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Abstract

The use of polarization diversity process requires the derivation

• of a mathematical system model to allow evaluating the effects of this

process , employed by a jammer or by a threatened radar, upon jamming

effectiveness. The system model consists of two orthogonal linear

antennas controlled by a random process in amplitude and phase. The

expected value of the received power due to interference is related to

the autocorrelation of the received signal. The received power is ob—

tam ed in the frequency domain from the spectral behavior of the total

polarization diversity processes emp loyed by both the jammer and radar

and the spectral characteristics of the transmitting and receiving

systems. The spectral behavior of the total polarization diversity

process is construc~ed by the oonvolutic,n between the polarization

• diversity processes of both the januner and radar. The spect—~in of the

polarization diversity is spread in a ~oliv3lutjcfl nianner by the trans-

mitter spectrum . This convolved spectrum contributes to the expected

value of the received power only within the bandwidth of the receiving

system. It is concluded that for several typical scenarios polari.:~ation

diversity is an effective jamming technique.

vii



THE EFFECT OF

POLARIZATION DIVERSITY

ON RECEIVING SYSTEMS

• I. Introduction

Polarization diversity is the phenomenon of changing the polariza-

tion characteristics of an electromagnetic wave. The results of this

phenomenon have been evaluated and implemented primarily in radio astron-

omy with some applications applied to radar systems. However, the

eva].uatiori of the effects of polarization diversity upon reception , pre-

sented in radio astronomy literature, has been limited to the case where

only the transmitted polarization is varying while the polarization

state of the receiving antenna is kept fixed. The objective of this

thesis is to derive a mathematical model which is used as a tool for

evaluating the effects of polarization diversity, employed by a jainmer

or by a threatened radar system. Once the mathematical model has been

derived, it is shown how one may go about optimizing the likelihood of

• reception by the radar system.

Two different categories of polarization diversity are presented .

The first one is formed implicitly by one or more radar systems with

different fixed polarization states, by which the equivalent polariza-

tion state seen by a jalnxner becomes a random variable. The second one

is when a random process is employed explicitly by the radar system in

order to reduce the effectiveness of polarization jamming . For both

categories, one should consider the statistical behavior of the polari-.

zation processes when evaluating the effects of those processes upon the

likelihood of reception.

1
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The derivation of the time domain model in Chapter II is done

using th e representation of a polarization state given by the Stokes

parameters or the Poincare sphere and using the theory of receiving

partially polarized electromagnetic waves as presented • 
s the radio

astronomy literature. The definition of the Stokes parameters given

in the radio astronomy literature is revised to enable its usage in

• a more general situation where the receiver, as well as the transmitter,

• employs a time varied polarization diversity. Implementation consider—

• ations are used in determining the system model used for polarization

diversity. The general transfer function of the receiving—transmitting

system model in the time domain is derived . This transfer function

is reduced to the function given in the radio astronomy literature

• once some assumptions are made. Those assumptions are listed in this

chapter.

In Chapter III, the system model derived in Chapter II is trans-

formed from the time domain representation into a statistical represen-

tation. The averaging process which is used for evaluating the likeli-

hood of reception is done by the ensemble average operation rather than

by a time average operation. Since the expected value of the received

power is related to the autocorrelation of the received voltage, the

whole system is described in a statistical second moment representation.

When statisticaL y stationary is assumed , the Fourier transform of this

representation leads to frequency domain representation. The effects

of the polarization diversity processes as well as of the frequency

characteristics of the jainmer and the radar systems appear in the

equation of the average received power in the frequency domain. The

power equat ion is simplified for various classes of assumptions.

2
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In Chapter IV , several feasible scenarios are evaluated with respect

to the frequency domain equation derived in Chapter III. Results are

obtained for several cases both analytically and numerically. 

.1. 
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II. The Time Dependence of the

Received Power on Polarization Diversity

The dependence of the power , received by a receiving system , on

time variation polarization diversity which is employed by a transmitter ,

has been derived in the radio astronomy literature (Ref 1; Ref 21. This

dependence is first reviewed in this chapter , where it has been assumed

that the receiving system has no variation in polarization . The depen—

dence of the received power on the varying polarization , which is

employed by both systems , receiver and transmitter , is then included .

The polarization diversity , discussed in the radio astronomy liter-

ature was created by nature and there has been no need to discuss the

ways to implement such a phenomenon. However , since this study is

• dealing with a man made polarization diversity system , a feasible model

will be presented . Thus , the derivation of the effect of the polariza-

tion variations will be related to that model.

Polarization State

A monochromatic plane wave can be expressed analyt ical ly by its

electric field as

,t) = Re 
[
~~e~~~

t - i~~)] (1)

where 1~ is the propagation vector defined by ~ = kk.

4
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• Since the wave is plane therefore is perpendicular to the propaga-

tion direction 1 , that is, k~~0 
= 0. Without loss of generality k

can be chosen to be parallel to the r axis in the spherical coordinate

system r, e , and $. 
~~ 

can be written then as

E0 =~~A ÷ 3A2

= 6 J A 1 J C
Ja1 + 4 lA 2 l e 3a2 ( 2 )

where 0 and 4 are the unit vectors along the 0 and ~ axes,

- • respectively ,  and where the magnitudes lA i l and 1A 21 , as well as the

phases cx~ and a2, are real constants. The reason for choosing the

spherical coordinate system is explained in Appendix A.

It follows from Equations (1 )  and (2) that the spherical components

of ~(r,t )  are given by the real expressions

E
0 

= I A 1 k0s(~~ + a1 )

E~ = I A 2 I cos(3 + a2 ) ( 4 )

where

~~=w t — kr (5)

Eliminating 5 from these expressions, one obtains the following

equation (Ref 3:24—25)

5
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:1 
{ E 1

2 

+ 

[
~~~~~~~~~~

}2  — 2 P~T p~k.[ cosa = sin2a ( 6)

where

a = a1 — a2 (7)

When taking E
0 

and E~ as coordinate axes, it is seen that Equation (6)

represents an ellipse whose center is located at the origin E
0 

= E~ = 0.

This ellipse is illustrated in Figure 1. The polarization state of the

plane wave is defined by this ellipse and by the direction of the rota—

• tion of ~(r) along the ellipse. The direction of the rotation depends

on a. The ellipse is set by the following three independent parameters

I Aj, IA 2I , and a.

The ellipse cal; be represented by a different set of parameters which

consists of the semimajor and semiminor axes of the ellipse , denoted by

a and b respectively, and the orientation angle IP between the major

axis of the ellipse and the 0 axis of the spherical coordinate system.

This set is illustrated in Figure 1. The relations between the two sets

are given by the following equations (Ref 3:26—27)

2 2 2 2a + b = A1 ± A2 (8)

and

tan 211) = 
kil2 iA :12 

cosc1, 0 < < ii (9)

6 
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Figure 1. Elliptic Representation of Polarization State

which were derived by equating the two different representations of the

ellipse.

The polarization state of a plane wave may be defined also by a set

of parameters which are known as Stokes parameters (Ref 4). The Stokes

parameters of a monochromatic plane wave are defined by the following

four quantities.

= (IA ~
I2 + 1A 2 12 ) (10)

S1 = (1A 1 12 — 1A 212 ) (11)

= ( 2 1A 1 11 A 2 1 cosa) (12)

S3 = (2 1A 1 1 1 A 2 1 sina) (13)

where Z
0 

is the intrinsic impedance of an isotropic lossless medium.

7
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Since these parameters ar e related by the identity

s0
2 

= S1
2+ S2

2+ S3
2 (14)

only three of the four are independent. S0 
is equal to the Poynting

vector of the wave since, when using mi s quantities , the poynting

vector is

— _*
S = E x II

=

= ~~~ lA 1 I2  + lA 2I tr 
(15)

and the magnitude will be

S = ~.(I A iI ~ + !A 2 1 2 )
0

= s  (16)
0

The Stokes parameters set is usually normalized such that

S
0

S
0 S

0

= 1  (17)

and

8 
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= , i = 1,2,3 (18)

The Stokes parameters are expressed as a [4x1] vector

so

S1
S[s.] = S , i = 0,1,2,3 (19)1

LS 3

where S is the Poynting vector in watts —m
2
. The significance of the

Stokes parameters can be understood as the representation of the charac-

teristics of the power of the wave.

The effective aperture of a receiving antenna also can be represented

by the Stokes parameters of the wave radiated by the antenna with the

antenna transmitting. Thus the set will be noted by (R ef 5 )

A[a~ J , i = 0,1,2,3 (20)

• where the effective aperture is

A 2”A = — (21)e 4ir

assuming a matched antenna, and

a0 = 1 
(22)9



I~ 
1 2  — B 12

a — 1~ 2
1

o a

a2 = 15 1 1 1 5 2 1  cos(—~ ) (24)

a3 = 

~~~ 
IB 1H B 2 I  sin(—~ ) (25 )

where S
a 

is the magnitude of the poynting vector or the power density

of the wave radiated by the antenna. The reason for choosing a minus

sign in front of ~ is the direction of the received wave which is

• opposite to the direction of the transmitted wave by the antenna , by

which the Stokes parameters have been defined .

