generally, littl e data is provided in the cost proposal to justify the esti-
mate of total man-months necessary for task performance. Thus , exami nation
of the detailing of tasks and subtasks in the schedule must be the princi pal
method for determining the rationale of the proposed costs. If the offeror
has included estimates of the size of each CPCI (possibly to the CPC level if
a Validati on Phase has been conducted and this source selection will deter-
mi ne the Full-Scale Development Phase contractor), they should be compared to
the Government’s cost estimate. Depending on the level of confidence in the
in-house estimate, the comparison of estimated sizes mi ght provide a good
indication of the offeror’s rationale for proposed l abor costs. However,
because software size estimates are notoriously inaccurate , compari sons of
size estimates cannot in themselves validate the offeror ’s understanding of
the problem. Further, the number of instructions is only one project-
dependent vari able that impacts cost.

Once the offeror has established the man-month requi rements, the designation
of the type of man-month necessary for each labor-related task must be veri-
fied. Insufficient project planning may be recognizable if the offeror has
not allocated specifi c skill levels for specifi c tasks. For example , analysis
and design activities require software engineering support (or the equivalent)
whereas module programing and testing require a less experienced , and there-
fore , less expensive allocati on of labor.

Labor costs associated wi th document producti on are more accountable than
labor costs associated wi th task performance because documentation tasks
i nclude all activities associated with producing contractually-speci fied docu-
mentation . DoD requirements for documentation are specified in the Contract
Data Requirements List (CDRL) and are generally also specified in the corres-
ponding SOW. It includes all documents speci fied in the SOW task description ,
and may also incl ude other documents not mentioned in the SOW. The costing
of CDRL items is the dollar value required for each CDRL i tem, and generally
includes the combi ned costs of all labor and document reproduction associated
wi th the task. Examination of the data presented in the cost proposal for
consistency wi th the SOW/RFP is a necessity during proposal evaluati on.

Other di rect costs include travel allocations , generally for temporary duty
trips and relocations . Such costs must necessarily include information
relating the trip to a specific task, the number and duration of trips , and
per diem rates.

Computer utilization is another direct cost which may significantly impact
total estimated project cost. It is important to ascertain the reasonable-
ness of estimated computer utilization scheduling. Computer costs are
obviously time-phased and shoul d correspond to the tasking of code and test
acti vities of support or application programs unless special tasks require
computer resources. An example of special tasking is the use of simulation
programs i ntended to veri fy design al ternatives or timing/sizing studies . The
estimated size of the total development software package should be considered
In relation to the total amount of computer resources costed.

62

Because computer utilization requirements vary, as do rules for costing them,
it is not always feasible to determine the offeror’s i nterpretation of the
computer resources needed to perform the development job. Computer utiliza-
tion resources may include customer-furnished equipment , purchased or leased
equipment, customer-furnished computer time , and purchased computer time .
The cost of the other sources of computer time is generally made on the basis
of other costs, as fol lows :

• Customer-Furnished Equi pment. Cost of computer operations ,
incl udTng computer operators, maintenance , facilities , and
air conditi oning.

• Purchased or Leased Equipment. Cost of purchase or lease and
cost of computer operations.

• Customer-Furnished Computer Time. No cost.

Another direct cost in computer utilization estimates is deri ved from the
necessity to remotely access the computer or to use a timeshari ng nrocessing
mode instead of batch . Both these costs appear to increase the total computer
costs, although indirect benefits are deri ved from their usage as
demonstrated by an increase in programer productivity .

Because of the variability associated wi th computer utilization (i.e., compu-
ter execution times, application di fferences, operating system differences),
no standard al gorithms for justifying computer utilization can yet be provided
to aid in the analysis of estimated costs.

Cost proposals are often assembled late in the proposal production process by
the bidders and contai n discrepancies when compared to the technical and
management proposals. The cost analyst should especially look for:

• All products and tasks, especially CPDP tasks reflected
in the WBS , schedule , and proposed costs.

• The correspondence between manpower loading and the l abor
rates and levels bid.

• Requirements for Government-furnished property, computer
time , or labor that are beyond the scope of the RFP or that
may provide unfair competitive advantage .

Justi fi cation of indi rect costs is also a task in the analysis of the cost
proposal . Indi rect costs generally include management and overhead costs and
the basis for all rates must be examined. The procedures and regulations for
analysis and eval uation of this type of cost are presented in ASPR.

63

I

5.3 COST ANALYSIS OF TECHNICAL/FINANCIAL MONITORING ACTIVITIES

A contractor is required , in accordance with DoD Instructions 7000.2 and
7000.10, to submi t summary-level cost, schedule , and performance data to pro-
vi de the PU wi th a means for evaluating deviations from pl anned costs and
schedules . Therefore , an offeror must provide in his proposal sufficient
data about his management, performance, cost, and schedule reporting system to
assure that it is compatibl e with the information requirements of the
Government ’s Cost/Schedule Control Systems Cri teria (C/SCSC). These cri teri a
are presented in AFSCP/AFLCP 173-5 , and provide gui dance for the uniform
planning and implementation of cost/schedule reporting and surveillance of
contractor compliance . The Cost Performance Report (CPR) is the reporting
vehicle used , and its effectivity depends upon the WBS definition. WBS
i dentifiers provide the bases for tracking actual technical progress within
costs and schedules against the performance estimates for each WBS element.

The WBS forms the framework by which the contract work statement tasks, con-
tract line items , Confi guration Items (CIs), contract speci fication tree, and
the offeror’s response to the RFP will be correlated . After contract
negotiations , which may result in adjustment to the WBS definition , the WBS
becomes the basis for further extensions during Full-Scale Development/
Production. Al though the offeror has complete flexibility in extending the
WBS to reflect his work packages , the summary elements ’ nomencl ature and
definitions may not be changed after contract award.

The C/SCSC requires that the contractor report cost and schedule data on a
monthly basis for each identi fied WBS element. In addition , he must renort
schedule and cost variances when cost /schedu l e thresholds are exceeded and
explain the corrective action being taken to resolve the variance. Using the
WBS element for cost and schedule reporting allows the PU to sum all costs
associated wi th each Level 1 , 2, or 3 element to ascertain if total costs
exceed thresholds for that element. Smal l variances reported by the contrac-
tor may have a cumulati ve effect that coul d result in signifi cant budget
overruns for the WBS element.

The WBS allows contractor flexibility in work packaging , cost reoorting, and
performance monitoring , but because of its flexibility , cost data received by
the PU is often aggregated. For example , the WBS for COMBAT GRANDE provided
for the submi ttal of cost information at the combined CPCI level , which did
not include a breakdown of system engineering and management activities and
associated costs. The consequence of this aggregated cost reporting process
is the loss of valuable historical information that can never again be
obtained because of its oroprietary nature. Unless the WBS definition is
correctly extended and becomes the contractual vehicle for cost reporting,
adequate cost data for future reference will not be provided to the P0. To

- collect costs at a more meaningful level , the P0 must require that the WBS
definition be extended to the CPCI-level at a minimum . Another recommendation

64

I

for more thorough data collection and subsequent program control ii~c.1~des thesubmission of manpower and dollar costs broken out by phases of the deV~lop-ment process (i.e., design , code , modul e test, CPC test, CPC I test, and
qualification testing) for each CPCI (see Appendix A of Ref. [4]).

Monitori ng technical progress may be accomplished more easily if valid tech-
nical mi lestones are required for each CPCI. Sometimes, the technical status
of software development is derived by exami nation of the percent of resources
expended. However , resource expenditures and work progress do not generally
follow parallel curves to project end. When a variance exists between
budgeted cost for work scheduled , budgeted cost for work performed, and actual
costs, the contractor must account for the variance . When actual performance
deviates from planned performance, the contractor’s management control system
should be required to trace the variance to its source.

To obtain valid and meaningful data on technica l progress, while ensuring
that the data obtained is meaningful for further acquisitions , the WBS
definitions must be extended to more adequately identify and collect software
development costs while providing for technica l mi lestones within each CPCI.*

The Program Breakdown Structure (PBS) supplements the use of the WBS for pro-
grams managed by AFSC when prescri bed by PMD or AFSC Form 56. The Program
Breakdown Codes (PBCs) provide an effective identification mechanism to be
used in support of uniform cost accounting for comparisons across systems.
AFSCM 1 73-4 provides policies and procedures for assigning PBCs to WBS
elements for AFSC-managed pro-grams . With regard to software cost reporting ,
the PBS is intended to provide an automatic reporting system for the collec-
tion of cost data and a mechanism for reflecting all costs in a program.
Further discussion of the PBS and PBCs is presented in Appendix A of Ref. [4).
In add i t ion , the initial expansion of PBCs presented in the appendix are
further expanded and modified to fit into the cost reporting system proposed
by General Research Corporation in Vol ume 1 of Ref. [22].

The following guidel ines have been recommended (see Ref. [1]) to ensure that
the software development costs for an embedded computer system are properly
refl ected in the WBS :

• A singl e element in the WBS fo.r software development seldom
accounts for the total software development cost. Usually
the single element accounts only for coding and checkout

• costs, which is generally 20 percent of the total software
development effort.

*The MITRE Corporation is developing and is scheduled to deliver to ESD by
mid-1978, a new Data Item Description to be used to implement a standard
cost reporting system for software acquisition .

•

~~ - :~ -~~~~ •

• Analysis , design , testing., and i ntegration should be reflected
in the WBS . Since the WBS for most systems with embedded
computers is oriented around prime mission equipment elements,
the portions of each prime mission equipment element targeted
for software impl ementation must have separate software elements
for analysis , design , testing, and i ntegration.

• Management and support costs for software development should
be adequately reflected in the WBS. This may be accomplished
by including software elements in the system engineeri ng
project management portion of the WBS. In addi ti on , these
elements should be partitioned by the software life cycle
phases .

