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Preface

The objective of writing this thesis was to establish a mathematical 1
}} system model to enable Aeronautical Systems Division, Electronic Warfare
Division to evaluate the effectiveness of polarization diversity technique
used by a jammer against a radar system in a real environmeﬁt.

i I would like to express my deep appreciation to my advisor, Professor
1% W. A. Davis for his continuing dedicated guidance. I owe my sincerest

| gratitude to my dear wife Zahava for her support and patience throughout

my AFIT program.

Meir Lavi

This thesis was typed by Mrs. Hazel Gaudreau
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\ Abstract

‘

The use of polarization diversity process requires the derivation
of a mathematical system model to allow evaluating the effects of this
process, employed by a jammer or by a threatened radar, upon jamming
effectiveness. The system model consists of two orthogonal linear
antennas controlled by a random process in amplitude and phase. The
expected value of the received power due to interference is related to
the autocorrelation of the received signal. The received power is ob-
tained in the frequency domain from the spectral behavior of the total
polarization diversity processes employed by both the jammer and radar
and the spectral characteristics of the transmitting and receiving

systems. The spectrzl behavior of the total polarization diversity

diversity prccesses of both the jammer and radar. The spectrum of the
polarization diversity is spread in a convolution manner by the trans-
mitter spectrum. This convelved spectrum contributes to the expected
value of the received power only within the bandwidth of the receiving
system. It is concluded that for several typical scenarios polarization

diversity is an effective jamming technique.
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THE EFFECT OF
POLARIZATION DIVERSITY

ON RECEIVING SYSTEMS

I. Introduction

Polarization diversity is the phenomenon of changing the polariza-
tion characteristics of an electromagnetic wave. The results of this
phenomenon have been evaluated and implemented primarily in radio astron-
omy with some applications applied to radar systems. However, the
evaluation of the effects of polarization diversity upon reception, pre-
sented in radio astronomy literature, has been limited to the case where
only the transmitted polarization is varying while the polarization
state of the receiving antenna is kept fixed. The objective of this
thesis is to derive a mathematical model which is used as a tool for
evaluating the effects of polarization diversity, employed by a jammer
or by a threatened radar system. Once the mathematical model has been
derived, it is shown how one may go about optimizing the likelihood of
reception by the radar system.

Two different categories of polarization diversity are presented.
The first one is formed implicitly by one or more radar systems with
different fixed polarization states, by which the equivalent polariza-
tion state seen by a jammer becomes a random variable. The second one
is when a random process is employed explicitly by the radar system in
order to reduce the effectiveness of polarization jamming. For both
categories, one should consider the statistical behavior of the polari-
zation processes when evaluating the effects of those processes upon the

likelihood of reception.




W

The derivation of the time domain model in Chapter II is done
using the representation of a polarization state given by the Stokes
parameters or the Poincare sphere and using the theory of receiving
partially polarized electromagnetic waves as presented ‘: the radio
astronomy literature. The definition of the Stokes parameters given
in the radio astronomy literature is revised to enable its usage in
a more general situation where the receiver, as well as the transmitter,
employs a time varied polarization diversity. Implementation consider-
ations are used in determining the system model used for polarization
diversity. The general transfer function of the receiving-transmitting
system model in the time domain is derived. This transfer function
is reduced to the function given in the radio astronomy literature
once some assumptions are made. Those assumptions are listed in this
chapter.

In Chapter III, the system model derived in Chapter II is trans-
formed from the time domain representation into a statistical represen-
tation. The averaging process which is used for evaluating the likeli-
hood of reception is done by the ensemble average operation rather than
by a time average operation. Since the expected value of the received
power is related to the autocorrelation of the received voltage, the
whole system is described in a statistical second moment representation.
When statistically stationary is assumed, the Fourier transform of this
representation leads to frequency domain representation. The effects
of the polarization diversity processes as well as of the frequency
characteristics of the jammer and the radar systems appear in the
equation of the average received power in the frequency domain. The

power equation is simplified for various classes of assumptions.

o
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i In Chapter IV, several feasible scenarios are evaluated with respect
to the frequency domain equation derived in Chapter III. Results are

obtained for several cases both analytically and numerically.
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II. The Time Dependence of the

Received Power on Polarization Diversity

The dependence of the'power, received by a receiving system, on !
time variation polarization diversity which is employed by a transmitter,
has been derived in the radio astronomy literature (Ref i; Ref 2). This
dependence is first reviewed in this chapter, where it has been assumed
that the receiving system has no variation in polarization. The depen-
dence of the received power on the varying polarization, which is
employed by both systems, receiver and transmitter, is then included.

The polarization diversity, discussed in the radio astronomy liter-
ature was created by nature and there has been no need to discuss the
ways to implement such a phenomenon. However, since this study is
dealing with a man made polarization diversity system, a feasible model
will be presented. Thus, the derivation of the effect of the polariza-

tion variations will be related to that model.

Polarization State

A monochromatic plane wave can be expressed analytically by its

electric field as

E(F,t) = Re |E &I (1)

where k is the propagation vector defined by

=
"
=
=>
——




Since the wave is plane therefore Eg is perpendicular to the propaga-

tion direction ﬁ, that is, &.Eo = 0. Without loss of generality k
can be chosen to be parallel to the r axis in the spherical coordinate

system r, 6, and ¢. Eo can be written then as

A + $Az

=
I

8la1]ed® & §|az|ed® (2)

~

where 6 and $ are the unit vectors along the 6 and ¢ axes,
respectively, and where the magnitudes |A1| and |A2|, as well as the
phases o, and a,, are real constants. The reason for choosing the
spherical coordinate system is explained in Appendix A.

It follows from Equations (1) and (2) that the spherical components

of E(r,t) are given by the real expressions

Eg = |A,|cos(§ + a;) (3)
E¢ = |Ay|cos(S + a,) (4)
{
where
§ = wt - kr (5)

Eliminating § from these expressions; one obtains the following

equation (Ref 3:24-25)




? E E |2 BB
: T—QT i T—QT = D T—Q— coso = sin’a (6)
ﬂ; Al Az lAII Azl

e | where
; (7)

When taking Eg and E¢ as coordinate axes, it is seen that Equation (6)
represents an ellipse whose center is located at the origin Ee = E¢ = 0.
This ellipse is illustrated in Figure 1. The polarization state of the
plane wave is defined by this ellipse and by the direction of the rota-
tion of E(r) along the ellipse. The direction of the rotation depends
on . The ellipse is set by the following three independent parameters
|a, ], [4;], and a.

The ellipse can be represented by a different set of parameters which
consists of the semimajor and semiminor axes of the ellipse, denoted by
a and b respectively, and the orientation angle V¥ between the major
axic of the ellipse and the 9 axis of the spherical coordinate system.

This set is illustrated in Figure 1. The relations between the two sets

are given by the following equations (Ref 3:26-27)

W e -
and
tan 20 = -2 A;' 22) cosa, 0< Y < . (9)
M




Figure 1. Elliptic Representation of Polarization State

which were derived by equating the two different representations of the

ellipse.

The polarization state of a plane wave may be defined also by a set
of parameters which are known as Stokes parameters (Ref 4). The Stokes

parameters of a monochromatic plane wave are defined by the following

four quantities.

S, = (18, 1%+ |a,1®) %o (10)
r sy = ([a,]% = [4,]® % (11)
[ )
E Sy = (2|A1||Az| cosa) %0 (12)
sy = (2]a,]]a,] sina) % (13)
o

where Z° is the intrinsic impedance of an isotropic lossless medium.
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Since these parameters are related by the identity

2

2 2
o = Slz+ Sz + 53

,‘i S

only three of the four are independent. S is equal to the Poynting
vector of the wave since, when using rms quantities, the poynting

1 vector is

wl
1]
=]
»
et
—

~
r

]

|a, 12 + 12,12

and the magnitude will be

w
]

Z(lal? + [az]®)
[}

=S
o

The Stokes parameters set is usually normalized such that

lo

and

(14)

(15)

(16)

(17)
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.. = gi . 3= 1,2,3 (18)

o

The Stokes parameters are expressed as a [4x1] vector

] S[Si] =S ’ = 0,1,2,3 (19)

12}
w
v

where S 1is the Poynting vector in watts -m-z. The significance of the
Stokes parameters can be understood as the representation of the charac-

teristics of the power of the wave.