Alternatively, the Stokes parameters can be written in terms of the

orientation angle 11’ and the elliptic ity angle X as follows;

S1 = s cos2Xcos2l4) (26)

s2 = s cos2Xsin211) (27)

S3 = s sin2X (28)

s1, s2, and S3 can be interpreted as the cartesian coordinates of a

point on a sphere of radius s~ where the longitude and latitude of the

point are 2~1) and 2X respectively. The ellipticity angle X is

defined by

tanX = ± , —71/4 < < 71/4 (29~

10
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where

21A 1 1 1 A 2 1 S 3sin2X = 

I A d2 + 1A 2 12  
slncj = ~~

— = S 3 (30)

This sphere is called the Poincare sphere and it is illustrated in

• Figure 2. A point on the sphere represents a polarization state. Lir.ear

polarization corresponds to the equator of the sphere or to zero

ellipticity angle X. Circular polarization corresponds to the poles of

the sphere or to 2X = ± 11/2 where the plus sign denotes a right—handed

circular polarization and the minus sign a left—handed circular polariza-

tion. It is convenient to describe the polarization state by either one

of the two sets of angles ~P and X or a and Y where I is defined

as

1A 2 1
= arctan —.

~~~

-— , 0 < < ff/2 (31)

The relations between the two sets are given by (Ref 3:27)

tan2lI) = tan2ycosa
(32)

sin2X= sin2ysina

The two sets are illustrated in Fi gure 2.

In summary , the polarization state has been defined by its elliptic

representation and by two parametric representations , Stokes parameters

and Poincare sphere. The representation by Stokes parameters is used

next to evaluate the received power.

11
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Figure 2. Poincare Sphere

The Effect of Polarization Diversity on the Reception of an Antenna

It has been shown by Ko (1962) that the power P available from an

antenna whose effective aperture is A
e
[a

i
], when a wave of polarization

S[s
~~ 

is incident upon it, is given by (Ref 5)

P = Y2SA [~ ‘.][s.) = Y25A 

~ 

a~s.

where [~~~I is the transpose of [a.]. The .complete derivation of

Equation (33) is given in Appendix A. The last three Stokes parameters

are representing the three components of a radius vector of the Poincare

sphere. Thus, the radius vector of the incident wave will be defined as

= S~~S 3 + S~~S~ + S
3
S

3 
(34)

12



and the radius vector of the antenna will be defined as

a = a 1a2 + a2a2 + a3a3 (35)

The dot product of the two vectors could be replaced by the cosine of the

angle c between the vectOrs. Thus

£.~~= s 3a 1 + s 2a2 + s 3a 3 = cosc (36)

and then

P = Y2SA (1 + cosc) (37)

As illustrated in Figure 3, the maximum available power is reached when

c = or 2ff, and zero power is received when C = TI .

A quasi—monochromatic plane wave, which consists of a superposition

of a large number of statistically independent waves with a variety of

polarization states, is said to be partially polarized. The frequency

bandwidth ~f of such a wave is assumed to be very small compared to

the mean frequency f. The electric field of the quasi—monochromatic

plane wave may be uniquely represented by the analytic form

~ (r ,t) = Re[~0
(t)eJ~~°~ 

_
~
.
~)] (38)

where W denotes the average value of the frequency. Since the band-

width of the field is very narrow, p
0

( t )  will  be a slow ly varying

jwt —
function of time compared to e . E

0
(t) can be written in the form

13
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71/2 71 311/2 271

Figure 3. The Received Power versus C

= ~~~~~~~~~~~~~~ + 4)~~~(~ )1~
ja2(t) (39)

where the magnitudes 1A 1 ( t ) J ,  JA 2 (t)J and the phases a1 (t), a2(t)

are slowly varying functions of time. The spherical components of ~ (r ,t)

are given by

E0 = 1A 1 (t)Icos(5 + a1 (t)) (40)

E
4’ 

= 1A 2(t)Icos(6 + a1(t) — a(t)) (41)

E = 0  (42)r

where

a(t) = ci1(t )  — ct2 (t )  (43 )

and 5(t) = wt —

14
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Although the magrdtu~cs and phases of the components of the quasi—

monochromatic plane wave are irregularly varying functions of time ,

certain correlations may exist among them. These correlations determine

the Stoke parameters and consequently the polarization state of the wave.

The Stokes parameters of the quasi—monochromatic plane wave have been

defined as the time—averaged quantities (Ref 1)

s = ~~ kIA 1 (t)12 >+< 1A 2 (t)12 >1 (44 )

= ~~ [<IA 1 t I 2 > -< lA 2 t I 2 >] (45 )

s2 = ~~~~
- < 1A 1 (t)11A 2 (t)Icosa(t)> (46)

S3 • = ~~~
_ < lA 1 t)I 1A 2 (t)Isina(t)> (47)

where

= 

~~ J x(t)dt (48)

It has been shown that the Stokes parameters of this plane wave satisfy

the relation (Ref 2:120)

s0
2 > s 12 + ~~~2 

5
2 (49)

By dividing through by S0, 
the normalized Stokes parameters vector will

be then

15 
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E s.] , i = 0,1,2,3 (so)

where s
0 

= 1. The degree of polarization of the quasi—monochromatic

plane wave is defined as

d =  1 2 3
S

0

= ~~~ s2
2+ 5 3

2’ 
(51)

It follows that for a partially polarized wave the Stokes parameters set

can be represented by

s0 = 1 (52)

s 1 = d cos2Xcos211) (53)

= d cos2Xsin2ll) (54)

s3 = d sin2X (55)

The definition of the Stokes parameters which has been given in the

radio astronomy literature, can be applied only when assuming no time

variation in the receiving antenna system or in the receiving system

• itself. However, for a complete view , one should consider a general case

where there are variations in time in the receiving antenna system and in

the receiving system itself. This consideration leads to the definition

of the Stokes parameters as instantaneous functions of time while the

averaging process is performed on the instantaneous power function.

Thus , w ithout taking into consideration th e processing of the receiv ing

16
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system, the average received power will be

P = 1/2 <SA [a.](s.]>e i 1

= ~ <SA~~~ aS s.> (56)
i=0

where the averaging process will be defined either by Equation (48) or as

a statistical average, depending whether the variations are deterministic

or random , respectively. The averaging process will be discussed in

detail in Chapter III.

When defining the Stokes parameters by the 0 and ~ components ,

there is no consideration how one would go about implementing the plane

wave and the receiving antenna system components such that the amplitudes ,

A1
1 s and B. ’s, can be controlled independently. The necessity of

having independent control of the amplitudes results from the objective

of this study,  namely,  developing an optimized polarization diversity

procedure. In the following , a feasible implementation of a polarization

diversity model wiLl be considered.

Polarization Diversity System Model

A wave of arbitrary polarization may be produc ed by combining the

waves radiated by a pair of crossed—dipole antennas. If the dipoles are

aligned parallel to the u and v axes of an arbitrary coordinate

system (u,v,w) , then the components of the wave radiated in the w

• direction will have the form

E = IA Jejal (57)
u 1

E = I A 2 J e ~~~ 2 (58)

17
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R.;11= A 11.
A 1(t )

R. ;I. 2
1• 

H 
A 2 (t )  

I R ; 12= A2IT

Figure 4. Polarization Diversity System Model

in which 1A 1 1 and 1A 21 are positive real magnitude factors, and a 1

and a2 are the phase angles associated with the field components. The

relative magnitudes and the phases of the field components may be adjusted

to give any desired polarization.

The system which will be used for evaluating the effects of polariza-

tion diversity upon the received power consists of two orthogonal linear

antenna channels connected to a common source through an impedance

matched T adapter which is called a power splitter. This system will be

the model for both functions , receiving and transmitting. The system is

illustrated in Figure 4. Each antenna channel consists of a linear

antenna and a magnitude and phase controller A
~ 

which is controlling

the input or output current of the antenna , depending whether the sys-

tem is transmitting or receiving, respectively.

18

• • • ~~~~~~~~~~~ • •~~~~~~ • •~ t •~~



_ _ _ _ _ _ _ _ _ _ _  • 
• - . • • • • • • 

~~~~~~~~~~~~~~~~~

The charact erist ic matrix of the power sp litter will  be

~ c/~~~ a/ V~

V~
’ 

= ~/v’~
’ 

~ 0 (59)

v~’ ~~/v’~~ 0 V~

where r denotes the reflected voltages and i denotes the incident

voltages at the associated ports . ~ denotes the reflection coefficient

and ~ denotes the loss coefficient. When the splitter is matched thcn

~~= 0  and c Y = l .

The eff ective height of the antenna system is obtained from

Appendix A as

P i— a jkr~r’h =  1-e dv ’
1

= Y h1 + {~
—. h2 (60)

1 1

or

= lA ~~~~1h + IA 2 1e
ja2h2 (61)

The radiated power t ransmitted by this antenna system is derived in

Appendix A and is g iven by

2
11 . 1

g
rad Z L I  l hXr j2 d~ 

(62)

where d~2 = sin0d6d~ and the integration is done over a sphere .