• Separating or factoring hardware elements from software elements
in a satisfactory manner in the WBS may be di fficult for many
developments . Engineers , especially in avionics apDlications ,
may be qualified in both hardware and software , and partition-
ing thei r time accurately among the various WBS elements may
be difficult , especially in the testing and integration phase.
Problems encountered then cannot be attributed to hardware or
software until the cause has been found and the problem is
resolved. The only solution for accountability of hardware!
software costs may be constant watchdogging to ensure that
l abor gets parti tioned accurately among hardware and software
elements in the WBS.*

~~ is important that the WBS reflects the way work is performed . For example ,
system-level tasks such as system integration and problem isolati on should be

1- classified and reported at the system l evel and should not be allocated to
software until software work is obviously performed. Artificial breakdowns
will be recognized as such and will be arbitrari ly reported , providing use-
less information.

66

I

APPENDIX A - REFERENCES

1. “Software Cost Estimation Study, Vol ume II: Guidel ines for Improved
Software Cost Estimation ”; RADC TR 77-220; Doty Associates, Inc.;
Rockville , MD., February 1977.

2. AFSCP 800-3; “A Guide for Program Management”; Apri l 1976.

3. MIL-STD-88lA; “Work Breakdown Structures for Defense Materiel Items” ,
Apri l 1975.

4. “Software Acquisition Management Guidebook: Statement of Work Prepara-
tion ;” Glore, J. B., and Bjerstadt, W. R. , MiTRE; ESD—TR-77-16;
January 1977.

5. “An Air Force Guide to Contracting for Software Acquisition ” ; Bolen , N.E. ,
MITRE Corp., ESD-TR-75—365; January 1976.

6. “An Exploratory Study of Software Cost Estimating at the ESD;” Devenny, T.J ,;
GSM/SM/76S-4; Thesis , AF Insti tute of Technology , Air Universi ty; July 1976.

7. “The Management of Computer Programming Projects ;” Lecht , Charles ; Ameri can
Mana gement Assoc iates, Inc., 1976.

8. “The Cost of Developing Large-Scale Software” ; Wolverton , R . W. ; IEEE
Transactions on Computers; Volume C-23, No. 6, pp 615—636 ; June 1~74T

9. “Estimating Resources for Large Programming Systems” ; Aron , J.D., IBM
Federal Systems Center, 1969.

10. “Estimating the Costs of Programmi ng Systems” ; Meyers, G.J.; IBM Technical
Report, TR 00.2316; May 1972.

11. “Research into the Management of Computer Programing : A Transitional
Analysi s of Cost Reporting Techniques” . We i nwu rm , G.E. , Zagorskl , H.,
ESD-TR—65—575, November 1965.

12. “Factors that Affect the Cost of Computer Programming;” Farr, 1., Nanus , B.,
SDC., June 1964.

13. “Research into the Management of Computer Programing: A Quantitati ve
Analysis” ; Farr , 1., Zagorsk i , H., SDC, January 1965.

14. A Summary of an Analysis of Computer Programing Cost Factors” , Farr , L.,
Zagorski , H., SDC, January 1965.

15. “An A i r Force ADP Exper ience Han dbook (P il ot Version) ” , Gradwohi , A.J.,
et al , ESD-TR-66-673; December 1966.

67

4’

