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ON UNDERSTANDING ENVIRONMENT ENHANCED FATIGUE CRACK GROWTH
A PERSPECTIVE VIEW (1968-1977)

by

R. P. Wei
LEHIGH UNIVERSITY

Bethlehem, PA 18015, USA

ABSTRACT

Corrosion fatigue (CF) is a generic term that is used to des-
cribe the phenomenon of cracking (including environment enhanced
fatigue crack growth) in materials under the conjoint actions of
an applied cyclic stress and a corrosive (aggressive) environment.
It has been recognized as an important cause for failure of engi-
neering structures. Characterization and understanding of corrosion
fatigue are essential to service life prediction, fracture control,
and the development of fatigue resistant alloys. Quantitative
characterization and understanding have been hampered by the corn—
plexity of the problem, difficulties in separating the effects
associated with crack initiation and with crack growth, and the
absence of truly interdisciplinary attack of this problem.

With the development of fracture mechanics technology since
the mid 1950’s and the increased emphasis on fatigue crack growth,
quantification of environment enhanced fatigue crack growth has
now been placed on a reasonably firm basis in terms of both steady—
state and transient responses. Understanding of the chemical pro-
cesses that control environment enhanced fatigue crack growth are
beginning to emerge from coordinated mechanical, metallurgical and
chemical studies. A perspective view of the progress during the
past decade is given. Areas and directions for future research are
discussed.

Key Words: Fatigue Crack Growth, Corrosion Fatigue, Fracture
Mechanics, Surface Chemistry, Metals
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INTRODUCTION

Metal fatigue as an engineering problem has been well

recognized. It is one of the major causes, if not the major

cause, for failure of engineering structures in service. Con-

siderable engineering and scientific efforts have been devoted,

especially during the past two decades, to the characterization

of fatigue response and to the understanding of the mechanisms

for fatigue. Such characterization and understanding are es-

sential to service life prediction, fracture control, and the

development of fatigue resistant alloys. Quantitative charac-

terization and understanding, however, have been hampered by

the complexity of the problem, by difficulties in separating the

effects associated with crack initiation from those associated

with crack growth, and by the influences of external chemical

environments on both the initiation and growth processes.

With the development of fracture mechanics technology since

the mid 1950’s and the increased concern with fatigue crack growth

in many applications, it was more or lees natural to consider the

processes associated with fatigue crack growth separately. This

separation narrowed the problem scope considerably and has been

by and large beneficial. By restricting attention to the growth

of a dominant crack11, one essentially circumvents nearly all of

the issues associated with crack initiation. Characterization of

crack growth response can be and has been carried out in a straight

V Delineation between initiation and growth is not well defined
or defineable. A dominant crack here implies that the planar
dimensions of the crack are large with respect to the micro—
structural (e.g., grain) sizes.



— 2 —

forward manner, and the data utilized directly for estimating ser-

vice performance. In terms of understanding fatigue crack growth,

the problem can be further divided into two areas as follows:

o Mechanisms for fatigue crack growth

o Environment enhancement of fatigue crack growth

The first of these two areas is concerned with understanding

the purely mechanical processes for fatigue; that is, fatigue in

the absence of environirental influences. The second area deals

with understanding fat .gue crack growth response under the con-

joint actions of mechanical fatigue and chemical attack. Progress

has been made in both of these areas during the past twenty years

and has been documented in a number of review articles and in the

proceedings of several symposia (1-6). In this paper, a perspec-

tive view of the progress during the past ten years in the second

of these two areas, that is, towards understanding environment

enhanced fatigue crack growth, is given. The need for an interdis-

ciplinary approach to the problem and the development of such an

approach are described. The usefulness of this approach is

discussed in terms of recent experimental results. Areas and di-

rections for future research are considered.

THE FRACTURE MECHANICS BASIS FOR FATIGUE CRACK GROWTH STUDIES

One of the principal obstacles in the development of under-

standing of the various aspects of fatigue had been the difficulty

in relating material response to the appropriate driving forces in
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.a consistent and quantitative manner . By isolating the prob-

lems of fatigue crack growth for study, some simplification

has been made possible. The material response then becomes simply

the rate of f atigue crack growth and can be readily measured.

The appropriate driving force has been defined through the de-

velopment of linear fracture mechanics, and the application of

this technology to fatigue crack growth problems (7—103. Because

crack growth is most likely to proceed from the highly stressed

region at the crack tip, it is most appropriate to characterize

the mechanical crack driving force in terms of the crack tip stress-

intensity factor, K , or stress intensity factor range, AK (7—103 .