The effective aperture of a receiving antenna also can be represented
by the Stokes parameters of the wave radiated by the antenna with the
antenna transmitting. Thus the set will be noted by (Ref 5)

Ae[ai] g a2 = 0,152.5 (20)

where the effective aperture is

o y (21)

a = 1 (22)
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Q= zosa (23)
2

a = Z;§; |B1||B2| cos(-B) (24)

a, = Ei%— |B1||B2| sin(-B) (25)
o"a :

where Sa is the magnitude of the poynting vector or the power density
of the wave radiated by the antenna. The reason for choosing a minus
sign in front of B is the direction of the received wave which is
opposite to the direction of the transmitted wave by the antenna, by
which the Stokes parameters have been defined.

Alternatively, the Stokes parameters can be written in terms of the

orientation angle ¥ and the ellipticity angle X as follows;

S, = soc052Xcosz¢ (26)
By = soc052Xsin2w (27)
5, = sosin2X (28)

sy, S2, and s3 can be interpreted as the cartesian coordinates of a
point on a sphere of radius s, Where the longitude and latitude of the
point are 2y and 2X respectively. The ellipticity angle X is

defined by

tany

+
oo

s =T/4 < X < m/4 (29;
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B e

where

: _2]|A] A, . 85
sin2X = Ta 5] sinq = §; = 8, (30)

This sphere is called the Poincare sphere and it is illustrated in

Figure 2. A point on the sphere represents a polarization state. Linear
polarization corresponds to the equator of the sphere or to zero
ellipticity angle X. Circular polarization corrcsponds to the poles of
the sphere or to 2X = * m/2 where the plus sign denotes a right-handed
circular polarization and the minus sign a left-handed circular peolariza-
tion. It is convenient to describe the polarization state by either one
of the two sets of angles ¥ and X or 0 and Y where Y 1is defined

as

|4, |
|Ar]

Y = arctan G m/2 (31)

The relations between the two sets are given by (Ref 3:27)

tan2¥ = tan2ycoso
(32)
sin2X = sin2YsinoO

The two sets are illustrated in Figure 2.

In summary, the polarization state has been defined by its elliptic
representation and by two parametric representations, Stokes parameters
and Poincare sphere. The representation by Stokes parameters is used

next to evaluate the received power.




2Y 2X Sa

2y

Figure 2. Poincare Sphere

The Effect of Polarization Diversity on the Reception of an Antenna

It has been shown by Ko (1962) that the power P available from an
antenna whose effective aperture is Ae[ai], when a wave of polarization
S[si] is incident upon it, is given by (Ref 5)

P = %sSA_[a;1[s,] = %SA % a.s. (33)

e i1 € ;0 11

where [é;] is the transpose of [ai]. The .complete derivation of
Equation (33) is given in Appendix A. The last three Stokes parameters
are representing the three components of a radius vector of the Poincare

sphere. Thus, the radius vector of the incident wave will be defined as

S= s8. +5.6 +8.8 ' (34)
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v

and the radius vector of the antenna will be defined as

~ ~ A ~
a = aja; + aza, + ajzag (35)

The dot product of the two vectors could be replaced by the cosine of the

angle € between the vectors. Thus

S*a = s,a, + S,a, + Sg@; = COSE (36)
and then
P = %SA_(1 + cose) - (37)

As illustrated in Figure 3, the maximum available power is reached when
€= ¢ or 2m, and zero power is received when € = T,

A quasi-monochromatic plane wave, which consists of a superposition
of a large number of statistically independent waves with a variety of
polarization states, is said to be partially polarized. The frequency
bandwidth Af of such a wave is assumed to be very small compared to
the mean frequency f. The electric field of the quasi-monochromatic

plane wave may be uniquely represented by the analytic form
E(r,t) = Re[‘ﬁo(t)ed‘“’t ""“-’] (38)

where w denotes the average value of the frequency. Since the band-

width of the field is very narrow, Eo(t) will be a slowly varying

Jjuwt

function of time compared to e’ -, Eo(t) can be written in the form

13
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f: Figure 3. The Received Power versus €

|

‘ E (t) = 64, () ]I (V) 614, (t)|ed%2 (¥ (39)

where the magnitudes |A,(t)|, |A,(t)] and the phases a,(t), a,(t)
are slowly varying functions of time. The spherical components of E(r,t)

Fi are given by

Eg = |A, (t) |cos(8 + a,(t)) (40)
By = [A,(t)|cos(§ + a,(t) - alt)) (41)
K E.=0 (42)
E where
; alt) = a,(t) - a,(t) (43)
and §(t) = wt - k°T
14
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; Although the magnitudes and phases of the components of the quasi-

i monochromatic plane wave are irregularly varying functions of time,

‘? certain correlations may exist among them. These correlations determine
| the Stoke parameters and consequently the polarization state of the wave.
The Stokes parameters of the quasi-monochromatic plane wave have been

E | defined as the time-averaged quantities (Ref 1)

{ so=zi [<]a, (£) 2> +<|a,(t)|2>] (44) ‘
o
s, = 5 [<|a, (0)]2>=<|a,(£)]>] (45)
] (o]
|
Sz = 5= <|ay (0)] |4, (£ |cosa(£)> (46)
(o]
: Sy = == <|a, (t)] |4, (t)] sina(t)> (47) ’
o
%
]
where
T ’
lim 1
<x(t)> = Toeo 3T f x(t)dt (48)
=T

It has been shown that the Stokes parameters of this plane wave satisfy

the relation (Ref 2:120)
soz_> S 24 B 4 8 (49)

By dividing through by Sy the normalized Stokes parameters vector will

be then

15
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[Si] ’ i= 0,1,2,3 (50)

where Sy = 1. The degree of polarization of the quasi-monochromatic

plane wave is defined as

dl= ey 2 3
S
0
L}
= /§:2+ szz+ 532 (51)

It follows that for a partially polarized wave the Stokes parameters set

can be represented by

S, = 1 (52) ]

s, = d cos2Xcos2V (53)

s, = d cos2Xsin2¥ (54)

s,=d sin2X (55) ;
‘ é

The definition of the Stokes parameters which has been given in the i

radio astronomy literature, can be applied only when assuming no time
variation in the receiving antenna system or in the receiving system

i itself. However, for a complete view, one should consider a general case

where there are variations in time in the receiving antenna system and in

ol i

the receiving system itself. This consideration leads to the definition
of the Stokes parameters as instantaneous functions of time while the
averaging process is performed on the instantaneous power function.

Thus, without taking into consideration the processing of the receiving

16




system, the average received power will be

o
1}

n
G
% <SAe[ai][Si]>

1 <SAeigO a;s.> (56)
where the averaging process will be defined either by Equation (48) or as
a statistical average, depending whether the variations are deterministic
or random, respectively. The averaging process will be discussed in
detail in Chapter III.

When defining the Stokes parameters by the 6 and ¢ components,
there is no consideration how one would go about implementing the plane
wave and the receiving antenna system components such that the amplitudes,
Ai's and Bi's, can be controlled independently. The necessity of
having independent control of the amplitudes results from the objective
of this study, namely, developing an optimized polarization diversity
procedure. In the following, a feasible implementation of a polarization

diversity model will be considered.

Polarization Diversity System Model

A wave of arbitrary polarization may be produced by combining the
waves radiated by a pair of crossed-dipole antennas. If the dipoles are
aligned parallel to the u and v axes of an arbitrary coordinate
system (u,v,w), then the components of the wave radiated in the w

direction will have the form

(o]
!

= [A1|e~j°‘1 (57)

= |a,] eI (58)

<)
!

-

Y T R




Ri;Il= AlIi
A, (t)
R;3I; 2
SLERE s ey "
3 {‘z
R.;Iz= A,I.
Ay (t) - &

Figure 4. Polarization Diversity System Model

in which [A;| and |A,| are positive real magnitude factors, and @,

N
and @, are the phase angles associated with the field components. The
relative magnitudes and the phases of the field components may be adjusted
to give any desired polarization.