- --
- - - .-

~~~~~~~~~~~~~~~~~~~~~~~~~ - - . - . -

- 

16. “An Air Force Guide for Monitoring and Reporti ng Softwa re Development
Status”; ESD-TR—75-85, MITRE ; September 1975.

17. “The Mythical Man—Month”, Brooks, Frederick, P., Jr., Addison-Wesley , 1975.

18. “An Ai r Force Guide to Computer Program Configuration Management” ;
Searle, L.V., SDC, ESD-TR-77-254, August 1977.

19. “An Air Force Guide to Software Documentation Requirements”; Schoeffel ,
W.L., MITRE , ESO-TR-76-159, June 1976.

20. “A General Solution to the Softwa re Sizing and Estimating Problem” ;
Putnam , Col . L. H., U.S. Army Computer Systems Command.

21. “Project Management wi th CPM and PERT”; Moder , Joseph,and Phillips , Ceci l R.,
Van Nostrand , 1970.

22. “Cost Reporting Elements and Activity Cos t Tradeoffs for Defense System
Software, Volume I: Study Results” ; Graver , C. A. , et al ,; CR-1-721 ;
General Research Corp ; March 1977.

23. “An Explora tory Investi gation of Programmer Performance Under On-Line and
Off-Line Conditions” ; Grant, E.E., and Sackman , H., IEEE Transactions on
Human Factors in Electroni cs, March 1967.

24. “Software Transfer Cost Estimation Technique ” ; Hahn , W. an d Stone , J. Jr.,
M70-43; MITRE , July 1970.

25. “When Should You Emul ate”? Lichtenstein , H.A., Datamation, November 1969.

26. “Program Conversion ”; Kahn, P.G., Fuller , M.E., Data Processing Magazine,
November 1969.

27. “A General Solution to the Software Sizing and Estimating Problem” ; Putnam,
Lawrence H., presented at Life Cycle Management Conference; AIJE ;
February 1977.

28. “A Macro-Estimating Methodology for Software Development” ; Putnam , Lawrence H.,
Digest of Papers, Fall COMPCOM ‘76; pp 138-143; September 1976.

29. “The Influence of the Time-Difficulty Factor In Large Scale Software
Development” ; Putnam , Lawrence H., Digest of Papers1 Fall COMPCON ‘77;
September 1977.

30. “Usefu l Tool s for Project Management” ; Norden, Peter V. ,  Management of
Produc tion , Penquin Books , 1970.

31. “A Provisional Model for Estimating Computer Program Development Costs’~;Freder ic, Bra d C. , Tecolote Research Inc ., December 1974.

68

4,



— ~~~~~ - - - - - — —-— -———— —~—~ *—~~~~~-- -—-. - _— -  - - ..._ t..~~- — - r - - -

1’
32. “Estimation of Resources for Computer Programing Projects;” Morin , L.,

M-5222 Masters Thesis; University of North Carolina at Chapel Hill; 1973.

33. “Summary Notes of a Government/Industry Software Sizing and Costing
Workshop;” Geran , D.B.; USAF(ESD); Bedford , Mass; October 1974.

34. “Management Handbook for the Estimation of Computer Programing Costs;”
TM-3225/000/Ol ; System Development Corporation ; Santa Monica , Calif.;
March 1967.

35. “Computer Resource Requirements for Programing Devel opment;” Aron , J.D,
Arthur, R.W.; IBM ; Gaithersburg, Maryland ; 1975.

36. “Factors in Software Quality; ” McCall , J.A., Richard s, P.K., Wal ters,
G.F.; Information Systems Programs, General Electric Company;
Sunnyvale , Calif; October 1976.

37. “Software Acquisition Management Guidebook: Software Quality
Assurance;~’ Neil , George; SDC; ESD-TR-77-255; August 1977.

69 

- -



APPE NDIX B - SOFTWARE COST EST I MATION MODEL S

1 .0 INT RODUCTION

This appendix presents three parametric models as examples of the types currently
being used in some specific software cost estimation problems*. Al though each
model presents estimating relationships according to the type of software
application problem being addressed, the three models are qu ite different in
their approach. The models presented incl ude:

• A method for estimating costs involved in transferring software
from a source computer to a target computer.

• A method for estimating cost among divisions of time during
which software development is proceeding.

• A method for estimating cost relationships for a tactical fire
control development effort.

1.1 HAHN & STONE SOFTWARE TRANSFER COST ESTIMATION TECHNIQUE

The Hahn and Stone technique uses a model designed to assist in the estimation
of the cost of transferring software from one computer to another. This
technique was developed by the MITRE Corporation In response to a request by
the Defense Comnunications Agency to undertake a study of the costs involved
in transferring a set of applications software from one computer system to
another (see Ref. [24]).

1.1.1 Factors Considered in the Hahn & Stone Model

Much of the paper presenting the Hahn and Stone technique is a discussion of
the four major factors determining how the software can be transferred, and
consequently, the costs necessary for the transfer.

Unl i ke most software cost estimation problems, the costs of transferri ng a
software system to a computer di fferent from the one on which the software
was developed generally involves estimating costs for many fewer tasks than
were necessary for the original software development. The entire requirements
anal ysis and, usually, the design phases of the software life cycle are
unnecessary. Unless the software conversion requires redesign, the software
cost estimati on problem is greatly reduced because many of the factors
invol ved in the task of estit.~ating, such as those discussed in Section 3 of
this guidebook , have been removed or are more quantifiable. For example ,
both the software size and the compl exity of the appl ication are directly
observable via the existing software documentation. (This does not mean to
imply, however, that total conversion costs will be significantly less than
the total devel opment costs. It does imply, however, that much of the
uncertainty in the cost estimate is removed.) By omitting requirements
analysis and design tasks, the costs to be estimated depend upon the nature
of the programing p-nd testing activities. In order to evaluate the manpower
required for these tasks, Hahn and Stone consider the impact of hardware
characteristics (both source and target), the nature of the software to be
transferred, the transfer techniques availabl e, and the transfer phasing
plan strategy.

*The models are presented for Illustration only. This does not constitute
an Air Force approval of these models.

71 Preceding page blank

4,



In general the greater the number of hardware differences between the target
and source computers , the greater the amount of manpower required to resolve
the di fferences in the transfer of software . Hardware characteristi cs which
should be expected to impact transferability of software include differences
in transfer rates of instructions , changes in word size, loss of bit signifi-
cance, changes in system-dependent parameters that control literal i tems,
machine configurations of a floating point number, and machine -dependent

‘ constants. The software characteristics which effect conversion costs include
the size of the software, programing languages , and machine-dependent
characteristics of the software.

The H&S Model is dependent on software transfer techniques which are classified
into three types, (1) direct use, (2) machine-assisted transfer, and (3)
manual program transfer. These types of transfer techniques directly impact
the amount of manpower resources required to transfer the software to the tar-
get machine. These considerations are summarized in Figure 12.

Direct use implies that the object programs are directly transferable because
the source and target computer are highly compatible, or the target computer
can be made to emulate the source computer’s instruction set by hardware or
simulate it by software. The cost of emulation hardware is estimated to range
between $1 ,200 and $9,000 per year (see Ref. [25]). The cost of development
for a simulator is estimated to range from $40,000 to $70,000, and reauire 4
to 9 months to develop (see Ref. [26]). Since these costs are not related to
any system size by Hahn and Stone, and do not include costs of the inefficient
use of the computer for both emulation and simulation , their validity is suspect.

Machine-assisted transfer techniques employ a language processor to aid in the
conversion , such as a decompiler , trans lator , and compiler. Machine—assisted
transfer techniques almost always assume that a one-for-one relationship can
be established between the source and target languages. They require that
the developer thoroughly understand the source and target languages and that
the current program source deck be available and essentially free of machine-
dependent functions or data descripti ons. Machine-assisted techniques will
not improve the efficiency of the source program. The only improvements to
be expected are those attributable to the difference in the hardware and the
operati ng system.

Manual program transfer techniques are totally dependent on human effort and
may consist of three types , redesign , reprogranining, and recoding. They
require the largest amount of resources . Most softwa re conversion projects
will requi re at least some manual conversion tasks. The amount is determined
by the following factors :

• The degree to which machine-assisted translation techniques are
not available , or the amount of instructi ons remaining after the
use of a machine-assisted transfer technique.

72

4,

_ 1~~~~_ 
- ~~-~~~~~~~-~~_ _ _ _ _ _ _ _ _ _ _ _ _



t

TYPE CHARACTERISTIC IMPACT

Hardware Change in word size May require table repacking if
Characteristics target computer has larger (and

storage efficiency is required)
or smaller word size .

Loss of Significance A reduction in the number of
bits contained in an integer may
cause loss of significan ce in
the val ue or less precise arith-
metic operations in the target
computer may cause reprograming.

Literal Items A change in system parameters
controlling compiler-generated
literals (especially bytes/word,
bits/byte) will increase size
and complexity of transfer.

Floating Point Target computer ’s configuration
of a floating point item may
ha’ie impact on transfer.

Machine-Dependent Machine-dependent constants
Constants (i.e., hexadecimal , octal) may

need reformatting or integer
constant word size may need
changing .

Software Size Larger programs appear to require
Characteristics a disproportionatel y large amount

of resources. In addition , data
base size may impact timing
requirements , which may become

_______________________ a cost factor.
Program Languages Transfer of a Machine-Oriented

Language (MOL) system is depen-
dent on differences between
source and target computers .
Also, computer-aided MOL trans-
fer techniques are not readily
ava il abl e. Trans fer of an HOL
system is generally less expen-
sive , assuming that the HOL
compiler is availabl e on the
target computer.

Figure 12. Software Transfer Considerations (Adapted from Ref. [24]).

73

4,



TYPE CHARACTER ISTIC IMPACT

Software Other Software Character~ Status and quality of document-
Characteristics istics ation.
(cont’d) Number of subprograms.

Number and complexity of linkages
between OS/Programs.
Interfaces between programs and
data base.
Number of modifications to be
made during transfer.
Growth rate of programs and files .
Data storage media.

Program Direct Use - Modifica- Most useful for programs with
Transfer tion of the target short life span or infrequent
Techniques computer (i.e., emula- use.

tion , simulation ) Full capabilities of target
computer may not be used .

Machine-Assisted Decompilation - The process of
Transfer translating machine language to

a compiler l anguage. Effective
decompilers are feasible but
rare ; idiomatic machine-l anguage
expressions and code that modifies
itself complicate the decompila-
tion process.
Translation - The process of
converting a program in one
language to a program in a
different language. Requires
correct usage of MOL/HOL con-
structs .
Recompilation - The process of
compiling a POL source program
on the target computer with the
same POL compiler.

Manual Transfer Redesign - The process of produc-
ing a different problem solution
and processing logic than orig-
inal source. Makes-maximum use
of target computer and support
software . Most costly .

Figure 12. Softwa re Trans fer Cons idera tions ( cont’d )

74

4,



TYPE CHARACTERISTIC IMPACT

Program Manual Transfer Reprogrami~y - The process of
Transfer (cont’d) producing a target program that
Techniques performs the same function as
(cont’d) original source, but may use

different logic. Used when
existing program has been exten-
sively retrofitted, efficiency
needs improvement , or interface
with equipment has changed .
Recode - The process of manually
translating source language
program to target language
program. Least costly.

Figure 12. Software Transfer Considerations (cont’d)

75

4,

.1:



• The amount the programs have undergone extensive or piecemeal
modi fications since initial development and require redesign
for more efficient operati on.

• The use of idiomatic expressions* and program self-modification
make machine—assisted translation ineffective.

• A decision is made to convert MOL programs to POL programs in
order to achieve more inter-computer compatibility .

• The degree to which existing programs are combi ned to achieve
more efficient operations.

Redesign is used to produce a target program which has a different problem
solution and di fferent logic than the source program . It is usually the most
expensive of the manual techniques since it normally includes all tasks
associated with the original development of a program. (See Figure 1.3.)
However , it may be advantageous if two or more programs are combined or
extensive modifications have changed the ori ginal function of the program.
Program redesign is also necessary if the mode of operation is to change ;
i.e., batch mode to on-line mode.

Reprogramming is used to produce a target program which performs the same
function as the source program but which is not constrained by the use of all
of the original logic. This method would most likely be applied when the
existi ng program has been extensively “patched” , a substantial  increase in
efficiency is desired; or major changes in the use of peripheral equipment
are made (change from tape storage to disc storage). The tasks involved in
reprogramming are shown fn Figure 13.

1.1.2 Hahn and Stone Model**

The Hahn and Stone cost estimation model considers the cost of transferring
progra ms (C ) , the cost of transferring data (Ce), and other costs (Ce), such as
documenting~programs and keypunching . These co~ts are all expressed ‘Inman_years***. Computer costs are expressed in terms of hours of computer time
required for software transfer. The model for estimati ng these costs considers
the use of various combinations of transfer techniques , and program charac-
teristics. The cost estimation model is represented by the following equation :

*An idiomatic expression is a program segment of one or more instructions
whose meaning is not a direct result of the meaning of the individual instruc-
tions. Idiomatic expressions occur often in machine—oriented languages .

i. **Based on actual development and modification costs of programs, with further
refinement by DoD, industry , and MITRE personnel -

***The conventional values used for man-time conversions are: 1 man-year
12 man-months 260 man-days = 2080 man-hours and 1 man-month 173.3
man-hours .

76

4,



TASK REDESIGN REPROGRAM RECODE

Analyze System Requirements - Determine the opera- X
tional requirements of the system; evaluate their
completeness, feasibility , and compatibility with
other systems. Analyze the operational and user
needs for output and sources for inputs .

2. Analyze Program Requirements - Determine the require- X X
ments for program production and test, program
language to be used, opera ti ng system and other
progranining support required .

3. Analyze Similar and Interfacing Systems - Determ ine X
the systems procedures and techniques ilready in
product ion , operation, or planned which may
influence the redes ign of the system.

4. Prepare Design Requirements and Specifications - X
Develop the specifications for the total iata
processing system including the hardware configur-
ation required. Develop the design requirements
for the software system Including programs, data
structure and interfaces required to satisfy
the operational requirements.

5. Design Program — Using the design requirements or X X
existing program documentation , design the entire
computer progra m system and /or ind iv idual programs

• and routines that have been identified . Determine
and design data input and output formats.

6. (a) Code the Program - Translate flow diagrams X X
and other statements of program design into
coded instructions.

(b) Recode the Program - Translate the code, using x
program listings and other program documenta-
tion from the source to the target language.

• 7. Desk Check the Program - Desk check the new code X X X
by looking for Illegal expressions (which may occur
when Id iomatic expressions are used in the old
program), erroneous data references (which may occur• when source program is self-modifying), program
Ineff icienc ies, and deviations from program specifi-
catlons .

Figure 13. tlanual Transfer Tasks

77

I



- — — -- - — - -— — - - -•- -— -— ———— --— ~•:._ ._____ _ ~~~~~~ — - -- - - — - - - a.~~~- - ~~~~~~~~~~ —

TASK REDESIGN REPROGR AM RECODE

8. Compile and Check Pro9ram Code - Assemble or compile X X X
each program into machine—readable form, check
l isti ngs for errors , correct code, and reassembl e
or recompile. Continue the process until a satis-
factory program is obtained .

9. Test Individual Programs - Within requirements of X X X
the program test plan , run performance tests of
individual programs to isolate and correct errors.
Rerun until the requirements for problem solution
are satisified .

10. Sy~stem In teq~ation and Test - Run the program X X X
system testTor physical integration of functionally
Inde penden t programs to i sola te and correct fa i lures
to meet the program system requirements (Program
system cons ist ing of onl y one Ind i v idual program
will not require this task.

Figure 13 . Manu al Trans fer Tas ks (con t’d )

78



(~i~ C.r = C
~, 

+C
D
+C O

where: C1. = Total Cost

Each term of the equation and its derivation is discussed below.

The cost of program transfer (C0) is made up of two major components: the
cost of the machine-assisted transfer techniques and the cost of manually
transferring all or part of a program. Expressed as an equation:

c~ Cp = C A + C M

where: C~, =
. Cost of individual program transfer

CA = Cost of the machine-assisted transfer technique. (No attempt
is made to further quantify or break down this cost element.
However , machine-assisted transfer is discussed in general
from a technical and cost point of view.)

CM = Cost of manua l transfer. ~The cost of manual transfer of theprograms is the largest single cost of the transfer process
and consists of: (1) the number of instructions which must be
manually transferred ; (2) the average rate at which these
instructions can be transferred, expressed in instructions/man-
day and ; (3) the cost of manpower per man-day.]

Expressed as an equation :

® CM
~~~T

(CMD)

where: I = Number of instructions to be manually transferred (dependent on
size of program, the transfer technique used, and the effective-
ness of the machine-assisted transfer.)