The assumptions, utili ty, and restrictions of this approach have

been discussed in detail elsewhere (7-10]. Two of the following

three related loading variables are coiiw~on1y used for characteriz-

ing fatigue crack growth : maximum stress intensity factor,

cyclic stress—intensity factor range, AK, (AK Kmax —

and stress ratio, or load ratio, R CR ~ X~~~/K~~~) .a’ (Kmin ~~
the minimum stress—intensity factor in a load cycle.) These

variables have their counterparts in conventional fatigue analysis .

They are the maximum stress , ~~~~~ stress range, Ac, and stress

ratio, R , CR — cmin/Q11ax ) ,  respectivel y .

SOME SIGNIFICANT VARIABLES AFFECTING FATIGUE

Many variables can influ ncs fatigue crack growth. Some of

3/ These three parameters are inter related . Only two of th. three
need to be specified . For loading into compression , stress in-
tensity factor is not defined and th. effective E~j~ is either zero
or nearly zero . An opsrationa3. defini tion of AX — ~~~~~ with stress
or load ratio CR) specified in terms of th. applied stress or load
is being adopted for R ~ 0 (121. Th. reader should examine pub-
lished fatigue crack growth data to determine bow AK was defined .
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the significant variables are listed in the following , along

with the aforementioned loading variables (11]:

Mechanical Variables

o Maximum stress or stress—intensity factor, o or Kmax max
o Cyclic stress or stress intensity factor range, Ac or

o Stress ratio, or load ratio, R,a’ i.e., ratio of minimum

to maximum stress (load) or stress-intensity factor in one

cycle

o Cyclic load frequency , f

o Cyclic load waveform (for constant-amplitude loading)

o Load interactions in variable amplitude loading

o State of stress

o Residual stress.

Geometrical Variables

o Crack size and relation to component dimensions

o Crack geometry

o Component geometry adjoining crack

o Stress concentrations associated with design.

Metallurgical Variables

o Alloy composition

o Distribution of alloying elements and impurities

o Microstructure and crystal structure

o Heat treatment

o Mechanical working

o Preferred orientation of grains and grain boundaries --

(texture )
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o Mechanical properties (strength, fracture toughness, etc.).

Environmental Variables

o Temperature , T

o Types of environments -— gaseous , liquid, liquid metal, etc.

o Partial pressure of damaging species in gaseous environments ,

pi
o Concentration of damaging species in aqueous or other liquid

environments, C~
o Electrical potential, •
o pH

o Viscosity of environment, n

o Coatings, inhibitors, etc.

Many of these variables have been examined, and the results are

summarized in a number of review articles [5,10,13—16].

PHENOMENOLOGICAL OBSERVATIONS

Serious studies of the influence of environment on fatigue

crack growth (vis-a—vis, fatigue per se) began in the middle of

1960 and continued through the past decade [5,10,13,14]. Work

during this period was concerned mainly with characterizing fatigue

crack growth response, and with examining the influences of the

different variables on environment enhanced fatigue crack growth.

Development of mechanistic understanding was by-and-large by in-

ference and was often incidental to the studies. The results from

the various investigations have been reviewed in detail previously

[5,10,13,14] and will not be repeated here.
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It is important to note that crack growth is influenced

by a broad range of loading variables, some of which can inter-

act with the environment. Many of the observed effects of load-

ing variables can be traced directly to environmental interactions

[5,10,13,14). On the basis of data gathered over the past 15

years, the steady-state response of fatigue crack growth to en-

vironments may be grouped into three basic types and be discussed

in relation to Kiscc~
•/ Figure 1 [10]. Type A behavior is typified

by the aluminum—water system. Environmental effects result from

the interaction of fatigue and environmental attack [5,10]. Type

B behavior is represented by the hydrogen—steel system [18]. En-

vironmental crack growth is directly relatable to sustained load

crack growth, with no interaction effects (5,10,18]. Type C

represents the behavior of most alloy—environment systems. Above

the behavior approaches that of Type B, whereas, below

Kiscc~ 
the behavior tends toward Type A, with the associated inter-

action effects. The transition between the two types of behavior

is not always sharply defined.

Extensive work on the aluminum alloys (Type A behavior) in-

dicates that practically all aluminum alloys are susceptible to

environment—enhanced fatigue crack growth (5,19 ,20]. The envi-

ronmental effect is a function of thickness or state of stress.

There is no effect of frequency for crack growth in an inert

~~/ 
Klscc is the apparent threshold K level for stress—corrosion
cracking and is defined as the asymptotic value of K as the
rate of crack growth under sustained load approaches zero (17].
Environment enhanced crack growth can and does occur below
Klscc in fatigue, and Klscc serves only as a convenient line
of demarcation.

