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ABSTRACT

We consider the dynamo action produced by convection of a partially-

ionized, electrically conducting gas in a magnetic field. The model

consists of two thin, Cartesian unipolar inductors connected in series

by the magnetic field. For the case of a uniform magnetic field we

compute the total current system generated by an arbitrary gas flow ;

for the case of a non-uniform field, we compute only the field-aligned

coupling current. Application is made to the solar atmosphere.
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I. INTRODUCTION

Magnetic fields play a significant role in a wide variety of plane-

tary, interplanetary, and astrophysical. contexts. One important possi-

bility is that plasma motion across field lines can serve as a dynamo

to convert mechanical energy into electric and magnetic energy. Dynamo

effects are conspicuous in the Earth’s magnetosphere and ionosphere,

Jupiter ’s magnetosphere, and on the solar surface. Accurate modelling

of these processes will advance our understanding of solar system plasma

physics a great deal.

Solar active regions are known to be permeated by strong (.... kj)

magnetic fields in the photosphere. The large energy output of flares

is generally attributed to the rapid conversion of magnetic energy of non-

potential (V x ~ 0) fields in the corona into particle energy. In the

H low ~ nkT/B2 coronal plasma above a well—developed active region, field -

aligned currents can flow which close in the photosphere and lower chromo—

sphere. The electromotive force for these coronal currents can be under—

stood as arising from the convective motions of the partially ionized gas

in the photosphere at a pressure p 0.1 atm. If we accept a value of

10 ohm cm for the intrinsic resistivity of the photosphere, then the

gas has electrical conducting properties equivalent to a semi-conductor

with a conductivity somewhat better than sea water. Photospheric “neutral

winds” ~Sen and White, 1972] can blow across the magnetic field and impart

stresses on it causing it to be twisted or sheared. The flare is then a

rapid release of this free energy.

The simplest approach to the dynamo problem is to assume infinite

conductivity in the photosphere for which the field lines are frozen into

the gas. For time scales less than the resistive time constant, this is

2
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probably an accurate picture. Finite resistivity is generally incor-

porated by solving a convection/diffusion equation for the magnetic field .

However, there are advantages to an alternate perspective of the

problem given by a source-theoretic analysis. Here, one solves directly

for the currents using, say, Ohm ’s law and self—consistently adjusts the

magnetic field. This approach has the advantage of enabling one to assess

and incorporate anomalous plasma and kinetic effects (e.g., current—driven

plasma Instabilities) and also to handle tricky boundary conditions and

constraints which can arise when the total system consists of quite

different behaving plasmas. Alfven and Falthammer (1963) have described

three classes of plasmas with radically different properties and when

combinations of these occur in a system, source theory is well suited for

the analysis on a local as well as global basis.

Sen and White (1972) adopted the picture of the photosphere as an

MHD dynamo and considered the currents driven by radial gas flow from the

center of a symmetric sunspot. They only considered those currents which

flow in the photosphere and their analysis could not describe any twisting

or shearing of the field. Heyvaerts (19711.), however, provided the key

idea that the magnetic field could act as a shunt and allow a large current

flow out of the photosphere and into the corona. This aspect character-

izes the photosphere as a full MHD generator [Brogan, 1968] capable of

also storing magnetic energy through a coronal current system.

This picture is attractive for flares because if photospheric faculae

and chromospheric plages are interpreted as resulting from Joule dissipa-.

tion of dynamo currents [Sen and White, 1972), then in view of Svestka’s

(1976) description “A flare appears either as a brightening of a part of

existing plage (the most common case) or as the formation of new bright

3
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areas in places where the plage did not exist before”, the plage is a

signature of dynamo action (either as a generator or a load) and its

coronal magnetic field can be highly non-potential and susceptible to a

flare instability.

