100 S HIDW

swoib01q Buthjiap puo Buiubisaq Ajojuswanu 105 wayshs y

L dwnjoA

-

N 4 ARPA ORDER NO. 2223

FOR Fuicach (AN 10«

ISI/RR-77 -65

November 1977

Mark S. Moriconi

University of Texas at Austin
and USC/Information Sciences Institute

—
-
1 {p)
@)
o)
-
=T
[
<C

A System for Incrementally Designing and Verifying Programs

Volume 1
g e
-
(>
(>
Ll
. =
S L 5
[g | = This document has basn appro
- - == for public relcaze gad scle; its
distribution is unlimited.

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey/ California 90201
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

$9-LL-NA/IS1

78 06 19 058

UNCLASSIFIED
-~ CURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
f
‘\1 REPORT DOCUMENTATION PAGE e
! 2 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER

IS1/RR-77-65

{ 4. TITLE (end Subtitle)

< A 4 g, el

A System for Lncrementally Designing and
Verifying Programs, Voly:= T

Research VEF'E-_,‘J

e 6. PERFORMING ORG. REPORT NUMBER

s et

Bt

T —

7. AUTHOR(s) i u —J-&__CONTRACT OR GRANT NUMBER(s)
/A Mark s JMoriconi (7| panc15-72 c-p3p8 4
it | He v - A
9. PERFORMING ORGANIZATION NAME AND ADDRESS y 10. ssnsel

AREA & WORK UNIT NUMBERS
USC/Information Sciences Institute

L676 Admiralty Way
Marina del Rey, CA 90291

11. CONTROLLING OFFICE NAME AND ADDRESS 1 REPORT DATE ‘
Defense Advanced Research Projects Agency /|// Janimmmet978 |
1400 Wilson Blvd. o = aoes -
Arlington, VA 22209 (/)| 5= Z4 P.

-

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)-.,

Unclassified
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This report is approved for public release and sale; distribution is
unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

incremental, interactive dialog, interactive system, network, program
design, program verification, sorting, specification

20. ABSTRACT (Continue on reverse eide If necossary and identity by block number)

(Over)

DD , 50", 1473 - €oiTion OF 1 NOV 68 1S OBSOLETE UNCLASSIFIED ,
. gt o int 7 8um77éécnno ¥ *AC [/L . 28
v ,/ 7 7= &) A § % . el AW

UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

B (System for Incremental Development) 1is a computer
system for incrementally designing and verifying large, complex
programs. It executes commands, proposes actions, answers
questions, and accepts and reasons about new or changed
information. SID has three main, distinctive characteristics:
(1) it provides several useful 1incremental capabilities,
including the ability to respond to changes by ensuring that the
final problem solution 1is consistent and by keeping intact
still-valid work without complete reprocessing; (2) 1its user
interface has the ability to guide the user through the design
and verification and to engage in an interactive English dialog
about the potential effects of changes; (3) it supports a
substantial programming language which includes features for
generating run-time checks, stating concurrent processes and
shared data, and developing data abstractions. SID has been used
to completely design and verify several programs.

Volume 2 (appendix) contains a transcript of a session with
SID in which a simple message switching network that allows
secure, asynchronous message transfer among a fixed number of
users is incrementally developed.

<

[AN

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

s i S e

ARPA ORDER NO. 2223

ISI/RR-77-65
November 1977

Mark S. Moriconi

University of Texas at Austin
and USC/Information Sciences Institute

I A System for Incrementally Designing and Verifying Programs

Volume 1

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCI1S 72 C 0308, ARPA ORDER
NO. 2223,

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA, THE U.8. GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

L
§
b

T ——

ABSTRACT

SID (System for Incremental Development) is a computer system for incrementally
designing and verifying large, complex programs. it executes commands, proposes actions,
answers questions, and accepts and reasons about new or changed information.

SID has three main, distinctive characteristics. First, it provides several useful
incremental capabilities, including the ability to respond to changes by ensuring that the final
problem solution is consistent and by keeping intact still-valid work without complete
reprocessing. Second, its user interface has the ability to guide the user through the design and
verification and to engage in an interactive English dialog about the potential effects of
changes. It not only previews these effects, but also explains the reasons for them. Third, it
supports a substantial programming language, which includes features for generating run-time
checks, stating concurrent processes and shared data, and developing data abstractions.
Complete type checking is performed on programs, specifications, and assumed properties.

The system responds to changes by applying a new methodology that, although
couched here in the domain of design and verification, may also be useful in other areas in
which incremental reaction to change is important. Parts of a general framework for designing
incremental systems are proposed.

SID has been used to completely design and verify several programs, including a
simple message switching network that allows secure, asynchronous message transfer among a
fixed number of users.

ACCESSION for b 1 /
e ity Sec

NTIS white Section [L

00C puit Section OO
UNANNOUNCFD C
JUSTIFICATION -+ ——

BY .

DISTRIBUTION /AL AR (R O0OE |
1 P
|

ACKNOWLEDGEMENTS

1 would like to express my appreciation to my thesis advisor, W. W. Bledsoe, for
providing just the right amount of encouragement and guidance and also to the other members
of the thesis committee: Donald Good, Ralph London, Norman Martin, and Raymond Yeh.

The design and implementation of the system was a collective effort of several people
whose specific contributions are noted in the text. 1 would like to offer special thanks to
Richard Cohen and Mabry Tyson, without whose diligence and expertise neither the system
nor the reported examples would have been finished.

Several people helped by offering suggestions about content or style. Key ideas on
how to respond to changes grew out of conversations with David Wile. The notion of
providing an explanation facility for previewing the effects of changes was suggested by W. W.
Bledsoe. Donald Good provided general technical guidance and suggested many stylistic
improvements. Others who helped are: Mike Ballantyne, John Heafner, Dallas Lankford,
Donald Lynn, David Musser, David Wilczynski, and Marty Yonke.

Nancy Bryan provided helpful editorial comments on a previous draft. Parts of this
document were typed by Kathie Richardson. Drawings were done by Nelson Lucas. Raymond
Bates helped with the formatting.

This research was supported at The University of Texas at Austin by the Certifiable
Minicomputer Project and by the National Science Foundation (Grant Nd. MCS74-12866) and
at USC Information Sciences Institute by the Defense Advanced Research Projects Agency
(Contract No. DAHC 15-72-C-0308).

}
‘
i

i

CONTENTS

1. INFEROBUCTION. .. L s estsaststsmmassriss st st st asasasans e 1
11 Incremental Program Design and Verification........o.... 1
1.2 Fxample Session................. e 3
2 RELATED RESEARRCEL vt 23
21 Program Verification Systems...............mmnicrinsinisees 23
2.2 Comparison with Previous Systems......ecvriuicnn. . 25
3 BERE SYSTENM: i o m b i e R s 28
3.1 SY RGO QA DA G A S e e = P S e S 2
32 User Interface: Commands, Sugyestions, and English Queries 28
33 Incremental Capabilities. s 40
34 T he Systemn TIBSITIN.conmisuisrimimisismmsimsrissmmrsississistasats o 9D
25 TOVPLErmEentAtiON DEUATTS ..ot immirsisiismistonsestsssssrimsass rssssesssisssovastsssassssonsinasnsesibsnsdsncsanssecesses 60
4 METHODOLOGY FOR RESPONDING TO CHANGES.....cccooiiiniinnnns 63
1.1 Preview of the Methodology..........ciinnne. 63
1.2 19 218 s S AGERAK T) SRS SR T R R SRR R 75
13 Defining New Programs and Their Specifications........ 81
11 Revising Proprams and T'heir Specifications.......ooeees 83
15 Changes to Specifications May Not Have Effects ..., 90
16 Deducing Which VCs Are Unaftected by Changes........ 94
1.7 ResolvVing INCONSISICNCICS..........ovvvereerrrsesiersisneisssisssissssssssssesssssasss 95
18 Basis Properties: Lemmas, Rewrite Rules, and Definitions 97
19 Types and Data ADSEraCtioNS..........ccoowcermmmncceesssssinsereeress 102
110 IMplementation NOES.......... s 106
5 DESIGNING INCREMENTAL SYSTEMS......iiiininen 108
51 Issues and T radeofls.. . 108
5.2 GOIETAY T 0OTY-.cvcivinsossssismmsosmmiiassssssssbesssssninsmsssmsionesasssssivsersusess 109
53 FOTOTE RESBATTH..i.coscssmivscrmsionsirmsimmissinsamronissisrivimeissimenivs 11
REFERENCGEBY.......cnnmimmanimmmremmerswsemmsiimmnis 114
APPENDIX: MESSAGE SWITCHING NETWORK 118

i

CHAPTER 1

INTRODUCTION

1.1 Incremental Program Design and Verification

When designing and verifying programs, a series of steps is performed in which the
data is not only repeatedly added to, but also often revised due to conceptual reformulation or
error correction. This evolutionary, or incremental, process entails using knowledge of design
and verification and of the context of revisions. To effectively support this kind of activity
with a computer, a program with a highly integrated, incremental view of design and
verification is needed.

The ob jective of this research is to provide such a system for incrementally designing
and verifying programs of significant size and complexity. Consequently, three main system
design goals emerged. The system should:

® Provide useful incremental capabilities. This includes the ability to respond
to changes by ensuring that the final problem solution is consistent and by
keeping intact still-valid work without complete reprocessing.

e Provide a good user interface. This includes the ability to guide the user
through the design and verification and to answer questions about it.

e Support a subst2ntial programming language. Desirable language features
include extensive programming and specification facilities, verifiability, and
constructs for assisting in incremental development.

This report reproduces a thesis of the same title submitted to the Department of
Computer Sciences at The University of Texas at Austin on 6 December 1977 in partial
fulfiliment of the requirements for the degree of Doctor of Philosophy.

Author's current address: Computer Science Laboratory, Stanford Research Institute,
Menlo Park, California 94025

3
&%
N
t"
x
>

Page 2

This dissertation describes a working prototype system - called SID (System for
Incremental Development) -- that realizes these goals. It is capable of accepting and reasoning
about new or changed information, of carrying out manipulations that are too complex,
cumbersome, and tedious to do reliably by hand, of dynamically proposing actions to the user,
and of engaging in an English dialog about the task. It allows the user to design his program
by any of several strategies, verify it in parallel or any desired order, and make changes
whenever convenient.

SID supports the language Gypsy [Ambler, et al. 77], whose consistent integration of
both programming and specification statements allows the system, among other things, to type
check programs, specifications, and assumed properties. Gypsy includes features for writing
several forms of specifications, generating run-time checks, stating concurrent processes and
shared data, handling errors, developing data abstractions, and assisting in program
development.

SID responds to changes by applying a new methodology that, although couched here
in the context of design and verification, may also be useful in other areas in which
incremental reaction to change is important. Consider, for example, the development of new
mathematical theories. It is commonplace to introduce lemmas or definitions, revise them (or
previous ones) for any of several reasons, then try proofs again. As a practical matter, these
changes should be compensated for without completely redoing previous work that remains
valid.

The organization of this dissertation is as follows. Section 1.2 presents a detailed
sample session which illustrates the functioning of the system, with emphasis on features that
enhance incremental development. The example developed is referred to in later chapters.

Chapter 2 compares SID with several other program verification systems. Differences
in philosophy, capabilities, and achievements are described.

Chapter 3 describes the system -- its design, user interface, incremental capabilities,
and functional components. A multi-level overview of the design is given and the impact of
the incremental approach is studied. The user interface is described, the novelty of which lies
in its dual-mode philosophy, giving the user the option of directing the system by giving
commands, or being guided through the system by accepting suggestions, or a combination of
both. Suggestions are based on the current state of development. Also of practical importance
is its ability to answer "what" and "why" questions about the potential effects of changes. The
incremental capabilities of the system are itemized, accompanied by an explanation of how
those that are not covered in Chapter 4 are accomplished. Characteristics of each functional
component, some of which were developed by others specifically for this system, are described
and illustrated. Excerpts from the scenario of Section 1.2 are used in explanations.

Page 8

Chapter 4 focuses on the methodology for respending to changes to programs,
specifications, and properties assumed in proofs. The effects of changes are determined by
exploiting useful constraints on how objects in the domain interact with one another. For
example, previous verification work is kept intact by employing logical rules which describe
when changes to specifications have no effect.

Practical considerations significantly influenced the design of the methodology. For
example, the methodology allows temporary inconsistencies (such as references to programs to
be defined later), applies to any of several design and verification strategies, and adapts to a
class of Pascal-like languages and their related proof methods. The description of the
methodology given in Chapter 4 is intended to be formal enough to allow implementations to
be direct, while suppressing unimportant details.

Chapter 5 studies the problem of designing other incremental systems. Key issues,
practical tradeoffs, and some problems are discussed. A general framework is proposed for
answering some of the questions raised. Other questions are explored by means of fllustrative
examples.

12 Fxample Session

This section contains an example session with SID in which a sorting program is
incrementally designed and verified using a top-down strategy. This session illustrates some
ways in which SID executes user commands, proposes actions, answers questions about aspects
of the design and verification, and accepts and reasons about new or changed information
throughout the development.

In addition to this sorting example, a message switching network that allows secure,
asynchronous message transfer among a fixed number of users is developed in Appendix A.
The network, being larger and more complex, underscores the jmportance of the system'’s
incremental philosophy. Some of the interesting features of the network are concurrency, data
abstraction, and error handling.

The session given below is an abstracted version of an actual session that is intended
to convey a representative sample of SID’s incremental capabilities. The sorting program
developed consists of three executable programs (Exchange_sort being the top-level program
which invokes Location_of_max and Exchange) and their accompanying data declarations and
specifications. The scenario shown has several key stages.

I. Initial design. Exchange_sort, which is only partially defined and
contains unresolved external references, is entered into the system. When

Page 4

attempting to generate verification conditions (abbreviated as VCs), the
system figures out that the operations cannot be performed due to constraints
imposed by inconsistencies.

2. Removal of jinconsistencies. The system accepts some new
information, analyzing it within and incorporating it into the existing
context.

3. Verification. Determining that VCs can now be generated, SID
generates them for those paths in Exchange_sort that are completely defined,
and temporarily ignores the paths that are not. VCs contain only references
to specifications of called programs, instead of the specifications themselves.
Each VC is then proved, expanding complete specifications, or parts of
specifications, and extending the collection of facts known to the system as
necded during proofs.

4. Continue design. The user and system engage in a conversation in
which SID previews and explains the potential effects of intended changes.
Guided by this interchange, the user makes several changes -- the definition
of Exchange_sort is completed, previously-entered information is changed
(eg. some incomplete specifications are extended), new information is
introduced (e.g. Location_of_max and Exchange are partially defined). The
system fits all these changes into the existing problem structure.

5. Continue verification. The system not only generates the new VCs
for Exchange_sort, but also keeps intact its still-valid proofs. Proof of the
new VCs and iterations through (4) and (5) for Location_of_-max and
Exchange are omitted.

6. Maintenance. The session resumes after the design and verification is
completed to demonstrate the utility of SID's explanation facility as a
maintenance tool. An illustrative dialog explores the effects of a varied
sample of possible revisions and how the system would react to them.

It should be emphasized that the purpose of this example is not to convey specific
details of the sorting program being developed, but rather to illustrate the kinds of things SID
does to enhance incremental design and verification. The reader is encouraged to at least
browse through the entire example to get an understanding of the overall scenario. The dialog
at the end of the session is particularly important in that it provides a brief capsule of SID’s
effectiveness in handling changes.

Page 5

Below, lines typed by a person are underlined to distinguish them from the

computer’s response. The text is taken verbatim from the actual session, and is all inclusive
except where explicitely marked. Italicized lines are comments describing some of the features
being exhibited.

Exec-> 1
Commands sre: Add, Delete, EDit, EXplain, Help, PRInt, PROve,

Restore, SAve, SUggest, Translate, Vcs, 1E, 7, 17.
Exec-> T

Enter file name=-> File] .Srt

Typing a carriage return before completing a multi-word command causes the
system to prompt for remaining parts. The design and verification begins by
reading the file Filel.Srt into the system. The file contains programs and
specifications which are echoed by the system as they are read.

const n:int = pending;
type int_array = array ([1.n]) of int;

function Exchange__sort(A:int__array):int__srray =
begin
entry N ge 1;
exit (all L:int,
1in [1.N) => Exchange_sort(A)[l)
= Value__of__max(Exchange_sort(A),1,l))
and IsPerm(A, Exchange_sort(A));
var B:int__array := A;
var K:int := N;
veep K in [1.N];
loop
assert (all l:int, | in [ke]1.N] => B[l] = Value__of__max(B,1,l))
and K in [1..N) and IsPerm(A,B);
if K= 1 then leave
else pending end;
end;
result := B;
end;

T ———— - » r—

Page 6
No syntax errors detected.
Semantic errors detected:

function EXCHANGE_SORT(A : INT_ARRAY) : INT_ARRAY =
begin

entry N ge 1;

exit (all 1 : INT, 1in[1.N)

=> EXCHANGE_SORT(A)[I]
= VALUE__OF _MAX[EXCHANGE_SORT[A], I, I])
1Pl
and ISPERM[A, EXCHANGE__SORT([A]];
tP1

end;
PI: NAME NOT DECLARED

This specifies and partially defines the sorting program Exchange_sort. lts
exit assertion states that the output array is sorted into ascending order and
consists of all the elements of the input array, and nothing else. The keep
assertion states that the array index K is always within range. The "pending"
is used to postpone parts of the implementation. Semantic errors, detected in
both specifications and executable code, are due to unresolved external
references. Although incomplete and semantically incorrect, Exchange_sort is
stored for later use.

Exec-> VCS Exchange_sort
*%x%% The operation VCS is not legitimate because EXCHANGE__SORT is semanticelly
incorrect.

Knowledge of specific tasks is used to determine if a particular operation can
be per formed, temporarily cannot be per formed, or cannot ever be per formed.

Exec=> Print Status All

The current design end verification status is:
Waiting for VC generation (semantics must be corrected): EXCHANGE _SORT
Constants/Types: INT_ARRAY, N

Page 7

Status summaries reflecting the current state of development aid in keeping
track of progress and context. This summary of the initial design indicates
that semantic errors in Exchange_sort must be corrected before generating its
VCs, and that Int_array and N are data declarations. The user proceeds to
correct these errors by changing the present design.

Exec-> Edit
A standard text editor is used for creating and changing programs and
speci fications. The user leaves the system, per forms the desired editing, then

returns to the system in the same state in which he left it.

Exec=-> TranslnthﬂoZ.Srt

function Value_of__max(A:int_array; |,J:int):int = begin end;

function IsPerm(X,Y:int_array) : boolean =
begin
exit (assume
(all Z:int_array, IsPerm(2,2)));
end;

All data entering the system, whether new or changed, is analyzed within the
current context, then fit into it forming a new problem state. For example,
SID uses the previously-defined type Int_array in type checking
Value_of_max and IsPerm. Both of these new functions have null bodies (as
opposed to pending ones), indicating that they are solely for specification
purposes and will not be implemented.

No syntax errors detected.
No semantic errors detected.

Exec-> Print Status All

The current design and verification status is:
Waiting for VC generation (must check semantics): EXCHANGE_SORT
For specifications only: ISPERM, VALUE_OF _MAX
Constants/Types: INT_ARRAY, N

The system knows that semantic errors previously detected in Exchange_sort
may now be corrected. It indicates this by changing “semantics must be
corrected” in the previous status summary to “must check semantics” in this
one.

Page 8

Exec-> VCS Exchange_sort

The system determines that this conmand can now be carried out and displays
both program paths and their accompanying veri fication conditions.

Generating VCs for FUNCTION EXCHANGE _SORT
Found 1-ST path
Found 2-ND path

Found 3-RD path
\ pending path encountered.

Beginning new path...
B:=A
K:=N

Assume (unit entry condition)
Nege |l

Continuing in path...

Assume (KEEP sssertion)
K in [1..N]

Entering loop...
Evaluating VALUE_OF_MAX(B, 1, I»])

Entry assertions of programs called from executable code or specifications are
proved at all calling sites. The system evaluates the entry assertion of
Value_of_max on the arguments shown. The resulting VC s automatically
reduced to true and is therefore suppressed. Had it not reduced to true, a VC
would have been spawned.

Continuing in path...

Evaluating ISPERM(A, B)
Conlinuing in path...

Page 9

ASSERT (all I»] 2 INT, (s] in [Kel..N]
=> B[I®1) = VALUE_OF _MAX(B, 1, I=1))
and K in [1..N]
and ISPERM(A, B)

Must verify ASSERT condition
Verification condition EXCHANGE_SORT®]
Hi: 1 leN
-=>
Cl: ISPERM(A, A)

Notice that IsPerm is referenced but that specifications from IsPerm were not
added to the hypothesis. Instead, such specifications are added completely or
partially when needed during proofs. This policy, together with the one of
simplifying during generation, limits the size of VCs.

End of path

Beginning new path...
Continuing in LOOP ...

Assume (from last sssertion)
(all 1] ¢ INT, [®] in [Kel.N]
=> B[I®s1] = VALUE_OF_MAX(B, 1, I#1))
and K in [1..N]
and ISPERM(A, B)

Assume (KEEP assertion)
K in [1.N]

Assume (IF test failed)
(not K=1)

Entering PENDING statement..cannot continue in this path

End of path

Page 10

Beginning new path...

End of path

Exec-> Print Status §
Using "$" in a command (i.e., typing the escape key) is a way of having the
system make default assignments. The assigned value here is Exchange_sort.

