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F ( ABSTRACT :

This report details the development of a computer-aided ih
' design program for continuous and discrete control systems.
The program described is fully interactive and provides § | ]
complete error detection, abort protection, and several

levels of user assistance. In addition to digital and

continuous time response, frequency response, and root locus,
the program allows block diagram manipulation, state-space 1

analysis, and a variety of continuous to digital transformations.

Built-in polynomial, matrix, and scientific calculators are

also provided. A user's manual and programmer's guide are

A

included to aid in further development of the program.
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I. Introduction

| Guidance and control is a field characterized by i ;
problems which require a lot of computation. Many of these |
computations are conceptually simple, but require a lot of
time and effort to perform. As a result, people.working in !

the field spend a lot of time doing routine calculations

instead of concentrating on problems worthy of their skill and {
training. The obvious solution is to use a computer to

perform these tasks.

Background and Problem Statement

Many ¢omputer-aided design programs have been written
with the intention of reducing the computational effort
required to solve guidance and control problems. (Refs. 2, 3,

4, 5, 6, 7, 8, 9, 14, 22, 28, 29, 34, 35). Most perform the

functions for which they were intended very well. Unfortunately
many suffer from poorly designed user interfaces which, while
not affecting their actual results, have seriously impaired

their efficient use.

To point out this problem, some of the more frustrating

experiences which inevitably occur when using computer-aided

design programs are given on the next page. Not all programs

ot | |
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suffer from each of these problems, but few d&void them all.

(1)

(2)

(3)

(4)

(5)

The program terminates abruptly because the user
accidentally typed an illegal character. All
information typed is lost and the user must start
over.

In the middle of a long string of input data the
user inadvertantly entered an incorrect value. The
program runs its course producing meaningless output
and when it terminates, the user must start over.

The program terminates abruptly because an incorrect
data value caused some internal equation to become
computationally unsolvable. All current data is
lost and the user must start over.

The program actually operates correctly, producing
the desired results and terminating normally. The
user then wante to try another run with only one
small change in the input. The user must retype all
of the input data.

The user finally obtains the needed results from a
particular program. He then wishes to perform a
different function on the same set of data. He

starts another program and must retype his input data

again, this time using a different format.

It is this continued typing and retyping of input data

that makes current computer-aided programs difficult to use.

If computer-aided design is to reach its full potential, some

effort must be made to reduce this workload and to protect

users from their own mistakes.

The problem is that computer-aided design progréms are

usually written only as they are needed to solve some

particular set of problems currently of interest. Since the

programmer is only writing the program as a quick means to

some other end, he spends very little time in perfecting the

program itself. He is generally satisfied, because of his
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own time constraints, it the program just accepts data and
outputs correct answers. I'ew people have time to make
programs onerate conveniently.

As a result, there is a lot of computational assistance
available today but little of it is easy to use. Savings
in computation time which should be realized are lost in the

effort of operating fhe programs themselves.

Statement_of Purpose

If computer-aided design software is to be improved, it
must be desipgned with two equally important goals in mind:
(1) It must be capable of solving whatever class of problems
ts ©of interest, gnd (2) it should require as little effort
from the user's standpoint as possible. Only if these goals
are accomplished together will users be able to obtain all
the benefits of computer-aided design.

The purpose of this investigation is to develop a

computer-aided design program which will provide all of these

benefits to people working in the field of guidance and control .

To this end the following goals have been determined:

(1) To consolidate as many existing computer-aided design
programs as possible into one package so that users
can realize the benefits ot a standard input format,
the convenience of having every function at their
fingertips, and the eftficiency of a unified data
structure where input does not have to be retyped
for every phase of a problem.

(2) To create new program functions in areas where
currently existing tools are unavailable or inadequate.

€ o i S . Y O 3T
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(3)

(4)

Approach
The

uniform,

approach

To design and develop an efficient user interface
which gives the user complete control of the program
and its data with a minimum amount of typing.

To develop a program structure which is easy to learn,
maintain, modify, and extend.

approach used in this investigation will be one of
modular, standardized top-down design. While this

is defined in detail in Chapter IV, the basic idea

is a simple four step process:

(1)

(2)

(3)

(4)

Thus

An overall picture is first obtained of what the
program is to do and how it is to operate as a single
large "black box." This is accomplished by essentially
attempting to write the user's manual first so that

every function the program is to perform is clearly
defined.

The single black box defined in step 1 is then
broken down into several smaller boxes (modules) each

of which must then be defined as thoroughly as the
original box.

Step 2 is repeated on each new set of boxes until
eventually a level is reached where each module
performs only a single elementary function.

Finally, the elémentary modules are constructed and
tested individually using a standard programming style
and then combined until eventually the original black
box has been realized.

» the program is designed "from the top down" to

obtain a uniform final structure but built "from the bottom up."

Constraints

The following constraints were placed on this investigation

L . wuea——.

either by the resources available or the nature of the problem
itself:

A e e B




(3)

(4)

Summary of

The goals must be sufficiently limited to allow
accomplishment by a single individual in a 15 month
period of time.

The coding must be performed using the FORTRAN 1V
computer language because most of the currently
existing programs which are to be included in the
overall package have been written in this language.
(Refs. . 2¢3,4,95,6:7,8,904,22 9899 34 35) and 1t is
gencrally accepted as a standard in the field.

(Ref', 18)

he program is constrained to operate in less than

O0.0UO% words of core memory by the computer system.
o <

(Ref. 1) '

The program must function reliably producing correct
results.

Design Philosophy

Throughout the design, the following philosophy will be

followed:

time." While it is true that a computer's time is more expensive

"the user's time is more valuable than the compute's

on a minute for minute basis, it is much cheaper on a problem

for problem basis (because of its speed). This is the only

fair means of comparison since the object is to solve a certain
number of

amount of

problems at minimum expense, not to use up a certain

time at minimum expense! Therefore, the prime

directive of this study will be: When a choice must be made,

minimizing user time must take precedence over minimizing

computer time.

routines which are needed by so many people so much of the tine.

No effort will be spared to simplify the use of
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II. Development of Initial Program Functions

As mentioned in the introduction, the objective of this
design study is to develop a computer program which is both
fully interactive and capable of solving the problems of
interest. This chapter develops the requirements for the
second of these poals. The first will be discussed in Chapter
III.

The ultimate motivation behind this investigation is the
desire to obtain a tool which is capable of performing every
computation needed in the field of guidance and control. To
demonstrate the magnitude of this undertaking, the following
list has been compiled. While the list is by no means complete,
it is representative of the kinds of functions which are needed.
A discussion of why these functions are needed is beyond the
scope of this report, but the fact that they are needed is
documented (as indicated below) in more than one reference in

the literature.

Needs for Computer Assistance in Guidance and Control

(1) Root locus in the s, z, w, and w' planes. (Refs. 13,
20, 21, 27, 28, 33)

(2) Discrete and continuous time response. (Refs. 14, 20,
21, 23, 27, 28, W)

(3) Discrete and continuous frequency response. (Refs. 20,
21, 23, 2}, W )

(4) Discrete, continuous, and stochastic system
simulations. (Refs. 20, 23, 26,

(5) Power spectrum analysis. (Refs. 25, 30)

) o ; g
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(6)
(7)
(8)

(9)

(10)

(11)

(12)
(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)

Sensitivity analysis. (Refs. 20, 21, 27, 28)
Relative and global stability analysis. (Refs. 20, 21)

Polynomial operations including addition, subtraction,
multiplication, division, factorization, and
expansion. (Refs. 13, 14, 20, 21, 23, 27, 28, 30)

Matrix operations including:
Addition, subtraction, multiplication, inversion,
and transposition.
Computation of adjoint, cofactor, and determinant.
Similarity transformations and rank determination.
Eigenvalue and eigenvector calculation.
State transition and resolvant matrix computation.
Diagondalization and Hermite normal form reduction.

Discrete to and from continuous system representation

transformations and approximations. (Refs. 14, 23,
25, 30}

State-space model to transfer function model
cgnve£§ion. (Refs. 13, 14, 20, 21; 23, 25, 27, 28,
30, 3

Transfer function conversion to state-space canonical
forms. (Refs. 14, 20, 21, 23, 27, 28, 30, 34&)

Conversion between state-space canonical forms.
(Refs. 14, 20, 23, 27, 34)

Continuous filter design including Butterworth,

Chebgshev. elliptic, and other realizations. (Refs. 14,
23, 45, 30)

Digital filter design including finite (FIR) and

infinite (IIR) impulse response realizations.
(Refs. 14, 23, 25,

Signal processing and analysis including convolution,
Fourier transformation, intepgration, differentiation,
correlation, and RMS analysis. (Refs. 14, 23, 25, 30)

Classical control design including gain, lead, and
lag compensation and Guillemin-Truxal techniques.
(Refs. 20, 21, 27)

Modern control including state-variable feedback,
modal gontrol. and observer design. (Refs. 20, 21,
27, 34

Direct digital design inc¢luding minimal prototype,
dead-beat response, windowing, frequency sampling

and mean-square error techniques. (Refs. 14, 23,
25, 30)

Optimal control design including solution of the
Ricatti equation and performance index adjustment.
(Refs. 20, 24, 26)

I E——
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(21) Non-linear control design including phase plane
methods, linearization, and curve fitting techniques.
(Refs. 20 21, 22)

(22) Stochastic control analysis and Kalman filter desxgn.
(Refs. 21, 26)

(23) Partial fraction, continued fraction, and power -
series expansions. (Refs. 14, 20, 21, 22, 23, 27, 28)

(24) Equation solution including ordinary and partial
differential equations and sets of linear algebraic
equations.: (Refs. 22, 28)

(25) Word length, quantization, and sampling rate analysis.
(Refs. 14, 23, 30)

(26) Block diagram manipulation including addition and
multiplication of transfer functions, and the closing
of unity and non-unity feedback loops. (Refs. 13,
14, 20, 21, 23, 21)

Determination of Priorities

Because of the size of the above list, this study cannot
hope to accomplish everything. Therefore, it is necessary to
select which subset of these functions should be developed
first. Such a selection should give priority to functions
which are pfgreatestand most general use in the field, especially
those which would be useful in performing other higher level
functions. This section describes how priorities were assigned
and what functions were selected for implementation during
this investigation.

