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Abs tract:
—

~a ~
We—stmw , for convex optimization ~~~~~ how a minor modification of

the usual Lagrangean functi~~~(un1ike that of the “augmented Lagrangeans”),

> plus a limiting operation, allows one to close duality gaps even in the

absence of a Kuhn-Tucker vector, (see the introductory discussion, and the

discussion in Section 4 up to equation (5O)).
’
~~The cardinality of the

convex constraining functions can be arbitrary (finite, countable, or

uncountable)~

In fact, .ek*1 main result - ‘
~~ e~e~—3-of t1 n-~))reveals much finer

detail concerning ~~ 4liiiting Lagrangean. There are affine minorants,‘
(f or any value 0 < Q~~~~~of the limiting parameter ~) of the given convex

functions, plus an affine form nonpositive on K, for which a general
)~ 

.~~~~~~c~~:/ l  ~~~

linear inequality holds on R
t
~. After substantial weakening, this inequality

lead s to the con~ 1us ions of the ‘p~evious paragraph .

This work is mot ivated by,  and is a direct outgrowth of, research

Joint with R.J. Duffin , which is cited as our reference [6].

Key Words:

1) Lagrangean ACC
~~ION ~

2) Nonlinear progranmiing ~~~ ~Qtl

3) Kuhn-Tucker theory 
~~~ 

~set~~

4) Convex function ‘ • • - • -  —

• 5) Convexity 
~~~

• f I r
~

‘
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A Limiting Lagrangean for Infinitely-Constrained

Convex Qptim~~~tion in

by H. ( . J c  ro~ Low ’

in h onor of Dick Duffin

We consider convex programs (see Section 2 below)

inf

(CP ) subject to fh(x) < 0, h e l L ,

x £ ~~

with possibly infinitely many constraints, and show under a weak constraint

qualification (CQ ) (see below) that a small modification of the ordinary

Lagrungean always closes the duality gap . To be more specific (see

Corollary 3 below) we show there are scalars w0, w1 and a vector w e R
e

such that , if 0 < 9 ~ 1, there are nonnegative scalars [Xh h eH) with

(DE) (1 + 9w
0
)f0(x) + 

Q (wx + w 1) + E X
h
f
h(x) ? v(P)

heH

for all x cK , where v(P) is the value (assumed finite) of (CP). The

sunination in (DE) is never problematic, since only finitely many Xh are

non-zero.

Our constraint qualification (CQ) does not imply the existence of a

Kuhn-Tucker vector , and hence is weaker than the usual ones (see Section 2

below). Thus (DE) places many duality gaps in a simple perspective : the

criterion function f
0
(x) should not be weighted by unity, bu t rather by a

number arbitrarily near unity ; and then an affine linear “compensation”

• wx + w1 is needed , but it can be weighted by any positive amount, however

small.

• 
~Address af ter September , 1978: Col1..~. of Industrial Management, Georgia
Institute of Technology, A tlanta , Georgia , 30332.
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Our methods of proof can be succinctly described , and were developed

jointly in [ 6 1 .  We reason as follows . Since closed convex sets , and the

epigraphs of closed , convex functions , are describable by in f in i te ly many

linear inequalities — in the terminology of Charnes, Cooper , and Kortanek

3 1 , they are describable as a “semi-infinite” constraint set — this

convex optimization ought to, in principle , be reducible to results about

semi-infinite systems.

Recently, R.J. Duff in and the author [61 found methods of reducing

convex programs , under a constraint qualification , to semi-infinite programs ,

of applying the “appropriate” result on semi-infinite systems, and then re-

interpreting the resulting conclusion (which is a conclusion about the

semi-infinite program) as a conclusion about the convex program .

This paper is very much a replication of t 6 1, except that a different

result about semi-infinite programs is (first established here in Section 1

and then’~ applied , and then a different conclusion about the Lagrangean is

obtained .

For related work, see Blair ’s generalization [2 , Theorem 3 1 of a

result from an early draft of [6 I , which we quoted to him , as well as

McLinden ’s further generalization of this result [8] to certain infinite-

dimensional spaces . McLinden ’s work [8] uses the elegant theory of

conjugates of convex functions , as developed by Rockafellar in [9 1. The

paper [4J is also relevant.
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Section 1: A Strengtheni~~ of a Corollary

of Blair ’s ”Ascertt Ray” Theorem

In this section , we strengthen [ 1 , Corollary 21 to a form which , as

we show below , actually implies the main result [ 1 , Theorem ] of 1 1 1 .

Let cone(S) resp. cicone(S) denote the cone resp. the closure of the

cone spanned by S (see 1 9 1). The following result is well-known (see,

e.g., [9]), and is a direct app lication of the Separating Hyperplane Theorem.

Len*na 1: For I ~ 0 an arbitrary index set, indexing a set of vectors

Ca 1 i c i) in R~ , suppose that

a1x 0, all i c I

implies cx 0

for any x e R’~.

Then c € clcone ((a
1 I i c i ) ) .

Lenuna 2: For I � 0 an arbitrary index set , suppose that

aix > 0 , all lu

implies cx > 0.

