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Abstract
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We—show, for convex optimization 1n<§§z how a minor modification of
N

the usual Lagrangean functigg3(unlike that of the '"augmented Lagrangeans'),
g : o

~> plus a limiting operation, allows one to close duality gaps even in the

absence of a Kuhn-Tucker vector, (see the introductory discussion, and the
e~
discussion in Section 4 up to equation (50)):\3The cardinality of the

convex constraining functions can be arbitrary (finite, countable, or

uncountable).
4, “,‘iv\c
_- In fact, eur main result Wreveals much finer
> A
thas

“L;miting Lagrangean."g There are affine minorants

N OV i | _thata
(for any value 0 < 8 < 1)of the limiting parameter @) of the given convex

detail concerning our

functions, plus an affine form nonpositive on K, for which a general
R auhonenit pe

linear inequality holds on\g?. After substantial weakening, this inequality
J
[
leads to the conflusions of the Rrevious paragraph.
This work is motivated by, and is a direct outgrowth of, research

joint with R.J. Duffin, which is cited as our reference [6].

Key Words:
1) Lagrangean

2) Nonlinear programming
3) Kuhn-Tucker theory
4) Convex function

5) Convexity
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A Limiting Lagrangean for Infinitely-Constrained

Convex OLtim{iition in R"

by R.G. Jeros lowl

In llonor of Dick Duffin

We consider convex programs (see Section 2 below)

inf tolx)

(Cp) subject to fh(x) <0, heH,

x ekK-

-

with possibly infinitely many constra:{;\ts, and show under a weak constraint
qualification (CQ) (see below) that a small modification of the ordinary
Lagrangean always closes the duality gap. To be more specific (see
Corollary 3 below) we show there are ‘scalars Wos Wp and a vector weRn
such that, if 0 < @ < 1, there are nonnegative scalars {)\h | h eH} with

(DE) (1+ 9wo)f0(x) + O(wx *‘wl) + hf;ﬂ)\hfh(x) > v(P)

for all x ¢ K, where v(P) is the value (assumed finite) of (CP). The
summation in (DE) is never problematic, since only finitely many )‘h are
non-zero.

Our constraint qualification (OQ)‘does not imply the e#d.stence of a
Kuhn-Tucker vector, and hence is weaker than the usual ones (see Section 2
below). Thus (DE) places many duality gaps in a simple perspective: the
criterion function fo(x) should not be. weighted by unity, but rather by a
number arbitrarily near unity; and then an affine linear ''compensation'

wx + vy is needed, but it can be weighted by any positive amount, however

small.

lAddress after September, 1978: College of Industrial Management, Georgia

Institute of Technology, Atlanta, Georgia, 30332.
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Our methods of proof can be succinctly described, and were developed
jointly in [6 |. We reason as follows. Since closed convex sets, and the
epigraphs of closed, convex functions, are describable by infinitely many
linear inequalities — in the terminology of Charmes, Cooper, and Kortanek
[3], they are describable as a "semi-infinite' constraint set — this
convex optimization ought to, in principle, be reducible to results about
semi-infinite systems.

Recently, R.J. Duffin and the author [6 ] found methods of reducing
convex programs, under a constraint qualification, to semi-infinite programs,
of applying the "appropriate' result on semi-infinite systems, and then re-
interpreting the resulting conclusion (which is a conclusion about the
semi-infinite program) as a conclusion about the convex program.

This paper is very much a replication of [6 ], except that a different
result about semi-infinite programs is (first established here in Section 1
and then) applied, and then a different conclusion about the Lagrangean is
obtained.

For related work, see Blair's generalization [2 , Theorem 3 | of a
result from an ecarly draft of [6 |, which we quoted to him, as well as
MclLinden's further genmeralization of this result [ 8 ] to certain infinite-
dimensional spaces. McLinden's work [ 8 | uses the elegant theory of
conjugates of convex functions, as developed by Rockafellar in [9 ]. The

paper [4] is also relevant.




Section 1: A Strengthening of a Corollary

of Blair's '"Ascent Ray'" Theorem

In this section, we strengthen [ 1, Corollary 2] to a form which, as
we show below, actually implies the main result [ 1, Theorem] of [1].
Let cone(S) resp. clcone(S) denote the cone resp. the closure of the

cone spanned by S (see [9]). The following result is well-known (see,

e.g., [91), and is a direct application of the Separating Hyperplane Theorem.

Lenma 1: For I # P an arbitrary index set, indexing a set of vectors
i n
{a |1ieI} in R, suppose that
a'x >0, allieI

implies cx > 0

8V

for any x eR".

Then c ¢ clcone ({al lie1]).

Leima 2: For 1 # @ an arbitrary index set, suppose that

aix 0, all iel

v

implies cx > 0.
Then there is a vector w with the following property:
For any 8, 0 < @ < 1, there is a set of nonnegative multipliers
{li | i €1}, only finitely non-zero, such that
i
(1) c+ 6w = I Aia &
iel

In fact, if v is any point in the relative interior of the set

by,

2) ¢’ = cone ({al]|1iec1))




we may set

3) w=v-ec.