19
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i L~~~
R ã

V

R1 5

Figure 5. Equivalent Circuit of a Transmitting Antenna

Due to matching considerations one should keep the total radiating resis-

tance constant. However, since the radiating resistance of this model

is a function of the A .’s, there has to be a loss resistance which will

compensate the changes in the radiating resistance. This configuration

is illustrat ed in Figure 5. Thus , when the antenna is matched, X. = — Xrad

R. = R + R (63)
1 rad loss

and

= Ii. I2~ + R  )
• t i rad loss

= J I 12 R. + II J 2 R.  + I I . 1 2 R1 
~ 2 ~ 1 loss

= II .12 [R. (IA 2~ A 2) + R I1 1 1 2 loss

= ~~~~~~~ (64)
1 1

20



Therefore

R
d 

= R.(1A 1
12 +1A 2

12 ) (65)

and

R
1 = R. (1— 1A 1 12 — 1A 2 12 ) (66)

where R1 is given by Equation (A—37) as

R. = 
0 f I~~i x l 2 d~

= 

~~ J IH2x~
I2 d~ (67)

and R
1055 

represents the power dissipated in the antenna system . It

has been assumed that the two antennas have identical input impedances.

One can verify that the sum of the radiated powers of the two channels

given below is equal to the radiated power of the total system assuming

that the two antennas have orthogonally polarized antenna patterns.

P t, + = 
~ 0 
[

~~~~
}2 f Ii~ix~I2 d~

+ z {1
~~
J]2 f I~ 2 x~ I 2 dc~

= 
~~0 {I

~~ I ] 2 ( 1A 1 1 2 + 1A 2 1 2  J I~~i x~~I 2 d~ 
(68)

I
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since

• 

J

~~~~~~~I2 d~~ = J ( ( A 1~~1 + A 2~ 2 ) x

= J (A 3~~3x + A2~ 2 x~ ) . ( A 1~~1x~ + A2~ 2x~ )
W
dQ

= 1A 1 12 J (~~1x I 2 d~ + 1A 2 ( 2  J I~ 2x~
I2 d~

= J (tA 1 (~ + (A 2 
(2 ) (~~1x~ (2 d~ (69)

and

= 0 (70)

due to the pattern orthogonality .

Assuming the same model for both the receiving and the transmit-

ting systems , one obtains the total system as illustrated in Fi gure 6.

The received signal v
0

( t )  will be formulated by using Equation (A—41)

and convolving V
r

( t )  with g~ (t) to obtain

v0
(t) = g~(t)*E~0(t  — R/ c)~ h ( t ) ]  ( 71)

where h (t) is defined as
r

= B i (t )
~~r 

+ B2(t)~ r 
(72)
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is obtained from Equations (A—b ) and (A—23) by considering 
~

in the frequency domain as -

~~~w) = - 
w~) 

~~~~~ 
+ W0) R/c N~ (W) (u’)

where ~i~ (w) is the radiation vector in frequency domain and =

—~x~xi~i(w) while N(w) is defined in Appendix A by Equation (A—7).

Since w (<w
0

- 

~~ 
e ’~~~ 

+ w0)R/c 
~i ’ ( w )  (74)

and

• ~~ ( t )  - J~ oU ~~~~~~~ 5(t - R/c)*N~ ( t )

= - ~~ e~~~o~~~ i.(t - R/c)~ t(t - R/c) (75)

where

11
( t )  = v~(t )*g~ (t )  (76 )

Due to the pattern orthogonality one can approximate i~~(~~
) by 

~~ 
even

for angles far off beam center for many such antenna types. Thus,

i (t) A i (t)i~t1 
+ A 2( t )h

t2

to give

24
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v
0

( t )  = g (t ) *  
~~ R 

~
_jWoR/c [v

t
(t_R/c)*~t(t)]}~~t

(t_R/c)~~ r(t)J

(78 )

-I
The h .‘s and the h .‘s are assumed to be constant , with respect tori ti

frequency and time , in the close neighborhood of we,. By using

Equations ( 72) and ( 77) ,  the quantity 
~t~~r 

is given by

~t
(t
~~
10) 

~~t
(t )  = [A 1 (t_R/c)i~~1

+A2 (t_ R/c)i
~~2

]. [B 1 ( t ) h
1 +B2(t)h 21

= A1 (t— R/c)81(t)(h .
~~~ti ri

+ A1 ( t_R/ c)B 2 ( t ) (
~~t1 ~

‘r2~

+ ~ (t-R/c)B1 (t ) (
~ t2 ~~ri~

+ A2(t_R/c)B2(t) t2 r2
)

The received power is given in Appendix A by Equation (A—40 ) as

P (t) = 
v ( t ) v ( t ) * 

(80)

As illustrated in Fi gure 7, the maximum received power will be achieved

when

R = R  + RL rad loss

= R .  (81)
1
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R Rrad loss

§

1 [ 1

- ‘  Figure 7. Equivalent Circuit of a Receiving Antenna

where

R d = R . ( 1 B 1 12  + 1B 2 12 ) (82)

R1 = R
~

[1 — (~ B~~I2 + 1B 2 12 )] (83)

and v(t )  is measured at the output of the re~ eiving antenna system.

is defined by Equation (6 7 ) .  Hence , the received power is related

to v (t )v  ( t )  where
0 0

v0(t ) v :(t) 
= [

~~~
J 2 Ig

~ ( t ) * [ ( v t
( t_R/ c) *gt

(t))Ht
( t_R/ c) . 1~~( t ) ] I 2  (84)

This is the general transfer function of the received power of the

transmitting—receiving system.

It can be shown that Equation (84) reduces to the representation of

the received power in terms of the Stokes parameter sets of the trans—

mitter and the receiver as a special case.
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In the radio astronomy literature v
~
(t) was assumed to be constant ,

g~ (t) was assumed to be cS(t) where C compensates for the change of

units between v
t
(t) and I

~
(t ) ,  g~ (t) was assumed to be ~ (t), and the

antenna was assumed to be lossless. Thus

*v (t )v ( t )
° °r 4R

rad

= 4R h
t

(t
~
R/c).h (t) (85 )

rad

In the case where

~~~1
= §h

t1
(O ,

~
)

i
~~

=3h
~2

(e ,
~
)

~~~~~~~~~~~~~

hr2 ~h ( O ,~~)

and by including the functions of 0 and ~ in the respective A . ’s

and B1’s

Ih t(t_R/c) hr
(t)12 = (A (t—R/c)8 1

(t ) + A 2 ( t — R / c ) B 2 ( t ) ( 2

= JA 1 (t—R/C)B2 (t)J2 + (A 2(t—R/c)B2 (t)J2

+ 2Re[A 1 (t— R/c)A2 (t— R/c)B1 (t)82(t)] (86)
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or 
•

1
~ r(t

~~~~~~r
(t
~~

2 
= ~[(A 1 (t-R/c) (2 + (A 2(t-R/c) (2~ [ (B 1(t) (2 ±~B2(t) (2]

+ Y2[(A 1 (t_R/c)(2_ (A2(t_R/c) (2][(B 1 (t)(
2_ (B 2(t)!i

÷ 2 (A 1(t—R/c)((A 2 (t— R/c) ((B 1 (t)((B2(t)f cos(a—~ )

(87)

where

cos(ct—~ ) = cosctcos~ + sinc~sin~ (88)

In the definition of the Stokes parameters of the incident wave , B.

represents the electric field instead of the effective height  
~~~