Then there is a vector w with the following property:

For any 9, 0 < 9 < 1, there is a set of nonnegative multip liers

Cx~ I i c i}, only finitely non-zero, such that

(1) c + O w  = E X 1a
1 .

id

In fact, if v is any point in the relative interior of the set

(2) C’ = cone (Ca
1 I ~ € 1 ) )
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we may set

(3) w = v - c .

Proof. By Lemma 1, c c c l C’, and since v is in the relative interior of C’,

then 0 < 9 < 1 implies that 9v + (1 - 9)c is in the relative interior of C’

by the accessibility lemma [ 9]; and hence can be expressed in the form of

the right-hand-side of (1) with Cx~ I i £ i3 a finitely non-zero set of

multip liers . However ,

Qv+ (1-9)c = c+ 9(v-c) = c+ Ow

and so (1) holds.

Since any convex set C’ has a relative interior , at least one such w

given by (3) exists.

Q.E.D.

We now give our strengthening of [1 , Corollary 21, which is closely

related to Kortanek’s “perfect duality” results [ 7 1.

Theorem 1: Let I ~ 0 be an arbitrary index set , and suppose that the system

(4) a1x � b  , all i cI

has a solution in R”.

Suppose also that (4) implies

(5) cx ?d

for any x c R ~ .

Then there is a vector w eR~
’ and a scalar w0sR , with the following

property:
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For every 0 < 9 < 1 there are nonnegative scalars (X~ J i C I), only

finitely non-zero, which satisfy

(6) c +Q w  = E X 1a1

iCI

(7) d+ 9w0 < E X~ b1.
isI

In fact , if (v ,-v0) is any point in the relative interior of the set

(8) C” = cone (C(a’,—b .) I i € 1 )  U C(0 ,l)))

we may set

(9) (w ,-w0) = (v , -v0) - (c ,-d)

i . e . ,  w = v - c  and w
0 

= v
0-d.

Proof: Since (4) is consistent , and (4) implies (5), one easily proves that

a1x > 0 , all i ci

implies cx 0.

nfl nTherefore for (x ,r)  e R  (x c R ) arbitrary ,

r >  0

a1x - b
1r � O  for a l l i c l

implies cx - dr > 0.

We app ly Lemma 2 to reach the conclusion, that there exists (w ,-w0) uR
’
~~~,

w € Rit , with the following property:

For any 0 < 9 < 1, there are non-negative scalars fx 1 I i SI ) ,  finitely

non-zero , and a scalar , > 0, such that
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(10) (c ,-d) + 9(w,-w0) 
= c9(0,l) + E

i €1

Also , if (v , -v 0) is any point in the re lative interior of C ” , we may

set (9).

Now analyzing (10) by components gives (6) and (7) .

Q .E.D.

To compare our results (6) ,  (7) with the conclusions of ( I ) ,  ( i i ) ,

(iii) [1 , Corollary 21, divide both sides of [ 1 , Corollary 2 ( i ) )  by

X > 0 (which can be assumed by [ 1 , Corollary 2( 11)] , to obtain that

(11) (c + v/X~ )x > 9 /?.

can be “linearly deduced” (in the sense of [ 1] )  from (4).  (No te that an

‘ x ’ is missing in [ i  , Coroll ary 21) .

Changing 9 to p in (6), (7)  of our Theorem 1, to avoid confusion with

9 above and changing X~ in (6), (7) to cp1, to avoid confusion with X , our

result gives (with v = w)

(11)’ (c + v/X )x = ~~ cp~a
’x -. ~~

151 i€I

> d + w IA.
— O n

Thus , (11)’ can be linearly deduced from (4) .  Obviously , by taking

9 = A d  + w0, from [ 1 , Corollary 2(11)1 we obtain [ I , Corollary 2(iii)).

This recovers [ 1 , Corollary 2], and in fact, more: for any sequence

of A > O w i thn

(12)

—
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we have seen how to construct O~ such that [ 1 , Corollary 21 holds. Thus,

our Theorem 1 changes an existential statement “there exists A such that.. .“n

into a universal s tatement “for every A. ...
n

From Corollary 2, it ~.s possible to obtain the main result of [ I ] .

We sketch the proof. (Kortanek [ 7 ] has called this result Blair ’ s “ascent

ray ” theorem.)

Theorem 2: [ 11

If the system (4) is inconsistent , there exists a vector W C R
n such that ,

for any N, the inequality

(13) w x > N

can be linearly ded uced from (4).

n f lProof: The inconsistency of (4) shows that , for (x ,r)  € R , x c R ,

Ia x - b . r  -~ 01 —

r >  0

implies -r 
~ 0.

We apply Lemma 2 with c = (O , - l) , and find that there exists

(w,-w0) cR
1
~
44

, w€ R ~ , such that (dividing (1) by 0 on both sides):

For any 0 < 0 < 1, there is a set of nonnegative multipliers

i €i), only finitely of which are nonzero, and cp > 0 such that

(14) (0,-i/O) + (w,-w0) cp(0,l) + E
i CI

Taking components in (14), we see that

(15) wx ?1/9+w

0I
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caii In I I near Ly dedu ced lr ,uii (4 ) . I I one puts 0 = I / (N — w0) ••— 0 , the

renu it Iu ~ I towH , litet wi tI~ ’ut I o 8 u  ol generali ty , N w0 and In fac t

1/(N -w0) 
‘- 1.

Q . E .D.

Stronger results are true for semi-infinite programs , if they are

“well-behaved ;” see either [51 or [61.

- •  •~~~~~~~~ .• •~~~~~~~~~
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Section 2: A Constraint Qualification Weaker

Than the Existence of a Kuhn-Tucker Vector

The convex program studied in this paper is

inf f0(x)

(CP) subject to fh(x) < 0 for all hel l

and x c K

where H is an index set of arbitrary cardinality,  K is a noneinpty convex set ,

and 
~h 

for hcCO )UH maps a convex set Dh ~ K into R , and Dh is the domain

of 
~~ 

(In the terminology of [9], Dh = dom(fh); and 
f
h(x) = +~~ for

x 
~
Dh 

would be assumed in [ 9 ].) We also assume that relint(K) 
~ 

c
~
lint(Dh)

for all hefO )UH , where relint(S) denotes the relative interior of the set S

[91 .

We introduce the following constraint qualification for (CP):

(GQ) There exists x° in the relative interior relint (K) of

K such that f
h(x
°) < 0 for all h cH.

Note that (Q~) is quite weak. E.g., for K = R~ , (CQ ) simply asserts

that (CP) is consistent. Thus, (CQ) is satisfied by the convex program

inf (-y)

(16)

subject to (x
2 + y2)1”2 - x < 0

which is well-known as not possessing any Kuhn-Tucker vector. I.e., letting

v(P) denote the value of the primal problem (CP), we have here v(P)  = 0

(since the constraints have solutions (x ,y)  = (x,O) ~or x ~ 
0), yet there is

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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no scalar A
1 
> 0 with

(17) inf -y + A
1
[(x2 + y2)112 - xl � v(P) = 0.

x ,yeR

In fact , f or any A 1 
> 0, and for any specific y0 > 0, by choosing

x0 = (X 1y~ - l/X 1)/2 , we have

(18) -y0 + X 1((x~ + y
2
)
l/2 - x0) = -y0 + 1,

and thus the infimuin In (17) is - 
~~~~ . For A 1 = 0 , again this inf imunu is -