Waiting for pending path to be filled in.
EXCHANGE_SORTel . . . EXCHANGE_SORT#3 wailing to be proved.
Presently, Exchange_sort contains a pending path that eventually must be

implemented and has three VCs that must be proved.

Exec-> Suggest
Rather than continuing to direct the system by giving commands, the user
wants SID to propose actions needed to obtain a problem solution. Acceptance

of a suggested action is indicated by typing “$".

Suggest proving VC called EXCHANGE__SORT®1-> §
Entering Prover with verification condition EXCHANGE__SORT#|

Hi: 1 le N

-
Cl: ISPERM(A, A)

Prover-> Use IsPerm

EXCHANGE_SORT®1 proved in theorem prover.

e

IRE—

Page 11

Proofs are omitted for brevity; only interactive proof steps which bring
additional knowledge to bear on the deduction are shown. The command Use
IsPerm adds the entire exit assertion of IsPerm to the current Rypothesis.

Suggest proving VC called EXCHANGE__SORT#2-> Print Status Exchange__sort

Instead of accepting a suggestion, the user can issue a conmand. If command :
execution causes a state change, the user is returned to command mode under
the assumption that he wants to pursue a line of reasoning dif ferent from the
scenario now modelled internally. For commands that do not change state (e.g.,
print commands), the same suggestion is repeated after executing the
command.

Waiting for pending path to be filled in.
Waiting to be proved: EXCHANGE_SORT#2, EXCHANGE_SORT3
Proved in theorem prover: EXCHANGE_SORT#]

Suggest proving VC called EXCHANGE_SORT®2-) §
Entering Prover with verification condition EXCHANGE_SORT#2
Hl: all 1®] ¢ INT, 18] in [Kel1.N] => VALUE_OF_MAX(B, 1, Is1) = B[I*]]
H2: K=1
H3: ISPERM(A, B)
HA4: K in [1..N]
-
Cl:1leN

EXCHANGE__SORT#2 proved in theorem prover.

Suggest proving VC called EXCHANGE_SORT#3-> §
Entering Prover with verification condition EXCHANGE_SORTe3 L
Hi: all In] 2 INT, I#1 in [Ke1.N] => VALUE_OF _MAX(B, 1, Is1) = B[lel])
H2: K=1
H3: ISPERM(A, B)
H4: K in [1.N])
-=>
Cl: all | 2 INT, lin [1.N] -> VALUE_OF _MAX(B, 1, 1) = B[]

Page 12

Prover-> Use Lemma
Enter lemma . . .

% all L:int, all P:Int_Array,
% Lin [1.N] ~> Valve_of_ max(P,L,L) = P[L];

Lemma added . . . Its name is LEMMAS]

New lemmas (and also rewrite rules) are added when needed during proofs.
They are parsed, type checked within the context of the overall problem, and
named for subsequent veferemce. “x" is the prompting symbol of the
translator.

EXCHANGE_SORT#3 proved in theorem prover.
Suggest fully defining EXCHANGE__SORT=> Print Status All

The current design and verification status is:
Waiting for pending path to be filled in: EXCHANGE__SORT
Proved: EXCHANGE__SORT
For specifications only: ISPERM, VALUE__OF _MAX
Constants/Types: INT_ARRAY, N

Since all VCs for Exchange_sort are proved, the user now is ready to continue
the design. But before actually changing the present design, he uses SID to

explore the potential ef fects of some intended changes.

Suggest fully defining EXCHANGE__SORT-> Explain

<- What are the effects of fully defining Exchange_sort?

EXCHANGE_SORT may have additional VCs.

<~ What are the effects of changing the exit asserlion of Value_of _max?

No effects on VALUE_OF _MAX. The verification of other programs is not atfected.

Page 13

The system remembers immediately preceeding sentences to answer guestions

like this one.
No effects on VALUE__OF__MAX because it is for specifications only and does not

have VCs. No external effects because properties from VALUE_OF_MAX have not been
used in proving sny VCs.

<~ What are the effects of changing the exit of IsPerm?

No effects on ISPERM. The verification of other programs is not affected if the
formula
Changed exit specification
=)
Cl: all Z : INT_ARRAY, ISPERM(Z, 2)
is true. If not, the change invalidates the verification of EXCHANGE__SORT.

<~ Why?

No effects on ISPERM because it is for specifications only and does not have
VCs. Invalid verification because properties from ISPERM were used in proving
EXCHANGE_SORT®1.

The system gives a more detailed response to “why" questions than to “what"
questions. The possible ef fects of the proposed change are narrowed down to

the single verification condition Exchange_sorts .

The user, knowing the potential effects of these changes, is now ready to

continue working with SID toward a problem solution.

Suggest fully defining EXCHANGE__SORT=> Edit

Exec-> Transiste File3.Srt

function Exchange_sort(A:int_array)sint_array =

——————

Page 14

begin
entry N ge 1;
exit (all l:int,
Lin [1.N] => Exchange_sort(A)[l]
= Value__of__max(Exchange_sort(A),1,1))
and IsPerm(A, Exchange_sort(A));
var B:int_array := A;
var K:int := N;
keep K'in [1.N];
loop
assert (all L:int, | in [ke!.N] => B[I] = Value_of__max(B,1,l))
and K in [1.N) and IsPerm(A,B);
it K= | then leave end;
B := Exchange(B,Location_of__max(B,1,K),K);
Kk := K=1g
end;
result := B;
end;

function Value_of__max(A:int__array; |,J:int):int =
begin
exit (assume (all k:int,
k in [1.J] and | in [1..N] and J in [1..N]
=> A[k] le Value_of_max(A,J))
and (all I,m:int,
tin[1.J) and min [1.J) and | in [1..N] and J in [1..N]
=> Value__of__max(Exchange(A,l,m),|,J) =
Value__of_max(A,l,J)));
end;

funclion Location_of__max(A:int_array; |,J:int)sint =
begin
entry | in [1.N] and Jin [1..N] and | le J;
exit Location__of _max(A,,J) in [I.J)
and Af[Location_of__max(A,J)] = Value__of__max(A,,J);
pending
end;

function Exchange(A:int__array; |,J:int):int__array =
begin
entry | in [1..N] and J in [1..N];
exit (all k:[1..N],
k ne | and k ne J => Exchange(A,l,J)[k] = A[K])

r e ——— T T w—

L R .

and IsExchanged(A Exchange(A,l J),l,J)
and IsPerm(A,Exchange(A,l,J));
pending
end;

function IsExchanged(A,B:int_array; 1,J:int):boolean =
begin
exit (assume IsExchanged(A B,i,j) iff
(lin{i.N] and Jin [I1.N)
and A[l)=B[J] and A[J}=B[I]));
end;

function IsPerm(X,Y:inl__array) : boolean =
begin
oxit (assume
(all Z:int_array, IsPerm(z,2))
and (all Z:int__array,

IsPerm(X,Z) and IsPerm(Z,Y) -> isPerm(X,Y)));

end;

No syntax errors detected.
No semantic errors detected.

Page 15

Figuring out how to fit this data into the data base involves observing
relationships that have disappeared, observing some new ones that are
introduced, and using deduction to decide what prior relationships still hold.

Exec-> Print Status All

The current design and verification status is:

Waiting for VC generation (must check VCs): EXCHANGE__SORT
Waiting for pending body to be filled in: EXCHANGE, LOCATION_OF _MAX
For specifications only: ISEXCHANGED, ISPERM, VALUE__OF _MAX

Constants/Types: INT_ARRAY, N

The system knows that the set of verification conditions for Exchange_sort
may now bde changed. This is reflected by the phrase “must check VCs™ in the
status summary. It also indicates that Exchange and Location_of_max are

partially defined.

Exec=> Suggest

Page 16
Suggest generating VCs for EXCHANGE__SORT=> [
T'he user accepts the suggestion to continue the verification of Exchange_sort.

Generating new verification conditions for EXCHANGE_SORT ...

Beginning new path...
Continuing in LOOP ...

Assume (from last assertion)
(all 1] : INT, I#] in [K+]1.N)
=> B(I*1] = VALUE_QF _MAX(B, 1, l#1))
and K in [1..N]
and ISPERM(A, B)

End of path

Unaffected VCs: EXCHANGE__SORT#1, EXCHANGE__SORT#2, EXCHANGE__SORT#3

Only new paths and new VCs are displayed, while previous ones that are
unaffected by changes are kept intact. Here, additional VCs arise because the
"pending” in Exchange_sort was replaced by executable code. Determining
that VCs are unaf fected involves logical as well as semantic considerations.

Suggest proving VC called EXCHANGE__SORT®4-» Print Status All

The current design and verification status is:
Waiting for pending body to be filled in: EXCHANGE, LOCATION_OF __MAX
For specifications only: ISEXCHANGED, ISPERM, VALUE_OF __MAX
Constants/Types: INT_ARRAY, N

EXCHANGE_SORT
Waiting to be proved: EXCHANGE__SORT#4, EXCHANGE _SORT®S,
EXCHANGE__SORT#6, EXCHANGE__SORT#?
Proved in theorem prover: EXCHANGE_SORT«1, EXCHANGE__SORT®2,
EXCHANGE__SORTe3

e N AP L 5 PRI S A G S0 e~

Page 17

Suggest proving VC called EXCHANGE_SORT®4-> §

The remaining VCs for Exchange_sort are proved. Then, the design and
verification of Location_of_max and Exchange is continued, following a
scenario similar to the one shown above for Exchange_sort. A bug is detected
in Location_of_max and then removed by paralleling the scenario for making
any other kind of change. The session is rejoined after completing these tasks.

Suggest one of:
<esc> TRANSLATE (from file)
SAVE (problem on file)

The system, knowing that the problem as now represented is solved, presents a
menu containing two reasonable suggestions.

=> Print Status All

The current design and verification status is:
Proved: EXCHANGE, EXCHANGE_SORT, LOCATION_OF _MAX
For specifications only: ISEXCHANGED, ISPERM, VALUE__OF _MAX
Constants/Types: INT_ARRAY, N

This summary shows that the design and verification of the sorting program is
complete.

Suggest one of:
<esc> TRANSLATE (from file)
SAVE (problem on file)
~> Print Unit All

Rather than accepting a proposed operation, a display of all program units in
the system is requested.

const N : INT = PENDING;
type INT_ARRAY = array ([!..N]) of INT;

function EXCHANGE_SORT(A : INT_ARRAY) : INT_ARRAY =
begin

B

Page 18

entry N ge 13
exit (all 1 : INT, 1in[1.N]
=> EXCHANGE_SORT(A)[I]
= VALUE_OF _MAX(EXCHANGE_SORT(A), 1, 1))
and ISPERM(A, EXCHANGE__SORT(A));
var B : INT_ARRAY := A;
var K ¢ INT = N;
keep K in [1..N);
loop
assert (all I#] : INT, I#] in [Kel.N]
-> B[Is1] = VALUE_OF_MAX(B, 1, Is1))
and K in [1..N)
and ISPERM(A, B);
if K=1 then leave end;
B := EXCHANGE(B, LOCATION__OF__MAX(B, 1, K), K);
K := K-1
end;
RESULT := B
end;

The final version of all programs and specifications are printed from the
system data base in an easy-to-read format and, for this command, in the
order in which they were originally entered. '

Suggest one of:
<esc> TRANSLATE (from file)
SAVE (problem on file)

=> Print Lemma All
LEMMAS] is

all L : INT,
all P ¢ INT_ARRAY, L in [1.N] => VALUE_OF_MAX(P, L, L) = P[L)

LEMMA®4 is
all L, M ¢ INT,

ST SRR e

Page 18

all P : INT_ARRAY, L in [1.N] and M in [1.N)
-> ISPERM(P, ALPHA(ALPHA(P, L, P[M]), M, P[L]))

These are the lemmas used in the verification of the sorting program.

Suggest one of:
<esc> TRANSLATE (from file)
SAVE (problem on file)

-> Explain

The explanation facility is useful not only during a design and veri fication,
but also afterwards as a maintenance tool. For example, it may be desirable or
necessary fto revise an incomplete specification, or to recode an individual
program for efficiency. Figuring out the effects of such changes is a
formidable task even for this small example, especially after a period of time
has elapsed. The following dialog emphasizes its utility on a varied set of
questions. :

<- What are the effects of changing {he header of IsPerm?

Possible effects of changing the header of ISPERM are:
Incorrect semantics: EXCHANGE, EXCHANGE_SORT, ISPERM, LEMMA®4
Invalid verification: EXCHANGE, EXCHANGE__SORT

<~ Why is Exchange affected?

Incorrect semantics because EXCHANGE calls ISPERM. Invalid verification because
basis property LEMMA®4, which calls ISPERM, was used in proving EXCHANGE®1.

<~ Why is Exchange_sor! affected?

Incorrect semantics because EXCHANGE_SORT calls ISPERM. Invalid verification
because the external specifications of EXCHANGE, which call ISPERM, were used in
proving EXCHANGE_SORT®7. Invalid verification because the external
specifications of ISPERM, which recursively call ISPERM, were used in proving
EXCHANGE_SORT®1 and EXCHANGE__SORT®7.

<~ What are the effects of modifying Lemmasl?

L ne,

Page 20

Changing basis property LEMMA#] does not affect the verification if
Changed lemma
--)
Cl: all L : INT,
all P : INT_ARRAY, L in [1.N] => VALUE_OF_MAX(P, L, L) = P[L]}
is true. If not, the change invalidates the verification of EXCHANGE__SORT and
LOCATION_OF _MAX.

<~ Why?

Because it was used in the proof of EXCHANGE__SORT#3 and LOCATION_OF _MAXs1.

<~ What are the effects of changing the exit assertion of IsExchanged?

No effects on ISEXCHANGED. The verification of other programs is not affected if
the formula
Changed exit specification
==
Ci: ISEXCHANGED(A, B,), J)
6 Lin [1.N] and J in [1.N) and A[)] = B[J] and A[J] = BJ[I)

is true. If not, the change invalidates the verification of EXCHANGE and
EXCHANGE_SORT.

<~ Why?

No effects on ISEXCHANGED because it is for specifications only and does not
have VCs. Invalid verification because properties from ISEXCHANGED were used in
proving EXCHANGE®] and EXCHANGE__SORT#7.

<= What are the effects of changing the entry assertion of Location_of__max?

Changing the entry specification of LOCATION_OF_MAX does not affect
LOCATION__OF _MAX if the formula
Changed entry specification

-->

Cl:)in[1.N)

C2: Jin [1.N)

C3:1lleJ
and the formula

H1: lin [1.N]

H2: Jin [1.N)

H3:ile J

L.

Changed entry specification

are true. If not, at least one of LOCATION_OF _MAX's VCs is incorrect. The
verification of other programs is not affected if the second formula is true. If
not, at least one VC is incorrect for EXCHANGE_SORT.

¢- Why?
If the first formula is false, one of LOCATION_OF__MAX's VCs is changed. If the

second formula is false, incorrect VCs because the entry specification of
LOCATION_OF _MAX is proved in EXCHANGE__SORT and LOCATION_OF _MAX.

<- What does changing its exit assertion affect?

"It" refers to the program mentioned in the last "what™ question.

Changing the exit specification of LOCATION_OF _MAX does not affect
LOCATION_OF _MAX if the formula
H1: LOCATION_OF_MAX(A, |, J) in [I.J]
H2: A[LOCATION_OF _MAX(A, |, J)] = VALUE__OF _MAX(A, |, J)
Lo
Changed exit specification
is true. If not, some of LOCATION_OF _MAX's VCs are incorrect. The verification
of other programs is not affected if the formula
Changed exit specification
-
Cl: LOCATION_OF __MAX(A, |, J) in [I.J]
C2: A[LOCATION_OF _MAX(A, |, J)] = VALUE_OF _MAX(A, |, J)
is true. If not, the change invalidates the verification of EXCHANGE_SORT.

<- Why?

The effects on LOCATION_OF _MAX are a change in its YCs. Invalid verification
because properties from LOCATION_OF _MAX were used in proving EXCHANGE_SORT®S
and EXCHANGE__SORT®7.

Page 21

P T R PSPy P

Page 22
<~ Done
Suggest one of:

<esc> TRANSLATE (from file)
SAVE (problem on file)

-> Save

Enter file name=> Sor!.Dmp

The session is finished and the current problem state is saved on file
Sort.Dmp in a format suitable for restoration.

Page 23

CHAPTER 2

RELATED RESEARCH

This chapter presents a general review of six previous program verification systems,
then compares them to SID. Although it is difficult to characterize differences between
programs, an accurate description of their underlying philosophy and their capabilities will be
attempted. These impressions have not been reviewed by the author(s) of the systems discussed
herein.

2.1 Program Verification Systems

King [69,71] describes the initial program verification system. It is essentially written
in assembly language, being the only non-Lisp-based system among the six. This system is
fully automatic, allowing no user interaction once a program and its specifications are
supplied. King [69, p. 130, p. 166] points out that the inability to interact with the user is a
main source of certain system limitations. King's system performs extremely well on the small
class of programs to which it applies, including certain algebraic computations, such as
multiplication (division) by successive additions (subtractions) and prime determination, and
array manipulations like zeroing an array and a simple exchange sort.

Deutsch'’s system [73]) has successfully verified the examples in King's thesis (except
the system of linear inequalitics in Example 10) , plus various other programs such as FIND
(Hoare 71). This included King's Example 9, which is a sorting program King was unable to
verify due in part to the absence of a few critical assertions. This system contains a program
editor, allows for some user interaciion, and has in part a resolution-based deductive system.
Deutsch states that his system's "major departure from King's system arises in the theorem
generating process” [Deutsch 73, p.111-3). King utilizes a backward approach to VC
generation that often results in lengthy, unmanageable VCs. Deutsch’s system generates VCs
in a forward manner, very similar to methods originally described by Good [70]). The main
idea Is to perform certain deductions in parallel with the generation to produce greatly
simplified VCs.

The SRI system [Elspas, et al. 73, Waldinger and Levitt 74] differs from the other
systems particularly with respect to their deductive system, written in QA4 [Rulifson, et al. 72].
Since QA4 incorporates a considerable variety of sophisticated features (e.g., pattern matching

Page 24

against tuples, bags, and sets, backtracking, goal-driven deduction, and demons), their powerful
theorem prover, which uses depth-first search, required only about ten pages of code [Elspas, et
al. 73, p. 43). The interactive philosophy of this system is that the user grants permission to
allow the verifier to proceed; it has been used to verify a varied and interesting set of examples.
This set includes various algebraic computations, array sorting and rearrangement programs,
and parts of a pattern matcher and unification algorithm.

The Stanford University system [von Henke and Luckham 75, Luckham and Suzuki
75, Suzuki 75) has verified many important benchmark programs, including several sorting
programs (proving termination and worst case timebounds in addition to the standard sorting
properties), programs that operate on pointers (Luckham and Suzuki 76}, and fairness of a
simple queuing system (Karp and Luckham 76). The VC generator is that of Igarashi, et
al. [73]. The system's powerful proving facility includes an arithmetic, conditional, and
unconditional simplifier, a goal-subgoaler, plus other valuable features used in con junction with
a resolution-based theorem prover. User interaction generally occurs only when the user
desires to add certain rules or strategies applicable to the domain of interest; they are
subsequently invoked automatically.

The USC Information Sciences Institute/University of Texas at Austin system [Good,
et al. 75] is highly interactive and has verified several sorting and searching programs, small
routines from the verifier and from a compiler (all converted to a subset of Pascal), as well as
examples from King's thesis. The design strategy was to “provide automatic capability for the
proof process where possible, and to rely on interaction for manual intervention otherwise”
[Good, et al. 75, p. 483). The authors believe the main unique features of their system to be
"its good facilities for user interaction, the modular system design which uses several previously
existing components, the'particular natural deduction. prover that is used, and the theorem
prover’s method of incremental bounding of values of variables, which, among other things,
facilitates automatic proof by cases” [Good, et al. 75, p. 483]. The VC generator of this system
is essentially the one of Igarishi, et al. (73], originally developed at Stanford; and its theorem
prover is a variation of the prover discussed in Bledsoe and Bruell [73), originally developed at
UT Austin.

Each of these five systems can, at a first approximation, be seen to consist of four
main components: a parser, VC generator, simplifier, and theorem prover. The approach to
each of these phases of verification differs somewhat from system to system, as does the amount
of user interaction. All are based on the conventional inductive assertion method, and all
(excepting King) provide facilities for handling functional abstraction.

Another notable verification system, not based on inductive assertions, is the Boyer-
Moore Lisp proving system [Moore 73, 75, Boyer and Moore 75 77). Based on structural
induction, it uses Lisp for stating both programs and specifications. Its proof system includes
heuristics for theorem generalization, rewrite rules, equality substitution rules, and a structural

Page 25

induction heuristic. Its basic strategy is to EVAL an expression via the Lisp interpreter and,
if it is not T, to apply parts of the proof system, then reiterate the process; when the expression
EVALs to T, the proof is complete. It has automatically proved many interesting Lisp
properties and a simple optimizing compiler for expressions. A typical Lisp property proved is
that REVERSE is its own inverse, ie, that (EQUAL (REVERSE (REVERSE A)) A) is
TRUE.

Other verification systems with published descriptions include: Carter, et al. [77] at
IBM T. J. Watson Research Center, Crocker[77] and Musser [77]) at USC Information Sciences
Institute, Hookway [76, Ernst and Hookway 75] at Case, Marmier [75] at ETH in Zurich,
Schorre [76) at SDC, and Topor [75) at Edinburgh. Also of interest is Good [70], which
implemented certain useful bookkeeping facilities as part of a verification system that accepted
only hand proofs.