• Thus , by using Equation (A—23) and defining the field as

= — 

~~~ ~~~~~ l .A  (t )
~~t 1

= A
~

(t)h
t 

(89)

and

= — 
~ ~~~~~ l .A (t )

~~t2

= A
~
(t)i

~t 
(90)
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the received power will be

a 3
p = ° 1

4 ~ S.a. (91)r 4R - 1 1
rad 1=0

By using Equations (A—47) and (A—49) one can show that the received

power wil l  have the form

3
P = 1 4 A S  ~ s.a. (92)
r e . 1110

which is equivalent to Equation (33). 
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III. The Average Received Power as a

Function of the Polarization Diversity Random Processes

The system which was illustrated in Figure 5 can be represented as

a transfer system where v
~

( t ) ,  
~t

(t ) ,  and i~~(t) are inputs and v0
(t)

is the output. This system is illustrated in Figure 8. The space trans-

fer function , g5( t ) ,  represents the attenuation and the phase changes

in the signal due to the distance R. Thus

G (W) = - 
j (~~W0)P -j(~ +W0)R/c (9)

where is the carrier frequency ,

(w+~ 0 )/ c = k + k • (94)

and

g5
(t )  = - [U5

’ t_R/c 
+ ~

woi~5(t_R/c)] -jk0R (95)

Since ~~ >>u , the derivative term can be neglected and

(t )  
jw0~5(t R/c) —jk0R

- — 
4ITR 

e

= Q(R)6(t—R/c ) (96)
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Figure 8. Transfer Function Representation

As it was stated in Chapter II , the approach for evaluating the received

power will be by averaging. In the most general case 
~~
(t) and

are assumed to be random processes. One could evaluate the time average

received power by assuming ergodicity and evaluating the expected value

of the power. In any case , from a statistical point of view one may

look for the expected value of the power since it will  tell more about

• the likelihood of reception at any time than would the time average

operation.

The received power per unit impedance is equal to

Pr
(t )  = v0(t ) v: t) - (97 )

and the expected value

31 
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= E{v0
( t ) v

0
(t ) }

• = R  (0) (98)
V

0

where R (T) is the autocorrelation of v (t). This is valid when
V 0

0
assuming stationary processes throughout the whole system. One could

represent the mean power in terms of the power spectral density function

as

P = .-~
— S (w ) dw ( 99)r 27r V

0
-

where S (w)  is the Fourier transform of fl (T).• V V
0 0

It is desired to represent S (w) in terms of the spectral density

• functions of the different inputs to the system , such that one could

evaluate the mean power when the spectral density functions of the inputs

are given . As shown in Appendix B , Equation (B—42), it is easy to

evaluate the spectral density function of an output to a t ransfer system

as a function of the input . Thu s , for the system model

S ( ~~) = S ( ~~) (G r
(W) ( 2  (100 )

and

S ( ~~) = S (w) lG t (
~

) I 2  (101)
1 t
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However , there is no immediate way to evaluate the spectral density

function of a multiplication of two processes , especially when they are

vectors. The spectral density function of ‘
~r~

t )  wil l  be derived as

follows. Due to Equation (A—41)

v (t ) = 
~r

( t )
o

( t )  
-

=

= ~~~~~~~~~~~~~~~~~~~~~~~~ (102)

According to Equation (96)

v (t )  = 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(103 )

The effective heights have been modeled in Chapter II as

~t
(t) = A i(t)h

t1 
+ A 2( t ) h

t 
(104)

and

~r
(t )  = B 1 ( t ) h  + B (t)i~ 

(105)

where

A 1(t) = (A 1(t) 1e
jai(t )  (106)
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A 2(t) = (A 2(t) (e
ja2(t )  

(107)

• B 1 ( t )  = IB 1(t)(e
_

1 (t) (108)

B 2 ( t)  = (B 2(t)Ie 3B 2( t )  
(109)

• The minu s signs in front of the ~~‘s are due to the opposite directions

of the receiving and transmitting paths. Thus

v (t) = Q(R)v. (t_R/c)[A i(t_R/c)ht
+A 2(t_ R/c)h 1.[B i ( t ) h +B

~~
t)h ]

(110)

and

(t— -r) = Q (R)v.(t—T—R/c) [A1 (t_T.~
R/ c )h

t1
÷A2(t_T_ R/c)h

t2
]

(111)

The resultant autocorrelation is

R (T) = Efv (t)v (t—T)}

= Eft1
r
(t)

~
h
t
(t_R/c)vi(t_ R/c)Q(R)

i~~(t-t) 
~~~~~~~~~~~ )v

1
*(t_T_ R/c)Q*(R) }

• (2 E~h (t )  
~~ 

(t_ R/c)h
r
*(t_T) .h *(t_ T_R/c)

vi ( t_R/ c)v i
*(t_ ~r_ R/ c ) }  ( 112)
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It is reasonable to assume that v
1

( t )  is statist ically independent

from 1 (t) and ~ (t). Thus
t r

R (-r ) = (Q (R)(2 R ( i )  Ethr
( t )

~
h
t
(t_R/C)h

r
(t_T)

~
h
t (t~NR/c)}

(113)

• where h
t

i and h ., i=1 ,2, are assumed to be constant in frequency

• for and to be random variables only. The quantities A. and

B., i=1 ,2, are assumed to be random processes in the most general case.

• As a result , the h ’ s and the A’ s or B’s are statistically independent.

Therefore

R (t) = (Q (R)j2 R ( T )

= (Q (R)j2 R (-r ) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ B2(t)h I [A~(
t_T_R/c)

~~~1
+A 2(t_T_ R/c)ht2 I [B~~( t_ T ) i~~*

+ B:(t_T)hr2
]} (114)

or

2 2 2 2
R (-r ) = (Q (R)(2 R (-r ) ~r i i=1 j = 1 k= 1 1=1

E{Ai
(t_ R/c)B

j
( t ) Ak

(t_
~
r_R/c)B

i
(t_r)(h

t;hrj
) tk~~rl

)*}

= I2 Rv (T) R~~ (r )  E f ( i ~ti~
hrj

) ( h tk~
hrl ) } (115)

1
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where

•1  * *
R.k (T )  = E {A

I
( t_ R/ c)A

k
( t_ T_ R/ C ) B

j
( t ) B

l
( t_ T )  1 (116)

It is convenient to define a cross—covariance term such as

* *
Cik

(T) = E{[A
i
(t_ R/c)Ak

(t_T_ R/C) — Rtjk(T)][Bj
( t ) Bl

(t_T) — R
rji

(T)I}

(117)

where

Rt .k (T )  = E{A.(t—R/c)A (t—T—R/c)} (118)

• and

Rrji
(
~
t )  = E{B~ (t ) B~ (t—-r)} 

(119)

By this defini t ion , R~~(T) can be represented as a function of the

correlation functions of the receiver and transmitter , R - ( T )  and
rjl

Rt
ij (T), respectively. Thus

R~~(t) = Rtik
(T)R

rjl
tT) + c~~(t) 

(120)

and

R (t) = ( Q ( R ) ( 2 R ( T )  
- ~~ 

(R
tik (r)R .l (T)

r 1 i , j , k , l = 1

+ c4~ (t ) I F((i~t i
~

i
~r
•)U7tk •hr1)} 

( 121)
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or

R ( t )  = I Q R I 2 R
~~

(T)[R
~ ~~~ 

( T )  + C~~ 
~~ 

(Tf l  (122)

r 1 t r t r

where

~~t~~r
(T) = Rtik

(t)R rjl
(T) E{(

~ tj~
i
~rj

) ( h tk~
hrl

)} (123)

and

C~~ .F.
( T )  = 

- - 
C~~~~ ( T )  E{ (~~ti~~ rj

) ( h tk~
hri

) } ( 124 )

t r i , j , k ,1 1

When transforming into frequency space ,

S (c~) = (Q(R)(2 S (w) * s~ ~ (w) 
(125)

r 1 t r

where

S (w) = ‘~~[R (T)] 
(126)

S (w )  =~~~~
‘ [R ( T ) J  

(127)

and
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S
~t~~r

(W) 
~~

[RE 4~~(T) + C~~~~~(T)]

= 
~~

[R
~t

•~~r
( T ) ] + 

~~
[C
~t

•~ r
(T)]

= SR
(w) + s (w) (128)

Substituting Equation (101), Equation (125) becomes

s (w) JQ (R)(2 [s (
~
)(Gt

(
~
)(2 ]*sE ~~~ (w) ( 129)

r t t r

and

= 
IQ
~ il~

J 
IG (W )I2~ [S (w)(G (u))(2 ]*5 _ (w )}dw (130)

One can break down the correlation function of the dot product l
~t~

l1r by

using Equation (B—27) . Thus,

Rtik (r) = EfA .(t_R/c)A
k
(t_T

~
-R/c)}

= 

~ti~ tk + Ctik (T) (131)

and

Rrji ( T )  = E{B.(t)B1(t— -r)}

= 
~rj~ rl + Crji (T) (132)
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where

= E~A .(t—R/c)} (133 )

* *
~tk 

= E{Ak
(t .

~
-r_R/c)} (134)

~rj 
= E{B~~( -r ) }  (135)

and

L 1rl = E {B 1
( t-T)} (136)

Therefore

R~~(T) = R
tik

(T)R
rjl

(T) +

= 
~~ti~ tk + C tik (T)I[fl 

~ l + C .1 (T )J+ C’L~(T)

ti~rj~ tk~rl 
+ 
~ti

11 tk Crji(T) + 
~rj

T
~rl 

Ctik(T)

+ Ct ik ( T ) C  .1( T )  + C~~(~ ) (137)

where Ctjk(T) and Crji(T) are the cross—covariance of transmitter and

receiver, respectively.

In summary,

= 

~f S (w)dw (138)
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where

S ~~ = (G (w)j2 (G (2fS
1~ ~~~ 

(w)*[(G (w)j2 S (w)]} (139)
0 t r  t

~~~ 
(to ) = 

- ~ [R’~~(T)] E((htith .)(htk
.h

l
)*} (140)

t r ijkl

and

* *R i k ( T )  = E{A. (t_R/c)A
k
(t_T_R/c)B. (t)B

l(
t_T)} (141)

In a more convenient way,

Sj~ ~ 
(to) = SR(w) + S (to) (142)

t r

where

SR(w) = 
ij~~l 

S
tik(w)*Srjl(to) E{(hti~

hrj ) ( h tk~
hrl)} (143)

with

Stik (w) = [R tik (~
t)]

= [E{A.(t—R/c)A~(t— -r—R/c)}I (144)

Srji(W) = [Rrjl (T)]