L —~~ __________
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environment and a small effect in fully saturated and aqueous

environments. The effect of freque’-~ y can be very large in

partially saturated environments and is related to the partial

pressure of water vapor [5 ,21,22] .  The influence of temperature

can be quite strong and depends on the mechanical crack driving

force, AK [5,23].

Work on Type B systems (5 ,14,24-26] indicates that fatigue

crack growth in an aggressive environment depends on frequency,

stress or stress—intensity level, stress ratio and waveform.

The influences of all of these loading variables may be accounted

for, to a fair degree of approximation, by the simple superposition

model proposed by Wei and Landes (18] which relates fatigue and

sustained load crack growth.

In studies by Barsom (271 and Gallagher (281, it was found

that environment-enhanced fatigue crack growth below Ki5~~ 
in

certain steels (exhibiting Types A or C response) is a function

of both frequency and waveform. Environmental effect was found

to be nearly zero at high frequencies, reached a maximum at an

intermediate frequency, and then showed a slight apparent decrease,

or no decrease, with further reduction in frequency (27 ,28].

Environmental effect was observed only for certain waveforms (such

as sine and triangle) and not for others (such as square waves)

[27]. These waveform effects were not observed on an aluminum

alloy tested in distilled water (29] and on a high-strength steel

tested in water vapor [30,31].

In addition to the steady—state response, a number of non—

steady—state crack growth behaviors have been reported. Nonsteady— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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state behavior refers to cases in which the rate of crack growth

differs from the steady-state rate for the prevailing K or AK,

and is transitory in nature [17]. Nonsteady—state fatigue crack

growth has been observed at the start of fatigue loading and

following “prolonged” load interruption [24], and with changes

in cyclic-load frequency [31] in high—strength steels. These

nonsteady—state phenomena have been shown to be associated prin-

cipally with fatigue crack growth in aggressive (corrosive) en-

vironments 124,30,31].

Although one had hoped to infer mechanistic understanding

from these various studies, it became quite obvious by 1970 that

the key issues were not being addressed, and that the parallel,

though separate, studies by researchers in chemistry, materials

science and mechanics were not adequate. A search for an inte-

grated interdisciplinary approach was begun in earnest.

AN INTERDISCIPLINARY APPROACH TO FATIGUE STUDIES

The search for an integrated interdisciplinary approach

parallel similar development in the area of sustained—load crack

growth (or stress corrosion cracking), and is based on the follow-

ing premises gleaned from the available experimental data:

o Environmental influences are superimposed on the basic

process of fatigue and can be studied without the need

for understanding the underlying mechanism for fatigue

crack growth. (Note that the converse is not true in

that verification of proposed mechanisms for fatigue can-

not be made without properly accounting for enviror~iental

— - - - --“ f— 
_____ - —  - -
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effects).

o The controlling processes (e.g., surface reaction, diffu-

sion , etc.) for crack growth under sustained load and

in fatigue are expected to be essentially the same for

a given material—environment combination.

o The observed influences of loading variables, in the

absence of creep, are principally environmental effects.

These effects relate to both steady—state and nonsteady—

state responses.

o Quantitative understanding of environment enhanced fatigue

crack growth requires a “link” between the kinetics of

crack growth and the kinetics of the relevant controlling

processes.

o Quantitative understanding, in all likelihood, would

require all relevant (chemical, mechanical and metallur-

gical) experiments to be carried out on the same material

under essentially identical environmental conditions to

permit direct comparison.

The need to involve corrosion and surface chemists, material

scientists and fracture mechanicians becomes immediately obvious.

By the same token, the key issues concerning the nature and kinetics

of the controlling processes, and their influences on steady-state

and nonsteady—state crack growth can be readily identified. The

difficulty now lies in establishing a “link” between the kinetics

of crack growth and those of the relevant controlling process.

This crucial link, however, became available through investigations
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on the kinetics of sustained—load crack growth [17]. These

investigations showed that there is a stage of crack growth in

which the rate is essentially independent of the mechanical driving

force. This independence indicates that the rate of sustained—

load crack growth is limited by the underlying controlling pro-

cess, and provides an avenue for identifying the rate controlling

process by direct comparisons between the rates and activation

energies for crack growth and for the various probable controlling

processes.

As an illustration of this integrated interdisciplinary

approach, results from recent studies of sustained—load and f a-

tigue crack growth in an AISI 4340 steel in water/water vapor are

described briefly [31,32].

AN ILLUSTRATION OF THE INTERDISCIPLINARY APPROACH

One of the key issues for crack growth in high-strength

steels exposed to water/water vapor relates to the identity of

the rate controlling process for crack growth [32], see Figure 2.