To aid in assigning priorities which would develop the
most general and widely useful functions first, a survey was
taken of textbooks in the field. (Refs. 13, 14, 20, 21, 22, 23,
24, 25, 26, 27, 28, 30, 34). A priority was assigned to each

function in relation to (1) the number of different areas of

8
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control (digital, continuous, stochastic, optimal, etc.) in

which it

neceded in cach area.

but ecach

was used and (2) the frequency with which it was
No formal scoring procedure was used,

function was evaluated according to the following

general puildelines:

(1)

(2)

(3)

(4)

Computations which were required extensively in more
than one area were given top priority with those
encountered most often being considered first. Not
only are such functions the most generally usctul,
but they may often serve as building blocks for more
comnlex (unctions.

Specialized functions that were considered fundamental

to a particular area of study were given the sccond
highest priority.

More advanced procedures needed for serious work in
the field were selected next. At this point the
functions became so specialized that priorities had
to be assigned based on the needs of individuals
already using the program as it was being develoned.

State-of -the-art computational techniques should be
added to the complecte package as they are developed.

Using these guidelines, the following areas were sclected

as being

computer

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8)
(9)
(10)

esscntial first level elements of a comnrehensive
program f{or puidance and rontrol work:

Root locus analysis.

Discrete and continuous time response.
Discrete and continuous frequency response.
Block diagram manipulations.

Polynomial operations.

Matrix operations.

Scalar operations.

Classical control design techniques.

Modern control design techniques.
Continuous to discrete transformations.

At o
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These are the features that will be included in the
program developed during this investigation. In addition to
being a useful set of functions themselves, they are
sufficiently general to allow development of a program
structure which can accomodate any other function which may
eventually be added. In other words, they provide a basis on
which a data-base and an interactive user interface for the
final program can beldeveloped and tested. Development of the
data base is the topic of the next section. The interactive

user interface will be discussed in Chapter III.

Discussion of Data-base Variables Needed

In order to realize the goal of a unified expandable
program where all routines use the same set of input data, it
is necessary to develop a data-base of variables in which
this information can be stored. While the actual realization
of this data-base will be covered in Chapter IV, this section
discusses Qhat kinds of variables may be necessary to store all
of the information needed by the program.

The most commonly needed piece of information for the
functions to be realized is the transfer function. Root locus,
time response, and frequency response routines all require
input in this form as do many of the conventioanl control
system design techniques. Block diagram manipdéltions are,
by definition, performed on transfer functions.

A transfer function is represented either as a ratio of

polynomials or in factored form as a collection of poles,

10
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zeros, and gain constants. Thus, to represent a transfer
function in the common data-base, provision must be made to
store its numerator and denominator polynomial coefficients,
the real and imaginary parts of its poles and zeros, and
whatever gain constants may be associated with it.

The number of transfer function storage locations that
should be provided is dependent upon the single function which
uses the most of them, which in this case is the set of block
diagram manipulations. Since these manipulations, in general,
operate on two transfer functions to produce a third, at least ,
three storage locations should be provided. An additional i
location for storing intermediate results would also be very
useful, bringing the recommended minimum number of transfer
functions to four. Naturally, if space permits, additional
transfer functions could always be used to improve the
versitility of the program.

Using similar reasoéoning, at least four arrays of pclynomial
coefficients should be provided to allow easy execution of
polynomial operations. While such arrays could use the same
locations in which transfer function numerators or denominators

are stored, it is recommended (if space permits) that they be

kept separate to minimize user confusion. Also, since
corresponding to each polynomial there is a set of polynomial
roots, it may be beneficial to provide storage locations for

them. This would allow users to refer to polynomials in

either factored or unfactored form.

11
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Matrices form another large class of variables for which
storage locations must be provided. At least five matrix
arrays are’ncednd to represent a system in state-space
notation including: system.,input, output, direct transmission,
and state variable feedback matrices If both discrete and
continuous systems are to be represented similtanecously, an
additional two arrays will be needed to store the discrete
system and discrete input matrices These seven matrix
locations will probably have to double as working repgisters
for matrix arithmetic due to storage limitations.

Finally, each program in the package will undoubtably have
its own set of scalar variables to use. Provision should be
made to include such variables as they become necessary.

It must be remembered that, while the variables
recommended above are sufficient for the needs of the routines
developed in this study, it may be necessary to provide new
storage locations as new features are added. For example,
when signal processing routines are included, it may be
necessary to add locations for storage of number sequences,
and so on. Whatever data structure is developed should be

flexible enough to allow continued expansion as the program

£rows.
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ITI. Development of the Interactive User Interface
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The second ma jor goal of this investigation is to make a

program which is not only computationally powerful, but also

very easy to use. This requires that a user be able to specify,

with a minimum amount of typing, exactly which operations the

program is to perform and what data it is to use. The following

list defines the features that a program must have if a

truely efficient user interface is to be achieved:

(1)
(2)
(3)
(4)
(5)

(6)

(7

(8)
(9)
(10)

(11)

Protection against premature program termination due

~ to input errors.

Ability to recover from input errors without starting
over.

Ability to selectively display the value of any
program variable at any time.

Ability to selectively modify the value of any
variable at any time.

Ability to transfer the contents of any one variable
to any other variable without manually retyping the
data.

Ability to use. the output of one program function as
the input to another without manually retyping the
data.

Ability to provide help to the user at any time,
especially when input requested by the program is not
understood.

Ability to selectively list the options available to
the user whenever needed.

Ability to stop the program and restart it later
without losing any data.

Ability to abort a command without terminating the
entire program.

Ability to assume different modes of operation to
tailor fit the program's performance to the user's
preferences.

13
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(12) Ability to control the flow of the program from
function to function with complete freedom and as
little effort as possible.

In short, an efficient user interface is one which
requires a minimum amount of typing by the user while providing
maximum control of the program.

Design of interactive features differs from the design
of computational features in that the former must be built into
the most basic parts of the program's internal structure while
the latter can be added at anytime. Adding an interactive
feature will, in general, require modifications to the entire
structure from the ground up while adding another computational
function generally has little effect on the rest of the
program. For this reason, all of the user interface goals
outlined above will be included as goals of this design study
from the very beginning. It would be very difficult to add
one at a later date.

For the purpose of discussion, an interactive user
interface éan be divided into four parts, including: program
control, data-base control, error protection, and user
assistance. The next four sections discuss these parts and
what features they should include. While recommendations will
be made concerning how these features might work, discussion

of their actual implementation will be saved for Chapter IV.

Program ntrol I rfac

Complete program control may be defined as the ability to

randomly select program functions in any order at any time

14




without regard for what functions may have beer previously
selected. Such control is highly desirable because it gives
the user maximum flexibility to use the available functions
to their fullest potential. It also protects the user from
getting "locked in" to pre-selected sequences from which there
is no escape short of complete program termination. Complete

program control places all of the program functions at the

user's finger tips and allows the user to define what operations '

are to be performed.

If the user is completely free to select functions in any order,

he is also completely free to make mistakes. Great care must

|

!

This kind of control, however, is not without its hazards. 5\
{

be taken when designing a control interface of this type, to
ensure that when a user does make an error, it results only in
an error message and not in a program abort.

This section discusses ways in which complete program
control can be provided. The subject of error protection
will be co;ered later in this chapter.

Two widely used methods for providing program control are
to have the user type a command or select an option number.
(Refs. 2, 3, 4, 5, 6, 7, 29) Each of these techniques has
its own desirable features. Commands put the user in very
direct control of the program and are particularly useful for
simple, frequently used functions with few parameters.
Unfortunately, when a program has a lot of options, commands
require a user to learn a large vocabulary before he can use
the program effectively. This is always undersirable,

15




especially from a beginner's standpoint.

For the purposes of this program, it is recommended that
the best features of both methods be used. When a function is
simple and frequently used, it is easy to remember and may be"
provided as a command name. More complicated and less
frequently used functions are more difficult to remember and
may be best presented to the user as a list of option numbers
to which he can refer.

One final item which should be discussed under this
heading is the "switch" concept. Certain functions which allow
the user to select his own favorite modes or operation (such
as whether angles are calculated in radians or degrees, or
whether the program should repeat (echo) all input it receives),
may best be provided as a series of switches. Switches are
simply logical variables which can be set either "on" or "off"
by command from the user. Such switches may be used in any
case where the user has a choice between one of two modes of
operation.' They are particularly beneficial in that the
user can custom tailor the program to suit his own preferences.
Very simply, a switch should be used for the type of command

that is to remain in effect until changed by the user.

Data-base Control Interface
Complete control of the program functions alone is not
enough to provide an efficient user interface. The user must

also be provided with control of the data-base on which the
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functions operate. This is important because the user will often

want to use data already stored in the computer with only
minor changes in its form or location. Incomplete data-base
control may require the user to do unnecessary retyping
which is contrary to the goal of easy operation.

In this report, complete data-base control is defined as
the ability to list, modify, and transfer the contents of any
variable used by the program. This section discusses some of
the possible techniques that can be used to give the user
this kind of control.

The first element of a data-base control interface
which must be developed is a reference system which will allow
the user to designate which storage locations are to be operated
upon. While some sort of reference system which assigns a
number to each location in the data-base is a possibility, the
preferred technique is to give every variable or variable array
a name. Tﬁe user can then refer to each storage location by
typing its corresponding variable name. Tbhis system will work
well as long as care is taken to see that each.variable is
given a logical, easy to remember name. A discussion of
variable names chosen for the program being developed as a
part of this study is given in Chapter 1IV.

To 1list the contents of any variable location, it is
possible to have a command or option called "list variables"
which, when selected, would ask the user to specify which

variable(s) should be listed. A far more simple and direct
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approach, however, would be to have the user simply type the
variable name as a command to list that variable. This
technique is nearly optimal in the sense that it requires a
minimum amount of typing by the user.

Similarly, there could be a command called "modify
variables" which would ask the user to specify which variable
to change and its new value. The easiest technique, however,
is to simply type the variable's name and subscripts (if any)
followed by an equal sign followed by its new value, all on
one line as a command to make the indicated modification.

Transfer of information from one variable to another is
a more complicated procedure. For simple scalar variables, the
easiest technique is probably the same as for modification as
described above. That is, the user can type the name of the
variable to receive information followed by an equal sign
followed by the name of the variable from which the information
is to be obtained. For arrays of variables, where the meaning
of an equai sign would be less clear, a special copy command
could be used. One form of such a command could be:

*COPY, VARA,VARB" which would instruct the program to copy
the contents of the variable named VARA into the one named
VARB. Either or both of these procedures would perform the

required transfer operation with minimum user effort.