Proof. By Lemma 1, c ecl ¢’, and since v is in the relative interior of d,
then 0 < © < 1 implies that 8v + (1 -0)c is in the relative interior of C’,
by the accessibility lemma [ 9]; and hence can be expressed in the form of
the right-hand-side of (1) with {)\i | ie1} a finitely non-zero set of

multipliers. However,
v+ (1-08)c = c+ 08(v-¢c) = c + Ow

and so (1) holds.
Since any convex set ¢’ has a relative interior, at least one such w
given by (3) exists.
Q.E.D.
We now give our strengthening of [ 1, Corollary 2], which is closely

related to Kortanek's '"perfect duality'" results [7].

Theorem 1: Let I # @ be an arbitrary index set, and suppose that the system

%) aixzb, all iel

has a solution in Rn.

Suppose also that (4) implies

3) cx > d

for any x eR".
Then there is a vector w e¢R" and a scalar Wy €R, with the following

property:




For every 0 < @ < 1 there are nonnegative scalars [ki | i €1}, only

finitely non-zero, which satisfy

(6) ch G w % )\iai
iel

(7) dbw, < I ib.
iel

In fact, if (v,-vo) is any point in the relative interior of the set

(8) cll

cone ({(a',-b) |11} U {(0,1)})
we may set

9) (w,-wy) = (v,-vy) - (c,-d)
i.e., w=v-cand wy = v,-d.

Proof: Since (4) is consistent, and (4) implies (5), one easily proves that

aixz 0, alliel

implies cx - 0.
Therefore for (x,r) cRnH (x cRn) arbitrary,
£ >0
alx - bit >0 for alliel
implies cx - dr > 0.

1

’

We apply Lemma 2 to reach the conclusion, that there exists (w,-wo) cRm'
w eRn, with the following property:
For any 0 < @ < 1, there are non-negative scalars {Ai | 1 e1}, finitely

non-zero, and a scalar ¢ > 0, such that




’-l-'-'.l-I'l-!FUl'!-!-l!-l-llllHlUlﬂ!llll-lﬂﬂﬂﬂﬂllﬂﬂﬂﬂuww — rr—

6
(10) (c,-d) + 8(w,-w,) = @(0,1) + T A (ai,-b Ve
0 i i
iel
Also, if (v,—vo) is any point in the relative interior of C”, we may
set (9).
Now analyzing (10) by components gives (6) and (7).
Q.E.D.

o compare our results (6), (7) with the conclusions of (i), (ii),
(1ii) [ 1, Corollary 2], divide both sides of [ 1, Corollary 2(i)] by

; A\, > O (which can be assumed by [ 1, Corollary 2(ii)], to obtain that
(11) e+ vA)x > O/

can be "linearly deduced'" (in the sense of [1]) from (4). (Note that an
'x'" is missing in [ 1, Corollary 2]).

Changing © to p in (6), (7) of our Theorem 1, to avoid confusion with
Qn above and changing ki in (6), (7) to P to avoid confusion with Kn’ our
result gives (with v = w)

i
(11)’ (c+v/AA )x = £ gax > I gb
= pef * oy -8

v

d + wo/kn.

Thus, (11)’ can be linearly deduced from (4). Obviously, by taking

0 = And + w,, from [ 1, Corollary 2(ii)] we obtain [ 1, Corollary 2(iii)].

n 0’

This recovers [ 1, Corollary 2], and in fact, more: for any sequence

of \ > 0 with
n

(12) lim A =+e
n




we have seen how to construct Gn such that [ 1, Corollary 2] holds. Thus,
our Theorem 1 changes an existential statement 'there exists xn such that..."
into a universal statemenF "for every An...."
From Corollary 2, it is possible to obtain the main result of [1].
We sketch the proof. (Kortanek [ 7] has called this result Blair's 'ascent

ray" theorem.)

Theorem 2: [1]
If the system (4) is inconsistent, there exists a vector weR" such that,

for any N, the inequality

(13) wX

v/
=z

can be linearly deduced from (4).

Proof: The inconsistency of (4) shows that, for (x,r) eRn+1, x eR,

aix -b,r >0
5 =

T 0

1/

implies -r > 0.

We apply Lemma 2 with ¢ = (0,-1), and find that there exists
(w,-wo) eRnH', weRn, such that (dividing (1) by © on both sides):

For any 0 < 8 < 1, there is a set of nonnegative multipliers
{Ai | i €1}, only finitely of which are nonzero, and ¢ > 0 such that
(14) (0,-1/0) + (w,-wy) = @(0,1) + 121 A (ah,b).