R. = Rate of transfer. (The average number of instructions or statements
which can be manually transferred from one computer to another in
one man-day.)

-

where : MDT = Total number of man-days required

79

Further , MDT can be defined as follows:

~c~::~ MElT
=

+ [(DF1) (AL)]
+
[0F2)

(çL)] + + [(ElF3)

~where: RBC baseline conversion rate

RBT baseline test production rate

documentation degradation factor

= program instability degradation factor

DF3 = system integration degradation factor and further:

R~
= number of man-days required for baseline conversion

BC
(D F1)Q—) = number of man-days required to make up for document

BC degradation factor.

(D F2)(~
L_) = number of man-days required to make up for program
BC instability degradation factor.

I
= number of man-days required for baseline test

BT

(D F3)(RL~.) = number of man-days required to make up for systemST integration degradation factor.

Recoding is a one-for-one manual translation of instructi ons from a source
language to a target language. It produces an operational program on the
target computer using the same logic and same problem solution as was used
in the source computer program. Although Hahn and Stone claim that recoding
represents the least sophisticated of the manual conversion techniques because
the programmer is not requi red to have an In-depth understanding of the pro-
gram logic or solution, the author is doubtful that such a program can ever
be thoroughly tested and debugged unless such an understanding exists. The
tasks Involved in recoding are shown in Figure 13.

Once the size of the program has been determined, the percentage of instructions!
statements to be manually transferred can be identi fied. Because this tech-
nique requires the most manpower , it is the principal cost factor and is in
di rect proportion to the type and effectiveness of the transfer technique used.
Direct use transfer techniques (emulation and simulation) are principally

80

•1

techniques for time phasing the transfer and thus are not considered by Hahn
and Stone as part of the direct costs of transferring programs . Machine-assisted
transfer techniques are also considered in estimating the transfer cost since
the number of residual instructions which remain to be manually~.transferred isin proportion to the effecti veness of these techniques . The majori ty of the
Information presented by Hahn and Stone expressed the cost of transfer, using
the machine-assisted technique, in terms of a range of percentages of original
program development costs. This method of calculating the cost of using a
particular machine-assisted transfer technique may not be feasible or may be
subject to error because the original program development cost is often unknown
or unreliable.

Development production rates for a total program were then calculated from a
sample of actual production rates for each language . These were further refined
(see paragraph 1.1.3) to determine baseline conversion and test production
rates (R and R0) which are shown in Figure 14. The high and low rates
were cal~~lated ‘f~ that the probability of an actual production rate fallin goutside these limits was 2.5 percent.

In addition to production rates, degradation factors were introduced to account
for the quality of documentation (Dr,), the number and magnitude of program
modifi cations required during progr~th transfer (ElF2), and program complexi ty(ElF3) .

By incorporating equation GJ into equation ® , the expression for becomes:

® RT =
(R BC) (R81)

(l+0F3)R BC + (l+D F1 + DF2) R BT

The cost of transferring data (CD) is smal l when compared to the cost of trans-
ferring programs. Data transfer costs include computer time and , if not
suppl ied by the equipment vendor, the cost of a function-speci fic program to
transfer the data. However, if purging of the data in the files or the estab-
lishment of new files during the conversi on are required to improve operating
efficiency and effectiveness, considerable manpower may be requi red for the
development and definition of the data elements, layout of storage allocations ,
and the data structure.

ether costs (Ca) can be expected during software transfer. These include key-
punching and v~rifying , training, facilities , pl anning, and management.

The Hahn and Stone cost model can thus be summari zed as follows :

CT =~~~~~~~~ I
[1÷DF3 RBC ÷ 1+DF1 + DF2) RBT]c +ECA + CD +Eco

Where the first and second summation symbols represents sum over all the programs
in the inventory and the thi rd summation symbol represents sum over all the
other costs.

81

I

- - -

- - ------•--— ---

REDESIGN REPROGRAM RECODE PROGRAM TEST
LANGUAGE (RBC) (Rac) (RBC) (RBT)

FORTRAN Mean 8.2 11.3 22.5 14.1

Low 6.0 8.3 16.5 10.4

High 10.4 14.3 28.5 17.9

COBOL Mean 10.5 14.5 29.0 18.3

Low 8.2 11.3 22.5 - 14.1

High 13.1 - - 18.0 36.0 22 .6

JOVIAL Mean 12.5 17.3 34.5 21.7

— Low 7.3 10.0 20.0 12.6

High 17.8 24.5 49.0 30.8

MDL Mean 14.7 20.3 40.5 25. 4

Low 12.0 16.5 33.0 20.7

High 17.6 24.3 48.5 30.4

Figure 14. Conversion Production Rates (Instructions or Statements/Man-Day)

82

I

- - - - -- ~~ - ------ - - -

1.1.3 Summary Evaluation of Hahn & Stone Software Transfer Cost
Estimation Technique

The Hahn and Stone technique is designed to assist in estimating the costs of
transferring software from one computer system to another. After identi fying
a number of factors, it provides a rationale for how these factors impact
cost. It then presents an aggregated cost model reflecting these factors as
well as tabulated production rates for instruction transfer and degradation
factors for documentation qual ity, program stability , and system integration.

The main accomplishment of the Hahn and Stone technique is not the model but
rather the tabul ation of production rates and the development of the degrada-
tion factors used in working the model . The data used to compute these
figures was gathered from some 74 computer programs in four l anguages ,
including 29 FORTRAN , 8 COBOL , 18 JOVIAL , and 19 MOL orograms .

Assuming that the development production rate for computer programs follows a
normal distribution and that the program sample chosen was representative, the
mean and standard deviation for each language was calculated . Using the
Student -t distribution , the higher and lower production rates were calculated
so that the probability of an actual average production rate falling outside
these upper and lower limi ts was 2.5 percent. The resulting calculations are
shown in Figure 15.

LANG UAGE LOW MEAN HIGH

FORTRAN (N=29) 3.3 4.5 5.7

COBOL (N=8) 4.5 5.8 7.2

JOVIAL (N= l8) 4.0 5.7 7.4

MOL (N=19) 6.6 8.1 9.7

where N = sample size

FIgure 15. Development Production Rates (Instructions/Man-Day)

~. ~~~~~~~~ l f l F’~gure 15 represent production rates for the total development
,)roQ r1~I . However, since conversion of an existing program does not
,~~~~~~ •i~ “i. functions normally associated with a development

project, the

~~~~~~~~~~ r4~~p’~ were imdlfled to include only those functions associated
-.r 4~”q. r~proqranirln9, or redesign . This , then , established a baseline

- - v ,iuc?ion rate (R In the model). In addition , they developed a
• .

~~ ~,r~ du~~~~On raQ~ (R OT in  the model ) to apply a factor for
- . •..• r ,n~1 test. Bases on a review of the literature and actual

~~~e i~v1s~on of effort for a complete 
redesign task.. .s t ab llshe d .

83

TASK PERCENT OF TOTAL TASK

Analysis 15%
Program Design 20%
Code & Check 20%
Program Test 32%
System Test , Integration , 13~& Documentation* 0

*System test and integration as well as documentation
are calculated sepa rately.

Figure 16. Di vision of Effort for Complete Redesign Task

The di vision of effort was then used to calcul ate the RBC rates shown inFigur~ 14.

Because R ,.. and R .
~
were based on development production rates and did not

include c~’tain ahects which are cri tical to program transfer, degradation
factors which allow for these criti cal aspects were developed. These degrada-
tion factors impact total cost by adding to the total manpower requirements
needed to transfer a program.

Three degradation factors were considered , (1) the quality and completeness of
documentation , (2) the number and magnitude of modifications that will take
place duri ng the transfer (program ins tability), and (3) program complexity
(system integration).

Degradation factors for documentation quality (On) were based on intuitive
judgment after much di scussion . The factors recbthmended by the Hahn and
Stone technique are shown in Figure 1-7 . These factors are applied against
RBC for reprogram and recode.

DOCUMENTATIO N CAT EGORY % IN CREASE IN MANPOWER

Excel lent 0%
Good 25%
Average 50%

~Poor 75%

Figure 17. Documentation Degradation Factors

84

.1

___ — -~~~ —-- -——- —-—-— - -S- - _~~~~~~ _-_- ~~~_ t~~~ - - - ?-

The ease of program transfer is affected by the number and magnitude of modif i-
cations that will take place during the actual program transfer. Using histori-
cal data from System Development Corporation, Hahn and Stone calculated the
degradation factors for program instability (D) shown in Fi gure 18. These
percentages are calculated against RBC for red~~ign , reprogram, an d recode.

MODIFICATION S % INCREASE IN MANPOWE R

NIL 0%
TRIVIAL 5%
SOME 10%
EXTENSIVE 15%

Fi gure 18. Program Instability Degradation Factors

According to Hahn and Stone, program complexity will affect the amount of re-
sources required to transfer the program. Using data provided by System
Development Corporation , Hahn and Stone derived a degradation factor for
system integrati on (DF3) of O.Ol6X , where X = number of subprograms* in a pro-
gram. The results of this equation are used against R81

In using the Hahn and Stone techni que, the estimator starts off with program
size in terms of instructions . Because the estimator is working with an exis-
ting program his estimate for size should be quite reliable. The technique is
easy to use ; the starting statistic (software size) is easy to get and
various factors and rates need only be looked up and plugged into the equation.

In terms of accuracy , the model does not consider the problem ot constraints
on the target machine other than indirectly via a judgment of how di fficult
the target machine is to program . For thi s reason, it does not handle trade-
offs directly. Further, Hahn and Stone do not mention any attempt to
validate their model or their two basic assumptions; (1) the development
production rate for computer programs follows a normal distribut ion , and (2)
the program sample used is representative.

In terms of the model itself , Hahn and Stone state that :

CT = C~ + CD + C0
where C1 = total cost

C~, = cost of individual program transfer
CD = cost of transferring data

= other costsCO

*A computer program component or separately compilable module.