Error Protection and Recovery Interface
One of the most frustrating problems that plague

interactive programs today is the devastating effect of

18
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inadvertant input errors. For the purpose of this discussion,
these errors can be placed into three general classes:

(1) Typing an illegal character.

(2) Typing a number outside the range of acceptable values
for a particular variable.

(3) Typing a number which will cause an arithmentic
operation to become uncomputable.

All three error types can result in immediate termination of
the program and complete loss of data. When this happens, the
user is left with no recourse but to begin typing this input
all over again.

Since most of the time spent using a program is devoted
to typing in data, if the unnecessary retyping caused by these
errors could be avoided, a tremendous improvement in efficiency
could be achieved. This section discusses several ways in
which the effects of inevitable user errors can be eliminated.

As long as standard FORTRAN READ routines are used to
receive input from the user, there is little that can be done
about commoén typographical errors. (Ref. 15:5-5). Once the
READ routine has been called, control is out of the programmer's
hands until the routine has successfully obtained the requested
input. If an input error is encountered, the READ routine will
either print the cryptic message: "ERROR, RETYPE RECORD AT THIS
FIELD" or terminate the program completely. No opportunity
for calling a recovery routine is ever provided.

The only good solution is to develop an alternate read
subprogram to replace the standard FORTRAN one. Such a

subprogram could read data in alphanumeric format (a standard

19

— . s




FORTRAN format which will accept any character) and then
convert it to usable form using a translation routine. Any
illegal characters detected when converting a line of data
would be called to the user's attention by an understandable
error message and the user given an immediate opportunity to
make the needed correction. This approach would virtually
eliminate the greatest single cause of abnormal program
termination: the typographical error.

Errors caused by the user typing a number outside the
range of acceptable values are easy to avoid. All that is
necessary is to test each number when it is received to ensure
that it is within its legal limits. If it is not, an error
message can be printed and the user asked to retype the number.

Finally, errors due to illegal arithmetic operations must
be eliminated. This is somewhat more difficult than the
preceding kind of error because it requires the programmer
to anticipate every possible arithmetic error. The only sure
method is to test the argument of every operation that can
produce such an error before the operation is executed. This
can make programming somewhat more difficult but the resulting
product is far more reliable. Table I lists some of the
common functions which can cause abnormal program termination

if they are given an illegal argument.

User Assistance Interface
To make an interactive program equally convenient for
both the beginner and the experienced user, a special kind of
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Some common functions that have possible illegal arguments.

Function Symbolic Name Error Condition
Division A/B B =20
Natural Logrithm ALOG(A) : A <O
Common Logrithm ALOG10(A) A<£0
Square Root SQRT(X) X<O0
Arcsine ASIN(A) Jal> 1
Arccosine ACOS(A) : Al > 1
Exponential EXP(A) ]A] > 675.84*

% Number is a function of word length and may differ from
machine to machine.
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user assistance interface must be developed. This interface

must be able to teach a new user how to operate the program,

provide quick memory refreshing and prompting for the familiar

user, and yet stay completely out of the way of the expert
whe has no need for help.

The first and most important function that the user
assistance interface'must perform is to provide the user with
a list of options that are available to him. The user should
be able to obtain this list at:any time but it should not be
printed out automatically. Nothing is more irritating to an
experienced user than to have to wait for a program to nrint
unwanted information. Since a large program will, in general,
have more options than a user will want to see at one tinme,
the 1list of options should be divided into groups according
to function so that the user can get a short list of options
for the group in which he is interested.

Final}y. provision should be made for several levels of
prompting when the user is requested to input data. The
experienced user may want his prompts to be short and to the
point such as: “ENTER WMIN,WMAX > ". The new user, however,
may not know that "WMIN" and "WMAX" are and will need a more
detailed request for information. One possible solution to
this need would be to have the program routinely give only
brief prompts and if the user does not understand what is

needed he can type a question mark for further details.
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The thing that should be remembered is that users do
not always have a user's manual handy when they are using a
program. If the user assistance interface is properly

designed, such a lack should not be a serious handicap.

Summary

An efficient user interface has been defined as one
which gives the user maximum control of an interactive
program with minimum input effort. The purpose of this
chapter has been to develop the requirements for such an

interface with the goal of making a program truely easy to

use.
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IV. Development and Realization of Internal Structure

The preceeding chapters have defined the needs and
specified the goals for operation of the program to be
developed. This chapter discusses the actual internal
realization of the program. The external realization will
be discussed with the results of this study in Chapter V.

The program to be described was given the name TOTAL
to reflect the fact that it is intended to eventually perform
the total range of computations needed in the field of guidance
and control. The ten functional areas selected in Chapter II
and all of the interactive features discussed in Chapter III
were combined into a program with a form permitting continued

growth. How this was accomplished is the subject of the

following sections.

Design Approach

¢

One of the problems with software design in the past has
been that, in the interest of minimizing program size and
memory requirements, program understandability and maintainability
have been sacrificed. Programmers have relied on intuition,
experience, and "pet tricks" to optimize their programs without
realizing that such tricks make it very difficult for others
to understand and use the coding. As a result, the life of

most software has been very short because improving computer
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systems and changing needs soon render any one version of
coding obsolete. If the original author of the program is
no longer available, and if no one else can understand the
coding well enough to bring it up-to-date, the program dies
a rapid death. Software designers frequently find themselves
"re-inventing the wheel" because it is easier to write an
entirely new program than to understand and modify an old
one. This is an obvious waste of time and resources.
Recently there has been an increasing awareness of the
need for standardized programming techniques which are
universally understandable. One such attempt to provide this
standardization is the "Structured Analysis and Design
Technique" (SADT) developed by SofTech, Inc. (Ref.3l :16).
SADT is a highly developed methodology involving many
functional analysis and system design concepts. Three of these
concepts whi¢ch were particularly useful in the development of
TOTAL were, modularity, top-down design, and documentation.
(Ref. 32, 2-1). The following paragraphs briefly discuss
these concepts and how they were applied to TOTAL.
Modularity. Structured Analysis uses the concept of
modularity to develop complex programs in a "divide and
conquer approach." By successively breaking the program into
more and more, smaller and smaller, well-defined modules, the
analyst finally arrives at small enough pieces so that the

function of each individual module can be easily understood

25




and its interface to other modules clearly seen. Thus, the
complex program that could not be understood in its total

view can be well understood by seeing each of its modules and
how they fit together. In fact, once this modular breakdown

is created, replacement modules can be designed and "plugged-in"
to improve the performance of the total program.

TOTAL was designed using this modular approach by making
extensive use of subprograms and program overlays (to be
discussed in this chapter). The most basic functions (such
as polynomial multiplication, and elementary matrix row
reduction) were developed first. These routines were then
used as building blocks for higher-level functions (such as
transfer function multiplication and matrix inversion) which
in turn were used for still higher level funétions (such as
block diagram manipulation and state-space analysis). The
modular design approach was put to such extensive use in the
development of TOTAL that many of its programs and subprograms
consist of almost nothing but calls to lower level subprograms.

Top-down design. In order to develop the modular
decomposition described in the preceeding paragraphs, it was
necessary to Qork "from the top down." The top-down design
approach consists simply of viewing the program from the
highest level, most general viewpoint, and then breaking down
this view into finer and finer levels of detail. Without

this approach, modular decomposition would be dlfficult.
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For example, in the development of TOTAL, it was not known
that polynomial multiplication and addition modules would be
needed until the fundamental goal of block diagram manipulation
capability was broken down into the need to add and multiply
transfer functions which in turn required the routines to
handle polynomials. :

TOTAL was designed using the top-down approach as
follows: First, the program was divided into ten functional
areas as described in Chapter II. Each of these areas was
then further divided into specific functions which were to
become the individual options and other performance features
in the finished program. Next, the necessary algorithms and
procedures needed to perform each function were either located
or developed. Finally, the specific blocks of coding and
subprograms needed to implement each procedure were written.
Throughout this top-down design process, deécisions were made
with program simplicity, size limitations, and interactive
requirements in mind.

Documentation. The third fundamental concept used in the
design approach for TOTAL was the need for continuous
documentation. This concept is simply that documentation is
best when it is produced continuously throughout the project
while the design decisions are being made and can still be
seen in context. (Ref. 31, 2-9) By recording why particular

decisions were made and what factors influenced them, future
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extension and modification of the program can be méde
easier.

The primary reason for using this concept during the
development of TOTAL, however, was that it helped to avoid
a documentation phase at the end of the project. Since all
steps taken in developing the program were recorded as they
occurred, the resulting documentation precisely matched the

final working program. Appendix B, the Programmer's Manual

for TOTAL, is the result of attempts during this investigation
to achieve this desired complete documentation.

Thus, the design process used in the.development of
TOTAL was modular, top-down, and documentation oriented. The
remaining sections of this chapter discuss some of the more

important design decisions:that were made.

Overlays vs. Segmentation

To perform all of the functions specified as goals in the
preceeding chapters requires a very large program. In fact,
the programs and subroutines used in TOTAL collectively
require more than 600.0008 words of central memory. Since
many computer systems do not have this much memory available,
(Ref. 1 1) and since most limit interactive users to a much
smaller amount (on the order of 60K) (Ref. 1 :52), it was

necessary to design a program structure which would never

require more than 60K at any one time. Two methods for
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fitting a large program into a small amount of memory are
available including overlay generation and segmentation.

Overlay generation is simply a way of dividing a large
program into a series of smaller programs each of which will
fit into the available amount of memory. As each of these
programs (overlays) is needed, it is loaded into memory
replacing one which has just finished executing. A small
executive routine, written to control the overall flow of the
program, is responsivle for calling each overlay into memory
as it is needed. This executive is called the main overlay
and remains in central memory at all times. The-small
programs which it controls are called primary overlays. Only
the main overlay and one primary overlay are ever in central
memory at a given time. Thus, the maximum amount of space
needed by the entire program is just the sum of the space needed
for the main overlay and the largest primary overlay.

Overlay generation is a simple process. It requires only
the additién of a few new statements to the otherwise normal
FORTRAN source code of the program.

Segmentation is @ much more powerful method of subdividing
a large program. Unlike overlays, it requires the addition
of no new statements to the program. Instead, a separate
set of control statements is written describing how the program
is to be divided. A special routine called SEGLOAD then reads

these contrdl statements and divides a compiled version of the
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program, as directed, automatically. Once a segmented version
of the program has been generated, it is used like any other
program.