To address this issue, sustained—load crack growth experiments

were carried out on an AISI 4340 steel in hydrogen and in water,

to determine the kinetics of crack growth as a function of tempera-

ture. Companion experiments were carried out on the same steel to

determine the kinetics of water-metal surface reaction using Auger

electron spectroscopy (AES). These studies were supplemented by

detailed fundamental studies of reactions of water vapor with iron

single crystal of known orientation by AES and LEED (low energy

electron diffraction) [33], and by AES analysis of the elemental

—4
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composition of fracture surfaces produced by environment assisted

crack growth (34]. Through these coordinated interdisciplinary

studies and comparisons of activation energies for crack growth

and for surface reaction (see Figure 3), the rate limiting process

for crack growth was identified as a slow step in the reaction of

water/water vapor with iron and/or iron carbide (vis-a—vis , hydro-

gen diffusion ) [32—34]. This reaction step is associated with

the nucleation and growth of oxide on the surface, and the presumed

concommitant production of hydrogen (32].

Having identified the rate limiting process for crack growth,

its implication in terms of fatigue crack growth response was

examined [31]. The effect of cyclic-load frequency on fatigue

crack growth in water vapor at 585 Pa (4.4 torr) at room tempera-

ture is illustrated in Figure 4, and the influence of changing

frequency on crack growth response under constant load—amplitude

fatigue is illustrated in Figure 5. These results confirm the

existence of a significant effect of frequency at Kmax levels well

below that required for producing significant crack growth under

sustained loads (i.e., below Kiscc) (27,28]. The extent of crack

growth, following a change in frequency, that is required to re-

establish steady—state appeared to depend on the magnitude of the

frequency change (for example, from 1 to 0.1 Hz versus 10 to 0.1

Hz) and on crack length or AK. Since frequency effect was absent

in an inert environment (5,30], the observed transient ph~cnomenon

was attributed to interactions with the environment [31]. Fracto—

graphic examinations of fracture surfaces produced at the different

loading frequencies showed that at high frequency (viz., 10 Hz)
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the morphology was akin to that for “pure” (mechanical) fatigue.

At the lower frequencies (i.e •,  below 1 Hz) , the morphology

exhibited increasing amounts of intergranular separation along

prior—austenite grain boundaries that is typical for sustained-

load crack growth in water/water vapor [31,32].

These observations , taken in toto and in conjunction with

the earlier study on sustained—load crack growth [32], provided

a rational basis for explaining environment enhanced fatigue crack

growth response in this case. Fatigue crack growth rate in an

aggressive environment, (da/dN)e, is considered to be the sum

of two components -- one for “pure” fatigue, (da/dN)r, and one

for the environmental contribution, (da/dN)Cf.

(da/dN )e = (da/dN)r + (da/dN)Cf

More generally,

(da/dN)e = (da/dN)r + (da/dN)Cf + (da/dN )

= (da/dN) r + (da/dN) cf + J (da/dt(K) ]dt
where (da/dN)scc is the contribution by sustained-load crack grow-

th at K levels above Kiscc [18]. Environmental contribution is

expected to involve a region of “embrittled” or “damaged” material

ahead of the crack tip (i.e., “volume embrittlement” vis-a—vis

“surface embrittlement”)~~ Because the rate controlling process

is that of surface reaction, the size of this region would depend

on the time available for reaction (viz., cyclic load period) and

~/ 
Hydrogen embrittlement is considered to be the responsible
mechanism, although the details of this mechanism is not
understood [31,32].
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on the reaction kinetics.

A conceptual model was suggested, in which a steady-state

zone of “embrittled” material existed ahead of the crack tip under

steady—state conditions (i.e., for prescribed AK , cyclic load

frequency and environment), and is illustrated schematically in

Figure 6 [31]. The damaged or embrittled zone is depicted as

circles, representing some appropriate hydrogen concentration

contours ahead of the crack tip. Because more hydrogen is pro-

duced at the lower frequencies (longer exposure time), the size

of the damaged zone and/or the hydrogen concentration within the

zone are expected to be larger at these frequencies (Figure 6).

On each cycle of loading , the crack would extend , in one step ,

through a fraction of this zone. Following this increment of

growth, a steady—state zone is re—established ahead of the new

crack tip through reactions of the environment with the freshly

created crack surface, and hydrogen diffusion and redistribution.

The existence of environmental effects at Kmax levels below Kicc

in fatigue is not inconsistent with the definition of Ki5~~ 
(de-

fined for sustained loading), since fatigue is a more proficient

process for producing fresh surfaces to react with the environment

to produce the subsequent embrittlement.