The system which will be used for evaluating the effects of polariza-
tion diversity upon the received power consists of two orthogonal linear
antenna channels connected to a common source through an impedance
matched T adapter which is called a power splitter. This system will be
the model for both functions, receiving and transmitting. The system is
illustrated in Figure 4. Each antenna channel consists of a linear

antenna and a magnitude and phase controller A which is controlling

the input or output current of the antenna, depending whether the sys-

tem is transmitting or receiving, respectively.
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The characteristic matrix of the power splitter will be

£0 4 i
v c o/vZ 0//51 V11
vi| = |o//Z ¢ 0 vi (59)

vy o/VZT 0 z Vi
) | ) L

where r denotes the reflected voltages and 1 denotes the incident
voltages at the associated ports. ¢ denotes the reflection coefficient
and O denotes the loss coefficient. When the splitter is matched then
T =0 and g =1

The effective height of the antenna system is obtained from

Appendix A as

- 1 e At
B [ 2 KT g
T
1
vl
Ll - Ll _
= r hl + .I—. hz (60)
x 1
or
: Bo= [ARIME + |4, ]ed%h2 (61)

The radiated power transmitted by this antenna system is derived in
Appendix A and is given by
2

; 8
p 5 =_ AR
z, Lz'XL | hxr P dQ (62)

f §
where df

| ;

]

rad

sinfd6d¢ and the integration is done over a sphere.

i
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© [
:

Rloss

Figure 5. Equivalent Circuit of a Transmitting Antenna

Due to matching considerations one should keep the total radiating resis-
tance constant. However, since the radiating resistance of this model

is a function of the Ai's, there has to be a loss resistance which will
compensate the changes in the radiating resistance. This configuration
is illustrated in Figure 5. Thus, when the antenna is matched,xi==- X a

d’

" Nead * Pleas (63)

and

e,
]

2
t IIiI (Rrad & Rloss)

|z, 1Ry + |1,|%R; + |T.|2R

loss
i 2
= |Ii| [Ri(|A1|2+|A2|2) + Rloss]
= |Ii|2Ri (64)
20




Therefore
_ 2 2
Rrad = Ri(lAll +|Az| ) (65)
and
a x 2 2
Rloss i Ri(1 IAII ’A2l ) (66)

where R, is given by Equation (A-37) as

Z r
==l B wnl®
Rl = -4—)-\-2- ‘ Ihlxr| dQ
Q
z, | 4
= — | |B,xr|2dQ (67)
4
9]
and Rloss represents the power dissipated in the antenna system. It

has been assumed that the two antennas have identical input impedances.
One can verify that the sum of the radiated powers of the two channels
given below is equal to the radiated power of the total system assuming

that the two antennas have orthogonally polarized antenna patterns.

Py * By = 5, '—Zx—' | IR, k0|20
9]
+ Z [ll%l 2 |H x’1‘,|zdQ
- ol 2 2
'E L L
. =Z, 3%‘J (IA,|2+|A2IZ) ’ fﬁlx;|2d9 (68)
Q




since

]Hx;lzdﬂ J ’(AlHl + Aoh,) x r|2d9

) S—

Q

= l (A0 xr + Azﬁzx;)~(Alle; - Azﬁzxg)‘dn
Q

|A1|2 [ IHlxglde + lAzlz Iﬁzx;lzdﬂ

Q Q
= [ (1,12 + (4,1 |Rxr|?dQ (69)
Q
and
Ryxr-h,xr = 0 (70)

due to the pattern orthogonality.

Assuming the same model for both the receiving and the transmit-
ting systems, one obtains the total system as illustrated in Figure 6.
The received signal vo(t) will be formulated by using Equation (A-41)

and convolving Vr(t) with gr(t) to obtain
vo(t) = gr(t)*[Eo(t - R/C)'hr(t)] (71)
where hr(t) is defined as

ho(t) = B ()R, + By(t)h, (72)

L_x)‘ e e svediiinic
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Eo(t) is obtained from Equations (A-10) and (A-23) by considering Eo

j in the frequency domain as s
= _ MW+ W) —j(W + W)R/c s
E_(w) S @ ° N (W) (¥3)

where N%(w) is the radiation vector in frequency domain and ﬁ;(w} =

-TxTxN(w) while N(w) is defined in Appendix A by Equation (A-7).

Since w<<wo,

R

E, () = - ’];';91?;%1‘ e~J (0 + Wo)R/c Ny (w) (74)

Ed

and I

~ _onu -ijR/c el N
Eo(t) TR © S(t R/c)*Nt(t)
: 1
= - Jduol ~jugR/c - RiGIRN(E -
TR © Ii(t R/c)ht(t R/c) (75)
where
Ii(t) = vt(t)*gt(t) {76)
Due to the pattern orthogonality one can approximate Eé(ﬁ) by Ht even
for angles far off beam center for many such antenna types. Thus, H
=, % P -
ht(t) Al(t)htx + Az(t)htz (77)

to give
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o _ Jwou —JWoR/c T ; )
vo(t) = gr(t)* 15%; e o [vt(t—R/c)*gt(tHJ ht(t-R/c) Hr(ti

(78)

The Eri's and the E&i's are assumed to be constant, with respect to

frequency and time, in the close neighborhood of W, By using

Equations (72) and (77), the quantity Ht'Er is given by

R (t-R/c)"h (t) [Al(t—R/c)Htl+A2<t-R/c)Htg-[Bl(t)Erl+sz(t)Hr2]

= A1(t-R/C)Bl(t)(ht1-hrl)

+ Ay (t-R/C)B, (£) (B B _,)

+ Az(t-R/c)B,(t)(htz'Hrl)

" Aq(t-R/c)Bz(t)(Etz'Hrz) (79)

The received power is given in Appendix A by Equation (A-40) as

v(t)v(t)™

4R

P (t) = 3

(80)

As illustrated in Figure 7, the maximum received power will be achieved

when

L rad * Rloss

= R. (81)




O RL

Figure 7. Equivalent Circuit of a Receiving Antenna

where

Ryad = Ri(lBl|2 - IBle) (82)

L 2 2

Rioss= Rill - (I8, |% + IB, %1 (83)
and v(t) is measured at the output of the reeceiving antenna system.

R, is defined by Equation (67). Hence, the received power is related

L

to vo(t)v:(t) where
2
vo(t)vZ(t) = f’%} |gr(t)*[(vt(t-R/c)*gt(t))ﬁt(t-R/c)-Hr(t)]Iz (84)

This is the general transfer function of the received power of the i
transmitting-receiving system.

It can be shown that Equation (84) reduces to the representation of
the received power in terms of the Stokes parameter sets of the trans-

mitter and the receiver as a special case. ‘
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In the radio astronomy literature vt(t)

gt(t) was assumed to be C8(t) where C compensates for the change of

units between vt(t) and Ii(t), gr(t) was assumed to be § (t), and the

antenna was assumed to be lossless. Thus

1}

P_(t)
r 4Rrad

In the case where
Htf bh (8,0)
Ht2= $ht2(e’¢)
Hr1= 6hr1(6’¢)

hr2= ¢hr2 (e 9 ¢)

*
vo(t)vo(t)

T e [?r 1218 (4-r/e).E 2
4Rrad[4nR} |Iil lht(t R/e) hr(t)l

and by including the functions of 6 and ¢ in the respective

1
and Bi s

|T1t(t-R/c) 'Er(t) |2

|a (t-R/c)B, (t) + &,(t-R/c)B,(t)|?
|A, (t=R/c)B, (£)]|? + |A,(t-R/c)B,(t)]?

+ 2Re[A1(t—R/c)A:(t-R/c)Bl(t)B:(t)]
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was assumed to be constant,

VS

(85)

(86)




or
;

| |E_(t-r/c)E_(0)]7 = 50| &) (t-R/e) |2+ ]a, (t-R/c) 210 [B (1) |2+ [B, (t) | 2] i‘
i + Bl|A, (t-R/c) |2~ A, (t-R/c)|2][|B, (t) |*~ B, (£)|2]
3 + 2|, (t-R/e) | A, (t-R/c) | |B (£} |]B, () |cos(@-)
(87)
% where

cos(@-B) = cosocosB + sinosinf (88)

In the definition of the Stokes parameters of the incident wave, Bi i

represents the electric field Ei instead of the effective height Eti'

Thus, by using Equation (A-23) and defining the field as

=1
K
|

_ _ dum -jkr B ;‘
4mR ¢ IiA (t)htl .

A{(t)'ﬁ,Cl (89)
and

. kR x
== IiA (t)ht2

m
N
|

Ag(t)'ﬁt2 (90)
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the received power will be

a0 3
P = s Z S.a. (91)
r 4Rrad izo s s

By using Equations (A-47) and (A-49) one can show that the received

power will have the form
P =% AeS : s;a; (92)

which is equivalent to Equation (33).
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III. The Average Received Power as a

Function of the Polarization Diversity Random Processes

The system which was illustrated in Figure 5 can be represented as
a transfer system where v _(t), Ft(t), and Hr(t) are inputs and v _(t)

is the output. This system is illustrated in Figure 8. The space trans-

fer function, gs(t), represents the attenuation and the phase changes

in the signal due to the distance R. Thus

J (W+g) e—J'(“’+‘*’o)R/C (93)

Gs(“’) G 4TR
f

——

where w is the carrier frequency,

—

((LH'(A)O)/C =k + kO (94) :
and
:
_ _ |u8'(t-R/c)  jwoud(t-R/c)| -jkoR

gg%) = 4R . 4R g i
! Since m0>>m, the derivative term can be neglected and
;
3
1 . _ J6ous(t-R/c)  —jkoR

gs(t) T e
1 ’
3
‘ = Q(R)§(t-R/c) (96)
1 30
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Figure 8. Transfer Function Representation

As it was stated in Chapter II, the approach for evaluating the received
power will be by averaging. In the most general case Ht(t) and Hr(t)
are assumed to be random processes. One could evaluate the time average
received power by assuming ergodicity and evaluating the expected value
of the power. In any case, from a statistical point of view one may
look for the expected value of the power since it will tell more about
the likelihood of reception at any time than would the time average
operation.