Taking components in (14), we see that

(15) wx > 1/0 + Yo




can be Linearly deduced from (4). f one puts 6 = I/(N-w

0) —~ 0, the

result tollows, since without loss of generality, N - Yo and in fact
- O =
1/(N wo) 1
Q.E.D.

Stronger results are true for semi-infinite programs, if they are

""well-behaved;' see either [5] or [61].




Scction 2: A Constraint Qualification Weaker

Than_ the Existence of a Kuhn-‘lucker vector

The convex program studied in this paper is

inf fo(x)
(cp) sub ject to fh(x) < 0 for all heH

and x ¢ K

where H is an index set of arbitrary cardinality, K is a nonempty convex set,

and fh for h ¢ {O}UH maps a convex set Dh 2 K into R, and D, is the domain

h
of fh. (In the terminology of [9], D, = dom(fh); and fh(x) =+ for
3 éDh would be assumed in [ 9].) We also assume that relint(K) & xelint(Dh)

for all h e {0} UH, where relint(S) denotes the relative interior of the set S
{91.

We introduce the following constraint qualification for (CP):

(CQ) There exists xO in the relative interior relint(K) of

K such that fh(xo) < 0 for all h eH.

Note that (CQ) is quite weak. E.g., for K = Rn, (CQ) simply asserts

that (CP) is consistent. Thus, (CQ) is satisfied by the convex program

inf (-y)

(16)

subject to (x2 + y2)1/2 - x <0

which is well-known as not possessing any Kuhn-Tucker vector. 1I.e., letting
v(P) denote the value of the primal problem (CP), we have here v(P) = 0

(since the constraints have solutions (x,y) = (x,0) for x > 0), yet there is




no scalar Al > 0 with

(17) bf Sy % Al[(xz 3 y2yti2

X,Y€eR

-x] > w(@) = 0.

In fact, for any Al > 0, and for any specific Yo > 0, by choosing

2
Xy = ()\ly0 - l/kl)/2, we have

2 2.1/2
(18) ‘)’0 + A].((xo G yo) / & xo) = -yO & 1’

and thus the infimum in (17) is -« . For kl = 0, again this infimum is - «.
The purpose of th~ constraint qualification (CQ), is simply to insure

that the infimal value v(P) of (CP), when finite, is that of

inf cl(f)(x)
(cp)’ subject to cl(f )(x) <0 for all heH

and x e cl1(K),

where cl(S) is the closure of the set S < Rn, and cl(f) is the closure of
the convex function f (see [9]). When this equality of value holds, since
the set cl(K) and the epigraphs of the functions cl(fh) for he {0}JUH, can
be expressed as the intersection of hyperplanes in Rn+1 (see [9]), the

techniques of the preceding section can be applied to derive results

concerning v(P). From these motivational remarks, it follows that (CQ) could

be replaced, in our results in the next section, by:

(cQ)’ £, for h ¢ {0} UH is a closed convex function, with
real values in the relative interior of the convex
set Dh 2 K, whose only non-real value is +®, with
domain dom(fh) lying between Dh and c1(Dh); and there

exists xoﬂlerelint(Dh) with fh(xo’h) < 0.
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The role of xo’h

To prove the clafm made in our motivational remark, on the value-
cquivalence of (CP) and «r) under (CQ), we establish the next result.
This reproduces material from our joint paper [ 6 | both results and
proofs, with the kind permission of our co-author R.J. Duffin. Since
the paper [ 6] is in a preliminary version, there appears to be only

this course of action, given our desire to make this paper self-contained.

Lemma 3: [6] Let the value v(P) of (CP) be finite, and suppose that
(CQ) holds.
Then v(P) is also the value (possibly not attained) of the convex
program
inf fo(x)
(19) sub ject to fh(x) < 0 for all heH

and x erelint(K).

Proof: For each n, let x(n) be chosen to insure

(20) £,x™) < v@) + 1/m
21) fh(x(n)) <0 for all heH
(22) £ oz,

Let x0 ¢ relint(K) satisfy fh(xo) < 0 for all heH. Then, for any A,

0 <\ <1, putting u(n) = kx(n) + (1 -k)x(o) we have

(23) u(n) ¢ relint(K)
and by convexity

(24) fh(u(n)) <0 for all heH.

in (CQ)’ will emerge in the proof (below) of Lemma &.

T T U T T T T T T e —
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Now f, is continuous on the line segment (x(n),xol, with in fact

(25) £,c™) > 1w D™ 4 @-0x@ Jo<a <1, 271,

0

as xoc:elint(K) S relint(Dh). Hence, for A < 1 close enough to unity,

(26) fo(u(n)) = fo(x(")) + 1/n

< v(P) + 2/n

using (20).
From (23), (24) and (26), we see that the value of the program (19)
does not exceed v(P). On the other hand, the program (19) is more constrained
than (CP), so its value cannot be less than v(P). Thus, its value is exactly
v(P).
Q.E.D.
Our proof of Lemma 3 also can be modified to reveal that, if

v(P) = -o, then -~ is also the value of (19).