2.2 Comparison with Previous Systems

Four broad areas for comparing SID with other systems will be used. Of course, no
small set of categories can completely characterize the differences between programs, but they
can provide some viewpoints to help see past superficial differences.

Toward a New Paradigm

Paradigms are a good way of looking at a class of important differences between SID
and earlier systems. In the past, systems for assisting in producing verified programs have
been, on the whole, non-incremental and focused on verification alone. Looking at the task in
this way imposes several sometimes impractical constraints on the way things can be done. To
lift these constraints, SID appeals to a new paradigm -- one that adopts an incremental,
integrated view of program design and verification.

It is easy to illustrate the inadequacy of the non-incremental view. Consider a
programming problem whose solution consists of several programs and their associated
specifications. According to this view, all programs are, in essence, completely designed and
then verified separately afterwards. The overall verification is complete when all individual
programs are verified. Or {s it? What happens if modifications, like changing a specification
or the type of an identifier, were made along the way? To guarantee consistency, the entire
verification must be re-started from the beginning, or the user must assume the burden of
determining the impact of changes, or a combination of both. Most often, the solution is the
ob jectionable activity of redoing everything, since placing the burden on the user is viable only
in the simplest cases.

RN R oo

Page 26

What additional kinds of knowledge does SID have to enable it to lift constraints
imposed by this non-incremental view? Previous systems are knowledgeable about how to do
individual verification tasks, such as how to generate VCs. But they are not knowledgeable
cnough about how a verification fits together (eg., what specifications are in what VCs, what
properties are assumed where, what functions are called by what verification-related
information), how a design fits together (e.g., dependencies like who calls whom, or where is X
assumed to be of type Y), and how design and verification interrelate. SID brings together
these kinds of issues.

User Interface

Attention to user interface issues is important in any interactive system intended for
actual use. The degree of its importance, of course, varies with the domain; it is accentuated
here due to the complexity and incremental nature of the task. User/system interaction may
occur often, and for a wide variety of reasons.

How does SID respond to such issues? Unlike other systems, its command structure is
based on a dual-mode philosophy that, according to user preference, is active in helping to
figure out what to do next, or is passive and simply responds to each input, then waits for the
next. Help is provided in the form of system-generated suggestions, which are always based on
the current state of development. Alternatively, the user is given the option of directing and
querying the system via a comprehensive set of available commands.

The overall effectiveness of SID is also significantly enhanced by its ability to engage
in an interactive English dialog about the potential effects of changes, as shown in the example
session of Section 1.2.

Programming Languages and Proof Methods

Programming languages supported by earlier systems are subsets of languages such as
Pascal, Algol, or Lisp.

SID, on the other hand, supports the language Gypsy which has three important
features that these other languages do not have. The first is its consistent integration of
program and specification statements. This allows SID to parse and type check programs,
specifications, and properties assumed in proofs. Second, it consolidates compile-time and run-
time specifications, enabling the system to take full advantage of the interrelationship between
verification and run-time validation by assuming the specifications to be checked at run-time in
the verification. Third, it contains constructs for error handling and for stating and
specifying data abstractions and concurrent processes, extending the kinds of programs that can

Page 27

be considered. Gypsy also eliminates a few constructs, such as go-to statements and labels, that
are handled in some of the other systems.

Concerning proof methods, five of the systems reviewed are based on inductive
assertions, and Boyer-Moore uses structural induction. Other methods can be found in a few
systems not reviewed here, e.g., computational induction [Milner 72) and continuation induction
[Topor 75). SID employs inductive assertions, plus the methods described in Good [77] for
proving data abstractions and concurrent processes.

Verified Programs

Programs verified in previous systems are sequential and characteristically small in
size, yet often logically complex. They include certain array sorting and rearrangement
programs, algebraic computation programs such as square root, quotient, factorial, and
exponentiation, and tree searching, pattern matching, and unification programs.

An advantage of studying these previously-used examples is that generally they are
simple enough to be easily grasped. This is good for expository purposes, but there is a danger
in considering only these since they do not provide a very good metric on what else systems can
do. Therefore, the focus here is on moving into a very different kind of area in which there
has been little if any prior work -- communications processing systems. The intent is to apply
SID to large, realistic programs, thereby establishing a better base from which to judge its
practical utility and philosophy.

Currently, the message switching network in Appendix A is the largest and most
complex program completely designed and verified using SID.

Page 28

CHAPTER 3

THE SYSTEM

3.1 System Overview

Figure 3-1 illustrates the high-level system design; this is also how the user views the
overall system. SID consists of four parts: a designer/verifier's assistant (or simply assistant), a
translator, a VC generator, and a proof system. The human designer/verifier communicates
with the assistant, which invokes the translator for parsing or type checking, the VC generator
for generating VCs, or the proof system for proving a formula. The assistant is the new
component. in this scenario; some form of the other components have traditionally been
included in earlier verification systems (cf. Chapter 2). The idéa behind the assistant is that
the user, instead of talking to a passive system that responds to each input and then waits for
the next, talks to an active, helpful intermediary. The assistant embodies an incremental,
integrated view of design and verification and ties together the other components to convey this
view to the user.

The assistant is organized as shown in Fig. 3-2. Its user interface is discussed in
Section 3-2, which also gives an overview of SID's explanation facility as a prelude to a
discussion of the natural language part of the interface. Section 3-3 describes all of SID’s
incremental capabilities. The majority are provided solely by the assistant, specifically the
design and verification manager (abbreviated as DVM), using the methods of Chapter 4. The
others require interactions which are discussed here between the DVM and other components.
The assistant’s data base, whose organization is presented in Section 4.2, is often referred to as
simply “the data base". Section 3-4 focuses on SID's design, discussing its important overall
characteristics and the functional capabilities of the traditional system components. The impact
of an integrated, incremental view of design and verification on SID's design is emphasized.
Some implementation details (e.g., SID's memory requirements) are presented in Section 3-5.
The example session in Section 1.2 is referred to throughout this chapter.

3.2 User Interface: Commands, Suggestions, and English Queries

SID interacts with the user by accepting and executing commands, by proposing

D P Rt e

Page 29

Designer/Verifier's Assistant

Verification
Translator Condition
Generator

Proof
System

Figure 3-1. High-level structure of SID

actions, and by conversing about the effects of changes. Each of these aspects of its user
interface is discussed in this section.

Command Language

SID's command language includes several kinds of control, help, print, and query
commands. Each command begins with an initial keyword that identifies its main function, as
summarized in Fig. 3-3. For variations in command execution, some commands allow
subcommands, which are further keywords that select options or arguments that tell what to act
on. The print command, for example, is used to display user-defined data (eg., individual or
collections of programs, specifications, assumed properties, or VCs) and system-generated data
(e.g., status summaries).

Full and abbreviated input styles are allowed. The user can type any keyword in its
entirety or type an unambiguous abbreviation of it. Arguments can also be abbreviated and
sometimes even omitted.

Page 30

User Interface

Recognize and

Interpret commands Generate suggestions :
P 99 generate English

Design and Verification
Manager

Provide incremental
capabilities

Interface components

Figure 3-2. Structure of Designer/Verifier's Assistant

Default assignments are automatically supplied in some contexts by SID if the user
declines to specify a particular argument himself. The heuristic employed is to default to the
"last legal program name typed by the user or by the system in a suggestion, or to the first
verifiable program on the last translated file, whichever is most recent. This heuristic
encourages a top-down approach to design and verification. In the sorting program
development in Section 1.2, the default is initially Exchange_sort, then Location_of_max, then
Exchange. The impact of this heuristic is even more evident in the more lengthy network
development in Appendix A.

Making Suggestions to the User

The suggestion mechanism is valuable for experienced as well as novice users of
SID. It can guide the user through the design and verification of an entire program, whether it

Page 81

Command Function

ADD Parse and type check new lemma

DELETE Delete lemna

EDIT Invoke text editor x

EXPLAIN Enter explanation facility

HELP Explain command(s)

PRINT Display information

PROVE Attempt proof of formula

RESTORE. Restore a previously-saved problem state

SAVE Save the current problem state

SUGGEST Propose an action %

TRANSLATE Parse and type check data on file

ves Generate VCs

TE (control E) Dclete current word x

? List currently allowed options x

P? List full syntax for

remaining allowable options

x indicates no subcommands available

Figure 3-3. Summary of commands

consists of just a few programs or of a sizeable, perhaps intellectually unmanageable, number of
programs. Three main characteristics of this mechanism are its ability to:

e Always have available a reasonable suggestion for the next step in the design
and verification.

e Base suggestions on the current state of development.

® Make suggestions easy to obtain, while not impeding the invocation of other
desired operations.

Some design issues relating to the first two characteristics are discussed before looking at the
actual implementation; the last is accomplished by the straightforward convention for
transferring between command and suggest mode illustrated in Section 12. A similar
mechanism is described in Yonke [76).

The key issue involved in generating suggestions is that of priorities -- what
suggestions should be given when. Representative issues confronting the suggestion mechanism
are: Should operations on partially-defined programs be suggested before or after operations

Page 32

on fully-defined ones? Is their manipulation interspersed rather than sequential? Should
completing the proof of partially-proved VCs be suggested before or after trying completely
unattempted proofs is suggested? What about programs verified in varying degrees? What
impact do incremental changes have on suggestion generation?

This priority issue is addressed here by basing the order of suggestions on a pre-
imposed priority class structure. The scheme for keeping track of suggestions is naturally a
priority queue. Each suggestion is assigned a fixed priority number when it is created, then
placed in the queue ahead of lower priority suggestions and behind suggestions of equal or
higher priority. The next suggestion is always at the front of the queue. If a suggestion is
executed or no longer appropriate, it is removed from the queue.

To illustrate the suggestion mechanism in action, the queue manipulations that took
place during the development in Section 1.2 will be traced, accompanying each manipulation by
the suggestion SID made (or would have made had it been in suggest mode). The priority
queue is represented as an ordered list of sublists, where each sublist is a triple of the form

(priority oparation object)

The queue is empty when it contains no such entries.
When the session begins, the suggestion queue is empty and SID types
Suggest one of:
<esc>TRANSLATE (from file)
RESTORE (problem from file)

The initial version of Exchange_sort plus data definitions N and Int_array are entered into the
system. The updated queue is

((5 CorrectSemantics Exchange_sort))

N and Int_array do not have queue entries because they are not to be verified. The suggestion
typed is

Suggest correcting the semantics of Exchange__sort

indicating the need to correct the type errors in Exchange_sort. After this Is done, the queue is
updated to

((5 GenerateVCs Exchange_sort))

and SID types

Suggest generating VCs for Exchange__sort

Execution of this operation results in three VCs and the discovery of a pending path.

((5 Prove Exchange_sori#]) (3.1)
(5 Prove Exchange__sort#2)
(5 Prove Exchange__sort«3)

(4 FullyDefine Exchange_sort))
Priority assignments encourage top-down development and thus complement the scheme for
making default assignments in commands. Here, proving existing VCs has a higher priority
than continuing the design. The following suggestions are made, accepted, and successfully
carried out in sequence.
Suggest proving VC called Exchange__soris!
Suggest proving VC called Exchange__sort#2
Suggest proving VC called Exchange__sort#3
The remaining queue entry is
((4 FullyDefine Exchange_sort)) 3.2)
So SID suggests continuing the design by typing
Suggest fully defining Exchange__sort
The user completes the implementation of Exchange_sort and also makes several other changes
to the overall design. The only ones affecting the suggestion queue are the introduction of
functions Location_of_max and Exchange.
((5 GenerateNewVCs Exchange_sort)
(4 FullyDefine Location__of__max)
(4 FullyDefine Exchange))
The next suggestion is

Suggest genarating new VCs for Exchange_sort

After four new VCs are generated, the queue entries are

Page 34
((5 Prove Exchange_sorts4)
(5 Prove Exchange_soriu5)
(5 Prove Exchange__sort«6)
(5 Prove Exchange_sorte?)

(4 FullyDefine Location_of_max)
(4 FullyDefine Exchange))

After suggestions to prove these VCs are given and carried out, suggestions parallel those
beginning with queue configuration (3.2). Location_of_max, followed by Exchange, is
implemented and verified. Afterwards, the suggestion queue is empty and SID types

Suggest one of:
<esc> TRANSLATE (from file)
SAVE (problem on file)

When the queue is empty, suggestions are based on whether or not the system data base is
empty. The data base is empty only at the beginning of a problem, whereas the suggestion
queue is empty at the beginning and at the end.

A slightly complicating factor -- which is a by-product of SID's dual-mode
philosophy -- not encountered in the above scenario is the problem of updating the suggestion
queue when the user issues a command whase execution affects an entry (or entries) already in
the queue. As an illustration of how the queue is manipulated, suppose that the queue is
configured as in (3.1) and that the user, instead of accepting the suggestion to prove
Exchange_sortel, modifies the implementation of Exchange_sort. Then, all entries relating to
Exchange_sort are removed and a new suggestion such as

((5 GenerateNewVCs Exchange_sort))
is added. When VCs are generated for Exchange_sort, entries for those VCs that remain valid
are reentered.
Conversing about the effects of changes

SID’s explanation facility answers questions about what the effects of changes are
and about why a change has the determined effects. When the user types a question, SID goes
through three steps:

® Understanding the question. A simple pattern matching scheme
which looks for keywords works well for SID's limited domain of discourse.
Context is used only in resolving pronoun references. These patterns of

Page 35

keywords are translated into calls to functions responsible for answering the
question. If a question is not understood, the user is informed of the
allowable options for the missing or incorrect sentence fragments.

e Cetting the answer. This involves two interleaved processes --
figuring out the answer and formatting it. Functions, called from Step 1,
interface with the methods of Chapter 4 to determine the effects of changes
and generate the appropriate English output by fitting the results of the
methods into language templates. These templates are assembled dynamically
from smaller, standardized templates that are designed to fit very specific
situations. Answers to "why" questions are more detailed in some respects
than answers to "what” questions.

e Reporting the answer. A set of routines for formatted printing of
templates is used for typing the English answer on the terminal.

Figure 3-4 illustrates these steps. This section focuses on the natural language interface portion
of the explanation facility.

The workings of this English interface are illustrated using an excerpt from the final
conversation in Section 1.2 (shown in Fig. 3-5). Figure 3-6 explains the role of keywords used
in forming the function calls needed to get the answers. Although not used in function call
formation, verbs are also recognized. This is done to increase the likelihood of the answer
making sense. The dictionary of keywords contains verbs meaning "alter” (eg., alter, change,
modify, and replace) in several tenses Figure 3-7 shows how final answer templates are built
by filling in intermediate templates, which represent part of the answer, with actual problem-
specific data. The methods of Chapter 4 are used at each step to guide the choice of templates
and to supply actual data for filling them in. The answer template is then typed on the
terminal as English text by routines designed especially for this purpose. Notice in Fig. 3-5 that
the answer to the "what" question identifies the program Exchange_sort as potentially being
affected by the change, while the answer to the "why" question isolates the potential effects to
VCs Exchange_sorte and Exchange_sorte?.

Page 36

Sort out meaningful
parts of question

Make queries

Actual data

from question —_Q)
L 2

Assemble templates
and actual data
into answer

—Actual data from problem

Determine effects
of changes
(Chapter 4)

Filled in
templates

Print answer as text

Figure 3-4. Structure of the explanation facility

e B g v

.

. - - A R AT SN A AR A D
T i s

<= What are the effecls of changing the eniry asserfion of Location_of_max?

<- What does changing its exit assertion affect?

Changing the exit specification of LOCATION_OF_MAX does not affect
LOCATION_OF _MAX if the formula
H1: LOCATION_OF _MAX(A, |, J) in [1.J]
H2: A[LOCATION_OF __MAX(A, i, J)] = VALUE_OF _MAX(A, |, J)
-=>
Changed exit specification
is true. If not, some of LOCATION_OF__MAX’s VCs are incorrect. The verification
of other programs is not affected if the formula
Changed exit specification
-=)
C1: LOCATION_OF_MAX(A, |, J) in [I.J]
C2: A[LOCATION__OF _MAX(A, |, J)] = VALUE_OF_MAX(A, |, J)
is true. If not, the change invalidates the verification of EXCHANGE_SORT.

<~ Why?

The effects on LOCATION_OF_MAX are a change in its VCs. Invalid verification

Page 37

because properties from LOCATION_OF _MAX were used in proving EXCHANGE_SORT®5

and EXCHANGE_SORTe7,

Figure 3-5. Sample questions and answers

M‘WMI‘ T——

Page 38

What ... Location_of_max?

What ... its exit ... ?

Bt

(FindEffects Location_of .max Exit)
(ExplainEffects Location_of_max Exit)
Nm—
Why ? Function Arguments

Figure 3-6. Translating questions of Fig. 3-5 into function calls

R e i e RN AL T

&

i b e i e

The verification of other programs is not affected if the formula
Changed exit specification
-—
Cl: LOCATION_OF _MAX(A, |, J) in [I.J]
C2: A{LOCATION_OF _MAX(A, 1, J)] = VALUE__OF _MAX(A, |, J)
is true. If not tho change invalidates the verification of EXCHANGE_SORT.

answer template
T)

(The . . . formuia, —, is . . . of, ")

Cl C2 Exchange_sort

(Changed

o
~— -~

Problem-specific data

Figure 3-7. Assembling part of answer to "what" question of Fig. 3-6

&

_—

T

s Ty

LSENE

Page 40

3.3 Incremental Capabilities

One important point necds to be emphasized before going on. SID’s incremental
capabilities were designed to collectively convey an incremental view. They are highly
integrated and complementary, as seen in the session in Section 1.2. Thus, the overall scenario
should be kept in mind when reading the individual descriptions below.

Designing and verifying programs involves four major activities -- overall problem
development, design refinement (evolving the set of programs, specifications, and assumed
properties), VC generation, and proof development. Each activity is broken down according to
the user’s view of the kinds of capabilities provided by SID. Unless covered in Chapter 4, a
discussion of how a capability is provided follows its description.

The discussion of the incremental aspects of SID here and in Chapter 4 focuses on
what was done. Some alternatives and tradeoffs are discussed in Chapter 5.
Overall Problem Development

Obtaining a problem solution, for reasons such as size and complexity, Is typically an
evolutionary process requiring an extended period of time (often several sittings with the
system). Therefore, a capability is provided that enables the user to temporarily interrupt the

problem development, then resume working on it in the same state at a later time.

If the user types

Exec-> Save Sort.Dmp

the DVM saves the current problem state on the file Sort Dmp. This requires collecting all
data that defines the current problem state and then writing it on the file Sort.Dmp in a format
suitable for restoration. Typing

Exec-> Restore Sori.Dmp

causes the save file Sort. Dmp to be read back into the system, replacing the current state with
the one recorded on Sort.Dmp.

R ananad

Page 41

What information necds to be collected? How can it be collected? Are there any
formatting problems? These are some of the questions that often create problems when
providing this kind of capability. Due to the overall system design -- in particular, the
centralization of information in the assistant’s data base -- such questions pose no problems
here. The DVM simply writes out this single data base to temporarily discontinue a problem,
then reads it back in to resume a problem.

Design Refinement

Typically, a problem consists of a large, highly-interrelated collection of information,
including programs, specifications, and properties assumed in proofs. The focus here is on how
SID aids in evolving the final design of this interwoven problem structure.

Changing the design. The user can add new or change already-defined programs,
specifications, or properties assumed in proofs, letting SID assume the burden of determining
the design-related effects. Changes are made for several reasons -- to correct an error in a
program or specification, to augment or reformulate a program or its specifications, to add a
new program or assumed property, and so on. SID, by figuring out the impact of changes,
allows the user to concentrate on the essentials of determining the appropriate change.

The DVM analyzes changes to the design with the intent of avoiding complete
retranslation (and reverification too). Of course, in some cases it cannot be avoided. Changing
the number or types of arguments of a function, for example, requires that all calls on the
function be checked. Therefore, those programs, specifications, and assumed properties that do
not call the changed function need not be (and are not) rechecked. Sections 4.3-4.5 give the
relevant algorithms.

Partially stating programs. Just as an incomplete overall design is gradually filled
in and refined, programs within the overall design structure are developed incrementally. The
user can define parts of a program and leave other parts to be defined later. This aids in
doing top-down design and verification. For example, partially defining Exchange as

function Exchange(A:int_array; |1,J:int):int_array =
begin
entry | in [1..N] and J in [1..N];
exit (all k:[1.N],
k ne | and k ne J => Exchange(A,l,J)[k] = A[K])
and IsExchanged(A,Exchange(A,l,)),1,J)
and IsPerm(A Exchange(A,l,J));
pending
end;

Page 42

allows its header to be used for type checking Exchange_sort and its specifications to be used in
the proof of Exchange_sort. Later, the pending body is replaced by executable code

function Exchange(A:int_array; I,J:int):int_array =
begin
entry | in [1.N] and J in [1.N});
exit (all k:[1.N],
k ne | and k ne J -> Exchange(A,l,J)[k] = A[K])
and IsExchanged(A,Exchange(A,l,J),,J)
and IsPerm(A,Exchange(A,l,J));
result := A;
rasult[l] := A[J);
result[J] := A[l);
end;

and Exchange is verified.
There are three main uses of pending handled by SID.