The purpose of this paper is to synthesize the work of Sen and

White (1972) and Heyvaerts (19711.) in a model which allows more general

gas flows. The very low electrical resistance of the corona compared to

the photosphere suggests a very simple geometrical model of the system

consisting of 2 + 1 dimensions can be used. We consider the dynamo action

In a relatively thin (100-1000 km) horizontal layer on the top of the

photosphere and allow currents to pass with little resistance into the

corona and dissipate in a photospheric load at the conjugate magnetic

footpoints. The model can be viewed as simply two resistive unipolar in—

ductors connected in series.

The most complete analysis of this problem would require that we

self-consistently compute the generated magnetic field. But for simpli-

city we shall assume 1) steady-state conditions and 2) the magnetic Reynolds

number R < 1 . The second condition puts us in the regime of conventional

MUD (electric) generators [Brogan, 1968] . However, the analysis for

Rm >> 1 is inherently non-linear and our simplified linear treatment

should contain useful information even for R -~ 1 . It may well be
m

that an MUD or tearing instability prevents a very large deviation from

the potential magnetic field configuration.

In Section II we describe the model of two coupled parallel-plane

unipolar inductors. In Section III we compute the Hall, Pedersen, and

field—aligned currents for an arbitrary two-dimensional neutral wind

velocity flow for the case of uniform B • In Section IV we consider an

inhomogeneous B and compute only the field-aligned current. In Section V

we present concluding remarks. 
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II. MODEL

Heyvaerts’ (1971$.) shunt model of the photosphere is shown schemati-

cally in Fig. 1(a) for a simple bipolar magnetic field configuration.

The dynamo slabs are linked by the magnetic field and because of the low

electrical resistivity of the fully ionized, low ~ plasma in the corona

the field lines are near iso—potential contours of the electric field .

We have modified his model slightly and will consider the system sketched

in Fig. 1(b). This configuration simplifies the analysis somewhat; it

also lends more generality to the problem both in execution and applica-

tion to other space and astrophysical circumstances. We are only

interested in the current systems possible and the generated magnetic

fields may differ for 1(a) and 1(b) because of geometrical considerations.

We have also neglected effects due to horizontal components of the

magnetic field in the slabs for the sake of simplicity.

We assume a neutral wind flows in each slab of effective width

b 
for which the two dimensional (anisotropic) electrical conductivity

• , j
tensor ~ perpendicular to the magnetic field is known. The thickness

of the slab is treated as small so that the potential drop along the

magnetic field is small everywhere. The magnetic field lines are equi—

potentials of the electric field and conduct current between each slab

with no resistance ; in the interface region, the magnetic field lines

are perfect insulators in the perpendicular direction.

_ 
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I I I .  HC$1OGENEOUS MAGNETI C FIELD

A. CURRENTS

If the magnetic field is uniform in the dynamo region, the

analysis yields differential equations with constant coefficients and a

complete solution for the currents may be obtained. ~‘or two dimensional

cartesian coordinates we write the conductivity tensor in a slab as

~ 
= a~~ 

~~~~ ~~~~ 
O)~~~a2 (° i) (1)

which defines the matrices L~ and c . The scalar quantities and

are the Pedersen and Hall conductivities respectively. If we can

neglect the effects of electron-ion collisions, the conductivities may

be written as

= n
O
e
[m(

2
÷~
2 ) M(v~~

+Q
~j)] 

(1÷ a) (2)

a
2 

= nOe2[~~~~~~~~2 
- 

M(v~~+Q~~)] ~~ce 
(3)

Here we have assumed a simple gas where the charge carriers are electrons

of mass m and singly charged ions of mass M with densities n
e 

fi =

The approximate forms of (2) and (3) result for the dynamo inequalities

[Sen and White, 1972]

‘
~en”~ce 

<< 1 
~
)is/Oci >> 1 (11.)

which can occur in the photosphere in the presence of kG magnetic fields.
‘I

When cx en in 
< 1 the ion slip regime of conventional MUD generators

ce ci
occurs [Swift—Hook, 1965). We also may use

6
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2 1 1  i in~e + 
Mv ] (5)

en in

and

a3 = a1 ÷ (a2,
1a1)2] 

. (6)

for the intrinsic (field-aligned) and Cowling conductivities in the

photosphere. A thorough discussion of electrical conductivity may be

found in the reviews of Chapman (1936) and Braginskii (1965) . An excel-

lent review of MUD generator physics can be found in Swift—Hook (1965).

Referring to Fig. 1(b), if the field—aligned current density falls

of f rapidly inside the slab and in the vicinity of z = 0 , we may

approximate J (x,y,z) J(x,y)H(z) where H(z) is the Heaviside step

function, then integration of the charge conservation equation yields

fdz (~ 
+ ÷ ~

‘
z) 0 (

~
)

so that

J~(x,y) ~_ ( ~~÷~ �)~ _ v •  K , (8)

where

i K
X

and

~x,y 
= fdz 

~x,y ’~”~~ 
(9)

• is the surface current density in the slab across the magnetic field.

All spatial dependence of the variables now occurs in the (x,y) plane

and we shall make use of the (scalar) two dimensional curl operation

7
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For the case of a uniform magnetic field, slab a maps identically onto

b and we have

J~(x,y) = - V K(x,y) = V K.~(x,y) . (10)

If for each slab we define the height-integrated conductivity as

