AD-AUObLY 74

UNCLASSIFIED

SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF

SOFTWARE ACQUISITION MANAGEMENT GUIDEBOOK
MAR 78 M FINFER, R MISH FL9628-76-C-0236
SOC-TM-5772/007/02 ESD-TR-78-140

COST EST.--ETC(U)

J
i

—— il _ S g s A

i;OFTWARE.ACQUISITION MANAGEMENT GUIDEBOOK:
EOST ESTIMATION AND MEASUREMENT,

9074

“ Marsha /Finfer

Russell/Mish

System Development Corporation
€2 2500 Colorado Avenue

Santa Monica, CA 90406

A0S

Approved for Public Release;
Distribution Unlimited.

Prepared for

ELECTRONIC SYSTEMS DIVISION

Ei’ DEPUTY FOR TECHNICAL OPERATIONS
N HANSCOM AIR FORCE BASE, MA 0173

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whotsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any potented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

N\

\ ,}QV - 5 (: \ F:) Z’l J ‘/Céw:&l/“

4 ~J LU\,U T () \,\ AN 0\

JOHN C. MOTT-SMITH JOHN T. HOLLAND, Lt Colonel, USAF
Project Manager Chief, Techniques Engineering Division

FOR THE COMMANDER

w - ; L y / ‘_\'~\\>‘»\‘_
%A. < i b~ i

STANLEY P,/DERESKA, Colonel, USAF
Director, Computer Systems Engineering
Deputy for Technical Operations

¢

R o SR i e R W b, R B AT A0 e s LRl

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

DD , %' 1473 Eeoition oF 1 NOV 68 1S oBsO. Nw

?i UNCLASSIFIED e
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
| REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER / 2. GOVT ACCESSION NO.. 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-78-140
4. TITLE (and subuu.g S 3 $. TYPE OF REPORT & PERIOD COVERED
Software Acquisition Management Guidebook:
Software Cost Estimation and Measurement 3
6. PERFORMING ORG. REPORT NUMBER
? TM-5772/007/02 ,
7. AUTHOR(s) 8. CONTRACT OR GRANT Wuen(.)
Marcia F. Finfer F19628-76-C-0236
\ Russell K. Mish
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGR.AM ELEMENT, PROJECT, TASK
System Development Corporation il il Lo
2500 Colorado Avenue
Santa Monica, California 90406
11. CONTROLLING OFFJCE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command & Management Systems March 1978
Electronic Systems Division 4/ OMBER OF PAGES
§ Hanscom AFB, Massachusetts 01731
! 14. MONITORING AGENCY NAME & ADDRESS(/f aifferent from Controlling Office) 1S. SECURITY CL ASS. (of this report)
" Unclassified
1 1Sa. DECLASSIFICATION/ DOWNGRADING
: SCHEDULE
| 16. DISTRIBUTION STATEMENT (of this Report) el
! Approved for public release; distribution unlimited
;
:. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Repor’
|
. i
: 18. SUPPLEMENTARY NOTES
k 19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)
| Cost Estimation
4 Cost Proposal Evaluation
3 Cost Proposal Preparation
4 Parametric Models
3 oftware Cost Estimation
5 g ABSTRACT (Continue on reverse elde If necessary and Identily by block number)
¥, o
fj @e Software Cost Estimation and Measurement guidebook is designed to assist
4 Air Force personnel who are responsible for estimating and controlling the
! costs of embedded.software within command, control, and communications systems.
4 It provides a basic understanding of the current methodologies used in the
} fgrmat}on of Air Force and contractor software cost estimates. Insight is pro-
i vided into some of the problems (and reasons for the problems) associated with
i software cost estimates made by both Government and industry. The guidebook
!
f
}

T
/

L —— L

SH—— e =

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

ZOTEJ(cont'd)

discusses the role of parametric models used in cost estimation and reviews
three experimental predictive models. It also discusses the process of
monitoring software costs and schedules while providing guidance to relevant
military regulations, specifications, standards, and supporting literature.
Much of the information and guidance provided is applicable to smaller less
complex systems, but in all cases, it should be tailored to the needs of

individual projects.

3

SECURITY CLASSIFICATION OF THIS PAGE(When Date Fntered)

e e S e L e —

s

PREFACE

This guidebook was prepared by System Development Corporation under the
direction of the Computer Systems Engineering Directorate of the Electronic
Systems Division (ESD/TOI, formerly MCI), Air Force Systems Command. The
Software Cost Estimation and Measurement guidebook is one of a series of
Software Acquisition Management guidebooks intended to help ESD Program
0ffice personnel in the acquisition of embedded software for command, control
and communications systems. The contents of the guidebook will be revised
periodically to reflect changes in software acquisition policies and practices
as well as feedback from guidebook users.

The Software Acquisition Management guidebook series is currently planned to
cover the following topics (National Technical Information Service accession
numbers for those already published are shown in parentheses):
Regulations, Specifications and Standards* (AD-A016401)
Contracting for Software Acquisition (AD-A020444)]

Monitoring and Reporting Software Development Status
(AD-A016488)

Statement of Work Preparation (AD-A035924)

Reviews and Audits

Computer Program Configuration Management (AD-A047308)

Computer Program Development Specification (Requirements Specification)
Software Documentation Requirements (AD-A027051)

Verification (AD-A048577)

Validation and Certification

Overview of the SAM Guidebooks

Software Maintenance

Software Quality Assurance (AD-A047318)

Software Cost Estimation and Measurement »

Software Development and Maintenance Facilities
(AD-A038234)

Life Cycle Events (AD-A037115)

*Revised in March 1978

—————————— g i = YR
ot

TABLE OF CONTENTS

- Page
PREERECE S e v Pl 1 B i e e oo e e e e T B g 1
BISE OF EIGURES .. c i vi oo isive sis s i <oibRBel B bt sAbaaleatiiads Pglied o & 4 4
SECTION 1 - INTRODUGEION: . noieaaions & dalfartuaMogabt. . o 4o . . . 7
1.1 PUBGEISE [eoindoet die o o l0lh J005 o o B o s s 7
1.2 Se0pe 1\ it B0 AR 300 0 2 a Al e o 7
1.3 Contents . oardiiia TR e aa e o . - e e . 8
SECTION 2 - PROGRAM OFFICE SOFTWARE COST ESTIMATION 9
2.0 Introduction e S
&) Progran Comteal G0l 1AM 1o 1000 RGNS, -, 1 K T0
2.2 Work Breakdown Structure 16
2.3 Impact of Software Cost Estimation on Contract
COSETTYpe . i o et e d i e e s e 18
2.4 Summary of a Survey of Program Office Software
Cost Estimation Procedures 24
SECTION 3 - OFFEROR'S COST PROPOSAL PREPARATION 29
3.0 INErodustloN o i s Bt Al + v % v s e s e e 29
3.1 Cost Estimating Techniques 30
3.1.1 Analogy of Similar Experience 31
3.1.2 Quantitative Method 31
3.1.3 Percent-of-Other-Item Method 32
3.1.4. Rules of Thtmbi i - % 6 v o o v & 0 o s 33
3.1.5 Parametric Equations 33
3.2 Issues Impacting Software Development Costs . . 36
3.2.1 Complexity of Application 36
3.2.2 Total Software Size 38
3.2.3 Requirements Specification 39
3.2.4 Level of Change in Performance
REQUIrEMBNES) wifinecd - B 5o o e o o % o = 41
3.2.5 Documentation Requirements 41
3.2.6 Software Quality Requirements 42
3.2.7 Software Development Schedule 42
3.2.8 Type of Software Development Effort . . . 45
3.2.9 Personnel Requirements 45
3.2.10 Development Methodology 46
3.3 Project Management and Scheduling Plans 47
3.3.1 Task Segmentation/WBS Definition 50
3.3.2 Scheduling of WBS Elements 51
SECTION 4 - ROLE OF PARAMETRIC MODELS « « ¢« ¢« ¢ ¢ ¢« ¢ « & 53
4.0 INEroductdon i & vusis o o o sE e ey b e 53
4.1 Parametric Models 53
4.2 Models Versus Methods in Cost Estimation 54
4.3 Development of Cost Estimation Relationships
R R O T T e Wy i e s v v 55
: Preceding page blank
r

TABLE OF CONTENTS (cont'd)

SECTION 5 -~ COST PROPOSAL EVALUATION ¢« v ¢ v v v v v
5.0 INENOAUCERGN . o i of & et vl e s e

1 The Mechanics of Evaluation

.2 Cost Analysis of Technical Activities

.3 Cost Analysis of Technical/Financial

- Monitoring Activities

(SIS &)

APPENDIX A --REFERENCES ®suroidis a0 G il BRI S i ot Bacilin, . =,

~- : APPENDIX B - SOFTWARE COST ESTIMATION MODELS

H“'“;
T 1.0 TG E TR s K e '« ¥ pate o s
Wi ool - Hahn & Stone Software Transfer Cost Estimation
TR ge e S Ot o LRt ks
1.1.1 Factors Considered in the Hahn & Stone
MOdel™ " o e A e e e e e e
.2 Hahn and Stone Model
.3 Summary Evaluation of Hahn & Stone
Software Transfer Cost Estimation
Feennigue s Srae il Ssee e ol e L @ s
1.2 Putnam General Solution to the Software Sizing
and Estimating Problem
1.2.1 Factors Considered in the Putnam Model .
1.2.2 Putnam Life Cycle Model
1.2.3 Evaluation of the Putnam Model
1.3 The Tecolote Provisional Model for Estimating
Computer Program Development Costs
1.3.1 Factors Considered in the Tecolote
MO I el s v e s e s
1.3.2 Tecolote's Provisional Cost Model
1.3.3 Evaluation of Tecolote Approach

1.1
141

APTENDIR € = QRUSSIIRE = o0 o W e 5 b it oy s s 5w sl »
APPENDIX D - OFFICIAL GOVERNMENT DOCUMENTS FOR COST ESTIMATION
AR MEASURENERY = % % 2 o b s At vomps & v s 4 s .
LIST OF FIGURES
3 Figure
g Figure 1. Model System Acquisition Process
‘ Figure Z. Typical Program Office o viv o o0 ¢ & o7 o « o
Figure 3. Phased Software Cost Estimation
Figure 4. Work Breakdown Structure
Figure 5. Type of Contract vs Degree of Risk

Figure 6. Contract Type vs Risk Considerations for Software

83
86
86
86
91
93
93

101

107

113

Figure

Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

LIST OF FIGURES

ASPR References Regarding Contract Type Selection . .
Survey of ESD Program Qffice Software Cost Estimation
(3 s R e e s
RittessaftTRUMb . o s R o e el s
Estimated Distribution of Resources for a Medium-

kanrge PROGEEE: o o e T i T o e sots
Examples of Gantt, Project Network, and Time-Scaled

Ne tWo kG A S o s il e e bl e
Software Transfer Considerations
Manual Transfeyr Tasks . vl oiie il e o 8 men s il b a b s
Conversion Praoduction Rates (Instructions or State-
mentsAMan=Dayi e e ot Lo TaR s s R R T
Development Production Rates (Instructions/Man-Day) . . .
Division of Effort for Complete Redesign Task
Documentation Degradation Factors
Program Instability Degradation Factors
Project Broflile) o e N it v e e e T
Typical CSC Application of Manpower to a Software
Development Progect ¢ . = o i c0 bihe e et e e e
Life Cycle Integral and Derivative Curve Forms
Application Software Life Cycle
Programming Rate Versus Difficulty
Basic Data for Tecolote Provisional Model
Fast Storage vs Targets Tracked
Operating Instructions vs Fast Storage
Delivered Instructions vs Operating Instructions S
Man-Months vs Operating Instructions
Man-Months vs Delivered Instructions
Inferred per Man-Month Factors
Summary of Provisional Software Estimating Relation-
SHIPS o o o i et o oS s e R SR T e e Gy
Adjustment Factor for Different Cost Factor Assumptions .
Provisional Software Development Cost Model

e

SECTION 1 - INTRODUCTION

1.1 PURPOSE

The Software Cost Estimation and Measurement guidebook is designed to assist
Air Force personnel who are responsible for estimating and controlling the
costs of embedded software within command, control, and communications
systems. The information provided herein is directed specifically towards
Air Force Program Office management personnel and a member of the Engineering
Division, referred to as the Software Director, who is generally responsible
for managing software acquisition. Much of the information and guidance
provided is applicable to smaller less complex systems, but in all cases,

it should be tailored to the needs of individual projects.

This document recognizes and is compatible with Air Force 800 serijes
regulations and related concepts.

1.2 SCOPE

The information presented in this guidebook provides a basic understanding of
the current methodologies used in the formation of Air Force and contractor
software cost estimates. It provides insight into some of the problems (and
reasons for the problems) associated with software cost estimates made by

both Government and industry. It discusses the role of parametric models used
in cost estimation and reviews three experimental predictive models. It also
discusses the process of monitoring software costs and schedules while provid-
ing guidance to relevant military regulations, specifications, standards, and
supporting Titerature.

It is recognized that the specific program procurement strategy impacts total
system acquisition costs as well as some of the activities required by both
the Government and industry regarding cost estimation, allocation, and expen-
diture. However, the discussion presented in this guidebook is based on the
model system acquisition process illustrated in Figure 1, unless otherwise
noted.

JSARC [DSARC 11 DSARC 111

A a A

PROGRAM RATIFICATION REVIEW
DECISION DECISION DECISION

)
FULL-SCALE |

CONCEPTUAL PHASE VALIDATION PHASE DEVELOPMENT PHASE PRODUCTION ([NSTALLAT[ON, OPERATICN,
. PHASE

& SUPPORT PHASE
KOC [FEASIBL- [SYSTEM|RFP|PROPOSAL| EVALUATION | REQUIREMENTS | PART I |PROPOSAL| EVALUATION DESIGN | CODING & | TEST &
LITY | SPEC SOURCE SELECT | TRADEOFFS | SPEC OURCE SELECT CHECKOUT | INTEGRATION
Akt
LY

A A A A A A
AWARD (15} SOR AWARD POR COR FQT

Figure 1. Model System Acquisition Process*

*Adapted from Ref. [1].

7 P‘re_chding'nage hlalnk'

————— e

1.3 CONTENTS

The subsequent contents of this guidebook consist of four sections and three
appendixes, as follows:

Section 2 - Program Office Software Cost Estimation. Discusses those
factors associated with the PO that directly contribute to the
formation of the system cost estimate, with particular emphasis on
the software element portion of that estimate. The topics covered
run from the end of the Conceptual Phase and subsequent program
decision to submission of the RFP for Full-Scale Development,
including PO Program Control, the Work Breakdown Structure, contract
cost type, and PO software cost estimation procedures.

Section 3 - Offeror's Cost Proposal Preparation. Concentrates on

the various offeror tasks associated with preparing a software

cost. proposal in response to an RFP for Full-Scale Development. This
section presents an overview of the numerous software cost estimating
techniques used, the project-dependent factors that impact software
development costs and analyses, and task specification and scheduling
with regard to the WBS.

Section 4 - Role of Parametric Models. Discusses the use of para-
metric models in software cost estimation. Provides information
regarding the development of parametric models. Discusses their
strengths and weaknesses.

Section 5 - Cost Proposal Evaluation. Provides information for use by
the PO in offeror cost proposal evaluation. It also discusses issues
relating to the requirements and procedures for cost reporting and per-
formance measurement of command, control, and communication system
acquisition during Full-Scale Development.

Appendix A - References. Presents a 1ist of numbered references.

Appendix B - Software Cost Estimation Models. Discusses and evaluates
three experimental software estimation models.

Appendix C - Glossary. Defines specific terms and acronyms used in
this guidebook.

Appendix D - Official Government Documents for Cost Estimation and
Measurement. Lists Government documents that impact software cost
estimation and measurement.

e g ——

i

SECTION 2 - PROGRAM OFFICE SOFTWARE COST ESTIMATION

2.0 INTRODUCTION

In a typical system development effort, the Required Operational Capability
(ROC)* is analyzed to determine if a solution is feasible and affordable with-
in current budget and technology constraints. The former is determined
through the medium of Life Cycle Costing (LCC). LCC is the Government's total
cost of owning a system, subsystem, or component over its full life. It in-
cludes development, production, operation, and support costs. From a system
point of view, LCC estimates are required in support of program decisions.

While program decision-making is a continuing process throughout the system's
life cycle, the groundwork is laid during the Conceptual Phase leading to the
first decision to proceed into the Validation Phase, made by Defense System
Acquisition Review Council (DSARC) for major systems.

By the end of the Conceptual Phase,** an acquisition strategy is developed (by
the PO) which is compatible with the program's preliminary performance,
schedule, and projected costs. This strategy is developed, in part, by
obtaining and evaluating system descriptions, ground rules, constraints, and
assumptions upon which the cost estimates are based. In addition, available
historical data is analyzed to substantiate the projected costs of the new
system.

During the Validation Phase, performance, schedule, and estimated costs are
further validated and refined. The software element and its functions are

more clearly identified to provide a more definitive basis from which to pro-
ceed with the software cost estimating process. The major objective of the
Validation Phase is to assure that the system chosen for Full-Scale Development
is both technically and economically feasible. Another result is a better
definition of the program characteristics pertaining to system performance,
cost, and schedules. This section discusses the refinement of the software
cost estimate during the Validation Phase.

*Recently replaced by General Operational Requirement (GOR).

**The Conceptual Phase generally terminates with DSARC milestone 1. DSARC 1
permits the Secretary of Defense to endorse or redirect a major weapons
system. A Decision Coordination Paper (DCP) is prepared to support DSARC
reviews, and contains system information regarding operational needs, system
performance, and associated program cost data. Whenever a DSARC is not re-
quired, similar reviews are held at the Air Force level.

In the same way that a procurement strategy may not rigidly adhere to the
optimum model, the specializations within acquisition management may not be
consistent for any given program's acquisition. The discussion presented in
2.1 describes the generic activities conducted by the discipline of Program
Control with emphasis on those activities closely associated with derivation
of the software cost estimate. The activities of Program Control are brought
together by the Work Breakdown Structure (WBS) (see 2.2) which describes the
relationship of system costs, tasks, and products. The determination of
contract cost type in relationshin to the degree of risk in the system is
discussed in 2.3. A synopsis of PO activities concerned with derivation of
the software cost estimate is presented in 2.4.

2.1 PROGRAM CONTROL

Program Control is a functional organization within the PO which is charged
with the business operations necessary to the acquisition of a system. It is
responsible for the system cost estimate, including developing, monitoring,
and assessing schedules and furds for the program at various stages of its
life cycle. This activity includes obtaining software cost estimates which
are used to evaluate the cost effectiveness of system tradeoffs and contractor
cost proposals for the Full-Scale Development Phase. These activities result
in the preparation and maintenance of the schedule and financial requirements
data contained in the Program Management Plan (PMP), DCP, and other system
documentation. The contents of the system Cost éstimate and its formulation,
however, depend to some extend on the specific type of program and acquisition
strategy.

The relationship of Program Control to the typical PO is shown in Figure 2.
Program Control may be organized by function (i.e., financial management

and discipline management). Its organizational structure is determined

by the complexity of the program and the prerogatives of the Program Manager
(PM). The specific responsibilities of Program Control are not altered by
its internal organization. A more detailed description of the organization
and functions of Program Control is presented in Chapter 6 of AFSCP 800-3.

[PROGRAM_MANAGER

SYSTEMS CONFIGURA PROGRA MANAGEMENT
ENGINEERING MANAGEMENT CONTROL SUPPORT

PROCUREMENT PRODUCT ION TEST & INTEGRATED LOGISTICS
SUPPORT MANAGEMENT EVALUATION SUPPORT

Figure 2. Typical Program Office (see Ref. r 2l

10

e e ——————

Preparation of the software cost estimate should be an iterative process. As
the program advances in time and detail (i.e., system requirements are defined
and validated, alternatives and tradeoffs are studied and resolved, and a
feasible approach is ascertained), additional and more definitive information
becomes available which is necessary for obtaining realistic cost-to-complete
or total cost estimates.

AFSCM 173-1 provides a comprehensive guide for cost estimating in support of
system acquisition activities. In Ref. [1], Doty (1) recommends points in the
1ife cycle when estimates should be made, (2) discusses algorithms for estimat-
ing software development resources and time requirements, (3) points out techni-
ques for assessing the feasibility of the proposed program, and (4) describes
pitfalls to be avoided in making use of the cost estimates in program management.

Since the process of estimating software development resource and time require-
ments is a complex task requiring in-depth knowledge of each program, there is
no simple approach that can be given in this, or any other guidebook, which
will guarantee valid software cost estimates. The following steps are given

as a general guide to the tasks necessary to prepare the cost estimate, and
should be used in conjunction with other Air Force guidance, industry guide-
lines, and experienced personnel:

o Define the Objectives Of the Software Estimation Task. This
task ‘includes the detailed planning required to support the
preparation of the software cost estimate, including determining
the applicable items of the program WBS, the method of software
acquisition, the information necessary to support definition of
software requirements, and schedule constraints.

e Define Personnel, Resources, and Time Requirements Needed For
the Software Cost Estimation Process. This task includes
identifying the team of people responsible for making the soft-
ware cost estimate, as well as allocating adequate resources
for planning and coordinating.

e Describe the Software Requirements. Initially, this task will
be directed at scoping the general software requirements. How-
ever, as more system information becomes available, software
requirements will become less ambiguous and more detailed. This
task should also include documenting software-related assump-
tions made and definitions derived basic to the cost estimate.
The level of detail provided in the description of software
requirements is dependent on the objectives established in the
initial task. Therefore, it is important that the initial
planning activity provide for adequate resources (manpower and
time) to allow for accumulation and refinement of system infor-
mation necessary for software requirements analysis.

1

r

o Identify the Software Cost Estimation Techniques To be Used.
Confidence can be increased in the resultant software estimate
if several different techniques are used during the iterative
process of cost estimation preparation. For example, moceling
techniques should always be augmented by analysis of historical
data obtained from analogous systems. Expert opinion obtained
from more than one expert will temper subjective bias or
insufficient recall. (Software cost estimation techniques are
described in more detail in Sections 3 and 4.)

e Compare and Refine the Derived Software Cost Estimates. This
task should include resolving inconsistencies and ambiguities
in the accumulated data. Care should be taken to generate a
conservative, but realistic, cost estimate. Rules-of-thumb
or historical cost data should be used for comparisons of
functionally similar systems in the refinement process. Program-
dependent characteristics, such as schedule constraints, con-
current hardware development, and completeness of software require-
ments, should be assessed to determine incompatibilities or con-
flicts which may perturb or alter assumptions upon which the
software cost estimate was based. In addition, this task should
examine the estimate for completeness; that is, it should include
provisions for both Government in-house costs and contractor
development costs.

Because of the difficulty of accurately estimating software development costs,
especially at points in the system acquisition Tife cycle where adequate
technical information is not yet available, an iterative cost estimation
process is the only mechanism by which the Government can expect to obtain
reasonably valid cost estimates.