The received power per unit impedance is equal to
*( (97)
Pr(t) = vo(t)vo.t) :

and the expected value
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<)
I

E{vo(t)vZ(t)}

: =R, (0) (98)
{ o

where Rv (t) 1is the autocorrelation of vo(t). This is valid when

o |
assuming stationary processes throughout the whole system. One could !
represent the mean power in terms of the power spectral density function

as

Sv (w)dw (99)

where SV (w) is the Fourier transform of RV CT) -
o o

It is desired to represent Sv (w) in terms of the spectral density
)

functions of the different inputs to the system, such that one could
evaluate the mean power when the spectral density functions of the inputs
are given. As shown in Appendix B, Equation (B-42), it is easy to

evaluate the spectral density function of an output to a transfer system

as a function of the input. Thus, for the system model

S, (w =5 (Wl (w)]? (100)
o r

and

S, (w)

2
svt(m) |G, (w) | (101)




However, there is no immediate way to evaluate the spectral density
function of a multiplication of two processes, especially when they are
vectors. The spectral density function of vr(t) will be derived as

follows. Due to Equation (A-41)

caattitall

v (t) = B_(£)-E (t)

Fr(t)-[Et(t)*gs(t)]

Hr(t)'[(vi(t)ﬁt(t))*gs(t)] (102)
According to Equation (96)
v.(t) = Hr(t)-Et(t-R/c)vi(t-R/c)Q(R) (103)

The effective heights have been modeled in Chapter II as

h (t) = A)(t)h,  + A, (t)h (104)
and é
h(t) =By (0)h, + B, (DR (105) !
where
ALE) = |a(t) [ed P (106) i
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A,(t) = |a,(t) |eI%®) (107)
B (t) = [B,(t) [e B (V) (108)
B,(t) = IBz(t)Ie-jsz(t) (109)

The minus signs in front of the Bi's are due to the opposite directions

of the receiving and transmitting paths. Thus

vr(t) = Q(R)vi(t—R/c)[Al(t-R/c)Et1+A2(t—R/c)th]-[Bl(t)Hri+B{t)Hr2]

(110)
and

%* * *_ * -— e - %
v (t-1) = Q (R)vi(t—T-R/c)[Al(t-T—R/c)ht1+A2(t-T—R/c)ht2]

o

([BY(t-T)R +B,(t-T)E ] (111)

The resultant autocorrelation is

=e}

.
=
I

E{vr(t)v:(t-T)}

E{Hr(t)-Ft(t-R/c)vi(t-R/c)Q(R)

- - * *
hr(t—r)-ht (t—T—R/c)vi (t-t-R/c)Q (R)}

2 - 3 - % .—* e
|Q(R) | E{h (t)-K_ (t-R/c)h, (t-1)-h. (t-T-R/c)

v, (t=R/C)v; (t~T-R/c)} (112)




It is reasonable to assume that vi(t) is statistically independent

from ht(t) and hr(t). Thus

3 - 2 h b o "*_.‘* =L
;; er(r) = |Q(R)| Rvi(r) E{hr(t) h (¢ R/c)R | (t-1)+hy (t-t R/c)}
(113)

o i it

where Eti and Eri’ i=1,2, are assumed to be constant in frequency
for w<<w and to be random variables only. The quantities Ai and

Bi’ i=1,2, are assumed to be random processes in the most general case.

As a result, the h's and the A's or B's are statistically independent.

Therefore
o 2 T =< R T e
er(r) = |Q(R) ] Rvi(T) E{h () h (t-R/c)h = (t-1) *h (t-= R/c)}
= (o<R)f2RVi(r) E{{a(t-R/e)h  +A,(t-R/c)h 1-[B,(£)h |
-— %* - - * e
+ Bz(t)hrzl[Al(t‘T'R/°)ht1+A2(t‘T'R/C’htz]'[Bx(t‘T)hrl
* I
+ B,(t-T)h 1} (114)
or

\ 2 2 2 2 ;
R, (1) = |[QR)[*R, (1) R *
r i i=1 j=1 k=1 l=1

* %* p— . - - *
E{Ai(t—R/c)Bj(t)Ak(t—r—R/c)Bl(t-T)(htghrj)(htk'hrl) }

2 ;
- lem |z, (0§ Rl B R DGR T (1)
W Ljekdsa * = 1% o
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where

jl ‘{ * * }
Rik(r) = E Ai(t—R/c)Ak(t—T-R/c)Bj(t)Bl(t—T) (116)

e
i
b |

;: It is convenient to define a cross-covariance term such as

B2
-‘ ¢

jl L %* *
Cik(T) = E{[Ai(t—R/C)Ak(t—T—R/C) - Rtik(T)][BJ(t)Bl(t—T) - Rrjl(T)]}

(117)
where
*
Rej(m) = E{Ai(t—R/c)Ak(t—T-R/c)} (118)
and
*
Rrjl(T) = E{Bj(t)Bl(t—T)} (119)
By this definition, RQi(T) can be represented as a function of the
correlation functions of the receiver and transmitter, Rrjl(T) and
Rtik(T)’ respectively. Thus
Jjl T = jl
Rik( ) = Rtik(T)RrjltT) + Cik(T) (120)
and
2
* 2
R, (1) = le(rR)| %R, (1) )) [Rtik(r)Rrjl(r)
r i i,dekyl=1
- *
) I (121)

J1 - T g
+ cik(r)] E{(hti hrJ)(htk .,
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or

v h

2
R (1) = lo)*R, (DIR; g (T) + Cf & (V)]
r i AR €t r

where
2 ™ ™ -— -— *
Rgt.—r(r) - i E i Rtik(T)Rrjl(T) L{(hti°hrj)(htk°hrl) }
and
2 i1 L A
g A = : g{ i ¢d (r) By R (BB

When transforming into frequency space,

s () = |QR)|?s_ (w) * s p (w)
vr Vi ht hr

where

S =T IR, (1)

r r

s, W =T R, (1))

p & i

and
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(123)

(124)

(125)

(126)

(127)




Se = () =% (B0 & €T) + & = (T}]
Ht~hr hy h h *h,

Tlrp . (D1 + Flep g (D]
t v tr

4 Sp(w) + 8 (w) (128)
: Substituting Equation (101), Equation (125) becomes
| i 2 e
s, (W = Jo(r)] [s, (w)th(w)I s = (W) (129)
r t t r
and
(o]
p - law [ [ (@ [*{Is (w)]6 (w)|?1%sz = (w) Hdu HA5a)
r 2m r % t h, *h
t tr
- 00
One can break down the correlation function of the dot product Ht.ﬁr by
using Equation (B-27). Thus,
*
Ryii(T) = E{A, (t-R/c)A, (t-T-R/c)}
*
=N My + Ctik(r) (131)
and
1(t-1)}
Rm.l(r) = E{BJ.(t)Bl(L-T)
G (1)
= nrjnrl + erl T (132)

38




where
Ny = E{Ai(t-—R/c)} (133)
* *
e = E{Ak(t—T-R/c)} (134)
Mg = E{BJ.(T)} (135)
and
* *
N = E{Bl(t-fr)} (136)
Therefore
Jhooy 31
Bpttl= B Wik v )+ 5,00
* * Gl
[ntintk + ctik(r)][nrjr\rl + crjl(r)] 4 cik(r)
* * * *
=NgsMMadlpe1 * MMtk Crja (™) * Npjfpg Ceak(D
» O fe)e, .. br) & (e (137)
tik rjl ik
where C

tik(T) and erl(T) are the cross-covariance of transmitter and

receiver, respectively.