The purpose of tI- constraint qualification (CQ), is simply to insure

that the infimal value v(P) of (CP ) ,  when finit e , is that of

inf cl(f0)(x)

(CF)’ subject to cl(f
h)(x) < 0 for all h cH

and x e c l ( K ) ,

where cl(S) is the closure of the set S ~ R”, and cl(f) is the closure of

the convex function f (see E 9 1). When this equality of value holds , since

the set cl(K) and the epigraphs of the functions cl(f h ) for h c ( O 3 L J H , can

be expressed as the intersection of hyperp lanes in R’~~ (see [ 9 ] ) ,  the

techniques of the preceding section can be app lied to derive results

concerning v(P) .  From these motivational remarks , it follows that (CQ ) could

be rep laced , in our results in the next section , by:

(GQ )’ 
~h 

for h cCO )UH is a closed convex function, with

real values in the relative interior of the convex

set Dh ~ K , whose only non-real value is + ~~~~ , with

domain dom (fh) lying between Dh and cl (Dh); and there

exists xO~
h crel int(Dh) with fh(x

O
~
h) < 0.
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0,hThe ro le of x in (CQ ) will  emerge En the proof (below) of Lemma 4.

II) prov e t I  ~ ~ In I in tiiad e I i our IIIt) ii vat I una 1 rt~ii~ rk , on the va I —

ct,u Iva I ciu ce o I (CI ’ ) and (CI’)’ u,xler (CQ), we es tat, II ‘di the next r e s ul t .

This reproduces material from our joint paper [6 1 , both results and

proofs , with the kind permission of our co-author R.J. Duff in. Since

the paper [6 ] is in a preliminary version, there appears to be only

this course of action , given our desire to make this paper self-contained .

Lemma 3: [6 1 Let the value v(P) of (CP) be finite , and suppose that

(CQ) holds .

Then v(P) is also the value (possibly not attained) of the convex

program

inf f0(x)

(19) subject to fh (x) < 0 f or all h c H

and xerelint(K).

Proof: For each n, let be chosen to insure

(20) f
0

(X
(n)

) < v(P) + 1/n

(21) fh(x~~~
) < 0 for all h cH

(22) ~~~~~~ e K.

Let x°c relint(K) satisfy fh(x
°) < 0 for all hcH. Then, for any A.,

0 < A .  < i, putting ~
(n) 

= Xx~~~ + (1 -X)x~
0
~ we have

(23) g relint(K)
and by convexity

(24) 
~~~~~~~ 

< 0  for all 
hc H.I
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Now f0 is continuous on the line segment (X
(n),XOJ , with in fact

(25 ) f
0(x~

’
~~) > lim Cxx~”~ + (1 -X)x~

0
~ I 0 <A < I, A 11),

as x°cre lint(K) 
~ 
relint(D~). Hence, for A < 1 close enough to unity ,

(26) f0(u~
’
~~) < f

0 (X 4:n) ) + 1/n

v(P) + 2/n

using (20).

From (23), (24) and (26), we see that the value of the program (19)

does not exceed v(P). On the other hand , the program (19) is more constrained

than (CP), so its value cannot be less than v (P ) .  Thus , its va lue is exactly

v(P).

Q.E.D.

Our proof of Lemma 3 also can be modified to revea l that , if

v(P) = -~~~, then -
~~~~ is also the value of (19).