Cost estimates may be prepared at any point in the acquisition cycle, but it
is important to have an estimate at the following decision points:

e Program Decision (between Conceptual and Validation Phases)

e Ratification Decision (between Validation and Full-Scale
Development Phases)

® Production Decision (between Full-Scale Development and
Production Phases)

Figure 3 depicts summary information for developing estimates of computer soft-
ware costs within the system acquisition framework. The data presented in
Figure 3 demonstrates that as more information becomes available to the soft-
ware cost estimator, some of the ambiguities that initially exist in the for-
mation of the software cost estimate are resolved. The consequence is an
increase in confidence of the estimate.

12

REQUIRED
ESTIMATE USE 'T‘EQUIRED F PUTS SIZING BASIS
(:) Initial Program To formulate Life Cycle e Conceptual System pefinicion o POM Total number of object *
Budgetary Estimate Costs and Design-to-Cost e Initial Software Sizing instructions .
thresholds Estimate
(Conceptual Phase) o RFI
e Feasibility & Risk
Assessment
(:) Independent To assess program e MBS . e POM Total number execut- .
Valication Cost feasibility; used in: e Performance Specification e DCP/PM Resources Annex able object instruc- o
Estimate ® SRR Results o Advanced Procurement Plan tions minus data
(validation Phase- 2 :g¢ e SOW . areas
priar to RFP Release, - DCP/PM 2 L Sedrce Sledb LRI
or Program Decision) - Resources Annex o GFI/GFM
e CDRL
e CRISP
@ Independent Full To evaluate the o Hardware/Software/Firmware @ DCP/PM Updates Total number execut- .
Scale Development contractors' proposed Tradeoffs . e POM able object instruc- []
(FSD) Cost Estimate costs e Feasibility and Risk ° Evalua%ed cost and schedule tions minus data
Cac s o Assessment control system proposed areas for reusable
(s::;:;cat1on Decision e SDR(s) Results thresholds code
@ Update of FSD Cost To update and monitor o PDR Results e DCP/PM Updates Total number source L
Estimate development costs e COR Results B} SSR (if required) code instructions
$mi e ECP Review e POM
(;ggT :rﬁl:T1"a:y e CPCI Testing Review e Approve Cost/Schedule Control .
rema?nder ogw o e FCA System Thresholds
devel opment) e PCA e Monitoring of Cost/Schedule
op o FQR e ECP Cost Analysis
o Monthly estimates of cost

to complete

APP - Advanced Procurement Plan

CDR - Critical Design Review

LEGEND

CORL - Contract Data Requirements List
CRISP - Computer Resources Integrated Support Plan
DCP/PM - Decision Coordinating Papers/Program Memorandum

ECP - Engineering Change Proposal

RFP
SAR
SOR

WBS

GFI/GFM - Government Furnished Inforuation/Government Furnished Material

PDR -~ Preliminary Design Review

POM - Program Objectives Memorandum

RFI - Request for Information

- Request for Proposal
- Selected Acquisition Review
- System Design Review

SRR - System Requirements Review
- Work Breakdown Structure
- Statement of Work

[S—— D o ——————— e i e - Sde - — g S 3
|
.
l}
1
|
COST ESTIMATORS TO
SIZING BASIS % ERROR GOVERNMENT AND INDYSTRY OTHER CCMENTS
f e Total number of object e Up to 200% sizing error o Government: | o A life-cycle cost estimate
instructions o 62% resource estimate - for Conceptual Definition e Industrial input may be used
error 0-7 people either informally or through
0-168 man/months an kFI.
- for Program Decision
3-7 people
9-63 man/months
o Contractor
- generally none
e Total number execut- e Up to 100% sizing error ¢ Government: o Independent cost estimates
able object instruc- ® 624 resource estimate - 10-20% of contractors' for each approach need to be
tan tions minus data error FSD Eosts developed if competing contractors'
areas e Contractor approaches are widely divergent.
- 10-20% of contractors' e Design-to-Cost targets to sub-
FSD Costs for each program level (if applicable)
contractor used need to be developed.
o LCC estimates are also updated.
e Total number execut- ® Up to 75% sizing error e Government None
able object instruc- o 627 resource estimate - 20-40% of contractor's
edule tions minus data error FSD costs ;
d areas for reusable e Contractors (see Figure 3 of
code Ref. [1])
3 e Total number source e Up to §0‘A sizing error, o Monthly Estimated Actual Costs will
code instructions improving to zero at be made and compared with contrac-
project completion tor estimates.
Control e 51. resource estimate
error
tedule
st

Figure 3.

13

Phased Software Cost Estimates
(Adapted from Ref. [1])

it

To support major program decisions or to reduce uncertainties that may exist
with respect to program elements, the PO can obtain an Independent Cost
Estimate (ICE)* from an independent Government team (e.g., the ESD Cost
Analysis Division) or other outside agency (e.g., the MITRE Corporation, a
Federal Contract Research Center). Generally, the independent estimator uses
a parametric equation based on an established cost estimating relationship in
which the projected size of the software is a key element. Because the PO
generally provides the estimator with the projected software size, the
independence of the ICE is questionable because it is based on the same para-
meter as the estimate generated by Program Control. The usefulness of the ICE
will be improved if the independent Government team derives its own estimate
of software size because of the extreme importance of this parameter to cost
estimates.** The PO has the final responsibility for accepting or rejecting
the ICE.

Program Control is also responsible for cost and schedule status reporting for
approved programs. This task includes analyzing data to determine contractual
financial progress as well as maintaining information concerning the current
adjusted target cost/price and adjusted ceiling price.

Another Program Control responsibility includes tracking costs associated with
program changes. This may include coordinating plans, changes, or modifica-
tions within the program to achieve cost and schedule goals specific to the
program. The number and size of changes [i.e., Engineering Change Proposals
(ECPs)] for any given system generally cannot be determined in the early
stages of program planning and software cost estimate preparation. Clearly,
ECPs should be expected in all system acquisitions. Further, they will impact
total system cost. A large ECP may require a new cost estimate to be made to
support evaluation of the ECP submission if it requests new system functional
or performance requirements. In addition, program cost change histories must
be maintained to reflect contract performance in terms of actual costs,
estimated costs, and changes in system functional/performance requirements.

Program Control's program cost/schedule management responsibilities are brought
together through the selection and use of the WBS. The WBS provides a frame-
work for the Government's cost estimate, the contractor's response to the RFP,
and the contract cost collection and reporting system. Because this vehicle

is an important tool to many Program Control functions, it is described in

more detail in 2.2. In addition, a discussion of some of the problems in
applying the WBS to system acquisitions is presented in 5.3.

*An ICE represents an estimate of costs to be paid by the Government for a
program segment. The scope nf the estimate depends on the purpose of the
ICE, and may include costs for the entire system or some program element
(e.g., software).

**Actual size estimates have been observed to exceed estimated size estimates
by 200-300 per cent.

2 Precetiing page blank

e T e T et

2.2 WORK BREAKDOWN STRUCTURE

A WBS is a hierarchical and graphical representation of the tasks and products
that comprise a system acquisition, e.g., "a product-oriented family tree
which completely defines the project/program. A WBS displays and defines the
product(s) to be developed or produced and relates the elements of work to be
accomplished to each other and to the end product" (see Ref. [3]). The speci-
fic role of the WBS in software cost estimation and measurement is to provide
a basic framework and coordination point for planning, technical management,
resource allocation, and cost estimates. The WBS requires that each deliver-
able product's costs be visible for efficient contract control*. It also
provides a basis for auditing each offeror's management control system after
contract award. FEach element in a WBS level should .represent non-overlapping
subdivisions of products or tasks. A more detailed discussion of the WBS is
presented in Appendix A of Ref. [4]. See also MIL-STD-881A.

The upper levels of the hierarchical structure of the WBS (as prescribed in
MIL-STD-881A) are defined as follows:

e Level 1 represents the entire defense materiel item (i.e.,
the overall collection of tasks and products of the system).

o Level 2 represents major elements of the system (e.g., an
aggregation of services).

e Level 3 represents subordinate elements to Level 2 (e.g., a
type of service).

The number of levels specified in a WBS for a given system depends upon the
type of system acquired and the level of work the Government desires to
monitor and control. A primary objective of the WBS is to derive the con-
tracted work effort into manageable units. Depending upon the size and com-
plexity of a specific task, the WBS may be extended to many lower levels to
reflect how the work is to be accomplished. In structuring the lower levels
of a WBS, the work effort is generally categorized as follows:

*However, not all software developed for a specific system is visible for
contract control. Support software (e.g., compilers, and Program Support
Libraries) is often not a contractually-specified CPCI. Since applications
software may incur severe slippages when support software development is
delayed, there may be no indication of the problem until late in the pro-
gram due to the lack of visibility into the development progress of non-
deliverable software. In addition, total software development costs for
each given system cannot be accumulated and achieved if support software is
non-deliverable. It would appear that for both contract control and
accuracy in historical cost data recording, support software should be
a- contractually specified CPCI.

16

e Individual tasks resulting in a specific end product (i.e.,
work packages).

e Support effort or work not resulting in a final product (i.e.,
level of effort).

e Factored effort directly related to other identified tasks (i.e.,
apportioned effort, such as quality assurance).

The Contract Work Breakdown Structure (CWBS) is the complete WBS for a

specific contractor. It comprises the selected project summary WBS elements
included in the contract work statement. The individual contractor can extend
the CWBS to Tower levels to reflect the way in which his work is to be performed.
As such, the CWBS should:

e Display and define the products to be developed and the
services to be performed.

@ Relate the tasks to be accomplished and their relationship to
each other and to the end product.

o Allow for the unique identification of each task which may reflect
the overall hierarchy of project tasks, and provide a mechanism
for cost accounting for each partitioned task.

A preliminary CWBS is derived by selecting a subset of the project summary
WBS and extending the elements to a level lower than Level 3. A preliminary
CWBS must be included in each RFP for every contract planned (see Figure 4).

The WBS is used throughout the system acquisition cycle. Initially, the pre-
liminary project summary WBS is used by the Department of Defense (DoD) to
define Government tasks and products, appropriate contractor tasks and products,
and to support program approval. During the Validation Phase, the WBS forms
a framework for preparation of the Statement of Work (SOW), although the SOW
generally defines the details of tasks to a greater specificity than the
preliminary WBS. The use of the WBS, in conjunction with the Full-Scale
Development Phase cost accounting procedures described in Section 5, allows
for control over the reporting of contractor technical status and resource
expenditures. The WBS can also provide the mechanism for acquiring historical
data in a cost element data base. A data base of this nature will provide
qualitative values that would enable PO personnel to realistically price
types of software (e.g., support software or data base management systems)
with current and comparable data obtained from analogous systems/subsystems.

17

ELECTRONICS
LEVEL 1 SYSTEM
i (1 1 iRy
SYSTEM PROJECT PRIME MISSION SYSTEMS TEST OPERATIONAL SITE
EENEBES MANAGEMENT ' TRAINING PRODUCT & EVALUATION DATA ACTIVATION
[|
SUPPORTING
PROJECT CoPGIER TEST & TECHNICAL CONTRACTOR
e B wime | Hooeves | Y| efie o g
| | { { {
| | |
br===== o ;r' ————— S e it oty = = 1 & et 1
Il-l : l—: : ;_: 'r_: ENGINEERING lL.: |
! N 1t 1 el 1y i
e SR I TR ST e e sl ey 2, W daws . 1
! [
Fr i : ke 7
L : l : ' : MANAGEMENT [__4' :
Lt | :) : Y DATA :‘ i
o = =) : | R -
e 1:r """"" AN,
) il 1
|
L: "! ns&ﬁ#oav '4' :
e e ol [ERe1g L S s B0 2 A 4
Figure 4. Work Breakdown Structure (see Ref. [3]).
2.3 IMPACT OF SOFTWARE COST ESTIMATION ON CONTRACT COST TYPE

The level of confidence in the software cost estimate should directly impact

the contract cost type selected.

for software development, the type of contract selected for the acquisition
of software has a direct effect upon the types and amounts of information

needed by the PO for cost estimation and contractor selection.
and quantity of information available for software cost estimation directly

impacts the level of confidence in the estimate.

The quality

Further, confidence

in the estimate is reduced if the information on which it is based (i.e.,
the functional/performance requirements) is imprecise or is likely to change
between the time of procurement and completion of software development.

18

Although there are no unique contract types

Cost Reimbursement contracts should almost always be used for Validation Phase
contracts. Full-Scale Development contracts range from Cost Reimbursement

to Fixed Price. Such contracts include tailored variations in incentives

and awards related to fee or profit determination. The selection of contract
type for software depends upon the following considerations:

® Procurements which do not yet have approved or authenticated
Computer Program Development (Part I) Specifications should
normally have Cost Reimbursement contracts. This allows both
the Government and the contractor some latitude to make timely
accommodations to changing requirements.

e Procurements based upon approved or authenticated Development
Specifications may have Fixed Price contracts. However, this
type of contract usually makes it difficult for changes in per-
formance requirements, costs, or schedules to be accommodated
by either the Government or the contractor in a timely manner.

e Procurements for Full-Scale Development of software usually
involve changing engineering requirements because of changing
mission and performance requirements. These changes often occur
as hardware and software development proceeds concurrently. It
is frequently cost effective to correct.system functional/
performance oversights in the software rather than the hardware.
This type of software change may occur as late as System Develop-
ment Test and Evaluation (DT&E) when the svsiem is checked out.
To allow both the Government and contrdCtors to more flexibly
incorporate required changes, a Cost Reimbursement contract is
recommended for most Full-Scale Development contracts. Changes to Fixed
Price contracts can also be handled through Fixed Price ECPs.

® Procurements for off-the-shelf software are often appropriate for
Fixed Price contracts, provided the steps to qualify the software
are clearly understood. .

The final selection of a contract type should result in one which will give
assurance of contract performance in a manner most advantageous to the Govern-
ment, having considered ard allowed for reasonable contractor technical and
cost risks. Figure 5 depicts summary information on the degree of risk and
type of contract selected. Figure 6 presents a more detailed presentation of
the contract type and risk consideration.

19

HIGH RISK/LOW CONFIDENCE RISK SHIFTS HIGH DEGREE OF |
IN STATED REQUIREMENTS & FROM GOVERNMENT CERTAINTY IN PROGRAM
ESTIMATED COST TO CONTRACTOR AND ESTIMATED COST
CPFF - Cost CPIF - Cost FFP - Firm
Plus Fixed Plus Incen- Fixed Price
Fee tive Fee
CPAF - Cost FPI - Fixed
Plus Award Price
Fee Incentive

Figure 5. Type of Contract vs Degree of Risk

Figure 7 presents an abbreviated 1list of pertinent ASPR references. Tnese
references provide and lead to definitive guidance in determining and selecting
an appropriate type of contract in the best interests of the Government and

one which will provide a contractor with a reasonable hedge against technical
and cost risks. The risks are related to the confidence in the job defini-
tions as documented in specifications and in the SOW as well as to the confi-
dence in the technical feasibility of the tasks to be performed within the
proposed schedules.

Although risk taking and risk analysis are part of the free enterprise system
and influence most business decisions, the risks involved in the acquisition
of software appear unusually high. This may be due, in part, to the large
portion of money allocated to the software element of major weapon systems*.
Many of the contractual issues concerning options and risks in acquiring soft-
ware are described in Ref. [5]. There is a distinct difference between risks
of a +pecific software development project as compared to a "high technologi-
cal risk". On the one hand, a fairly simple software application may contain
risks to either the Government, as purchaser, or the contractor, as developer.
The risk, in this case, may be any identified area that potentially impacts
the cost estimate in terms of increasing or decreasing those costs. Risks

may be classed as cost risks (e.g., rate projections, overtime, technical

*The Worldwide Military Command and Control System (WWMCCS) is projected to
spend over $722 million on software, $100 million on hardware; the Safe-
guard System spent an estimated $467 million on software; and the Minute-
man System spent $124 million on Software (see Ref. [6]).

20

Essential

Applicability

FIXED-PRICE
GREATEST RISK ON CONTRACTOR

COST-REIMBURSEMENT

GREATEST RISK ON GOVERNMENT J]
1

FIRM FIXED- FIXED-PRICE COST-PLUS
PRICE INCENTIVE INCENTIVE-FEE
Fair and Reasonable price can be established . Where cost uncertainties exist and there is the -« UNCERTAINTIEY
at inception, e.g., possibility of cost reduction and{ov)‘ performance)
N improvements by given contractor (i) a degree of Development and test when incentive formula i) Leyv
:;::?:::l{ig:?"“e design or perforsance cost responsibility (ii) a positive profit can provide positive incentive for effective where
- Realistic estimates incentive. management. Where feasible, use oerformance measure
- Adequate competition Firm Target Type: firm target and final profit ::ﬁ:::::g: together with cost and schedule z::l:a;
- Valid cost or pricing data that. adjustment formula can be negotiated initially i objecti
provide reasonable price comparisons Successive Target Type: initial target can be definii
negotiated, but firm final targets cannot; measur?
Level of effort research contract sufficient'information will be available :early
enough in performance to set final goals.
Initial fixed-price places 100% responsi- Firm Target: target cost; target profit; price Target cost; target fee; minimum and maximum Negot id
bility and risk on contractor ceiling; and profit adjustment formula fee; fee adjustment formula (formula applied mum feq
@ Successive Targets: initial target cost and at end of performance) 15 eva‘
g. target profit; price ceiling; firm target profit
% formula; and production point for application to
= get either a firm target and final profit
w formula or a fixed-price contract.
Adequate Contractor Accounting System Required < v ADE|
Gm:ernmen} contli-actor must agree on fixed- Must determine (i)(the;t this is least costly Fee Limitations (Same
price at inception contract type and (ii) that any other contract . - .
Production & Services Final
2 If FFP level of effort, agreement must be tigz“::iilrpractical 'ntUSEd for development and to dis
S| reached on identification of effort and P OMEROCUREmCOtS, of am
5 number of man-hours. Farmula should provide incentive effective- develo
s ness over variation in costs throughout have
2 the full range of reasonable foreseeable
= variation from target cost.
®| - DETERMINATION AND FINDING
§ None Contracting Officer
3
Advertised or Negotiated Procurements Negotiated Procurements Only < "Ecgségﬁazm"%gﬂ‘ﬂgs
Preferred over all types May also use performance or delivery
IMinimum administration incentives, where feasible. g;:r:
Q
= and o
= methol

COST-REIMBURSEMENT
GREATEST RISK ON GOVERNMENT

COST-PLUS COST-PLUS
EE AWARD FEE FIXED-FEE

t when incentive formula
e incentive for effective
feasible, use performance
with cost and schedule

UNCERTAINTIES IN PERFORMANCE - - IMPOSSIBLE TO ESTIMATE COSTS FIRMLY

(i) Level of effort for performance of services
where mission feasibility is established, but
measurement of performance must be by subjective
evaluation; (ii) work which would have been placed
under another type of contract if performance
objectives could be expressed in advance by
definite milestones or targets susceptible of
measuring actua) performance.

Term Form: “research, preliminary exoloration,
or study when level of effort is iniiiaﬂy
9nk(|own (or development and test when a CPIF
is impractical)

Completion Form: research or other development
effort when the task or job can be clearly defined,
or definite goal or target expressed, and a
specific end product required.

. fee; minimum and maximum
. formula (formula applied
ice)

Negotiated estimate of cost: a base fee; maxi-
mum fee; the criteria against which performance
is evaluated; resulting in an award fee.

Negotiated estimate of costs; fee fixed initially
except for changes in the work or services required.

ions
tes

vide incentive effective-
n in costs throughout
reasonable foreseeable
get cost.

ADEQUATE CONTRACTOR ACCOUNTING SYSTEM REQUIRED
(Same fee limitations as CPFF and CPIF)

Final fee determination by Government not subject
to disputes clauses. CPAF is not for procurement
of a major system categorized as either engineering
development or operational system development which
have undergone contract definition.

Fee Limitations

- 10% estimated cost
- 15% estimated cost

Not for development of major weapons once
explorations indicate engineering development
is feasible.

~—————— DETERMINATION AND FINDINGS BY CONTRACTING OFFICER (EXCEPT FOR COST-SHARING)

(Same as CPFF and CPIF)

NEGOTIATED PROCUREMENTS ONLY.

"COSTS" DEFINED IN ASPR XV

GOVERNMENT AUDITING AND ADMINISTRATIVE SURVEILLANCE

Can use combination of CPAF/IF or CPIF/AF as
appropriate to reflect degree of subjectivity
and objectivity of performance measurement
method.

Least contractor responsibility for costs; least
preferred contract type.

Figure 6.

Contract Type vs Risk Considerations for Software

21

_..--__,__‘,__
- s

problems, technical performance, GFE interface problems, schedule/milestone
slippages or constraints, special clauses, prime/subcontractor relationships,
facilities, etc.) or fee/profit risks (e.g., fee/profit incentives, cost-
sharing incentives, restrictions on costs, performance incentives, technical/
schedule restriction on performance incentives, etc.). A high technological
risk*, on the other hand, is the risk associated with a particular attempt

to employ a computer or software in the solution to a problem that has here-
tofore not been solved via the computer. In other words, the problem/solution
may be beyond the current state-of-the-art of computer technology.

In formulating the RFP, all high technological risks should be clearly identi-
fied as well as any non-obvious technical risks. Al1 risks should be addressed
in the Full-Scale Development Phase proposal by the prospective contractor via
the Computer Program Development Plan (CPDP).

Formal Advertising 1-300.2
2-102

Negotiation 1-300.3
3-200

Types of Contracts 3-401
3-402

3-404 (Fixed Price Type)
3-404.2 (Firm Fixed Price)
3-404.4 (Fixed Price Incentive)
3-405 (Cost Reimbursment Type
3-405.4 (Cost Plus Incentive Fee)
3-405.5 (Cost Plus Award Fee)
3-405.6 (Cost Plus Fixed Fee)
3-803

Special Types and Methods 4-101
of Procurement

Figure 7. ASPR References Regarding Contract Type Selection

*Ref. [4] states that "The following software capabilities are likely to
have technical risk;) _
a. Certifiably correct control of access to data of d1fferent security
classification and in different "need to know" categories;
b. Automatic detection and correct reporting of equipment and software
errors, and
¢. Automatic reconfiguration and recovery of the system from_errqrs,
including transition to and from degraded modes of operation.'

23 Preceding page blank

‘__,_._.___
- -

Although certain types of contracts may 1imit the Government's liability, the
contract type may also have the effect of obscuring the ability to track or
collect total software deveiopment costs. Most Fixed Price contracts provide
little actual cost visibility to the Government, except where progress pay-
ments are applicable. However, this is not the case when additional software
development funds must be obtained via ECP. Although this type of additional
funding requires a change to a specific functional/performance requirement,
costs for each change must be tracked.

Ref. [5] discusses some issues related to procurement planning and types of
contracts. It states the need for each procurement to be appraised to deter-
mine the issues (specific to the program) that impact contract type determina-
tion.

2.4 SUMMARY OF A SURVEY OF PROGRAM QFFICE SOFTWARE COST ESTIMATION PROCEDURES

The procedures for developing the system-cost estimate, particularly the
software-related portion, consists of a logical progression of activities
which update the original estimate as supporting data are acquired during the
system's life cycle. This approach requires relevant historical data from
analogous systems to form a basis for estimating initial costs. It further
requires well informed software cost analysts and system designers to make
engineering cost trade-off studies to determine cost differences between the
system being acquired and analogous systems represented by historical data.
While it is important for eacn software cost estimate to be realistic because
jt is a major component of the total allocated budget, the lack of available
data on which to base comparisons with historical system cost data make it
susceptible to gross error. The software cost estimate can seriously impact
all decisions associated with a major weapon system. For that reason, it is
important to derive a software cost estimate which is continually reevaluated
and updated as additional information becomes available during development.