In summary,

P=—1-

. o7 Sv (w)dw (138)

[0}

g§——8




where

s, @) = ]Gr(w)IZIGSIZ{SE F W6 (@)% (w)1}
o tr t
4 BTG R
S = = Y LM E(®m.F )M, R D)
ht o i1kl ik TG ikl SRl

and
J1 { i )B. (£)B) (t-1)}
Rik(r) = E Ai(t—R/c)Ak(t-T—R/c BJ.( Bl( -T
In a more convenient way,

Sg. . W) = Sp(w) + 8 _(w)

t O p
where
prons - -— — *
Splw) = T Sy wies ) BLGR R )Gy R )T
ijkl
with
Stik(w) = [Rtik(T)]
= [E{Ai(t-R/c)Al:(t—r—R/c)}]
Spj1@) = (R (0)]

*
= [E{Bj(t)Bl(t-T)}]
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(140)

(141)

(142)

(143)

(144)

(145)



and

*

)} (146)

-— ‘jl s .— I .—
se@ = I el (] ER R DR R

ijkl ik

with

J']_ o * * ¥
cik(T) = E{[Ai(t-R/c)Ak(t—T—R/c) - Rtik(r)][BJ(t)Bl(t-T) - Rrjl(T)]}

(147)

Thus, the averaged received power of a receiving system, when polarization
diversity processes are employed by the receiver and the transmitter,
depends upon the spectral characteristic of the correlation between the
two processes. This spectrum is spread in a convolution manner by the
transmitter frequency spectrum. However, this convolved spectrum will
contribute to the average power only within the bandwidth of the receiving
system. The parts of the spectrum which are outside of the receiver band-

width are wasted.

Assumptions
Equation (138) can be simplified by assuming the following
assumptions:
(1) The two processes, the transmitting and the receiving, are
statistically independent.
(2) The two polarization components are statistically independent for
each antenna system, both transmitting and receiving.
(3) Only one of the systems is a random process and the other is a

random variable.
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(4) A typical transmitter where vt(t) = constant and a typical
receiver where Gr(w) is an ideal low pass filter around the

carrier frequency.

i (5) s_ (w) is a narrow band noise.
] Ve
i
i Assumption (1) yields
Tk =0 (148)
i? and
S— = (U)) =S (m)
ht N R
2 *
= i *S . E{(h, .*h_.}(h,_ h
i,j,lz<,1=1 Seik(W)*S,;1 (@) Ellhy, by ) (hey *h ) }ooo(149)
; where
|
*
8.1 = [E{Ai(t—R/c)Ak(t—T-R/c)}] (150)
‘ and
%*
5.1 = [E{B,(1)B, (t-0)}) (151)

Since Ht and Hr are statistically independent the expected value of
the dot product of their components can be simplified. According to the
i model which has been used, the components of each system, the transmitter

and the receiver, are orthogonal. Thus, when using the directions of the
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P

i i, S e bt i L2

components of one of the systems, the transmitter for example, one obtains
E{(F,.-k )E, 5 )Y =8lh_h_  hon' } |
ti 'rj' tk rl ti P tk rltk
1
* * ;
=E{h_.h_}E{h_. h } (152) 1
ti 'tk Tigs rltk |
where
B, oti
hy, =h.ti (153)
h . =h .-ti 154
ez rJ ( )
ti is the direction of Hti’ and the other terms are obtained similarly.
Thus,
S 22 S, (W#s_._(w) Eth, h, JE{h . h. }  (155)
= =(w) = L (w (08 .h s . h
ht hr 3,50 1t tik rji ti tk Ties rltk i

Due to Assumption (2), Equations (131) and (132) can be simplified,

as follows
% (1)
Rejie ™) = MeiMe *+ Coikl®

2 .
Intil +C (0, i=k

* (156)
N1 Ntk , ik

where Cti(T) is the autocovariance of Ai(t)’ and
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*
Rr,jl(T) =0 Ry erl(T)
2 L
lnrJ.l + Ci(T) =l
_ (157)
* 41
MriMr1 »
where er(T) is the autocovariance of Bj(t). Equation (152) can be
further simplified when assuming (2). Thus,
{h,.h,} Yy
E ¢ =0 n + U, .
ti tk hti htk tik
2 =
g e ek
ti
% (158)
*
n n 5
BE e Bl
and
el h W n* T
rj, . ri h h rjil..
ti "tk Tigs rltk tik
n » 1
n + U . s J=
A T Bis
Ties Pk tik
= (159)
{ *
: "B A » ¥l
Tigi Tleg
:
? where 1Jtik is the covariance of hti and htk’ and urjltik is the

covariance of components of hrj and hrl in ti and tk directions

respectively.




Assumption (3) resolves the convolution form of Equation (149) into
i a function of the spectral density function of the system which employs a
random process while the other system does not contribute to the spectral
characteristics of the received power, except for a constant. Since one
of the systems behaves as a random variable, there is no statistical
dependence between the two systems and the results of Assumption (1) can
be used in this case. Assuming the receiving system to be a random
variable yields the spectral behavior

2

* * o
= (w) = ) Sy i@ E{BJBl}thtihtk}E{hrj B o8 (160)

£ Py i,j,k,1=1 i Tlek

Assumption (4) allows an explicit insight into the spectral charac-
teristics of the received power. This insight indicates the capability
of an optimization technique which is discussed in detail in Chapter IV.

Since Vt(t) = constant,

nvtm = E{vt(t)vZ(t-‘r)}
= constant (161)
and
S (w) = DS(w) (162)
i

then S, ~may be written as
T

= 2 |
svi(w) = D§(w) |G (w) | (163) .
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the receiver definition

e 12 lwl<w,
le (w]? =

, ol

one can resolve Equation (130) to obtain

w
c

= 2 2 N
P =5 lo(r) |2]a | IGt(o)l Jsh g5 (wdo
-y &
e

S.l’_l _Fr(w)*[|Gt(w)|25(w)] =

; £ ()] (@) 28w )du

S
ht r

2
= s¢ ¢ (@] (0]
t r

The results of Assumption (4) are changed only slightly with Assump-

tion (5). The only difference is that the spectral density function

SK %~ (w) 1is spread, in a convolution manner, by the spectrum of the
t or
noise of the transmitter.




IV. Statement gf Problems

One should consider two opposite problems concerning polarization
diversity. Both problems are dealing with the question of how to
optimize the likelihood of reception of a receiving system when a
polarization diversity phenomenon is employed by both the receiving and
the transmitting systems. The first problem is how to maximize the
likelihood of reception of the receiving system in order to effectively
disrupt reception. This problem is referred to as the Electromagnetic
Counter Measure (ECM) problem. The second problem is how to minimize
the likelihood of reception of interference by the receiving system
in order to avoid jamming. This problem is referrea to as the Electro-
magnetic Counter-Counter Measure (ECCM) problem. In both cases, there
are two opposing systems, the receiver and the jammer, where one system
is assumed to have some kind of polarization diversity technique and
the designer has to find an optimized polarization diversity technique
for the opposing system such that the likelihood of reception is
optimized in the desired sense. The 'assumed" polarization diversity
technique can employ a random process in the most general case, or it
can be simply a random variable, meaning that the polarization can take
on different values with each value having some probability of

occurrence.

Optimization Factors

One of the objectives of this study is to point out some optimization

techniques by employing random processes with the polarization diversity
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system model which was developed in Chapter II. One can use the result
of the most general case as it appears in Equation (137). However, for
the sake of simplicity, several assumptions are made in order te pcint
out an optimized technique of polarization diversity. Some specific
limitations on implemetation are also considered. Using Assumption (4)
to define a simple system, one obtains the spectral function of the

received power as given by Equation (164)

w
c
P, =C J Sp .p (Wde (166)
tr
-
c
where St & (w) is defined by Equation (139).
L o

From the ECM point of view, optimal reception occurs when most of

the energy of the spectral density function S5 % < (W) 1is between -&%
S

and ®, as illustrated in Figure 9. Optimal reception, from the ECCM
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viewpoint, is achieved by spreading the spectrum of the received power
such that most of its energy lies outside the bandpass - to W,

as illustrated in Figure 10. The behavior of the amplitude of Sy = (w)
t r

is another factor in the optimization procedure. To minimize the likeli-

hood of reception, one may desire the amplitude of St & (w) to
i

approach zero. This is achieved when the two processes, Kt(t) and
Fr(t), are statistically orthogonal. Maximum likelihood of reception
occurs when the two processes are statistically dependent. Obviously,
it is difficult to implement a complete dependence and one may assume,
for simplicity, that the two processes, Ft(t) and Er(t), are

statistically independent as stated by Assumption (1).

Evaluating Typical Scenarios

Some typical scenarios are evaluated according to the system model
which was presented in the last two chapters. Four types of scenarios

are considered.
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(a) The polarization state of the jammer is fixed while the
polarization state of the receiver is assumed to be a random
variable.

(b) The configuration is the same as in the first case except
that it is considered as an ECCM problem.

(c) The jammer employs a random process in order to overcome the
ECCM technique used in the second case.

(d) The receiver employs also a random process in order to reduce
the jamming effectiveness.