Corollary 1: 11 v(i’) is finite and (cX~) holds , then the value of (cP) is

also that of (CP)’

Proof: We recall 1 9] that relint(cl(K)) = relint K, and that , for all

hs[O)LJ H , fh(x) = (Cl fh)(x) for all xcrel int K, since relint K ~ relint Dh
is assumed .

Thus, when we start with the program (CP)’ viewed as (CP), and construct

the analogous program (19), we in fact end up exactly with (19).

By Lemma 3 , both (CP) and (cP)’ have the value of (19), hence both have

value v(P).

Q.E.D.
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Section 3: The Main Result

Our main resui It (‘IIicorcm 3) Is obtained by app l ying llieoreiii I Lu U

“semi-infinite” system of linear inequalities equivalent to (CP)’ , and

then interpreting this outcome by methods of algebraic manipulation

developed in [6 ]. We reproduce the latter here, for the sake of a self-

contained presentation.

By Corollary 1, we may assume, within our proofs , that K is

closed , as are the functions 
~h 

for hc[O )UH . This is assumed throughout

the remainder. Therefore, we have representations via hyperplanes :

(27) K = (x CR n a~x a~ , j c I(-1))

(28)~ epi(fh) = ((z,x) c R’~~
1
, x cR~

u 
b~z + a 3x >4 , j cI(h))

for index sets 1(h), h c(-l) U [0) U H, where possibly I(-l) = 0, but

for h ~ -1 , and as usual epi(fh) denotes the epigraph of fh:

(29) epi (fh) = [(z,x) € R~~’, x CR
It I z 

~

which is a closed , convex set. Obviously , in 
~
28
~h’ 

4? 0 for all j cI(h)
and hc[O)UH .

Without loss of generality , the representations (27), 
~
28
~h 

consist

precisely of all supporting hyperplanes for the closed , convex sets K and

epi(fh), hc[OJUH.

Lemma 4: [6] Fix h sH , and suppose that (CQ ) holds.

Then for any x cDh. fh(x) < 0 is equivalent to the semi-infinite system

(30) a~x ? 4, j cI(h).

‘—‘4
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Proof: If fh
(x) < 0, since (fh (x) ,x) ee pi (fh ) and b~ > 0 for all j eI(h),

we have

a~x 4 + (_4)fh (x) > a~

whenever xC Dh 
and j eI(h).

For the converse, suppose (30) holds for x (i.e., a1x ? 4 for all

j e I(h)) yet fh(x) > 0. By (c~Q), there exists x
°c r elint(K) 

~ 
re1int(D~)

with fh
(x°) < 0. Without loss of generality , 

~h 
is closed . Therefore, it

is continuous on line segments and , denoting x(X) = A x+ (1-A )x
0, 0 < A  < 1 ,

we have fh(x) = lim [x(A ) A. Ii3. Thus , for some A*, with 0 <A. * < 1,

> 0.

For all A. in the range 0 < A < 1, x(X ) c re lint (K) 
~ 

relint (Dh), and

hence there exists a subgradient -ueR~ to ~h 
at x(A*), i.e.,

(32a) 11
(x )  f

1 (x(A*)) 
-I- u(x()*) - x) for all

From f1 (x(A*)) 
0 and f

1
(x°) = f

h
(x(O)) < 0, we obtain from (32a) (with x =

O fh(x(x*)) + X~ U(X - x
0) and hence u(~ - x°) 0. This in turn implies that

u(x - x(A*)) = u(x - A*x - (1 - A*)x
0) = u(l - A*)(x - x°) < 0. Thus , since

> 0, the inequality ux? fh(~
c(X*)) + ux(X*) cannot hold .

Now, since (32a) holds, without loss of generality ,

(32b) z + ux 
~ 

fh(x(A*)) 
+ ux(X*)

is among the defining inequalities in the system 
~
28
~h~ 

I.e., for some

• . jeI(h), i4 1, a~ = u, and 4 = fh(x(A*)) + ux(A*). However, since

~~ < ~~~~~~~~ 
+ ux(X*), as we saw in the last paragraph, for this choice

of j c 1(h) we have ~~~ < 4, and this contradicts (30) and completes the
proof.

Q.E.D.