85

I -:
- • -

~~~~~~~ 
•



r

They further state that:

= CA 
+ CM

where : CA = cost of machine-assisted transfer

CM 
= cost of manual transfer

In deriving their model , it appears that CA is somehow inadvertently dropped.
Their final cost suni~ary model is stated a~ follows:

Manual Transfer Costs Data Costs Other Costs

CT =~~~ i 
[

‘
~
1+DF3) R~ + (i+DFl + DF2 ) R

BTf~~ 
~ 

/“

1 .2 PUTNAM GENERAL SOLUTION TO THE SOFTWARE SIZI N G AN D ESTIMATI N G PROBLE M
The Putnam technique provides a methodology to produce life cycle estimates
of total manpower and time required to reach cri tical milestones of software
projects. It provides the means to allocate the cost among divisions of
time during the softwa re project life cycle rather than attempting to allocate
the total cost among each part of the software project. (See Refs . [27 , 28 and 29].)
1.2.1 Factors Considered in the Putnam Model

The basic model describing the softwa re project has only two parameters: a
magnitude parameter (total life cycle man-years ) and a time parameter
governing the shape of the curve . Since this model is only interested in
man-years as a measure of work and total development time, it does not
directly consider any constraints inherent in the development process.
1.2.2 Putnam Life Cycle Model

The Putnam technique is based upon a project profile taken from Norden (see
Ref. [30]). Norden found that R&D projects are composed of man-power loading
which can be linked to get a project profile. Figure 19 shows the individual
cycles laid out in the expected time relationship. The sum of the under-
lined cycles is the man-power loading profile for the entire project, labeled
Project Curve •in Figure 19.

Putnam analyzed man-year budgetary data from the U.S. Army Computer Systems
Comand and concluded that the projects followed the life cycl e model . He
also concluded that the data fit the model with sufficient accuracy to provide
a useful tool .

- ‘ 86



EFFORT
PER
UNIT
TIME
(MY/YR)

CURVE

TEST &

NOT

TIME

Figure 19. Project Profile

Figure 20 shows the typical Computer Systems Comand (CSC) application of man-
power to a software devel opment project. The ordinates of the underlined
cycles are added to obtain the total life cycle effort (or project curve) at
various points in time .

CSC APPEARS TO APPLY ThEIR
MANPOWER MORE LIKE THIS

MY/Y R

DESIGN & 
TEST & 

PROJECT CURVE

— — 

TYPtCAL
S - PLAN CODING ~~ B~bGi~FUNCTIONAL ADJUSTM

SPEC
VALIDATION 

MODIFICATIONEXTENSION

PROJECT MGT~~
________  

7 -
~~~~ - 

•-.-

TIMEi- .

Figure 20. Typical CSC Application of Manpower to a Sof~~are Development Project

87

‘V

—

• 1

Putnam uses the Rayleigh equation , which has been empirically determined to fit
the project man-power loading profile (Project Curve), to represent Norden ’s
model . The model can be expressed in an integral and derivative form of the
Rayleigh equation. The derivative form Is:

= 2 Kate
_at2

where V’ = the number of man-years of effort expended per year.
K = the total number of man-years expended to develop

the system .
a = the curve shape parameter which also has the physical

meaning of “problem solving rate.”
t = the elapsed time in years.

The integral form of the equation is:

V K (1 _ e _at2
)

where Y is the-cumulative number of man-years expended over time t.

— Figure 21 depicts both forms of the model . The derivative form (current
man-power utilization) is used most frequently because budget data are in

S that form. The integral form (cumulative man-power utilization) is the
typical S-shaped life cycle curve .

MANPOWER UTILIZATION CURVE
CUMULATiVE MANPOWER

~ 1::

,
,,

_
. 1
’~~~~

’

O A ~~ FFORT~~ IuZED

I ~~~

TINE

ii CURRENT MANPOWER UTILIZATION

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TIME

Figure 21. Life Cycle Integral and Derivative Curve Forms

88



( Putnam also relates calendar mi l estones frequently established in connection
with software development in the Life Cycle Model as shown in Figure 22.
The milestones used by the Army are Design Certification , the Systems Integra-
tion Test (S.I.T.), the Prototype Evaluation Test (P.E.T.) and First Extension
(Initial Operating Capability). These all occur on the rising part of the
curve. - Putnam notes that, First Extension occurs very close to the peak of the
curve which has been empirically shown tO very closely correspond to the
development time (completion of design and coding as shown in Figure 22).

DEVELOPMENT MILESTONES

~~~UNCTIoNA~~~~~~~~~~~~~~~~~~~~

TIME

Figure 22. Applicati on Software Life Cycle

Putnam states that the calendar milestones are empi rically determined for the
Army Computer Sys tems Comand and that other design centers woul d differ to
some extent. The general location should be similar for other desi gn centers .

In equation (13, a can be replaced by the term 1/2td2 , where td IS thetime for the curve to reach a maximum; resulting in the equation :

= 2 + T t /2td
td

e

89

I S -

~~~~~~

.
- 

-

I 

- - . - - . -~~~~ 
--  

.



Putnam states that t~j has been empirically shown to correspond very closely
to the development time (completion of design and coding) of a large system.
At time td~ 

39 percent of the total effort has been expended (see Figure 21).

Estimates of the two parameters of Putnam ’s model , K (the total life cycle
man-years), and td (the time for the derivative curve to reach a maximum) canbe used to deri ve an equation giving the ordinates of the man-power expenditure
curve for a specific project. A yearly dollar costing can then be computed for
the project by multi plyinçi the ordinates of the man-power curve at each year
by the average cost/man-year to arrive at a dollar cost/year. The dollar
costs/year are then addr~d to get the cumulative cost.

In addition to cost estimation , Putnam uses the model to investigate parameters
that measure the difficulty of doing work on a system. Putnam relates the term
K/td2 from equation ~~ 

to the time rate of doing work on the system, or
man-power. He hypothesizes that the ratio y = K/td2 represents the difficulty
of a system in terms of programmi ng effort to produce i~ . That is , if K/td2
is small this corresponds to an easy system and if K/td’~ is large, this
corresponds to a difficult system. Putnam presents a plot of programing rate

S against the ratio K/td’ (Difficulty ) in Fi gure 23 for some well known projects
such as SAFEGUARD , OS/360, CSC ’s average programing rate, and typical figures

S for short-term comercial systems. Putnam states that a feasible software
development region can be established semi— intuitively from the pattern that
appears in Figure 23. He states that systems range in size (K man-years)
from 1 man-year to 10,000 man-years. Development times (td) range from 1 or
2 months to 5-6 years. For large systems, the range narrows to 2-5 years.
Two years is a l ower limi t because of man-power loading difficulties. Five
years is an upper limi t from an economic point of view ; organizations cannot
affo rd to wait more than fi ve years for a system.

90

I



DIFFICULT Y (0 K/td 2’)

10 100 1.000
2 3 4 517 S61 2 3 4 5 S 7 191 2 3 4 5 6 7 6 9 1  2 3 4 5 5 7 191100.000 , , 

~~~~~~~~~~~~~~~ • • • P J u J I • 
~~~~ 