Body of routine and type definitions. The body of a routine (ie, a function,
procedure, process, or program) or type definition may be left pending in several ways.
Example uses in a routine are:

function ... = pending;
function ... = begin entry ..; pending end;
function ... = begin var..; pending end;
function ... = begin pending end;

Notice that all headers (i.e, the entities to the left of the "=" symbol) are complete so that type
checking of callers can be done. The second construction serves the additional purpose of
allowing properties to be stated about the pending function that can be used in proofs of
calling programs.

Some uses of pending in type definitions are:
fype x = pending;
type x = begin axiom...; pending end;

type x = begin pending end;

The second construction allows the axiom specification to be used for verification purposes, just
as routine specifications were made available above.

T AN T @ 8

Page 43

Statement list in routine bodies. A pending statement list in a routine body indicates
that a particular section of the body has not been written. Typical uses include:

if ... then pending end;
if ... then ... else pending end;
loop pending end;
case ... is ..:pending; is ... :pending; else ... end;

Handling a program with a pending body and handling a program with a pending statement
list differs concerning the generation of VCs. Maybe some VCs can be generated for
programs containing pending statement lists, whereas those with pending bodies have no VCs.

Constant and variable initializations. A pending constant or variable initialization

value indicates that the programmer has not as yet decided the initial value that should be
assigned to the particular entity. A pending constant definition is of the form:

const x: typ = pending;

This construction is allowed for both global and local constant declarations. A pending
variable initialization is of the form

var x: typ = pending;

These uses of pending allow as yet undetermined constants to be "specified”. In VC generation
and in the proof process, these pending values are treated as unique symbolic constants. Thus,
proofs succeed without knowledge about the value eventually assigned. Notice that pending
constants and variables must have declared types for type checking purposes.

VC Ceneration

To convey a unified, consistent view of the task to the user, VC generation activities
must directly reflect steps taken in the design process. This is done by generating (when
possible) some VCs for partially-stated programs and by generating only new VCs.

Generating VCs for parts of programs. When a program is only partially stated,
VCs are generated for only those paths that are completely defined. For example,
Exchange_sort is defined initially as

—_—

WS e —

Page 44

function Exchange__sort(A:int_array):int__array =
begin
entry N ge |3
exit (all L:int,
lin [1.N] => Exchange_sort(A)[l]
= Value_of_max(Exchange_sort(A),1,1))
and IsPerm(A, Exchange_sort(A));
var B:int_array := A;
var K:int := N;
keep K in [1.N];
loop
assert (all L:int, | in [k¢1.N] => B[] = Value_of_max(B,1,!))
and K in [1.N] and IsPerm(A,B);
if K = | then leave else pending end;
end;
result := B;
end;

Even though this definition is incomplete (the else branch of the if statement is pending), some
VCs can be generated. As shown below, VCs are generated for the path from the entry of
Exchange_sort to its loop assertion and for the path from its loop assertion to its exit, whereas
| that path through the loop must be handled later when the else branch is fully defined.

Beginning new path...
Bi=A
K s f

Assume (unit entry condition)
Ngel

ASSERT (all Is1 ¢ INT, Is] in [Kel.N]
-> B[I»1]) = VALUE_OF_MAX(B, 1, Is1))
and K in [1..N]
and ISPERM(A, B)
Must verify ASSERT condition
Verification condition EXCHANGE_SORT# |
Hi: 1 le N
-=)
| Cl: ISPERM(A, A)

I g

w. ~

| _ . " . A AN, i o A AT =

Fey

End of path

Beginning new path...
Continuing in LOOP ...

Assume (from last assertion)
(all Is] : INT, Iw1 in [K+1.N)
=> B[I*1] = VALUE_OF _MAX(B, 1, I=1))
and K in {1..N]
and ISPERM(A, B)

Assume (KEEP assertion)
K in [1..N]

Assume (IF test failed)
(not K=1)

Entering PENDING shlomcnt..._cannol continue in this path

End of path

Beginning new path...
Continuing in LOOP ...

Assume (from last assertion)
(all 11 : INT, I#] in [Ke]l.N]
=> B[I»1] = VALUE__OF_MAX(B, 1, I=]))
and K in [1.N]
and ISPERM(A, B)

B Saann o L aan ol o et kil

Page 46

Leaving unit EXCHANGE_SORT
ASSERT (all 1 : INT, 1lin[1.N]
=> RESULT[I] = VALUE_OF _MAX(RESULT, 1, 1))
and ISPERM(A, RESULT)

Must verify (unit exit) condition
Verification condition EXCHANGE__SORT#3
Hi: all I=1 : INT, I*] in [K¢1.N] => VALUE_OF_MAX(B, 1, I=]) = B[Is1]
H2: K=1
H3: ISPERM(A, B)
H4: K in [1.N)
=)
Cl:all | : INT, 1in [1.N] => VALUE_OF_MAX(B, 1, |) = B[l]

End of path

The fact that a VC cannot be generated for the else branch (on the second path) is detected by
the VC generator.

The previous discussion about the uses of pending mentioned that pending values
are treated as unique symbolic constants. This impacts the process of generating VCs. The
VC generator, upon recognizing a pending as an initialization value, assigns the associated
identifier a unique name (which turns out to be the identifier itself) for which no initial value
is substituted. Thus, such identifiers are treated as representing some unknown, yet fixed,
value. The VC generator recognizes a pending in local initializations by its ordinary path
transversal algorithm. Global constants that have pending values are detected via the DVM,
which is aware of all pending entities. The DVM ensures that global names are handled
properly not only during VC generation but also during proofs.

Cenerate only new VCs. Changes to the design often affect the verification. For
example, changing a statement in a program can change the set of VCs that need to be proved
for that program. Or changing the number of arguments in the parameter list of a function
invalidates some (but not necessarily all) VCs of its callers. SID, from the user’s viewpoint,
responds to changes by generating only new VCs and by not regenerating VCs unaffected by
the change.

This capability is illustrated by replacing the pending in Exchange_sort with
executable code and then generating its VCs. The new version of Exchange_sort is

function Exchange__sort(A:int__array):int__array =

Page 47

begin i
entry N ge |; <
oxit (all l:int,

lin [1.N] => Exchange_sort(A)[!]
= Value_of_max(Exchange_sort(A),1,))
and IsPerm(A, Exchange__sort(A));

var B:int_array := A;
var, K:int := N;
keep K in [I.N];
loop

assert (all L:int, | in [k+1..N] => B[I] = Value_of__max(B,I,l))

and K in [1.N] and IsPerm(A,B);

if K = 1 then leave end;

B := Exchange(B,Location_of__max(B,1,K),K);

k = K-13
end;
result := B;

end;

SID traces the one changed path through the loop and generates new VCs.

Beginning new path...
Continuing in LOOP ...

Assume (from last assertion)
(all 181 ¢ INT, 1#1 in [Ke1.N]
» -> B[i#1] = VALUE__OF_MAX(B, 1, I1))
and K in [1..N]
and ISPERM(A, B)

Hi: all 1] : INT, I=] in [Ke1.N] => VALUE_OF _MAX(B, 1, Ia1) = B[l=1]
H2: ISPERM(A, B)
H3: (K-1) in [1.N]
H4: K in [1.N])
H5: K ne |
=)
Cl: all I#] ¢ INT, [#] in [K.N]

=> VALUE__OF_MAX(EXCHANGE(B,

LOCATION_OF _MAX(B, 1, K), K), 1, I=1)

T G

Page 48

= EXCHANGE(B, LOCATION_OF _MAX(B, 1, K), K)[is1]
C2: ISPERM(A, EXCHANGE (B, LOCATION_OF _MAX(B, 1, K), K))

End of path

Unaffected VCs: EXCHANGE_SORT#1, EXCHANGE__SORT#2, EXCHANGE _SORT®#3

Three previously-generated VCs (which came from the unchanged paths) were unaffected by
the change.

The scheme employed by the DVM for generating only new VCs is discussed in
Section 4.7.

Proof Development

The incremental aspects of proving formulas both complement and augment the
other incremental activities. The term “"formula” refers to both VCs and problem-domain facts
assumed in proofs. The interface between the DVM and proof system is critical in attaining
SID’s proof development capabilities. The part of the proof system of interest here is its
interactive theorem prover (abbreviated as prover), which is an extension of the program
described in Bledsoe and Tyson [75]. The DV M-prover interface s divided according to three
main tasks:

I. Getting started. The DVM invokes the prover with the information
necessary to attempt the proof of the designated formula. The DVM
retrieves this information from the data base of the assistant.

2. Adding to the proof. During the proof process the prover may (and
typically does) invoke the DVM to obtain additional information. The
DVM performs the necessary error checking (does the information exist and
can it be used in this context?); then if the request if valid, the DVM
retrieves the data directly from the data base (eg, a basis property or
complete specification), or docs the appropriate manipulations to get it (eg.,
by separating out the unwanted parts of a specification).

»

Concluding a proof. Upon the completion of a proof, the DVM
interprets and stores the results of the attempted proof. Results of a
successful proof include a detailed record of the proof that makes explicit
steps in derivations along with their justifications.

Ba o

Page 49

Keeping this Interface in mind will aid in understanding how SID's proof-related activities are
accomplished.

Prove only unproved formulas. Changes not only affect VCs, they also affect

proofs. This is seen by reconsidering the example of changing the number of arguments to a

function. This causes a type mismatch in all of its callers. Suppose that this function is called

by assumed properties or specifications used in proofs. Then, proofs using these properties

must be redone. As another example, suppose that a previously-used property is incorrect.

Revising this property may or may not affect the proofs in which it was used. Section 4.8 1

discusses the techniques employed by the DVM to determine what proofs (if any) need to be 1

redone when changes affect properties used in proofs. ‘-‘
3

After the DVM applies the methods of Section 4.8 to identify what proofs need to be
redone, the remaining problem is how to retain still-valid parts of these proofs. The DVM
supplies the prover with the relevant proof records that necd to be at least partially redone and :
the revised properties. The prover tries to reprove the affected subgoals while ensuring that
the proofs are consistent with other parts of the original proof. The proof record is used to
supply the necessary context. For example, the prover must be aware of all substitutions made
in proofs and also the context in which they were made because substitution conflicts may
invalidate previous deductions. The prover currently accepts reproofs when substitutions made
in a subgoal’s new proof subsume those made in its previous proof.

This completes the linking of changes in the design to proofs. When design changes
affect VCs, the methods of Section 4.7 kecp intact still-valid ones along with their proofs.
When design changes affect properties used in proofs, the two-step process just described is
employed to keep Intact still-valid proofs. The methols of Section 4.8 separate out all affected
proofs, then proofs of their affected subgoals are redone via the prover.

Proving parts of formulas. The prover decomposes formulas into a series of
subgoals, each of which can be proved, deferred until later, or assumed with justification. This
allows proofs to be done piecewise rather than all at once. For example, the user can do part of
a proof, then temporarily discontinue it, then resume it later without having to redo any
subproofs that remain valid. Providing for this kind of evolutionary proving is important
because difficult propositions that cannot be established automatically are often more
conveniently (or perhaps out of necessity') proved over a period of time.

The ability to defer or assume subgoals is a valuable addition to one's proof
repertoire. The defer command is useful when the user wants to think more about what is
needed to complete the current proof and go on to others, yet retain already-completed parts of
the proof. The assume command is useful when the user sees the obvious truth of a formula
and wishes to terminate its automated proof and when the prover is unable to draw the
inferences necessary to complete the proof, but the user is able to prove it by hand.

Page 50

These features complicate part 3 of the DVM-prover interface. The prover, upon
concluding the proof process, must convey to the DVM what happened. The information
transmitted varies in amount and kind according to what transpired during the proof.
Examples of what the DVM needs to know are: what has becn proved, what subgoals are
assumed, what subgoals are deferred, what their names are, what needs to be saved to resume
deferred proofs, and what properties were used where. The DVM assimilates all this
information to determine things like the status of the attempted proof and the impact of this
status on the overall problem.

Part 1 of the interface also becomes more complex. It must now initiate proofs of
deferred subgoals as well as original proofs and reproofs. As with reproofs, the DVM brings
together the needed information that was previously collected by the prover. Fitting proofs of
deferred subgoals into the overall proof structures is much like the problem of reproving
subgoals. The only difference is that deferred subgoals do not have any prior substitutions.
The prover currently handles deferred proofs just like reproofs. For the subsumption test to
succeed, proofs of deferred subgoals cannot yield any substitutions that need to be used
elsewhere in the overall proof.

Adding new facts. Instead of adding all known problem-domain facts (or basis
properties) at the beginning of proofs, individual facts are added when needed during proofs.
Needed facts may already be part of the collection on known facts or added anew. Thus, the
user can gradually build up a body of facts that describe a particular domain, and selectively
apply individual ones. Adding facts only when necded has long been the policy of the prover
[Bledsoe 75). The interfaces that incorporate this capability into the overall system are new.

The scenario for adding previously-undefined facts to proofs is as follows.
Prover-> Use Lemma

Enter lemma . . .

x ALL L:INT, ALL P:INT__ARRAY,

% L IN[1.N] -> VALUE_OF _MAX(P.L,L) = PL];
Lemma added . . . Its name is LEMMA®|

"Prover->” is the prover’s prompt and “«" is the translator's prompt. The typed lemma is
parsed and type-checked within the context of the overall problem. Value_of_max, for
example, is checked for the correct number and types of arguments. SID assigns the name
LEMMAel for subsequent reference. The user next requests a display of the current theorem.

Page 51
Prover=> Print Theorem

HI. L8 in [1.N] => VALUE_OF_MAX(PS, L8, LS) = P§[LS)
H2. K=

-
Cl1. VALUE_OF _MAX(B, I, 1) = B[1]

LEMMAe] has been skolemized and added as hypothesis HI1. Identifiers containing the
symbol "$" are skolem variables.

Transparent to the user in this scenario, as in many others, is the large amount of
intra-system interfacing needed to carry out this request. Adding a new lemma is a two-step
process: entering the lemma into the system and then skolemizing it for addition to the current
theorem. Accomplishing these tasks requires several interactions among the prover, DVM,
translator, and data base. Reasons for these interactions (all of which are coordinated by the
DV M) include the need to access and update the symbol table for type checking purposes and
the need to name and store the lemma in the data base for subsequent referenice. Figure 3-8
illustrates. Arrows indicate flow of control.

Bringing already-defined facts to bear on a proof is straightforward. The user
simply refers to the desired fact by name and it is automatically added to the current
hypothesis.

Expanding deferred specification expansions. The notion of adding basis
properties to proofs only when needed is carried over to specifications. VCs may contain only
references to specifications of called programs instead of the specifications themselves. Then,
complete specifications, or parts of specifications, are expanded automatically or interactively as
necded during the proof.

The motivation for this is the need to limit the size of VCs. VCs are often quite
large and bulky, hindering effective user analysis. For example, some VCs that arise from
concurrency in the communications processing example in Appendix A are 50 to 100 lines long.
Limiting their size significantly aids the interactive proving process. Therefore, SID defers the
expansion of specifications from called programs in both specifications and executable code
until the actual proof has begun. (SID also addresses this problem by simplifying VCs as they
are generated.) This tends to reduce the size of VCs, enhance readability, and keep them in
terms of user-defined abstractions.

Deferred specification expansions can be expanded as either uninstantiated
hypotheses or instantiated definitions. The function IsPerm {s used in illustrating how
specifications are added as additional hypotheses.

Page 52

User types “Add Lemma" to prover

i Prover calls DVM to got lemma
DVM calls translator to read lemma from terminal
iranslator calls DVM to get information
DVM retriaves information from
Enter Lemma 4 symbol table in data base
DVM returns type information to translator
Translator returns lemma to DVM which names and stores
it in the data base
5 DVM returns lemma to prover

Prover calls DVM to declare identifiers during skolemization

Skolemize Lemma DVM updates symbol table in data base

DVM returns declared identifier to prover

Prover types the prompt "Prover=>" on the terminal

Figure 3-8. Interface structure for adding new lemmas during proofs

- L U RN

Page 53

function lsPerm(X,Y:int__srray) : boolean =
begin
oxit (assume
(all Z:int_array, IsPerm(Z,2))
and (all Z:int_array,

IsPerm(X,Z) and IsPerm(Z,Y) => IsPerm(X,Y)));
end;

Suppose we are proving the following theorem
Prover=> Print Theorem

H1. N in [K.POSINF)
H2. K in [2.N]

H3. | in [K*1.N] => VALUE_OF_MAX(B, 1, I) = B[I]
H4. ISPERM(A, B)
H5. K ne |

-

C1. ISPERM(A, EXCHANGE(B, LOCATION_OF _MAX(B, 1, K), K))
The proof requires the second exit property of IsPerm. So the user types

Prover=-> Use IsPerm 2

which causes the desired property to be skolemized and added to the theorem.

Prover-> Print Theorem

H1. ISPERM(XS, Z8) and ISPERM(ZS, Y$) => ISPERM(XS, Y§)
H2. N in [K.POSINF)
H3. K in [2.N)
H4. 1 in [Ke1.N] => VALUE_OF _MAX(B, 1, 1) = B[I)
HS. ISPERM(A, B)
H6. K ne |
-=)
C1. ISPERM(A, EXCHANGE(B, LOCATION_OF _MAX(B, 1, K), K))

Hypothesis H1, with skolem variables X8, Y$, and Z8, is the second exit property of IsPerm.

For a look at a definition expansion, consider the following function:

Page 54

function IsExchanged(A,B:int_array; |,J:int):boolean =
begin
exit (assume IsExchanged(A,B,i,) it
(Vin[l.N] and Jin[1.N])
and A[1}=B[J] and A[J)=B[I]));
end;

Let us focus on one hypothesis of a larger theorem.
Prover=> Print Theorem

H1. ISEXCHANGED(B, EXCHANGE(B, LOCATION_OF _MAX(B, 1, K), K),
LOCATION_OF _MAX(B, 1, K), K) (3.3)

Replacing IsExchanged by its definition is done by executing the following command.

Prover-> Expand IsExchanged

Hypothesis H1 is replaced by four hypotheses.
Prover=> Print Theorem

H1. LOCATION_OF _MAX(B,1,K) in [1.N)
H2. K in [1.N)
H3. EXCHANGE(B, LOCATION_OF_MAX(B, 1, K), K)[K)
« B[LOCATION_OF _MAX(B, 1, K)]
HA. EXCHANGE(B, LOCATION_OF _MAX(B, 1, K), K)
[LOCATION_OF _MAX(B, 1, K))
= B[K]

Hypotheses H1-H4 are obtained by instantiating the definition of IsExchanged with the
arguments in (3.3). That is, substitute B for A, Exchange(B, Location_of_max(B,1,K),K) for B,
Location_of_max(B,1,K) for l,and K for .

Sometimes these expansions are triggered automatically. If an unexpanded reference
is the sole hypothesis, it is expanded under the assumption that it is likely to be needed in the

Page 55

proof. Also, unexpanded references in the conclusion are expanded so they can be proved.
These situations often are not present when the proof begins, but arise during the proof as a
result of the proof strategy employed.

Specification expansions are not always deferred until proof time. It is sometimes
desirable to have the VC generator automatically add the specifications of called programs to
VCs, instead of inserting references to the specifications. For example, VCs for establishing
entry conditions have the entry condition of called programs fully expanded in their conclusion.
Full expansion is also done when proving properties of concurrent processes. An example is
the VCs for the top-level network program in Appendix A. This program calls processes
whose block specifications are fully expanded in its VCs. This is done because current
experience with concurrency proofs using SID indicates that this expansion is nearly always
needed.

3.4 The System Design

Previous sections in this chapter sketched SID's overall design, described its
designer/verifier's assistant, and discussed its incremental capabilities (along with the
interactions involved in accomplishing them). This section takes a more detailed look at SID's
design, focusing on its important design characteristics and its traditional components.

Figure 3-9 gives a detailed view of SID's organization. (The assistant was broken
down in Fig. 3-2) Solid arrows indicate program calls visible to the user and dashed arrows
indicate calls that are transparent to the user. The impact of adopting an integrated,
incremental view of design and verification is evident in this diagram.

The methods of Chapter 4, which are implemented in the DVM part of the assistant,
encourage:

e Centralization of control. To perform a particular task, the DVM
determines what work needs to be done and invokes the appropriate
program, or sequence of programs. Tasks are initiated by the user or by an
invoked program.

e Centralization of information. The DVM controls all data-
transmission links in the system. All data is stored in a single data base
directly accessible only to the DVM.

There is one exception to the centralization of control principle. For efficiency, the automatic
simplifier is called directly to manipulate intermediate data. During VC generation, for
example, the simplifier is called every time an assignment statement is traversed. The

Designer/Verifier's Assistant

' § y 3
| | :
| |
| | |
| | \
_=f | 3
Translator VC Generator
Parse Generate paths Interactive
Theorem
Prover
Type check Generate VCs

4 , 2
Automatic
Simplifier

Figure 3-9. Detailed structure of SID

Page 57

frequency of these calls suggests using a direct interface, which does not require things like data
reformatting by the DVM.

Both of these design characteristics have important benefits. Centralizing contro/l
enables the methods of Chapter 4 to screen intended operations prior to their execution and
thereby prevent things like generating VCs that will contain type conflicts. It also enables the
DVM to coordinate diverse tasks. Figure 4-8 illustrated how the DVM coordinates the
translator, prover, and data base when new lemmas are added during proofs.

Centralizing information enables the DVM to provide 2 uniform set of functions for
accessing ail system data. These functions use primitives provided by each component for
manipulating the data they produce. The translator, for example, provides symbol table
primitives. Components, therefore, can access information without knowledge of its origin or
representation details. For example, the prover frequently needs type information to ensure
that only integer-valued variables are entered into its typelist mechanism. The prover obtains
this type information without knowledge of the translator or symbol table representation.
Centralization of control surfaces here too because the assistant, being aware of context,
established the appropriate scope in the symbol table.