Because of the large number of sophisticated control
directives that are available with SEGLOAD, segmentation is
a versatile technique. For this reason, it is highly
recommended by peoplé who are thoroughly familiar with its
use. Unfortunately, segmentation is very complex and therefore
more difficult to learn. (A 41-page manual is needed to
describe the process -- Ref. 17).

Thus, there is a trade-off between overlay generation
and segmentation. Overlays are easier to use, but segmentation
is more powerful. Such a choice might merit careful
consideration if overlays were not capable of performing all
of the functions needed. However, since overlays can do
everything required'in this case, the fact that segmentation
is more powerful is irrelevant. In keeping with the goal of
making the program easy to extend or modify for as many
people as possible, the overlay technique must be selected.
The more powerful features of segmentation are simply not
needed.

Complete information on overlays and segmentation is

given in Ref.17.
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TOTAL's Overlay Structure

Once the overlay approach had been selected, it was only
necessary to divide the program into approximately equal
pieces small enough to fit in 60,0008 words of central
memory. TOTAL was divided into one main overlay, seventeen
primary overlays and eleven secondary overlays. A general
flow chart showing this overlay structure is given in Fig. 1.

The main overlay (Overlay (0,0) in Fig. 1) holds the
common data arrays, establishes their default values, and
calls each primary overlay as it is needed. Since each
program function may be performed, in general, by any one of
these seventeen primary overlays, a short decision making
foutine is used to determine which overlay should be called.
This routine is simply a massive computed GO TO statement in

the main overlay called the "master overlay selector":

101 GO TOC 1y 3y 39y 3y 39y 3y 3y 3y 3y 9

, 14514,514y14y14514514514y 9y 9»
17917917917914914y14517917» 9»
2y 29 29 29 29 2y 29 29 29 9y
4y 4y 4y 4y Ay 4y 4y 4y 4y 9y
Sy Sy Sy Sy Sy Sy 99 99 99 9
3y 39 3y 3y 39y 3y 3y 3y 3y 9
14y14514514514914514914514y 9
16916916916916916y 9y 9916y 9y
1y 99 13y 99 18y 99 9y 9y 9y 9)» NOFT

+H+

Entries in this GO TO statement are indexed by the option
number, NOPT, and are simply the statement numbers of the
sevenceen overlay calling statements shown in Fig.: 2. 1If

a user selects, for example, option number 93, control is
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Notation
(0,0)--Main executive overlay
‘ (*,0)--Primary overlay number *
—%4 (9,0) | (Called by main overlay)
(*,#) --Secondary overlay number #
(10,0) (Called by primary
overlay number *)
—{(11,0) |
5 (13,0) |
> (15,0)
(16,1) | [(16,2) |

:

(17,0)

Fiso 10

TOTAL's overlay structure.
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CALL
CALL
2

CALL

CALL

CALL
CALL
CALL

CALL

CALL
4

CALL
10

CALL
11

CALL
13

CALL
14

caLL
15

CALL
16

CALL
17

OVERLAY UFDATE
CALL OVERLAY(SHTOTAL»150)
GO TO 11111
OVERLAY FARTL
CALL OVERLAY(3HTOTAL+2+0)
GO TO 11111
OVERLAY FOLY
CALL OVERLAY(SHTOTAL»350)
GO TO 11111
OVERLAY ROOTL
CALL OVERLAY(SHTOTAL»+4,0)
IF(NOFT.EQ.48) GO TO 11
GO TO 11111
OVERLAY FREQR
CALL OVERLAY(SGHTOTAL»S»0)
GO TO 11111
OVERLAY REAIER
CALL OVERLAY(SHTOTAL+6+0)
GO 7O 11111
OVERLAY DECOLDER
CALL OVERLAY(SHTOTAL»7+0)
GO TO 11111
CALCULATOR (OVERLAY REAIER)
EXTCALC=,TRUE, :
CALL OVERLAY(SHTOTAL»6»0)
GO TO 11111
OVERLAY HELF
CALL OVERLAY(SHTOTAL»9»0)
GO TO 11111
OVERLAY IIMULR
CALL OVERLAY(SHTOTAL»1050)
GO TO 11111
OVERLAY TTYFLOT
CALL OVERLAY(SHTOTALs11,0)
GO TO 11111
OVERLAY MISCELL
CALL OVERLAY(SHTOTAL»13,50)
GO TO 11111
OVERLAY MATRIX
CALL OVERLAY(SHTOTAL»1450)
GO TO 11111
OVERLAY COFYIER
CALL OVERLAY(SHTOTAL»s15,0)
GO TO 11111
OVERLAY XFDRMS
CALL OVERLAY(SHTOTAL»1650)
GO TO 11111
OVERLAY BLOCKER
CALL OVERLAY(SHTOTAL»17,0)
GO TO 11111

Fig. 2.

Primary overlay calling statements.
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transferred to the statement in the main overlay whose

number appears in the 93rd entry of the master overlay

selector. In this case, statement number 13 would be

selected which is just the calling statement for Overlay(l3.0)'

(see Fig. 2). Overlay 13 then executes option 93 and returns
control to the main overlay which repeats the entire process
for the next user command. Complete details on the main
overlay are given in Section 3 of Appendix B.

Primary overlays, like number 13, perform all of the
actual operations in TOTAL. Each is responsible for a certain
class of functions which may include option and command
execution, variable definition and modification, switch
setting, user assistance, and interactive user interfacing.
If an overlay is too large for the given core restriction, it
is divided into secondary overlays that will fit. Primary
and secondary overlays are discuséed in detail in Section 4

of Appendix B.

Data-base Development

An important aspect in the internal structure development
of a program is the design of an effective data management
system. Variables must be stored in a manner that will permit
ready access by all parts of the program, easy medification
and inspection by the user, and efficient use of computer

memory. There are four possible techniques for storing
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information in a program. Each has its own advantages and

disadvantages as described below:

(1)

(2)

(3)

(4)

Local variables. Local variables are used within

a single program or subroutine for storage of
information while that particular routine is
executing. When the routine has finished, the space
in which such variables are stored is used for
something else and the variable values are lost. Local
variables are useful as scratch registers which are
quickly accessable but which do not tie up any memory
locations when not in use.

Global variables. Often it is desired to keep certain
variables in memory at all times so that they are
available to any routine which needs them. Such
variables are called global or common variables,

They have an advantage in that they are quickly
accessable and are not lost when execution passes from
one routine to another. They have a disadvantage in
that they take up memory locations at all times
whether they are in use or not.

Sequential-access files. In the event that large
amounts of data must be stored, there may not be
sufficient memory locations available in the computer.
One possibility is to write all information to a
local file on a disk or other mass storage device.

If the data is to be used in a single block, the
simplest technique is to use a sequential formact.
This means that data is written and read from the
local file in the same order. This technique is
slower than in-memory, but can handle much more
information. It has an advantage over random-access
storage in that it can be coded with ordinary FORTRAN
WRITE statements. Its chief disadvantage is that
information must be read from the file in the same
order that it was written.

Random-access files. Another form of mass storage
which 1s similar to the sequential-access file is

the random-access file. The chief difference and
advantage is that information may be written and read
on a random-access file in any order. The chief
disadvantage is the more complicated input/output
statements which are required.
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All four types of storage are used in TOTAL's data
structure to combine the advantages of each. Whenever
possible, information needed only temporarily during the
execution of a single routine is stored in local variables
to conserve storage space. Infornéfion which is needed in
more than one routine, or which is used repeatedly throughout
the program is stored in global variables defined by labeled
COMMON statements. A sequential access file is used to
provide a backup memory of all global variables so that the
program can be stopped and later restarted without loss of
information. Finally, a random-access file is used as a mass

storage device on which 24 additional transfer function arrays

and 19 additional matrix arrays can be stored.

Selection of Variable Names

In the development of a data-base control interface as
described in Chapter III, it was decided to assign a mnemonic
reference name to every variable or variable array in the
data-base. The only requirement placed on these names was
that they should be assigned in a logical, easily remembered
manner. This section discusses what names were chosen and how
they were selected. :

The data-base variables to be named were found to fall
into five general categories including: transfer functions,

polynomials, polynomial roots, matricies, and scalar constants.
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Since these are natural divisions which are not difficult

to remember, it was decided to use them as the basis for
root words from which individual names could be formed. The
following list shows the root words selected as reasonable

mnemonic names for each of the five groups:

Group Type Mnemonic Root Word
Transfer functions TF
Polynomials POLY
Polynomial roots ROOT
Matrices MAT
Scalar constants K

Once a root word had been determined for each group, all
that was necessary was to add one or two more letters to it to
form a unique name for each variable in the group. These
additional letters should'naturally be selected in some
logical manne— as described below for each group:

Transfer functions. If transfer functions were to be
divided into four types according to function, one possible
partition might bes 1) forward transfer functions, 2) feedback
transfer functions, 3) open-loop transfer functions, and 4)
closed-loop transfer functions. This partition provides a
convenient basis for naming the four transfer function arrays
stored in the common data base. Since "G" and "H" are often
used in the literature for the forward and feedback transfer

functions respectively, (Ref.20, 21,27 and since "OL" and "CL"

make reasonable abbreviations for "open-loop" and "closed-loop",
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the following name assipgnments were made for the four data-

base transfer functions:

(1) GTF -- Forward transfer function

(2) HTF -- Feedback transfer function b
(3) OLTF -- Open-loop transfer function i P
(4) CLTF -- Closed-loop transfer function

Polynomials. There are 12 polynomial arrays to be named.