~~~=f
dza~~~a~~~ (U)

where -f. measures the effective thickness of each slab, then Ohm’s law

may be written in matrix form as

Ka,b Ea b E  + 
~~ 

(
~~)

E(x,y) is the electric field which in steady state satisfies

V X E = 0  (13)
9 V E = 14.~tp

and the second term in the brackets is the electromotive field resulting

from a neutral wind velocity field V (x,y) in each slab.
a,b

We now add the expressions in (12) for a and b and using (10)

and (13) we obtain

V E  = Sla+Slb 
[(52a

\T
a + 8

2b
v
b) + € 

~~ia
”a + slb

V
b)] ‘ 

(111.)

where we have defined analogous to (1)

E = — (15)

8
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and have used the relation cc = —

It is convenient, at this point, to introduce the potential functions,
* 

$ and x , such that

V = V
*
+ V

~~
= _ V $ + e

~~~
.’ (16)

and V~ are the irrotational and solenoidal components of the neutral

velocity field satisfying

V2X = - V X V  . (17)

Defining the electric potential to be E = - V~ , we obtain from (1I~.)

= 

~~~
48

~ t 
[S2

V~~ + s1
V2X ÷ 

~2b~~~~b + SlbV~Xb1 
. (18)

The solution to (18) is given as

= 
S
i

+S
1~~ [~2~~ 

+ SiaXa + 
~2b~b 

÷ SlbXb] ÷ 
A . (19)

A is the homogeneous solution satisfying V~A = 0 and represents the

effects of any externally imposed boundary conditions in the (x,y)

plane. However, for the geometry of Fig. 1(b) it is assumed that all

sources of the electric field have been accounted for by specification

of V - We may, therefore, take A = 0 and the electric field is
a,b

given as

E = 51a~~ 1b {~2a~~~a ÷ 
~1a~~~a + S2bV$b + 51b~~ b] 

. (20)

Inserting this expression into (12) we have f i na l l y

9



Ka = 
{~ ia~~~~~~~~ 

+ b~~b~ 
- 

~~~~~~~~~~~~~ 
si~~)J

(21)~

[~2a~~2b~~’b 
+ 

~1b~~ b~ 
+ (S~~+s~~+S1

S )Vi~ - 

~1b~2a~~a] ~

= 

~1a~~1b ~~~~~~~~~~~~~~~~~~ 
- S

lb(s2
V
~~
+8
l~~()]

(22)

_€ IS2b
(S2aV~ a

+S
la~~
(
a) + 

~~~~~~~~~~~~~~~~~ 
- 

~1a~ 2b~~~b]~

= 
S~~~~ S1~ 

~ S1 
(S ~~~~~ +S ~~X )  

- S
l (S b~~~~

+S
l~~~X )~ 

(23)

We remark that all ambipolar effects are automat ically taken accoun t

of in the solution for the polarization electric f ield (20) . The

representations in (21) and (22 ) show explicitly the irrotat ional and

‘H - solenoidal components of K in each slab, the former giving rise to the

field-aligned current (23) linking both slabs either of which can be a

“generator/motor” or just simply a “load ”.