Corollary l: 1If v(?) is finite and (CQ) holds, then the value of (CP) is

also that of (cp)’ .

Proof: We recall [ 9] that relint(cl(K)) = relint K, and that, for all
he{O}UH, £, (x) = (el £ )(x) for all x erelint K, since relint K & relint D,
is assumed.

Thus, when we start with the program (CP)’ viewed as (CP), and construct
the analogous program (19), we in fact end up exactly with (19).

By Lemma 3, both (CP) and (CP)’ have the value of (19), hence both have

value v(P).

Q.E.D,
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Section 3: The Main Result

Our main result (Theorem 3) is obtained by applying ‘Theorem | to a
"semi-infinite'" system of linear inequalities equivalent to (CP)’, and
then interpreting this outcome by methods of algebraic manipulation
developed in [6]. We reproduce the latter here, for the sake of a self-
contained presentation.

By Corollary 1, we may assume, within our proofs, that K is
closed, as are the functions fh for he {0}UH. This is assumed throughout

the remainder. Therefore, we have representations via hyperplanes:

27) K = {xcRnlajx:ag, jeI(-1)}
@), epi(f) = {0 eR™, xer"|blz+ alx > a), je1m))

for index sets I(h), he{-1} U {0} U H, where possibly 1(-1) = @, but I, # )

for h # -1, and as usual epi(fh) denotes the epigraph of fh:

1

(29) epi(f) = {(zx)eR™ ', xeR" |z > £ (x)]

)
which is a closed, convex set. Obviously, in (28)h, bg > 0 for all jeI(h)
and h ¢ {OJUH.

Without loss of generality, the representations (27), (28)h consist

precisely of all supporting hyperplanes for the closed, convex sets K and

epi(fy), he{O0}UH.

Lerma 4: [6] Fix h ¢H, and suppose that (CQ) holds.

Then for any x ¢D,, fh(x) < 0 is equivalent to the semi-infinite system

(30) alx >al, jerm).

i e
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Proof: If fh(x) < 0, since (fh(x),x) eepi(fh) and bg > 0 for all jeI(h),

we have

adx > a] + -b)E, () > a)

whenever x ¢D, and j e I(h).

h

For the converse, suppose (30) holds for x (i.e., a

% > ag for all

jeI(h)) yet fh(;) > 0. By (CQ), there exists xoerelint(l() < relint(Dh)
with fh(xo) < 0. Without loss of generality, fh is closed. Therefore, it
is continuous on line segments and, denoting x(A) = Ax + (1 -}\)xo, 0<iA £1,
we have fh(;) = lim {x(A\) | A /1}. Thus, for some A*, with 0 < \* < 1,
fh(x()\*)) > 0.

For all \ in the range 0 <\ <1, x(A) erelint(K) < relint(Dh), and

hence there exists a subgradient -u cRn to fh at x(A\*), i.e.,

(32a) I'h(x) = fh(x(A*)) + u(x(A*) - x) for all xel)h.

From £, (x(A*)) - 0 and fh(xo) = £, (x(0)) < 0, we obtain from (32a) (with x = 23,
0 > £ (x(\%)) + )\*u()_c-xo) and hence u(x -x°) < 0. This in turn implies that
u(; - x(\*)) = u(; - A% - (1 -A*)xo) = u(l -/\*)(;-xo) < 0. Thus, since

£, (x(A\*)) > 0, the inequality ux > £, (x(A1*)) + ux(A*) cannot hold.

Now, since (32a) holds, without loss of generality,
(32b) z+ ux > fh(x()\*)) + ux(A¥*)

is among the defining inequalities in the system (28)11‘ I.e., for some
i

= u, and ag - fh(x()\*)) + ux(\*). However, since

ux < fh(x()\'*)) + ux(\*), as we saw in the last paragraph, for this choice

jel(h), bg P

of jeI(h) we have aj;E < aj and this contradicts (30) and completes the

0’

proof.
Q -E oD .
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Corollary 2: (A la [6]).

Assume that (CQ) holds. ‘hen the value v(P) of the convex program,

if finite, is also the value of this semi-infinite program:

inf z
(1) subject to b(j)z + &)z > ag, j €1(0)
atx > a(j) for all jeI(h)

and he {-1JUH.
Proof: Immediate from Lemma 4. Q.E.D.

It is now the point to complete the program outlined at the beginning
of this paper, and invoke Theorem 1. This program is identical in conception
to that of our joint paper [ 6], which differed only in that a different
and stronger result on the semi-infinite system (SI) was invoked, which was
possible in [ 6 | because a constraint qualification stronger than (CQ) was

assumed, which led to an (SI) with some special properties.

Theorem 3: Suppose that the constraint qualification (CQ) holds for the
convex program (CP) of finite value v(P).