Four ot the arrays are used as scratch registers for polynomial

arithmetic and, for simplicity, were assigned the letters A,

B, C, and D to distinguish between them. The remaining eight g

arrays are paired to form the numerator and denominator |

polynomials of the four transfer functions. Thus, it was {

lopical to use the same letters (G, H, OL, and CL) in the ?f

names of each pair, the letters "N" for "numerator* and "D" f{or ? i |
(

"denominator" were used. The resulting polynomial names are

listed below: I &1

[

(1) POLYA -~ Coefficients of polynomial A

(2) POLYB -- Coefficients of polynomial 8 15
(3) POLYC -~ Coefficients of polynomial C !
~(4). POLYD -- Coefficients of polynomial D i
(5) GNPOLY -- GTF numerator polynomial i
(6) GDPOLY -- GTF denominator polynomial

(7) HNPOLY -- HTF numerator polynomial

(8) HDPOLY -- HTF denominator polynomial

(9) OLNPOLY -- OLTF numerator polynomial

(10) OLDPOLY -- OLTF denominator polynomial

|

{

l

(11) CLNPOLY -- CLTF numerator polynonial ‘
(12) CLDPOLY -- CLTF denominator pclynomial 1
|

1
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Polynomial roots. Corresponding to the 12 polynomials

named earlier are 12 arrays of polynomial roots. These

arrays can be distinguished in a natural way using the same
symbols used in the polynomial names and the root word "ROOT".
Thus, ROOTA was used for the roots of POLYA, ROOTB for POLYB,
and so on. lowever, because transfer function numerator and
denominator roots are often called "zeros" and "poles"
respectively, it was decided to modify the root word in these
cases and substitute "ZERO" for "NROOT" and "POLE"for "DROOT".
This scheme resulted in the following name assignments for the

12 root arrays:

(1) ROOTA -- Roots of POLYA

(2) ROOTB -- Roots of POLYB

(3) ROOTC -- Roots of POLYC

(4) ROOTD -- Roots of POLYD

(5) GZERO -- GTF ZEROS (roots of GNPOLY)
(6) GPOLE -- GTF POLES (roots of GDPOLY)
(7) HZERO -- HTF ZEROS (roots of HNPOLY)
(8) HPOLE -- HTF POLES (roots of HDPOLY)
(9) OLZERO -- OQLTF ZEROS (roots of OLNPOLY)
(10) OLPOLE -- OLTF POLES (roots of OLDPOLY)
(11) CLZERO -- CLTF ZEROS (roots of CLNPOLY)
(12) CLPOLE -- CLTF POLES (roots of CLDPOLY)

. Matrices. Since the letters A, B, C, D, F, G, and K
are common matrix names used in digital and continuous control
work, it was decided to use them for the seven matrix arfays
in the data base. Along with the root word "MAT", these

letters formed the names on the next page.
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AMAT -- Continuous system matrix w
( BMAT -- Continuous input matrix | 1

CMAT -- Output matrix ‘1
DMAT -- Direct transmission matrix [
FMAT -- Discrete system matrix 1

5 GMAT -- Discrete input matrix

o KMAT -- State variable feedback matrix |

C Scalar constants. Twelve of the more than 60 scalar

variables found in the data base are polynomial constants |
(highest order polynomial coefficients). These variables were ’
designated with the root word "K" and the same distinguishing

letters used for the polynomial arrays. The resulting variable

names are listed below:

( (1) PAK -- Polynomial A constant

(2) PBK -- Polynomial B constant é
(3) PCK -- Polynomial C constant E
(4) PDK -- Polynomial D constant %
(5) GNK -- GTF numerator constant a8
(6) GDK -- GTF denominator constant : ;
(7) HNK -- HTF numerator constant ,
(8) HDK -- HIF denominator constant § é ‘
(9) OLNK -- OLTF numerator constant i 1 /
(10) OLDK -- OLTF denominator constant

(11) CLNK --. . CLTF pumerator constant |
(12) CLDK -- CLTF denominator constant {

The remaining scalar variables were too numerous and
different to be named in any standard manner. These variables
were simply given names to reflect their individual functions.

‘3 Fortunately, they are only used for special purposes
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throughout the program and can be defined as needed in

appropriate sections of the user's manual (See Appendex A).

Realization of the Interactive User Interface

In Chapter III it was stated that an interactive user
interface was needed to perform a variety of functions,
including program control, data-base control, error protection
and recovery, and user assistance. This section describes, in
general terms, how each of these functions were realized.

Program control interface. This interface provides

control to the user in two ways: option numbers and commands.
Option numbers are used to allow the user to select any of the
actual computation functions in the program. They were
implemented by an input routine which, when it encounters a
valid ontion number, executes a computed GO TO statement with
a branch for each option. Commands were used to perform
simple functions on the program itself such as the setting of
a mode control switch or the transfer of information from one

part of the program to another. They were implemented using

another input routine which, when it encounters an alphanumeric

name, consults a table of valid names and executes the command
corresponding to the matching element. A complete development
of the program control structure is given in Section 3 of the

programmer's manual (see Appendix B).
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Data-base control interface. The data-base control

interface allows the user to (1) display the contents of
a variable by typing its variable name, (2) modify the
contents of a variable by setting its name equal to the
desired new value, and (3) transfer the contents of one
variable to another by equating variable names.

This interface was implemented as a translator routine
which converts a string of user inputs such as variable
names, equal signs, and numerical values into an array of
coded numbers. Control is then provided by another routine
which follows the array of coded commands and performs all
of the necessary manipulations of variables in the data-
base. The actual operation of this interface is discussed
under programs READER and DECODER in Section'4 of the

programmer's manual (see Appendix B).

Error protection and recovery interface. Error protection

and recovery is provided automatically by all input routines
used in the program. All input from the user is read first
in alphanumeric format and then translated into useable

form while being checked for errors. If an error is found,
the user is notified, all correct information is printed up
to where the error occurred, and the user allowed to continue
typing from that point. Complete details on this interface
are given under subroutine READS in Section 5 of the

programmer's manual (see Appendix B).
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User assistance interface. An entire program in

( TOTAL's overlay structure is devoted exclusively to printing
user assistance messages. Whenever a need for help is
noted by any of the other interfaces, control is transferred
to this program and an aporopriate message is printed.

Further details on this interface are given in Section 4

of the programmer's manual.

Summary

This chapter has been written to provide an overview

of how the internal structure of TOTAL was developed. It

AT —————

is intended to bridge the gap between the development of !
program specifications in Chapters II and III and the
{ detailed accounts of the actual internal and external

realizations presented in the appendicies.
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V. Results and Recommendations

The goal of this investigation was to develop a
computationally powerful, fully interactive computer program
capable of growing into a comprehensive computer-aided design
tool for the entire field of guidance and control. This

chapter describes what was actually accomplished and where

further work can be done.

Summary of Results

There were four major accomplishments produced as a
result of this study. These accomplishments include ‘a working
computer program, a detailed user's manual, a fully documented
programmer's manual, and this report. The following
paragraphs discuss the nature and extent of each of these
accomplishmerts.

The computer program. The most visible result of this
study is the program TOTAL which is now in use by faculty and
students at the Air Force Institute of Technology School of
Engineering. TOTAL can best be described as "an interactive
computer-aided design program for digital and continuous
control system analysis and synthesis." This section describes,
in general terms, the many functions which TOTAL can currently
perform.

TOTAL is designed as a tool to be used with as much

speed, agility, and confidence as one would use a familiar
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hand calculator. Its interactive interface allows the

user complete freedom to select options, modify variables, and

give commands without fear of abnormal program termination

due to input errors of any kind. Its computational features

provide an extensive array of powerful tools which may be

used directly or combined to form even more powerful functions.

The basic "building block" tools provided by TOTAL in its

current state of development include:

(1)
(2)

(3)

(4)

(5)
(6)

(7
(8)

(9)
(10)

(11)
(12)

Discrete and continuous root locus analysis including
tabular listings, printer plots, and Calcomp plots.

Discrete and continuous time response analysis
including tabular listings, printer plots,
figures of merit computation, and Calcomp plots.

Discrete and continuous frequency response analysis
including tabular listings, printer plots, and
Calcomp plots.

Block diagram manipulations including addition and
multiplication of transfer functions and closing of
feedback loops.

Discrete and continuous state-space to transfer
function conversions.

Continuous to discrete transfer function digitization
using impulse invariance, bilinear, and first-
difference transformations.

Polynomial operations including addition, subtraction,
multiplication, division, expansion, and factoring.

Matrix operations including addition, subtraction,
multiplication, inversion, transposition, matrix
exponentiation, determinant computation, and Hermite
normal form reduction.

Calculation of state-transition and resolvant
matrices.

Scalar operations performed by a built-in 20-memory
scientific calculator.

Inverse Laplace and z-transforms. .
Partial fraction expansion of transfer functions.
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The program also allows the user to define additional
macro routines from the building blocks listed previously.
Provision is made for these routines and all other information
stored in the program to be saved in external storage files
for use in subsequent runs of the program. Help is available
at all times providing several levels of user assistance.

The features previously described form a very powerful
subset of all the functions that are needed in the field.
TOTAL has been designed with a structure that will allow easy
addition of new capabilities as they are developed.

The user's manual. Development of a detailed user's

manual was as important as the development of the program
itself. Without such a manual, use of the program would have
to rely on word of mouth instruction and many of the most
sophisticated routines would remain forever unused. For this
reason, great care was taken to ensure that every worthwhile
bit of infprmation concerning the program was included in a
clear and logical manner. Liberal use of examples was made
throughout the manual to further this end. The user's manual
was produced as a separate document entitled User's Manual for
TOTAL. It is included in this report as Appendix A.

The programmer's manual. The programmer's manual was
written to provide documentation on all programs and subprograms
used in TOTAL as well as a description of the overall structure

and internal operation of the program. It is intended for the
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individual who wishes to make his own modifications and
additions to the program and as a general aid in maintaining
the program or transporting it from one computer system to

another.

While the Programmer's Manual for TOTAL has been written

as a separate document specializing on the internal structure
of TOTAL, it is best used in conjunction with the user's manual
and the rest of this report. This is because effective
programming requires a knowledge of what a program is supposed

to do and why it is supposed to do it in additioﬁ to how it is
supposed to work. The programmer's manual is included in this

report as Appendix B.

This report. This report has been written with the

intent of explaining what was needed in computer-aided design
for guidance and control, why it was needed, and the approaches
taken to obtain it. Because separate documents (Appendices

A and B) were written to explain the actual internal and
external operation of the program, it was possible to omit this
information from the body of the report. Such an approach
streamlined the report considerably and allowed discussion

of philosophical and developmental considerations without
getting lost in eccessive detail. Together with the appendices,
this report provides a thorough description of the program

from its conception through its current state of development

to its final realization.
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Recommendations for Further Development

There are two directions in which further development
computer-aided design software can be pursued: (1) the
addition of interactive graphics capability and (2) the
development of new program functions.

Interactive graphics is a technique in which the user
controls the program with a light pen and in which output
is displayed instantly in a variety of graphical forms.

The addition of interactive graphics features to TOTAL

would be a project which, if successfully completed, would

provide a quantum leap in available computer-aided design
capability. Such a project would not require excessive

rewriting of existing programs because TOTAL has already been
developed with an interactive structure. The commands and option
numbers which control TOTAL are ideally suited for display in

a graphics menu format.