If we rewrite (12) for each slab (suppressing subscripts) as

÷ ~~~~~~~ x ~ ~~~~~~~~~~ 
K (2k)

and make use of the fact that

j~ .
~~~ -1 

= ~— K 2 
, (25)

then scalar  mul t ip l ica t ion  of (2 1~) wi th  K yields

( K x ~~ ) ÷ ~~ — K 2 = i~~.~~~~. (26)
3
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If we multiply (26) by an infinitesimal element of area dA , then

the first term is the work done by the height-integrated volume force

~ X B at velocity V and, if negative, represents the local power

generated by the slab as a seat of electromotive f~rce. The second term

represents ohmic losses and the right-hand side gives the electrical

power into dA * A negative value of K • E represents electrical power

out of dA and when this occurs a negative value of V ( K  X B) is

required ; the slab is then locally a power generator [Swift-Hook, 1965).

We note that in the most general case the quantity (i + ~
) ~ ~

at a point (x,y). This seems to violate conservation of electrical

energy. However, it is easy to show that  if we integrate over the entire

area of the system, S dA (K a + Kb)*E = 0 . This enforces conservation

of total electrical energy and indicates that different points in a slab

communicate power through the Poynting flux S = E X B

B. DECOMPOSITION OF THE VELOCI TY FIELD

The solutions (20) — (23) have been readily obtained because of

the possibili ty of the decomposition in (16). The Fourier expansion of

V2G = - 1~ tô(x -x ’)b (y -y ’) (27)

leads to the Green ’s function in two dimensions (k  = IkJ )

G(k)  = ~~~~~ . (28)

Thus, for a given neutral velocity field in each slab, the solution of

(17) is

[ dk 1 
i k x 1 ( .  _ii j .~ .~ V

1 v
* J (2it)

2 —p- e j  dx e 
V’xV~ , (29)

and the formal solution of the problem is complete.

U 
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C. SIMPLE GAS FLOWS

Consideration of some elementary gas flows in special circum-

stances will illuminate much of the physics contained in (20)-(23) . We

take Vb = 0 and let V V for the following cases of interest ;

(i) OPEN TERMINALS 
~~b 

= o)
Current flow is restricted to slab a and J = K = 0z b

The electric field (20) reduces to

~~~ ~~~~~~~~~~~~ ~~~~~~~ 
(30)

Sla C ~ c X

* and the surface current (21) is

-. 1 -• -.
K = —  

~3a~~
’4, ~~5 (31)

The magnetic force density on the gas is given as

i-’ ~
-‘ B -

_ K X B = _ • • •
~~

s
3a V

~ (32)

while the ohmic losses and electrical power density reduce to

_ K2 =~~~~ S
3

V2 (3~)

— B~K E = _
~~~

.s
3

V
* 

v~

The quantities in (33) and ( 311.) will, in general, d i f fe r  when dA is a

seat of EMF. We could “redefine” the electric field E E’ to absorb

* -• 1 0 — -•
the V X B term in (12); then, of course, — it = K E’ . However, we

3
prefer to distinguish between the electromotive field and the electric

field satisfying (13) which, in principle, can unambiguously be deter-

mined by hooking up a potentiometer across the slab’s magnetic field terminals.

12
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We note that only the irrotational component of V experiences a

braking force in (~~) .  The solenoidal part of V flows freely due to

the absence of any electrical load in slab b. We also note that the

surface current in (31), which is manifestly solenoidal, is driven by

the irrotational component of V by means of the “enhanced” or Cowling

conductivity 8
3 

. Clearly, a polarization electric field (30) has

built up which enhances the current flow above that expected from the

Pedersen conductivity alone. If, also Eb = Ea ~ the polarization field

will drive, in addition to other currents, a strong component = —
~~~

- V 1 X B
1 !

in slab b. By analogy to the effect  observed in the earth’s equatorial

ionosphere [Cunnold, 1978) we may consider the current in (31) driven

by V~ through the Cowling conductivity as a two-dimensional electrojet .