The software cost estimation process within the PO can be considerably improved
with dedication to a systems approach which combines somewhat independent

parts of the problem into an integrated methodology. Components of this
methodology must necessarily include:

e Employing and educating qualified personnel with experience and
knowledge of both the system acquisition and software development
process. Understanding the complexities of acquiring and develop-
ing a major weapon system must necessarily draw upon information
accumulated from both within the military organization and the
software undustry.

24

e Evolving a systematic cost estimating procedure which defines
a series of steps providing for:

- Definition of the objectives of the software cost
estimation task.

- Definition of personnel, resources, and time requirements
needed for the software cost estimation process.

- Description of the software requirements.

- Identification of the software cost estimation techniques
to be used.

- Comparison and refinement of the Software cost estimates.

e Deriving guidelines on the sizing of software based on technical
evaluation of the functional performance requirements of the system
software.

o Collecting and analyzing software cost data from new and existing
systems based on common definitions of data parameters to provide
a historical cost element data base for derivation of cost esti-
mating relationships and determination of factors which impact costs.

e Deriving and validating cost models supported by analysis of
the historical cost data base.

e Ensuring that the procedures for software cost estimating are
rigorously and methodically followed.

A survey of the software cost estimation process within the ESD environment
was conducted recently (see Ref. [6]). Thirteen unidentified POs representing
a diversity of ESD programs were contracted. Their responses are summarized
by this author in Figure 8, and shows that a systematic approach for develop-
ing software cost estimates within the PO does not really exist. Many of the
programs did not have any records to show that the software segment had been
costed. Those programs that did derive a software cost estimate used varying
techniques with inconsistent degrees of success. Although some programs were
successful (see Program A in Figure 8), the methodology used does not appear
to have impacted other programs' software cost estimating techniques. It is
important for the level of technical detail concerning the software element to
be accumulated and refined over the program life cycle. This includes cocu-
menting the assumptions made and cost estimating techniques used. In addition,
the PO must employ knowledgeable and experienced personnel in the software
cost estimation process. Lacking a standard and'validated approach for soft-
ware cost estimating requires that the PO use cost estimators who can draw
upon analogous experience.

25

—

PROGRAM IN-HOUSE ESTIMATION METHOD FOR SOFTWARE COSTS COMMENTS

A e Decomposition of the software package to Estimated program size in instru-
program modules, ranging in size from tions = 160,000; actual number to
600-85,000 instructions. date = 156,000.

e Using a mean productivity rate obtained Estimated cost 20% less than
from a previous SDC study (325 JOVIAL actual.
instructions/month), total software
cost was derived.

B o A special team used analogy to existing New system was to replace existing
system which new software/hardware was system.
to replace.

e Parametric technique (e.g., Tecelote
Model) based on number of instructions
derived from the analogy.

C e Support contractor developed;éystem The estimate may have ensured
design identifying 17 software modules sufficiency of budgeted funds,
by function. but the interations resulted in

- : = a high estimate which may have
® Gach module, resuiting in a total | 3150 coused erroneous nanage-
man-month effort of 138-205 man-months. elsewhere in the program.

e Additional 25% added to original
estimate resulting in 173-256 man
months or $830,000 to $1,270,000.

e PO increased original estimate to
$2.4 million due to uncertainties
in cost estimates.

e PO again increased estimate to0$3.8
million to take into account program
uncertainties.

D e No available data concerning the orig- Contractor's estimated software

inal cost estimate. size was 20K instructions with a
computer core size capacity of
132K instructions. Two years after
contract award, software size was
174K, i.e., a 900% increase in
number of instructions.

E o PO obtained software estimate size which Due to inconsistent definition of
was based upon a decomposition iaenti- terms, communication between the
fying functional modules from 200-50,000 PO and the cost analyst led to an
instructions in size. erroneous software cost.estimate,

o PO multiplied the estimate by 1.5 to oo ntios e A
ensure that it was not optimistic. g

@ PO used $150/instruction arriving at
$33 million.

Figure 8. Survey of ESD Program Office Software Cost Estimation Methods*

*Summarized by author from Ref. [6].

26

S

e A e et <. e e g

)

PROGRAM IN-HOUSE ESTIMATION METHOD FOR SOFTWARE COSTS COMMENTS

F e No internal software estimate was prepared.{ This program involved engineering
changes involving software modifi-
cation to an existing system.
Analysis focused on the contract-
or's software estimate for each
ECP.

G e A joint software cost estimate was Although the productivity factor

prepared by the PO and ESD Cost was obtained from unsubstantiated
Analysis Division by decomposition. data, the total cost of software
A . o at project cormpletion was 30%
e Productivity rate of 10 instructions/ : 5
day/programmer was used. higher than estimated.

H e Estimate was derived from a decompo- Large module size may indicate a
sition process, but at a very gross lack of knowledge of software
level (i.e., the smallest module requirements.
size was 12K instructions).

I o No data available. Difficult to learn from experience

with a lack of historical data.

J o No data available.

K e MITRE and PO Engineers estimated number A1l three estimates were very
of instructions and an engineering close, providing the PO with
estimate of resources/modules to yield a higher level of confidence
cost estimate #1. in the estimate.

e The estimated number of instructions
were multipled by a cost per instruc-
tion factor of $44 to yield cost
estimate #2.

e By analogy, cost estimate #3 was
derived.

L e Sole source contractor estimated The estimates were close.
number of instructions which was
then correlated with previous SDC
productivity data for cost estimate
#1.

e Using analogy and projection of
software growth, cost estimate
#2 was prepared.

M e No data available. Contractor's cost proposal used
decomposition and types of effort
required to develop each module,
using a productivity factor of
three man-hours/instruction + $15./
instruction for documentation.

Figure 8. Survey of ESD Program Office Software Cost Estimation Methods (cont'd)
27
7

N—

The conclusion reached following the survey and analysis of ESD cost estimating

procedures follows:

“In 1976, DoD managers will be making decisions concerning the
acquisition of an estimated $3 billion of software...Based upon
the research findings, there appear to be some major problem
areas which inhibit the development of accurate and reliable
software cost estimates..In estimating software cost, there

are three possible sources of error. The first source of error
is due to the element of change in the future which makes cost
a random variable. A second source of error is the estimating
technique itself...The third source is the non-uniform and unskilled
application of a cost estimating technique. Regardless of how
good a technique is, an accurate estimate may*only be obtained
if the technique is properly used" (see Ref. [6.]).

28

SECTION 3 - OFFEROR'S COST PROPOSAL PREPARATION

3.0 INTRODUCTION

This section presents information concerning the offeror activities associated
with deriving and submitting a cost proposal in response to an RFP for a Full-
Scale Development Phase contract.

Full-Scale Development Phase RFPs vary signigicantly in content* because of
the differences in acquisition strategies, C° system functional/performance
requirements, program costs, schedules, and variations in the quality of
Development (Part I) Specifications. This causes great variability in the
amount of time and money allocated to the development of the technical and
cost proposal for Full-Scale Development. When there is a Validation Phase,
it is implemented most effectively by having contractors compete for the Full-
Scale Development effort. The Validation Phase is the ideal time for contrac-
tors to develop a CPDP and SEMP. That way, they each evolve a design approach
N supported by trade studies, management plans, and support plans. In the event
there is no Validation Phase, the amount of manpower allocated to deveioping
an optimum top-level design approach in response to an RFP depends to a great
extent on the respective financial positions of the competing offerors. The
effect of the different acquisition strategies and the financial positions of
the offerors are demonstrated by the level of technical detail and supporting
studies in the proposed system design. Estimated costs for system develop-
ment are more realistic when they are based on a thorough understanding of the
technical problem to be solved, and the proposed solution has been derived by
examination of alternative system designs in terms of cost, schedule, and
performance requirements. For that reason, the system acquisition strategy
should take into consideration the requirements necessary for producing a
realistic cost proposal in response to an RFP.

*For example, (RFP(s) for Full-Scale Development should include an authenticated
System/Segment Specification developed during the Conceptual and Validation
’ Phases as well as the authenticated Development (Part I) Specification. The
contract specification will be the authenticated Part Is providing they have
been approved and authenticated at the end of the Validation Phase. If the
Validation Phase was conducted in-house, the CPCI Development Specification,
{ developed by Air Force personnel, will accompany the RFP. If the Validation
Phase had competitive contractors evolving a design approach, the Development
Specification that was developed during the Validation Phase is placed on
contract. If there was no Validation Phase at all, no Development Specification
accompanies the RFP as it will be developed and produced by the winning contrac-
tor early in the Full-Scale Development Phase.

e s
& ’

29

e c——————————e i e~

This section is applicable to the offeror's cost estimation process regardless
of the specific acquisition strategy. Although a competitive Validation Phase
allows for more extensive technical analyses and cost-performance trade-offs,
the cost estimation process is essentially identical once the design approach
has been formulated. In 3.1, various cost estimating techniques used by
industry are discussed. In 3.2, an analysis is presented of the many issues
which impact software development and complicate the estimator's ability to
accurately predict costs and schedules. In 3.3, the offeror's methods for
representing the scheduling of the work packages is discussed.

3.1 COST ESTIMATING TECHNIQUES

A number of cost estimating techniques are used within the software industry.
They are often referred to by different names, are sometimes used in combina-
tion, or are slightly different in purpose or application. This discussion
briefly describes the major techniques currently used.

The purpose of an offeror's cost proposal is to present his estimate of

the costs (along with a reasonable profit) to develop a technical solution

to a given set of performance requirements within a schedule acceptable to

the Government. To prepare an accurate and complete cost estimate, a contrac-
tor must perform the following tasks:

e Develop a technical solution (i.e., a top-level system design)
which is responsive to the SOW/RFP functional/performance
requirements, including a logical and consistent definition of
the tasks, work packages, and products necessary to produce
the operational software representing that system design.

o Apply costing algorithms or criteria to estimate the costs
associated with each of the elements derived above.

Generally, the project definition process decomposes the total software
development task into units small enough to be more accurately examined for
purposes of subsequent cost analyses. Decomposition of a total development
project into its constituent parts is almost always a prerequisite to other
cost estimation techniques*. (This does not necessarily imply that the
top-level system design evolved by the proposal team becomes the contractual
baselined design. Rather, this process is a validation of the offeror's
requirements analysis.) It may be useful to decompose a system into software
elements (i.e., programs and subroutines) or work units (i.e., design, code,
and test activities). A possible result of this decomposition is a more
accurate cost estimate. An estimate of total development based on an aggregate

*Charles Lecht (see Ref. [7]) asserts that the analysis of system requirements
must identify not only the requirements to be satisfied and the activities

to be performed, but also a means of recognizing completion of activities,
thereby requiring a comprehensive decomposition of a software system and
extensive project planning.

30

of smaller estimates, where each is made on a constituent part, may have a
smaller error because the error in each is smaller. If the cost es@imates for
the constituent parts are made independently and as precise as possible, then
it is statistically possible for random errors to cancel out each other.
However, if each estimate contains padding, the aggregate estimate will be too
large.

3.1.1 Analogy of Similar Experience

The analogous cost estimation technique bases the cost of the proposed soft-
ware system, or portions thereof, on costs actually required to produce one

or more similar software segments. Adjustments to the derived cost estimate

are made for any differences that are found between the new system and exist-
ing ones. For the analogy costing technique to be effective, the software
function/performance requirements must be quite similar. In addition hardware
characteristics of the existing and proposed systems must be carefully evaluated
to determine the relationship of the software systems. The total elapsed time
for development of both software systems must also be examined.

The analogy method of cost estimating is one of the most widely used techniques
in the industry. Since this estimating method depends upon data obtained from
similar projects, it is valid only when supoorted by a cost element data base
that contains cost data as well as a selective set of each development project's
hardware/software/schedule characteristics. If software contractors do main-
tain such a data base, it generally contains sensitive information which is

open to scrutiny only by selected corporate personnel, and not necessarily the
people preparing the cost estimate. However, few comprehensive cost element
data bases of this nature actually exist within the industry. In Tieu of a

cost data base, this method relies upon the cost estimator's skill in making
analogies as well as his recall ability. While knowledge of similar software
application areas and familiarity with the responding organization's capabilities
and performance on previous projects is a valuable asset, reliance on the
ability to recall functional/performance/cost characteristics of systems over
time is a poor substitute for a cost data base.

The analogy method has been criticized for both the lack of a valid historical
data base of performance, cost, and schedule data, and the non-linear relation-
ship between system cost and system software size which perturbs analogous
comparisons. However, the analogy approach has proven to be fairly accurate

if the development projects are relatively small and similar in operational
characteristics, and if adjustments are made for growth and improvements in
technology and management of software development.

3.1.2 Quantitative Method

This cost estimation technique divides the total software development effort
(including support and other non-deliverable software) into work packages or
units, which may be performed by a single individual. Once the total effort

31

js subdivided, the number of work units is multiplied by a previously
determined cost-per-unit factor or productivity factor, derived from estimates
of software complexity and project duration. Often the quantitative method is
iterated as progressive levels of detail on the system are available. Software
development factors unique to the project are often evaluated, reduced to a
single weighting factor, and used to modify the derived estimate. This method
relies heavily upon the ability to estimate total number of instructions and
programmer productivity.

This type of cost estimating method has been espoused by Wolverton, Aron, Meyer,
and Weinwurm (see Refs. [8, 9, 10, & 11]). A basic disadvantage of the many
versions of this technique is the subjective assessment of the weighting

factor used to modify the derived estimate. Also problematic is the previously
determined cost-per-unit factor because it is not always clear what that cost
includes (i.e., direct labor, direct labor plus overhead) and the unit (i.e.,
machine instruction, source statement) is often incomparable between develop-
ment projects. This cost estimation method also needs to be supported by a
valid cost data base consisting of comparable and consistent project data from
which factors, such as productivity,* may be realistically determined. This
method also relies heavily upon the individual estimator's experience and
ability to evaluate each software development project in terms of the internal
contractor environment in which it will be performed.

3.1.3 Percent-of-Other-Item Method

This cost estimation method determines the net development time in terms of
man-days. This figure is obtained by calculating the development time
necessary for the detailed design of CPCs, code of CPCs, generation of test
data, test of CPCs, and document preparation. Analysis and design of the

CPCI are omitted from the estimating algorithm which 1e§ds one to believe

that this method of cost estimating is unsuitable for C° systems. The com-
plexity of the functional/performance requirements of weapons software demands
that resources be allocated for CPCI analysis and design activities and that
the schedules devised for CPCI analysis include realistic time budgets. Once
the net develonment time is calculated, other project-denendent characteristics

*Software productivity figures are extremely sensitive to definitions so

they are often non-comparable. Programmer productivity is generally a ratio
of the number of deliverable instructions (source or object? produced by the
average programmer per unit of time. The number of non-deliverable instruc-
tions are also items affecting cost. Complexity of the software and choice
of programming language may be important factors in deriving a productivity
ratio. Productivity can be defined in quantitative terms from measures in

a data base if software development data is kept current and accurate. In
addition, data parameters reflecting the software methodologies used in the
various phases of the development process must be recorded in order to
ascertain their effect on the productivity ratio.

32

.

(e.g., program complexity, programmer know-how, and programmer job knowledge)
are analyzed and weighted to establish the net orogram development time
estimate. The net develonment time estimate is then further modified to
account for the factors of other system time (time required for the design,
test, installation, and maintenance of the software system), project-loss

time (time which is charged to the nroject, but which is non-productive or
indirectly productive), and non-project time (time which is spent on activities
not related to the project).

This method has been criticized for both possible and probable error magnifi-
cation since the net develonment time is the base for all subsequent calcula-
tions and may contain gross errors. The skill required on the part of the
estimator for assigning weighting factors to project-dependent variables
(e.g., programmer know-how, programmer job knowledge) may also be a source

of error besides obscuring comparability of cost data because of subjective
biecs.

3.1.4 Rules of Thumb

Numerous software development guidelines, or rules of thumb, have come into
existence in the process of estimating development costs. Rules of thumb
may be examples of individual or collective experience and may be close
approximations of actual resource/schedule requirements. Rule of thumb
estimates are often used in conjunction with other estimating methods.
Figure 9 identifies typical rules of thumb.

3.1.5 Parametric Equations

A parametric equation is a mathematical representation, or function, used to
project the cost of a proposed system by using variables, or parameters,
which have been analyzed by previous software development experiences and

for which a known, or quantified, relationship exists. The types of variables
used in parametric equations are generally cost items, such as technical man-
power, support and management manpower, and computer resources. Statistical
methods generally used in parametric equations include scatterplot analysis,
correlation analysis, analysis of variance/covariance, multiple regression
analysis, and factor analysis. Parametric equations can be used for compara-
tive analyses, but the unreliability of the original cost parameter values
makes the absolute costs essentially useless,

33

quny) Jo sainy g aunbiy

saseyd
3S3) pue uoijeabajuy ybnouay) ssauwedaboud
3uawdo|3A3Q 43QWNN X YIUO/SANOH AJusM3-uaa3jL4
aseyq uotiejuaws (du] ybnouayj
saaumeaboud juawdo|dAdg 43QWNN X YJUuOl/SANOH SA|3M|
aseyq ubrsag wazsAs ybnoay|
sdauwweaboaqd Juawdo|3A3Q 43QUNY X YJUuo||/SANOH ddJY)

(s3209[04d awy)-|eay 404) YIUOp/Jauweabodd/SANOY 3A (M|
(suorjeot |ddy

JRL[LWeun 404) YIuoy/saumeaboad/sanoy ubLy
(uorzedt (ddy
fuLssasoud e3eg ay3 jo Huipuelsaapupn pooy

e Y3LM Saaumedbodd 404) yjuop/4auneaboad/sanoy xis

340443 3531 (P3I01 30 %0§ A(33ewixouddy-wa3sAsqns 3Sa)

340443 3S3] 40 %02 - sweubodd |eNPLALPUT 3S3)

SUOLJONASUT AuLYdRl 000G 43d yjuop-uey |-sweabouad apo)
Su0L3oNA3suf

sutydew 0002-0001 +42d yauop-upey |-sueabouad ubisag

SYjuop-ue} |e30] JO %0L-Wd3SAS weaboud 433ndwo) ubrsag
(*paouaLuadxa sAe[2p pue SuoL3Lpuod uo

ju3puddap) syjuoy-uey € 03 | - wdISAS (e30f ubLsag

%0t - 3S3]
%81 - b6ngag/apo)
%0t - ubLsag/stsAieuy

%G Ly - BuLyssy
%81 - butpoj
%G° b€ - butuueiq

%0G - buryss)
%L1 - bButpo)
%€¢ - butuue(d

%0G - buiisay
%02 - BuLpoy
%0¢ - butuue|d

([0L]" 43y 23s)suakay

([se] 43y 99s)
ANY3dy B uouay

([zL] 43y @vs)
Jaaeq 40 ([eg]
434 83S) ULUOK

([8] "4y 33s)
U0 43A | OM
([¥€] 39y @as)uos|an

([£1]" 39y 23s)sy00ag

([6] 39y 99s) uoay

S3121A130Y

0S4 404 awL]| pasde|3

uL sjuswsJaLnbay
924N0S3Y J433ndwo) e

S913LALIOY

juawdo|aAaq @{e2§ N4 03

awL| JO uoLIeIO|lY ®

8WNHL 40 31Ny

32¥n0s

S1S0J
ONILIVAWI 378VI¥VA
1N3Kd013A30

34

|
)
|
{

Av.u:oov qunyj] jo sa|ny

"6 94nbLy

abeq pajewoiny
-uoN/sae((0@ 3414 padpuny 3uQ 03 dALJ-AaLyl
3507 juawdo(aAaaq [e30] O (3ewixo4dde) Juadud4 udl

furdA] 4oy Aeg-uey/sabeqd uaaljL{ 03 ua)
BuL3Lp3 40y Aeq-uey/sdbed K314
M3LA3Y |edLuydd] 4oy Aeq-uey/sabeq Ajuamf
abed/spaom
0G2L-0GL buisn “34e4q 403 Aeq-uey/sabed aAL4 03 d3uy]
JUaWNJ0Q S,43SM)/SYIUOK-UR) OM|
apo) weubouy
saul] Q0]/uotjejuawndog 30 sabed aAL4-A3aLyl 03 ua]

yjuoj-uey 4ad sabeqd aAL4
3p0) 3D4N0S 4O S3ULT QO0L 49d sabeq AjuLyj

sjuswa]3 walsAS 49Yy3) Y3LM SuoLldeadju] Auey - puaey
SuaWa|y

wa3sAS 43Y30 YILM SUOLIORUIJU] BWOS - Wnipay
Sjuswa |3

wa3sAS 43y3Q YILM SUOLIDeUIJU] M3{ AUSA ~ Ase3

94BM} J0S

suotjedt|ddy uey)] x3a|dwo) 3Joy S] d4em3jos juoddng
248M340S suoijedt|ddy uey] x3|dwo) 340K 4y YILYMN

S43| Ldwo) uey] X3 dwo) 340y a4y SwaysAS buljeaadg
suorjedL|ddy ssaul

-sng uey] x3|dwo) S0 a4y SuoLedt|ddy ILSL3UILIS
suotjedt|ddy au}

LedYy-UON uey| Xx3[duO] 340} a4y Suoledi|ady awi) |eay

SUOLIINUISUI Q0QL/SANOH Ajusm)
YJUOp-uel/SANOY 4N04

([e€)

*Jay 93s) ued3y

([2€] 434 ®3s) utaoy

Aﬁ_u.*mx 93s) AjoQ

([6] 424 89S) uoJy

([1]" 43y @9s) Ayoq

([22] "s24
99S) B 13 ‘udAedy

uoLjejuawndoq o

34BeM140S 40 A3Lx3a|dwo) e

WNHL 40 S3TNY

324n0S

SI50J
ONILOVdWI 318VI¥VA
1N3IWd0T13A30

35

3.2 ISSUES IMPACTING SOFTWARE DEVELOPMENT COSTS

Commencing with studies performed by System Development Corporation and
Planning Research Corporaticn (see Refs. [11 through 15]) in the early 1960s,
the factors the*- impact software development costs and schedules have been
examined on many occasions. Several factors have been identified by research
groups or collective opinion (e.g., the October 1974 Electronic Systems
Division/Government/Industry Software Costing and Sizing Workshop). The
result of al) this analysis is a large store of documentation, little
consensus, and a disappointingly small advance in the state-of-the-art of
software cost estimation. Indirect benefits have resulted from the wide-
spread recognition of the need to determine what effect (or relationship) the
various software development variables have on the cost of acquiring and
supporting a system. To develop improved software cost estimating
relationships, it is recognized that a cost data base containing a collection
of consistent and comparable data must be available for statistical analysis.*

The following paragraphs present a brief condensation of some of the major
factors thought to impact the software development process. A brief overview
discussion of these factors can be found in Appendix III of Ref. [16]. In
additionE 3 comprehensive and recent discussion of these factors is presented
in Ref. (1].