The discussion below describes the system components tied together by the assistant
-- the translator, VC generator, simplifier, theorem prover, and display package (not in Fig. 3-9).
The focus is on what they do and the impact of the system goals on their design.

Translator

This program -- developed by Wilhelm Burger -- consists of a Gypsy parser and type
checker. A code generator is under development. The translator is table driven and applies to
programs, specifications, and basis properties. Its parse tables are generated by the BOBSW
system [Burger 74]. Diagnostics are given in the event of syntactic or type errors. Processed
entities that either have no errors or have only type errors are stored in the assistant’s data base
for future reference, whereas entities containing syntax errors are not.

The impact of the methods of Chapter 4 on the overall design of the translator is
twofold. First, the translator, in addition to having and entry point for parsing and type
checking, also has an entry point for type rechecking. All programs, specifications, and basis
properties can be rechecked. What entities to recheck and when to recheck them is decided by
the methods of Chapter 4. Second, all type checking is done in the context of the overall
problem as represented in the assistant’s data base.

TR e

Page 58
Verification Condition Generator

This program -- developed by Rich Cohen -- serves the twofold purpose of
generating VCs and of generating a record of the statements involved in the generation of each
VC. The proof methodologies implemented are the conventional inductive assertion method
[Floyd 67), and the data abstraction and concurrency proof techniques described in Good [77].

The importance of limiting the size of VCs to enhance user analysis has been
discussed. The VC generator addresses this problem in two ways:

e Incremental simplification. The VC generator uses the
autwmatic simplifier to simplify VCs as they are generated. This eliminates
much of the unnecessary clutter and allows mechanical, propositional
inferences (sometimes resulting in logical truths) to be made before the VCs
are displayed to the user.

e Defer specification expansions. Only references to some
specifications of called programs are inserted in VCs, instead of the
specifications themselves. Section 3.3 gives examples and shows how such
references are expanded during proofs.

Simplifying during VC generation has potential drawbacks because the relationship
between VCs and the statements involved in their generation may be obscured. When a proof
attempt fails, this correspondence is needed to determine if there is an inconsistency between the
program and its specifications. This is sometimes easier with unsimplified VCs. The VC
generator responds to this issue by recording the sequence of statements used in the generation
of each VC along with some annotations. 1he user may have these annotated paths displayed
in parallel with VC generation, or simply request them later as needed. The need for these
commentaries is amplified in SID because of complications involved in verifying data
abstractions and concurrency.

Automatic Simplifier

This program simplifies logical, limited relational, and arithmetic expressions. It has
a built-in knowledge of the propositional calculus and is fully automatic. The VC generator
uses it to simplify VCs as they are generated, and the theorem prover uses it to simplify
formulas added during proofs. The philosophy behind the simplifier is to perform efficient,
straightforward manipulations without interaction before invoking the more powerful
capabilities of the interactive theorem prover.

—

Page 59

Since its original use in the verification system of Good, et al. [75], Don Good made
extensions it to handle rational division, various symbolic state manipulation capabilities
needed to accommodate the VC generator, and built-in Gypsy operators for manipulating
things like sequences.

Interactive Theorem Prover

The interactive theorem prover is a variation of an already highly developed
program originally developed as part of the Automatic Theorem Proving Project at UT Austin
(see Bledsoe and Tyson [75]). It is a natural deduction system (i.e, a Gentzen-like system as
opposed to a “less natural” system such as resolution) that proves theorems by subgoaling
(splitting), matching, and rewriting. Its handling of certain formulas from Presburger
arithmetic [Bledsoe 75] and proofs by cases makes it particularly effective in verification [Good,
et al. 75). Mabry Tyson augmented this prover in several ways for use in SID.

User interface. The prover's command structure was reworked for compatibility with the
assistant’s. The prover and assistant use the same command scanner (also written by Mabry
Tyson) so that user commands are handled uniformly at all interaction points. Unlike the
assistant, the prover does not offer suggestions, nor does it answer English queries.

Additional information. Facilities for handling deferred specifications and using
properties from the assistant’s data base were added. Examples of both are in Section 3.3.

Proof presentation. Since successful proofs may depend upen properties that incorrectly
describe the domain, easily-understandable records of prbofs (displaying how properties are
used) are important as documentatiori for verifications to be credible. Seeing how properties
are used is important, for example, because individual properties that appear to accurately
characterize the domain may subtly interact during a proof to cause unintended inferences.
Thus, the prover collects a detailed record of proofs that makes explicit both built-in and user-
supplied assumptions. An initial version of a dual-mode display facility is available for
viewing these proofs. The user has the option of interactively directing presentations by
requesting the desired amount of detail at selected steps, or of having a completely automatic
presentation by specifying initially the amount of detail desired throughout.

Proof interruption. The user can direct the prover to abort, assume, or defer proofs.
The abort command fs useful, for example, when the user sees that he is trying to prove a false
theorem and wishes to terminate the search. Section 3.3 discusses the assume and defer
capabilities.

Page 60
Display Package

Dwight Hare developed a set of routines for formatted printing of data, including
programs, specifications, and basis properties. Data is translated from its internal prefix form
to formatted infix. For example, the lemma represented in prefix as

(ALLD
(TYPREF INT_ARRAY)
(ALL R
(TYPREF INT)
(ALL S
(TYPREF INT)
(IMP (AND (AND (IN R (RANGE 1 N)) (IN S (RANGE 1 N)))
(LT (FUNCTION VALUE_OF_MAX DR S)
(ARRAY D (PLUS S 1))))
(EQNUM (FUNCTION VALUE_OF_MAX D R (PLUS S 1))
(ARRAY D (PLUS S 1))

is displayed to the user as

all D : INT_ARRAY,
all R, S : INT, Rin [1.N]) and S in [1.N)
and VALUE_OF _MAX(D, R, S) < D[S*1])
=> VALUE_OF __MAX(D, R, S¢1) = D[S+1]

Options are available for varying indentations and mixing upper and lower case. This
example has keywords in lower case. Several components, especially the assistant, interface with
this package.

3.5 Implementation Details

SID is entirely Lisp based, completely compiled, and runs on a PDP-10 computer
under TOPS at The University of Texas at Austin. Most of the system is written in Reduce
(Hearn 71]; the rest is written directly in UCI Lisp.

When designing and verifying programs like the sorting example or the message
switching network in Appendix A, SID occupies approximately 186K of core. This amount
includes the Lisp system; the Reduce translator; all of the programs, tables, and data; and
enough working free storage to handle complex manipulations. Figure 3-10 summarizes how
memory is used. Figure 3-11 details the memory requirements of SID's compiled code, breaking

Page 61

down memory into binary program space (area for compiled functions and arrays), free storage
(areas for Lisp nodes), and full word space (area for print names and numbers). Figure 3-12
summarizes the memory used by the supporting software.

SID's code 108

Software support 48

Working Storage 15

Data base for sort (network) _10 _(15)
TOTAL 181K (186K)

Figure 3-10. Memory requirements for running SID
in thousands of PDP-10 words

Page 62

Binary program space

assistant 12
translator (includes tables) 11
VC generator 6
interactive theorem prover 16
automatic simplifier 7
display package 6
Free storage 24
Full word space 8
Global initializations 18
TOTAL 108K

Figure 3-11. Memory requirements for SID's compiled code

Lisp system 35
Reduce (without algebraic package) 13
TOTAL 48K

Figure 3-12. Memory requirements for supporting software

Page 63

CHAPTER 4

METHODOLOGY FOR RESPONDING TO CHANGES

This chapter first overviews the methodology, then details the algorithms and the
underlying data base they manipulate. The term "program unit" is used to refer to a program
and its specifications.

4.1 Preview of the Methodology

This section gives a preliminary overview of the methods for dealing with changes
to programs, specifications, and basis properties. Both the general approach and important
characteristics of the methods are discussed.

Key ldeas

Designing and verifying programs involves developing a highly-interrelated
collection of several kinds of information, including programs, specifications, VCs, basis
properties, and proofs. Initially, the methods are best understood by considering only some of
this information and a few ways in which it is related. The sorting program of Section 1.2
again is used for illustrative purposes.

Figure 4-1 gives the final version of the sorting program accompanied by the lemmas
used in its verification. The discussion below refers to the line numbers to the left of the
listing, which are not a part of the program or lemmas. From this information, the methods
build the cyclic graph structure in Fig. 4-2 to describe calling relationships. Arrows in Fig. 4-2
indicate direct calls in Fig. 4-1. For example, Exchange_sort calls itself on line 9,
L.ocation_of_max on line 19, Value_of_max on line 10, Exchange on line 19, and IsPerm on
line 1. Figure 4-2 omits data definitions because they are handled differently from functions.

Suppose that the definition of Location_of_max is altered by interchanging lines 48
and 49. What are the effects of this change? Figure 4-3 gives a first approximation of the
answer, excluding those functions that do not directly or indirectly call Location_of_max from
consideration. This approximation is refined by observing that Exchange_sort cannot be
affected because lines 48 and 49 are in a part of Location_of_max that is not visible to its

Page 64

const n:int = pending;

type int__array = array ([1..n)) of int;

begin
entry N ge |;

|
2
3
4
5 function Exchange__sort(A:int__array):int__array =
6
7
8 exit (all l:int,

9 lin [1.N] => Exchange_sort(A)[l]

10 = Value__of__max(Exchange_sort(A),1,1))
11 and IsPerm(A, Exchange_sort(A));

12 var B:int_array := A;

13 var K:int := N;

14 keep K in [1.N];

15 loop

16 assert (all l:int, | in [kel..N] => B[l] = Value__of__max(B,1,!))
17 and K in [1.N] and IsPerm(A,B);

18 if K = 1 then leave end;

19 B := Exchange(B,Location__of__max(B,1,K),K);

20 k := K-13

21 end;

22 result := B;

23 end;

24

25

26 function Value__of_max(A:int__array; |,J:int)zint =

27 begin

28 exit (assume (all k:int,

29 kin [I.J] and | in [1.N] and J in [1..N]

30 => A[k] le Value_of__max(A,,J))

31 and (all I,m:int,

32 Lin [I.J]) and m in [I.J] and | in [1..N] and J in [1..N]
33 => Value_of __max(Exchange(A,I,m)\J) =

34 Value__of _max(A,lJ)));

35 end;

36

Figure 4=1. Final version of sorting program and
lemmas used in its verification
(continued on next page)

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

72

Page 65

function Location_of__max(A:int__array; |,J:int)zint =
begin
entry 1 in [1.N]) and Jin [1..N] and | le J;
exit Location_of_max(A,),J) in [1.J)
and A[Location_of__max(A,,J)] = Value_of__max(A,l,J);
var K:int := |3
keep | le J and | in [1..N] and J in [1.N) and K in [1..N];
result := |;
loop
assert Afresuit] = Value__ot_max(A,,K)
and result in [1.K]) and K in [I..J);
it K ge J then leave end;
K = Kel;
it A[result] < A[K] then result := k end;
end;
end;

function Exchange(A:int__array; |,J:int):int__array =
begin
entry | in [1.N] and J in [1.N];
exit (all k:[1..N]J,
k ne i and k ne J => Exchange(A,l,J)[k] = A[K])
and IsExchanged(A,Exchange(A,l,J),1,J)
and IsPerm(A,Exchange(A,l,J));
result := A;
result[l] := A[J);
result[J] := A[l);
end;

funclion IsExchanged(A,B:int_array; |,J:int):boolean =
begin
exit (assume IsExchanged(A,B,i,j) iff
(tin[1.N} and Jin [1.N]
and A[1}=B[J] and A[J]}=B[I]));
end;

Figure 4~1, (cont'd) Final version of sorting program and

lemmas used in its verification (cont'd. on next page)

-

P

T NI TG I | |G p—

Page 66

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

function IsPerm(X,Y:int__array) : boolean =
begin
exit (assume
(all Z:int_array, IsPerm(Z,Z))
and (all Z:int_array,
IsPerm(X,Z) and IsPerm(Z,Y) => IsPerm(X,Y)));
end;

LEMMA®] is
all L 2 INT,
all P : INT_ARRAY, L in [1..N] => VALUE_OF_MAX(P, L, L) = P[L]

LEMMAS2 is
all D : INT_ARRAY,
all R, S : INT, Rin [1.N] and S in [1..N]
and VALUE__OF_MAX(D, R, S) < D[S+1]
=> VALUE_OF _MAX(D, R, S¢1) = D[S+1]

LEMMA®3 is
all Ds] : INT_ARRAY,
all Rel, S#1 : INT, Re1 in [1.N] and Se1 in [1.N]
and VALUE_OF_MAX(D#1, Re1, S#1) ge Del1[Sel+1])
> VALUE_OF_MAX(D#1, Rel, S#1+1)
= VALUE_OF _MAX(D#1, Rel, S#1)

LEMMAW®4 is
all L, M 2 INT,
all P : INT_ARRAY, L in [1.N] and M in [1.N]
-> ISPERM(P, ALPHA(ALPHA(P, L, P[M)), M, P[L]))

Figure 4-1. (cont'd.) Final version of sorting program and
lemmas used in its verification

e

Page 67

L= *B614 ul sdiysuoyp|as Bui||o>

*Z-y 21nb14
pabubyox3s)

$

A

wias|

Y. g A

swmcoc_uxm Qxc:ﬁ&o:o: IPA on&dou:o:cuo.—

€ 4owwa

“«omlwmco;uxm ! z#owwa

~ | #owwa

paowwa

Page 68

XDUi—j0 Uo1P207 0} abubyd D Aq Paydayyo 24n4dNIsans JO uolowixoiddo ysiiy

pabuoyox3s|

%

wiads| somco:uxm XDW™JO0~aNn|DA
Q A

“«omlomco yox3

XDW™JO~UO01§DD07]

&

*g-¢ ainbiy

P

€ #owwa

Z#owwa

~ | #owwa

Page 69

callers. But Exchange_sort can be affected by a change to (or changes that affect) the header of
Location_of_max on line 37. From these simple observations comes a fundamental principle --
changes have global effects only through externally-visible parts of program units; conversely,
changes to other parts have only local ef fects.!

Distinguishing between external and internal parts of program units is usually only
the first step in determining the effects of changes. Suppose that the header of IsExchanged on
line 66 is changed to

function IsExchanged(A,B:int_array; l:int):boolean =

The argument J has been deleted, changing the number of arguments to IsExchanged from
four to three. Figure 4-4 gives a first approximation of the affected substructure, excluding
IsPerm and Lemmae4 from consideration. Applying the same “internal/external” principle as
before yields a duplicate of Fig. 4-4. The initial approximation is not refined. One effect of
changing the number of arguments to IsExchanged is a type mismatch in the exit specification
of Exchange (line 59), which can be exported for use in the proof of callers of Exchange. This
exit specification can be exported to Exchange_sort via several routes, including an indirect one
through Value_of _max (because the exit specifications of Value_of_max call Exchange on line
33 and Exchange_sort calls Value_of_max on line 10).

There are several more ways in which the propagation of the effects of changes are
constrained. One way is by knowledge of where properties have been used. Figure 4-5
describes where the exit specifications of Exchange and IsExchanged have been used. These
descriptions enable the methods to reduce the substructures in Fig. 4-4 to the one in Fig. 4-6.
Other constraints detailed later include rules for deciding when changes to previously-used
specifications have no effects.

It is not enough to know only what programs are affected by changing the number
of arguments to IsExchanged. How they are affected is also important. Two general kinds of
consistency are introduced for classifying the effects of changes. Design consistency refers to the
syntactic and type consistency of programs, specifications, and basis properties. Werification
consistency refers to the correctness of VCs (eg., that VCs contain no type errors and reflect
changes in the associated programs and specifications) and to the use of specifications and basis
properties in proofs (eg., that no proofs depend on design inconsistent properties and that the
needed logical relationships hold between intermediate and final versions of properties used in
proofs). Applying these classifications to the programs in Fig. 4-6 yields Fig. 4-7. IsExchanged
Is design inconsistent, for example, because of a mismatch in the number of arguments between
its recursive call on line 68 and its changed header. Exchange has a similar type mismatch on

' Changes to external parts of units may also have local effects, as will be shown later.

paBuoyox3s| o4 abuoyo o Aq payoayp 2inyonuysqns JO uoypwixoiddd 4sity -4 aunBiy

pabubyox3s)

t

fis b e

“ﬂmcae_uxm XOW™J0~aN DA on ~JO~uo1p307
| K

“«oﬁmmco;uxu

wiags)

y#oWwWa

‘ € 4oWwwa

Z#oWwwa

~ | #oWwwa

Page 70

Page 71

Exchange

$~ UsedInProving

Exchange_sort

) VCs

Exchange_sort#7

(a)

IsExchanged
UsedInProving
Exchange Exchange_sort
VCs
Exchangef1 Exchange_sort#7

(b)

Figure 4-5. Additional descriptions showing where the exit specifications
of Exchange and IsExchanged have been used

Page 72

Exchange_sort :

IsExchanged :

Figure 4-6. Affected programs within the substructure of Fig. 4-4

Verification inconsistent - — -~ _ _ _ _ _ _ -bExchange_sorr:

Design and verification
inconsistent

—— - — — ——] — - —

Pesign InComiant « = = o w w o o o

Figure 4-7. Kinds of effects on the programs of Fig. 4~6

; . —— AT
QLR Aot A o J

. "

Page 73

line 59 and also a verification inconsistency because this mismatch is in Exchangeel, as shown
in Fig. 4-5(b).} Only the verification of Exchange._sort is affected. This is due to its use of the
exit specifications of Exchange and IsExchanged (which now have a type mismatch) in the
proof of Exchange_sorte7, as shown in Fig. 4-5.

In addition to determining the effects of changes, the methodology must also ensure
that all inconsistencies are eventually resolved and enforce any constraints intermediate ones
might imply. This involves things like not allowing VCs to be regenerated for Exchange in
Fig. 4-7 or its second exit specification to be used in proofs until the type mismatch on line 59 is
corrected.

In summary, the effects of changes are determined by exploiting useful constraints on
how ob jects in the domain interact with one another. Previous examples illustrated the utility
of several constraints -- calling relationships, external and internal parts of program units, and
uses of specifications -- in curtailing the propagation of the effects of changes. The less the
propagation, the more previous work that is kept intact. These and other important constraints
are explained in detail in the remaining sections in this chapter.

Characteristics of the Methodology

Allows temporary inconsistencies. Temporary design and verification
inconsistencies are allowed in intermediate problem states. This affords several flexibilities.
For example, top-down design is enhanced by allowing calls to as yet undefined programs.
These called programs can be (partially) defined whenever convenient, thereby eliminating
prior design Inconsistencies. A common verification inconsistency arises when proofs depend
on specifications that now, as a result of a change, contain a type error. Later, the user may
wish to undo the change, reinstating the validity of the proofs.

Applies to any of several strategies. The methods apply to any of several
program design and verification strategies. Programs and specifications are constructed using a
top-down, bottom-up, or mixed design strategy and the verification is carried out in parallel or
any desired order. Changes are made whenever convenient.

Adapts to a class of Janguages. Although applied here to Gypsy, the methods are
intended for use with other Pascal-like programming languages and their related proof
methods. A set of language-dependent functions is coded for the language of interest. These

t Additional knowledge is used to determine that IsExchanged does not have a
verification inconsistency. Namely, it is for specification purposes only and, therefore, does not
have VCs.

Page 74

functions are called by algorithms which remain essentially intact for different languages and
proof methods. Also, some table-driven algorithms require a description of certain
interrelationships between specifications and proof methods.

Delays consistency checking until necessary. The scheme for resolving
inconsistencies is based on the following premise -- trying to resolve inconsistencies when they
occur is often fruitless since a sequence of changes is often made, the last of which resolves all
intermediate Inconsistencies. The methods, therefore, simply note that consistency checks need
to be made, then perform the needed checks in response to user-initiated operations. That is, it
automatically makes those checks necessary to guarantee a consistent state change.

Generally avoids case-by-case analysis. The methods adopt the policy of
treating changes to externally visible parts of programs as if they always affect callers, rather
than analyzing the exact change on a case-by-case basis. This strategy is much simpler than
doing case-by-case examinations. For example, it simplifies the interface between the methods
and the type checking program. Rather than communicating via sophisticated error-
classification schemes, a boolean-valued interface is all that is needed. It appears, however, that
case-by-case analysis is useful in some situations, especially with the aid of a knowledgeable
editor such as the one in Yonke [75). Identifying the classes of changes that should be dealt
with individually is an area for future research.

Some wuses of case-by-case analysis. Changes to basis properties and
specifications are dealt with on an individual basis. Although the above discussion ruled out
this approach for the analysis of changes to programs, it is viable for isolating the exact
impact of changes to formulas. Typically, such changes may affect several verifications. In
practice, it can often be shown that at least parts of the verification are unaffected -- thereby
avoiding unnecessary reverification. The methods detect such situations by making logical
“comparisons” between a formula and its revised version when neither contains a type error.

Assumptions. The methods assume that type checking of programs, specifications, and
basis properties is done at compile time and that programs do not have side effects except
through explicitly declared var parameters. Gypsy eliminates side effects by disallowing non-
local variables and by controlling interactions among concurrent processes. Concurrent
processes communicate by performing send and receive operations on buffers.