Then there exists LA R and w ¢R™ with the following property:

For any scalar 6 in the range 0 < 8 < 1, there exist y cRn, yocR, and

nonnegative scalars D‘h | h eH}, only finitely many of which are nonzero, and

ﬂthn, BgcR for h ¢ {O}UH, satisfying:




o
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Condition 1: yx+ vy, <0 for xeK
Condition 2: B"x + B} < f, (x) for all xeD, and he{0}UR
Condition 3:
v+ 32 + (14 Owo)(pox ¢ sg) + 0@k + w)+ T xh(shx + pg) > ()

heH
n
for all xeR .

In fact, Wos Wp» W can be chosen arbitrarily to satisfy
(3J) (wonwvwl) - (vorvtvl) ) (1,0,'V(P))

where (VO’V’VI) (with VisVy € R and v eRn) is any point in the relative

interior of

) ¢ = come ({®},al,-aly|sercIu U (0.ad,-a)) | je1m)
he{-1}un

u {(0,0,)H}).

Proof: By Corollary 2 and by Theorem 1, equations (6) and (7) (which we

saw is equivalent to (10)), we have, for 0 <98 <1,
35) (1,0,-v(P)) + O(WO)wswl) = CP(0,0,].)
+ T g ).ad-ad)
jeI(0)
T - 2 gy00,al,-ad),
he{-1JUH jeI(h)
since (SI) implies z-1 + x-0 > v(P). Of course, in (35), ¢ > O and all
tpj > 0, and only finitely many of the quantities cpj for all jeI(h) and

all he{-1,0}UH are actually nonzero. Also, (wo,w,wl) is any solution




-
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to (33), such that (VO’V’VI) is in the relative interior of C of (34).
We now analyze (35) by the methods of [6].
From the first components in (35), we obtain
(36) 1+6w, = £ @bl
o

jeI(0).

J
b0>0

We will, in general, define for h ¢ {O}JUH

3
37 N e
B yamy 10

3
by >0

(with the understanding that A, = 0 if bd = 0 for all j eI(h) with 9y > 0)

for h c[O}UH. Thus we have )\0 =1+ 6w, from (36). Clearly, only finitely

0

many )‘h can be nonzero, and all A, > 0, by the conditions on the scalars

h
9y 2 0.

Next we define these vectors and scalars:

(38a) y A ¢jaj - s T ¢jaj
jeI(-1) he{0JUH jeI(h)
3.
bl =0
(38b) Yo* B ¢jag % T ¢ja%
jeI(-1) he{OJUH jeI(h) ]
bg-O

J

where an empty summation is zero. From (27), if jeI(-1), ajx 2 a for

x eK; and from (28)h, if bg = 0, we have again ajx > ag for jeI(h) and
he{O}JUH, as x¢D, 2 K. Hence yx +y, <0 for x¢K, i.e., Condition 1

holds.
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For he{O}UH, if b'(i) > 0, since bgfh(x) + ajx > a(j) for xeDh, we have
| a §ay
r (39) [h(x) > - b—j x + 110/b0 , for xeD, .
0

Combining (37) and (39) for A -0, we have

h

(40) NEG) = B gple @)
nth Saidy TN
j
bJ>0
> z cpbj(-£x+ aj/bj), for xeD
£ Wiy 00 bg 0o/®0 h
J
b)>0
. and so defining
j
h h 1 $. % $n)
(41) Bx+8 — z @.br(- — x + a_ /by)
0 My setthy bg R
bg>o

we obtain Condition 2. To be precise, we actually have cl(fh)(x) = th + B:;

for all xeDh, h’

1f )‘h = 0, one can arbitrarily pick 5hx + 52 to satisfy Condition 2, at

but since cl(fh)(x) < fh(x) for all xeD,, Condition 2 follows.

least one such affine form existing since fh is somewhere finite, and hence
has at least one subgradient at one point.

For the concluding part of our analysis, we write (35) again with

the first component dropped, in this form:

35) (0,-v(P)) + 8(w,w,) = ©(0,1)
+ ('Y)'Yo)
Jeadnd _oind
+ p L ¢,br(a’/by,-a5/br)
he{OJur jer(h) 3 ° e e

3
bo>0
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= ‘P(orl) + ('Y"Yo)

h
T "0
he{0}un
It remains only to dot product both sides of (35)’ with (-x,-1),

where x ¢R" is arbitrary, to obtain
(42) v(P) + 0(-wx -wl) = -+ (yx + yo)

PO Ah(ﬁhx + sg)
he{0JUH
for all x ¢R". Since ¢ > 0, (42) immediately yields Condition 3, using
Ao = 1+ Owo.
Q.E.D.
Corollary 3: Suppose that the constraint qualification (CQ) holds for the
convex program (CP) of finite value v(P).
Then there exists LA ¢R and weR" with the following property:
For any scalar in the range 0 < @ < 1, there exist scalars [kh I h ¢H]},
only finitely many of which are nonzero, with
(43) (1+ Owo)fo(x) + O(wx + wl) + I )\hfh(x) > v(P)
heHn
for all x eK.
Furthermore, Vor ¥p and w can be arbitrarily chosen, subject to the

condition (33), where (vo,v,vl) is a point in the relative interior of

the convex set C of (34).