3.2.1 Complexity of Application

The complexity of software under development is one of the more important
factors impacting the development process in general, and costs and schedules
in particular. Complexity effects programmer productivity as measured in
output per unit of time. Programmer productivity varies with the type of
development job, and therefore, accuracy of productivity estimates is
questionable. The exact relationship between programmer productivity and
complexity of the application is unknown because of the creative nature of
the task, the external attributes of each software problem, unique individual
differences, and the variability of terms in measuring output per unit of
time. Consequently, the exact relationship of programmer productivity and
program complexity is unknown, and will probably remain a subjective assess-
ment for some time.

*Rome Air Development Center (RADC) is currently in the process of establishing
a data repository of software development parameters consistently collected
from a wide range of development projects. The purpose of the RADC repository
is to gather user experience for the study of software development (specifi-
cally, software reliability, programmer productivity, and software develop-
ment costs) by members of Government, industry, and academia.

36

The complexity of a particular software application affects many other aspects

of the development process (e.g., design and testing). For that reason, it

is often quantified by subjective assessment or by rule of thumb and included

in costing algorithms. (See Figure 9 for rules of thumb concerning complexity

of software applications). The derivation of a software complexity index or

assessment involves the determination of the application's characteristics and

may be the most important reason for identifying the particular type of soft-
ware application, but even within a particular application there are numerous
other factors (e.g., quality of functional/performance specifications) which

may complicate quantifying the compiexity of the application.

A complex application that may involve innovative or high-risk technology
should be so identified in the RFP if possible.* 1In any case the offerors
should identify any areas which they detect as high risk in their proposal.
offeror's technical proposal should demonstrate his appreciation of the
complexity of the problem by his estimate of required man-months and his
allocation of time to complex development activities. A brief discussion
of high risk technological areas may be found in Appendix III of Ref. [16].

Doty, Ref. [1], suggests the following guidelines for resource allocation:

e In estimating productivity rates for avionics applications, the
cost estimator should assign separate (and ascending) productivity
rates for development of on-board flight programs, simulation,
and automatic test equipment, in that order.

e Command and control developments should be considered to have an
approximate 40 percent decrease in productivity rates due to their
real-time requirements, their large size (an average of 500,000
object words) and complexity of control flow relative to software
with simple flow of control.

e Business application developments show a higher productivity rate
than non-business applications. Alternative size or cost
estimating algorithms may be appropriately based on the number of
input/output items or the number of processing transactions for
business application estimates.

e Scientific application development should use a lower productivity
rate for cost estimation because of their use of complex
computational algorithms, although the productivity rate in these
developments is highly dependent on other factors such as use of
a Higher Order Language (HOL), real-time requirements, and Central
Processing Unit (CPU) time and memory constraints.

*An example of high risk technology is formal program verification.

37

The

Brooks, Ref. [17], presents data which suggests that productivity rates may be
impacted more by the choice of a HOL than by the complexity of the application,
(e.g., the use of a suitable HOL will increase productivity rates no matter
how complex the applications).

3.2.2 Total Software Size

Another important component of any software development project is the esti-
mated size of the software. Doty, Ref. [1], states, "Estimating the size of
software programs has proven to be the most difficult aspect of, and the

source of greatest error in, analyses to project resource requirements of
software development. The size parameter is used in nearly all cost estimating
models and numerous studies have been performed in an attempt to identify the
relationship between software size, costs, and schedules. However, in spite
of its general use, there are numerous problems associated with software size
effects. Basically, the problems are as follows:

e Software size estimates are generally given in number of object
instructions; however, some estimators define instructions as
being source statements. Proponents of source statement usage
argue that since source statements represent the programmer's
output, productivity rates should reflect programmer output per
unit-of-time. Others insist that object code, being the output
of the compiler, measures programming output more accurately.
Because the programmer constantly changes and corrects his source
program, he produces more source code than appears in the final
product. Therefore, it is easier to measure the final number of
object code instructions in the software than the programmer's
total output. One may use either object or source statement
measurements, but not both, and the distinction must be clearly
made. Because source statements offer a more stable statistical
unit, size estimates should be based on number.of source statements.

e The use of a HOL source statement productivity rate does not
generally differentiate the HOL used. Not all HOLs can be
used with the same facility for all applications.

e The expansion ratio derived for HOL may vary between HOL,
compilers for the same HOL, or different operating systems.
This consideration is important when sizing estimates are
based upon analogous and existing software.

® The software cost estimate must be based in part on the total
number of instructions needed for delivery of the contracted
product. The estimated number of instructions used may include
software that must be developed but not delivered. This is
especially true in weapons systems where a large amount of

38

T

software is needed to support the development of application
software. Such software may consist of compilers, simulators,
utility tools, test tools, library systems, and other support
programs. Comparisons with analogous development projects clearly
must account for the possible inclusion, or exclusion, of both
deliverable and non-deliverable support software in the costing
process.

o Although it is commonly accepted that the size of the software
(whether measured in lines of code, number of deliverable products,
or number of program units) is related linearly to cost, a
standard productivity rate used for small development efforts has
little relationship to the productivity rate derived for large
systems where intercommunication and coordination are not measurabie
attributes of a productive day. The manpower required to build a
complex C3 system is enormous, requiring tasks to be divided into
sub-tasks and sub-subtasks. The effort required for intercommuni-
cation and coordination between all tasks increases the time
required and subsequently costs. Brooks, [Ref. 17], states, "If
each part of the task must be separately coordinated with each other
part, the effort increases as n(n-1)/2." In this instance n is
the number of separate tasks.

"Since software construction is inherently a systems effort (an exercise in

complex interrelationships), the communication effort is great and it quickly
dominates the decrease in individual task time brought about by partitioning.
Adding more men then lengthens, not shortens the schedule." (See Ref. [17].)

3.2.3 Requirements Specification

The Computer Program Development (Part I) Specification for a CPCI is derived
from the System Specification. This derivation may be accomplished by
Validation Phase contractors or in-house personnel, depending upon the
acquisition strategy. The types of requirements defined must be examined for
both feasibility and impact on the allocation of resources to the development
project. In addition, the completeness, complexity, rigor, and compatibility
of the CPCI performance requirements must be appraised.

According to Ref. [1], the following types of performance requirements affect
productivity in respect to given standards and, therefore, time and costs:

e Special display programming for display equipment and plotters
may result in a 10-30 percent decrease in productivity.

® Real-time operation where response times may be critical may
result in a 25-70 percent decrease in productivity.

39

e CPU time constraints may reduce productivity by 25-57 percent.
e Memory size constraints may reduce productivity by 15-30 percent.

e Concurrent development of the hardware components required to
interface with the CPU in the operational environment may result
in a 20-55 percent decrease in productivity.

It is recognized that the quality of the functional/performance requirements
has an enormous impact on the development process, especially costs and
schedules. Too little detail allows for ambiguities in interpretation.
According to Ref. [1], the effect of vague operational requirements on pro-
ductivity and, therefore, time and costs, is as follows:

e Command & Control - 25 percent decrease.
e Scientific - 50 percent decrease.

e Utility/Business - No effect because operational requirements
for these programs are usually adequately defined before design.

Highly detailed functional/performance requirements usually result in a
specification of design implementation for a particuiar performance require-
ment. The eventual effect of specifying the design in the Development Speci-~
fication is to shift greater responsibility for the design of the end product
(and perhaps cost) to the Government. If the contractor implements a design
according to design specifications that are later found not to satisfy a
functional/performance requirement, the Government must eventually pay for
redesign through ECPs, since the original design was so specified by them.

No widely used and acceptable requirements analysis language for requirements
specification currently exists although several requirements and design
languages are emerging in the industry, including the Computer Aided Design
and Specification Analysis Tool (CADSAT formerly CARA), the Software
Requirements Engineering Methodology (SREM), and the Specification and
Assertion Language (SPECIAL). When these tools become more reliable and
available, the requirements specification process may have less of an impact
on development costs and schedules.

40

3.2.4 Level of Change in Performance Requirements

During software development, the contractor must expect some change in
performance requirements. Depending upon the volume, extent, and frequency
of the changes, the software development process may be severely interrupted
or altered. Each change processed by the contractor will have the effect of
making some aspect of the partially completed product obsolete. If the
Development Specifications are of poor quality (i.e., incomplete, inconsistent,
or vague), the software cost estimator must realize that changes in require-
ments will result, although the impact of change on the development project
is generally not an issue addressed by the cost estimator. Because contract
types differ (i.e., Fixed Price or Cost Reimbursement), the contractor must
consider the provisions necessary for processing changes, costs associated
with change provisions, and the specific type of development contract. The
impact of change on development costs and schedules must be evaluated for

each change processed.

3.2.5 Documentation Requirements

Documentation requirements for a system acquisition are very costly* and for
that reason the Air Force Acquires only that documentation which is specifi-
cally required. However, some software acquisitions require an inordinate
amount of documentation. Just as one analyzes the components which determine
the resaurces necessary for the development of software (i.e., complexity,
size, schedule duration and adequacy, stability of requirements, and multi-
contractor interfaces), so must the cost estimator analyze the cost factors
impacting the preparation and acceptance of required documentation.

The estimator must consider the documentation requirements of the specific
design approach outlined in the contractor's technical proposal. Further, he
must be aware that when a CPCI is specifically designated by ESD for procure-
ment, it may result in an unrealistic proliferation of configuration manage-
ment, program control, and technical progress documentation. Section 2 of
Ref. [18] discusses the problem of numbers of CPCIs, as does Section V of

Ref. [19

*The Government/Industry Software Sizing and Costing Workshop states that
documentation costs approximate 10 percent of the total software develop-
ment cost, or $35-$150 per page, depending upon the amount and complexity
of the analysis required in document production.

41

Delivery and acceptance of documentation denends to some extent on its time-
liness. In estimating schedules and resources for tasks, the cost estimator
must consider the delivery dates of documents in relation to other milestones,
availability of information requirements (i.e., supporting documentation data
obtained from decision points), and the resources required for documents ore-
paration.

3.2.6 Software Quality Requirements*

Software quality attributes have undergone extensive examination by both
Government and industry. Ref. [36] discusses software quality factors, their
definitions, associated relationships between the factors, and uses for
identifying the trade-offs between the conflicting quality factors in deter-
mining the product's required capabilities and performance characteristics.
Quality attributes such as reliability and maintainability, are currently
being specified by the military in terms of performance requirements. However,
these types of quality requirements are not yet absolutely quantifiable in
the current state of software technology, and their specification in a
performance requirement generally results in a subjective interpretation
rather than an objective measurement upon which acceptance of the product
depends. Another problem of specifying quality requirements in a software
procurement is that many of the software quality characteristics are in conflict
with each other, e.g., modularity and efficiency. Because it is difficult to
reconcile such conflicting requirements, the software engineer may be forced
to make arbitrary, but less than optimum, design decisions. Yeil another
problem is the lack of standard criteria for quality metrics, such as test-
ability or portability. The overall effect of the imposition of quality
requirements on the development process appears to be increased costs for
development activities, but decreased costs for maintenance and support
activities. (See Ref. [1]).

3.2.7 Software Development Schedule

The offeror's cost estimate is based upon a specific project definition, a
plan and schedule for task performance, a set of mixed personnel skills,
necessary assumptions about many of the factors known to impact the develop-
ment process, and his individual costing rules. The entire cost estimation
process must be iterative because all of the variables (especially schedules)
and the relationships between those variables are unknown at the onset of the
process. In addition, there is a practical need for the allocation of
resources to be appropriately spread over the entire development cycle and be
so specified in the cost proposal to facilitate preparation of a time-phased
budget.

*For more information on software quality requirements, see MIL-S-52779(AD)
and Ref. [37].

42

The total amount of calendar time allocated for software development has a
significant impact on costs. Much analysis has been performed on the rela-
tionship between total development time and total development costs. The
cost estimate for software development must allocate resources over the total
elapsed time to:

e Plan for time-phased funding.

° A]]ocate‘resources for all explicit, derived, and implied tasks
resulting from the breakdown of requirements.

® Account for costs that are a function of time and vary with the
time they are incurred (i.e., computer utilization).

e Manage the project within budgeted resources and schedules.

Generally, the development schedule is a fixed constant. A critical component
of the derivation of the cost estimate is how the contractor specifies the
initiation and termination of identified tasks within the time constraints.
Because most development tasks are sequential in nature, they cannot arbitrarily
be compressed or reorganized within the allocated schedule. In other words,

the number and sequence of tasks to be performed in a given time period will
indicate the manpower required to perform the total job.

There is little non-proprietary, quantitative data available for effectively
measuring the cost impact of a less than optimum development schedule. There
is data available, however, depicting the relationship of program size to
development time. For instance, there appears to be an optimum man-loading
algorithm, loading above or below which will negatively impact costs and
schedules. Figure 10 depicts the distribution of manpower for a medium size
software development project. Further, the following management implication
must be realized by cost estimators: '

"Management cannot diminish the development time of a system
without increasing the difficulty. A1l changes take place in
the negative time direction. Development time is the most
sensitive parameter. It cannot be set arbitrarily by manage-
ment." (See Ref. [20].)

The manner in which the contractor allocates the time to specific activities
and individual skills is also of prime importance. Too little time and
effort spent in analysis and design has an enormous impact on the eventual
costs to subsequently correct design deficiencies. As development progresses,
it becomes more and more costly to resolve design errors.

43

“[1] *43y 99s)

*303f04d abuael-wnipay e
404 S3J4NOS3J4 SO UOLINGLUISLP pajewL}s]

"0l 34nbiy

"a‘ ““-ﬂ“'l-n-ggan—a 4 0 6 58 4 98 » £ T L O

[FYY
oz
"

34034
[*4

. 3

St
or

IAVEOIN ONY 4834 4834 oNneg3a | 3000 IN9DIsS3a NOIS3a NOIS3a NOWLINIZ3a NOILVINNHOS

FONVNILNIVIN ‘SNOILVHILO | WILSAS |IOVNIVE] LINN 1INN 1NN IOVRIVY | WILSAS 103r0ud A43IN00
45314 AN3W40OT13A30 NOIS30
NOILVLINIWNI VNI LOIOU

There is an optimum man-loading as a function of time in the development pro-
cess, and deviations from the curve by the addition of more manpower may

have an inverse effect on completion time. This is due (1) to the natural
division of the work packaging, below which it is unprofitable to sub-divide,
(2) to the amount of training required of personnel assigned to do the work ,
and (3) to the amount of human interfacing and jntercommunication necessary
to produce a given product.

s

"Adding manpower to a Late 50 ftware profect maked it Later... -
The number of months of a project depends upon its sequential
constraints. The maximum number of men depends upon the number
of independent subtasks. From these two quantities one can
derive schedules using few men and more months. (The only risk
is product obsolescence.) One cannot, however, get workable
schedules using more men and fewer months. More software pro-
jects have gone awry for lack of calendar time than for all
other causes combined." (see Ref. (171.)

The costs added to a late project by adding manpower may be more than those
jncurred by the additional manpower cost. There may also be further costs
resulting from the additional training and coordination required. The
increased complexity in the development process caused by additional manpower
can cause the project to fall further behind the schedule.

-

3.2.8 Type of Software Development Effort

Software development cost estimates vary according to the amount of new code
to be generated, transferred, or retrofitted.

Transferring an operational software system to a new equipment configuration
is a cost estimation problem in which some of the variables need to be
analyzed in a unique manner. (See Appendix B for a discussion of the Hahn
and Stone software transfer model.) Costing individual changes or retrofits
to an existing software system presents other problems, especially if the
developer is not familiar with the existing system. The requirement for high
quaiity documentation accompanying the existing software is obviously more
stringent for retrofit development efforts. Costing software retrofits must
include analysis of the existing system, decomposition of the retrofit require-
ments, and estimation of the costs of modifying the existing programs to
interface with new software. At some point, the contractor may find that it
costs more to retrofit the system than to rewrite it.

3.2.9 Personnel Requi rements

software development is a highly analytical, and sometimes creative, endeavor
requiring individual and collective abstract reasoning to deal with complex

problems. The issue of manpower in cost estimation analysis is generally

45

reduced to deriving a productivity figure per manpower unit for an average
person within a skill category. Due to the individual skill requirements of
each software development effort, a standard skill distribution ratio is not
possible to derive. However, the following rules of thumb have been
suggested (see Ref. [1]):

® The distribution of support personnel (i.e., management, clerical)
to system programmers and analysts is 20 percent support to 80
percent programmers/analysts.

¢ The effect of this skill distribution is to increase costs (i.e.,
per unit line of code) 25 percent.

Early System Development Corporation studies performed by Sackman, Erickson,
and Grant (see Ref. [23]), reflect a variation in productivity rates for
experienced programmers of 10:1. Further, there was little correlation
between performance and experience. Many software contractors use internally-
generated productivity ratios for estimating software development costs, but
because of the numerous and unique combinations of factors inherent in each
development effort, the productivity ratios may be no more than an average
guideline.

Perhaps the use of an application-suitable HOL is the factor most likely to
impact collective productivity averages. Programmer productivity has been
seen to increase by as much as a factor of five with the use of a HOL (see
Ref. [17]).

3.2.10 Development Methodology

Although the development approach for software is generally the contractor's
responsibility there is a trend in current procurements for the implementing
command to specify the use of development methodologies to provide increased
visibility and control. A specific methodology is generally required to
ensure that the contractor is responsive to software quality factors, such

as maintainability. Certain development techniques (i.e., structured
programming) are perceived to increase productivity and lower maintenance
costs. Although there is little hard evidence that the use of specific
software engineering methodologies on large c3 systems will result in lower
development and maintenance costs, the concensus of informed developers
supports the premise. There are, however, other factors that must be considered
by the contractor'in responding to the RFP that specifies how the software is
to be developed, including:

46

e In what language is the software to be written? Although the program-
ming language selected can be considered part of the development
methodology, it may be chosen because of factors external to that
methodology. It has been observed that the use of a HOL increases
programmer productivity and, therefore, use of a HOL should decrease
development costs. However, some applications are constrained by
core space or time critical parameters, requiring that the software
be written in a Machine-Oriented Language (MOL). The use of a HOL
is preferable and should result in lower development and maintenance
costs.

e How is the software to be verified? When verification require-
ments include the use of an Independent Verification and Valida-
tion (IV&V)* contractor or use of testing tools that have the
effect of verifying that a certain percentage of the software
system statements have been executed within a given set of test
cases, the contractor must expect increased development costs.

3.3 PROJECT MANAGEMENT AND SCHEDULING PLANS

A prime objective of the offeror's proposal preparation process is to
establish a framework of plans to demonstrate his methodology for monitoring
development costs and schedules. Plans are necessary for tracking project
schedules and costs, and for coordinating all activities necessary for
delivery of the product. Although the project schedules are preliminary in
nature during proposal preparation, the offeror must convince his own
management, as well as the procuring agency, that sufficient project planning
and analyses have been performed to verify that the product as specified can
be built within cost and schedule constraints. The project plan contained
in the Computer Program Development Plan (CPDP), should demonstrate the
feasibility of developing the software within time and costs.

*An IV&V requirement may be specified in two ways: (1) special tasking by a
separate organization within the contractor's shop; (2) an independent

agency or contractor different from the developer. The IV&V role is that

of an observer or testor whose purpose is to remove possible bias in
contractor test analysis. When an IV&V contractor is used in a procurement,
provisions for his free access to required information, documentation, test
tools, test facility, and source code listings must be assured. This requires
that contractual provisions be well defined so that each contractor's responsi-
bilities are fully compatible.

47

—

Numerous methods exist for representing activities and their duration, although
generally, fairily simple schedule charts are included in the proposal. Bar
charts, which are used in production.management, have been replaced by more
sophisticated scheduling representations that show complex interrelationships
of project tasks, subtasks, and products within a given time frame. Network
planning methods may be the optimum mechanism because they graphically repre-
sent the precedence relationships, or dependency of activities, in a more
disciplined manner. They can be used to determine the effect of schedule
changes of activities on those occuring later in the project. Figure 11
depicts examples of the Gantt, Project Network, and Time-Scaled Network charts.

In a large development project consisting of perhaps hundreds of activities,

it is necessary to reduce the project plan to a series of interconnecting
activities and events which result in a network model of the plan. Often

the magnitude of the project requires the contractor to organize the networks
by various subsystems or other divisions, corresponding to the different

levels of project management. The WBS provides an effective level of detail
for project network charts if it represents activities to the CPC-level.

Since the WBS is used in cost accounting and reporting, it is important for the
contractor to develop and represent the project schedule with WBS uniformity.

Generally, a complex network of events and critical path identification is
not submitted with the proposal. The critical path in a network chart is
defined as the sequence of activities which consumes the most estimated time
in reaching the project’s end event. Slippage of activities along the
critical path will cause the end event to slip; thus activities on this path
require the most management attention to avoid slippages. Because critical
path analysis is a time consuming task in a large development project, this
type of analysis is generally derived from the initial project schedules
after contract award. This practice, however, may obscure important schedule
constraints that should be evaluated for their impact on development costs.

As noted, initial schedules and milestones are submitted for evaluation in the
CPDP when it is prepared by the contractor for inclusion in the proposal to

be used in source selection. In this case, the CPDP is identified in the RFP
as a required proposal document. There may be some overlap of information
(e.g., schedules for milestones, identification of deliverables) in the CPDP
with information presented elsewhere in the proposal or eventual contract.
(See Appendix C of Ref. [4]). It is important for this information to be
consistent as well as correct.

48

Activities

—~Current Status

Lok) o f ISRl v o

Initiated at
completion of Bl =

Estimates

Project-Network Chart \ Depicts

Precedence
Relationships
|
Al o A2 o A3
82 ® £l ! £2 |
J\ Y/ .
L i S] .
.
Ll
L]
N__Bl ¢ /[03
) 6, 9, é
] 1
H
L]
Dl @ DZ [A X RN N —J 1
R A S R S TR R N R
SR R L e R e e T RN T R 12\\14 15T Weeks

Figure 11.

Time-Scaled Network Chart NSlu:ll

Examples of Gantt, Project Network and i
Time-Scaled Network Charts. (Adapted
from Ref. [21].)

49

The scheduling of activities should be an iterative process that provides the
framewcrk for detailing planning and scheduling upon contract award. A1l too
often, however, the schedule proposed is a superficial representation of the
most obvious set of required activities presented in a time span compatible

with RFP time specification. This is especially true if there is no Validation
Phase. A Validation Phase allows competing offerors to each evolve a detailed
SEMP and CPDP based on a greater knowledge of all the computer-related activities
necessary to produce and implement a detailed CI design during Full-Scale
Development, and with the knowledge that their plan will be put in the Full-
Scale Development contract.

3.3.1 Task Segmertation/WBS Definition

During proposal preparation the offeror must correlate his definition of
development activities with the SOW which is the source authority for defining
activities and against which the Preliminary CWBS corresponds. Generally, one
or more WBS elements must be defined for each CI to be used in cost reporting,
scheduling, and analysis. Depending upon the size of the system, or the
partitioning of the system into numerous CIs, WBS definition should generally
be extended below the CI level. (See also Appendix A of Ref. [4].) The
extension of WBS-elements should be done by the development contractor

with PO concurrence.