For evaluating the received power in the first scenario one may go
back to the representation of the polarization state by the Poincare
sphere, or specifically to Equation (37), where the power is given as
a function of the angle between the polarization states, of the jammer

and the radar, such that

P = E{%(1 + cose)} (167)

where P is the normalized average power. Five different cases of
scenario (a) are listed in Table I. As seen in the table, in most of
the cases, the likelihood of reception is optimized from the jammer
point of view. It may be expected that the polarization state of the
radar will be adjusted to be orthogonal to the jammer such that the
average power is recduced. This status is categorized under scenario (b).
The obvious action that may be taken for improving jamming effec-

tiveness is employing a random process. This case, listed as
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Figure 11. Random Binary Transmission

scenario (c), is evaluated analytically and numerically where both
results are presented and compared. The scenario is defined by the four

amplitudes of the system model such that

oJ%y (£)

Ay (t) =
1

1

a,(t) = {-m/2, + n/2}

and it is a pseudo random process called randem binary transmission as
illustrated in Figure 11. The B's are selected as such for the ease of

evaluation. Hr: is assumed to be a random variable with equal




-T F T

Figure 12. Autocorrelation of Random Binary Transmission

~

Probability of being oriented in § or ¢ . Ht; and th are assumed

to be oriented in 6 and 3 , respectively. Thus,
RIL(T) = %(1 + R._(T)) (170)
ik £ Al

where &

P 4 Y P P
R, () = (171)
0 |t} >

as illustrated in Figure 12. The spectral density function of RA (1),
1

S, (w), is given as
Ay

. 2
sin® (TTf)
7T (172)

S, (w) =
qu( ) =T

i -




Figure 13. Power Spectral Density of A, (%)

as illustrated in Figure 13. Thus, the average power, P is given a.

g %J [5() + 5, (£)laf

1
[

%

assuming the spectrum of the jammer to be within the radar bandwidth.
Most of the energy of the spectrum SA (f) is in the range lf[f %.

1
Hence, when the radar is band limited, jamming is effective only when

where fc is the cutoff frequency of the radar bandwidth.
Scenario (c) is also evaluated numerically by the use of SAP3
program found in the AFIT computer library. The random process employed

by the jammer is constructed to be similar to the Random Binary Trans-

mission illustrated in Figure 11. The process is based on the sign of




- T —————

a zero mean, unit variance, Gaussian random noise filtered by several
types of low pass filters. Figure 14 illustrated the process, created
by a 320KHz filter. Figures 15 and 16 illustrate the time autocorrela-
tion and the spectral density functions of this process. Assuming
erogdicity, time and ensemble autocorrelation may be equated which
allows comparison of the analytical and numerical analysis. The spec-
tral density function is integrated along the frequency domain, as
illustrated in Figure 17. The value of the integral for a certain
frequency is equivalent to the expected received power cbtained by
passing the process through the receiver with a bandwidth equal to that

frequency. Figure 18 illustrates the spectral density function con-

structed by filtering by 640KHz. Figure 19 illustrates the expected ' ]
received power versus the receiver bandwidth. In Figures 20 and 21 the .
spectral density function and the received power are illustrated as i
before except for a process created by a 1.28MHz filter. The filtering
of the process has the same influence on jamming effectiveness as the
changing of T in the analytical analysis does. Thus, for a certain

receiver bandwidth the expected received power decreases when the band-

width of the random process increases. Thus, as the bandwidth of the
polarization diversity process becomes larger than the bandwidth of the
radar system, the jamming effectiveness goes down.

The last scenario, (d), is analyzed numerically due to its complex-
ity. The jamming process is assumed to be as before and the radar polar-
ization diversity process is assumed to be similar to the jamming

process. The radar process is assumed to be created by a 640KHz filter

for all cases. The process of the radar system is employed by the

polarization awplitude controller B,(t). In Figures 22 through 27, the
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joint spectral density functions and the expected value of the received
power are given respectively for all three cases of jammer filtering
values, 320KHz, 640KHz, and 1.28MHz. For each case, the spectrum of
the jammer process is convolved with the spectrum of the radar process
to obtain the joint spectrum. The joint spectrums are spread due to
the convolution. Figures 22, 24, and 26 demonstrate the gradual spread
of the joint spectrum due to the increase of the spectral bandwidth of
the jammer process. Figures 23, 25, and 27 illustrate the increasing
dependence of the expected value of the received power upon the receiver
bandwidth due to the increase of the spectral bandwidth of the jammer
process. Thus, as was concluded in scenario (c), jamming effectiveness
is reduced as the bandwidth of the jammer process becomes larger than
the bandwidth of the receiver. However, the radar process as well as
the jammer process dominate jamming effectiveness since both are

playing the same role in creating the spectral behavior of the joint

polarization diversity process.




V. Conclusion

The use of a polarization diversity process requires the deriva-
tion of a mathematical tool which will allow one to evaluate the
E effects of this process upon the received power. Partial derivation
E exists in the radio astronomy literature for a special case where only
i
the transmitter employs a random process to produce the polarization
diversity. Since random processes are assumed to be used for polari-
zation diversity, the expected value of the received power has to be
a function of the statistical characteristics of the processes. The
-time average operation used in radio astronomy is not as indicative
of the statistical characteristics of the processes at an instant of
time as much as may be the ensemble average.

Any polarization state may be produced by combining the waves
radiated by a pair of cross-dipole antennas. This knowledge was

used to construct a system model of polarization diversity. The

mathematical dependence of the received power upon polarization diver-

sity was derived by the use of this system model. The general trans-

fer function of the received power was introduced first in the time
domain. This function included the behaviors of the transmitter and
the receiver by using their time domain transfer functions. The trans-
E fer function of the received power was transformed into the frequency

; domain where the received power was measured by its expected value.

The likelihood of reception was introduced as a function of the spec-
tral behavicr of the polarization diversity process and the spectral

characteristics of the transmitter and the receiver. The spectral
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characteristic of the total polarization diversity process is construc-
ted by the convolution between the polarization diversity processes of
both the transmitter and receiver systems. The freguency spectrum of
the polarization diversity is spread in a convolution manner by the
transmitter frequency spectrum. The convolved frequency spectrum con-
tributes to the expected value of the received power only within the
bandwidth of the receiving system.

Two opposite approaches exist in optimizing the likelihood of
reception of interference, maximization and minimization depending
whether the ECM or the ECCM problem is considered, respectively. The
optimizations factors of the polarization diversity process are first
the distribution of spectral behavior of the process with respect to
the receiver bandwidth and second the amplitude of the spectral
behavior.

Four feasible types of scenarios were evaluated with respect to
the system model of polarization diversity. The first two scenarios,
consisting of random variables, were actually resolved by the use of
the Poincare sphere representation of polarization states. Results of
the last two scenarios, involving random processes, were obtained
analytically and numerically. In both methods of analysis it was shown
that by controlling the rate of change or equivalently the spectral
behavior of the random processes employed by both the transmitter and
receiver polarization diversity systems one could achieve either maxi-
mization or minimization of the likelihood of reception.

There is a definite disadvantage to the radar system if a random
variable type of polarization diversity technique is employed by a

jammer when the polarization state of the radar system is fixed. If

{2
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the polariation state of the radar system is controlled to nullify
jammer interference by polarization orthogonality, the polarization
diversity technique employed by the jammer is even more crucial and
should be chosen to be a randem process rather than a random variable.
This essentially guarantees optimal likelihood of reception by the
radar. In the case where the polarization state of the radar is a
random process used to reduce jamming effectiveness in the manner of
spread spectrum, the action that shculd be taken by the jammer is to
correlate its process to the radar process. This action compresses
the spectral behévior of the total polarization diversity process in
a manner similar to the spectral compressicn of the radar signal.