An area of greater interest to the guidance and control

student is the development of additional program functions. %

All of the ground work and structure design for the program
has been accomplished during this investigation so that future
efforts need only be concerned with the theoretical and
computational aspects of the new functions themselves. There

is virtually unlimited room for continued development of

computer-aided design tools in the field of guidance and
control. The reader is referred to Chapter II for a list of

some of the potential areas where further work is needed.
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OVERVIEW OF TOTAL

TOTAL is designed as a tool to be used with as much speed,
agility, and confidence as one would use a familiar hand <
calculator. To help the casual user get a quick idea of whart
TOTAL is about, the following overview is provided.

*

——

TOTAL is built around twelve general-purpose polyncmials

of maximum degree 50, and seven general-purpose 10 x 10
matrices.

Eight of the polynomials may be paired to form the
numerators and denominators of four general-purpose
transfer. functions.

With Just‘these polynomials, matrices, and transfer functions,
the user is able to use the entire spectrum of TOTAL's
capabilities, which include:

+ Add, subtract, multiply, divide, factor, expand, and
copy polynomials.

* Add, subtract, multiply, invert, transpose, obtain
eigenvalues, preset, and copy matrices.

+ Obtain root locus, frequency response, and time
response in both continuous and digital domain of
open and closed-loop transfer functions.

* Perform block diagram reduction.

+ Compute transfer functions from state-space.

+ Transform between continuous and digital domains using
a variety of methods.

A built-in 20-memory scientific calculator with a 4-register
stack is available to the user at all times.

The user may quickly list, transfer, or modify any variable,
at any time, anywhere in the program.

Complete error detection, diagnostics, and abnormal

termination prctection are provided. Specific help is
available at any time by simply typing a question mark.
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SECTION 1. INTRODUCTION TO TOTAL

The preceeding overview gave a capsule summary of what
TOTAL can do. This section summarizes how it works.

TOTAL is an interactive program. The user has at his
disposal 100 options and a few special commands with which
he can manipulate a data base of 12 polynomials, 7 matrices,
and roughly 60 scalar variables. Each option uses informat'~n
stored in these variables to perform a particular function
and saves the results for output or future use. During
execution of TOTAL, the user has complete freedom to select
options, modify variables, and give commands at will. The
following paragraphs summarize what a person needs to know

to utilize the full power of this program.

. TOTAL'S INPUT MODES
TOTAL has three modes in which it pauses for the user to
input information: OPTION, DATA, and CALCULATOR. Each mode
has its own vocabulary of allowable inputs and its own

characteristic prompt to the user.

QPTION mode.

OPTION mode is the primary command mode of TOTAL and is
characterized by the prompt:

OPTION >

When TOTAL pauses in this mode, the user is free to type
any command, select any option, modify any variable, or list

any data. It is from this mode that the user'controls the

program.
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As many commands, options, etc. may be typed on one line
as desired. In fact, if the last item on a line is followed

by a comma, TOTAL will wait for another line of input before

beginning execution. Input items must be separated by commas

[o) la .

DATA mode.

When an option has been selected and data is needed,
TOTAL will ask for it. This is called DATA mode and is
characterized by a prompt of the forms
ENTER ITEM1, ITEM2, ITEM3 >
In this mode, the user has a number of possible responses:
1. He can type in the desired values of the variables

requested, separated by commas or blanks, in which

case TOTAL will accept the data and continue what it
was doing.

2. If he does not understand what "ITEMl, ITEM2, and
ITEM3" are, he can type "?" and TOTAL will explain
what information is needed.

3. 1If one of the numbers requested needs to be calculated,
he can type "C" to enter CALCULATOR mode. When he
returns from CALCULATOR mode, the prompt (and any
numbers which he may have already typed) are repeated
and TOTAL waits where he left off for the remaining
input.

4. If one of the items ' {s to have the same value as the
last time it was requested (or a default value) the
user does not need to input a number. He simply
types a "*" in the place of the item to be left

A-3
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unchanged and continues with the rest of the input.

5. If the user wants to know what the current values of
the requested variables are, he can type "L" for a
list. Numbers are listed in the order they were
requested, the prompt (and any numbers typed before
"L") are repeated, and TOTAL waits where the user
left off for the remaining input.

6. If one of the numbers requested is currently stored
in one of the calculator registers, the user may type
X, Y, Z, T or Rl through R20 in place of the
corresponding number. This is particularly useful
when returning from CALCULATOR mode using the "C"
option.

In fact, the user can access any vafiable in TOTAL
this way by typing "C" to go to the calculator, the
variable's name to enter its value into the X register,
"C" to return from calculator, and "X" to tell TOTAL
to use the value now stored in the X register.

7. 1If, for any reason, the user wishes to abort and
return to OPTION mode instead of continuing he may do
so by typing "$".

The user may mix any of the above responses as needed
while in DATA mode. TOTAL remains in this mode until all
requested data has been supplied.

CALCULATOR mode.

CALCULATOR mode may be entered at any time by typing “C".
The calculator operates like an HP-45 calculator (using reverse
polish notation) and is designated with the prompt: %%
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When this prompt is displayed, the user may type a

number, a key name (type KEYS for a list), or a "?" for a

brief explanation of the calculator. CALCULATOR mode is

terminated by typing another "C" whereupon TOTAL returns to

the mode from which it came. Complete details on TOTAL's

calculator are given in Section 5 of this manual.

1.2 TOTAL'S OPTIONS

TOTAL presently contains 100 options which have been

divided into groups of 10 according to geaeral function. The

following is a list of the ten main groups.

0
10
20
30
40
50
60
70
80
90

The

£ & 2 & ¢ 3 ¢ 8 DN

options.

9

19
29
29
49
59
69
79
89
99

Transfer function input options

Matrix input options

Block diagram manipulation and state-space options
Digital and continuous time response options

Root locus options

Digital and continuous frequency response options
Polynomial operations

Matrix operations

Digital and continuous transformation optiéns
Miscellaneous options

first option in each group simply lists the next ten

For example, option 30 lists options 30 - 39.

Complete details on these options are given in Section 2 of

this manual.

A tabulated 1list of all options is located inside

the back cover.

1.3 TOTAL'S VARIABLES
Every variable in TOTAL's data base may be directly listed

or modified by the user from OPTION mode. Typing a variable's

name will 1ist the current value of that variable. Typing a
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name, followed by an equal sign, followed by a number or
another variable name will assign the value to the right of
the equal sign to the variable on the left. Polynomial
coefficients are referred to with subscripts, for example
POLY(1) refers to the highest order coefficient in POLYA.
Matrix elements are referred to with two subscripts.
A complete list of all variables is available at any
time using option 97. Details on how to modify and use variables

are given in Section 4.

1.4 HELP

Help is available to the user at all times and may be
requested in two ways. In option mode, typing the command
“HELP, option number" will give the user a short explanation
of the option number specified. In all modes, the user may

type "?7" for assistance.
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SECTION 2. COMPLETE DESCRIPTION OF OPTIONS

TOTAL presently contains 100 options arranged in groups
of ten according to function. To execute an option, the user
simply types the option number. TOTAL will then ask for
needed information (if any) and execute the option.

The following is a detailed description of each option.
It is intended primarily as a reference for the user who
wants to know all the detaile about a particular option. The
more casual user may wish to use the tabular option listing

at the back of this manual for quick refcrence.

2.1 TRANSFER FUNCTION INPUT OPTIONS

Many of TOTAL's options center around the use or
manipulation of transfer functions. Time response, frequency
response, and root locus options, for example, all require the
input of a transfer function prior to beginning calculations.
Other options close feedback loops, add or multiply transfer
functions, and perform related operations. TOTAL provides
four working registers for this purpose:

GTF Forward Transfer Function
HTF Feedback Transfer Function

OLTF Open-loop Transfer Function
CLTF Closed-loop Transfer Function

All transfer function operations are performed with respect to

one or more of these registers.
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Each transfer function is made up of a numerator
polynomial and a denominator polynomial which are stored
in TOTAL as two arrays of polynomial coefficients. The
transfer functions listed previously may be defined in terms

of these polynomial arrays as:

_ GNPOLY OLNPOLY
GTF = GppoOLY OLTF = GLDPOLY

HNPOLY _ CLNPOLY
HIF = HppoLY CLTF = ELDPOLY

Each of these polynomial array names has a specific meaning.
For example, OLDPOLY stands for QLTF Denominator POLYnomial.

Since each polynomial can be factored into a constant

times an array of roots, the four transfer functions may also

be definesd as:

GNK * GZERO OLNK « OLZERO

GTF = GDK -+ GPOLE OLTF = GIDK - OLPOLE
HTF - HNK + HZERO cLTF = CLNK - CLZERO

HDK +« HPOLE ~ CLDK * CLPOLE
where GZERO, GPOLE, HZERO, HPOLE, OLZERO, OLPOLE, CLZERO,
and CLPOLE are complex arrays of polynomial roots and GNK,
GDK, HNK, HDK, OLNK, OLDK, CLNK, and CLDK are corresponding
constants. These variables are discussed in greater detail
in Section 4.

Options 2 through 9 allow the user to input these

transfer functions in either of the forms described above.

QPTION O: List options.
This option gives a quick reference list of options 0
through 9. The user may use this, like all options ending
A-8




in zero, to refresh his memory about the next ten options
when this manual is not handy.

OPTION 1: Recover all data from file MEMORY.

While this is not a transfer function input option, it
is an input option and is placed here because of its importance.

Option 1 reads all the values for every variable in TOTAL
from a local file "MEMORY." During execution of TOTAL, the
user may store the current values of all variables into memory
by using option 91. (See Section 2.10) Data is automatically
stored in MEMORY when the user types STOP.

Thus it is possible to end TOTAL, do something else, and
restart the program later using option 1 to recover the data
stored in MEMORY.

OPTIONS 2, 3, 4, and 5: olynomial form ut .

These options are identical in format and allow the user
to input GIF, HTF, OLTF, and CLTF transfer functions,
respectively, in polynomial form.

For example, if the user has an open-loop transfer function
(OLTF) available as a ratio of two polynomials, he may input:
it using option 4, as shown on the following page.

Note that the input polynomials (OLNPOLY and OLDPOLY)
were immediately factored and their roots stored in
corresponding arrays (OLZERO and OLPOLE). The listing shown
in boxes is suppressed if ECHO mode is off (see option 93,
Section 2.10)
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oPTION > 4

POLYNOMIAL IMPUT OF DOLTF (3
ENTER MM % DENOM DEGREEZ «OR ZOURCE»: 2 3

ENTER 3 NUMER COEFF--HI TO LO:
> 100 1000 1800 -

OLTF NUM COEFFICIENTE OLTF ZEROZ <0OLZERO

C 100.0 15ee 2 < -2.000 x 0.