1

*
-- • . - .~~~~~~ ~~~ _~~~~• • - 

,

~~~~~~
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Corollary 2: (A la [6]).

Assume that (CQ) holds . ‘Il en the value v(P) of the convex program ,

if finite , is also the value of th is semi-infinite program:

inf z

(SI) subject to b~z + a3x 4, j £ 1(0)

a3x ? 4 for all j cI(h )

and hsf-l)IJH.

Proof: Immediate from Lemma 4. Q.E.D.

It is now the point to complete the program outlined at the beginning

of this paper , and invoke Theorem 1. This program is identical in conception

to that of our joint paper [6], which differed only in that a different

and stronger result on the semi-infinite system (SI) was invoked , which was

possible in L 6 1 because a constraint qualification stronger than (CQ) was

assumed , which led to an (SI) with some special properties.

Theorem 3: Suppose that the constraint qualification (CQ) holds for the

convex program (CP) of finite value v(P).

Then there exists w0, w1 s R and w ? with the following property:

For any scalar 0 in the range 0 < 0 < 1, there exist y s RXI , y0 s R, and

nonnegative scalars (Xh I h €H), only finitely many of which are nonzero, and
~
h
,Rn ~~~cR for hsCO )UH , satisfying:
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Condition 1: yx + y 0 ’~~O for x c K

Condition 2: ~h + < f~ (x) for all x €D
h and h £ [O)U}!

Condition 3:

yx + y
~ 
+ (l+0w0)@°x + ~~ ) + O(wx + w1) + E X

h@X  + §~~) ~ 
v(P )

heR
for all x c R’1.

In fact, w0, w1, w can be chosen arbitrarily to satisfy

(33) (w 0,w,w1) = (v0,v ,v1) - (1,0,-v(P))

where (v0,v,v1) (with v1,v2 € R and VCR5 is any point in the relative

interior of

(34) C = cone ([(b~ ,a~ ,-a~) Ii’ ‘(0)) U U C(O,a~,-a~,) j e 1(h))

U [(0,0,1))).

Proo f: By Corollary 2 and by Theorem 1, equations (6) and (7) (which we

saw is equivalent to (10)), we have , for 0 < 0 < I,

(35) (1,O,-v(P)) + O(w 0,w,w1) = cp(O ,O,1)

+ E cp (b~~,a
i ,-4)

j€I (0)

+ E E
hef—l)UR j€I (h)

since (SI) implies z l  + x~O ~ v (P). Of course , in (35), ~ � 0 and all

? 0. and only finitely many of the quantities for all j sI(h) and

all h s f - l ,0)tJ }l are actually nonzero. Also , (w0,w ,w1) is any solut ion

• - • -~~~~~~~~~~ —~~~-•~~~~~~~~~ - ••~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• •-
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to (33), such that (v0,v,v1) is in the relative interior of C of (34).

We now analyze (35 ) by the methods of [ 6 1.

From the first components in (35), we obtain

(36 ) F O W
0 

E p4 .
jel(0).

We will , in general, define for hc[O)UH

(37) Ah E
jsI(h)
b~~>O

(with the understanding that = 0 if 
4 

= 0 for all j slOt) with > 0)

for h s(0)UH. Thus we have A 0 = 1 + Ow0 
from (36). Clearly , only finitely

many can be nonzero, and all > 0, by the conditions on the scalars

CPj � 
0.

Next we define these vec tors and scalars :

(38a) y = - E p a~ - E E p
jsl(-l) he[O3UH jcl(h)

(38b) y~ = E p 4 + E E p 4
jsI(-l) hsCO)UH jcI(h)

4—
where an empty summation is zero. From (27), if j sI(-l), a~x 24  for

x c K ;  and from 
~
28
~h’ 

f.f 4 0, we have again a~x ~ 4 for j .1(h) and
he CO3uu , as x cDh ~ K. Hence yx + y0 < 0 for x eK , i.e., Condition I

holds.

• 



18

For h c ( 0 3 U 1 1, if 4 > o , since b
~
fh

(x) + a~x ? 4 for X € D h~ we have

J
(39) f

h(~
c) 2 - x + a

0
/b0 , fo r x e J ) h .

0

Combining (37) and (39) for A 1 0 , we have

(40) Ahfh (x) = E p b~ f1~
(x)

j€I (h)

j2 Z ~~b 0
(_ — 1 x +  4/4), for X € D

h~jeI(h) bb

• and so defining

(41) 8
h 

+ = Xh j ci(h ) 
~~~~~~ ! x + 4/4)

we obtain Condition 2. To be precise , we actually have cl(f
h
)(x) > ~3 hx +

• for all x e D h , but since cl (fh
)(x) 

~ ~~~~ 
for all X SDh, Condition 2 follows.

If = 0, one can arbitrarily pick ~~~ + to satisfy Condition 2, at

least one such affine form exis ting since is somewhere fini te , and hence

has at least one subgradient at one point.

For the concluding part of our analysis, we write (35 ) again with

the first component dropped , in this form :

( 3 5) ’ (0,—v(I’)) 4- O(w,w1
) cp(O ,1)

+ (-y ,-y0)

+ E E p ~~~~~~~~~~~~~~~
he[0}UR j.I(h)

b~~>00~~
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= cp(0,l) + (-y,-y0)