The offeror's proposed WBS definition of the software should specify the
activities involved, and not just define the activity. That is, each WBS
element at whatever level should be a stand-alone activity which can be
scheduled and costed as part of the total development cost. Further, the WBS
definition should represent an orderly flow of activity, providing visibility,
control, and cost measurements for each specified activity. For example, in
most weapon systems there are several CPCIs identified in the design process
(e.g., the Satin IV program defined 68 CPCIs). If the contractor had defined
the CPCI in the WBS, he might have subdivided activities common to the develop-
ment of the entire software subsystem and not specific to a single CPCI.

These activities may include: preparation of the CPDP, design of the CPCI
interfaces, and development of the program support library. It can be seen
that these activities should not be costed under each defined CPCI (in

Satin IV that would equal 68x3 additional costed activities) because these
activities have nothing to do with developing individual CPCIs but rather the
entire software system.

50

The depth of the extended CWBS must be carried to a sufficiently low level to
enable the centractor to gain an understanding of the development tasks and
establish adequate visibility for both cost estimation and project planning
purposes. The level specified should generally be dependent upon the

specific proposal, but at the same time, it must directly relate to the
activity needed to produce the end item. A helpful consideration in determin-
ing the WBS structure is:

Is there an activity 4in this task which is common to any othen task?

When adequate time is spent in the analysis of an activity, there may be a
better understanding of the tasks involved. The additional analysis of tasks
within an activity provides increased costing accuracy.

The WBS structure as reflected in the CPDP is intended to designate the organ-
ization or management structure for the software development effort. During
the proposal preparation process it is useful to make an identification of

the organization responsible for each task. The effect of compatible WBS
activities with the organizational structure is high traceability of resource
requirements (who gets what money, why, and when).

3.3.2 Scheduling of WBS Elements

It is important to realize that there is a definite time-phasing, or distribu-
tion, of costs for each specific WBS element. The schedule must Tevy time-
phased cost distribution insofar as possible for the specific procurement,
since total cost cannot be divided by total time units and since each proposed
WBS element has its own resource requirements.

During the course of proposal preparation, the offeror should evolve a

schedule for every identified activity (i.e., element) in the WBS structure.
Although this is a time consuming and complex set of tasks, it will help in
identifying any deficiencies in the WBS structure as well as schedule incom-
patibilities. Tasks which exist over a Tong period of time must have resources
properly allocated for the entire time (i.e., all identified tasks must be
funded for their duration). In addition, the schedule should support prenara-
tion of each Contract Data Requirements List (CDRL) item.

51

rl

SECTION 4 - ROLE OF PARAMETRIC MODELS

4.0 INTRODUCTION

This section briefly discusses the use of parametric models in software cost
estimation. In addition, cost variables, used in Cost Estimating Relationships
(CERs) are briefly examined. Although the use of parametric modeling for
software cost estimation appeals to a large number of personnel both in Govern-
ment and industry, this method of predicting software development cost has not
yet met with a great deal of success. It is the intention of this section to
familiarize the reader with the subject of parametric modeling, not to provide
an exhaustive and conclusive survey of the technique. A Tist of currently

u ed parametric models includes:

e RCA's PRICE cost predicting models
¢ The Putnam model
e The Tecolote model
e The General Research Corporation model
e The Hahn and Stone model
e The GTE-Sylvania method
Three specific examples of this modeling technique are presented in Appendix B.

4.1 PARAMETRIC MODELS

A parametric model for estimating the cost of a proposed software development
project is an equation (or group of equations) which expresses a quantifiable
relationship of a software project's cost to a number of cost variables.
Derivation of the relationship of the cost to cost variables is dependent upon
prior collection and analysis of historical cost data and project variables.
Using the quantification of the cost/cost variable relationship, new cost
estimates may be made by estimating-the values of the cost variables representing
the new systems and, subsequently, computing an estimated cost by inserting
the estimated cost variable rates into the cost estimating equation (i.e.,
parametric model). Parametric equations allow for relatively fast computation
of software cost estimates by varying the estimated cost variable values.

Parametric equations are often computerized, requiring little or no software
development experience from their users. However, the equation expressing

the relationship of cost variables (i.e., a subset of the project characteris-
tics) to cost depends upon a valid and comprehensive software cost experience
basis (i.e., a software cost element data base). Such a data base must con-
tain a large sample of comparable (i.e., consistently defined and collected

53
Preceding page blank

.

as well as unbiased) data. Establishing and maintaining a comprehensive data
base of this nature, then, is necessary to develop a parametric model, and
requires an in-depth knowledge of the software development process. By use

of statistical techniques (e.g., multivariate regression analysis, factor
analysis, correlation, and others) an equation is derived which represents the
effect of the observed cost variables on the dependent variable. This requires
that the analyzers choose the correct independent and dependent variables

over a large sample of programming projects. The independent variables selected
however, are generally those variables which are easiest to measure or

quantify on an absolute scale.

It can be seen, then, that the use of parametric models for estimating soft-
ware development costs may be performed by a relatively inexperienced software
developer. Further, the relationship of project characteristics or cost
variables to cost as represented by the parametric model may or may not be
valid depending upon the comparability and quality of the data in the data
base and upon the statistical analyses on which the model is based. In
addition, the independent variables required of the estimator for the model
may not be the most important or the only variables impacting development
costs. The validity of a model should be demonstrated by its successful use
in estimating costs for a number of similar projects. Although a parametric
model may be a useful and simple cost estimation technique, it is subject to
unreliable estimates and/or biased results. At best the use of a model should
be in conjunction with a more comprehensive cost estimation method in which
parametric modeling results are combined with detailed analysis of the soft-
ware's functional performance requirements in a specific work environment.

4.2 MODELS VERSUS METHODS IN COST ESTIMATION

A model purports to describe how and where a software project uses money
whereas a method gives directions as to how to produce a cost estimate. One
can employ a model to produce the contents of an estimate by attempting to
analyze a software project in terms of the modei. Or, one can employ a
method which gives directions as to the form and use of documents and or
supporting material needed for an estimate. Models dictate contents but
allow presentation in whatever form is desired; methods dictate form, and
force consistency among the several parts of documents, but allow the con-
tents of the cost estimate to vary widely according to the estimator's judge-
ment. Given the current state of the cost estimating art, models tend to
oversimplify the problem in order to tackle it, while methods tend to place
an overly large burden for tackling the problem onto the cost estimator.

Software cost models are usually of two types, aggregated and disaggregated.
In aggregated estimation modeling, the total cost is first derived and then
appropriate percentages are allocated to each part of the software develop-
ment. The allocation may be according to phases, activities, or products.
Each part can then be further divided into subparts and costs allocated in

54

T — i g

a top-down fashion. In disaggregated estimation modeling, the software pro-
ject is decomposed top-down as before, but costing is not applied until the
total subset of software pieces are of "manageable size". Costing these
pie.es is presumed to be easier whenever analogous experience with similar
completed small pieces can be found. Once the pieces are costed, the total
cost is then derived in a bottom-up fashion. Aggregated estimation is by

far the easier because it appears to be simpler to allocate costs via
percentages than via absolutes. Unfortunately, aggregated estimation does
not reveal how the original total cost is to be derived, and this number is
generally the most difficult to determine reliably. Disaggregated estimation
is more difficult because the process of independently costing each piece
resulting trom the decomposition seems to require more ability, confidence,
and effort in detailing design considerations. However, more confidence can
be placed in the results of disaggregated estimation. In practice there is
probably a use for both techniques. Aggregated estimation should be used for
quick, "seat-of-the-pants" guessing in preliminary planning while disaggregated
estimation should be used for formal cost preparation. A cost estimation
technique, whether it be a model or a method, must consider constraints and
trade-offs inherent in the specific development effort. The major constraints
encountered during software development are constraints in hardware (generally
from 1imited memory or limited execution speed), constraints in schedule, and
constraints in man-hours. If any of these constraints are stringent, the
quality of the software product and/or allocated resources will be impacted.
Ideally, a cost estimation technique should be constructed to provide accurate

cost estimates of the various trade-offs. Unfortunately, this capability is
found in few techniques.

4.3 DEVELOPMENT OF COST ESTIMATING RELATIONSHIPS (CERs)

The cost estimating method presented in Attachment 3 of AFSCM 173-1 outlines
the steps for the development of cost estimating relationships. In addition
to specifying a methodology, it includes guidance on each of the iterative
steps. Because it clarifies the problems inherent in developing CERs, it is
summarized below:

o Designate the Dependent Variable. Since cost data for CERs
should be collected via the Work Breakdown Structure (WBS),
this step includes determining which item at what WBS level
should a desired type and quantity of cost data be collected
for use in subsequent analysis. Difficulty in deciding the
usefulness of a component or functional cost subdivision can
te expected.

55

Define the Designated Dependent Variable. This task includes
precisely defining the designated dependent variable identifi-
fied in the preceding task. Because of imprecise definitions,
differing unit terminology, alternative methods of defining
costs, and incompatibility of historical cost data reported by
cozgractors and Government, the definition process is often
difficult.

Select the Parameters to be Tested as Potential Independent
Variables in the CER. The selection of technical parameters
to be statistically tested should be obtained from expert
sources and possess the following qualities:

- Measurable in quantifiable terms
- Available for data collection

- Reflect performance characteristics rather
than design characteristics

In addition, when the variables reflect aspects of new tech-
nology. extrapolation of costs will be necessary.

Collect Data on the Independent and Dependent Variables to be
Correlated. The data collection task is a lengthy and
difficult task which must ensure adequate quantities of
comparable, relevant, and high quality data.

Using Statistical Analysis, Explore Relationships between

the Independent and Dependent Variables. This step includes
jdentifying the logical relationship between the dependent
variable and one or more independent variables. Various
statistical methods of analysis are useful, including scatter
diagram association and correlation coefficients, which even-
tually result in formulating a preliminary functional relation-
ship from one or more candidate relationships.

Determine the Relationship that Best Describes the Data. This
step IncTudes estimating vaTues for parameters in the candidate
relationships and choosing the relationship that best describes
the data. (Least squares is a useful curve-fitting technique
which is readily available in automated form via regression
analysis programs.)

Document the Results. This step includes recording relevant
data about the CER in order for that CER to be used reliably
by others in costing other systems or resolving problems.

56

== T

e Validate the Relationship.* This step includes using the
model on several projects, collecting data on actual costs
and values of independent variables, and then comparing the
actual costs with the estimated costs. The model may have
to be run with actual values of independent variables if
they differ from the values used in the original cost
estimation.

*This step is not included in AFSCM 173-1.

57

S N

SECTION 5 - COST PROPOSAL EVALUATION

5.0 INTRODUCTION

This section provides the PO with evaluation information regarding the software
cost proposal. Additional guidance on software contracting can be found in

Ref. [5].

Contracting for software acquisition is a complex, interdisciplinary activity,
requiring expertise in contracting, finance, law, contract audit, work packag-
ing, engineering, and cost analysis. Statutory requirements concerning the
submission of cost data are contained in the Armed Services Procurement
Regulation (ASPR), Section III. Regulations governing contracting by DoD are
also contained in ASPR.

Generally a contract is awarded to the lowest bidder if his technical proposal
meets minimum requirements. Award to the lowest bidder may not be wise or
equitable. The Tow bidder may have grossly underestimated development costs
due to inexperience or inaccurate software cost estimation procedures. A Tow
bid may also be a reflection of the offeror's lack of knowledge of the tasks
that must be performed. In other cases, a low bid is submitted in anticipation
of follow-on contracts. Just because an offeror agrees to develop a product
at a given price is no guarantee that the cost incurred during development
will equal the price stated. Excessively low bids may force the offeror to
make unwise or erroneous management decisions to stay within costs. The
procuror should be aware that he is not necessarily protected just because he
may have negotiated a Fixed Price contract to develop a product. If the con-
tractor has grossly underestimated the job, he may choose, (or be forced) to
default or else to delay delivery, all at no benefit to anyone. The end
result for the Government in this case, may be not only the anticipated costs
of the contract but also the additional costs incurred as a result of the poor
management decisions. (See Ref. [6].) The information in this section is
intended to provide a basis for evaluating the offeror's cost proposal in
relation to the technical problems inherent in a system acquisition.

5.1 THE MECHANICS OF EVALUATION

An offeror's technical proposal is evaluated by a source selection organization
against a set of preestablished technical and management criteria. It is not
directly evaluated against other offeror's proposals. Generally, the RFP
states the importance of each major criterion against which the offeror's
proposal is to be evaluated. Evaluation criteria may include technical,
management, and cost factors. The technical proposal evaluation process
culminates in a numerical rating of each proposal, with at least some delinea-
tion of the significant advantages, disadvantages, and risks of each proposal.

-

59
Preceding page blank

-

..,._..._’____.__....__‘_...,,——Au

-t

b

The cost proposal is generally not included in this rating and is usually
evaluated separately by a team of cost evaluators, often outside the PO. The
purpose of separating the cost proposal from the technical proposal is to
avoid inexpert evaluation of the dollar relationship to the effort.

In tracking the software cost estimate derived, first, by Air Force personnel
and, second, by offerors responding to an RFP, many complexities and problems
are identified. The numerous program-dependent variables in all development
projects require the examination of many factors to realistically estimate
costs. Air Force evaluators must therefore be able to evaluate the labor and
materiel components of the offeror's cost proposal and delivery schedule with-
in PO-established constraints. The information needed to make such evaluations
should be accumulated and refined by PO Program Control prior to receipt of
the offeror's cost proposal. This information forms the basis of the Govern-
ment's pricing objective and it should include cost and price analyses,
historical cost/price data, independent Government cost estimates, and economic
analyses. Its comprehensiveness can determine how thorough an analysis of the
offeror's cost proposal can be made, and thus can impact the eventual success
of the contract award.

5.2 COST ANALYSIS OF TECHNICAL ACTIVITIES

Cost analysis is the review and evaluation of the offeror's cost data with
respect to the technical proposal to determine its reasonableness and accuracy.
This may be ascertained by examining the tasks proposed to develop each pro-
duct identified as a deliverable. The cost analyst must then coordinate his
examination of the offeror's cost and schedule data with the analysis of the
offeror's technical proposal in order to determine the accuracy of the cost
proposal. The schedule proposed by the offeror must reflect the allocation

of time to oroduct development. Using the commonly accepted 40-20-40 rule

(40 percent analysis/design, 20 percent code, 40 percent testing), or other
rules of thumb, the cost analyst should examine the allocation of time to each
task to determine if the schedule is reasonable. Another factor to consider

in appraising the work packaging vs resource and time allocation is the compara-
tive difficulty of the different work elements. Some CPCIs, such as a control
or operating system, may be more complex and require more manpower for develop-
ment. When the offeror has separated and costed each task and subtask, the
cost analyst is better able to determine the reasonableness of resource and
time allocations, especially for complex apnlications.

There are a number of support tasks required by every project to produce
deliverable product(s). These support tasks may include:

Design reviews

Computer program support library development

Test planning for development, qualification, and integration
testing.

60

e Simulation model development to validate design concepts
and approaches.

e Development of a test bed for simulation and testing

As he did for each deliverable product, the cost analyst should determine if
the specification of these tasks is complete and if the cost and schedule
data presented in the proposal reasonably reflect their performance.

Cost analysis also includes verification of cost data, evaluation of spnecific
elements of cost, and projection of costs to determine their overall effect
on the program. The latter includes exami: ition of the total cost proposed
by the offeror in performance of all tasks specified in the SOW, including:

e Direct costs, including labor costs (cost of performing all
tasks), travel and relocation costs, computer time, CDRL
pricing.

Indirect costs.
Contingency costs.
General and Administrative (G&A) costs.

Fee.

The basic direct labor costs can be verified by examination of the offeror's
tasking of explicit, derived, and implied customer requirements. These tasks
include all those necessary for generation and delivery of all CPCIs, and re-
quired support software, related documentation, and all other deliverable

data specified in the CDRL. The total set of tasks presented by the offeror
indicates his understanding of the work to be performed and the labor required.
The number and diversity of tasks for each software development will vary,
depending both on the requirements and the extent of the contractor's respon-
sibility. For example, a prime contractor for a system/system segment will be
responsible for the complete set of development tasks, while a subcontractor
for CIs/CPCIs of a system segment will be responsible for a delineated set

of tasks. In addition, each software develooment effort has unique require-
ments which complicate the evaluation process. However, the time spent in
examining the offeror's specification of work packages can lead to the re-
jection of the offeror who does not understand the technical details of the
software system.

Generally, the cost proposal does not elaborate on the cost estimation method
used by the offeror, although sometimes the total number of instructions (in
either source or object code) is given. Some, or all, of the factors dis-
cussed in Section 3 should have been taken into account by the offeror in the
derivation of the total number of man-months needed to perform the tasks.

61

Generally, little data is provided in the cost proposal to justify the esti-
mate of total man-months necessary for task performance. Thus, examination
of the detailing of tasks and subtasks in the schedule must be the principal
method for determining the rationale of the proposed costs. If the offeror
has included estimates of the size of each CPCI (possibly to the CPC level if
a Validation Phase has been conducted and this source selection will deter-
mine the Full-Scale Development Phase contractor), they should be compared to
the Government's cost estimate. Depending on the level of confidence in the
in-house estimate, the comparison of estimated sizes might provide a good
indication of the offeror's rationale for proposed labor costs. However,
because software size estimates are notoriously inaccurate, comparisons of
size estimates cannot in themselves validate the offeror's understanding of
the problem. Further, the number of instructions is only one project-
dependent variable that impacts cost.

Once the offeror has established the man-month requirements, the designation
of the type of man-month necessary for each labor-related task must be veri-
fied. Insufficient project planning may be recognizable if the offeror has
not allocated specific skill levels for specific tasks. For example, analysis
and design activities require software engineering support (or the equivalent)
whereas module programming and testing require a less experienced, and there-
fore, less expensive allocation of labor.

Labor costs associated with document production are more accountable than
labor costs associated with task performance because documentation tasks
include all activities associated with producing contractually-specified docu-
mentation. DoD requirements for documentation are specified in the Contract
Data Requirements List (CDRL) and are generally also specified in the corres-
ponding SOW. It includes all documents specified in the SOW task description,
and may also include other documents not mentioned in the SOW. The costing
of CDRL items is the dollar value required for each CDRL item, and generally
includes the combined costs of all labor and document reproduction associated
with the task. Examination of the data presented in the cost proposal for
consistency with the SOW/RFP is a necessity during proposal evaluation.

Other direct costs include travel allocations, generally for temporary duty
trips and relocations. Such costs must necessarily include information
relating the trip to a specific task, the number and duration of trips, and
per diem rates.

Computer utilization is another direct cost which may significantly impact
total estimated project cost. It is important to ascertain the reasonable-
ness of estimated computer utilization scheduling. Computer costs are
obviously time-phased and should correspond to the tasking of code and test
activities of support or application programs unless special tasks require
computer resources. An example of special tasking is the use of simulation
programs intended to verify design alternatives or timing/sizing studies. The
estimated size of the total development software package should be considered
in relation to the total amount of computer resources costed.

62

Because computer utilization requirements vary, as do rules for costing them,
it is not always feasible to determine the offeror's interpretation of the
computer resources needed to perform the development job. Computer utiliza-
tion resources may include customer-furnished equipment, purchased or leased
equipment, customer-furnished computer time, and purchased computer time.

The cost of the other sources of computer time is generally made on the basis
of other costs, as follows:

o Customer-Furnished Equipment. Cost of computer operations,
incTuding computer operators, maintenance, facilities, and
air conditioning.

e Purchased or Leased Equipment. Cost of purchase or lease and
cost of computer operations.

e Customer-Furnished Computer Time. No cost.

Another direct cost in computer utilization estimates is derived from the
necessity to remotely access the computer or to use a timesharing nrocessing
mode instead of batch. Both these costs appear to increase the total computer
costs, although indirect benefits are derived from their usage as v
demonstrated by an increase in programmer productivity.

Because of the variability associated with computer utilization (i.e., compu-
ter execution times, apolication differences, operating system differences),
no standard algorithms for justifying comouter utilization can yet be provided
to aid in the analysis of estimated costs.

Cost proposals are often assembled late in the proposal production process by
the bidders and contain discrepancies when compared to the technical and
management proposals. The cost analyst should especially look for:

o Al1l products and tasks, especially CPDP tasks reflected
in the WBS, schedule, and nroposed costs.

o The correspondence between manpower loading and the labor
rates and levels bid.

e Requirements for Government-furnished property, computer
time, or labor that are beyond the scope of the RFP or that
may provide unfair competitive advantage.

Justification of indirect costs is also a task in the analysis of the cost
proposal. Indirect costs generally include management and overhead costs and
the basis for all rates must be examined. The procedures and regulations for
analysis and evaluation of this type of cost are presented in ASPR.

63

5.3 COST ANALYSIS OF TECHNICAL/FINANCIAL MONITORING ACTIVITIES

A contractor is required, in accordance with DoD Instructions 7000.2 and
7000.10, to submit summary-level cost, schedule, and performance data to pro-
vide the PO with a means for evaluating deviations from planned costs and
schedules. Therefore, an offeror must provide in his proposal sufficient
data about his management, performance, cost, and schedule reporting system to
assure that it is compatible with the information requirements of the
Government's Cost/Schedule Control Systems Criteria (C/SCSC). These criteria
are presented in AFSCP/AFLCP 173-5, and provide guidance for the uniform
planning and implementation of cost/schedule reporting and surveillance of
contractor compliance. The Cost Performance Report (CPR) is the reporting
vehicle used, and its effectivity depends upon the WBS definition. WBS
jdentifiers provide the bases for tracking actual technical progress within
costs and schedules against the performance estimates for each WBS element.

The WBS forms the framework by which the contract work statement tasks, con-
tract line items, Configuration Items (CIs), contract specification tree, and
the offeror's response to the RFP will be correlated. After contract
negotiations, which may result in adjustment to the WBS definition, the WBS
becomes the basis for further extensions during Full-Scale Development/
Production. Although the offeror has complete flexibility in extending the
WBS to reflect his work packages, the summary elements' nomenclature and
definitions may not be changed after contract award.

The C/SCSC requires that the contractor report cost and schedule data on a
monthly basis for each identified WBS element. In addition, he must renort
schedule and cost variances when cost/schedule thresholds are exceeded and
explain the corrective action being taken to resolve the variance. Using the
WBS element for cost and schedule reporting allows the PO to sum all costs
associated with each Level 1, 2, or 3 element to ascertain if total costs
exceed thresholds for that element. Small variances reported by the contrac-
tor may have a cumulative effect that could result in significant budget
overruns for the WBS element.

The WBS allows contractor flexibility in work packaging, cost reporting, and
performance monitoring, but because of its flexibility, cost data received by
the PO is often aggregated. For example, the WBS for COMBAT GRANDE provided
for the submittal of cost information at the combined CPCI level, which did
not include a breakdown of system engineering and management activities and
associated costs. The consequence of this aggregated cost reporting process
is the loss of valuable historical information that can never again be
obtained because of its proprietary nature. Unless the WBS definition is
correctly extended and becomes the contractual vehicle for cost renorting,
adequate cost data for future reference will not be provided to the PO. To

. collect costs at a more meaningful level, the PO must require that the WBS

definition be extended to the CPCI-level at a minimum. Another recommendation

64

for more thorough data collection and subsequent program control includes the
submission of manpower and dollar costs broken out by phases of the develop-
ment process (i.e., design, code, module test, CPC test, CPCI test, and
qualification testing) for each CPCI (see Appendix A of Ref. [4]).