= [E{B.(t)8 (t—r)}] (145)
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and

s0 (to) = 

~~~ 

[C~~(T)] E{(hti~
hrj

) ( h
tk

•
~ rl

)} (146)

with

C’~~(T) = E{[A.(t-R/c)A (t-T-R/c) - Rt ik (T)][Bj(t)B~
(t_T) -

( 147)

Thu s , the averaged received power of a receiving system , when polarization

diversity processes are employed by the receiver and the transmitter,

depends upon the spectral characteristic of the correlation between the

two processes. This spectrum is spread in a convolution manner by the

transmitter frequency spectrum . However , this convolved spectrum will

contribute to the average power only within the bandwidth of the receiving

system. The parts of the spectrum which are outside of the receiver band—

width are wasted.

Assumptions

Equation (138) can be simplified by assuming the fol low ing

assumptions:

( 1) The two processes , the transmitting and the receiving , are

statistically independent.

(2) The two polarization components are statistically independent for

each antenna system , both t r ansmi t t ing  and receiving .

(3) Only one of the systems is a random process and the other is a

random variable.
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(4) A typical transmitter where v
t
(t) = constant and a typical

receiver where G
r
(to) is an ideal low pass filter around the

carrier frequency .

(5) S (to) is a narrow band noise.
V
t

Assumption ( 1)  y ields

S ( to) = 0 (148)

and

S~~ ~~~ (to) = S
R
(U))

= 
i,jll=1 

Stik (to)*S
rjl

(W) ~~~~~~~~~~~~~~~~~~~~ (149)

where

Stik(w) = [E{A.(t—R/c)A (t—T—R/c)}] (150)

and

Srji
(to) = [EfB~ (T)B1

(t—T)}1 (151)

Since and h
r 

are statistically independent the expected value of

the dot product of their components can be simplified. According to the

model which has been used, the components of each system , the transmitter

and the receiver, are orthogonal. Thus, when using the directions of the
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components of one of the systems, the transmitter for example, one obtains

— * * *E{(h .h .)(h ~h ) } = E{h .h - h h }
ti rj tk ri ti rJt~ 

tk rltk

* *= E{h .h } E{h . h } ( 152)
ti. tk rjt

. rltk

• where

—

h . = h .‘ti (153)
• ti ti.

h - =r ~ .ti (154)rj

ti is the direction of 
~ti’ 

and the other terms are obtained similarly.

Thus ,

2
s— — ( t o )  = S - (w)*s . (w) Eth .h .} Eth - h } (155)

ht~
hr i ,j , k , l=1 tik rj i. ti tk rJt~ 

rltk

Due to Assumption (2), Equations (131) and (132) can be simplified ,

as follows

Rtik
(T) = 

~ti
11tk + Ctik (~

t)

+ C~~~
( T )  , i=k

= 

* 
(156)

1ti~ tk , i~ k

where Ct~
(T )  is the autocovariance of A . ( t ) ,  and

• ~~~~~~~~~~ •.- --~~~~~~~ •~~~~~~~~~~ •• ~ I ~~
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*
R . ( t )  = r~ .ri + C . (ii
rjl rj rl rjl

+ Crj (T) , j=l

= (157)

flrjTlrl j~ l

where Crj
(t) is the autocovariance of B.(t). Equation (152) can be

• further simp lified when assuming ( 2 ) .  Thu s ,

E {h t .h tk
} = 1

~h 
~~~~~~ + Ptik

ti tk

V + ~~~~~~ , i=k
ti

= ( 158)

• n h 11h , i~k

and

* *E{h . h } = n
r3t~ 

rltk hrj h
r1 

rjltlk

• . ~~
1rj . 

j=l
rjt. rjtk tik

= ( 159)

n i~l~~
h hrjt. rltk

where 
~ tik 

is the covariance of ht. and htk , and Prjl
t.k 

is the

covariance of components of h . and h in ti and tk directionsrj rl

respectively.
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Assumption (3) resolves the convolution form of E quation (149) into

a function of the spectral density function of the system which enip l ys a

random process while the other system does not contribute to the spectral

characteristics of the received power , except for a constant. Since one

of the systems behaves as a random variable, there is no statistical

dependence between the two systems and the results of Assumption (1) can

be used in this case. Assuming the receiving system to be a random

variable yields the spectral behavior

2
s~ .~~~ 

(to)  = stik (LO) E{B
J
B
1
}E{htihtk

}Efh
rj .

h
ri 

} (160)
t r i , j, k , l=1 ti tk

Assumption (4) allows an explicit insight into the spectral charac-

teristics of the received power. This insight indicates the capability

of an optimization technique which is discussed in detail in Chapter IV.

Since v
~
(t) = constant,

R (T) = E{v
t
(t)v

t
(t_T)}

= constant (161)

and

S (to) = DcS(w) ( 162)
V
t

then S may be written as
• V .

1

S
~~~

(w ) = D 6 ( w ) I G
t

( w ) ( 2  (163 )
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With the receiver definition

(G (2 , ( w ( <  to
• r — C

= ( 164)

o ,

one can resolve Equation (130) to obtain

to

= 
~~ 

2
r
(2

t
(0~~ 2J\~~ (w)dto (165)

since

S
~t~~r

(to)*[ !Gt
(w) 2~ (w) I = J S~t~~r(W_W i) G

t(w ’)  2
~~(~~’ )dw ’

= S~ ~~ 
(w) !Gt

(0)12 (166)
t r

The results of Assumption (4) are changed only slightly with Assump-

tion (5). The only difference is that the spectral density function

S~ ~~ 
(to) is spread , in a convolution manner, by the spectrum of the

t r
noise of the transmitter.
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IV. Statement of Problems

One should consider two opposite problems concerning polarization

diversity . Both problems are dealing with the question of how to

• optimize the likelihood of reception of a receiving system when a

polarization diversity phenomenon is employed by both the receiving and

the transmitting systems. The first prob1e~ is how to maximize the

likelihood of reception of the receiving system in order to effectively

disrupt reception. This problem is referred to as the Electromagnetic

• Counter Measure (ECM) problem. The second problem is how to minimize

the likelihood of recep tion of interference by the receiving system

• in order to avoid jamming . This problem is referreu to as the Electro-

magnetic Counter—Counter Measure (ECCM ) problem. In both cases , there

are two opposing systems , the receiver and the jammer , where one system

is assumed to have some kind of polarization diversity technique and

the designer has to find an optimized polarization diversity technique

for the opposing system such that the likelihood of reception is

optimized in the desired sense. The “assumed” polarization diversity

technique can employ a random process in the most general case , or it

can be simply a random variable , meaning that the polarization can take

on different values with each value having some probabilit y of

occurrence.

Optimization Factors

One of the objectives of this study is to point out some optimization

techniques by emDloying random processes with the polarization diver~ ity
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system model which .as developed in Chapter II. One can use the result

of the most general case as it appears in Equation (137). However, for

the sake of simplicity , several assumptions are made in order to point

• out an optimized technique of polarization diversity . Some specific

limitations on imp lernetation are also considered . Using Assumption (4)

to define a simple system , one obtains the spectral function of the

received power as given by Equation (164)

Ci)
c

= ~ I s~ ~ 
(co)dco (166)r 

~ ~ r
-Ci)

c

where S~ ~~ (~ ) is defined by Equation (139).
t r

From the ECM point of view , optimal reception occurs when most of

the energy of the spectral density function S— — ( Ci)) is between ...Ci)
h h  c
t r

and ~~ as illustrated in Figure 9. Optimal reception , from the ECCM
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viewpoint , is achieved by spreading the spectrum of the received power

such that most of its energy lies outside the bandpass -.w~ to

as illustrated in Figure 10. The behavior of the amplitude of S~ ~~ (w)
t r

is another factor in the optimization procedure . To minimize the likeli-

hood of reception , one may desire the amp l i tude of S~ ~~ (w) to
t r

approach zero. This is achieved when the two processes , i
~t
(t) and

are statistically orthogonal . Maximum likelihood of reception

occurs when the two processes are statistically dependent . Obviously,

it is diffi cult to implement a complete dependence and one may assume,

for simplicity , that the two processes, i
~t

( t )  and i~ ( t ) ,  are

statistically independent as stated by Assumption (1).

Evaluating Typical Scenarios

Some typical scenarios are evaluated according to the system model

which was presented in the Jcsi. two chapters. Four types of scenarios

• are considered .
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(a) The pol
~ rization state of the jamxner is fixed while the

• polarization state of the receiver is assumed to be a random

variable.

• (b) The configuration is the same as in the first case except

that it is considered as an ECCM problem.

(c) The jainmer employs a random process in order to overcome the

ECCM technique used ir. the second case.

(d) The receiver employs also a random process in order to reduce

the jamming effectiveness.

For evaluating the received power in the first scenario one may go

back to the representation of the polarization state by the Poincare

sphere, or specifically to Equation ( 37 ) ,  where the power is given as

a function of the angle between the polarization states, of the jammer

and the radar, such that

P = E{Y2(1 + cosc)} (167)

where P is the normalized average power. Five different cases of

scenario (a) are listed in Table I. As seen in the table , in most of

the cases, the likelihood of reception is optimized from the jammer

point of view . It may be expected that the polarization state of the

radar will be adjusted to be orthogonal to the jaminer such that the

average power is reduced . This status is categorized under scenario (b).

The obvious action that may be taken for improving jamming effec-

tiveness is employing a random process. This case , listed as

50
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Figure 11. Random Binary Transmission

scenario (c), is evaluated analytically and numerically where both

results are presented and compared . The scenario is defined by the four

amplitudes of the system model such that

A1 ( t )  = ~
jczj (t )

A2 (t) = 1
( 168)

B 1(t )  = 1

B2(t )  = 0

where

= C—,r/2, + ,r/2) (169)

and it is a pseudo random process called random binary transmission as

illustrated in Figure 11. The B’s are selected as such for the ease of

evaluation. 1 is assumed to be a random variable with equal
ri
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Figure 12. Autocorrelatiori of Random Binary Transmission

A P. —

Probability of being orient:d in 0 or . h
t 

and ht are assumed

to be oriented in 0 and ~ , respectively. Thus,

R’?~ (T) = 14(1  + R
A
(T)) (170)

where

1 — 
]4.L , ki < T

RA ~~ 
= (171)

1 o I T I > T

as illustrated in Figure 12. The spectral density function of RA ~~~~~~~

S (w), is given asA 1

S
A

(w) = T 
sin 2(TrTf) 

(172)
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as illustrated in Figure 13. Thus, the average power , 
~r’ 

is given a.

= + S
A

(f)Jdf

(173)

I =
~~~

• assuming the spectrum of the jamzner to be within the radar bandwidth .