, . , , , I I I  ,S I PROGRAMMING RATE
STATEMENT - VS
PER NAN EASY LSTSTEM DIFFICULTY
YEAR - COMMERCIAL

~~~~~~EN

_ __ __ _

CSC AVERAGE -

C,
-

C,

MULTICS

08/350 OVERALL
- SAFEGUARO

100 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 23. Pro grammi ng Rate Versus D i ff i cul ty

1.2.3 Evaluation of the Putnam Model

The Putnam model is only interested in man-years as a measure of work. It
does not attempt to split these man-years according to the type of work being
done , nor does it try to estimate the amount of computer or other overhead
needed . The only constraints of interest to the Putnam model are man-years
and development time ; other very real constraints are ignored . On the other
hand , it does provide information , a breakdown of cost according to time , not
normally available. It does not provide costs for non-manpower items such as
computer time or travel .

The Putnam model is qu ite simple , almost simplistic. The amount of effort
needed for an estimate is small because the estimation process can be automated
easily. However the determination of K and t,~ based upon past history can betime consuming if such data is not readily av~ilable or in a readi ly usableform.

91

—

-
-

~

~‘

Putnam has satisfied himself that the Rayleigh curve fi ts cost curves for many
Army software projects. He does not produce the evi dence which convinced him.
From the curves he does produce , it seems clear that his model consistently
underestimates maintenance costs by a factor of from two to four. Because the
model does not address hardware constraints such as limi ted storage or execution
time, any programs having such constraints would probably cost more than their
Putnam models refl ect . His model assume s that the life cycle costs begin at
program design and code acti vi ty. Note that the functional design and speci fi-
cation work is not i ncluded under the project curve and in tne Army s case is
done by an outside agency , not the software devel opment agency . Since Putnam ’s
data was deri ved from administrative data processing projects only, this model
is not tailored to the acquisition of embedded software for Air Force command ,
control , and communication systems.

92

4

-
- —

1.3 THE TECOLOT E PROVISIONAL MODEL FOR ESTIMATIN G COMPUTER
PROGRAM DEVELOPMENT COSTS

The Tecolote model* is primarily concerned wi th military software developments
in the context of larger weapon system hardware developments and emphasizes
tactical softwa re . The Tecolote model defines tactical software , which is

time cri t ical , as the complete set of computer programs that resides in and
drives a computer sys tem wi thin a fi re control system. A fire control system
is further defined as “any set of militar y hardware which senses an enemy
threat and then di rects available resources against it. ’ (See Ref. [29]).

The Tecolote model assumes that the computer hardware and a usable operati ng
system al ready exists .

1.3.1 Factors Considered in the Tecolote Model

Seven basic elements were considered in the development of the Tecolote model ,

including: -

• Threat characteristics

• Fast storage capacity

3 • Operational ins tructions

• Delivered instructions

• Development labor

• Computer costs

• Development costs

Two general types of threat characteristics are addressed in the model because
of their effect on software devel opment costs ; the size of the threat and the
speed of the threat. Tecolote defi nes size “as the maximum number of threat
objects which must be simul taneously tracked during a terminal engagement. ”
Speed is defi ned “as the maximum closing veloci ty manifested by any threat

- - object. ”

For exampl e , for a Navy fi re control system like AEGIS , threat size is defined
as the maximum number of air threats that must be intercepted simultaneously,

S and the threat speed i s the maximum speed of any one of those air threats .
Similarly, threat size in a Navy sonar system like BQQ5 is the maximum number
of subsurface and surface threats that the ship has to counter simultaneously,
and threat speed is the maximum speed of any one of those subsurface/surface
threats.

*Derlved for the Resource Analysis Branch , Code OP-96D, of the Office of the
Chief of Naval Operations, Department of the Navy .

93

Fast storage capacity determines how much of the total i nformation stored by
a computer system can be retrieved and operated on at rates approximating the
computer execution rate (the remainder of the information is stored on slow
or bulk storage uni ts where retrieval rates are on the order of a thousand
times slower). In the case of tactical software , the requirement for fast
storage capacity should increase as the number of targets to be tracked or
the target approach speed i ncreases.

S

The Tecolote model addresses software size in terms of~operational and deliveredinstructi ons . Operational instructions are those procured during development
that are eventually installed in the tactical hardware; del i vered instructions
are all those instructions produced during development , whether operational or
not . (The instructions contained in a development test bed which simulates
hardware interfaces are an example of delivered instructions which never
become operational.)

Tecolote hypothesizes that as the number of targets to be tracked or the tar-
get approach speed increases , the number of operational instructions increases.
And further, since a similar correspondence exists between fast storage capacity
and target numbers and speed , a correlation exists between fast storage capacity
used and the number of operating instructions , so lon g as target approach speed
is held constant. However, as target approach speed ~ncreases, time—criticalityincreases and hence the fraction of the total operational program residing in
fast storage should increase. Thus , the ratio of total operational instructions
to require fast storage capacity should decrease as target speed increases.

According to Tecolote, in software devel opments which are part of large hard-
ware developments , it is almost always true that the number of delivered instruc-
tions is greater than the number of operational instructions . There are always
some hardware interfaces that do not exist at the time they are needed for soft-
ware testing and , hence , must be simulated by the software engineers . The
ratio of delivered instructi ons to operational instructions can thus be thought
of as a kind of development “overhead ,” which should remain about constant in
value , gi ven the associated condition of a larger hardware development.

Tecolote defines development labor “as the total number of man-months of di rect
labor expended during the software development.” They hypothesize “that develop-
ment labor increases as the number of delivered instructions increases.”

In any software development , signi ficant amounts of computer time are used for
debug and testing purposes . This time is usually charged on an hourly rental
basis. Tecolote hypothesizes that the amount of computer time used increases
as development l abor increases, because computer time functions here as a tool
used by the software engineers . The cost per computer hour depends on the
computer used in development.

94
-
‘
I

.4,

According to Tecolote, the total cost for software development is the cost
for devel opment labor (including di rect salari es , overhead , and other
loadings), plus computer costs (al:o loaded). Costs for development labor
can be assumed to scale wi th the number of man-months. Thus , for a fixed
development computer, total development costs shoul d increase directl y with
the number of development man-months.

1.3.2 Tecolote’s Provisional Cost Model

The Tecolote provisional model is based on data collected from five programs
as shown in Fi gure 24. The first three programs are Navy tactical software
developments . All three fit the followin g conditions:

• Development accomplished in the context of a larger hardware
development.

• Little or no change in hardware specifications duri ng development.

• Computer already developed and available.

The other two programs represent military software developments of unspecified
application . Here, the applicable conditions are:

• No larger hardware development.

• Computer already developed and available.

All five represent programs begun wi thin the last five years.

From the data in Figure 24, Tecolote organized and pl otted the pairwise
relationships hypothesized in the earlier discussion. These relationships
are shown in Figures 25 through 28 and are summarized below .

Fi gure 25 shows the relati onship between threat size (targets terminal-
tracked), threat speed, and fast storage capacity requi red in tactical soft-
ware packages . The three appl i cable data-sets stratify into two classes with
respect to threat speed -- air threats, with target approach speeds on the
order of 250 meters/second or higher , and sea th reats wi th targe t approach
speeds of 50 meters /second or lower* . As expected , fast storage capacity
increases wi th both the number of targets terminal-tracked and the target
appró~ach speed.

*Actual data have been omitted from Figure 25 for security reasons.

-

~~~~~ 

- 

95

.4, 

~~~~~ - -~~~~~ - - - -


— - - - - — - - — - -- — -—-- — - - —------ - - - - -- - - ------- ----- --~ --- -~~~~- - - - - -

~~~~~~

~~ L) L)
_I ~~ a >- >- a a
UJ ~~ ~~ C.) C.)
~~ C.)

a

U)

CO 0 0
a a

~~~~a~~~- ~~ a a
-

0 0 ~~
•

~~
r-.

— C D .
~~
0

U.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~,__ w ’_ .- 0~. r-. 0
3. I—. .-

0-.
0 0  Q)
a a

J W L )  c 
~~ 0

c’J 0
U, 0 0

~— LU II) C’J 0 0
• Q)

_ _ _ _ _ _ _ _ _  
I—— —

CS) Cf 1+~

N. 4.)
U, 

‘~~

4, r.) 

•
0

a ,d,
Ct)

C., c’_j

,- L~)
4~

I ’ LU LUCt) Ct)
C.) C.)

CS)S Cd) U) —
CD

— U)
C.) ~~ I- I-

iL~~~~__ _-- - - - - - -



r
~~~~~~~~ END

— — 00! 0

—

7
DT~

2

L~

L

1 ,000 — APPROXIMATE
CURVE FIT :

14 .3O(T)105

.c.

inn
(I, -

APPROXIMATE
0 CURVE FIT:

:
10

8.30(1)1.05

1 , a I I

1 10 100

NUMBER OF TARGETS TERMINAL -TRACKED

Figure 25. Fast Storage vs Targets Tracked

97

4.

Figure 26 shows the correspondence between number of operating instructions ,
fast storage capacity , and target approach speed in tactical software
packages. Again , just two classes of target approach speeds were considered,
denoted by air threat and sea threat. As hypothesized , the number of
operating instructions increases with fast storage capacity and , for a
fixed capacity value , decreases wi th target approach speed.

Fi gure 27 shows the relationship between the number of delivered instructions
and the number of operating instructions . As hypothesized , total delivered
instructions and total operating instructions are nearly proportional to
one another.

Figure 28 which shows the relationship between operating instructions and
labor man-months , was derived because there was insufficient data to di rectly
deri ve the desired relationship between del ivered instructions and labor
man-months. Figure 28 represents a composite of the Figure 28 relationship
and the desired relationship, and it was therefore possible to use the
Figure 27 relationship as a constraint condition , as follows : Let M equal
man-months , 0 equal delivered instructions , and 0 equal operational instruc-
tions , both 0 and 0 in thousands pf instructions. Assume that M is an
exponential function of D, M = aD°. Then :

M = aDb = a(l.O3(O)LOS)b, from Figure 28 and

M = 2.52(0)1.24, from Figure 29

Combining these two equations gives a=2.43 and b=l.l8 .

As shown in Figure 29, this derived relationship is in good agreement with the
BQQ5 actual datum , and wi th estimated data for the other programs. As hypo-
thesized , the number of labor man-months increases wi th the number of
delivered instructions .

Figure 30 lists the per-man-month factors that were inferred from the AEGIS
data point (the only one where costs were given). These factors combine to
produce total development cost.

According to Tecolote, the pairwi se relationships deri ved abave can be
composited in all possible combinations to produce the software estimating
matrix shown in Figure 31. Further, Tecolote states that “the relationships
in this matri x are useful for evaluating software proposals from the stand-
point of software design as well as software cost.”

Figure 32 is a nomograph whi ch permits the user to assune any combination of
cost-per-month and cost-per-computer-hour factors , and adj ust the model cost
estimate accordingly.

98

4,

_ I - .

II

.

1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 I I

8 8
LL

ScINVSflOIU ‘SNOIJ3fldISNI U3~i3AI13c1 1VioJ.

-

- U-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I
I i i i i i I I 1 1 1 1 1 1 I I I

§
‘.Oc’J
a)

SOWYSI1OHJ. ‘SNOIJ.Dfld.LSNI 9NI1V~]dO 1VJ.O1

U-

99

4?

U)
C
0

U)
z 0

4-’
I- - 0
U, 0 C

U,
00 Z V
U J . .c a)

LU ,_ -_ U)
U) _J < —.
.
~~ <~~~~~ 0 0 W

~~ L) ~~~~~~~~~~~ - >
,_ I- r— ,.- .. -

~‘. I, .) V) -
0 U, a,N 0 0In LU —

~ ‘S.- 0 0 I— U)
- 0 (I) -~~~

— 4-,
C

0 0
N

LU
C

• ~~~ U) LU
0

I-
0 (‘4

N a’
~I I I i I I I I 1 1 1 1 1 1 1 I I I , I I I I’”1. I I
0 0 0 0 C)
O 0 0 — •I-

U-
0

~JO~V1 fl3~IO SHINOW-NVW 1VIOI

U)
0 C

~—
U

U)
0

• 4-)
U)

,
‘~ U, (..J C

I—
No 0 • C)

C
c,J 9-.