Proof: Immediate from Theorem 3.

Q.E.D.
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Section 4: Relationship to the Usual Lagrangean

We conclude by attending to two matters, which are not of great
technical difficulty, but which do serve to clarify the nature of our
main result (Theorem 3), more specifically its corollary (Corollary 3),
and how, in a limiting sense, Corollary 3 solves (CP). This clarification
involves some specification on the vectors (wo,w,wl) of Corollary 3 in
certain cases.

In the usual Lagrangean and its associated Kuhn-Tucker theory,

typically one seeks sufficient conditions for the equality,

44) max  inf [fo(x)+ >3 Ahfh(x)] = v(P),
)\hZO xeK heH
heH

where, in some instances, the 'max" is relaxed to a '"sup'" (supremum}.

he usual theory as developed in | 9| requires the cardinality of Il to be
finite. As we saw in Section 2, our constraint qualification (CQ) does
not even insure (44) with "max'" replaced by 'sup."

Our additional conditions D, 2 K and relint(Dh) 2 relint(K) are also

h
typical of the standard treatment of "ordinary convex programs,' as
presented in [ 9], and in fact [ 9] requires D, = K, which we do not.

(Restricting a function £, from a domain Do:a K to K will typically

0
significantly affect its subgradients. E.g., a one-dimensional differentiable
convex function defined on R has a uniqueAsubgradient at x = 0, but if f is
restricted to K = {x | x > 0} it has many subgradients at zero. It is
essentially due to this restriction Dy = K, that no term of the form

vx + Yor nonpositive on K, appears in certain results of [ 9], such as

[ 9, Theorem 28.3 and particularly Theorem 28.3(c)].

g D o
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what our Corollary 3 concerns, is relations more complex than (44),
due to the presence of one more operation on the left-hand-side: the
taking of a limit.

In what follows A denotes all multipliers (xh ]heH) which are

nonnegative and finitely nonzero. We next establish a crucial inequality.

B2 2(0) ¢R®, is defined for

Lemma 5: Suppose that (wO(O),w(G),wl(O)) e R
0 <9<1, and the set of all vectors of this form is bounded. Then if
(CP) is consistent and has finite value v(P),
45) lim sup sup inf {(1+—9w0(9))f0(x) + Q(w(8)x + wl(e))
0NO0 A xeK
+ B ME()] < wP)
heH i

Proof: First observe that for any O, and element of A,

inf {(1 + O (8))E(x) + B(w(O)x + w,(8)) + T thh(x)}
xeK heH
(46)
< inf {(1 + 0w, (8))f,(x) + B(w(O)x + w, (8)) | £ (x) <0, heH}
xeK

since all Ah > 0 if (xhl heH) ¢ A. Therefore, the left-hand-side in (45)

does not exceed

(47) lim sup inf {(1+ 0w, (8))1(x) + B(w(B)x +w, (8)) | £, (x) <0, heHl}.

0V xeK

Next, let x(n) be chosen so that fh(x(n)).f 0 for heH and
fo(x(n)) < v(P) + 1/n, which is possible since v(P) is the value of (CP).

We see that (47) does not exceed
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(48) lim sup {(1+ OwO(O))fo(x(n)) + 8w (@)x™ + w_(0))]
o oF 1

(n)

- I”(x ) - ov(P) U I /n,

using the boundedness condition on (wO(G),w(Q),wl(G)). Now if v(P) + 1/n
is an upper bound on the left-hand-side of (45) for any n, so is v(P).
This establishes (45).
Q.E.D.
From (43) of Corollary 3, for any O in the range 0 < © < 1 we have

(49) sup’ inf {A+ouE ) + B(m+w) + T AE ) > v),
A xeK heH

+ . : e
where a statement sup {aj IJGJ} > o« for us abbreviates the condition

that aj > a for some jeJ, and hence

(49) lim inf sup’ inf {(1+ O )E( () + O+, ) + zH MNER O 2 vee).

8 N0 A xeK he

Putting together (45) of Lemma 5 and (49)' above, we obtain (under

the hypotheses of Corollary 3)

(50) Lim sup’ inf {(1+ O IE) + Bm+w) + T A (0] = v(P).

8y 0 A xeK heH

Comparing the standard Lagrangean result (44) with ours (50), we see their
similarity in nature. The limit appearing in (50) suggests the term
"limiting Lagrangean' for our results.

We now state a way in which our limiting Lagrangean can be used to

solve (CP), in a limiting sense.

Lemma 6: Suppose that (wo(O),w(O),wl(Q)) € Rn+

2, w(0) ¢R", is defined for
0 <08 <1, and the set of all vectors of this form is bounded. Let the

value v(P) of (CP) be finite.