Most of the energy of the spectrum S
A
(f) is in the range ~~~ ~~.

Hence , when the radar is band limited , jamming is effective only when

(174)

) where is the cutoff frequency of the radar bandwidth .

/ Scenario ( c )  is also evaluated numerically by the use of SAP3

• / program found in the AFIT computer library . The random process employed

by the jammer is constructed to be similar to the Random Binary Trans...

mission illustrated in Figure 11. The process is based on the sign of
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a zero mean , unit variance , Gaussian random noise filtered by several

types of low pass filters. Figure 14 illustrated the process, created

by a 320KHz filter. Figures 15 and 16 illustrate the time autocorrela—

tion and the spectral density functions of this process. Assuming

erog dicity , time and ensemble autocorrelation may be equated wh ich

allows comparison of the analytical and numerical analysis. The spec-

tral density function is integrated along the frequency domain , as

illustrated in Figure 17. The value of the integral for a certain

frequency is equivalent to the expected received power obtained by

passing the process through the receiver with a bandwidth equal to that

frequency . Figure 18 illustrates the spectral density function con—

structed by filtering by 640KHz. Figure 19 illustrates the expected

received power versus the receiver bandwidth. In Figures 20 and 21 the

spectral density function and the received power are illustrated as

before except for a process created by a 1.28MHz filter. The filtering

of the process has the same influence on jam ming effectiveness as the

changing of T in the analytical analysis does. Thus, for a certain

receiver bandwidth the expected received power decreases when the band—

width of the random process increases. Thus, as the bandwidth of the

polarization diversity process becomes larger than the bandwidth of the

radar system , the jamming effectiveness goes down.

The last scenario , ( d ) ,  is analyzed numerically due to its complex-

ity. The jamming process is assumed to be as before and the radar polar-

ization diversity process is assumed to be similar to the jamming

process. The radar process is assumed to be created by a 640KHz filter

for all cases. The process of the radar system is employed by the

polarization a.tp litude controller B1 (t). In Figures 22 through 27, the
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joint spectral density functions and the expected value of the received

power are given respectively for all three cases of jammer filtering

values , 320KHz, 640KHz, and 1.28MHz. For each case, the spectrum of

• the jammer process is convolved with the spectrum of the radar process

to obtain the joint spectrum. The joint spectrums are spread due to

the convolution . Figures 22, 24, and 26 demonstrate the gradual spread

of the joint spectrum due to the increase of the spectral bandwidth of

the jammer process. Figures 23 , 25, and 27 illustrate the increasing

dependence of the expected value of the received power upon the receiver

bandwidth due to the increase of the spectral bandwidth of the jammer

process. Thus, as was concluded in scenario Cc), jamming effectiveness

is reduced as the bandwidth of the jammer process becomes larger than

the bandwidth of the receiver. However , the radar process as well as

the jammer process dominate jamming effectiveness since both are

pl aying the same role in creating the spectral behavior of the joint

polarization diversity process.
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V. Conclusion

The use of a polarization diversity process requires the deriva-

tion of a mathematical tool wha~ch will allow one to evaluate the

effects of this process upon the received power. Partial derivation

exists in the radio astronomy literature for a special case where only

the transmitter employs a random process to produce the polarization

diversity. Since random processes are assumed to be used for polari-

zation diversity , the expected value of the received power has to be

a function of the statistical characteristics of the processes. The

-time average operation used in radio astronomy is not as indicative

of the statistical characteristics of the processes at an instant of

time as much as may be the ensemble average.

Any polarization state may be produced by combining the waves

radiated by a pair of cross—dipole antennas. This knowledge was

used to construct a system model of polarization diversity. The

mathematical depender.ce of the received power upon polarization diver-

sity was derived by the use of this system mod’~l. The general trans-

fer function of the received power was introduced first in the time

domain. This function included the behaviors of the transmitter and

the receiver by using their time domain transfer functions. The trans-

fer function of the received power was transformed into the frequency

domain where the received power was measured by its expected value.

The likelihood of reception was introduced as a function of the spec—

tral behavicr of the polarization diversity process and the spectral

characteristics of the transmitter and the receiver. The spectral
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• characteristic of the total polarization diversity process is construc-

ted by the convolution between the polarization diversity processes of

both the transmitter and receiver systems. The frequency spectrum of

the polarization diversity is spread in a convolution manner by the

transmitter frequency spectrum . The convolved frequency spectrum con—

tributes to the expected value of the received power onl y wi th in  the

bandwidth of the receiving system.

Two opposite approaches exist in optimizing the likelihood of

H reception of interference , maximization and minimization depending

• whether the ECM or the ECCM problem is considered , respectively.  The

optimizations factors of the polarization diversity process are first

the distribution of spectral behavior of the process with respect to

the receiver bandwidth and second the amplitude of the spectral

behavior.

Four feasible types of scenarios were evaluated with respect to

the system model of polarization diversity . The first two scenarios ,

consisting of random variables , were actually i’esolved by the use of

the Poincare sphere representation of polarization states. Results of

the last two scenarios , involving random processes , were obtained

analyt ically and numerically. In both methods of anal ysis it was shown

that by controlling the rate of change or equivalently the spectral

behavior of the random processes employed by both the transmitter and

receiver polarization diversity systems one could achieve either maxi-

mization or minimization of the likelihood of reception.

There is a definite disadvantage to the radar system if a random

variable type of polarization diversity technique is emp loyed by a

jammer when the polarization state of the radar system is fixed . If

72

~~~~~~~~



the polariation state of the radar systen is comtrolled to nullify

-
• jammer interference by polarization orthogonality , the polarization

diversity technique employed by the jammer is even mor e cruc ia l  and

sh oul d be chosen t o be a random process ra ther than a random variable.

This essentially guarantees optimal likelihood of reception by the

radar. In the case where the polarization state of the radar is a

random process used to reduce jamming ef fec t iveness  in the manner of

• spread spectrum , the action that should be taken by the jammer is to

correlate its process to the radar process. This action compresses

the spectral behavior of the total polarization diversity process in

a manner similar to the spectral compression of the radar signal.

This thesis did not take into consideration the problems one

might face when choosing a polarization diversity process for either

the jamming or the receiving systems. These ptoblems are to retain the

effectiveness of existing ECM or EC(’-M techni ques while optimizing the

likelihood of reception of the jamming signal by the radar and to

develop a simp le and feasible system to actUally accomp lish the polar-

ization diversity . These problems are suggested for further study.
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Appendix A

Derivation of Equation 33

The purpose of this appendix is to show the detailed derivation of

Equation 33. Some brief derivations have been written in the literature

(Ref 1). Considering the vector potential at a point p, with a distance

R from the origin of a radiating system, as illustrated in Figure A—i ,

one obtains the equation

— —jkr”
• 

— f i a e
A = j 4lTr” 

dv’ (A—i)

v ’

where ~ is the phasor of the vector potential ~~ such that

= ~~3wt 
- 

(A— 2)

In the far field , when R>>r ’ , the following assumptions can be made. For

amp litude consideration the assumption is

R (A—3 )

but for phase consideration

r” R—r ’cos ~j  (A—4 )
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p

r’ ~~~~~~~~~~~~~~~~~~~~~~~~~ = r ’cos~

Figure A—i. Geometry of a Radiating System

where

cos~ = cosOcosO’ + sinOsinO ’ cos (4—4’) (A—5 )

Thus

—jkR
= 

e f T e ~~
n ’c0

~~ dv ’ (A—6 )

The integral is a function of the antenna configuration , current distribu-

tion, and direction of the current. This integral is defined as the

radiation vector N such that

= J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dv ’ (A—7 )
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Thus

...jkR
= (A—8 )

It is convenient to describe the radiation vector as a multiplication

of the input current I. and an effective height vector of the antenna

h. For a thin linear antenna, this becomes

= J J Tej~~
’C0

~~ds~dl1

1’ 5 ’

= f J i ( s ’)ds ’ ?(l,)C3kr ’c0s
~dl, (A— 9)

1’ 5 ’

or

= I
i J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dl’

= IJ~ (A— b )
1

where s ’ is a surface intersect ing the feed, ~(l’) is the current

behavior along the leng th,

= f ~ (1,)~jkr cos~P dl’ (A—il)

and

—jkR 
—

• = I.h (A—i2)
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In a source—free medium , the plane wave form of the far field is

= H e  (A-13)

= E e  (A-14)

where k = kr and ii and ~ are constant vectors. Thus,• 0 0

= .4.. . Tx ~? (A— 15)
JWE:

and when neglecting terms which decrease faster than h R  in the far field

. ‘—ji~xii) (A— 16)

Since

= V x  (A—17)

and

= A e J k
~~ (A—18)

therefore

-ji~x~ (A—19)

and
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k 2
~~ ~

‘ —

E — —.— r x r x A (A—20 )
.-J UJc

or

E~~ j w p r x r x A

= —jw~ A’ 
- 

(A—fl )

where

A ’ = A00 + A~~ (A—22)

Replacing A ’ by h ’ according to Equation (A—12) leads to

— ~~••~~~~~ e ’~
<’
~iJ~’ (A— 23)

41TR 1

where

—

h00 + h~$ (A—24 )

with no r component. Thus

E E0 8 + E~Ø 
(A— 25 )

where -

= — ~~~ ~~~~~ I.h 6 
(A 26)
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• and

E~ = — %~ ~~~~~ i .h ~ (A— 27 )

The poynting vector of the electric field has the form

j  p = Re[E x 11*1 (A—28 )

assuming rms magnitudes. The magnitude of the vector poynting is

= 
._

~;.. ~~~~ 
(A—29)

since the magnetic field is perpendicular to the electric field in a plane

wave. Thus the magnitude of the poynting vector of an electromagnetic

field produced by an antenna will be

= ~~~~- ~~~~~~~~~~~~~~~~~~~~~~ (A—30)

where ~ is the effective height of the antenna. Since

=

= (A—31)

p becomes
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I’.! 
2

= (j ~~i .~~~i * )

11 1 2
= 
Z {~~~~

] 

(Ih 0 I2 +lh~
I 2 )  

- (A-32)

Hence , the total power radiated by an antenna will be

P = if
= J J pR

2dQ (A—33)

where

d~2 = sinOdOd~ (A—34)

Thus

2 7~ 2ir

= L L (j~~4~I *)dQ (A—35)

The power radiated by the antenna can be expressed also by its feed

current and effective radiation resistance. Thu s , for m s  magnitudes

P = R 1 1. 1 2 (A—36)
t rad i

assuming no losses in the antenna, therefore the effective radiation

resistance will be
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Figure A—2. Equivalent Circuit of an Antenna

rr 2ir

R d = f J ( .
~~~~