o UJ U 0

~~~~~~~~~~
N
N~~

~i I i I t I  I I l i l l i l l i  I 1 1 1 1 1  I I  I 0

§ § 2

C)

~IO9V1 L~3NI O SHINOH-NVW 1VIOJ.

100

L



AEGIS INFERRED FACTORCOST FACTORS TOTAL (TOTAL 4 9,317 MAN-MONTHS)

LABOR COST $36.57M $3 ,930/MM

COMPUTER HOURS $39 ,450 4.23 HRS/MM

COMPUTER COST $ 3.03M $325/MM

TOTAL COST $39 ,60M $4 ,250/MM

Figure 30. Inferred per Man-Month Factors
The various software development cost estimating relationships derived for
the Tecolote model (top row of Figure 31) are sununari zed graphi cally in
Fi gure 33. The adjustment nomograph in Figure 32 also applies.

1.3.3 Evaluation of Tecolote Approach

The Tecolote approach uses an aggregated cost model to estimate costs. for the
development of military tactical software. Eight factors were selected which
are known to impact tactical software development costs and hypothesized pai r-
wi se relationships between them. These factors are : -

• Threat Size. Maximum number of targets to be tracked.
• Threat Speed. Maximum vel oci ty of a target.
• Fast Storage Capac ity. Size of main memory of the computer.
• Operational Instructions. Total number of installed (as

opposed to test-bea) instructions .
• Delivered Instructions. Operational instructions plus test—bed

instructions .
• Development Labor. Man-months of direct labor expended.
• Computer Costs. Money spent on computer time.
• Development Costs. Development labor plus computer costs.

Five large tactical software programs were then selected and the following
data collected:

• • Total computer hours

• Total labor

101

4?

-



- -— — --  ~~- ~~~~~~~~~ .• • - .

‘p

• Total delivered instructi ons

• Total operating instructions

• Total words fast storage

Subsequently, this data was used (via regression analysis) to demonstrate
software estimating relationships between pairs of factors impacting develop-
ment costs. These tend to show that the cost of such projects was dependent
on the square of the threat size .

The Tecolote model is easy to use but its accuracy is indeed questionable be-
cause of the small size of the data base (five data points from five programs).
Further, when Figure 24 is reviewed, it can be seen that only the following
statisti cs were avai lable:
• Total computer hours were obtained for only one program.

• Total labor for four programs.

• Total delivered instructions for two programs.

• Total words fast sto rage for three programs .

102



— —

0)
C in c

~~~ t t ;::-

-p-- I-- 0

— _ _ _ _ _ _ _ _ _ _ _ _

LU
z U)
I- -

U) 0 U) —

1- 0 0 .~ -

U) U- - 0 —
o C)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~
.g

_

~~;

_ U
~~~~~~~~

~~~~ t I— p-- t ~~~~~~~.

0’ I—. ~~~
C Ui

— LU

~~ I-~ I— 0 t—
LU I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

U) 0’ I U.S
0 W N.. I U.S U)

~~ 0) — I (J ~ ..~.. 0 ~~
N / I~ i/ N:

U) U) /
05- 0 0 0) — / 0
5- U)~~~ 0 in N)..

~~I_ . - 1~~ f ~ 0 0
U)U~~- 0 0 o o 7 . U) Q j

~~ O~ 0- 9- (I)
— ____ _____ _____ ______ ______ ______

U) 51)
~~~~~

i
/ /
/ / ~~~

_ _ _  _ _  _ _  

! / 
_ _ _

~1II I I _ _  _ _  _ _

Jh i xI --
~~ 

~JJ
103



$ 5 HINOW-NVW ~I3d .LS03 H3LfldWO3 
3$UISSV

0
0 0
C In 0

I- •l I —I •j I ,~ I I I

I
I

II
’

(iso~ ivioi x) ~O13V~ 
itLwisnrav 4.)
I U)

0 in C In 0 In U) In
U) C.-J 0 N~ U) C 0 N.. U) ~4- . . . . - V
C’.á C)S C.I — — —
I I I I I $ I I I I — I

C)

I

l i l t  I I I I I t —t
0

$ ‘H1t~0W 1VW li3d 1503 ~0~V1 O3HflSSb’

104



-!——-— — ~~~~~~~~~~~ — I

100 -

SI
~~~~1 O -
0~~~~~~~~~~

A-5
-

~; ,S
N) - A.I....

U-
-

:~
5- “ IU, IS •~~o 1.u
(—I

5-
LU

-
0-0
-J cJ
LU

LU
C

I-
C
‘—. 0.1 i I 1 1 1 1 1 1 _I I I i t , i , i I S h u S h I S S~~~~I h i

10 100 1,000 10,000

MAN-MONTHS DIRECT LABOR

10 100 1,000

TOTAL DELI~ERED IUSTRUCTIONS , THOUSANDS

10 100 1,000

TOTAL OPERATING INSTRUCTIONS , THOUSANDS

ib 100 i,obo
TOTAL FAST STORAGE, THOUSANDS WORDS ___________________________________

I- I

1 10 100

TERMINAL TRAC K CAPACITY

FIgure 33. Provisional Software Devel opment Cost Model

105

q

APPENDIX C - GLOSSARY

Computer-Assisted Design Specification Analysis Technique (CADSAT1. A struc-
tured computer-aided system for specifying , recordi ng, analyzing , and
documenting desi gn specifi cati ons for i nformation processing systems.
The system is composed of a user design specification language , a design
specification analyzer, and a design specification reporting capability .
The specification lan guage is used to express a structured , unambiguous
machine-processab le form of all relevant requirements for the design of
an information processing system. It has precise syntax and semanti cs,
and includes non-scanable , textual materi al . The design specification
is processed and stored in a data base. The design specification analyzer
processes the data base and produces a number of reports that can be used
by an analyst to veri fy that the design speci fication is complete and
consistent. These reports can also be used to maintai n the consistency
of the specification as it is being produced and reviewed. CADSAT is a
new name for the CARA system (see CARA) that emphasizes its application
to design speci fications as wel l as to requirements specifications . - -

Computer Assisted Requirements Analyzer (CARA). CARA is a structu red, computer-
aided technique for speci fying, recording , analyzing, and documenting re-
quirements for information processing systems . CARA ’s user requirements
l anguage , requirements analyzer , and reporting capability are virtually
i dentical to its successor CADSAT (see CADSAT).

Cost Analysis. A process designed to examine or assess the validity of the
estimated and actual resource requirements for a given program acquisi-
tion. Cost analysis activities are necessary for life cycle costs and
design-to-cost evaluation.

Cost Data Base. A repository of software development cost elements (i.e. ,
data) collected and maintained for the purpose of supporting cost
estimation analyses. Requi rements for establishing a cost data base
must incl ude consistency in item defintions , measures , and collection
mechanisms . The data contained in a cost data base provide input for
cost models and support cost analysis in the derivation of cost
estimating relationships .

Cost Estimati ng Relationships (CERS1. “A mathematical expression of the
relationshi p between one or more independent variables (ordinarily
stated in program terms, aircraft design , or physical characteristics ,
etc.) and the dependent variable (the cost attributable to the indepen-
dent variab les). h*

*From AFR 173—2 .

107 preceding page blank

Cost Model. Defines in mathematical terms the partial relationship of cost
elements , software elements , devel opment activities , resources, and
schedules. A generalized software cost model applies specific data
parameters to formulas derived from prior data analyses about cost
relationships. Most cost model s have b5~en appl ied for the purpose of
estimating software costs during the Full-Scale Devel opment Phase and
do not ncl ude Val i dation Phase activiti es or maintenance and support
activities .

Cost-per-Instruction . A term used in the derivation of software cost esti-
mite~~in wWFch the total number of instructions contained in the software
is divided by the total development cost to obtain a cost-per-instruction
dollar figure . In using cost—per—instruction , the terms “cost” and
“instruction ” must be specifically defined and be consistent to be
comparable. In addition , the term “total number of instructions ” may
be ambiguous. Often there is simul taneous development of support and
application software. If the support software is not a deliverable , its
size (in number of instructions) is absent from the total number of instruc-
tions del ivered , and therefore is not recorded , although its devel opment
costs are recorded in total costs. A similar condition exists with
frequent changes in requirements which cause code to be discarded .
Further , it is very difficult to compare costs-per—instruction for
different programs because there is no comon basis for comparing the
tasks, products , and services that are included in the cost-per-instruc-
tion figure. This guidebook clarifies some of the problems inherent in
cost estimates and relationships of this nature .

Cost Reimbursement Contracts

Cost. Provides for reimbursement of contractor’s al lowable costs,
wi th no fee. This type of contract is usually used in research and
development work with nonprofit insti tutions.

Cost Shari ng. Provides for reimbursement of an agreed upon portion
of allowable costs, wi th no fee. The contractor bears part of the
costs. This type of contract is used for projects jointly sponsored
by the Government and industry wi th expected benefits to both.

Cost Plus Incentive Fee (CPIF). Provides for reimbursement of
allowabl e costs with provision for adjustment of fee in accordance
with the relationship of final cost to estimated cost. At incep-
tion , maximum fee, minimum fee, and formula for sharing cost over
and under the estimations are established . This type of contract
is used primarily in development , where an estimated cost and fee
formula can be negotiated that will provide the contractor with a• positive Incentive for effective management. This type of contract
usually involves some amount of innovation in the work to be
performed .

108

4,

- -

Cost Plus Award Fee (CPAF). CPAF and CPIF contracts are similar.
In both contracts the amount of fee is based on how well the
contractor performs. In the case of CPAF , a board of review deter-
mines how the contractor is doing and awards a variable amount of
fee over some base fee .

Cost Plus Fixed Fee (CPFF). Provides for reimbursement of contrac-
tor ’s allowable costs and payment of a fixed fee. These contracts
are usually awarded for research, preliminary exploration , or
study where the level of effort required is unknown .

Design-to-Cost. A concept used to manage and control acquisition , operation ,
and support costs during the design and development of a system. The
application of design—to—cost requires deri vation of a specific cost
target for a stated quantity , a schedule , and mi nimum performance
requirements (i.e., selection of a unit —cost goal which becomes the
principal design parameter in the development of the product). Design-
to-cost is a concept utilizing unit-cost goals that represent what the

• Government has established as the price it is willing and able to pay
for a unit of equipment or major system . Although the Initial software
cost estimates deri ved during the Conceptual Phase are grossly incorrect
due to incomplete system definition , design-to-cost analysis requires
initial software cost estimates for analysis of estima ted system costs against
known costs of existing sys tems .