Let Qn in the range 0 < Gn < 1 satisfy

(51) lim 0= 0.
n

Suppose also that the functions fh’ he{0}JUH are continuous, and that for

(n)

each n the vector x satisfies, for certain (Ah 'heH) € A,

(52) V() < inf { (140w (8 ) ()+ 0 (w(8 Jx+u )+ T AN (1))
xeK heH

g (n) o n (n)

< a+0w O N ™)+ (e )x +‘.1)+h§H A x™)y)ro
with 1lim sup o =0

n
and
(53) £, ™) <o) wieh lim sup o™ < 0 for all hen;
<o . =

(54) A T

p_ where lim sup p_ = 0.
hel h™h n n n

Then if the sequence of x(n) has a limit point x*, x* will be an

optimum to (CP).

(n)

Proof: By continuity, as we may assume lim x
R n

f(x*) = lim fh(x(n)) < lim sup 02 < 0, so x* is feasible in (CP).
n n

= x*, we have

By virtually repeating the proof of Lemma 5, we obtain, as lim sup g
n
() (n)
(55) lim sup sxp [(1+-9nw0(9n))fo(x )4-9n(w(9n)x +w (91))

(n)
b)) < we).
heH hh

Using (51), (54), and (55) we obtain (via the boundedness assumption)
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(56) v(®) > limsup {(1+0 w (8 )E ™)+ On(w(Gn)x(n)+w1(9n))}
n
= L(x*).
Thus, f(x*) is optimal in (CP).
Q.E.D.

As regards the determination of w, eR and weR" of Theorem 3 and

0
Corollary 3, we first discuss a few points concerning the determination
of interior points (vo,v,vl) of C in (34). We do not try here to give an
efficient algorithm; we merely wish to indicate that these quantities are
often,in principle, computable. Since W, =V + v(P), the determination
of Wy involves a knowledge of the value v(P) of the program (C?), and
hence is a more complex matter. We shall make remarks about v, of (33)
in our concluding statements.

For vectors v. ¢RI and a nonempty index set 1 # f, the determination

of an interior point of

(57) CI = cone ({vi ]ieI})

is never, in principle, problematic, once one has some spanning set, say
[vl,...,vt] of [vi | ieI}, in the sense of a vector space span. An interior

point of CI of (57) is always given by

(58) Vowm oy L, Y.

i

Indeed, for any vector w = I v_ in the vector space spanned by

i=1
[vl,...,vt], i.e., in the manifold spanned by CI of (57), there is a

Py
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sufficiently small ¢ > 0 so that
(59) 1+ €pg >0 fori=1,...,t

amd hence v + ew € Ul. Since w in the manilfold spanned by C‘ was

arbitrary, v of (58) is an interior point of C_, by standard criteria

L
(see e.g., 191)).

To obtain {vl,...,vt}, it often suffices to know t, the dimension
of the manifold spanned by CI' Hlere we have in mind primarily the case
that a countable dense subset [vi |ieI}, which can be effectively listed,
can be effectively extracted from {vi ]ieI}. Since clcone ([vi [ieI’})
2 cone ({vil ieI}), there are also t linearly independent vectors in
[vi Iicl'}. Thus one can simply continue a listing until t independent
ones are found. We avoid details on the points raised in this paragraph,
since a full discussion of these matters requires a knowledge of recursion
theory, which we do not assume here.

The simplest case is t = q, i.e., the cone CI of (57) is fully-
dimensional, and our ncxt result shows that this is indeed a very common
case for the cone C of (34). Before we begin the proof of our next

result, one may remark that full-dimensionality occurs if

(60) vlx = 0 for all ie1 implies x = O.

indeed, if (60) held but the linear span of {v' |ieI} was a subspace
L =
L g Rq, its perpendicular subspace L has a nonzero vector x. Then

vi; = 0 for all 1 ¢I but x # 0, a contradiction.
{

Lemma 7: Suppose that (CP) is feasible ar: has finite value v(P).

Barring the case, that there exists a nonzero vector x* such that for

all 8¢ R, we have for any solution X to (CP):
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(62a) fh(i' + Ox¥) < 0 all heH;
(62b) f(,(; + Ox*¥) = [(x);
(62¢) X + Ox* ¢ K;

then the cone C of (34) is of full dimension (n+2).

Proof: We have to show that there is no nonzero solution to all the

equalities :
k| 1 [SRAVE,
b0z+ax agw = 0, jeI(0)
(63) ajx-ag = 0, jeI(h) and he{-1JUH
w = 0

or, cquivalently, to the equalities

blz + alx = 0, je1(0)

(63)’
s 0 jeI(h) and he{-1}UH.