jç
~ 

( A—37 )

The maximum power received by an antenna is reached when its internal

impedance is equal to the conjugate impedance of the radiation impedance

or that

R = R . (A—38)
rad i

and

x = —x. (A—39)
rad i

The model circuit of an antenna is illustrated in Figure A—2. Thus, the

maximum power received by the antenna will be
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When the antenna is not matched the power will differ within a constant

only. Sinclair has shown by using the reciprocity theorem that the open

circuit voltage of a receiving antenna can be expressed as (Ref 6)

v =~~~17 (A—41)oc 0

- 

I 
where 17 is the effective height vector of the receiving antenna and

is the incident electric field upon the antenna. Thus, substituting v

in Equation (A-~40) yields

(
~ ~~~~D — 

0

r 4R 
—

rad

Since in far field there is no r component of the incident field

= 4R d 
~ 0h8 + E

~
h
~

) ( E eho + E~h~) (A— 43)

The directive gain of an antenna is expressed by

D(O ,~ ) = (A-44 )

fJ
If the antenna is 100% efficient , which means no mismatch or conductive

losses , the gain and the directive gain are the same . If the antenna is

not 100% eff ic ient  then the gain will  be lower than the directive gain by
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a factor which depends on the efficiency. Assuming a perfect antenna,

the expression of the gain becomes then

G(O ,4~) = 
E~ E (A—45 )

JJ (~ .r)d~

Since h’ is relative to E by Equation (A—23), therefore the gain can be

represented as a function of h’

i i

G ( O ,4 )  = 1 ( A—46 )

~~

— Jf (h’ ’h’~~)dQ

Substituting Equation (A—46) in Equation (A—37) yields a simpler expression

for R , that israd

4TTZ — — *0 h’ -~h’Rr.ad = 

~~ G ( Q , 4 ~) (A—47 )

Substituting Equation (A—47 ) in Equation (A—43 ) yields

= 
A 2 G( e ,4 )  z 0 0  

(A—48)r 411 o

By multiplying the numerator and the denominator by the power density of

the p lane wave at the receiving antenna as in Equation (A—29) one obtains

as a result the received power as

84

L_
~~. - —_. -_ — - - •  .• --~— _ .~~~• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _  
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - .- - — - -~~~~~~

P (O ,~~,t )  = 
A 2G(O ,~ ) 

(~~.17,) (~~.17,) * 
(A-49)

r 4ir 
~ 

.~~~ * )( 17~~~* )
0 0

or

I~ 
.17i~~ 2

i (t) = A S  ° (A—5 0)
I’ e 

~~ ~~ 
*)(17f.171*l

0 0

where

• A = 2
~-~ (A—5l)

which is the effective aperture of the antenna and S is the real part of

the poynting vector of the p lane wave or the first Stokes parameter as in

Equation (16). The components of the field and the effective height can

be expressed as a magnitude and phase functions of time

E0 =

= lA i (t)j e
3
~~~~~~

1(t)] (A—52)

Eq, = A (t ) e 3k’~

= IA 2 (t)Ie
j[
~~~~~

2 ( t ) }  (A—53 )

and

h0 = B 1 (t) -

= I B ( t ) l e jB
~

(t )  
(A—54)

85

~ iil~



~~~~~~~~~~~~~~~~~~ i~~T i~~~-t TT7 T~~~~ 
-
~~~~ 

_ —- —---- ------ 
~
——-

~~~~~~~~
- 

~
--

~~~
- — - - --

~
---—-- • -—- — --

h~ = B2 (t )

= lB (t)le j
~ 2(t) (A-55)

where the minus si gn in front of the B~ ( t ) ’ s is due to the opposite

direction of the transmitting path from the receiving path. Thu s, by

substituting Equation (A—52) through (A—55) in Equation (A—50) one

obtains

= 
(1A 1 (t) 12 +A 2(t) !2 )(B(t) 12 +1B 2 ( t )  1 2  [ I A i~~~~~ 1 2 1 B 1(t) 2

+1A 2(t)121 B2 (t)  1 2

+1A 1 (t) I 1A 2 (t) I 1B 1 (t) j 1B 2 ( t )  eh i (t ) 2(t)1e
_J i (t)

_
~2

(tfl

+ 1A 1(t) I A2
(t) 

I 1B 1(t) I 1 B 2 (t) Ie
_j 

1 (t )~~~2 ( t j 1 (t 2 (t ) 1

(A—56)

or by reordering the terms,

~r (1A
1
(t )V +1A 2

(t)!2 )(15
1
( t) 12 + 1B 2

( t) 1 2 )  
2 1 A 1 ( t ) 1 2 1 B 1 ( t ) I

+ ~IA 1(t ) l2 l B 2 (t ) l2 ÷~lA 2 (t ) 12 1B 1 (t) I2 ÷
~~~iA 2

(t )  2IB 2 (t ) 12

+ Y 2 I A1
(t )  12 1 13 1(t ) l2~~l~1(t ) 12 !8 2 (t ) l2~~l/~2 (t ) 12 18 1( t )  12

+~~ IA z(t)f2i E2(t)I2 +Y24Re [fA l (t)II A 2(t) 1I B (t) l IB 2(t) Ie
3 t (tHJ

(A— 57)
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where

ct (t) = ct 1(t) — ct2(t) (A—58)

and

• 8 ( t)  = 8 (t )  - 82(t) (A-59)

Since

R~~~J
a(t)_8(t)I

] = cos~ a( t )  - 8 ( t ) ]

= 005 ~(t) cos 8(t) + sin a(t) sin 8(t) (A—60)

and by substituting Equations (10) through (13) and Equations (22) through

(25) into Equation (A—57) one obtains

S a  + S a  + S a  ÷ S a
P = 3 ~A S  0 0  1 1  2 2  

~~~
r e S

0

= Y2A S[a.][s.] , i = 0,.. .,3 (A—6h)
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Appendix B

Definitions and Equations in Random Fields

This appendix provides definitions and equations in random fields

for the statistical terms used throughout the thesis. When further infor-

mation considering these terms is needed one may refer to Papoulis (Ref 7 ) .

Random Variables

A variable which is a function of the result of a statistical exper— L
iment , in which each outcome has a definite probability of occurrence , is

called a random variable.