The model appeared to be consistent with the experimental

data on crack growth kinetics and with the kinetics of surface re-

actions (see Figure 7) (31,32]. For the range of frequencies used

in the fatigue experiments, at a water vapor pressure of 585 Pa,

the surface reaction data suggested that the environmental
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contribution~
/ should vary almost linearly with the cyclic load

period or inversely with frequency (see Figure 7a). At high fre-

quencies, environmental effect should be essentially negligible;

at low frequencies, it shoulc~ reach a maximum (or a saturation

value). The general trend suggested by the model is consistent

with data reported by Gallagher [28] for fatigue crack growth in

HY-80 steel in 3.5 pct NaC1 solution, by Vosikovsky (35] on a

X—65 pipeline steel in sour (H2S containing) crude oil, and by

Bradshaw and Wheeler [21] on an aluminum alloy in water vapor.

In the latter two material—environment combinations, the surface

reaction rates are expected to be 6 to 8 orders of magnitude faster

than that of the water-iron reactions [31-34]. The model also

provided a reasonable explanation for the observed nonsteady—state

response associated with changes in cyclic load frequency (see

Figure 5) [31]. The nonsteady—state response was attributed to

the process for establishing a new steady—state zone size follow-

ing a change in loading frequency.

SUMMARY

The decade (1968—1977) is a period of considerable activity

in the area of environment enhanced fatigue crack growth. Work

during this period has contributed significantly to the phenom—

enological understanding of environment-enhanced fatigue crack

growth (or corrosion fatigue), and has brought greater recognition

~/ 
The environmental contribution is represented by the difference
of two empirical constants, C—C0, determined by least—squares
fit to the data in Figure 4 using da/dN CAR2 [31 . This
empirical relationship provided a useful basis for representing
these data, but does not have general validity.
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of the importance of this problem. As a result, corrosion fa-

tigue is being explicitly considered in a diverse range of

applications; for example, in aircraft structures, off-shore

structures, highway bridges, transmission linepipes, and coal

conversion systems. It has also brought a recognition that

quantitative understanding of this important phenomenon would

require well-coordinated interdisciplinary approaches that can

address the relevant chemical, mechanical and metallurgical issues

in concert. One such approach, incorporating fracture mechanics

technology and modern surface analysis and metallurgical tech-

niques, has shown considerable promise in deve1opiz~g understand-

ing of environment enhanced crack growth in gaseous environments

(31,32]. Considerably more studies are needed to develop under-

standing in other material—environment systems, particularly for

aqueous environments. Similar approaches need to be developed

for understanding the processes of environment assisted fatigue

crack initiation.

The significant influence that environments (even those

normally thought to be innocuous, such as moist air) can have

on fatigue crack growth needs to be taken more seriously than

before by those working on the mechanisms for fatigue crack growth.

Since almost all of the proposed mechanisms do not explicitly in-

d ude the influences of environment, one must be careful in se-

lecting available data for use in model verification. By the

same token, one should be extremely wary of generalizations con-

cerning fatigue crack growth mechanisms that are formulated on

-4
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the indiscriminate use of existing data.
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FIGURE CAPTIONS

Figure 1: Types of fatigue crack growth behavior (10] .

Figure 2: Schematic illustrations of various sequential pro-
cesses involved in embrittlement by external
gaseous environments. (Embrittlement reaction is
depicted schematically by the Fe—H—Fe bond).

Figure 3: Correlation between (a) the kinetics of Stage II
(rate limited) crack growth under sustained load
and (b) the rate of water vapor/metal (carbide)
surface reaction for an AISI steel (32].

Figure 4: Room temperature fatigue crack growth kinetics on
AISI 4340 steel tested in dehumidified argon and
in water vapor (below KI$cc) at R ~ 0.1 (31].

Figure 5: Room temperature fatigue crack growth response
resulting from changes in cyclic load frequency
(31].

Figure 6: Schematic illustration of conceptual model for
environment enhanced fatigue crack growth below

[31].

Figure 7: Comparison between (a) the environment dependent
component of fatigue crack growth as a function of
cyclic load period and (b) the extent and normalized
rate of reaction with water vapor as a function of
exposure for an AISI 4340 steel at room temperature
(31,323 .
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Figure 2: Schematic illus tration of various sequential
processes involved in embrittlement by external
gaseous environm ents . (~ nbrittlement reaction
is depicted schematically by the Fe—B—Fe bond ) .
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Figure 3: Correlation between (a) the kinetics of Stage II (rate
limited) crack growth under sustained load and (b) the
rate of water vapor/metal (carbide) sutf ace reaction
for an AISI 4340 steel [32].
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