4 1000, PSee | g =3.000 ) + JC 0.

< 1600, 2 POLYMNOMIAL COMEZTAMT= 100.0

ENTER 4 DENOM COEFF--HI TO LO:
> 1 26 134 &20

OLTF DENOM CDEFFICIEMTE OLTF POLEZ <OLFOLE>

4 1.000 r»iee 3 C =3.000 ? + U< S.000
C 26. 00 2E C =3.000 2 e i =5.000
¢ 154.0 rzee | S =20.00 » + JC a.

< €30.0 2 POLYNOMIAL COMETAMT= 1.000

GAIN= 1.0 OLK= GAIN®<OLNK-OLDK)= 100,
DPTION >

The user also has the option, instead of typing the

actual numerator and/or denominator polynomial itself, of
specifying another source of those numbers if they already

exist in some other polynomial in TOTAL's memory. For example

if the user responds, as underlined, to the prompt below:

ENTER NUM 2% DENOM DEGREES <OR SDURCE>: 2sPOLYA

it will still be necessary to enter the three numerator
coefficients, but the denominator coefficients will be

copied form POLYA automatically.
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Similarly, typing:

ENTER MUM % DEMDM DESREEZ DR FOURCE> : CLMPOLY s POLYC

will tell TOTAL to get the numerator coefficients from

CLNPOLY (Closed-Loop Numerator POLYnomial) and the denominator

polynomial from POLYC. Thus, once information exists in any

polynomial, it is available to any other polynomial.
The complete list of names the user may type includes:

POLYA, POLYB, POLYC, POLYD, GNPOLY, GDPOLY, HNPOLY, HDPOLY,

OLNPOLY, OLDPOLY, CLNPOLY, and CLDPOLY. For further

information on these polynomials, see Sections 2.7 and 4.
OPTIONS 6. 7. 8- and 93

Factored form input.
These options are identical in format and allow the user

to input GTIF, HTF, OLTF and CLTF transfer functions, respectively,
in factored form.

For example, if the user has a closed-loop transfer function

(CLTF) available as a set of pPoles and zeros, he may input it

using option 9, as shown on the next page.
Note that the roots were entered as actual X-y coordinates

(& + jwvalues) in the s-plane. Also, note that the input

roots (CLZERO and CLPOLE) were immediately expanded into
polynomials and the coefficients stored in corresponding

arrays (CLNPOLY and CLDPOLY). The listing shown in boxes is

suppressed if ECHO mode is off (see option 93, Section 2.10)
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CLTF NUM COEFFICIENTE CLTF ZEROS <CLZEROY
= ¢ 100.0 r1Zee 2 < -2.000 Yo+ Jc 0.
. < 1000, 1Tee 1 < -2.000 p I £+ 0.
< 1600, . POLYNOMIAL CONZTANT= 100.0
ENTER DENOMIMARTOR COMETAMT: 1
ENTER ERCH PDD%—-REsIM
CLPOLEC 13= -3¢5
CLPOLEC &»= v =3.000 ¥ % -5.000 3 ASSUMELD
| CLPOLE ¢ 33= =-20:0 :
CLTF DEMOM COEFFICIENTE CLTF PODLES <CLPOLE>
¢ 1.000 250 3 L4 -3. 000 2+ JK S. 000
{ ¢ 26.00 YZee 2 ¢ -3.000 Yo+ JC -5.000
< 154.0 ISee | C -20.00 I 4 0.
< 580.0 3 FOLYNOMIAL CONZTHMT= 1.000
CLK= (CLNK-CLDK»= 100,
opPTION >
23
The user also has the option, instead of typing the
poles and/or zeros directly, of specifying another source of
those numbers if they already exist in some other array in
TOTAL's memory. (For examples, see explanation under options
2, 3, 4, and 5.) The complete list of names the user may
type to specify a source include: ROOTA, ROOTB, ROOIC, ROOID,
GZERO, GPOLE, HZERO, HPOLE, OLZERO, OLPOLE, CLZERO, and CLPOLE.
(? For further information on these root arrays see Section 4.
A-12
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aPTION > 9

FRCTORED INPUT OF CLTF CZ)
ENTER MUM & DENOM DEGFEES <OF SOURCE>: 243

ENTER NUMERATOR COMITHMT: 100
ENTER ERCH ROOT--FEsIM
CLZEROC 1x= =211

CLZEROL 2r= =32+ 1)

;Y“N.I‘
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2,2 R INPUT OPTIONS
( OPTION 10: List options.

This option gives a quick reference list of options
10 through 19.

PTIONS 11 throu 17: Matrix input options.

These options are identical in format and allow the user

to input AMAT, BMAT, CMAT, DMAT, KMAT, FMAT, and GMAT, (as

e e
v :

“ 9

defined under option 19), respectively. For example, if the

user wishes to input BMAT he would use option 12.

OPTION > 12

INPUT OF [ BMAT 1 MATRIx:

ENTER MATRIX SIZE: ROWZs COLUMNT > 2.4
ENTER 4 ELEMENTS FER ROW:

ROW 1 > 11 12 13 14

ROW 2 > 21 22 23 29
ROW 2 > 31 22 33 24

coL > 1 2 3 4
rOW

1 11.00 12.00 13.00 14.00
2 21.00 22.00 23.00 24.00
3 31.00 32.00 33.00 34.00

The listing shown inside the inner box is suppressed if
ECHO mode is off. (See option 93, Section 2.10)

Note that in the first example there were fewer rows

than columns and the user was asked to enter BMAT by rows
In the case where the opposite is true the user is asked to

enter by columns.
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OPTION > 18

INFUT OF C FMAT 1 MATRIX:
ENTER MATRIX ZIZE: ROWECOLUMME

ENTER S ELEMENTE FER COLUMN:
coLumM 1 > 11 21 31 41 Si

COLUMN 2 > 12 22 32 4

n
ro

i

cac > 1 2
FOW

1 11.00 12.00
2 21.00 c2. 00
3 31.00 32.00
4 41.00 42. 00
S 51.00 S2. 00

> Se2

w2 in

R ] '

~

Once again the inner box is suppressed if ECHO mode is off.

OPTION 18: Help user set up state-space system model.

This option is a fast way to input all the matrices
needed for a state-space model. It works in the same manner
as inputting the matrices individually using options 11 to
17, but it dimensions each matrix automatically to make it
conform with the given system.

Specifically, after stating whether the system is to be
continuous (using AMAT, BMAT, CMAT, DMAT, and KMAT) or
discrete (using FMAT, GMAT, CMAT, DMAT, and KMAT), the user
is asked to type in the numbers of states (order of system),
number of system inputs, and number of system outputs. This
then determines the size of each matrix and the user is asked
for the elements of each matrix in the same way as for options
11 to 17.
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OPTION 19: Explain the use of the above matrices.
Option 19 simply prints the following message.

OPTION > 19

EACH MATRIX AVAILABLE TO THE USER IN OPTIONS 11-17 (TYPE

10 FOR LIST) MAY BE USED AS A SCRATCH/STORAGE REGISTER FOR
MANIPULATING MATRICES USING OPTIONS 71-79 (TYPE 70 FOR LIST).

IN ADDITION, THE MATRICES MAY BE USED TO REPRESENT DIGITAL

OR CONTINUOUS CONTROL SYSTEMS ACCORDING TO THE FOLLOWING
EQUATIONS:

CONTINUOUS: XDOT%T; = AMAT . Xgl‘g +  BMAT - Ué'l';
Y(T) = CMAT . X(T) + DMAT . U(T

WHERE U(T) = GAIN « (R(T) - KMAT -« X(T))
DISCRETE: X(K-olg = FMAT - Xél(g + GMAT . UéK;
Y(K) = CMAT - X(K) + DMAT . U(K

U(K) = GAIN * (R(K) - KAMT - X(K))

OPTION 18 IS AVAILABLE TO HELP THE NEW USER INPUT THE
REQUIRED MATRICES. THE MORE EXPERIENCED USER MAY INPUT
THEM DIRECTLY USING OPTIONS 11-17.

OPTION >

The definitions for U(T) and U(K) above are standard
state-variable feedback equations. If the feedback is not
in state-variable form, KMAT may be set equal to zero and any

feedback specified in transfer function form as HTF. (see options
3 and 6, Section 2.1)

2, B AGRAM ATION OPTIONS

OPTION 20: List options.
This option gives a quick reference 1ist of options
20 through 29.
QPTION 21: Form OLTF fromGIF and HIF.
This option multiplies GIF and HIF to form OLTF. The
open-loop transfer function (OLTF) is defined in TOTAL as
A-15

—— i o A o — s




OLTF = GIF -+ HIF

. GNPOLY , HNPOLY
( GDPOLY ° HDPOLY

When option 21 is executed, the following operations

are performed on variables in TOTAL.

OLNPOLY = GNPOLY °* HNPOLY
OLDPOLY = GDPOLY °* HDPOLY
OLNK = OLNPOLYglg
OLDK = OLDPOLY(1
OLK = GAIN « OLNK/OLDK

In short, option 21 simply multiplies two transfer functions
to form a new transfer function. This feature is thus useful
for combining transfer functions in cascade.

OPTION 22: Form CLTF from GTF and HIF.

This option forms the closed-loop transfer function (CLIF)
from a forward transfer function (GIF), a feedback transfer

function (HIF), and a forward gain constant (GAIN) as follows:

GAIN [—= GIF >

HTF

GAIN * GIF
CLTF = {3 GAIN * GiF * HIF

. GNPOLY
GAIN * GhpoLY

TGNPOLY _ HNPOLY
1 + GAIN * EppOLY * HDPOLY

3 GAIN + GNPOLY - HDPOLY
TOPOLY ~HDPOLY + GATN+GNPOLY — FINFOLY

where GAIN is some constant which the user can define.

When option 22 is executed, the following operations are
(Y' performed on variables in TOTAL.
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CLNPOLY = GAIN °* GNPOLY °* HDPOLY

CLDPOLY = GDPOLY °* HDPOLY + GAIN * GNPOLY °+ HNPOLY
CLNK = CLNPOLY(1)
CLDK = CLDPOLY(1l)
CLK = CLNK/CLDK

The user must supply GIF, HIF, and GAIN prior to
selecting option 22. (See Sections 2.1 and 4.1)

QPTION 23: Form CLTF from OLTF with unity feedback.