3

Since at least one bo > 0 for je1(0), as £, has a subgradient at at

0
least one point, we cannot have x = 0 in a nonzero solution to (63)’ .
Suppose that (z*,x*) solves (63)', so that x* # 0. By homogeneity,

we may assume z* < 0. Let X be any solution to (CP). Then for any

@ > 0, fixing he{-1JUH and letting j ¢ I(h) be arbitrary, we have

(69) @+ ox#) = alx + oadxs

= alx > a(j)

since ajx* = 0 from (63)’ and aj; > ag by Lemma 4. Thus, by Lemma &,




27

we have (062a) and (62¢) for 8 - 0. Also, since hg[(;)-F aj; : ug for
any ) e 1 (0) (as (I”(x),'x) ¢ vpl(l”))‘ we have
(65) bj(fo&) + 0z%) + al(x + ox¥)

- (bjfo&) + alx) + obdz* + adxw)

2 bj.fo(§)+aj§ > ag

since bjz* + ajx* = 0. This gives (62b) for 6 > 0, with = replaced
by <, since (fo(;) + 0z%, x + Ox¥) ¢ epi(f) and z* <0, fO(SE) + 0z% < £(x)
for all @ > 0.

Now if z* < 0, from the above, fo(; + O0x*) can be indefinitely
decrcased by sending 0 7+, and all the while x + Ox* is feasible in
(CP). This contradicts that CP has finite value. Ilence z* = 0, and
we can repeat the analysis with (-z*,-x¥*) replacing (z*,x*), and in this
manner obtain (62a) and (62c) for all @ e¢R. We also obtain f(x + Ox*) < £ (x)
for all O eR; since fo-is convex, we clearly have (62b).

Q.E.D.

Thus, if it is known that the feasible region contains no full line,
or that |[f(x)| 7+« as |x| 7+, or that f, is not constant on any
line, or that fo is not constant on any line in the feasible region of (CP)
— all of thesc being commonly-occurring hypotheses — Lemma 7 shows that
the dimension of the cone C of (42) is full, i.e., is (n+2).

From (33), once an interior point (vo,v,vl) is found, we can compute
(wo,w,wl) for use in the limiting Lagrangean by Yo" Vo© l, w=v, and
W, = v1+ v(P). Only the last equation is problematic, since it appears to

involve an exact knowledge of the value v(P) of the convex program (CP).
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llowever, an inspection of (43) shows that, if w& W) replaces w,
in the limiting lagrangean, we wil! still obtain a limiting lLagrangean,

as 0 - 0. ‘lhereforc it iIs nccessary only to know a bound M on the value

of (CP), and since v(P) < M, we may set w1 1

Often such bounds M are obtained from feasible solutions to (CP).

= v, + M.

In any event, since M can be set most liberally, even the most cursory

information about (CP) will allow one to compute wi from vy-
A few final remarks are in order. The limiting Lagrangean can, of

course, reduce to the ordinary one, if (1,0,-v(P)) is in the relative

interior of the cone C of (34), for then we get (wo,w,wl) =0 in (33).

However, it is possible that
(66) (1,0,-v(P)) e C

but not (1,0,-v(P)) e relint C (recall that always (1,0,-v(P)) e cl(C)),
in which case the limiting Lagrangean does not reduce to the ordinary
one.

Nevertheless, in this latter case, one easily sees that the term
0(w0,w,w1) can be omitted in (35), and then if the analysis in the
remainder of the proof of Theorem 3 is repeated, we obtain the usual
Lagrangean-type relationship (44). We say ''Lagrangean-type'' rather than
"Lagrangean,' since H can be infinite, yet only finitely many of the kh,
h eH will actually be nonzero (i.e., all but finitely-many of the
constraints of (CP) can be omitted without changing its value).

To get Lagrangean results of the usual type (44), one needs to know

when (66) holds. In this regard, we have jointly verified [ 6 ] that

many of the "constraint qualifications" (such as those of [ 9, Theorem 28.2]
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and others) are sufficient conditions for the cone C of (34) to be closed,

provided that the "correct" defining”ihequalities are chosen in equations

(27), (28)h. (An "arbitrary'" representation of K or epi(fh), which simply
defines the correct set of points, usually will not do: the representation
plays a role as important as the actual set. For a similar circumstance
where this issue arose, see [3] and [51].)

The closure of C trivially implies (66), by Lemma 1, as (1,0,-v(P)) e cl(C).
And since a '"constraint qualificatioﬁ" is a condition on the constraints
alone, allowing the objective function fo to vary over all convex functions,
it is not surprising that the closure of C is implied by these hypotheses.

More can be said on these matters; see [6] for further details and results.

April 26, 1978
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; In fact, our main result (Theorem 3 of Section 3) reveals much finer detail

! concerning our "Limiting Lagrangean." There are affine minorants (for any
value 0 < @ <1 of the limiting parameter 0) of the given convex functions, H
plus an affine form nonpositive on K, for which a general linear inequality g
holds on R". After substantial weakening, this inequality leads to the

. conclusions of the previous paragraph.

« This work is motivated by, and is a direct outgrowth of, research joint with
R.J. Duffin, which is cited as our reference [6].
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