Although the effects are similar, in fact the earth’s electrojet (s) is

much more complicated owing to the complexities of the three-dimensional

field/ionosphere configuration.

( i i )  SHORTED TERMINALS 
~~1b — 

‘ 
o)

Of course E = 0 and the surface currents are

B 1 — -

K = — s  V + — s  V X Ba c 2a c la

B — 1 -. — ‘~5)

It is interesting here to compare the body forces

‘ B — — B — 2
Fa ~~~~

82a V
~ 

X B  
~~ 1a~~$ 

_
~~~~

S1a V
X
+ 

2
82a \r

X 
X B

(36)
* B -. - B2 -.
F
b

=_ •••
~~
5
2a

V
~~

X B  +.-
~~

s
l

V
X

13
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For an irrotational flow, the magnetic field opposes the gas flow and

slab b exerts a force perpendicular to the gas flow ; a solenoidal flow

is braked by slab b and the magnetic field exerts a force perpendicular

to the gas flow.

( i i i )  SOLENOIDAL FLOW (v • v = 0)

The currents are given as

— 1 5
1b — —K = 

~ 51a+51b 
~BS2

V + 
~1a

”X 
X B

( 37)
— 1 Sla — — —= - 

~ ~1a~~ 1b 
[Bs2bv

X 
÷ S1bV x B]

and

= B 
S
i 
5
1b 

V2 x • (38)
Z c 

~1a~
51b

The electric field is

1 51a — —E = — —  V X B , ( 39)c 5ia lb X

-‘ 1— -.
and becomes E — - — V~ X B only when either 0 or 5

1a 
— 

*

Heyvaerts’ (1971$.) model fal ls  into this class of photospheric flows which

are good candidates for shearing, say, a bipolar magnetic arcade.

(iv) IRROTATIONAL FLOW (v x v = o)

Sen and White ’s ( 1972 ) model falls into this class and,

in light of recent solar observations of sub-arcsecond, kilogauss

magnetic flux elements, we reexamine their model . The currents are

given as

lii.

1 ’ -~
.-  _ _-



= 
~~~ 

[Bs2
s
lb~$ 

+ 
~~~~~~~~~~~~~~~~~~ 

X

— 3. 52a
K
b 

= 51a~
81b 

[_ Bs~~V,1 + 
~2b”4r x B

and

= 
B 82a 51b V2~ . (li.i)

Z C Sla+51b

The correspond ing electric field is

~~~~~~B 
52a ~ . ( 11.2)C S
la+Slb $

I rrotational, radial gas flow may be described by the expression

= v(P)[H(p _P1) — H(~ -~2)]3 ,

where p1 < p2 defines the inner and outer boundaries of a flow annulus.

Sen and White (1972) considered an outflow, but we shall instead consider

an inflow, V(p)  < 0 -

If we take Eb = 0 , the above expressions reduce to the results of

Sen and White (1972) for the ion slip regime they considered . In this

situation the electrons are strongly magnetized and the ions unmagnetized.

Physically, the gas carries ions inwards until a polarization field builds

up to cancel any radial electric current, K = 0 . A small azimuthal

ion current flows in the V X B direction. However, in response to

the polarization electric field, electrons E x B drift and enhance

the azimuthal current considerably. This intense azimuthal current system

(primarily of electrons) was termed a Hall current by Sen and White in

reference to the direction of the electric field ; however, in the language

of MUD generators, a current flow in the V x B direction is conventionally

15
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a Faraday or Pedersen current [Swift-Hook, 1965; Brogan, 1968) in

reference to the direction of the electromotive field . It is clear that

either convention is acceptable so long as one makes explicit his refer-

ence to either a driving electric or electromotive field.