Fixed Price Contracts

Firm Fi xed Price (FFP) . Price is set initially and is not subject
to any adjustment. The contractor assumes maximum financi al risk ,
and all profi ts and all losses are his. This type of contract is
used where prices are established at the outset. Requi rements
must be measurable and definite , requiring littl e innovati on.

Fixed Price wi th Escalation (FP-E). This type of contract provides
for upward and downward revision of the stated contract price due to
certain defined , measurable contingencies . This type of contract is
used in cases where contract cost elements (such as l abor rates,
materi al costs, or component pri ces) are likely to be unstable over an
extended performance period.

109

- -
- - =-• -

~~~ 
- 

•
~~-~-.~~~~~~~-

1’
Fi xed Pri ce Incentive Fee (FPIC). This type of contract provides for
the adjustment of profi t and contract pri ce by a negotiated cost to
target cost formula. The contractor may share in cost savings by
higher profits, or may be penal ized for overestimated costs, that
can end in a loss. Other incentives may also be contractually speci-
fied which alter ori ginal cost estimates when savings are shared wi th
the contractor.

Fixed Price Incenti ve Fi rm (FP-IFJ. At i nception of FPIF , estimated
costs, profit price ceiling, and formula for sharing costs over and
under estimation are established. This type of contract is used when
there is a modest degree of innovation and the contractor’s assumption
of a degree of cost responsibility will give him a positive profit
incentive for effective cost control and contract performance.

• Li fe Cycle Costs. Those costs, incl uding direct, indirect , recurring , and
nonrecurring costs, associated with a system ’s research , development,
producti on, and deployment (operation and support) that are incurred as
the total cost of ownership. Li fe cycle costing is a technique used
to estimate and control a system’s total costs, by the use of cost
models. The components of life cycle costs need to be strictly defined .
Estimates and cost reporting must adhere to the definitions so
that life cycle cost compari sons between systems can be meaningful .

Life Cycle Cost (LCC) Models. Mathematical equations expressing the total
Life Cycle Cost of a system, subsystem , or piece of equi pment. The LCC
model may incl ude parameters for all costs incurred in the research,
development , production , operation , and support of a system. LCC
models generally have two functions : (1) the specification of the
elements of cost which compri se the total life cycle costs, and (2)
the relation of system design , performance , and deployment to the value
of one or more LCC elements to estimate the cost impact of design alter-
natives . -

Program Control. The management of program costs and schedul es, including
estimating, controlling, and the tracking and reporting of budgets ,
costs, schedul es, and related management information associated with

• Air Force system acquisitions. The data associated with the manage-
ment of each program ’s estimated/actual costs and schedules must be
col lected and mainta ined to provide information for future acquisitions.

• Program Office (P0]. The field office organized by the Air Force manager
- • responsible for an assigned program. Its purpose is to assist him in

the development, testing, and procurement of systems, subsystems, equip-
ment, modifications , supporting projects, and studies .

110



Software Cost Estimation. Software cost estimation may be defined as the pro—
cess of predicting the cost of resources needed to compl ete a set of
activities which result in delivery of a software product or set of
software-related products . The estimation orocess is an essential
activity in the acquisition of any software product.

Software Cost Measurement. Software cost measurement may be defined as the
process of appraising the expendi ture of resources allocated for the set
of activities required to produce a given software product. Software
cost estimation and measurement are two functions associated with the
discipline of program control .

Software Requi rements Engineering Methodology (SREMI. A part of the Ballisti c
Missile Defense Advanced Technol ogy Center (BMDATC ) program di rected
toward improving the methodology used in the development of software for
BMD programs . SR~M is a part of this program and addresses requi rementsgeneration for software development. SREM is composed of a combi nation
of languages , tools, and procedures designed to reduce or eliminate
known error sources . Data processing subsystem requirements in the SREM
approach for Bu D are predicated on an input-processing-output orientation
with processing flow through the subsystem being described in terms of
required paths through the subsystem. Each processing path is identified

• by a message (stimulus), a sequence of processing steps (including re-
quired decision nodes with decision variables), and response wi th data
which are local to processing on a oath , or wh i ch must be saved for

• processing on a subsequent path beina processed . Performance require-
ments in SREM are defi ned , at a minimum , in terms of the accuracy and
timing required across the subsystem for each sti mulus and are stated on
each path or sequence of paths in the form of val i dation points . These
identified noints mark places in the processing where specified data
must be available for collection , and executable procedures which define
the performance pass-fail cri teria that will be imposed on the software.

Specifi cation and Assertion Language (SPECIAL). A design speci fication language
developed in conjuncti on wi th the Stanford Research Institute (SRI) design ,
impl ementation , and formal veri ficati on methodology , SRI Hiera rchical
Design Methodology (HDM). SPECIAL was designed to (1) specify systems
constrained wi thin a particular methodology (liDli) for the design , imple-
mentation , and proof of computer systems; (2) specify systems containing
hardware and software; (3) permit syntactic checks on the consistency of

• a specification; (4) be directly usable in a formal proof of correctness;
• and (5) speci fy systems that can be implemented in any programing 

•

language. SPECIAL is a design specification language based on a mathe-
matical discipline. It constrains the system design to conform to HOM
for structuring and implementing systems. While these are desirable
properties of SPECIAL , they also require specialized training and dedi-
cation to the specific methodology.

111 

• 

—



APPENDIX U - OFFICIAL GOVERNMENT DOCUMENTS FOR COST ESTIMATION AND MEASUREMENT

0001 4105 .62 , Proposal Eva l uat ion  and Source Selection
DODI 5000.l9-L, Acquisition Management Systems and Data Requirements ,

Control List
0001 5000.22, Guide to Estimating Costs of Information Requirements
DOD! 7000.2, Performance Measurement for Selected Acquisitions
DOD! 7000.8, Cost Performance Report
DODI 7000.10, Contract Cost Performance Funds Status and Cost Schedule

Status Reports
DOD! 7000.11 , Contractor Cost Data Reporting
DODI 7041.3, Economic Analysis and Program Evaluation

• DODI .220.25, Standard Rates for Costing Militar y Personnel Services
1CC-i , Life Cycle Costing Procurement Guide
LCC-3, Life Cycle Costing Guide for System Acquisition
MIL-STD-881A , Work Breakdown Structure for Defense Materiel Items
MIL-STD-l64 1 , Preparation of Pert/Time Networks and Reports for Training

Device Contracts
MIL-P-23189A (Navy), PERT/Time and PERT/Cost Management Information Systems

for Planning and Control
AFM 70-6, Source Selection Procedures
AFP 70-14, PIECOST (Probability of Incurring Estimated Cost)
AFR 173-1 , Management of the Cost Analysi s Program
AFR 173-2 , USAF Cost Estimating Relationship/Cost Factors Program

AFM 173-10 , USAF Cost and Planning Factors
AFM 173-il , Independent Cost An?lysis Program
AFR-174-2, Follow—Up on Internal Reports of Audit (AFSC supplement 11/2/72

and ESD supplement 6/15/72)
AFR 175-4, Auditing in the Air Force

AFM 175-118, Air Force Audit/Management System
AFR 177-13, Accounting for Research and Development
AFM 177-100, General Principles , Standards, and Policies of the Air Force

1-. Accounting and Finance System
I - 

AFR 178-1 , Economic Analysis and Program Eval uation for Resource Management
AFR 310-1 , Management of Contractor Data

113 Precedin g page blank

4,

_________________________________________________________



- 
~~~~~~~~~~~~~~~ _L~~~ - - - -•

AFR 600-1, Development, Selection and Application of Management Control
Sys tems

AFR 800-6, Program Control - Financial (AFSC suppl ement 9/4/74)
AFR 800-11 , Life Cycle Costing (LCC)
AFR 800-14, Ma

•
nagement of Computer Resources in Systems

AFSCP 27-1 , Program Directi on

• AFSCM 173-1 , Cost Estimating
AFSCM 173-2, Cost Information System

- AFSCP 173-5 , Cost/Schedule Control Systems Criteria
AFSCP 173-6, C/SCSC Joint Surveillance Guide

• AFSCR 310-1 , Management of Contractor Data
AFSCR 310-2, Deferred Requisition ing of Engineering Data
AFSCP 800-2, Management of Multi-Service Systems , Programs, Projects
AFSCP 800-3, A Guide to Program Management
AFSCP 800-6, Statement of Work Preparation Guide
AFSCP 800-14, Joint AMC/NMC/AFLC/AFSC List of Authorized Acquisiti on

I Management Systems
- AFSCP 800-15, Contractor Cost Data Reporting (CCDR) System

- AFSCP 800-19, Joint Design-to-Cost Guide: A Conceptual Approach for Major
Weapon System Acquisition

AFSCP 800-23, Secretary of the Air Force Program Review/ Program Assessment
I Review/Conunand Assessment Review (SPR/PAR/CAR) Guidance

ASPR , Armed Service Procurement Regulation
ESDR 173-1 , Electronic Systems Division Cost Analysis Program

ESDR 173-3, Cost/Schedule Control System Criteria (C/SCSC)
AFR 375-8, Work Breakdown Structure for Defense Materiel Items
AFSCM 173-4, Program Breakdown Structure and Codes
ESDR 173-2 , Work Breakdown Structures

-

~~~~~~~~~~~~ 

• 
114



- -~~ - - • _ - . ~~-~~~~~~
__,rr--—- - -

CC~lM~2~ ~ EET

Software Coat Estimation and Measurement Guidebook

Reviewer’ a Na~~ : Reviewer ’ a Organization:

Coainenta:

‘4

4

Please return to: HQ ESWTOZT (Stop 36)
Hanaccia APB, MA. 01731

1/.�
- - —I- - - !- • • - ——.--— ~~~~~~~~~~~~~~ - ~~- ‘ - ~-~~~~~ 

-
~~~~~~~

---.
~~

•• -

— —~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

(P0LD)

- -  --——————~~~~- 
—-- 

-

~~~~~
- --

HQ ESD/TaET

Stop 36

Uanec~~ APB, MA 01731

--
‘I

ii(~
w ________

— F-
• • -