Monitoring technical progress may be accomplished more easily if valid tech-
nical milestones are required for each CPCI. Sometimes, the technical status
of software development is derived by examination of the percent of resources
expended. However, resource expenditures and work progress do not generally
follow parallel curves to project end. When a variance exists between
budgeted cost for work scheduled, budgeted cost for work performed, ard actual
costs, the contractor must account for the variance. When actual performance
deviates from planned performance, the contractor's management control system
should be required to trace the variance to its source.

To obtain valid and meaningful data on technical progress, while ensuring
that the data obtained is meaningful for further acquisitions, the WBS
definitions must be extended to more adequately identify and collect software
development costs while providing for technical milestones within each CPCI.*

The Program Breakdown Structure (PBS) supolements the use of the WBS for pro-
grams managed by AFSC when prescribed by PMD or AFSC Form 56. The Program
Breakdown Codes (PBCs) provide an effective identification mechanism to be
used in support of uniform cost accounting for comparisons across systems.
AFSCM 173-4 provides policies and procedures for assigning PBCs to WBS
elements for AFSC-managed programs. With regard to software cost reporting,
the PBS is intended to provide an automatic reporting system for the collec-
tion of cost data and a mechanism for reflecting all costs in a program.
Further discussion of the PBS and PBCs is presented in Aopendix A of Ref. [4].
In addition, the initial exnansion of PBCs presented in the appendix are
further expanded and modified to fit into the cost reporting system proposed
by General Research Corporation in Volume 1 of Ref. [22].

The following guidelines have been recommended (see Ref. [1]) to ensure that
the software development costs for an embedded computer system are properly
reflected in the WBS:

e A single element in the WBS for software development seldom
accounts for the total software development cost. Usually
the single element accounts only for coding and checkout
costs, which is generally 20 percent of the total software
development effort.

*The MITRE Corporation is developing and is scheduled to deliver to ESD by
mid-1978, a new Data Item Description to be used to implement a standard
cost reporting system for software acquisition.

65

® Analysis, design, testing, and integration should be reflected
in the WBS. Since the WBS for most systems with embedded
computers is oriented around prime mission equipment elements,
the portions of each prime mission equipment element targeted
for software implementation must have separate software elements
for analysis, design, testing, and integration.

e Management and support costs for software development should
be adequately reflected in the WBS. This may be accomplished
by including software elements in the system engineering
project management portion of the WBS. In addition, these
elements should be partitioned by the software life cycle
phases.

o Separating or factoring hardware elements from software elements
in a satisfactory manner in the WBS may be difficult for many
developments. Engineers, especially in avionics applications,
may be qualified in both hardware and software, and partition-
ing their time accurately among the various WBS elements may
be difficult, especially in the testing and integration phase.
Problems encountered then cannot be attributed to hardware or
software until the cause has been found and the problem is
resolved. The only sclution for accountability of hardware/
software costs may be constant watchdogging to ensure that

labor gets partitioned accurately among hardware and software
elements in the WBS.*

*It is important that the WBS reflects the way work is performed. For example,
system-level tasks such as system integration and problem isolation should be
classified and reported at the system level and should not be allocated to
software until software work is obviously performed. Artificial breakdowns

will be recognized as such and will be arbitrarily reported, providing use-
less information.

66

e

10.

11.

12.

13.

14.

15.

APPENDIX A - REFERENCES

"Software Cost Estimation Study, Volume II: Guidelines for Improved
Software Cost Estimation”; RADC TR 77-220; Doty Associates, Inc.;
Rockville, MD., February 1977.

AFSCP 800-3; "A Guide for Program Management"; April 1976.

MIL-STD-881A; "Work Breakdown Structures for Defense Materiel Items",
April 1975.

"Software Acquisition Management Guidebook: Statement of Work Prepara-
tion;" Glore, J. B., and Bjerstadt, W. R., MITRE; ESD-TR-77-16;
January 1977.

"An Air Force Guide to Contracting for Software Acquisition"; Bolen, N.E.,
MITRE Corp., ESD-TR-75-365; January 1976.

"An Exploratory Study of Software Cost Estimating at the ESD;" Devenny, T.J,;
GSM/SM/76S-4; Thesis, AF Institute of Technology, Air University; July 1976.

"The Management of Computer Programming Projects;" Lecht, Charles; American
Management Associates, Inc., 1976.

"The Cost of Developing Large-Scale Software"; Wolverton, R. W.; IEEE
Transactions on Computers; Volume C-23, No. 6, pp 615-636; June 1974,

"Estimating Resources for Large Programming Systems"“; Aron, J.D., I3M
Federal Systems Center, 1969.

"Estimating the Costs of Programming Systems"; Meyers, G.J.; IBM Technical
Report, TR 00.2316; May 1972.

"Research into the Management of Computer Programming: A Transitional
Analysis of Cost Reporting Techniques". Weinwurm, G.E., Zagorski, H.,
ESD-TR-65-575, November 1965.

"Factors that Affect the Cost of Computer Programming;" Farr, L., Nanus, B.,
SDC., June 1964.

"Research into the Management of Computer Programming: A Quantitative
Analysis"; Farr, L., Zagorski, H., SDC, January 1965.

A Summary of an Analysis of Computer Programming Cost Factors", Farr, L.,
Zagorski, H., SDC, January 1965.

"An Air Force ADP Experience Handbook (Pilot Version)", Gradwohl, A.J.,
et al, ESD-TR-66-673; December 1966.

67

16.

17.
18.

19.

20.

21,

g,

23.

24.

29.
26.

2r.

28.

29.

30.

31.

“"An Air Force Guide for Monitoring and Reporting Software Development
Status"; ESD-TR-75-85, MITRE; September 1975.

"The Mythical Man-Month", Brooks, Frederick, P., Jr., Addison-Wesley, 1975.

"An Air Force Guide to Computer Program Configuration Management";
Searle, L.V., SDC, ESD-TR-77-254, August 1977.

"An Air Force Guide to Software Documentation Requirements"; Schoeffel,
W.L., MITRE, ESD-TR-76-159, June 1976.

"A General Solution to the Software Sizing and Estimating Problem";
Putnam, Col. L. H., U.S. Army Computer Systems Command.

"Project Management with CPM and PERT"; Moder, Joseph,and Phillips, Cecil R.,

Van Nostrand, 1970.

"Cost Reporting Elements and Activity Cost Tradeoffs for Defense System
Software, Volume I: Study Results"; Graver, C. A., et al,; CR-1-721;
General Research Corp; March 1977.

“An Exploratory Investigation of Programmer Performance Under On-Line and
Off-Line Conditions"; Grant, E.E., and Sackman, H., IEEE Transactions on
Human Factors in Electronics, March 1967.

"Software Transfer Cost Estimation Technique"; Hahn, W. and Stone, J. Jr.,
M70-43; MITRE, July 1970.

“When Should You Emulate”? Lichtenstein, H.A., Datamation, November 1969.

"Program Conversion"; Kahn, P.G., Fuller, M.E., Data Processing Magazine,
November 1969.

"A General Solution to the Software Sizing and Estimating Problem"; Putnam,
Lawrence H., presented at Life Cycle Management Conference; AIIE;
February 1977.

"A Macro-Estimating Methodology for Software Development"; Putnam, Lawrence
Digest of Papers, Fall COMPCOM '76; pp 138-143; September 1976.

"The Influence of the Time-Difficulty Factor In Large Scale Software
Development”; Putnam, Lawrence H., Digest of Papers, Fall COMPCON '77;
September 1977.

“Useful Tools for Project Management”; Norden, Peter V., Management of
Production, Penquin Books, 1970.

"A Provisional Model for Estimating Computer Program Development Costs’;
Frederic, Brad C., Tecolote Research Inc., December 1974.

68

" <3

32.

33.

34.

39

36.

37.

"Estimation of Resources for Computer Programming Projects;" Morin, L.,
M-5222 Masters Thesis; University of North Carolina at Chapel Hill; 1973.

"Summary Notes of a Government/Industry Software Sizing and Costing
Workshops" Geran, D.B.; USAF(ESD); Bedford, Mass; October 1974.

"Management Handbook for the Estimation of Computer Programming Costs;"
TM-3225/000/01; System Development Corporation; Santa Monica, Calif.;
March 1967.

"Computer Resource Requirements for Programming Development;" Aron, J.D,
Arthur, R.W.; IBM; Gaithersburg, Maryland; 1975.

"Factors in Software Quality;" McCall, J.A., Richards, P.K., Walters,
G.F.; Information Systems Programs, General Electric Company;
Sunnyvale, Calif; October 1976.

"Software Acquisition Management Guidebook: Software Quality
Assurance;" Neil, George; SDC; ESD-TR-77-255; August 1977.

69

APPENDIX B - SOFTWARE COST ESTIMATION MODELS

1.0 INTRODUCTION

This appendix presents three parametric models as examples of the types currently
being used in some specific software cost estimation problems*. Although each
model presents estimating relationships according to the type of software
application problem being addressed, the three models are quite different in
their approach. The models presented include:

o A method for estimating costs involved in transferring software
from a source computer to a target computer.

e A method for estimating cost among divisions of time during
which software development is proceeding.

o A method for estimating cost relationships for a tactical fire
control development effort.

1.1 HAHN & STONE SOFTWARE TRANSFER COST ESTIMATION TECHNIQUE

The Hahn and Stone technique uses a model designed to assist in the estimation
of the cost of transferring software from one computer to another. This
technique was developed by the MITRE Corporation in response to a request by
the Defense Communications Agency to undertake a study of the costs involved
in transferring a set of applications software from one computer system to
another (see Ref. [24]).

1.1.1 Factors Considered in the Hahn & Stone Model

Much of the paper presenting the Hahn and Stone technique is a discussion of
the four major factors determining how the software can be transferred, and
consequently, the costs necessary for the transfer.

Unlike most software cost estimation problems, the costs of transferring a
software system to a computer different from the one on which the software
was developed generally involves estimating costs for many fewer tasks than
were necessary for the original software development. The entire requirements
analysis and, usually, the design phases of the software life cycle are
unnecessary. Unless the software conversion requires redesign, the software
cost estimation problem is greatly reduced because many of the factors
involved in the task of estimating, such as those discussed in Section 3 of
this guidebook, have been removed or are more quantifiable. For example,
both the software size and the complexity of the application are directly
observable via the existing software documentation. (This does not mean to
imply, however, that total conversion costs will be significantly less than
the total development costs. It does imply, however, that much of the
uncertainty in the cost estimate is removed.) By omitting requirements
analysis and design tasks, the costs to be estimated depend upon the nature
of the programming »nd testing activities. In order to evaluate the manpower
required for these tasks, Hahn and Stone consider the impact of hardware
characteristics (both source and target), the nature of the software to be
transferred, the transfer techniques available, and the transfer phasing

plan strategy.

*The models are presented for illustration only. This does not constitute
an Air Force approval of these models.

7 Preceding page blank

-

.

__-,___-__.__-_..__,—_
— .

In general the greater the number of hardware differences between the target
and source computers, the greater the amount of manpower required to resolve
the differences in the transfer of software. Hardware characteristics which
should be expected to impact transferability of software include differences
in transfer rates of instructions, changes in word size, loss of bit signifi-
cance, changes in system-dependent parameters that control literal items,

machine configurations of a floating point number, and machine-dependent

~constants. The software characteristics which effect conversion costs include

the size of the software, programming languages, and machine-dependent
characteristics of the software.

The H&S Model is dependent on software transfer techniques which are classified
into three types, (1) direct use, (2) machine-assisted transfer, and (3)

manual program transfer. These types of transfer techniques directly impact
the amount of manpower resources required to transfer the software to the tar-
get machine. These considerations are summarized in Figure 12.

Direct use implies that the object programs are directly transferable because
the source and target computer are highly compatible, or the target computer

can be made to emulate the source computer's instruction set by hardware or
simulate it by software. The cost of emulation hardware is estimated to range
between $1,200 and $9,000 per year (see Ref. [25]). The cost of development

for a simulator is estimated to range from $40,000 to $70,000, and require 4

to 9 months to develop (see Ref. [26]). Since these costs are not related to
any system size by Hahn and Stone, and do not include costs of the inefficient
use of the computer for both emulation and simulation, their validity is suspect.

Machine-assisted transfer techniques employ a language processor to aid in the
conversion, such as a decompiler, translator, and compiler. Machine-assisted
transfer techniques almost always assume that a one-for-one relationship can
be established between the source and target languages. They require that

the developer thoroughly understand the source and target languages and that
the current program source deck be available and essentially free of machine-
dependent functions or data descriptions. Machine-assisted techniques will
not improve the efficiency of the source program. The only improvements to
be expected are those attributable to the difference in the hardware and the
operating system.

Manual program transfer techniques are totally dependent on human effort and
may consist of three types, redesign, reprogramming, and recoding. They
require the largest amount of resources. Most software conversion projects
will require at least some manual conversion tasks. The amount is determined
by the following factors:

o The degree to which machine-assisted translation techniques are

not available, or the amount of instructions remaining after the
use of a machine-assisted transfer technique.

72

ml

B 23

TYPE

CHARACTERISTIC

IMPACT

Hardware
Characteristics

Change in word size

May require table repacking if
target computer has larger (and
storage efficiency is required)
or smaller word size.

Loss of Significance

A reduction in the number of
bits contained in an integer may
cause loss of significance in
the value or less precise arith-
metic operations in the target
computer may cause reprogramming.

Literal Items

A change in system parameters
controlling compiler-generated
literals (especially bytes/word,
bits/byte) will increase size
and complexity of transfer.

Floating Point

Target computer's configuration
of a floating point item may
have impact on transfer.

Machine-Dependent
Constants

Machine-dependent constants
(i.e., hexadecimal, octal) may
need reformatting or integer
constant word size may need
changing.

Software
Characteristics

e —— S

Size

Larger programs appear to require
a disproportionately large amount
of resources. In addition, data
base size may impact timing
requirements, which may become

a cost factor.

Program Languages

Transfer of a Machine-Oriented
Language (MOL) system is depen-
dent on differences between
source and target computers.
Also, computer-aided MOL trans-
fer techniques are not readily
available. Transfer of an HOL
system is generally less expen-
sive, assuming that the HOL
compiler is available on the
target computer.

Figure 12,

73

Software Transfer Considerations (Adapted from Ref. [24]).

TYPE

CHARACTERISTIC

IMPACT

Software

Other Software Character-

Characteristics | istics

(cont'd)

Status and quality of document-
ation.

Number of subprograms.

Number and complexity of linkages
between 0S/Programs.

Interfaces between programs and
data base.

Number of modifications to be
made during transfer.

Growth rate of programs and files.
Data storage media.

Program
Transfer
Techniques

Direct Use - Modifica-
tion of the target
computer (i.e., emula-
tion, simulation)

Most useful for programs with
short Tife span or infrequent
use.

Full capabilities of target
computer may not be used.

Machine-Assisted
Transfer

Decompilation - The process of
translating machine language to

a compiler language. Effective
decompilers are feasible but

rare; idiomatic machine-language
expressions and code that modifies
itself complicate the decompila-
tion process.

Translation - The process of
converting a program in one
language to a program in a
different language. Requires
correct usage of MOL/HOL con-
structs.

Recompilation - The process of
compiling a POL source program
on the target computer with the
same POL compiler.

Manual Transfer

Redesign - The process of produc-
ing a different problem solution
and processing logic than orig-
inal source. Makes maximum use
of target computer and support
software. Most costly.

Figure 12. Software Transfer Considerations (cont'd)

74

Bt B s, =

TYPE

CHARACTERISTIC

IMPACT

Program
Transfer
Techniques
(cont'd)

Manual Transfer
(cont'd)

Reprogramming - The process of
producing a target program that
performs the same function as
original source, but may use
different logic. Used when
existing program has been exten-
sively retrofitted, efficiency
needs improvement, or interface
with equipment has changed.

Recode - The process of manually
translating source language
program to target language
program. Least costly.

Figure 12.

75

Software Transfer Considerations (cont'd)

e The amount the programs have undergone extensive or piecemeal
modifications since initial development and require redesign
for more efficient operation.

e The use of idiomatic expressions* and program self-modification
make machine-assisted translation ineffective.

& A decision is made to convert MOL programs to POL programs in
order to achieve more inter-computer compatibility.

e The degree to which existing programs are combined to achieve
more efficient operations.

Redesign is used to produce a target program which has a different problem
solution and different logic than the source program. It is usually the most
expensive of the manual techniques since it normally includes all tasks
associated with the original development of a program. (See Figure 13.)
However, it may be advantageous if two or more programs are combined or
extensive modifications have changed the original function of the program.
Program redesign is also necessary if the mode of operation is to change;
i.e., batch mode to on-line mode.

Reprogramming is used to produce a target program which performs the same
function as the source program but which is not constrained by the use of all
of the original logic. This method would most 1ikely be applied when the
existing program has been extensively "patched", a substantial increase in
efficiency is desired; or major changes in the use of peripheral equipment
are made (change from tape storage to disc storage). The tasks involved in
reprogramming are shown in Figure 13.

1.1.2 Hahn and Stone Model**

The Hahn and Stone cost estimation model considers the cost of transferring
programs (C_), the cost of transferring data (Cy), and other costs (Cy), such as
documentingpprograms and keypunching. These cogts are all expressed Qn
man-years***, Computer costs are expressed in terms of hours of computer time
required for software transfer. The model for estimating these costs considers
the use of various combinations of transfer techniques, and program charac-
teristics. The cost estimation model is represented by the following equation:

*An idiomatic expression is a program segment of one or more instructions
whose meaning is not a direct result of the meaning of the individual instruc-
tions. Idiomatic expressions occur often in machine-oriented languages.

**Based on actual development and modification costs of programs, with further
refinement by DoD, industry, and MITRE personnel.

***The conventional values used for man-time conversions are: 1 man-year =
12 mﬁn-months = 260 man-days = 2080 man-hours and 1 man-month = 173.3
man-hours.

76

N

LU A —

TASK

REDESIGN

REPROGRAM

RECCDE

Analyze System Requirements - Determine the opera-
tional requirements of the system; evaluate their
completeness, feasibility, and compatibility with
other systems. Analyze the operational and user
needs for output and sources for inputs.

Analyze Program Requirements - Determine the require-
ments for program production and test, program
Tanguage to be used, operating system and other
programming support required.

Analyze Similar and Interfacing Systems - Determine
the systems procedures and techniques already in
production, operation, or planned which may
influence the redesign of the system.

Prepare Design Requirements and Specifications -
Develop the specifications for the total data
processing system including the hardware configur-
ation required. Develop the design requirements
for the software system including programs, data
structure and interfaces required to satisfy

the operational requirements.

Design Program - Using the design requirements or

existing program documentation, design the cntire

computer program system and/or individual programs
and routines that have been identified. Determine
and design data input and output formats.

(a) Code the Program - Translate flow diagrams
and other statements of program design into
coded instructions.

(b) Recode the Program - Translate the code, using
program 1istings and other program documenta-
tion from the source to the target language.

Desk Check the Program - Desk check the new code

by Tooking for illegal expressions (which may occur
when idiomatic expressions are used in the old
program), erroneous data references (which may occur
when source program is self-modifying), program
ine:ficiencies. and deviations from program specifi-
cations.

Figure 13.

77

Manual Transfer Tasks

TASK

REDESIGN

REPROGRAM

RECODE

8.

Compile and Check Program Code - Assemble or compile
each program into machine-readable form, check
listings for errors, correct code, and reassemble

or recompile. Continue the process until a satis-
factory program is obtained.

Test Individual Programs - Within requirements of
the program test plan, run performance tests of
individual programs to isolate and correct errors.
Rerun until the requirements for problem solution
are satisified.

10.

System Integration and Test - Run the program
system test for physical integration of functionally
independent programs to isolate and correct failures
to meet the program system requirements (Program
system consisting of only one individual program
will not require this task.

Figure 13.

78

Manual Transfer Tasks (cont'd)

c

® g

where: CT

P b CD & C0

Total Cost

Each term of the equation and its derivation is discussed below.

The cost of program transfer (C,) is made up of two major components: the
cost of the machine-assisted trgnsfer techniques and the cost of manually
transferring all or part of a program. Expressed as an equation:

@ =yt

Cost of individual program transfer

n

where: CP

CA = Cost of the machine-assisted transfer technique. (No attempt
is made to further quantify or break down this cost element.
However, machine-assisted transfer is discussed in general
from a technical and cost point of view.)

CM = Cost of manual transfer. [The cost of manual transfer of the
programs is the largest single cost of the transfer process
and ‘consists of: (1) the number of instructions which must be
manually transferred; (2) the average rate at which these
instructions can be transferred, expressed in instructions/man-
day and; (3) the cost of manpower per man-day.]

Expressed as an equation:

=1
® @ = & (up)
where: I = Number of instructions to be manually transferred (dependent on
size of program, the transfer technique used, and the effective-
ness of the machine-assisted transfer.)

P
[}

Rate of transfer. (The average number of instructions or statements
which can be manually transferred from one computer to another in
one man-day.)

1

® Rr = iy

where: MDT = Total number of man-days required

79

Further, MDT can be defined as follows:

MD, = 1 I I I I
@ T F1Oe)) |+ | 0Op) (=) |+ &= + |(Op3) (g2 -
Rac F1/ "Rge F2' “Rge Rer F3' ‘Res

=
4

where: BC = baseline conversion rate

o
it

BT © baseline test production rate

DF] = documentation degradation factor

DF2 = program instability degradation factor

DF3 = system integration degradation factor and further:
RL = number of man-days required for baseline conversion
BC

number of man-days required to make up for document

(Opy) (=)
BC degradation factor.

(DFZ)(ﬁl_) = number of man-days required to make up for program
BC instability degradation factor.
-ﬁ—l— = number of man-days required for baseline test
BT

(DF3)(RL—) = pumber of man-days required to make up for system
BT integration degradation factor.

Recoding is a one-for-one manual translation of instructions from a source
language to a target language. It produces an operational program on the
target computer using the same logic and same problem solution as was used

in the source computer program. Although Hahn and Stone claim that recoding
represents the least sophisticated of the manual conversion techniques because
the programmer is not required to have an in-depth understanding of the pro-
gram logic or solution, the author is doubtful that such a program can ever
be thoroughly tested and debugged unless such an understanding exists. The
tasks involved in recoding are shown in Figure 13.

Once the size of the program has been determined, the percentage of instructions/
statements to be manually transferred can be identified. Because this tech-
nique requires the most manpower, it is the principal cost factor and is in
direct proportion to the type and effectiveness of the transfer technique used.
Direct use transfer techniques (emulation and simulation) are principally

80

Ll

&

techniques for time phasing the transfer and thus are not considered by Hahn
and Stone as pant of the direct costs of transferring programs. Machine-assisted
transfer techniques are also considered in estimating the transfer cost since
the number of residual instructions which remain to be manually..transferred is
in proportion to the effectiveness of these techniques. The majority of the
information presented by Hahn and Stone expressed the cost of transfer, using
the machine-assisted technique, in terms of a range of percentages of original
program development costs. This method of calculating the cost of using a
particular machine-assisted transfer technique may not be feasible or may be
subject to error because the original program development cost is often unknown
or unreliable.