Since inward gas flow enhances a “seed” magnetic field, the question

is can a self—consistent magnetic dynamo be set up. If the electrojet

current is confined to a thin sheet, it is straightforward to show that

in steady-state, the velocity required to maintain the magnetic field

must satisfy the order of magnitude estimate (esu)

V c 1$.
c 2~ta

3~~~ 
*

This result is in agreement with Cowling ’s (1957) estimate (aside from

a factor of two); however, we emphasize that the conductivity to be

used is the Cowling conductivity (6) and the scale length is the thick-

ness of the current sheet not the perpendicular scale length, r . For

a current sheet where ~ << r the magnetic field does not depend sensi-

tively on the vertical distribution of current inside the sheet so long

as the surface current density is held constant, K ~ a3 ~
V - Thus, the

relevant combination must be as given in (11.3). If we take values of

a
3 

io
u 

esu and ~~ , 100 km, Equation (11.3) yields V = 1.5 m/sec. This

value is 1O9 times larger than Cowling ’s (1957) estimate since his conducti-

vity was a coronal value and he used a very large perpendicular scale

length.

The very short lifetime (‘
~ 
hrs) of sub-arcsecond magnetic flux

elements (fluxules) [Harvey, 1977; Stenflo, 1976; Parker, 1978, and his

references) strongly suggests that they are a solar surface phenomenon

and are generated in the photosphere (or not far from it). Parker’s (1978)

16 
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analysis demonstrated that a superadiabatic effect occurring beneath the

fluxule could lower the temperature of the core and thereby reduce the

core gas pressure. An effect of this type can produce an MUD magnetic

• generator where the core is a low pressure, MUD sump. thservations clearly

show gas downdrafts into the core and we may expect also a smaller hori-

zontal velocity component across the field into the core.

Parker’s analysis also raises an important point concerning the

electric conductivity. The fact that ion—neutral collisions are important

in the quiet photosphere has already been appreciated by Kopecky and

Kuklin (1969) and by Sen and White (1972). In this regime the conductivity

is very sensitive to gas temperature relating directly to the degree of

ionization. A cool core may even lower the conductivity by as much as

two orders of magnitude from the value quoted earlier and place the effec-

tive conductivity in the range 0
3 

-. 1O9 - 1011 esu [Kopecky and Kopecky,

1971). The perpendicular velocity of 150 rn/s required by (!~.3) for this

case is then not far from observed downdraft velocities —~ km/s.

The question of whether a steady state can be reached is also relevant.

We shall show in a subsequent paper that for a current sheet where the

thickness and perpendicular scale length satisfy -
~~ << r , the magnetic

resistive decay time is approximately

2 ita -e~r
-r . (11.1$.)DIFF c2

For a radial gas inflow the gas convection time is clearly

— r/v - (14.5)

.
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Thus, the magnetic Reynolds number for a current sheet in the plane of

the photosphere is

2ica~~~V
R = DIFF/ CONV 

c~ 

(46)

We note that the self—consistency relation (14.3) is equivalent to R
m

for a current sheet. Even for values 4~, p~~ r 100 km , Equation (11.1$.)

yields decay times consistent with observation [Stenf lo, 1976]. The

actual lifetime of the fluxules is probably determined by MInD considera-

tions: e.g., how long can the low pressure core be maintained? An MMD

instability could also develop to destroy the dynamo on a time scale

related to (44).
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IV. INHOMOGENEOUS MAGNETIC FIELD

We shall restrict our attention to the simplest case of a vertical

magnetic field B(x) which is the same in both slabs and also treat

= Eb = E(x ) * If we take the divergence of (12) for each slab and

add, we obtain using (10)

V . [ E E ] = _ ~~~V . [ E ~~~ e ( V + V b)] . (11.7)