+ E
hefO)Uit

It remains only to dot product both sides of (35)’ with (-x ,-1),

where x c R~ is arbitrary, to obtain

(42) v(P) + 9(-wx - w1) = -p + (yx +

+ E A h~~~
x+

~~~
)

hc(0)UH

for all x €R n. Since p > 0, (42) immediately yields Condition 3, using

A 0 
= I + Ow0.

Q.E.D.

Corollary 3: Suppose that the constraint qualification (CQ) holds for the

convex program (Cr) of finite value v(P).

Then there exists w0, w1 e R and w c Rn with the following property :

For any scalar in the range 0 < 9 < 1, there exist scalars [xh 
h H ) ,

only finitely many of which are nonzero , with

(43) (1 + 0w
0
)f0(x) + 9(wx + w1) + E Ah

f
h (x) � v(P)

heR

for all x€ K.

Furthermore , w0, w1 and w can be arbitrari ly chosen, subject to the

cond ition (33 ) , where (v0,v,v 1) is a point in the relative interior of

the convex set C of (34).

Proof: Immediate from Theorem 3.

Q.E.D.
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Section 4: Re tat io nsj~ p to the IJsual Lagrangean

We conclud e by attend ing to two matters , which are not of great

technical difficulty , but which do serve to clarify the nature of our

main result (Theorem 3), more specifically its corollary (Corollary 3),

and how, in a limiting sense, Corollary 3 solves (CP). This clarification

involves some specification on the vectors (w0,w,w1) of Corollary 3 in

certain cases.

In the usual Lagrangean and its associated Kuhn-Dicker theory,

typically one seeks sufficient conditions for the equality ,

(44 ) max inf [f0(x) + E Xhfh(x)) v(P),
X h �O xcK h~H

h eH

where , in some ins tances , the “max” is relaxed to a “sup” (supreniuui~ .

The usua l theory as developed in 9 I requires the cardinality of II to be

f ini te . As we saw in Section 2 , our constraint qualification (cQ ) does

not even insure (44 ) with “max” rep laced by “sup .”

Our additional conditions D
h ~ K and relint (bh ) ~ relint (K) are also

typical of the standard treatment of “ordinary convex programs ,” as

presented in [ 9 ] ,  and in fact [ 9 ]  requires D0 = K, which we do not.

(Restricting a function f 0 from a domain D 0 ~ K to K will typically

significantly affect its subgradients. E.g., a one-dimensional differentiable

convex function defined on R has a unique subgradient at x — 0, but if f is

restricted to K = Cx I x 2 0) it has many subgradients at zero. It is

essentially due to this restriction D 0 = K, that no term of the form

‘y x + 
~~~~~ 

nonpositive on K, appears in certain results of [ 9  1, such as

[ 9 , Theorem 28.3 and particularly Theorem 28.3(c)I.
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What our Corollary 3 concerns, is relations more complex than (44),

due to the presence of one more operation on the left-hand-side : the

taking of a limit.

In what follows A denotes all multipliers (A h I hell) which are
nonnegative and finitely nonzero. We next establish a crucial inequality .

Lemma 5: Suppose that (w0
(O) ,w(9),w1(9)) c R’~

4-2, w(9) (R
n
, is defined for

O < 9 < 1, and the set of all vectors of this form is bounded. Then if

(CP) is consistent and has finite value v(P),

(45) ur n  su~ sup inf [( l + 9 w 0(9))f 0(x) + 9(w(0)x + w
1
(9))

9”~~O A xiK

+ 2 X~f~ (x)) < v(P)
h cH

Proof: First observe that for any 9, and element of A,

inf [(1 + 9w
0
(9))f

0
(x) + 9(w(9)x + w

1
(9)) + 2 Xhfh(x))xeK hsH

(46)

< inf [(1 + 9w0
(9))f

0
(x) + 9(w(O)x + w

1
(9)) I fh(x) < 0, heR)xeK

since all A h 
> 0 if (A h I hill) e A. Therefore, the left-hand-side in (45)

does not exceed

(47) lim sup inf [( l+ 0 w 0(9)) f 0( x ) + O ( w ( 9 )x + w 1(9)) I f
h~~

c
~~~

O, hell).
~~~ \ ,Ø1~ xeK

Next , let x~~~ be chosen so that fh (x
~~~

) < 0 for h cH and

f0(X
(n)) < v(P) + 1/n , which is possible since v(P) is the value of (CP).

We see that (47) does not exceed 
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(48) lim sup f (l+Ow0
(Q))f

0(x~”~) + 9(W (g) X (n) + w~ (0))3Q \ O 1 .

— 1 (
(fl~~ ) • v ( l ’ )  I I/ u .

using the boundedness condition on (w0 (9) ,w(9) ,w1(9) ) .  Now if v(P)  + 1/n

is an upper bound on the left-hand-side of (45) f or any n , so is v(P) .

This establishes (45).

Q.E.D. H

From (43) of Corollary 3 , for any 9 in the range 0 < 0 < 1 we have

(49) sup4- inf f(l+9w0
)f
0(x) + 9(wx+w 1) + 2 Ahfh (x)) > v(P) ,

A xeK hell

where a statement sup4- C~ I j eJ ) > ~ for us abbreviates the condition

that c~. ~ 
c~ for some j  c J , and hence

(49)’ lirn in.f sup
+ inf f ( l + 0 w 0)f 0( x ) + Q (w x + w 1)+  2 A hf h (x ) )  v (P) .

A xcK hell

Putting together (45) of Lemma 5 and (49) ’ above , we obtain (under

the hypotheses of Corollary 3)

(50) lim 
+ 

sup 4- inf C (l+0w
0
)f
0
(x) + 9(wx +w 1) + 2 Ahfh (x)) = v(P).

A xcK heH

Comparing the standard Lagrangean result (44) with ours (50), we see their

similarity in nature. The limit appearing in (50) suggests the term

“limiting Lagrangean” for our results .

We now state a way in which our limiting Lagrangean can be used to

solve (Cr), in a limiting sense.

• Lemma 6: Suppose that (w
0

(9) ,w(9),v1(9)) € R~
4-2, w(9) i~R

”, is def ined for

O < 0 < 1, and the set of all vectors of this form is bounded. Let the

value v(P) of (C? ) be finite.

_ _  

•
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Let 9~ in the range 0 < < 1 satisfy

(51) lim O = 0 .

• Suppose also that the functions 
~h’ 

h eCO }UH are continuous , and that for

each n the vector satisfies , for certain (A h I hell) e A,

(52) v(P) ~- inf j (l+0w 0
(9 ))f

0
(x )+ 9 (w (9 )x +w )+ 2 A

~
fh(x))xeK hell

< ( l + 9 W
0

(9 ))1
0

(X
(n) ) + g ( W ( g )X

(n)
+ W

1
) +  2

hill

wi th  lini sup a ‘~. 0
n

and

(53) 
~~~~~~~ 