Development production rates for a total program were then calculated from a
sample of actual production rates for each language. These were further refined
(see paragraph 1.1.3) to determine baseline conversion and test production

rates (R c.and R) which are shown in Figure 14. The high and low rates

were cal%u]ated ?I that the probability of an actual production rate falling
outside these limits was 2.5 percent.

In addition to production rates, degradation factors were introduced to account
for the quality of documentation (Dg,), the number and magnitude of program
modifications required during progrE* transfer (DFZ)’ and program complexity

(Dg3)-
By incorporating equation (:) into equation (:) , the expression for RT becomes :

® *#- (Rpc) (Rgy)
(1+Dp3)Rge + (14Dgy + Dpy) Ryy

The cost of transferring data (CD) is small when compared to the cost of trans-
ferring programs. Data transfer costs include computer time and, if not
supplied by the equipment vendor, the cost of a function-specific program to
transfer the data. However, if purging of the data in the files or the estab-
lishment of new files during the conversion are required to improve operating
efficiency and effectiveness, considerable manpower may be required for the
development and definition of the data elements, layout of storage allocations,
and the data structure.

Other costs (C.) can be expected during software transfer. These include key-
punching and vgrifying, training, facilities, planning, and management.

The Hahn and Stone cost model can thus be summarized as follows:

(14D)R + (14D, + D.,) R
Cr = E 1 F? BC . {1 F2” BT (Cywp * CA+Cp+ Co

BC BT

Where the first and second summation symbols represents sum over all the programs
in the inventory and the third summation symbol represents sum over all the
other costs.

81

REDESIGN | REPROGRAM RECODE PROGRAM TEST

LANGUAGE RBC) (RBC) (RBC) (RBT)
FORTRAN Mean 8.2 1n.3 22.5 14.1
Low 6.0 8.3 16.5 10.4

High 10.4 14.3 28.5 17.9

COBOL Mean 10.5 14.5 29.0 18.3
Low 8.2 1.3 22.5 14.1

High 13.1 18.0 36.0 22.6

JOVIAL Mean 12.5 17.3 34.5 21.7
Low 1.3 10.0 20.0 12.6

High 17.8 24.5 49.0 30.8

MOL Mean 14.7 20.3 40.5 25.4
Low 12.0 16.5 33.0 20.7

High 17.6 24.3 48.5 30.4

Figure 14. Conversion Production Rates (Instructions or Statements/Man-Day)

82

1.1.3 Summary Evaluation of Hahn & Stone Software Transfer Cost
Estimation Technique

The Hahn and Stone technique is designed to assist in estimating the costs of
transferring software from one computer system to another. After identifying
a number of factors, it provides a rationale for how these factors impact
cost. It then presents an aggregated cost model reflecting these factors as
well as tabulated production rates for instruction transfer and degradation
factors for documentation quality, program stability, and system integration.

The main accomplishment of the Hahn and Stone technique is not the model but
rather the tabulation of production rates and the development of the degrada-
tion factors used in working the model. The data used to compute these
figures was gathered from some 74 computer programs in four languages,
including 29 FORTRAN, 8 COBOL, 18 JOVIAL, and 19 MOL programs.

Assuming that the development production rate for computer programs follows a
normal distribution and that the program sample chosen was representative, the
mean and standard deviation for each language was calculated. Using the
Student -t distribution, the higher and lower production rates were calculated
so that the probability of an actual average production rate falling outside
these upper and lower limits was 2.5 percent. The resulting calculations are
shown in Figure 15.

LANGUAGE LOW MEAN HIGH
FORTRAN (N=29) 3.3 4.5 S.F
CoBOL (N=8) 4.5 5.8 1.2
JOVIAL (N=18) 4.0 5.7 7.4
MOL (N=19) 6.6 8.1 9.7

*where N = sample size

Figure 15. Development Production Rates (Instructions/Man-Day)

we rates in Figure 15 represent production rates for the total development
¢ . srouram. However, since conversion of an existing program does not
e a4l the functions normally associated with a development project, the
wos coment rates were modified to include only those functions associated
v oding, reprogramming, or redesign. This, then, established a baseline
Lo e sroduction rate (R_. in the model). In addition, they developed a
w ‘weting production ra@g (R T in the model) to apply a factor for
- segration and test. Baseﬂ on a review of the literature and actual
L enurams . the division of effort for a complete redesign task
wat established.

83

RSl o s

TASK PERCENT OF TOTAL TASK
Analysis 15%

Program Design 20%

Code & Check 20%

Program Test 32%

System Test,.Integration, 13%

& Documentation*

*System test and integration as well as documentation
are calculated separately.

Figure 16. Division of Effort for Complete Redesign Task

The division of effort was then used to calculate the RBC rates shown in
Figure 14.

Because R,. and R, were based on development production rates and did not
include cggtain a@Eects which are critical to program transfer, degradation
factors which allow for these critical aspects were developed. These degrada-
tion factors impact total cost by adding to the total manpower requirements
needed to transfer a program.

Three degradation factors were considered, (1) the quality and completeness of
documentation, (2) the number and magnitude of modifications that will take
place during the transfer (program instability), and (3) program complexity
(system integration).

Degradation factors for documentation quality (D) were based on intuitive
judgment after much discussion. The factors recg$mended by the Hahn and
Stone technique are shown in Figure 17. These factors are applied against
RBC for reprogram and recode.

DOCUMENTATION CATEGORY % INCREASE IN MANPOWER
Excellent 0%
Good 25%
Average 50%
Poor 75%

Figure 17. Documentation Degradation Factors

84

.

The ease of program transfer is affected by the number and magnitude of modifi-

cations that will take place during the actual program transfer. Using histori-

cal data from System Development Corporation, Hahn and Stone calculated the
degradation factors for program instability (D.,) shown in Figure 18. These
percentages are calculated against R for redgg1gn, reprogram, and recode.

MODIFICATIONS % INCREASE IN MANPOWER
NIL 0%

TRIVIAL 5%

SOME 10%

EXTENSIVE 15%

Figure 18. Program Instability Degradation Factors

According to Hahn and Stone, program complexity will affect the amount of re-
sources required to transfer the program. Using data provided by System
Development Corporation, Hahn and Stone derived a degradation factor for
system integration (DF3) of 0.016X, where X = number of subprograms* in a pro-
gram. The results of this equat1on are used against RBT

In using the Hahn and Stone technique, the estimator starts off with program
size in terms of instructions. Because the estimator is working with an exis-
ting program his estimate for size should be quite reliable. The technique is
easy to use: the starting statistic (software size) is easy to get and

various factors and rates need only be looked up and plugged into the equation.

In terms of accuracy, the model does not consider the problem ot constraints
on the target machine other than indirectly via a judgment of how difficult
the target machine is to program. For this reason, it does not handle trade-
offs directly. Further, Hahn and Stone do not mention any attempt to
validate their model or their two basic assumptions; (1) the development
production rate for computer programs follows a normal distribution, anda (2)
the program sample used is representative.

In terms of the model itself, Hahn and Stone state that:

Cp= Lp .59+ G

where CT = total cost
CP = cost of individual program transfer
CD = cost of transferring data

other costs

*A computer program component or Separately compilable module.

85

They further state that:

Cp = Cp * Cy
where: CA = cost of machine-assisted transfer
CM = cost of manual transfer

In deriving their model, it appears that C, is somehow inadvertently dropped.
Their final cost summary model is stated aé follows:

Manual Transfer Costs Data Costs Other Costs

— N

R

£
¥ ARBC RBT J ™M D 0

1.2 PUTNAM GENERAL SOLUTION TO THE SOFTWARE SIZING AND ESTIMATING PROBLEM

The Putnam technique provides a methodology to produce life cycle estimates

of total manpower and time required to reach critical milestones of software
projects. It provides the means to allocate the cost among divisions of

time during the software project life cycle rather than attempting to allocate

the total cost among each part of the software project. (See Refs. [27, 28 and 291.)

1.2.1 Factors Considered in the Putnam Model

The basic model describing the software project has only two parameters: a
magnitude parameter (total 1ife cycle man-years) and a time parameter
governing the shape of the curve. Since this model is only interested in
man-years as a measure of work and total development time, it does not
directly consider any constraints inherent in the development process.

1.2.2 Putnam Life Cycle Model

The Putnam technique is based upon a project profile taken from Norden (see
Ref. [30]). Norden found that R&D projects are composed of man-power loading
which can be linked to get a project profile. Figure 19 shows the individual
cycles laid out in the expected time relationship. The sum of the under-
lined cycles is the man-power loading profile for the entire project, 1abeled
Project Curve in Figure 19.

Putnam analyzed man-year budgetary data from the U.S. Army Computer Systems
Command and concluded that the projects followed the 1ife cycle model. He
also concluded that the data fit the model with sufficient accuracy to provide

a useful tool.

86

EFFORT
PER
UNIT
TIME

(MY/YR)

A

PROJECT CURVE

TEST &
VALIDATION

EXTENSION

MODIFICATION

TIME

Figure 19. Project Profile

Figure 20 shows the typical Computer Systems Command (CSC) application of man-
power to a software development project. The ordinates of the underlined
cycles are added to obtain the total life cycle effort (or project curve) at

various points in time.

MY/YR

PLAN
FUNCTIONAL

SPECIF.

CSC APPEARS TO APPLY THEIR
MANPOWER MORE LIKE THIS:

PROJECT CURVE

DESIGN &
CODING

— — — — — — — — —

TEST &
VALIDATION

EXTENSION

Figure 20.

Typical CSC Application of Manpower to a Software Development Project

87

—

——

Putnam uses the Rayleigh equation, which has been empirically determined to fit
the project man-power loading profile (Project Curve), to represent Norden's
model. The model can be expressed in an integral and derivative form of the
Rayleigh equation. The derivative form fis:

at?
Q) v = 2kt

where Y'= the number of man-years of effort expended per year.
K = the total number of man-years expended to develop
the system.
a = the curve shape parameter which also has the physical
meaning of “problem solving rate."
t = the elapsed time in years.

The integral form of the equation is:

@ v -« e

where Y is the cumulative number of man-years expended over time t.

Figure 21 depicts both forms of the model. The derivative form (current
man-power utilization) is used most frequently because budget data are in
that form. The integral form (cumulative man-power utilization) is the
typical S-shaped 1ife cycle curve.

MANPOWER UTILIZATION CURVE
CUMULATIVE MANPOWER UTILIZATIOR

-

(- 4

[-]

Lo

'

-

<

£ 100

-

'S

S 78% OF TOTAL EFFORT UTILIZED
=

(X)

«

w 50 30% OF TOTAL EFFORT UTILIZED

> 2
- 2% Y= K(1-0o77)
pr K=1.00

g =002

=

(X}

A i A ik

6 2 4 ¢ & 10 12 14 1 1u
TIME

PER CENT OF TOTAL EFFORT
s

L]
b

Figure 21. Life Cycle Integral and Derivative Curve Forms

88

e i ST
4 o

Putnam also relates calendar milestones frequently established in connection
with software development in the Life Cycle Model as shown in Figure 22.

The milestones used by the Army are Design Certification, the Systems Integra-
tion Test (S.I.T.), the Prototype Evaluation Test (P.E.T.) and First Extension
(Initial Operating Capability). These all occur on the rising part of the
curve. . Putnam notes that, First Extension occurs very close to the peak of the
curve which has been empirically shown td very closely correspond to the
development time (completion of design and coding as shown in Figure 22).

DEVELOPMENT MILESTONES

PROJECT CURVE

EFFORT PER LIMIT TIME

FUNCTIONAL | heciona

ST
oy CODING VALIDATION
gy (16%) (20%)

MODIFICATION
(26%)

EXTENSION
(10%)

TIME

Figure 22. Application Software Life Cycle
Putnam states that the calendar milestones are empirically determined for the

Army Computer Systems Command and that other design centers would differ to
some extent. The general location should be similar for other design centers.

In equation (:), a can be replaced by the term 1/2td2, where tq is the
time for the Curve to reach a maximum; resulting in the equation:

2 2
v = 2K -t%/2t
(:> Y =, + Te d

89

Putnam states that ty has been empirically shown to correspond very closely
to the development time (completion of design and coding) of a large system.
At time tys 39 percent of the total effort has been expended (see Figure 21).

Estimates of the two parameters of Putnam's model, K (the total life cycle
man-years), and td (the time for the derivative curve to reach a maximum) can
be used to derive an equation giving the ordinates of the man-power expenditure
curve for a specific project. A yearly dollar costing can then be computed for
the project by multiplying the ordinates of the man-power curve at each year

by the average cost/man-yzar to arrive at a dollar cost/year. The dollar
costs/year are then added to get the cumulative cost.

In addition to cost estimation, Putnam uses the model to investigate parameters
that measure the difficulty of doing work on a system. Putnam relates the term
K/td2 from equation C} to the time rate of doing work on the system, or
man-power. He hypothesizes that the ratio y = K/td2 represents the difficulty
of a system in terms of programming effort to produce i%. That is, if K/td?

is small this corresponds to an easy system and if K/tq¢ is large, this
corresponds to a diffigu]t system. Putnam presents a plot of programming rate
against the ratio K/td¢ (Difficulty) in Figure 23 for some well known projects
such as SAFEGUARD, 0S/360, CSC's average programming rate, and typical figures
for short-term commercial systems. Putnam states that a feasible software
development region can be established semi-intuitively from the pattern that
appears in Figure 23. He states that systems range in size (K man-years)

from 1 man-year to 10,000 man-years. Development times (tq) range from 1 or

2 months to 5-6 years. For large systems, the range narrows to 2-5 years.

Two years is a lower 1imit because of man-power loading difficulties. Five
years is an upper limit from an economic point of view; organizations cannot
afford to wait more than five years for a system.

e e

90

DIFFICULTY (D = K/tz2)

10 100 1,000
2 3 456780 2 34 56780 2 3 4567801 2 3 456789
100000 amo e pe i B T T T TTTTITY L R | T T T7T7
e PROGRAMMING RATE
STATEMENT [Vs
PER MAN EASY SYSTEM DIFFICULTY
YEAR - COMMERCIAL
SYSTEM
10,000
w C
< u N
[- 3
e C
- C
g L CSC AVERAGE
9
g A
1000 MULTICS —=
E 08/360 OVERALL
R SAFEGUARD
100

Figure 23. Programming Rate Versus Difficulty

1.2.3 Evaluation of the Putnam Model

The Putnam model is only interested in man-years as a measure of work. It
does not attempt to split these man-years according to the type of work being
done, nor does it try to estimate the amount of computer or other overhead
needed. The only constraints of interest to the Putnam model are man-years
and development time; other very real constraints are ignored. On the other
hand, it does provide information, a breakdown of cost according to time, not
normally available. It does not provide costs for non-manpower items such as
computer time or travel.

The Putnam model is quite simple, almost simplistic. The amount of effort
needed for an estimate is small because the estimation process can be automated
easily. However the determination of K and t, based upon past history can be

time consuming if such data is not readily avgilab1e or in a readily usable
form.

91

Putnam has satisfied himself that the Rayleigh curve fits cost curves for many
Army software projects. He does not produce the evidence which convinced him.
From the curves he does produce, it seems clear that his model consistently
underestimates maintenance costs by a factor of from two to four. Because the
model does not address hardware constraints such as limited storage or execution
time, any programs having such constraints would probably cost more than their
Putnam models reflect. His model assumes that the life cycle costs begin at
program design and code activity. Note that the functional design and specifi-
cation work is not included under the project curve and in the Army's case is
done by an outside agency, not the software development agency. Since Putnam's
data was derived from administrative data processing projects only, this model

is not tailored to the acquisition of embedded software for Air Force command,
control, and communication systems.

92

1.3 THE TECOLOTE PROVISIONAL MODEL FOR ESTIMATING COMPUTER
PROGRAM DEVELOPMENT COSTS

The Tecolote model* is primarily concerned with military software developments
in the context of larger weapon system hardware developments and emphasizes
tactical software. The Tecolote model defines tactical software, which is
time critical, as the complete set of computer programs that resides in and
drives a computer system within a fire control system. A fire control system
is further defined as “"any set of military hardware which senses an enemy
threat and then directs available resources against it." (See Ref. [29]).

The Tecolote model assumes that the computer hardware and a usable operating
system already exists.

1.3.1 Factors Considered in the Tecolote Model

Seven basic elements were considered in the development of the Tecolote model,
including:

Threat characteristics

Fast storage capacity

Operational instructions

Delivered instructions

Development 1abor

Computer costs

Development costs

Two general types of threat characteristics are addressed in the model because
of their effect on software development costs; the size of the threat and the
speed of the threat. Tecolote defines size "as the maximum number of threat
objects which must be simultaneously tracked during a terminal engagement."
Speed is defined "as the maximum closing velocity manifested by any threat

object."”

For example, for a Navy fire control system like AEGIS, threat size is defined
as the maximum number of air threats that must be intercepted simultaneously,
and the threat speed is the maximum speed of any one of those air threats.
Similarly, threat size in a Navy sonar system 1ike BQQ5 is the maximum number
of subsurface and surface threats that the ship has to counter simultaneously,
and threat speed is the maximum speed of any one of those subsurface/surface

threats.

*Derived for the Resource Analysis Branch, Code 0P-96D, of the Office of the
Chief of Naval Operations, Department of the Navy.

93

il =

b |

Fast storage capacity determines how much of the total information stored by
a computer system can be retrieved and operated on at rates approximating the
computer execution rate (the remainder of the information is stored on slow
or bulk storage units where retrieval rates are on the order of a thousand
times slower). In the case of tactical software, the requirement for fast
storage capacity should increase as the number of targets to be tracked or
the target approach speed increases.

The Tecolote model addresses software size in terms of ‘operational and delivered
instructions. Operational instructions are those procured during development
that are eventually installed in the tactical hardware; delivered instructions
are all those instructions produced during development, whether operational or
not. (The instructions contained in a development test bed which simulates
hardware interfaces are an example of delivered instructions which never

become operational.)

Tecolote hypothesizes that as the number of targets to be tracked or the tar-
get approach speed increases, the number of operational instructions increases.
And further, since a similar correspondence exists between fast storage capacity
and target numbers and speed, a correlation exists between fast storage capacity
used and the number of operating instructions, so long as target approach speed
is held constant. However, as target approach speed increases, time-criticality
increases and hence the fraction of the total operational program residing in
fast storage should increase. Thus, the ratio of total operational instructions
to require fast storage capacity should decrease as target speed increases.

According to Tecolote, in software developments which are part of large hard-
ware developments, it is almost always true that the number of delivered instruc-
tions is greater than the number of operational instructions. There are always
some hardware interfaces that do not exist at the time they are needed for soft-
ware testing and, hence, must be simulated by the software engineers. The

ratio of delivered instructions to operational instructions can thus be thought
of as a kind of development "overhead," which should remain about constant in
value, given the associated condition of a larger hardware development.

Tecolote defines development labor "as the total number of man-months of direct
labor expended during the software development." They hypothesize "that develop-
ment labor increases as the number of delivered instructions increases."

In any software development, significant amounts of computer time are used for
debug and testing purposes. This time is usually charged on an hourly rental
basis. Tecolote hypothesizes that the amount of computer time used increases
as development labor increases, because computer time functions here as a tool
used by the software engineers. The cost per computer hour depends on the
computer used in development.

———

According to Tecolote, the total cost for software development is the cost
for development labor (including direct salaries, overhead, and other
Toadings), plus computer costs (also loaded). Costs for development labor
can be assumed to scale with the number of man-months. Thus, for a fixed
development computer, total development costs should increase directly with
the number of development man-months.

1.3.2 Tecolote's Provisional Cost Model

The Tecolote provisional model is based on data collected from five programs
as shown in Figure 24. The first three programs are Navy tactical software
developments. Al1l three fit the following conditions:

e Development accomplished in the context of a larger hardware
development.

e Little or no change in hardware specifications during development.

e Computer already developed and available.

The other two programs represent military software developments of unspecified
application. Here, the applicable conditions are:

e No larger hardware development.

e Computer already developed and available.

A1l five represent programs begun within the last five years.

From the data in Figure 24, Tecolote crganized and plotted the pairwise
relationships hypothesized in the earlier discussion. These relationships
are shown in Figures 25 through 28 and are summarized below.

Figure 25 shows the relationship between threat size (targets terminal-
tracked), threat speed, and fast storage capacity required in tactical soft-
ware packages. The three applicable data-sets stratify into two classes with
respect to threat speed -- air threats, with target approach speeds on the
order of 250 meters/second or higher, and sea threats with target approach
speeds of 50 meters/second or lower*. As expected, fast storage capacity
increases with both the number of targets terminal-tracked and the target
approach speed.

*Actual data have been omitted from Figure 25 for security reasons.

95

L3POW |BUOLSLAOAG 3301099] 404 BIB(Q OLSeg

%2 94nb14

008€ 209 000°512 G151 .8 ISVD. MuL
008€ 702 00t°201 0L§ WY ISV, MHL
L-¥AN 000° 222 000921 000°060° L (59t |osvees | coe | o096t S193y
L-NA 000° 9 000°Z61 000°252 | 5861 5b8
69% 07 9lE‘h! 91E“ b1 2 SHID
¥31NdW0D I9VH0LS 1S4 |SNOTLOMUISNI [SNOTLONMLSNT | WW | WS | SunoH | WS | €L Ad “Ws
INIWAOT3AIQ sowom | wNorivyado | c3w3anrae 408V ¥3LNdH0D 1509
W10L V101 WwioL
101 w101 101
’ i e) — R e

96

g AD-AOS55 574 SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF
SOFTWARE ACQUISITION MANAGEMENT GUIDEBOOK: COST EST.--ETC(U)

MAR 78 M FINFER, R M]SH Fl9628-76-C-0236
UNCLASSIFIED S0C-TM-5772/007/02 ESD-TR-78-140

N/IL
9] | e
| END
7 82
oTIq

/
N
l 1,000 — APPROXIMATE
| = CURVE FIT:
F asomt®
I i
! =
A
I R
' AL
” 100 | & &
N e = N RN
i =] — &
‘ 3 - APPROXIMATE
’ S [CURVE FIT:
‘ 8 i 1.05
: = N 8.30(1)""
4 | v
i =
b =}
f =
-
} W
(1]
I =
= 10
(7S
t -
} (7]
2 L
| 5 -
<
- e
o
—
‘II
» 1 P i gt e b] 4 PR T YR [T T W
1 10 100
NUMBER OF TARGETS TERMINAL-TRACKED
{

Figure 25. Fast Storage vs Targets Tracked

gl i e

TG RPN ===—

Figure 26 shows the correspondence between number of operating instructions,
fast storage capacity, and target approach speed in tactical software
packages. Again, just two classes of target approach speeds were considered,
denoted by air threat and sea threat. As hypothesized, the number of
operating instructions increases with fast storage capacity and, for a

fixed capacity value, decreases with target approach speed.

Figure 27 shows the relationship between the number of delivered instructions
and the number of operating instructions. As hypothesized, total delivered

instructions and total operating instructions are nearly proportional to
one another.