The field-aligned current density is thus

J~(x,y) = V 
~~~ 
c(v~ - ~‘a)] - (48)

If we use the approximate forms of (2) and (3) for the dynamo inequali-

ties (ii.) and treat n
0 

as a constant, Equation (li.8) can be cast in

the form

= 
~ 

fl
O
O
~~I 

V•(V
b
_V
a) 

+ vx [_ 2 i~ ( 1#Q)(Vb
_V

a )]~

this result and (li.8) reducing to (23) for VE = VB = 0 . For the

symmetric case we have treated, the polarization field need not be corn-

puted to obtain 
~z 

the surface currents, of course, require a solution

for E * Equation (49) gives the interesting result that even for a

constant velocity field, a field-aligned current can be generated through

v x V 
~ci 

~ where = eB/Mc , when a ~< 1 -
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V. CONCLUDING REMARKS

We have considered the currents generated in two coupled unipolar

inductors. For simplicity we have concentrated on the case of a uniform

magnetic field for which all the currents may be computed in 2 + 1

Cartesian geometry with relative ease. More accurate modelling is

needed to encompass the more realistic case of non—uniform B • We have

indicated in Section IV how gradients in magnetic field strength can

also generate field-aligned currents in the presence of neutral wind

flows .

For application to the solar atmosphere we have considered the broad

aspects of two basic categories of problems : 1) in the presence of a

strong, large-scale magnetic field (with  a subphotospheric primary current

source) can photospheric winds distort the field and store magnetic energy

in the corona, to serve as free energy for a flare? and 2) can the photo—

sphere generate magnetic fields of itself? We have presented some evidence

that the answer to both questions is yes.

In regard to question (1), Heyvaerts (19714.) has given quantitative

arguments that the photosphere can be a coronal current generator using

reasonable values for parameters . He has also issued the caveat that for

the case of a thin dynamo, the thickness of the slab is important in

dimensional analyses. We have attempted to generalize his work for an

arbitrary gas flow. In the case of a bipolar magnetic arcade, if the

dynamo action is far removed from the polarity inversion line, our solution

should be valid ; in the vicinity of the inversion line, edge effects can

occur that can be accounted for by a modification of Equation (29) for a

semi-infinite plane.

20
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In regard to question (2), we believe that electrodynainically there

is no inconsistency in interpreting small-scale magnetic flux elements

as photospheric dynamos. The magnetohydrodynamics, of course, must still

be done to get an overall, self—consistent, gas flow solution. The central

problem in tying everything together must be an accurate determination of

the electrical conductivity tensor a
i(i=0=3) 

for each solar surface

phenomenon under consideration.

For application to other space environments, the coupled inductor

model can provide order of magnitude estimates for many effects if not

just valuable insight. The important point is that the model attempts

to account for the complete current circuit and in doing so the source-

theoretic approach can handle a problem where local dynamo action can

produce a global effect that shows up a large distance away. Field-

theoretic approaches that concentrate locally on the physics in a small

volume must properly take account of boundary conditions far away. For

instance, the influence of E
b 

on a dynamo in slab a is manifest through-

out (20)—(23). With appropriate scale factors that effect the transforma-

tion from a 4..~~b [viz., Equation (10)], slab b may represent a planet’s

ionosphere. Slab a can be used to describe the motion of, say, the iono-

sphere of 10 orbiting Jupiter. A generalized Ohm’s law may be constructed

to replace (12) for slab a and the model may be able to provide a crude

description of the complex magnetosphere/ionosphere interaction. We are

pursuing this line of reasoning in the hope that temporal, electromagnetic

induction effects may be incorporated into the model.
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DYNAMO ACTION IN A THIN SLAB

by

D. D. Barbosa

Ins t i tu te  for plasma Research
Stanford University

Stanford , California 914.305

FIGURE CAPTION

Figure 1. Dynamo action in two thin, coupled slabs.

(a)  Heyvaert’s (1974 ) model for a bipolar magnetic

configuration. Photospheric convection generates a field-

aligned coronal current system which can twist or shear

the field and provide magnetic free energy for a flare.

(b)  Two resistive, Cartesian unipolar inductors connected

in series .
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