Notes to the Reader

While studying the formalization given in this chapter, the reader should keep in
mind that although algorithms are discussed separately by topic, they are highly interrelated
and should, therefore, be viewed collectively. Also, efficiency is sacrificed for simplicity
throughout. Before explaining the algorithms, Section 4.2 first describes (as background) the

Page 75

underlying data-base structure used by the methods and notation to be used throughout. Then,
Sections 4.3 - 4.7 explain the methodology as it applies to conventional functions and
procedures, and to concurrent process definitions in Gypsy. Specific algorithms and the data
structures they manipulate (in addition to the data base) are detalled. To simplify the
presentation, basis properties are considered separately in Section 4.8. Section 4.9, building on
the established framework, explains how types and data abstraction mechanisms are handled.

The methods are formulated to allow for complete expansion of specifications from
called programs during VC generation. To illustrate, imagine a hierarchy of specifications in
which a lower-level specification contains a type conflict. The formulation adopts the
conservative view of expanding all these specifications in VCs, even though it may be possible
to do all proofs without expanding specifications to a depth that reveals the design
inconsistency. Section 4.10 describes how the methods were tailored for use in SID to account
for this possibility.

Phrases like "X contains semantic errors” and "X is semantically inconsistent™ refer to
those aspects of semantics handled by type-checking programs in compilers. This includes
resolving external references and ensuring that program calls are set up properly.

The convention of designating changed data with a prime symbol is adopted
throughout. For example, a revised version of unit X is referred to as X".

4.2 Data-base System

This section describes the data base of facts (operated on by programs described later
in this chapter) and its accompanying access mechanisms. Then, notational abbreviations for
expressing data-base calls are introduced.

The Structure for Holding Data

Associated with every program unit and basis property is a collection of related data.
A sample is shown in Fig. 4-8, which gives data stored about Location_of_max and i\lustrates
how the data is structured.

SID represents such structures as hierarchically-structured lists of attribute/value
pairs. Attributes are atoms and values are atoms, lists of atoms, or general s-expressions. The
important descendants possible for each program unit are described, with subsequent
discussions clarifying their meaning and use. Omitted here are data-base entries for describing
data definitions (see Section 4-9) and what information is backed up when changes occur (see

e S R LT SPE

=33 Aq\b.n}fg;

950q DD 3y} Ul PIO}s XDW IO UOHDIOT JNOGD DyD(] *g-y 2inbB14

paAo|dsip jou sjoutuusy - D

sjputuusi-uou - O

l hOEE@._

Pasn
1lunjoouy day ousajuy)

y#4iod L #Y4od okonlmolco_._ouo._ ;xcElwolco_._ouo._

XDW™ 40 UO1}D207

dwo
RiEd :/c tomlwmco;uﬁ S

uolDI1LIB A

/

sNJoyc

sdougsisogquoags|jor)

s2adg [DulayxJwoids|oo) syind

Bo|4sisogsoayy o wAg

Boj4soAN224>

S|DUIBjUjWOI4s| DD
Bo|4s314ubwagyoayn)

SDOA~ day|ouiaju)

XPW™JoTuoDO0T

Page 7€

Page 77

Sections 4-4 and 4-6). Listed below, in boldface, are top-ievel attributes for program units,
accompanied by a description of their values. The atom UnitName refers to the name of the
program unit being described.

InternalRep

VCs

Status

SymTab

Paths

CallsFromInternals

CallsFromExternalSpecs

CalisFromBasisProps

is the internal representation of UnitName initially generated by
the translator. Each program unit is stored as a single entity and
programs extract different parts when needed. Terminals are
given default assignments until specific data is available. The
default value of "completely undefined” is assigned here if there is
data about UnitName (e.g., that it is called by a lemma) before
any part of its definition is successfully parsed.

consists of VCname:value pairs, where VCname is the system-
generated name of a VC and value is a list of three possible pairs
whose attributes are -- InternalRep, Used, and ProofUnit.
InternalRep references the internal form of the VC; Used has as a
value the names of the basis properties used in the proof of
VCname; and ProofUnit is the proof structure returned by the
theorem prover after attempting to prove VCname.

is the current status of UnitName. Some possible values of Status
are "to be VC generated", "to be proved”, and “partially proved".
Actually, many of the direct descendants of UnitName have status
values for ease of analysis, updating, and responding to user
requests. Status possibilities for a VC include "proved in theorem

prover” and "proved except for one deferred subgoal”.

is the local symbol table for UnitName defined by the type
checker.

consists of PathName:value pairs, where PathName s the name
of a program path whose value {s a path produced by the VC
generator. Paths and VCs are related by cross references.

contains the names of program units that call UnitName in their
executable text or internal specifications.

contains the names of program units that call UnitName in their
external specifications.

contains the names of the basis properties that call UnitName.
The default value of nil in Fig. 4-8 indicates that no basis
properties call Location_of_max.

Page 78
CheckSemanticsFlag is a boolean flag that indicates whether UnitName potentially
contains type errors. The value of false in Fig. 4-8 indicates that
l.ocation_of _max does not contain type errors.
Check VCsFlag is a boolean flag that indicates whether the VCs for UnitName
are potentially incorrect.
CheckBasisFlag is a flag/value that indicates if the verification of UnitName is i

potentially invalid due to a change to, or an inconsistency in, a
basis property. The value of this flag, when set, is the names of
those basis properties that invalidate UnitName's verification.
These properties are associated with particular VCs via the Used
attribute under VCs.

Basis properties added by the user to complete a proof are integrated with programs
and their specifications in the data base. An example of how they are stored is seen in Fig. 4-9.
Basis properties are linked to the verification by their UsedIn attribute and by the
Check BasisFlag for program units, and to the design by the CallsFromBasisProps attribute for
program units.

InternalRep is the internal representation of the basis property.

UsedIn is a list containing each UnitName employing this basis property in
its verification.

CheckSemanticsFlag is a boolean flag as defined above.
NotUsableFlag is a boolean flag that indicates if the property can currently be used
in proofs. :

Data Manipulation

There are three types of data base calls -- insertion, retrieval, and deletion. Insertions
into the data base are made by the call

Insert(key,attribute, . . ., attribute,value)

Insert is used both to add new data items and to replace existing ones. Insertions involve two
operations: storing the new data item (replacing the old data item, if necessary) and connecting

Page 79
Lemma#1
InternalRep Usedin CheckSemanticsFlag NotUsableFlag
Location_of_max ' false false
\———terminol not displayed
Figure 4.9 Data about Lemma#1 stored in the data base

}

' 5
!
!
|
!
|
|
!

4 AR ————

_— - - - —

TR

Page 80

the new data item to its parent. The key field contains the name of a program unit or a basis
property, attributes identify the desired descendant of the key, and the value field contains the
new data item to be stored. Data-base retrievals and deletions are made by the calls

Get(key,attribute, . . .)
Delete(key,attribute, . . .)
Delete removes a data item and all of its descendants from the data base.

Let us digress momentarily to consider how hierarchical definition structures
(compared to the flat structure of Gypsy) are accommodated, while retaining this simple data-
base organization. The strategy is to assign a unique name to each unit in a hierarchy (using,
for example, consecutive integers) before it is stored in the data base, while maintaining a
current context tree and name mapping which together represent the original textual nested
structure. This scheme does not affect the methods, but does affect data-base calls in that the
key field is replaced by the call:

GetUniqueName(key)

GetUniqueName is a function that, depending on whether or not the "key” is the original
name of a program unit or a system-generated name, returns the corresponding unique internal
name or "key" itself, respectively.

Notational Conventions

In stating parts of the methodology, it is often necessary to specify individual, or
sequential instances of the above calls on the data base. T'o shorten the expression of such
calls, the convention adopted is to either use shorthand for the actual call or (when obvious
from context) omit a formal designation altogether. The shorthand convention is to subscript
an attribute with the key itself.

A few example manipulations on the data-base structure in Fig. 4-8 serve to illustrate
the kind of abbreviations used throughout. The phrase “the internal representation of
Location_of_max" and the subscripted attribute "InternalRep| ocation_of_max Poth mean

Get(Location__of__max,internaiRep)
The phrase "set CheckSemanticsFlag| ocation_of_max Means

Insert(Location_of__max,CheckSemanticsFlag true)

whereas a flag is reset by inserting the value false. A phrase such as "add Exchange to the
CalisFromInternals attribute of Location_of_max" is equivalent to

AN e e B AR AL R

—

N i i ks

wv‘i‘ﬁ‘ e
o :

Page 81

Insert(Location__of__max,CalisFrominternals,
cons(Exchange,Get(Location_of__max,CalisFrominternals)))

with the Lisp operator "cons” used to add Exchange to the appropriate list.

4.3 Defining New Programs and Their Specifications

This section studies the impact of defining new program units on the overall design
and verification structure, and vice versa. Generally, newly-defined units are inserted into an
existing data-base structure. The methods allow for a unit to be called prior to its definition
and for a new unit to cail defined or undefined units. The only requirement accompanying
this referencing flexibility is that units must be successfully parsed before they are added to the
data base.

Key ideas involved in handling new units are illustrated by considering a data base
that contains only two program units:

function Exchange_sort(A:int_array):int_array =
begin

Exchange(. ..)

end;

funiction IsExchanged(A,B:int_array; |,J:int):boolean =
begin
exit (assume IsExchanged(A B,i) iff
(tin[l1.N] and Jin[1.N)
end A[I]=B[J] and A[J)=B[I])):
end;

Observe that both are semantically inconsistent. Exchange_sort has an unresolvable external
reference because of its call to Exchange and IsExchanged contains a type mismatch in its exit
specification because the recursive call has only three (instead of four) arguments. Suppose
that Exchange is now defined and calls IsExchanged. Two questions arise:

i

Page 82

e Clobal impact. How does Exchange affect Exchange_sort and
IsExchanged?

e Local impact. How do Exchange_sort and IsExchanged affect
Fxchange?

Regardless of how Exchange is defined, it cannot introduce more inconsistencies in
Exchange_sort or IsExchanged. Determining the local impact, however, requires knowing
relationships between Exchange and IsExchanged. For example, consider what happens if VCs
are generated for the following definition of Exchange:

function Exchange(A:int__array; I,J:int):int_array =
begin
entry | in [1.N] and J in [1.N];
exit (all k:[1..N]),
k ne | and k ne J -> Exchange(A,1,J)[k] = A[K])
and IsExchanged(A,Exchange(A,l,J),1,J)
and IsPerm(A,Exchange(A,l,J));
result := A;
resultl] := A[J];
result[J] := A[l);
ond;

The single VC would be semantically inconsistent because it would contain the inconsistent
exit specification of IsExchanged. The methods prevent this kind of occurrence.

The algorithm for defining new programs and specifications uses the following
functions. For program unit X, let

InternalCallsTo(X)

return the names of other program units called in the executable body or internal specifications
of X and

ExternalSpecCallsTo(X)

return the names of other program units called in the external specifications of X. Also, let the
boolean-valued function

SemanticallyConsistent(X)

be a call to a semantic checker to determine whether or not X is semantically consistent. This
function it the sole interface between the algorithms and a semantic checker.

Page 83

The algorithm for adding a new unit consists of four main steps. The first two steps
fill in the necessary global cross references. Locally, the third assigns a status vaiue and the
fourth determines if any flags need to be set to temporarily override the status setting.

Algorithm A. For a newly-defined program unit X, the algorithm is stated as follows:
I. For each Y in InternalCallsTo(X), add X to CallsFromInternalsy.
2. For each Y in ExternalSpecCallsTo(X), add X to CallsFromExternalSpecsy.
3. Set Statusy to "to be VC generated”.
4a. If not SemanticallyConsistent(X), then set CheckSemanticsFlagy.

4b. Otherwise, If there is a Y in InternalCalisTo(X) or ExternalSpecCallsTo(X)
such that CheckSemanticsFlagy or CheckVCsFlagy, then set
CheckVCsFlagy.

Step 4b, which is applied when X is semantically consistent, requires further
explanation. It decides whether or not a semantic inconsistency can arise in the VCs of X.
This can happen, for example, when X calls a unit that is semantically inconsistent, as was just
illustrated when Exchange called IsExchanged. Under certain conditions, other inconsistencies
in the data-base structure can also arise in the VCs for X. For now, it suffices to say that if
any program called by X has CheckSemanticsFlag or Check VCsFlag set, then CheckVCsFlagy
is set. It is explained later how this fits into the scheme for preventing things like generating
inconsistent VCs for Exchange.

Notice that local cross references, such as CallsFrominternals, are not updated.
Perhaps an additional step is needed! Actually, calls to undefined units are filled in prior to
their definition by the first two steps above or by the algorithm in Section 44. When
Exchange_sort called Exchange in the previous example, this fact was noted immediately in the
data base before Exchange was defined.

44 Revising Programs and Their Specifications

A difficult problem in incremental environments is how to effectively determine the
effects of changes to existing data. Section 4-1 outlined a general approach to this problem
which is formalized here. Sections 4.5 and 4.6 present some ideas (not previewed in Section 4.1)
for performing a finer analysis of specifications and VCs, respectively. Some auxiliary
functions are introduced before the main algorithm for handling revisions is stated.

P |

Page 84

l function Location_of_max(A:int_array; |,J:int)zint =

2 begin

3 entry 1in [1.N) and Jin [1.N) and | le J;

q exit Location_ of _max(A,l,J) in [I..J]

5 and A[Location_of__max(A,l,J)] = Value_of__max(A,l,J);
6 var K:int := |4

7 keep e Jand |in [1.N] and J in [1..N] and K in [1..N);
8 result = |

9 loop

10 awsert Afresult] = Value _of_max(A,|,K)

L and result in [1.K] and K in [1.J];

12 if K ge J thon leave end;

13 K = Kelj

14 if Alresult] < A[Kk] then result := k end;

15 end;

16 end;

Figure 4-10. Definition of Location_of_max

Four boolean-valued functions are used for determining what parts of a unit X are
changed in X' Examples of different parts considered are taken from the definition of
1.ocation_of_max in Fig. 4-10. The first needed function is

ChangelnHeader(X,X")

which indicates whether the header of X has been revised in X' The header for
Location_of_max is on line 1. The function

ChangelnExternalSpecs(X,X")

detects changes in external specifications (lines 3-5). These are the only two functions needed to

detect changes that have global effects. Next, changes to external or internal specifications are
detected by

s AR SR st

ChangelnSpecs(X,X")

Page 85

Changes to these specifications can have local effects on the assocated unit. Changes to lines 3,
4.5, 7. 10, and 11 can affect the verification of Location_of_max. The function

ChangeinBody(X,X")
detects changes to lines 2-16, excluding specifications.

AWl four of these functions detect semantic as well as syntactic differences. For
example, ChangelnExternalSpecs checks for exit specifications that are syntactically identical,
but have variables of different types. Free variables may be bound to one type in the
parameter list of X and to another in X'.

The two functions given below are used by several algorithms for verification
purposes. They both reflect the policy of fully expanding VCs, ie, of assuming that all
potentially-usable specifications are in fact used in proofs. Section 4-10 changes these functions
to account for those specifications actually used.

The function MarkToCheckVCs traces the effects of an inconsistent external
specification through the data-base structure, marking those units whose verification is affected.
For a unit X,

MarkToCheckVCs(X)=
for each Y in CallsFromExtornalSpecsx or CallsFromlnlormlsx
(set CheckVCsFlagy;
itYin CallsFromExlernalSpecsx then
MarkToCheckVCs(Y))

Suppose that X has a type conflict in its exit specification. Then, MarkToCheckVCs sets
Check VCsFlag for those units that have the exit specification of X in at least one of their VCs.
These affected units are identified by tracing upward through the graph of calling
relationships, beginning with X. Traversal of a path terminates when the inconsistent
specification can be exported no further -- i.e, when it cannot be exported to another unit via
externally-visible specifications. For units not having VCs, the algorithms work independent of
whether or not MarkToCheck VCs sets their Check VCsFlag.

The function IsPathConsistent determines whether there Is a semantic inconsistency
in the data base that would affect at least one of the VCs for unit X.

—

Page 86

IsPathConsistent(X)=
if CheckSemanticsFlagy then false
else if CheckVCsFlagy then
(if IsPathConsistent(Y) is true for every Y in ExternalSpecCalisTo(X)
then true
else false)
else true ;

IsPathConsistent is, in a sense, the inverse of MarkToCheckVCs. MarkToCheckVCs
traversed upward paths to find all units to which potentially inconsistent specifications could be
exported, whereas IsPathConsistent traverses downward paths to see if there is a potentially
inconsistent specification that would be imported. Again, the key observation is that
inconsistencies propagate only through externally-visible specifications.

A five-step algorithm for handling changes to a unit follows. The first four steps
perform the necessary global analysis, marking, and updating, while the fifth step handles local
tasks. The entire algorithm is formally stated, then each main step is explained.

Algorithm R. If a program unit X is replaced by the unit X', then the following steps are
performed in order.

l. Check the header. If ChangelnHeader(X,X"), set CheckSemanticsFlagy
for each Y in CallsFromInternalsy: or CallsFromExternalSpecsys, execute
MarkToCheck VCs(Y) for each Y in CallsFromExternalSpecsy, and go to
step 3.

2. Check external specifications. If ChangelnExternalSpecs(X,X"),
then (if SemanticallyConsistent(X), SemanticallyConsistent(X’), and
" IsPathConsistent(Y) is true for each Y in ExternalSpecCallsTo(X) and

FxternalSpecCallsTo(X') then (call MarkToCheckVCs(X') if Algorithm G
is false) else call MarkToCheck VCs(X')).

3. Delete cross references. For each Y in InternalCallsTo(X) and not
in InternalCallsTo(X'), delete X from CallsFrominternalsy. Perform this
step again replacing InternalCallsTo by ExternalSpecCallsTo and
CallsFrominternals by CallsFromExternalSpecs.

4. Add cross references. For each Y in InternalCallsTo(X') and not in
InternalCallsTo(X), add X' to CallsFromInternalsy. Perform this step again

replacing InternalCallsTo by ExternalSpecCallsTo and CallsFrominternals
by CallsFromExternalSpecs.

o

Local updating. Perform the following steps in order until one succeeds.

iR R

T

Page 87

5a. Check semantics. If not SemanticallyConsistent(X’), then set
CheckSemanticsFlagy .

5b. Prevent import of inconsistent specifications. If
there is a Y in ExternalSpecCalisTo(X') or InternalCallsTo(X’) such
that IsPathConsistent(Y) is false, then set Check VCsFlagy.

5. Any previous proofs? If Statusy Is "no proofs established”, then
set Statusy to “to be VC generated”.

5d. Keep intact all proofs. If not ChangelnBody (XX,
SemanticallyConsistent(X), Check VCsFlagy is not set,
ChangelnSpecs(X,X’), and Algorithm L is true, then set Statusy: to
Statusy.

5e. Must check proofs individually. Set CheckVCsFlagy:.

Algorithms G and L determine the global and local impact of changes to specifications (see

Section 4.5). Omitted, for clarity, from this and other algorithms are explicit statements of
"inherited” attribute:value pairs. The reader should assume that such inheritance always occurs
unless stated otherwise. In step 1, for example, CallsFrominternalsy' is the same as
CalisFromInternalsy.

Figure 4-11 presents another data-base structure that will be used for expository
purposes. As with the sorting example, names represent program units (basis properties will be
added later) and arrows indicate calls.

Step | determines the global impact of changing the header of a program. Suppose
that X takes two arguments and is replaced by X' which takes only one. Step | ensures that all
direct callers of X' (viz, A and B) are checked for semantic consistency. After A and B are
r marked, MarkToCheckVCs marks all units that have at least one VC containing a type

mismatch. If, for example, the external specifications of A call X' and those of D call A, all

markings performed by this step are illustrated in Fig. 4-12. Notice that H, F, and G are not

affected in any way by the change to X. H is not affected because the external specifications of

C do not call A, meaning that any inconsistent specification in C cannot be exported to H.
‘, Similarly, F and G are not affected by the change, because the external specifications of B do
;‘ not call X',

Step 2 determines the global effects of changing the external specifications of X.
Algorithm (. Is called to determine if the necded logical relationship holds between the external
specifications of X and X' Algorithm G does not apply when these specifications either

Page 88

Figure 4-11. Another example of a data-base structure

Page 89

CheckVCsFlag

CheckSemanticsFlag

Figure 4-12. Potential effects of revising the header of X

Page 90

contain type conflicts or can have inconsistencies imported into the proofs. This latter
condition again reflects the conservative view of fully expanding specifications. When
Algorithm G fails or cannot be called, MarkToCheck VCs marks the same units as does step 1.
The only difference being that direct callers are marked as being verification (instead of design)
inconsistent.

Steps 3 and 4 update global cross references. The former removes cross references
established for X that no longer hold for X'. Conversely, step 4 establishes cross references for
X’ not made for X.

Locally, step 5 ensures that still-valid verification work on X is kept intact. This is
done immediately when possible; otherwise, the appropriate flags are set when analysis must be
postponed. Steps 5b-5e, applied when X' is semantically consistent, require further explanation.
Suppose that D is replaced in Fig. 4-12 by D". Step 5b sets Check VCsFlagpy because of the
type mismatch In the exit specification of A. Now suppose that the specifications of H (in Fig.
4-12) are revised in H'. After step bc ensures that H is at least partially verified, siep 5d
applies Algorithm L under the appropriate conditions. When it succeeds, all proofs about H
hold for H'. If all proofs cannot be kept intact immediately, those that can are identified later
(cf. Section 4.6). Step 5e, along with steps 5a and 5b, postpone the analysis.