<a h
, with lirn sup < 0 for all h £ H;

(54) 2 X
~
fh(x~

”
~
) p where lim sup p

hell U fl

Then if the sequence of has a limit point x*, x* will be an

optimum to (Cr).

Proof: By continuity , as we may assume l iin = x*, we have

f ( x *) = u r n  fh(x
l
~~~) < lim sup < 0, so x* is feasib le in (CP).

n n
By virtually repeating the proof of Lemma 5, we obtain, as lim sup a < 0,

n

(55) u r n  sup sup C (1+9w 0(Q ))f0(x~~~)+0 (w(9 )~~ (fl)
4~~, 

~~~~

+ E Xhfh (x )) < v(P).
hell

Using (51), (54), and (55) we obtain (via the boundedness assumption)
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(56) v(P) u r n  sup C (1+Ow 0(O ))f 0(x
(
~
t))+ 9 (w(O )x (t~~+w 1(

9 )))

I (x*).

Titus , [(x*) is optima l in (ci ’).

Q.E.D.

As regards the determination of w0eR and W € R r
~ of Theorem 3 and

Corollary 3, we first discuss a few points concerning the determination

of interior points (v0,v,v1)of C in (34). We do not try here to give an

efficient algorithm ; we merely wish to indicate that these quantities are

often,in principle , computable . Since w
1 = v1 + v(P), the determination

of w1 involves a knowledge of the value v(P) of the program (CP), 
and

hence is a more complex matter . We shall make remarks about w1 of (33)

in our concluding slatements .

For vectors v1 ~~~ and a nonempty index set I ~ 0, the determination

of an interior point of

(57) C1 = cone ([v’ J id ))

is never , in principle, prob lematic , once one has some spanning set, say

(v 1,. ..,vt) of [v~ I id ), in the sense of a vector space span. An interior

point of C
1 
of (57) is a lways given by

1 t(58) v = v + . . . + v .

t 
i

Indeed , for any vector w = 2 p~v in the vector space spanned by
i=l

(v
1,...,v

t
), i.e., in the manifold spanned by C

1 
of (57), there is a

~~~~~~ --
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sufficiently small € > 0 so that

(59) 1 + 
~~ 

0 for i = 1 ,...

and II(’nc(’ v -I- ew ( C . Si nc’  w iii L In~ u~1nI In hi spanned by C
1 

was

arbitrary , v of (58) is an interior point of C1
, by standard criteria

(see e.g., [9]).

To obtain fv~ ,. . . ,v~ 3, it often suffices to know t , the dimension

of the manifold spanned by C1
. h ere we have in mind primarily the case

that a countab le dense subset Cv~ I id ), which can be effectively listed ,

can be effectively extracted from 
~~~~ I id ). Since clcone ((v

i I id ’))

~ cone ((v
1 I iii)), there are also t linearly independent vectors in

Cv~ u I’). Thus one can simply continue a listing until t independent

ones are found . We avoid details on the points raised in this paragraph,

since a full discussion of these matters requires a knowledge of recursion

theory , which we do not assume here .

The simplest case is t = q, i.e., the cone C
1 

of (57) is full y-

dimensional, and our next result shows that this is indeed a very common

case for the cone C of (34). Before we begin the proof of our next

result, one may remark that full-dimensionality occurs if

(60) v
1x 0 for all i € I implies x 0.

Indeed , if (60) held but the linear span of (v
1 I id )  was a subspace

L c~ ~~~~~ its perpendicular subapace L has a nonzero vector x. Then

v1x = 0 for all i t I but x ~ 0, a contradiction.

Lemma 7: Suppose that (CP) is feasible ar .. i~tas finite value v(P).

Barring the case, that there exists a nonzero vector x* such that for

all O € R , we have for any solution x to (CP): 

— — - -• - - — •
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(62a) f 1 (x+ Qx*) 
< 0 all he ll ;

(62b) 10(x + Ox*) = 1(x);

(62c) x + Ox* € K;

then the cone C of (34) is of full dimension (n+2).

Proof: We have to show that there is no nonzero solution to all the

equalities

b~z + a~x - a~w = 0, j cI(0)

(63) a3x - a~w = 0, j€I (h) and hi (-1)U}i

w = 0

or , equivalentl y, to the equalities

b~z + a3x = 0, j c 1(0)

(63)’
a~x = 0, jiI(h) and heC-l )~JH .

Since at least one b~ > 0 for j € 1(0), as f0 has a subgradient at at

least one point, we cannot have x = 0 in a nonzero solution to (63)~ .