Probability Distribution Function. The probability distribution

function , Fx
( x ) ,  of a random variable X is defined as the probability

that X < x , that is

Fx (x) = P(X<x) (B—i)

In case of an experiment with two random variables , X and Y , the joint

probability distribution function is defined as

F~~ (x ,y)  = P(X<x , Y~y ) ( B—2 )

Probability Density Function. The probability density function of  a

random variable X , f
~

(x )  or f ( x )  for simp licity , is defined as

dFx
(x)

= (B 3)
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The joint probability density function is defined as

~
2F~~ (x ,y)

= (B—4)

Statistical Dependency. Two random variables, X and Y, are statis-

tically independent if , for any x and y

P(X<x , Y<y) = P(X<x) P(Y(y) (B—5 )

or

f~~ (x ,y) = f
~

( x) f~ (y ) (B—6 )

If the two random variables are statistically dependent , the joint proba-

bility density function will be

f~~ (x ,y) = f~
(x) 

~~~~~
= f~ (y ) f~ 1~~

(xIy) (B— i)

where is the conditional probability density function of X given

that Y is known and is defined as

f (x ) — 
lim P[x—&<X~x given Y=y) (B— 8)x I Y Y -

~~~~~~~~~~~~

and similarly for fy~x(ylx).
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Expected Value. The expected value E{X), or the mean ii , of a

random variable X, is defined as

E{X}= ~ f~ (x)dx (B-9)

If X can have only discrete values X
n 

then

E{X} = ~ x p  (B— b )

where is the respective probability of the value x~ . The expected

value of a function of a random variable, Y=g (X), is given by

E{Y} = 
J
g(x)f (x)dx (B-li)

or

Et Y} = ~ g(x ~ )P~ (B— 12)

The expected value of a function of two random variables, g(X,Y), will be

E~g(X,Y)} = ff
g(x~y)fxy(x~Y)dxdY (B— 13)

where f~~(x,y) is defined by Equations (B—6 ) or (B—i). The expected

value of a linear combination of N random variables is equal to the

same linear combinat ion of their expected values. Thus,
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N N
E C ~ a .X 1} = ~ a .E CX . } (B—1 4)

i=i i=l

Uncorrelated Variables. If X and Y are uncorrelated then

E{XY} = E{X] E{Y} (B-15)

However, when g(X ,Y) = u (X )v (Y ) and X and Y are uncorrelated, it

does not necessarily follow that u and v are uncorrelated. But if

X and Y are statistically independent then

E{g(X,Y)} = E{u(X)) E{v(Y)} (B—16)

Orthogonality. Two random variables, x and Y, are called orthogonal

if

E{XY} = 0 (B—i?’)

Variance. The variance a2 of the random variable X, is defined by

a2 = E{ (X— 1)2 }

=I :
X_ fl 2 f(x )dx (B-18)

or
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a 2 
= 

~ 
(x
n
_fl)2 p~ (B—19)

when X has only discrete values x~. The variance can be expressed by

= E{X} — E2{X}

= E{X 2)— ~ 2 (B—20)

Random Processes

A random process is defined as a random variable in which to each

outcome of the experiment a time function is assigned.

Stationary Processes. A random process is stationary in a strict

sense if its statistics are not affected by a shift in the time origin.

This means that the two processes X(t) and X(t+C) have the same

statistics for any E. The two processes, X (t )  and y(t ) ,  are jointly

stationary if the joint statistics of X (t ) ,  Y(t) are the same as the

joint statistics of X (t+c), Y(t-4.C) for any C. The expected value of a

stationary process X (t )  is a constant,

E CX (t )} = 1

= constant (8—21)

Correlation. For the purpose of this thesis, the autocorre].ation of

a stationary, complex process X(t) is defined by

Rx(~
t•) = ECX (t+T) x*(t)} (8—22)
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assuming the real and the imaginary parts of X(t) to have the same

statistics. The cross—correlation of two stationary processes, x(t)

and Y(t), is defined as

R~~(t) = E CX (t + t )  * } (B—23 )

A process X(t) is stationary in a wide sense if its expected value is

a constant and its autocorrelation depends only on T = t1 — t2. Two

processes are jointly stationary in a wide sense if each one of them

satisfies Equations (B—21) and (B—22) and their cross—correlation depends

only on t = t1 — t2, as in Equation (B—23). In the following discussion,

only stationary processes will be considered . Two processes X(t) and

Y(t) are called uncorrelated if, for any t

= 1
~ 

(B—24)

Covariance. The autocovariance of a process X(t) is defined as

C (T)  = EC(X(t+t) _n)(x*(t) — ~* )}  (B—25)

The cross—covariance of two processes X(t) and Y(t) is defined as

c~~(T ) = EC (X(t+t) - nx
)(Y*(t) - 1) }  (B-26)

Thus,

C(t) = R(T) — 
2 (B— 27)
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and

c~y(T) = R~~(t) — 

~x 
1; (B—28)

If X(t) and Y(t) are uncorrelated then, for any t ,

Cxy ( T)  = 0 (B—29)

If X(t) and Y(t) are orthogonal then

R~~(T) = 0 (B—30)

Ergodicity. x(t) is ergodic in the most general form if its time

averages are equal to the ensemble averages (i.e., expected values).

Time Invariant System. Transformation of a process X(t) by a time

invariant system without memory leaves the statistics of the results Y(t)

similar to those of x(t). The output of such a system will be stationary

only if the input is stationary in the strict sense. The expected value

of Y(t) = g[x(t)] will be

ECY(t)} g(x) f
~
(x;t)dx (B-31)

and the autocorrelation will be

R~ (t )  = ECY(t+t) *~~~}

=11 g(x ) g(x ) f(x ,x ;T)dx dx
JJ  1 2 1 2 1 2

-
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where x 1 and x 2 are dummy var iable s , f(x 1 ,x2;t) is the joint

density function defined as

a2F(x ,x2 ;T)
f (x 1, x2;T) = px

’
x (B 33)

and

F(x
1,
x
2;t) = PIX(t÷t) .~~x1, X(t )  ~~x2} (B— 34)

Power Spectral Density Function

The power spectral density S(w) of a process X(t) is the Fourier

transform of its autocorrelation , R(T):

S(w) = J e
—3~

T
R(t)dT (8—35)

S(c~) is a real and nonegative function. From the Fourier inversion

formula follows that R(T) can be expressed in terms of S((A)) by

R( t) = ~~ ~~~~ dw (B-36)

With 1=0, the abov e yields

~~~ 

= R( 0)

= ECX(t)X (t)} (B—37)

This is equal to the “average pow er” of the process x(t). The cross—power
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spectral density function Sxy(w) of two processes X (t) and Y(t) is

the Fourier transform of their cross—correlation:

= J R Xy(T)e
3
~
T dT (B— 38)

The Fourier inversion formula gives

R~~(T) 

~~ 
~~~~ dw 

(8—39)

and with 1=0,

~~~~ 

= R~y(0)

H = E~X(t)Y (t)} (B-40)

If the processes X(t) and Y(t) are orthogonal , then , due to Equation

(B—30 )

S~~,(w) = 0 (B—41)

Linear Systems. The power spectral density s~(w) of the output of

a linear system with system function H(jW) is given by

s~(w) = S
~
(w) IH(jw)12 (8—42)

where S
~
(w) is the power spectral density of the input. The linear

system is illust rat ed in Figure (B— i).
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Figure B—i . The Linear System

Multiplication of Two Processes. The autocorrelation of the product

Z(t )  of two random process es , X (t )  and Y ( t ) ,  can be expressed as

E{Z(t)Z (t—T)}= E{X(t)Y(t)X*(t_ T)Y*(t_ T)}

* *
= E{X(t)X (t—t)Y(t)Y (t—T)}

= E{X(t)X (t_T )}E{Y(t)Y*(t_ T)}+C
z
(T)

= R
x
(T)Ry(T) + Cz

(T) (8—43)

where C
z
(T) is called the cross covariance and will be defined as

C
~
(T) = E{[X(t)X (t_T )_R

x
(t)][Y(t)Y (t_T)_R

y(t)]}

= E{X(t)X (t_T)Y(t)Y *(t_T)} — R~(t)Ry(T) (8 44)

The product is illust rated in Figure (B— 2). If X(t) and Y(t) are

statisticall y independent then

C
z
(T) = 0 (B 45)
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Y( t )

x(t) Z(t) = x(t)Y(t)

Figure B—2. The Product of Two Random Processes

From Equation (B—27),

R
~
(T) = C

x
(T) + IT)x

12 (B-.46)

and

R~(T) = c~(r)  + (B—47)

Thus

E{X(t)Y(t)X (t_T)Y *(t_ T)} = R
x

( T)R
~,
(T) + Cz

(T)

= [C~(T)+IT1~I2 ] [ Cy(T)+IT1yI2 ] + C2
(r)

= C
x
(T)Cy(T) + tf ly I2cx(T)

+ lflx I2 Cy (T) + In,~I2 tn~l2 + Cz
(T) (B—48)
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The use of po lar iza t ion  diversity process requires the derivation of a
mathematical  system model to  a l l o w  evaluat ing the effects of this  process , em—
pl ayed by a jainmen or by a threatened radar , upon jamming effectiveness. The
system model consists of two orthogonal l inear  antennas controlled by a random
process in amplitude and phase. The expected value of the received power due
to interference is related to the autocorrelation of the received signal. The
received power is obtained in the frequen cy domain from the spectral behavior
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radar and the spectral characteri stics of the transmitting and receiving systems
The spectral behavior of the total polari zation diversity process is constructed
by the convolution between the polarization diversity processes of both the
jaxumer and radar. The spectrum of the polar iza t ion  d ivers i ty is spread in a
convolution manner by the transmitter spectrum. This convolved spectrum con-
tributes to the expected value of the received power only with in  th e bandw idth
of the receiving system. It is concluded that for several typical scenarios
polarization diversity is an effective jamming technique .
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