This thesis did not take into consideration the problems one
might face when choosing a polarization diversity process for either
the jamming or the receiving systems. These problems are to retain the
effectiveness of existing ECM or ECCM techniques while optimizing the
likelihood of reception of the jamming signal by the radar and to
develop a simple and feasible system to actually accomplish the polar-

ization diversity. These problems are suggested for further study.
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Appendix A

Derivation of Equation 33

The purpose of this appendix is to show the detailed derivation of
Equation 33. Some brief derivations have been written in the literature
(Ref 1). Considering the vector potential at a point p, with a distance
R from the origin of a radiating system, as illustrated in Figure A-1,

one obtains the equation

— e—JkP"

T ne e e
e dv
vl

is the phasor of the vector potential A such that

- 7Vt

In the far field, when R>>r', the following assumptions can be made. For

amplitude consideration the assumption is

but for phase consideration

r'"~ R-r'cos




et 8 o

o

r.ll

Figure A-1. Geometry of a Radiating System

where

cosY = cosBcosO' + sinBsind' cos(¢-¢') (A-5)
Thus

A= e;i:R I Taejk"°°sw dv' (a-6)

vl

The integral is a function of the antenna configuration, current distribu-
tion, and direction of the current. This integral is defined as the

radiation vector N such that

e J T edkricost 4, (A~7)
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e

Thus

N (A-8)

It is convenient to describe the radiation vector as a multiplication
of the input current I, and an effective height vector of the antenna

h. For a thin linear antenna, this becomes

N =[ I IaeJk"'“swds'dl-
1

'Sl

g f I i_(s')ds' F(11)edkricosy ), (a-9)
1t st
or
N = s J F(11)edkricosy 45,
ll
= IiH (A-10)

where s' 1is a surface intersecting the feed, F(l') 1is the current

behavior along the length,

— -_— 1 '
B I F(1')edkr'cosd 4, (A-11)
1!
and
o RN
A= —-—4_"R Ilh (A-lz)
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In a source-free medium, the plane wave form of the far field is

==
1
==t |
a
&

1)
1
t=1]
@

where Kk = kr and ﬁo and Eo are constant vectors. Thus,

3 =
j_wEVXH

=]
Il

(A-13)

(A-14)

(a-15}

and when neglecting terms which decrease faster than 1/R in the far field

t=1)

- VIR
& =
e (-jkxH)

Since

=
I
<
»
>

and

=1
1}
>
a

therefore

=y
1

-JjkxA

and
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77 r (A-20) }
| {
e or j
‘f E* juurxrxAa
: = -jwp A' (A-21)

where
_. x ~ A L
A' = Aee + A¢¢) (A-22)

Replacing A' by h' according to Equation (A-12) leads to

-z_:iw_u_‘jkr h' =
E i Iih (A-23)

where

ee + h¢¢ (A-24)
with no r component. Thus

E = EgH + Eyd (A-25)

where

(A-26)
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and

o - JW kR
E¢ ==tz e Iihd) (A-27)

s
Y
5
L’
b
%
3

The poynting vector of the electric field has the form

p = Re[E x H*] (A-28)
assuming rms magnitudes. The magnitude of the vector poynting is
1 (= =%
P [E-ET] (A-29)
o

since the magnetic field is perpendicular to the electric field in a plane
wave. Thus the magnitude of the poynting vector of an electromagnetic
field produced by an antenna will be

1 W

TR
p = .z_o [Iﬁ Iil) (h'*h' ) (A-30)

where h 1is the effective height of the antenna. Since i

%H = w/ie
o
Nt "
=3 (A-31)
p becomes
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r'Ii =
p = Zo -2_}\? (hl.hl )
;)
= Zo TR (Ihel2+|h¢|2) ’ (A-32)

Hence, the total power radiated by an antenna will be

S
Tl
(o
|

Tan
5 j J pR2dQ (A-33)
o o0
where
dQ = sin6d6d¢ (A-34)
Thus
II I m 2m
P = ] f J (h'+h'¥)dQ (A-35)
0O 0

The power radiated by the antenna can be expressed also by its feed

current and effective radiation resistance. Thus, for rms magnitudes

P, = R qlL;l* (A-36)

assuming no losses in the antenna, therefore the effective radiation

resistance will be
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Figure A-2. Equivalent Circuit of an Antenna

z ™ 2
= o o e o
Rrad_m JJ (h'+h' " )dQ (A-37)
oo

The maximum power received by an antenna is reached when its internal

impedance is equal to the conjugate impedance of the radiation impedance

or that

Ro.q ™ R, (A-38)
and

xra a=% (A=39)

The model circuit of an antenna is illustrated in Figure A-2. Thus, the

maximum power received by the antenna will be
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When the antenna is not matched the power will differ within a constant

only. Sinclair has shown by using the reciprocity theorem that the open

circuit voltage of a receiving antenna can be expressed as (Ref 6)
v _=E‘h (A~41)

where h is the effective height vector of the receiving antenna and Eo
is the incident electric field upon the antenna. Thus, substituting Vo
in Equation (A-40) yields

= == =k

(E,*h) (E_*h)

rad

Since in far field there is no r component of the incident field

1 *
P, = Zﬁ;;; (Eehe + E¢h¢)(E6he + E¢h¢) (A-43)

The directive gain of an antenna is expressed by

p———

E°E

4 —_—
= ” (E-E*)dQ
Q

If the antenna is 100% efficient, which means no mismatch or conductive

D(6,¢) = (A-44)

losses, the gain and the directive gain are the same. If the antenna is

not 100% efficient then the gain will be lower than the directive gain by
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a factor which depends on the efficiency. Assuming a perfect antenna,

the expression of the gain becomes then

G(8,9) = (A-45)

Since h' is relative to E by Equation (A-23), therefore the gain can be

represented as a function of h'

HI.HI*

1 Ve ¥
< JI (h'-h'*)dQ
Q

G(e’¢) =

(A-46)

Substituting Equation (A-46) in Equation (A-37) yields a simpler expression

for R , that is
rad
AMZ =, — %
o hl.hl
Rrad = ~IX7 G(B,9) i

Substituting Equation (A-47) in Equation (A-43) yields

4 (E_*h)(E_-h)*
p =2 5(6,¢) z, ——2 (A-48)
(h*h'*)

By multiplying the numerator and the denominator by the power density of
the plane wave at the receiving antenna as in Equation (A-29) one obtains

as a result the received power as
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e e m——— e - g — ' "
1 - e - .
4

. 2
& P (8,0,t) = X Giil¢) p _° — (A-49)
= (E *E *)(h'.h'™)
[o] (o]

iR or
1 Lt
£ IEo.h'12

B A6l 5 48 ——— (A-50)

(E *E *)(h'*h'*)
o] o)
where
2
A = %ﬁ? (A-51)

which is the effective aperture of the antenna and S is the real part of
the poynting vector of the plane wave or the first Stokes parameter as in
Equation (16). The components of the field and the effective height can

be expressed as a magnitude and phase functions of time

By = Ay (t)e*E
= [ epjedt TR R (A-52)
E¢ = A.z(t)e_‘jkR
= IAz(t)|eJ['kR“’2(t)] (A-53)
and
he = Bl(t)
= IBx(t)|e_jB‘(t) (A-54)
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=
]

B,(t)

TRt (4-55)

[B,(t) |e

where the minus sign in front of the Bi(t)'s is due to the opposite
direction of the transmitting path from the receiving path. Thus, by
substituting Equation (A-52) through (A-55) in Equation (A-50) one
obtains
A S
i e
r o (A (D) [2+]A, (0 [ B () [2+]B, (£) [D)

P la, (0213, () |2

+A, (0 [?]B, (1) |2

+|A1(t)|IAz(t)llBl(t)lle(t)lej[al(t)—az(t)]e—j[Bl(t)—Bz(t)]

+|A1(t)||A2(t)]|Bl(t)||Bz(t)Ie'j[al(t)'az(t)]ej[81(t)‘62(t)]

(A-56)
or by reordering the terms,
AeS ;
P = v 2

r = (TR 054, (0 2[5, (O [ 5,102 | F14 B |* By (0]

+ %A (£) [2|Ba () [2+%]A,(£) | 2B (T) [2+%]A,(t) |2[B,(t) |2

1 + %[Aa (2)|2]B (£) |2=%|A (£) |2|B,(£) [2=%]A,(t) |2[B (t) |2

+ %[A, () 22, (t) [ 20%aRe | |A, (£) | [A,(£) | B, () | [B (t) oI @ (F)=B(E)]

(A-57)
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where

a(t)

a,(t) = a,(t) (A-58)

and

B(t)

B, (t) - B,(t) (A-59)
Since

Re[ej[a(t)_s(t)]] = cosio(t) - B(t)]

cos a(t) cos B(t) + sin o(t) sin B(t) (A-60)

and by substituting Equations (10) through (13) and Equations (22) through
(25) into Equation (A-57) one obtains

Sa + Sla.1 + 8,8, + Saa

S
(o]

3

pPha=

ers

v
4AeS[ai][si] (A-61)
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Appendix B

Definitions and Equations in Random Fields

This appendix provides definitions and equations in random fields
for the statistical terms used throughout the thesis. When further infor-

mation considering these terms is needed one may refer to Papoulis (Ref 7).

Random Variables

A variable which is a function of the result of a statistical exper-
iment, in which each outcome has a definite probability of occurrence, is
called a random variable.