Suppose that (z*,x*) solves (63)’ , so that x* ~ 0. By homogeneity ,

we may assume z* < 0. Let x be any solution to (CP). Then for any

9 > 0, fixing h s(-l}U H and letting j cI(h) be arbitrary , we have

(69) a~ (x+ Ox*) — a~x +  9a~x*

- a x > a

since a~x* — 0 from (63) ’ and aix ?  a~ by Lenina 4.  Thus , by Lenina 4 ,

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ - •-~~~~~~-__ 

:~~~~~~. i: ~~~:
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we have (b2a) and (62c ) For (4 (I . A I no , n I iice b~
1
~I (x) I- a~x 

• a~ For
any I € I (0) (an (I

( )
(x ) . x)  ‘: ‘PI (I W( Iuiwt~

(65 ) b~ (f 0(x) + Oz*) + a~ (x + Ox*)

= (b~f 0(x) + aix) + 0(b iz* + a~x*)

= b~f0
(x) + a~ ~ a~

since b~z* + a~x* = 0. This gives (62b) for 0 
~ 
0, with = replaced

• by <, since (f 0(x) + Qz*, x + Ox*) € epi(f0) and z* < 0, f0(x) + Oz* < f(x )

for all 9 > 0.

Now if z* ~ 0, from the above , f0(x + Ox*) can be indefinitely

decreased by sending 9 7 + ‘ , and all the while x + Ox* is feasible in

(Cr). This contradicts that CP has finite value. Hence z* = 0, and

we can repeat the analysis with (-z*,-x*) replacing (z*,x*), and in this

manner obtain (62a) and (62c) for all 0 € R. We also obtain f0(x + Ox*) 
( f 0(x)

for all O c R ;  since f
0
is convex , we clearly have (62b).

Q.E.D.

Thus, if it is known that the feasible region contains no full line,

or that If(x)I 7+OD as ~~ 7+03 , or that f0 is not constant on any

line , or that f 0 is not constant on any line in the feasible region of (CP)

— all of these being commonly-occurring hypotheses — Lemma 7 shows that

the dimension of the cone C of (42) is full , i.e., is (n+2).

From (33), once an interior point (v0,v,v1) is found , we can compute

(w0,w,w1) for use in the limiting Lagrangean by v0 — v0 - 1, v — v , and

— v1+ v(P). Only the last equation is problematic , since it appears to

involve an exact knowledge of the value v(P ) of the convex program (Cr).
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h owever , an inspection of (43) shows that , if w~ - - w 1 replaces w ,

in the limiting Lagrangean. we wil l still obLain a l imiting Lagraiigean ,

as 9 0. ilicref ore it is necessary only to know a bound M on th e va lue

of (CP), and since v(P) < M , we may set w~ = V
1 
+ M.

Often such bounds N are obtained from feasible solutions to (CP).

In any event, since M can be set most liberally , even the most cursory

information about (CP) will allow one to compute w~ from v1.

A few final remarks are in order. The limiting Lagrangean can, of

course, reduce to the ordinary one, if (l,0,-v(P)) is in the relative

interior of the cone C of (34), for then we get (w0,w ,w 1) = 0 in (33).

However , it is possible that

(66) (l,O,-v(P)) € C

but not (l,0,-v(P)) e relint C (recall that always (l,0,-v(P)) € cl(C)),

in which case the limiting Lagrangean does not reduce to the ordinar y

one.

Nevertheless , in this latter case, one easily sees that the term

O(w0,w,w1) can be omitted in (35), and then if the analysis in the

remainder of the proof of Theorem 3 is repeated , we obtain the usual

Lagrangean-type relationship (44). We say “Lagrangean- type” rather than

“Lagrangean,” since H can be infinite , yet only finitely many of the

he ll will actually be nonzero (i.e., all but finitely-many of the

constraints of (C?) can be omitted without changing its value).

To get Lagrange an results of the usua l type (44), one needs to know

when (66) holds. In this regard , we have jointly verified [6 J that

many of the “constraint qualifications” (such as those of [9 , Theorem 28.2)
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and others) are sufficient conditions for the cone C of (34) to be closed ,

provided that the “correct” defining inequalities are chosen in equations

(27), 
~
28

~h~ 
(An “arbitrary ” representation of K or epi(f h ) ,  which simply

defines the correct set of points, usually will not do: the representation

plays a role as important as the actual set. For a similar circumstance

where this issue arose , see [ 3 ]  and [5].)

The closure of C trivially implies (66), by Lemma 1, as (l,O,-v(P)) € cl(C).

And since a “constraint qualification” is a condition on the constraints

alone, allowing the objective function f 0 to vary over all convex functions,

it is not surprising that the closure of C is implied by these hypotheses.

More can be said on these matters; see [6 1 for fur ther details and results .

April 26 , 1978
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In fact , our main result (Theorem 3 of Section 3) reveals much finer detail
concerning our “Limiting Lagrangean.” There are affine minorants (for any
value 0 < 9 < 1 of the limiting parameter 9) of the given convex f unctions ,
plus an affine form nonpositive on K, for which a general linear inequality
holds on R~’L . After substantial weakening , this inequality leads to the

• conclusions of the previous paragraph.

• This work is motivated by, and is a direct outgrowth of , research joint with
R.J. Duff in, which is cited as our reference [6].
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