4.5 Changes to Specifications May Not Have Effects

Recause specifications are frequently revised, it is useful to recognize when changes to
specifications of a unit do not affect its verification or the verification of its callers. Unlike for
changes to programs, this is viable to do on a case-by-case basis. A change to a specification
has no effects if certain logical relationships between the revised specification and its previous
version hold. The algorithms for checking this are driven by tables which contain a
description of what these relationships are for each kind of specification. The discussion below
describes how to set up the tables, then presents the algorithms which use them.

Setting Up The Tables
Table entries for specifications consist of three parts:

® The textual name used to identify the specification.

® A designation of a formula relating a revised specification to its previous
version. These formulas, of course, vary according to the program proof
techniques employed. If omitted, a default of false is assigned.

ARy

Page 91

® An indication as to whether failure to prove the designated formula has local
or global effects. Changes to some specifications can have both kinds of
effects, in which case two table entries are required. Traditional entry and
exit specifications are in this category.

Of course, it does not matter whether local or global descriptions are actually stored in separate
tables or combined into one.

As a specific example of how to describe specifications, we will develop a set of local

and global table entries for entry and exit specifications, beginning with the local entries.
Table declarations are of the form

Declare(effect
(specification-name formuls)

(specification-name formula))
Using this template, a description for determining local effects is

Declare (local
(entry entry'sentry)
(exit exitoexit'))

This states that changes to entry specifications do not affect the verification of the associated
program if the changed entry specification implies the unchanged one. The converse relation
must hold for exit specifications. Both descriptions follow from Hoare's rule of consequence. t

Globally, entry and exit specifications of a program can arise in the VCs of its callers
in several ways. Suppose that the proof strategy handles program calls by proving that entry
specifications hold at all calling sites and by adding formulas of the form entry>exit (composed
of specifications from callees) to VCs of callers. tt Then, the description for global effects is

Y The rule of consequence is:
P>Q, Q{SIR, RoT

P{S|T

tt sip employs this scheme, among others. It instantiates and proves entry

specifications at all calling sites and adds uninstantiated formulas of the form entry>exit to VCs
during proofs.

Declare (global
(entry entryoentry’)
(exit if entryoentry’ then exit'>exit
else (entry'>exit') o (entryoexit)))

This says that changing an entry specification has no global effects when the unchanged entry
emplies the changed entry. The exit relationship is described as an if-then-else statement to
take advantage of knowledge about what has changed. If the entry has not changed since the
last time the exit changed, the test is automatically true and a proof of the simpler formula on
the then branch is attempted.

SID uses this kind of knowledge, as is evident in the following interchange.

<~ What does changing its exit assertion affect?

“its" refers to Location_of_max.

The verification of other programs is not affected if the formula
Changed exit specification
=>
Cl: LOCATION_OF _MAX(A, I, J) in [1..J] .
C2: A[LOCATION_OF _MAX(A, |, J)] = VALUE_OF__MAX(A, |, J)
is true. If not, the change invalidates the verification of EXCHANGE__SORT.

The formulas in the answer come from the above if-then-else rule for exit specifications. Since
the entry specification of Location_of_max has not changed, the answer refers only to its exit
specifications. When SID actually attempts to prove such formulas, all free variables are
bound and typed. The type information comes from the symbol tables.

Global descriptions follow from the following sound, first-order inference rule:

V...(H|9H2),V...(H2AH39C)

V...(H AHg>C)

Hy{, Hg, Hg, and C are first-order formulas whose free variables are universally quantified as
indicated above. This rule is called the rule of revision. Figure 4-13 illustrates its use in
deriving the global entry and exit descriptions given above. Only the then branch of the if-

R

Page 93

then-else formula is derived; the else branch derivation is identical, except for the obvious
substitutions.

(Hh ® Hy) A (H; A Hy>2C)>(HiAH; 2C)

e

HyDentry entry Atrue Dentry' H, A true D entry'

entry Dentry' H D entry!

(h=Hy) A (HRAH3DC) 2 (Hy A H3DC)

i e ot) R

exit' Dexit exit AH3DC exit' AH32C

Figure 4-13. Deriving entry and exit descriptions
from the rule of revision

Other specifications in Gypsy are described similarly. Those discussed later are basis
properties in Section 4.8 and data abstraction specifications in Section 4.9.

Algorithms for Manipulating the Tables

It is now trivial to write the algorithms for analyzing changes to specifications. Two
are called from Algorithm R. The first is Algorithm G, which determines if changes to
external specifications have global effects. Algorithm L determines if changes to internal or
external specifications have local effects on the associated unit.

Algorithm G. For each global description in the table, if the specification textually identified
by specification-name is different in units X and X', then return the truth value of the
corresponding formula.

Before executing this algorithm, SID first sees if there Is at least one unit traversed by

BEer v

Page 94

MarkToCheck VCs(X') that is partially or completely verified. Effort expended in trying to
prove the designated formulas is wasted unless succecding proofs will keep intact previously-
done verification work.

Algorithm L. For each local description in the table, if the specification textually identified by
specification-name is different in units X and X', then return the truth value of the
corresponding formula.

4.6 Deducing Which VCs Are Unaffected by Changes

We have already seen several ways to kecp Intact work unaffected by changes.
Section 4.4 described ways to identify those units whose design or verification are affected by
changes, using the techniques in Scction 4.5 for analyzing changes to specifications. Often,
however, changes affect only a few VCs of a unit. VCs can be analyzed individually to
determine whether or not they are affected by changes. Algorithm V, which is described below,
is applied under certain conditions for this purpose. These conditions are enforced by the
algorithm in Section 4.7 for resolving inconsistencies.

The algorithm works by "comparing” new and old VCs to determine if their proofs
coincide. Whatever the scheme for doing this comparison, both syntactic and semantic concerns
must be satisfied. Algorithm V uses a simple "equivalence” test -- the new and old VC must be
the same syntactically within a uniform change of variables and semantically symbol for
symbol. Uniform variable renaming is.added as a special case so that the common source
program change of uniformly renaming an identifier will not necessitate any reverifying.

Algorithm V. Let VC designate a verification condition of X and VC' a verification condition
of X". For every VC',

1. If there is an at least partially proved verification condition VC such that it
and VC’ satisfy the equivalence test described above, then set the status of
VC’ to that of VC.

2. Otherwise, the status of VC’' becomes “to be proved”.
When checking the semantic criteria for equivalence, the type of free variables in VC' are in
SymTaby* and those in VC are in SymTaby. In SID, this algorithm is not applied to VCs

that simplify to true during generation.

Aware that type errors in X may only affect some of its VCs and their proofs,
Algorithm V keeps intact those parts that hold for X' The equivalence test always fails for

G

Page 95

those VCs of X that contain type errors, because VCs for X' are type correct (cf. Section 4.7).
For example, a verification condition with the wrong number of arguments to a function causes
the syntactic comparison to fail. Things like a wrong argument type in a function call or a
wrong variable type in an expression cause the semantic comparison to fail.

There are many variations on Algorithm V and several practical tradeoffs among
them. One is showing that previously-proved VCs are semantically consistent and that they
imply new ones, establishing the latter by modus ponens. Another is attempting recovery at
the subgoal level, rather than the VC level -- implying several complexities mostly related to
theorem proving. These and some other variations require more processing (in varying
degrees) than Algorithm V and may also requite human assistance. Algorithm V fs
straightforward and requires no human intervention.

4.7 Resolving Inconsistencies

This section describes the policy for determining which manipulations can be
performed on data-base structures. The policy does not consider operations that do not change
the state of the data base (e.g., display operations) because they can always be executed. It also
omits from consideration the always-allowed operation of translating data. Placing no
restrictions on when translation can occur enables the user to add to or revise the data base at
his convenience.

The policy adopted must embody some definition of what it means for an operation
to be legitimate. Here, an operation is legitimate if it makes sense and if it would cause a
consistent state change on the data base. A simple status mechanism suffices to limit the
applicable operations when everything in the data base is consistent. For example, if the status
of a unit is "to be VC generated”, a "prove VCs" command is nonsensical. Complexities arise
here because the data base frequently contains inconsistent data, requiring that the local state
of development and the global data-base configuration be taken into account.

The following algorithm views the semantic checking of a unit as an operation that
cannot be requested -- it is performed automatically by the algorithm when needed.
Reformulating the steps without this assumption is trivial. Steps 1 - 3 ensure that only
consistent state-changing operations are performed; step 4 ensures that the operation makes
sense In situations where inconsistencies are not possible.

Algorithm RI. For a unit X, perform the following steps in order:

1. If CheckSemanticsFlagy or Check VCsFlagy is set, then If IsPathConsistent
(Y) is false for some Y in InternalCallsTo (X) or ExternalSpecCallsTo (X),
the operation is not allowed.

Page 96
2. If CheckSemanticsFlagy is set, then

2a. If SemanticallyConsistent(X) and the operation is "generate VCs", then
generate VCs for X, execute Algorithm V, reset CheckSemanticsFlagy
and CheckVCsFlagy, and update Statusy.

2b. Otherwise, the operation is not allowed.

3. If CheckVCsFlagy is set, then

3a. If the operation is "generate VCs", then generate VCs for X, execute
Algorithm V, reset Check VCsFlagy, and update Statusy.

3b. Otherwise, the operation is not allowed.

4. If Statusy indicates that the operation is legitimate, then perform it and
update Statusy, otherwise the operation is not allowed.

Step 1 prevents inconsistencies in the data base from causing an inconsistent state
change. In Fig. 4-12, this step ensures that the VCs for I, C, D, and E are not generated until
the semantic inconsistency is removed from the external specification of A.

Step 2 resets CheckSemanticsFlag only when a unit is semantically consistent and the
operation is "generate VCs". 1f VCs are generated, Algorithm V attempts to keep intact
previous proofs that remain valid. Then the new state of development is reflected in the data
base by resetting the flags and updating the status for the associated unit. Further, it prevents
the VCs for A and B from being generated until A and B are semantically inconsistent with
o

Updating the status of a unit is a straightforward process performed only when it has
no inconsistencies. The exact procedure, however, depends upon the characteristics of the
underlying design and verification system. For example, if the status of a unit is “to be VC
generated”, after VC generation the status may be one of “to be proved", “partially proved”,
"proved”, etc. The actual setting depends on whether the VC generator combines proving with
the VC-generation process.

Step 3 handles units whose only set flag is CheckVCsFlag. It does not apply, for

example, to units A and B of Fig. 4-12. CheckVCsFlag is reset after generating VCs for the
current unit and applying Algorithm V. The status is updated as before.

R T e —

S

Page 97

Step 4 is applicable only when the current unit is design and verification consistent.
Statusy delimits the set of legitimate operations and is updated when 2 operation is
performed. For example, if Statusy Is "to be VC generated”, then the "prove VCs" operation is
not legitimate.

Let us now see how Algorithm R1 applies to Fig. 4-12. Units H, F, and G can always
be manipulated by step 4 because they do not contain and cannot be affected by inconsistencies
in the structure; X' can be operated on by step 2. Operations on all other units are ruled out
by step 1, since a state change cannot be guaranteed to be consistent. Inconsistencies in X' and
then A must be removed by step 2a before C, D, E, and I can have VCs generated by step 3a.

4.8 Basis Properties: Lemmas, Rewrite Rules, and Definitions

We are now ready to add basis properties to the data-base structure. These
properties typically call functions already in the data base. Figure 4-14 illustrates how such
calls are reflected in the data base by adding basis properties B|. By, and Bgto Fig. 4-12. X, 1,
and F are functions called by By, Bg, and B, respectively. Using basis properties in proofs ties
them into the data-base structure even more intimately.

In this extended data base, changes to basis properties can affect verifications, and
changes to programs can affect basis properties and the proofs in which they were used. Both
situations are studied in this section. Included in the discussion are specific rules for showing
that changes to basis properties have no effects. These rules, like the ones for specifications,
describe necded logical relationships between a revised basis property and its previous version.

The different kinds of basis properties discussed (which are the kinds handled in
SID) are lemmas, rewrite rules, conditional rewrite rules, and definitions. All are assumed to be
syntactically and semantically checkable. As a result, things like function calls in lemmas must
be checked for the right number and type of arguments. Of course, the needed information
may be either user-defined (such as function definitions in the data base) or built into the
semantic checker.

Changes to Basis Properties May Not Have Effects

For a new or changed basis property B, the following steps perform the necessary
local analysis:

1. If not SemanticallyConsistent(B), set CheckSemanticsFlagg.

Page 98

CheckVCsFlag @

R

i

&

Il
GG L &

\ d / CheckSemanticsFlag

(% &

Figure 4-14. Adding basis properties to Fig. 4~12

:
f

e e A S RSP

T s e,

Page 99

2. Otherwise, if the data base contains a function X called by B such that
IsPathConsistent(X) is false, then set NotUsableFlagp.

Step | ensures that a semantically inconsistent basis property is not used in proofs; step 2 keeps
semantically inconsistent specifications from being added to proofs through basis properties.
The setting of NotUsableFlagp or CheckSemanticsFlagpy prohibits use of B in proofs until
both are reset. NotUsableFlagp is reset when inconsistent specifications can no longer be
introduced in proofs via B. This is determined analogously to step | of Algorithm RI.
CheckSemanticsFlagp is reset when all semantic errors are removed from B.

Changes to basis properties also can have an impact on the rest of the data base.
The procedure for determining this global impact is highlighted below.

I. If not (SemanticallyConsistent(B) and SemanticallyConsistent(B")), or if
IsPathConsistent(Y) is false for at least one function Y called by B or B’, or

if the comparison described below between B and B’ is not successful, then
add B to CheckBasisFlagy for each X in UsedIng.

2. Otherwise, no proofs are affected.

The conservative set of conditions given in step | are the same as those required to compare
two specifications. Comparison rules for the four kinds of basis properties are given below.

Lemmas. For a lemma L and its replacement L', the rule of revision says that if the formula
L'sL
is true, then proofs depending on L remain valid for L'

What happens if a basis property is deleted, rather than revised? If the deleted
property is shown to be logically valid, proofs depending on it remain valid. That is, they can
be done without it.

Rewrite rules. A rewrite rule is represented as

A->B
and is applied by changing all subformulas of the form A into the form B, but not vice versa.
The underlying semantics of these rules in SID is equality. That is, if a theorem is proved

using A --> B, it can also be proved using A = B. This observation together with the rule of
revision indicates that establishing the formula

(A'=B’)> (A = B)

Lk

Bmenag

Page 100
shows that proofs using the rewrite rule A --> B can also be done using A’ -- > B".

Conditional rewrite rules. These are slight generalizations of rewrite rules in which
a rewrite is performed only if a given condition is true. Proofs using a rewrite rule A --> B
when condition C is true remain valid for its replacement whenever the formula

(C'>A'=B)>(C>A =B)
is proved.

Definitions. A definition is a statement that establishes the meaning of an expression.
An example of how they arise in Gypsy is the definition of 1sExchanged on lines 68-70 of Fig.
4-1. Generally, the definition for an n-place function F can be stated as

F=E

F is the definiendum and the definien E is an expression. Definitions behave like rewrite rules
(replacing F by E) in proofs (as illustrated by the expansion of the definition of IsExchanged in
Secction $-3). Showing that

E =~E

holds when the definien changes indicates that proofs depending on E remain valid for E’
Changes to F are handled by Algorithms R and V.

Changes to Programs May Affect Basis Properties and Proofs

Adding basis properties requires minor extensions to Algorithms R and V.
Algorithm R must account for the fact that a change to the header of a function may cause a
type conflict in all calling basis properties, in turn rendering proofs in which they were used
inconsistent. Step | of Algorithm R, using CallsFromBasisProps to identify calling properties,
is easily extended for this purpose.

Another extension is illustrated with the aid of Fig. 4-14. With the addition of basis
properties, MarkToCheck VCs must alter its behavior. Whenever it encounters a program unit
that can export an inconsistency, it must set NotUsableFlag for each calling basis property.
Setting NotUsableFlag in turn causes CheckBasisFlag to be set for each unit that used the
property in its proof. Figure 4-15 illustrates the complete set of markings for Fig. 4-18, if B,
was used in the proof of C and if I can export an inconsistency to its callers.

Algorithm V must exclude VCs whose proofs use a subsequently invalidated basis

Page 101

NotUsableFlag

CheckVCsFlag

\
¢
/

5 & 2
d .

~

: G

\ /

\ d / CheckSemanticsFlag
(X% o
CheckBasisFlag

\
\
\
e
\ A
: o

Figure 4-15,

-
-

\

Changes to the header of X can affect
basis properties and proofs

3 o

R

Page 102

property from consideration. A VC is excluded if the intersection of the basis property names
in Check BasisFlag with those in the VC's Used attribute is non-empty.

49 'Types and Data Abstractions

So far, the methodology applies to functions, procedures, concurrent processes of
Gypsy, and basis properties. This section extends it to handle language mechanisms for
defining data abstractions, examples of which can be found in Simula [Dahl and Hoare 72),
Clu [Liskov 75), and more recently in Alphard [Wulf, et al. 76] and Gypsy [Ambler, et al. 77).
Since these mechanisms subsume ordinary type definitions, the methods described for data
abstractions also work for ordinary types.

The highlights of this section are as follows:

e Data-base representation. Data abstractions are viewed as
consisting of a type definition for the abstract object and programs for
manipulating it. These units, accompanied by their specifications, are stored
separately in the data base and tied together by pointers.

e Two key relations. Integrating type definitions into the data-base
structure involves two relations, instead of the single calling relation used
before. These relations distinguish declaration sites from reference sites.

e Changes to types. The effects of changes to type definitions (unlike
changes to programs) do not, with one exception, propagate through the
data-base structure. The two-relation description allows affected units to be
identified directly.

e Other changes. Everything else (including the exception noted above)
follows from already-developed principles.

The following outlines the main details surrounding each of these points, beginning with a
discussion of extensions to the data base.
Representing Data Abstractions in the Data Base

A data abstraction is viewed as consisting of a restricted type definition for the

abstract ob ject and operations that manipulate the internal structure of the object. The word
"restricted” Is used to emphasize that users of the abstraction do not have access to its internal

Page 103

structure -- only the associated operations do. The representation given below suffices for
describing data abstractions written in Gypsy. Of course, additions or deletions may be needed
for other languages.

Restricted type definitions may have four parts:

I. A header that includes the name of the abstract object and an optional
parameter list.

2. External specifications about parameters. These specifications must hold
whenever an instance of the type is declared.

3. External specifications that can be assumed in proofs of all users of the
abstraction (e.g., abstract axioms).

4. A body which defines the implementation of the abstract ob ject.

Declarations that create instances of an abstract ob ject refer to the entities in part 1 and must
also satisfy any restrictions on parameters in part 2. The specifications in part 8, in contrast to
those in part 2, hold everywhere the abstraction is referenced, except possibly for states within
units that access the internal structure of the restricted type. The body of a restricted type unit
is visible only to those units given access.

Program units that access restricted types are just like other program units, except for
some additional specifications. These specifications are used in showing the needed abstract-
concrete relationship, i.e, that the implementation "models” the abstraction.

Four new attribute:value pairs are added to the data base. The first three are
associated unly with restricted type units; the last only with units that have access to the body of
a restricted type.

AbstractOps is a list of the units given access to the body of the restricted type.

Declaredin is a list of the units (including other type definitions) in which an
instance of the restricted type is declared.

ReferencesFrom Is a list of the units that reference the abstract ob ject, including units
in Declaredin.

CheckMappingFlag is a boolean flag that indicates whether the abstract-concrete relation
must be checked.

~——y

PR

mwg- ST

Page 104

CheckSemanticsFlag and CheckVCsFlag are used for both kinds of units and have the same
meaning as before. CheckSemanticsFlag still has the highest flag precedence, subsuming both
Check VCsFlag and CheckMappingklag.

If the unit of interest is an ordinary type definition, this scenario still applies. A type
unit is a restricted type unit having only parts | and 4 and with AbstractOps set to the union
of all units that are in DeclaredIn and ReferencesFrom, since all those units can access its body.

Changes to Restricted Types

The first five steps of the following algorithm are concerned with determining the
global effects of changing restricted type definitions and the sixth determines the local effects.

Algorithm T. If a restricted type T is replaced by T", the following steps are performed.

I. If part I is changed, then set CheckSemanticsFlagy for each X in
Declaredin-.

2. If not SemanticallyConsistent(T’), set CheckVCsFlagy for each X in
ReferencesFromr and set CheckSemanticsFlagy for each Y in
AbstractOpsy+, and go to step 6.

3. If part 2 is changed and IsPathConsistent(Y) is true for each Y called in part
2 of T and T, then set CheckVCsFlagy for each X in Declaredint if
Algorithm DAG is false.

4. If part 3 is changed and IsPathConsistent(Y) is true for each Y called in
part 8 of T and T' then set CheckVCsFlagy for each X in
ReferencesFrom if Algorithm DAG is false.

5. If part 4 is changed, set CheckSemanticsFlagy for each X in AbstractOps—.

6a. If not SemanticallyConsistent(T"), set CheckSemanticsFlag.

6b. Otherwise, if CheckVCsFlagy is not set and part 2 or 3 has changed and
Algorithm DAL is false, then set Check VCsFlag.

Algorithms DAG and DAL determine the impact of changes to specifications, just like
Algorithms G and L in Section 4.5.

Step | ensures that all declaration sites are checked for semantic errors when the

Page 105

header of T is revised in T". If, for example, 1" takes a different number of arguments than T,
all places where T was declared now have a type mismatch.