Probability Distribution Function. The probability distribution

function, Fx(x), of a random variable X is defined as the probability

that X < x, that is

Fy(x) = P(Xx) (B-1)

In case of an experiment with two random variables, X and Y, the joint

probability distribution function is defined as

Fyy(6y) = P(XX, Y<y) (B-2)

Probability Density Function. The probability density function of a

random variable X, fx(x) or fi(x) for simplicity, is defined as

de(x)
dx

fx(x) = (B=3)
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The joint probability density function is defined as

2
3 FXY(x,y)

fxy(x,y) = (B-4)

9x9y

Statistical Dependency. Two random variables, X and Y, are statis-

tically independent if, for any x and y

P(X<x, Y<y) = P(X<x) P(Y<y) (B-5)
or
£y (X5y) = £,.(x) £(y) (B-6)

If the two random variables are statistically dependent, the joint proba-

bility density function will be

fXY(x,y) = fX(X) fYIX(ny)
= f,(y) fxly(xly) (B-7)
where foY is the conditional probability density function of X pgiven

that Y is known and is defined as

lim P[x-Ax<X<x given Y=y]
Ax

fle(xly) = Ao (B-8)

and similarly for fY{X(yIX)'
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Expected Value. The expected value E{X}, or the meann, of a

random variable X, is defined as

E{X}= J X fx(x)dx (B-9)

If X can have only discrete values X, then

E{x} = } x P (B-10)
n

where P, is the respective probability of the value X The expected

value of a function of a random variable, Y=g(X), is given by

E(Y} = Jg(x)fx(x)dx (B-11)
or
E{v} = ] ealx )p (B-12)
n

The expected value of a function of two random variables, g(X,Y), will be

E{g(X,Y)} = II g(x,y)fXY(X.y)dxdy (B-13)

Q0«00

where fXY(x.y) is defined by Equations (B-6) or (B-7). The expected
value of a linear combination of N random variables is equal to the

same linear combination of their expected values. Thus,
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N
E{ ? aixi} = 3 aiE{xi} (B-14)
i=1 i=1

Uncorrelated Variables. If X and Y are uncorrelated then

E{xy} = E{x} E{Y} (B-15)

However, when g(X,Y) = u(X)v(Y) and X and Y are uncorrelated, it

does not necessarily follow that u and v are uncorrelated. But if

| X and Y are statistically independent then

1 E{g(X,Y)} = E{u(X)} E{v(Y)} (B-16)

Orthogonality. Two random variables, X and Y, are called orthogonal

if
E{XY} =0 (B=17)
;
Variance. The variance 02 of the random variable X, is defined by
0% = E{(X-n)?}
- -]
=I (x=n)? £(X)dx (B-18)
00
or
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2 _ . )
o = ] (x-m* p_ (B-19)
n
when X has only discrete values X . The variance can be expressed by

o* = e{x} - e2{x}

E{x2%}-n? (B-20)

Random Processes

A random process is defined as a random variable in which to each
outcome of the experiment a time function is assigned.

Stationary Processes. A random process is stationary in a strict

sense if its statistics are not affected by a shift in the time origin.
This means that the two processes X(t) and X(t+€) have the same
statistics for any €. The two processes, X(t) and y(t), are jointly
stationary if the joint statistics of X(t), Y(t) are the same as the
joint statistics of X(t+€), Y(t+€) for any €. The expected value of a

stationary process X(t) is a constant,

E{x(t)}

([
3

constant (B-21)

Correlation. For the purpose of this thesis, the autocorrelation of

a stationary, complex process X(t) is defined by

Rx(T) = E{X(t+T) x'(t)} (B=22)




assuming the real and the imaginary parts of X(t) to have the same
statistics. The cross-correlation of two stationary processes, X(t)

and Y(t), is defined as

-~

*

Ryy(T) = EX(t+7) Y (£)} (B-23)
A process X(t) is stationary in a wide sense if its expected value is
a constant and its autocorrelation depends only on T = t; - t,. Two
processes are jointly stationary in a wide sense if each one of them
satisfies Equations (B-21) and (B-22) and their cross-correlation depends
only on T=1t, - t,, as in Equation (B-23). 1In the following discussion,
only stationary processes will be considered. Two processes X(t) and
Y(t) are called uncorrelated if, for any T

*
RXY(T) = nx ﬂY (B-24)
Covariance. The autocovariance of a process X(t) is defined as
* *

c(? = E{X(t+1) -n)(X (t) = n )} (B-25)

The cross-covariance of two processes X(t) and Y(t) is defined as
( { )y g (B-26)
Cry(T) = E{(X(t+17) = n ) (Y (£) = ny)} B-

Thus,

c(t) =R(T) - |n]|? (B-27)




T TR Ty

T

and
. (B-28)
CXY(T) = RXY(T) - Nx Ny
If X(t) and Y(t) are uncorrelated then, for any T,
Cyy(T =0 (B-29)
If X(t) and Y(t) are orthogonal then
R,.(T) = 0 (B-30)
Ergodicity. X(t) is ergodic in the most general form if its time

averages are equal to the ensemble averages (i.e., expected values).

Time Invariant System. Transformation of a process X(t) by a time

invariant system without memory leaves the statistics of the results Y(t)
similar to those of X(t). The output of such a system will be stationary
only if the input is stationary in the strict sense. The expected value

of Y(t) = g[x(t)] will be

EM(L)} = I g(x) £ (x;t)dx (B-31)

and the autocorrelation will be

R (1) = E{¥(t+1) Y ()}

=II glx ) g(x ) f(x ,x ;t)dx dx (B-32)
1 2 . 1 2




where X, and x, are dummy variables, f(xl,xz;r) is the joint

density function defined as

2 .
3 F(x ,x,;T)

f(xl,xz;‘l') = —W— (B-33)
and
F(xl,xz;'l') = P{X(t+T) <x, X(t) 5x2} (B-34)

Power Spectral Density Function

The power spectral density S(w) of a process X(t) 1is the Fourier
transform of its autocorrelation, R(T):

S(w) = I e=I%T R(1)dT (B-35)

S(w) 1is a real and nonegative function. From the Fourier inversion

formula follows that R(T) can be expressed in terms of S(W) by

R(T) = ZL" I S(w)ed?T du (B-36)

With T1=0, the above yields

= I S (w)dw

L R(0)

= o

E{X(t)X (t)} (B=37)

This is equal to the "average power" of the process X(t). The cross-power

95




spectral density function Sxy(“) of two processes X(t) and Y(t) is

the Fourier transform of their cross-correlation:

SXY(w) = I RXY('r)e"jwT dT (B-38)

The Fourier inversion formula gives

Pl Jjwt
RXY(T)-I SXY(w) e dw (B=39)
and with T1=0, 1
1 1
%5 I sxy(w)dm = ny(o) v
= EX(L)Y (1)} (B-40)

If the processes X(t) and Y(t) are orthogonal, then, due to Equation

(B-30)

SXY(LD) =0 (B-41)

Linear Systems. The power spectral density SY(w) of the output of

a linear system with system function H(jw) is given by
- 1 2 -
Sy(w) = sy (w) [H(jw) | (B-42)

where Sx(w) is the power spectral density of the input. The linear

system is illustrated in Figure (B-1).
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X(t) : ¥(t)
H
5 () 0l S () = ) 1w |2

Figure B-1. The Linear System

Multiplication of Two Processes. The autocorrelation of the product

Z(t) of two random processes, X(t) and Y(t), can be expressed as

E{z(t)z*(t-r)}= E{x(t)Y(t)x*(t-t)v*(t-r)}

E{X(t)X*(t—T)Y(t)Y*(t-T)}

E{X(t)x*(t—T)}E{Y(t)Y*(t-T)}+CZ(T)

Ry (TIR,(T) + C,(T) (B-43)

where CZ(T) is called the cross covariance and will be defined as

C,(T) = E{IX()X (t=T) R (D) H[¥(£)Y" (t-T1)-R (1)1}

E(X(t)X (t-T)Y(£)Y" (t-T)} - R (TIR,(T) (B-44)

The product is illustrated in Figure (B-2). If X(t) and Y(t) are

statistically independent then

CZ(T) =0 (B-45)
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Y(t)

X(t) Z(t) = X(t)Y(t)

Figure B-2. The Product of Two Random Processes

From Equation (B-27),

2
C (1) + Inx! (B-46)

RX(T)

and

2
cy(T) + [ngl (B~47)

R, (T)

Thus

* *
E{X(t)Y(t)X (t-T)Y (t-T)}

R (TIR,(T) + C,(T)

2 2
[cx(T)+|nxl '][cY('r)+|nY| 1+, (T)

Ce(TICL{T) + [n |%c, (1)

2 2 2
+ InglPe, () + In |2 In ]? « c () (B-a8)
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