Figure 28 which shows the relationship between operating instructions and
labor man-months, was derived because there was insufficient data to directly
derive the desired relationship between delivered instructions and labor
man-months. Figure 28 represents a composite of the Figure 28 relationship
and the desired relationship, and it was therefore possible to use the

Figure 27 relationship as a constraint condition, as follows: Let M equal
man-months, D equal delivered instructions, and 0 equal operational instruc-
tions, both D and 0 in thousands gf instructions.: Assume that M is an
exponential function of D, M = aD”. Then:

M = an = a('l.03(0)]‘05 b, from Figure 28 and
M = 2.52(0)' 2%, from Figure 29
Combining these two equations gives a=2.43 and b=1.18.

As shown in Figure 29, this derived relationship is in good agreement with the
BQQ5 actual datum, and with estimated data for the other programs. As hypo-
thesized, the number of labor man-months increases with the number of
delivered instructions.

Figure 30 1ists the per-man-month factors that were inferred from the AEGIS
data point (the only one where costs were given). These factors combine to
produce total development cost.

According to Tecolote, the pairwise relationships derived abave can be
composited in all possible combinations to produce the software estimating
matrix shown in Figure 31. Further, Tecolote states that "the relationships
in this matrix are useful for evaluating software proposals from the stand-
point of software design as well as software cost."

Figure 32 is a nomograph which permits the user to assume any combination of
cost-per-month and cost-per-computer-hour factors, and adjust the model cost
estimate accordingly.

98

SuoLIdNUISU]
Burjeaad) SA SuOLIONUISU] PaUdAL|3Q /2 d4nbLy

SANVSNOHL *SNOTLIONYLSNI ONILY¥3I0 WLOL
000° 0ol ol 000° L

3beu035 3se4 sA suor3onuysu] burjeuadg

ool

SQYOM 40 SANYSNOHL 3IIYHOLS L1SY4 YLI0L

LRI L L T L T ol | LR L J

mo._ﬁovmo._ =q

lirtin g

oot

Sboe

SANYSNOHL “SNOILONYLSNI Q3¥3IAITIA WL10L

|

o

\\\\ SI193Y

000°1

qe.Pﬁmv_m.o

ARER R

L

(s)sy-0

it o a1

0oL

Let 111

000° 1

|

|

Letagd

"9z 34nbL4

SANYSNOHL “SNOILONYLSNI ONILW¥IdO TYLOL

99

B e it

SUOLIONUISUT PIUBAL[3BQ SA SYIUOW-URY °62 3unby4

SANVYSNOHL ‘SNOILINYLSNI @3YIAITIA TW10L

suot3onuisuy butjesadp sA syjuop-uey -gz a4nby 4

SONYSNOHL “SNOILONYLSNI ONILW¥3dO TWLOL

000°L 00l oL)
oL 000° L 00l oL
_ S A | LS L L JLJLE 3 i RS FREES | oL
= -
; m _ m
so-1(0)L°0 =] g
A8 SNOILINYLSNI Q3ILWWILSI O IL, m M
wNLY o 5 _W .W .
ool 3 g
& - s
= (0)zs* o o=
ol 2 v2° 1 25°2 2
. g
5 = i 5
— =3 >
Y 3s¥d O g = 3 m
] WY ISV, ©]
—J000°L = BOb* 1
9 ISY) O
- «8 38Y2.0 /. 3
- * sov
—J o000t b -
»
|
. N
i s i MR8~ < o SO o R SR AR e —_
e gy - oo - o —— ey e e s l

AEGIS INFERRED FACTOR
‘ . COST FACTORS TOTAL (TOTAL + 9,317 MAN-MONTHS)
’ LABOR COST $36.57M $3,930/MM
i COMPUTER HOURS $39,450 4.23 HRS/MM
COMPUTER COST $ 3.03M $325/MM
TOTAL COST $39,60M $4,250/MM

Figure 30. Inferred per Man-Month Factors

The various software deveiopment cost estimating relationships derived for
the Tecolote model (top row of Figure 31) are summarized graphically in
Figure 33. The adjustment nomograph in Figure 32 also applies.

1.3.3 Evaluation of Tecolote Approach

The Tecolote approach uses an aggregated cost model to estimate costs for the
development of military tactical software. Eight factors were selected which
| are known to impact tactical software development costs and hypothesized pair-
& wise relationships between them. These factors are:

Threat Size. Maximum number of targets to be tracked.

Threat Speed. Maximum velocity of a target.

Fast Storage Capacity. Size of main memory of the computer.

Operational Instructions. Total number of installed (as
| opposed to test-bed) instructions.

o Delivered Instructions. Operational instructions plus test-bed
! instructions.

Development Labor. Man-months of direct labor expended.
Computer Costs. Money spent on computer time.
g e Development Costs. Development labor plus computer costs.

Five large tactical software programs were then selected and the following
data collected:

e Total labor

|

1

; e Total computer hours
|

|

| 101
i

-

- e——

e ———. . o —— s e

Total delivered instructions
Total operating instructions
Total words fast storage

Subsequently, this data was used (via regression analysis) to demonstrate
software estimating relationships between pairs of factors impacting develop-
ment costs. These tend to show that the cost of such projects was dependent
on the square of the threat size.

The Tecolote model is easy to use but its accuracy is indeed questionable be-
cause of the small size of the data base (five data points from five programs).
Further, when Figure 24 is reviewed, it can be seen that only the following
statistics were available:

Total computer hours were obtained for only one program.
Total labor for four programs.

Total delivered instructions for two programs.
Total words fast storage for three programs.

102

(v 30N 935) sdiysuorie|ay

Burjewi3sy aueM3J0S |RUOLSLAOUY 40 Adeuming *LE danbL4

"SS37 ¥0 J3S/W 0§ SI G33dS HIVOUdY LYI¥HL WNWIXVW 41 NWN10D LyI¥HL IS 3sn

(9)
"39NVY 3S/W 00£-0S52 3HL NI SI G33dS HOYOYdY LYIUHL WOWIXVW 41 NWNT0D LVIWHL ¥IV 3sn (8)
"€E 3WN9I4 33S “SNOILIWNSSY

Y01JV4 ¥3HIO Y04 “WW/SHNOH ¥3ILNAWOD €2 v ANV “¥NOH ¥ILNAWOI/LL$ “HOBYT ¥O4 WW/OE6‘E$ IWNSSY SISOD (V) :SILON

(SONYSNOHL)

mo._Ahvom.m mo._ﬁhuom.e_ 39Y401S 1SV4
SOYOM Y101

Syt

; . SNOT 1IN L
_m._ahvo_ ve.,Amvwv 0 Pm._ﬂhve_ ev._ﬂmv_m 0 ONT L¥3d0
101
J

Amoz<m=ouhv

. : y SNOTLINYLSNI

om._ﬁhvm_ _m._ﬁmvme 0 mm._ﬂhvu_ _m._ﬁmvom 0 mo._onmo L Q33A1 130
101

;s ; Y08V

mm._apvme m&._nmvpo L mm._Ahvom mx._ﬁmvmm 0 eN..ﬁova % m_._ﬁovme 2z SHLNOW-NYW
101

WS €L A4

: : : - : k ; 1500
mm.Pﬁhvm_ 0 oh.—ﬁmvmvoo 0 mw._ﬁpvom 0 mN._Amvomoc 0 «N._on_o 0 mﬁ._ﬁov_o 0 (W)EY00° 0 INIWdOTIAIA
V101

[EXEITT ~(SANYSNOHL) aNIVYL (SANYSNOHL)
- TUNIWY3L 39YY0LS 1SY4 - TYNIWY3L 39YH0LS 1SV S1nding
S139¥v1 ‘1 SOYOM TY101°S S1394vL ‘1 SQYOM TY10L°S (SANYSNOHL) (SONYSNOHL)
SNOILINYLSNI SNOTLINYLSNI 408y
YNI11VI3d0 03¥3A1730 SHLNOW-NVW
(3) S1v3yHlL v3s (8) SLYIYHL ¥Iv 101 0 10! ‘a W10L ‘W | SiNdNI

103

e R

s

suorjdunssy 403de4

3G
& gw
< .
o t
o S—
T R
-—
@ 005
W
-
=l
b
e
Z 000°L ~
5
&
hsd

1509 JUBU3SSLQ 404 40304 JuawISNfpy -z¢ 34nbiry

I

J foes°g -

(sze - it
|
J) 35y

EN 7:}

(1502 TY10L X) ¥OLIV4 lJBNlSﬂPGV

52 U

os't T

se'L T

0wz T

§2°2 +

05’2 +

T 000t
-+
1 000°S
T
<0009
1
" 000°L
T000°8
Jl
1000°6
+

$ “HINOW-MYW ¥3d LSOJ HO8YT Q3IWNSSY

104

100

10

TOTAL DEVELOPMENT COST, FY 73 $ MILLIONS

1.0

FTreer

TTTTTTT V

|

LI LA

VAR uuIni 1 L daaunl T e | A, TAN WO TR B WY
10 100 1,000 10,000
MAN-HMONTHS DIRECT LABOR
| = Ll
10 100 1,000
TOTAL DELIVERED INSTRUCTIONS, THOUSANDS
= |
10 100 1,000
TOTAL OPERATING INSTRUCTIONMS, THOUSANDS
10 100 1,000
TOTAL FAST STORAGE, THOUSANDS WORDS s
LET 1
1 10 100

Figure 33.

TERMINAL TRACK CAPACITY

Provisional Software Development Cost Model

105

APPENDIX C - GLOSSARY

Computer-Assisted Design Specification Analysis Technique (CADSAT). A struc-

tured computer-aided system for specifying, recording, analyzing, and
documenting design specifications for information processing systems.

The system is composed of a user design specification language, a design
specification analyzer, and a design specification reporting capability.
The specification language is used to express a structured, unambiguous
machine-processable form of all relevant requirements for the design of
an information processing system. It has precise syntax and semantics,
and includes non-scanable, textual material. The design specification

is processed and stored in a data base. The design specification analyzer
processes the data base and produces a number of reports that can be used
by an analyst to verify that the design specification is complete and
consistent. These reports can also be used to maintain the consistency
of the specification as it is being produced and reviewed. CADSAT is a
new name for the CARA system (see CARA) that emphasizes its application
to design specifications as well as to requirements specifications.

Computer Assisted Requirements Analyzer (CARA). CARA is a structured, computer-

aided technique for specifying, recording, analyzing, and documenting re-
quirements for information processing systems. CARA's user requirements
language, requirements analyzer, and reporting capability are virtually
jdentical to its successor CADSAT (see CADSAT).

Cost Analysis. A process designed to examine or assess the validity of the

Cost

estimated and actual resource requirements for a given program acquisi-
tion. Cost analysis activities are necessary for life cycle costs and
design-to-cost evaluation.

Data Base. A repository of software development cost elements (i.e.,

Cost

data) collected and maintained for the purpose of supporting cost
estimation analyses. Requirements for establishing a cost data base
must include consistency in item defintions, measures, and collection
mechanisms. The data contained in a cost data base provide input for
cost models and support cost analysis in the derivation of cost
estimating relationships.

Estimating Relationships (CERS). "A mathematical expression of the

relationship between one or more independent variables (ordinarily
stated in program terms, aircraft design, or physical characteristics,
etc.) and the dependent variable (the cost attributable to the indepen-
dent variables)."*

*From AFR 173-2.

107

Preceding page Ahlank

Cost Model. Defines in mathematical terms the partial relationship of cost

elements, software elements, development activities, resources, and
schedules. A generalized software cost model applies specific data
parameters to formulas derived from prior data analyses about cost
relationships. Most cost models have been applied for the purpose of
estimating software costs during the Full-Scale Development Phase and

do not “nclude Validation Phase activities or maintenance and support
activities.

Cost-per-Instruction. A term used in the derivation of software cost esti-

Cost

mates in which the total number of instructions contained in the software
is divided by the total development cost to obtain a cost-per-instruction
dollar figure. In using cost-per-instruction, the terms "cost" and
"instruction" must be specifically defined and be consistent to be
comparable. In addition, the term "total number of instructions" may

be ambiguous. Often there is simultaneous development of support and
application software. If the support software is not a deliverable, its
size (in number of instructions) is absent from the total number of instruc-
tions delivered, and therefore is not recorded, although its development
costs are recorded in total costs. A similar condition exists with
frequent changes in requirements which cause code to be discarded.
Further, it is very difficult to compare costs-per-instruction for
different programs because there is no common basis for comparing the
tasks, products, and services that are included in the cost-per-instruc-
tion figure. This guidebook clarifies some of the problems inherent in
cost estimates and relationships of this nature.

Reimbursement Contracts

Cost. Provides for reimbursement of contractor's allowable costs,

with no fee. This type of contract is usually used in research and
development work with nonprofit institutions.

Cost Sharing. Provides for reimbursement of an agreed upon portion
of allowable costs, with no fee. The contractor bears part of the

costs. This type of contract is used for projects jointly spoensored
by the Government and industry with expected benefits to both.

Cost Plus Incentive Fee (CPIF). Provides for reimbursement of
allowabTe costs with provision for adjustment of fee in accordance
with the relationship of final cost to estimated cost. At incep-
tion, maximum fee, minimum fee, and formula for sharing cost over
and under the estimations are established. This type of contract
is used primarily in development, where an estimated cost and fee
formula can be negotiated that will provide the contractor with a
positive incentive for effective management. This type of contract
usually involves some amount of innovation in the work to be
performed.

108

Cost Plus Award Fee (CPAF). CPAF and CPIF contracts are similar.
In both contracts the amount of fee is based on how well the
contractor performs. In the case of CPAF, a board of review deter-
mines how the contractor is doing and awards a variable amount of
fee over some base fee.

Cost Plus Fixed Fee (CPFF). Provides for reimbursement of contrac-
tor's allowable costs and payment of a fixed fee. These contracts
are usually awarded for research, preliminary exploration, or

study where the level of effort required is unknown.

Design-to-Cost. A concept used to manage and control acquisition, operation,

and support costs during the design and development of a system. The
application of design-to-cost requires derivation of a specific cost
target for a stated quantity, a schedule, and minimum performance
requirements (i.e., selection of a unit-cost goal which becomes the
principal design parameter in the development of the product). Design-
to-cost is a concept utilizing unit-cost goals that represent what the
Government has established as the price it is willing and able to pay
for a unit of equipment or major system. Although the initial software
cost estimates derived during the Conceptual Phase are grossly incorrect
due to incomplete system definition, design-to-cost analysis requires
initial software cost estimates for analysis of estimated system costs against
known costs of existing systems.

Fixed Price Contracts

Firm Fixed Price (FFP). Price is set initially and is not subject
to any adjustment. The contractor assumes maximum financial risk,
and all profits and all losses are his. This type of contract is
used where prices are established at the outset. Requirements
must be measurable and definite, requiring little innovation.

Fixed Price with Escalation (FP-E). This type of contract provides
for upward and downward revision of the stated contract price due to
certain defined, measurable contingencies. This type of contract is
used in cases where contract cost elements (such as labor rates,
material costs, or component prices) are likely to be unstable over an
extended performance period.

109

2

Life

Fixed Price Incentive Fee (FPIC). This type of contract provides for

the adjustment of profit and contract price by a negotiated cost to
target cost formula. The contractor may share in cost savings by
higher profits, or may be penalized for overestimated costs, that
can end in a loss. Other incentives may also be contractually speci-
fied which alter original cost estimates when savings are shared with

the contractor.

Fixed Price Incentive Firm (FPIF). At inception of FPIF, estimated
costs, profit price ceiling, and formula for sharing costs over and
under estimation are established. This type of contract is used when
there is a modest degree of innovation and the contractor's assumption
of a degree of cost responsibility will give him a positive profit
jncentive for effective cost control and contract performance.

Cycle Costs. Those costs, including direct, indirect, recurring, and

Life

nonrecurring costs, associated with a system's research, development,
production, and deployment (operation and support) that are incurred as
the total cost of ownership. Life cycle costing is a technique used

to estimate and control a system's total costs, by the use of cost
models. The components of life cycle costs need to be strictly defined.
Estimates and cost reporting must adhere to the definitions so

that 1ife cycle cost comparisons between systems can be meaningful.

Cycle Cost (LCC) Models. Mathematical equations expressing the total

Life Cycle Cost of a system, subsystem, or piece of equipment. The LCC
model may include parameters for all costs incurred in the research,
development, production, operation, and support of a system. LCC

models generally have two functions: (1) the specification of the
elements of cost which comprise the total life cycle costs, and (2)

the relation of system design, performance, and deployment to the value
of one or more LCC elements to estimate the cost impact of design alter-

natives.

Program Control. The management of program costs and schedules, including

estimating, controlling, and the tracking and reporting of budgets,
costs, schedules, and related management information associated with
Air Force system acquisitions. The data associated with the manage-
ment of each program's estimated/actual costs and schedules must be
collected and maintained to provide information for future acquisitions.

¥, Program Office (PO). The field office organized by the Air Force manager

responsible for an assigned program. Its purpose is to assist him in
the deve]qpment, testing, and procurement of systems, subsystems, equip-
ment, modifications, supporting projects, and studies.

110

Software Cost Estimation. Software cost estimation may be defined as the pro-
cess of predicting the cost of resources needed to complete a set of
activities which result in delivery of a software product or set of
software-related products. The estimation process is an essential
activity in the acquisition of any software oroduct.

Software Cost Measurement. Software cost measurement may be defined as the
process of appraising the expenditure of resources allocated for the set
of activities required to produce a given software product. Software
cost estimation and measurement are two functions associated with the
discipline of program control.

Software Requirements Engineering Methodology (SREM). A part of the Ballistic
Missile Defense Advanced Technology Center (BMDATC) program directed
toward improving the methodology used in the development of software for
BMD proarams. SREM is a part of this program and addresses requirements
generation for software development. SREM is composed of a combination
of languages, tools, and procedures designed to reduce or eliminate
known error sources. Data processing subsystem requirements in the SREM
approach for BMD are predicated on an input-processing-output orientation
with processing flow through the subsystem being described in terms of
required paths through the subsystem. Each processing path is identified
by a message (stimulus), a seauence of processing steps (including re-
quired decision nodes with decision variables), and response with data
which are local to processing on a nath, or which must be saved for
processing on a subsequent path beina processed. Performance reauire-
ments in SREM are defined, at a minimum, in terms of the accuracy and
timing required across the subsystem for each stimulus and are stated on
each path or sequence of paths in the form of validation points. These
identified noints mark places in the processing where specified data
must be available for collection, and executable procedures which define
the performance pass-fail criteria that will be imposed on the software.

Specification and Assertion Language (SPECIAL). A design specification language
developed in conjunction with the Stanford Research Institute (SRI) design,
implementation, and formal verification methodology, SRI Hierarchical
Design Methodology (HDM). SPECIAL was designed to (1) specify systems
constrained within a particular methodology (HDM) for the design, imple-
mentation, and proof of computer systems; (2) specify systems containing
hardware and software; (3) permit syntactic checks on the consistency of
a specification; (4) be directly usable in a formal proof of correctness;
and (5) specify systems that can be implemented in any programming
language. SPECIAL is a design specification language based on a mathe-
matical discipline. It constrains the system design to conform to HDM
for structuring and implementing systems. While these are desirable
properties of SPECIAL, they also require specialized training and dedi-
cation to the specific methodology.

m

bt e

o

e — e — g i e gt et
-4 5

APPENDIX D - OFFICIAL GOVERNMENT DOCUMENTS FOR COST ESTIMATION AND MEASUREMENT

DODI 4105.62, Proposal Evaluation and Source Selection

DODI 5000.19-L, Acquisition Management Systems and Data Requirements,
control List

DODI 5000.22, Guide to Estimating Costs of Information Requirements
DODI 7000.2, Performance Measurement for Selected Acquisitions
DODI 7000.8, Cost Performance Report

DODI 7000.10, Contract Cost Performance Funds Status and Cost Schedule
Status Reports

DODI 7000.11, Contractor Cost Data Reporting

DODI 7041.3, Economic Analysis and Program Evaluation

DODI .220.25, Standard Rates for Costing Military Personnel Services
LCC-1, Life Cycle Costing Procurement Guide

LCC-3, Life Cycle Costing Guide for System Acquisition

MIL-STD-881A, Work Breakdown Structure for Defense Materiel Items

MIL-STD-1641, Preparation of Pert/Time Networks and Reports for Training
Device Contracts

MIL-P-23189A (Navy), PERT/Time and PERT/Cost Management Information Systems
for Planning and Control

AFM 70-6, Source Selection Procedures

AFP 70-14, PIECOST (Probability of Incurring Estimated Cost)

AFR 173-1, Management of the Cost Analysis Program

AFR 173-2, USAF Cost Estimating Relationship/Cost Factors Program
AFM 173-10, USAF Cost and Planning Factors

AFM 173-11, Independent Cost Analysis Program

AFR-174-2, Follow-Up on Internal Reports of Audit (AFSC supplement 11/2/72
and ESD supplement 6/15/72)

AFR 175-4, Auditing in the Air Force
AFM 175-118, Air Force Audit/Management System
AFR 177-13, Accounting for Research and Development

AFM 177-100, General Principles, Standards, and Policies of the Air Force
Accounting and Finance System

AFR 178-1, Economic Analysis and Program Evaluation for Resource Management
AFR 310-1, Management of Contractor Data

13 | 'Preeeding page blank

Sy

AFR 600-1, Development, Selection and Application of Management Control

stems

AFR 800-6, Program Control - Financial (AFSC supplement 9/4/74)
AFR 800-11, Life Cycle Costing (LCC)
AFR 800-14, Management of Computer Resources in Systems

AFSCP
AFSCM
AFSCM
AFSCP
AFSCP
AFSCR
AFSCR
AFSCP
AFSCP
AFSCP
AFSCP

AFSCP
AFSCP

AFSCP

ASPR,

¢i<l; P
12314
173-2,
173-5,
173-6,
310-1,
310-2,
800-2,
800-3,
800-6,
800-14,

800-15,
800-19,

800-23,

Armed S

rogram Direction

Cost Estimating

Cost Information System

Cost/Schedule Control Systems Criteria

C/SCSC Joint Surveillance Guide

Management of Contractor Data

Deferred Requisitioning of Engineering Data

Management of Multi-Service Systems, Programs, Projects
A Guide to Program Management

Statement of Work Preparation Guide

Joint AMC/NMC/AFLC/AFSC List of Authorized Acquisition
Management Systems

Contractor Cost Data Reporting (CCDR) System

Joint Design-to-Cost Guide: A Conceptual Approach for Major
Weapon System Acquisition

Secretary of the Air Force Program Review/ Program Assassment
Review/Command Assessment Review (SPR/PAR/CAR) Guidance

ervice Procurement Regulation

ESDR 173-1, Electronic Systems Division Cost Analysis Program
ESDR 173-3, Cost/Schedule Control System Criteria (C/SCSC)

AFR 375-8, Work Breakdown Structure for Defense Materiel Items
AFSCM 173-4, Program Breakdown Structure and Codes

ESDR 173-2, Work Breakdown Structures

114

e LU

COMMENT SHEET
Software Cost Estimation and Measurement Guidebook
Revievwer's Name: Reviewer's Organization:

Comments:

Please return tos HQ ESD/TOIT (Stop 36)
Hanscom AFB, MA 01731

IS5

TaR SN

(FOLD)

(FOLD)

FROM:

HQ ESD/TOIT

Stop 36

Hanscom AFB, MA 01731