Step 2 determines the effects of replacing T with a semantically inconsistent T'.
Suppose that an abstract axiom of T is not only changed in T, but also contains a type error.
This error prevents the two versions of the axioms from being logically compared. Therefore,
all proofs using the axiom from T are currently invalid. This is reflected in the data-base
structure by setting Check VCsFlag for every unit that declares or references an instance of T.

Step 2 also sets CheckSemanticsFlag for each unit that has access to the internal
structure of T. A semantic inconsistency in T' may in turn cause all references to its body to be
inconsistent. If this step is executed, steps 3-5 are skipped.

Steps 3-5 deal with changes to other parts of restricted types. Steps 3-4 isolate VCs
affected by changes to external specifications. If the body of a type is revised, step 5 sees that
all units accessing the internal structure of the type are checked for conflicts.

Locally, step 6 keeps instact proofs done for T that hold for T".

One exception. It was mentioned at the beginning of this section that there is one
situation in which the effects of changes to types propagate like changes to programs. Consider
the following example:

type typel = record(fieldl: array ((1..10)) of integer;
field2: array ((1..10)) of integer);

function f() =
begin
exit some x:typel, ... xfieldl ...

end;
typel is a record with two fields, an instance of which is declared in the exit specification of f.
Suppose that the representation of typel is now changed to

type typel = array {(1..20)) of integer;

Notice the effect this change has on the exit specification of f. It now contains a type error
because the record notation "x.fleld 1" is no longer appropriate. Even though callers of f may
not reference typel, their verification is invalidated if they imported the exit specification of f
for use in proofs.

Page 106

Similarly, inconsistent data type axioms can invalidate proofs of units that do not
reference the type. In the above example, the axioms for typel can be used everywhere the exit
specification of f is used.

Changes to Units That Access Restricted Types

These units differ from ordinary functions and procedures in one significant way --
some of their specifications are used to establish the needed abstract-concrete relationship.
Algorithm R, due to the way data abstractions are represented in the data base, applies almost
directly. The main revision is that the local part of Algorithm R (step 5) must set
Check MappingFlag whenever the abstract-concrete relation needs to be reestablished.

To resolve inconsistencies, Algorithm RI must know when to reset
CheckMappingFlag. After ensuring that a restricted type is semantically consistent, step 2a
resets it. Also, an additional step, either immediately before or after step 8, must be added to
reset CheckMappingFlag when the operation "generate abstract-concrete VCs® is performed.

Changes to Other Kinds of Units

Data abstractions must be taken into account when other kinds of units change. This
mainly affects the function MarkToCheckVCs, introduced in Section 4.4 for propagating the
effects of changes through the data-base structure. Wherever it encounters a restricted type
unit, it must perform the same markings as Algorithm T for each affected part.
MarkToCheck VCs must also recognize units that access restricted types and know when to set
their CheckMappingFlag. Introducing a data-base entry called CallsFromMappingSpecs,
analagous to CallsFromExternalSpecs and CallsFrominternalSpecs, makes this recognition
trivial.

410 Implementation Notes
For use in SID, the formalization presented in this chapter was altered to:

e Invalidate only those proofs that are actually (not just potentially) affected by
changes to specifications.

e Allow for entry specifications to be proved at all calling sites.

Page 107

Actually, more than just an alteration to the methods is needed to invalidate only
affected proofs. Recall that this chapter assumed that specifications from called programs are
fully expanded during VC generation. And when a change to a specification has effects, all
V(s comalnlng that specification are invalidated.

But what if the specification was not actually used in some of the proofs? SID does
not. invalidate them. Recall from Section 3.3 how SID adds specifications to VCs. During VC
generation, only references to specifications of called programs (instead of the specifications
themselves) are added to VCs. Then, complete specifications, or parts of specifications, that do
not contain type errors are expanded as needed during proofs. Every expansion is recorded in
the data base. The altered methods then use this record to isolate those proofs that are actually
affected by changes to specifications. Often, only parts of these affected proofs are invalid.
SID therefore has additional mechanisms for retaining still-valid subproofs.

A primary goal was to formulate the methodology in a general enough way to enable
it to be easily adapted to a class of Pascal-like languages and their related proof methods.
Insofar as its adaption for use in SID, this goal was realized. The main algorithms remained
essentially intact with only a few auxiliary functions rewritten.

The main ad justments are as follows. When changes to specifications affect proofs,
MarkToCheckVCs uses the data-base record of where specifications were actually used to
directly identify the affected proofs. ExternalSpecCallsTo additionally detects recursive calls so
that changes to headers will be handled properly. Before generating VCs, IsPathConsistent
- " ensures ondy that entry specifications of called programs are semantically consistent.

Page 108

CHAPTER 5

DESIGNING INCREMENTAL SYSTEMS

Previous chapters illustrated how SID responds to changes and detailed the
methodology it empoloys. This chapter considers incremental systems in general, discussing
design considerations, proposing a general framework for solving some key design problems,
and illustrating some open problems.

5.1 Issues and T'radeoffs

Incremental systems respond to changes by ensuring that the final problem solution is
consistent and by keeping intact as much still-valid work as practical. Both the user and system
perspective on how this happens is important. From the user’s viewpoint, the system keeps
intact still-valid work without redoing previous work. In actuality, however, a limited amount of
reprocessing may be desireable.

There is a spectrum of ways in which individual components can keep intact still-
valid work. At one end of the spectrum is the most straightforward way to respond to changes
simply redo everything, then ferret out what did not need to be redone by comparing new
results with previous results, then bring to the attention of the user only work that really needs
to be done. Although this "batch” approach conveys an incremental view to the user, it is
often too inefficient. The approach at the other end of the spectrum is to isolate the exact
impact of changes, and not redo any still-valid previous work. Since nothing is redone, the user
sces nothing being redone. This too can be highly inefficient since the component may be
doing as much work (or more) figuring out how to keep from redoing work as it would take to
redo it. In short, the amount of effort spent isolating the exact impact of changes is inversely
related to the amount of effort spent redoing previous work.

What is needed is to adopt a strategy that lies somewhere between these endpoints.
The ultimate goal, of course, is to find a point at which the total amount of effort spent
determining the impact of changes and redoing previous work is always minimized. The idea
here is to localize the effects of changes to a single unit of information (or to a group of such
units), redo everything in that locality when practical, then separate out and show to the user
only previous work affected by the change. These units of information are pre-defined and are
called the grain of the component.

Page 109

Components also need to be studied collectively. The main reasons are to decide how
they interface and how they need to interact to resolve inconsistencies. The interface problem,
along with the intimately related one of determining the ideal grain for each component, is
illustrated by considering a partially-ordered set of components arranged such that component
A “comes before™ components B and C. This ordering indicates that B and C depend on the
results of A (eg., a compiler and VC generator depend on the results of editing operations).
The grains used by B and C impact the kind of grain that can be used by A. The way these
grains interrelate determines how easy it is to interface A with B and with C. Carefully
choosing the grain of A so that it is easy to extract from its output what B and C need to know
about their grains makes the interfaces simple. Grain incompatibilities make interfaces difficult
if not impractical.

In summary, four ma jor interrelated questions have been raised:
e How does each component determine the effects of changes?
e How do components interact to resolve inconsistencies?
e What is the appropriate grain for each component?
e How do components fit together?

For answering the first two questions, a framework that is general enough to be adapted to
different kinds of systems by filling in specific details as necessary is proposed below. Then,
the last two open questions are explored.

5.2 General Theory

To produce a system that automatically determines the effects of changes, the system
designer must fill in the following outline with task-specific details. Each component views its
problem as being represented by a network of nodes, which correspond to the grain of the
component, and a relation between nodes. The designer must define the nodes for each
component (let node, ; be an arbitrary node for component c) and the relationship between them
(let uses. be the relation). Also, a predicate is required for deciding whether an externally-
visible part of node; uses. node, [(let UsesinExternalPart (node. ;node,)) be this predicate).
Chapter 4 shows one way to define these items for SID. After the details are supplied, the
algorithm below responds to changes by transforming the current network to another that
embodies the change and whatever else is needed to compensate for it. If node, 1 is changed,
the necessary transformations are made by the following steps:

I. Determine Jocal impact. Mark node ;.

Page 110

2. Determine global impact. If an externally-visible part of node is
changed, mark all of its users.! These users are marked recursively by:

MarkUson(nodoc'i) =
for each nodoc'j such that nodoc'j uses, nod-cJ
(mark nodoc’j;
if UsoslnExtcrmlPlric(nodoc.j.mdoc'i) then
MarkUsers(nodey ;))

3. Perform updating. Recompute uses, relation.

. 4. Determine effects on next component. If c is not the “last”
component in the system, repeat these steps for each of the “next”
component’s nodes that come from!? the marked nodes of c.

The marking of a node indicates that the associated component must be (re)applied to it. Next,
it will be shown how these markings place constraints on what can be done.

The problem of resolving inconsistencies is equivalent to deciding when a component
can consistently be applied. Before applying component ¢ to node;, the following is
performed:

I. Start at the beginning. Trace node.; back to a node, or set of
nodes, for the “first” component.

2. Ensure global consistency. Each traced node, from the first
component to the one immediately preceding ¢ in the ordering, must be
unmarked.

3. Ensure local consistency. If node.; is marked, all paths from
node. ; must be unmarked.

In step 3, if node.; Is unmarked, the operation can be applied without any local checking
because other marked nodes cannot affect it.

T Nodes that are added (as opposed to changed) can be handled so that they are not
externally visible, causing this step to be skipped.

" Doing this mapping, which is in general one-to-many, is part of the grain/interface
problem.

B A L ks

Page 111

Interestingly, nodes are iraced "backward” through the component ordering here in
contrast to “forward” as in the other algorithm. These two requirements underscore the
importance of the grain/interface problem and how critical an efficient solution fs.

Chapter 4 shows one way to fill in the details of these two outlines for SID. It defines
the necessary items (including a grain, a uses relation, and an “externally-visible™ predicate) for
each individua! component and shows how to interleave them.

5.3 Future Research

Grains and Tools

The key observation to be brought out is that different tools typically have different
grains. Several different kinds of components are considered and a possible grain for each is
suggested. Even though components are discussed separately, remember that they must be
viewed collectively when designing a system.

VC generator. Suppose this component works by first dividing a program into paths,
then generating VCs for each path. Whenever a program is changed, it needs to know if any
new VCs need to be generated. In particular, it needs to know what paths, rather than what
syntactic constructs (like expressions or statements) within paths, are changed. Hence, a
convenient grain is a program path.

Optimizing compiler. When compiling a for-loop of the form

for i from | to n do
X+ kxn;
the statement "x«k«n" is properly optimized out of the loop. If, for example, the "n" in this
statement is changed to an "i", the compiler is not so concerned about knowing that "n" is now
"1", but about knowing that it needs to recompile the whole for-loop. Thus, an optimized unit is

an obvious grain for this component. An example of an incremental compiling scheme is in
Mitchell [70).

Editor. A useful grain for an editor is an operation. Having this as the actual grain
enables it to have three logical grains -- an operation, a sequence of operations, and an editing
session. For example, all these are useful for providing a flexible do-undo feature that reflects

B —e e e Sa—— v P

Page 112

both program development and verification concerns. INTERLISP [Teitelman 75] uses this
feature effectively for program development.

Fquivalence-preserving transformer. This component takes an abstract
program and converts it into a more concrete one by successive transformations. These
transformations are seclected by the programmer, then applied automatically. Since
transformations are equivalence-preserving, the program produced is guaranteed to be a valid
implementation of the abstract program. Such schemes (eg., Balzer, et al. [76), Gerhart [75],
and Standish [76)) typically operate on program segments.

As a simple example of what an incremental transformer does, consider the following
sequence of statements:

for i from 1 to n do B[i]«i+l;
for j from 1 to n do C[j}-B[j)*D[j};

These two for-loops can be combined into a single one, viz,,

for i from 1 to n do
begin B[i]«i*1; C[i]-B[i]*D[i] end;

The transformer must, however, account for the fact that a change to the original segment
may invalidate this transformation. Thus, it needs to keep program segment-transformed
segment pairs, making it convenient to deal with changes at the segment level.

Fitting the Pieces Together

Interfacing a set of components requires establishing a partial ordering of components
and being able to map between nodes of different components. The latter is particularly
difficult.

One of the key decisions is deciding how changes will be introduced into the system.
To isolate exact changes, an editor is required as the "first” component in the system. The
reason for this requirement is that the alternative of using a "pattern match” approach, while
effective in some situations (as shown in SID), is highly unsatisfactory in isolating exact
changes. It may require excessive processing to isolate exact changes (eg. equivalence-
preserving operations like uniformly renaming a variable are difficult to identify) in part
because the sequence of editing operations is lost.

The ideal editor not only executes commands, but also is aware of the context in
which they are executed. The impact of executing an editorial command is determined by

Page 113 ‘

mapping the editor’s context to the "equivalent” context for other components. This is done by

one of the algorithms in Section 5.2.

Arriving at specific guidelines for designing these mappings, as well as for choosing

grains, are important areas for future research.

Page 114

REFERENCES

Ambler, A. L. D.IL Good, J.C.Browne, W.F.Burger, R. M. Cohen, C. G. Hoch, and
R. E. Wells {77]. Gypsy: A language for specification and implementation of
verifiable programs, Procecdings of an ACM Conference on Language Design for
Reliable Software, SIGPLAN Notices, 12, 3, March 1977, 1-10.

Balzer, R., N. Goldman, and D. Wile [76). On the transformational implementation approach
to programming, Proceedings of Sccond [International Conference on Reliable
Software, ACM and IEEE, October 1976, 337-341.

Rledsoe, W. W. [75). A new micthod for proving certain Presburger formulas, Advance Papers
of the Fourth International Joint Conference on Artificial Intelligence, 1975, 15-21.

Bledsoe, W. W., and P. Bruell [73). A man-machine theorem-proving system, Advance Papers
of Third International jJoint Conference on Artificial Intelligence, 1973, 56-65. Also
Arti ficial Intelligence, 5, 1, Spring 1974, 51-72.

Bledsoe, W. W., and M. T'yson [75). The UT interactive prover, University of Texas at Austin
Mathematics Department Memo ATP-17, May 1975.

Boyer, RS, and] S. Moore [75). Proving theorems about Lisp functions, J. ACM, 2, 4,
January 1975, 129-144.

Boyer, R. S, and] S. Moore [77). A lemma driven automatic thecorem prover for recursive
function theory, Proceedings of Fifth International Joint Confe ence on Artificial
Intellegence, August 1977, 511-519.

Burger, W.[74]. BORSW - A parser generator, University of Texas at Austin Report
SFSLTR-7, December 1974,

Carter, W.C., . A.Ellozy, W.H. Joyner, Jr, G.B. Leeman, Jr. [77) Techniques for
microprogram validation, 1BM T.]. Watson Research Center Report RC 6361,
September 1977.

Crocker, S. D. [77) State deltas: A formalism for representing segments of computation, usC
Information Sciences Institute Report ISI/RR-77-61, Scptember 1977.

Page 115

Dahl, O.-).and C. A.R.Hoare (72). Hierarchical program structures, in Structured
Programming (O.-]J. Dahl, E. W. Dijkstra, and C. A. R. Hoare), Academic Press,
1972, 175-200.

Deutsch, L. P.[73). An interactive program verifier, Ph. D. thesis, University of California-
Berkeley, 1973. Also Xerox Palo Alto Research Center Report CSL-73-1, May 1973.

Elspas, B, K. N. Levitt, and R.]J. Waldinger [73). An interactive system for the verification of

computer programs, Stanford Research Institute Project 1891 Final Report, September
1973.

Ernst, G. W, and R. J. Hookway [75). Formulating inductive assertions for program
verification, Case Western Reserve University Computing Center Report No. 1165,
March 1975.

Floyd, R. W.[67). Assigning meanings to programs, Proceedings of a Symposium in Applied
Mathkematics, Vol. 19, J. T. Schwartz, ed., American Mathematical Society, 1967, 19-32.

Gerhart, S. L. [75). Knowledge about programs: A model and a case study, ICRS [75], 88-95.

Good, D. 1. [70). Toward a man-machine system for proving program correctness, Ph. D. thesis,
University of Wisconsin, 1970. Also University of Texas at Austin Computation
Center Report TSN-11.

Good, D. I, ed, (77]. Constructing verifiably reliable and secure communications processing
systems, Institute for Computing Science and Computer Applications Report ICSCA-
CMP-6, The University of Texas at Austin, January 1977.

Good, D.1, R. L. London, and W. W. Bledsoe [75). An interactive program verification
system, ICRS [75), 482-492. Also IEEE Transactions on Software Engineering, SE-1,
1, March 1975, 59.67.

Hearn, A. C.[71). Reduce 2: A system and language for algebraic manipulation, Proceedings
of Second Symposium on Symbolic and Algebraic Manipulation, ACM, 1971, 128-188.
Also Reduce 2 user's manual, University of Utah UCP-19, second edition, 1974.

von Henke, F. W, and D. C. Luckham [75). A methodology for verifying programs, ICRS [75),
156-163. Also Automatic program verification Ill: A methodology for verifying
programs, Stanford University Artificial Intelligence Laboratory Memo AIM-256,
December 1974.

Hoare, C. A. R. [71). Proof of a program: FIND, Comm. ACM, 14, 1, January 1971, 39-45.

Page 116

Hookway, R. J.[76). A program verification system, M.S. thesis, Case Western Reserve
University, 1976. Also Case Western Reserve Computing Center Report No. 1171,
January 1976.

ICRS [75) Proceedings of International Conference on Reliable Software, April 1975. Also
SIGPLAN Notices, 10, 6, June 1975.

Igarashi, S, R. L. London, and D.C. Luckham [73]. Automatic program verification I. A
logical basis and its implementation, Stanford University Artificial Intelligence
Laboratory Memo AIM-200, May 1973. Also Acta Informatica, 4, 2, 1975, 145-182.

Karp, R. A, and D. C. Luckham ([76). Verification of fairness in an implementation of
monitors. Proceedings of International Conference on Reliable Software, October
1976, 40-46.

King, J. C. [69). A program verifier, Ph. D. thesis, Carnegie-Mellon University, 1969.

King, J. C. [71] Proving programs to be correct, IEEE Transactions on Computers, C-20, 11,
November 1971, 1331-1336.

Liskov, B. [75]). A note on CLU, Massachusetts Institute of Technology MAC-TR, June 1975.

L.uckham, D. C, and N. Suzuki [75]. Automatic program verification 1V: Proof of termination
within a weak logic of programs, Stanford University Artificial Intelligence
Laboratory Memo AIM-269, October 1975.

Luckham, D. C, and N. Suzuki [76). Verification oriented proof rules for arrays, records, and
pointers, Stanford University Artificial Intelligence Laboratory Memo 278, April
1976.

Marmier, E. [75). Automatic verification of Pascal programs, Ph. D. thesis, Swiss Federal
Institute of Technology (ETH), Zurich, 1975.

Milner, R.[72]). Implementation and applications of Scott’s logic for computable functions,
SIGPLAN Notices, 1, 1, January 1972. Also SIGACT News, 14, January 1972, 1-6.

Mitchell, J.G.[70) The design and construction of flexible and efficient interactive
programming systems, Ph.D. thesis, Carnegie-Mellon University, June 1970.

Moore,] S.[73). Computational logic: Structure sharing and proving program properties,
Ph. D. thesis, University of Edinburgh, 1973.

Page 117

Moore, J S.[75). Introducing iteration into the pure Lisp thcorem prover, Xerox Pale Alto
Research Center Report CSL-74-3, Deceraber 1974 (revised March 1975).

Musser, D. R. [77) A data type verification system based on rewrite rules, Proceedings of Sixth
Texas Conference on Computing Systems, November 1977, (1A) 22-30.

Rulifson, J. F, J. A. Derksen, R.). Waldinger [72). QA4: A procedural calculus for intuitive
reasoning, Stanford Research Institute Project 8721 Final Report, November 1972.

Schorre, V. [76) A program verifier with assertions in terms of abstract data, Proceedings of
the Symposium on Computer Software Enginecring, Polytechnique Press, 1976, 267-
280.

Standish, T. D, D.Harriman, D. Kibler, and). Necighbors [76). The Irvine Program
T'rans formation Catalog, Dcpartment of Information and Computer Sciences,
University of California at Irvine, January 1976.

Suzuki, N.[75) Verifying programs by algebraic and locical reduction, ICRS [75), 473-481.
Also Automatic program verification lI: Verifying programs by algebraic and logical
reduction, Stanford University Artificial Intclligence lL.aboratory Memo AIM-255,
December 1974 '

Teitelman, W. [7%). INTERLISP Reference Manual, XEROX Palo Alto Research Center,
1075

Topor, R. W.[75] Interacuve program verification using virtual programs, Ph. D. thesis,
University of Edinburgh, 1975.

Waldinger, R.], and K. N. Levitt [74] Rcasoning about programs, Arti ficial Intelligence, 5, 3,
Fall 1974, 225 216. Also Conference Record of ACM Symposium on Principles of
Programming lLanguages, 1973, 169-182.

Wulf, W. A, R. L. London, M. Shaw [76). Abstraction and verification in Alphard: Introduction
to language and methodology, USC Information Sciences Institute Technical Report
ISI/RR-76-16, June 1976.

Yonke, M. D.[75) A knowledgeable, language-independent system for program conmstruction
and modi fication, USC. Information Sciences Institute Report 1SI/RR-75-42, October
1975.

Yonke, M. D. [76). The XIVUS environment, USC Information Sciences Institute working
paper no. 1, April 1976.