If OLTF is a known open-loop transfer function for a
system with unity feedback, this option will calculate the

closed-loop transfer function CLTF as

_—??—) GAIN OLTF >

_ __GAIN . OLTF
CLIF = =4 GAIN + OLTF

GAIN ° OLNPOLY

. 22 olray
“ OLNPOL
1 + GAIN * Gl 'DPOLY

& GAIN ° OLNPOLY
OLDPOLY + GAIN * OLNPOLY

where GAIN is some numerical constant which the user can

define.

When option 23 is executed, the following operations

are performed on variables in TOTAL.

CLNPOLY = GAIN °* OLNPOLY
CLDPOLY = OLDPOLY + GAIN °* OLNPOLY
CLNK = CLNPOLY(1)
CLDK = CLDPOLY(1)
CLK = CLNK/CLDK
A-17
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OPTION 24: Form CLTF from GTF + HTF (parallel)

If GIF and HIF are two forward transfer functions with

the same input and outputs which are summed, this option forms

a combined transfer function (CLTF) as follows:

—»t HTF

—=> GTF >

CLTF = GTF + HIF

. GNPOLY , HNPOLY
GDPOLY * HDPOLY

o GNPOLY - HDPOLY + GDPOLY - HNPOLY
GDPOLY °* HDPOLY

When option 24 is executed, the following operations

are performed on variables in TOTAL.

CLNPOLY = GNPOLY °* HDPOLY + GDPOLY °* HNPOLY
CLDPOLY = GDPOLY °* HDPOLY

CLNK = CLNPOLY(I;
CLDK = CLDPOLY(1
CLK = CLNK/CLDK

The user must supply GTF and HIF prior to selecting option !
25, (See Section 2.1)

OPTION 25: Form GTF(s) and HIF(s) from continuous
n:a;e’§E .

Given a state-space representation of the form

x(t) = (AMAT)x(t) + (BMAT)u(t)
y(t) = (CMAT)x(t) + (DMAT)u(t)

with state-variable feedback
u(t) = GAIN * (z(t) - (KMAT)x(t))

option 25 computes the forward transfer function GTF between
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input i and output j as

GIF = ¢ I(sI - AMAT) lp + d
and the equivalent feedback transfer function from output j

to input i as

HTF « (I - AMAT)D
cT(sI - AMAT)b + d

where
b = i th column of BMAT
I, J th row of CMAT

o]
d = 1j th element of DMAT
kT= i th row of KMAT

Using option 25 is a simple matter. The user first
supplies five matrices using options 11, 12, 13, 14, and 15
(or option 18):

AMATéNA.MAg Continuous system matrix

BMAT(NB, MB Continuous input distribution matrix
CMAT(NC,MC) Output matrix

DMAT&ND.MD% Direct-transmission matrix

KMAT (NK, MK State variable feedback matrix
where

NA = MA = MC = MK = Number of states

MB = MD = NK = Number of inputs

NC = ND = Number of outputs

(NOTE: For single input-single output (SISO) systems, BMAT
becomes an NB by 1 column matrix, CMAT becomes a 1 by MC row
matrix, DMAT becomes a scalar, and KMAT reduces to a 1 by MK
row matrix.)

After the system matrices are set up, the user simply

selects option 25. If the system is not SISO, TOTAL will ask

A-19
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which transfer functions are desired (between which input and
which output) and then store the results in GIF and HTF.
When option 25 is executed, the following operations are

performed on variables in TOTAL:

GNPOLY = (CMAT) °* adj(sI - AMAT) - (BMAT) + (DMAT)
GDPOLY = det(sI - AMAT)
HNPOLY = (KMAT) °* adj(sI - AMAT) - (BMAT)
HDPOLY = GNPOLY
GNK = GNPOLY&I; HNK = HNPOLYgl;
GDK = GDPOLY(1 HDK = HDPOLY(1
GK = GNK/GDK HK = HNK/HDK

and, as always, the roots of GNPOLY, GDPOLY, HNPOLY, and
HDPOLY are automatically stored in GZERO, GPOLE, HZERO and
HPOLE respectively.

QOPTION 26: Form GTF(z) and HIF(z) from discrete
state-space.

Option 26 functions exactly like 25 except that FMAT
and GMAT are used in place of AMAT and BMAT. (If the same
data are used, identical transfer functions result.) Option
26 is intended to reduce a discrete model of the following
form to transfer functions in z-plane.

x(k + 1) = (FMAT)x(k) + (GMAT)u(k)

y(k) = (CMAT)x(k) + (DMAT)u(k)
u(k) = GAIN * (r(k) - (KMAT)x(k)) "

QPTION 27: Write adjoint of (sI - A o ANSWER.

The adjoint of (sI - AMAT) is a matrix of polynomials in
s (or z) which is useful in computing the resolvant matrix:

-1 a - AMA
(sI - AMAT) " = §S382<

Option 27 tabulates each element of the adjoint matrix
(adj(sI - AMAT)) as a column of polynomial coefficients listed

from highest to lowest power and writes them to local file
A-20
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ANSWER for later disposition to a line printer.

For example, given the matrix

-} 0 @
AMAT = 1 =2 @
-2 0 -3

the corresponding adjoint matrix is

s2 + 58 + 6

adj(sI - AMAT) = s + 3 8 + 45 +

-2s - 4

and option 27 tabulates it as follows:

[ ' = 3
1.00 ! 0. ; 0.
5.00 ; 0. | 0.
6.00 | 0. : 0.
. |
o e G| [ Ve Sl e b
!
0. \ 1,00 0.
1.00 | 4,00 | 0.
3.00 ; 3.00 | 0.
|
|
v o R B + _______
]
|
0. : 0. | 1.00
-2.00 | 0. | 3.00
L —4000 : 00 : 2000

Skx
Skx
Skx

Skx
Sxkx
Skx

Sxkx
Skx
Skx

(= 8 ] O =N

O =N

+ 38 + 2

The numerator and denominator of each element in the

resolvant matrix can thus be obtained using option 27 (to

find adj(sI - AMAT) and option 71 (to find det(sI - AMAT),

respectively.

OPTION 28: Guillemin-Truxal cascade compensator design.

The Guillemin-Truxal cascade compensator design technique

involves selecting a desired closed-loop transfer function
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(CLTF) for a known plant (GTF) and then finding a cascade
{ compensator (HTF) that, with unity feedback, will give the

desired CLTF. (See D'Azzo and Houpis, Linear Control System

Analysis and Design. pp 408-410).

HTF GTF —

Option 28 simply solves for the HIF that will give the
desired results as follows:

_ _GTF_* HTF
CQIF = {~GTF * HIF

or

GNPOLY
CLNPOLY _ _ GDPOLY * HIF

GNPOLY
1 + GpPOLY

* HTF

or, solving for HIF:

POLY _ GDPOLY * CLNPOLY

m,m‘__L__
HDPOLY ~ GNPOLY * (CLDPOLY - CLNPOLY)

The user must supply GTIF and CLTF prior to selecting
option 28. (See Section 2.1)
- OPTION 29: Guillemin-Truxal feedback compensator desiég.
The Guillemin-Truxal feedback compensator design
technique involves selecting a desired closed-loop transfer
function (CLTF) for a known plant (GTF) and then finding a
fesdback compensator (HIF) that will give the desired CLTF.
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HTF

Option 29 simply solves for the HIF that will give the

desired results as follows:

GTF
CLTF = 5 GIF % HIF
or
GNPOLY
NPOLY _ GDPOLY
gLL'—DPO"L_Y T - LY e

GDPOLY
or, solving for HIF,

HIF = HNPOLY _ GNPOLY * DPOLY - GDPOLY * CLNPOLY
HDPOLY GNPOLY * CLNPOLY

The user must supply GIF and CLTF prior to selecting
option 29. (See Section 2.1)

2.4 TIME RESPONSE OPTIONS

The next ten options (30-39) perform continuous
or discrete time response analysis of either open or
closed-loop transfer functions. To make fullest use of these
options, the user should be aware of three important mode
control switches: CLOSED, ANSWER, and TSAMP. These switches
are described in the following paragraphs.
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- CLOSED is a switch which determines whether the response
calculated will be that of the open-loop transfer function
(OLTF) or the closed-loop transfer function (CLTF). Typing
"CLOSED, ON" selectes CLTF while "CLOSED, OFF" selects OLTF.
Similarly, typing "ANSWER, ON" will cause all output to be
written to a local file ANSWER while "ANSWER, OFF" displays
the output at the user's terminal. For further information
on these switches, see option 93. (Section 2.10)

TSAMP is not truely a switch in the on-off sense. it
is a variable containing the value of the sampling time in
seconds. When TSAMP = 0, TOTAL assumes that the system to be
analyzed is continuous and expressed in terms of the Laplace

operator s. If TSAMP is given some positive value, the system

is considered to be discrete in terms of the z-transform

operator 2z with the specified sampling time.
Note that all switches must be set while still in

OPTION mode tefore typing the desired option number. For
example, typing: OPTION > ANSWER, ON CLOSED, OFF TSAMP = .05

3] will execute option 31 with the switches set as shown.
Switches always remain as set until changed by the user and
need not be retyped before every option.

Prior to selecting any option, the user must supply a
transfer function using an appropriate input option (options
0-9, Section 2.1) Functions are restricted to no more than

one repeated root which must be real. For the continuous case,
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the number of zeros must be less than the total number of poles
{ and not more than one greater than the number of non-repeated

poles. For discrete responses, the order of the numerator

must not exceed that of the denominator.

OPTION 30: List options.

This option gives a quick reference list of options 30

through 39.

OPTION 31: Tabular listing of F(T) or F(K).

This option provides a tabular listing of the

time response values over a specified raﬁge of time. For

! continuous responges (TSAMP = 0), the user is asked to specify
L an initial time, final time, and the desired time increment,
and the values of T and F(T) are tabulated. For discrete
responses (TSAMP # 0), where CLTF or OLTF has been supplied

i as a z-transfer function, the user is asked to enter the
initial K, final K,and K increment for F(K) where K is an
index corresponding to a time T = K * TSAMP. In this case K,
F(K), input R(K), and K * TSAMP are tabulated as shown

below for a pulse input and

CLTF(2) = 750, 2.92 .7 + 30.

The input R(K) for either continuous or discrete systems

may be selected using option 39.
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FTIOM 31
DIZCFETE TIME FREZFOMIE FOF CLTF 2
MITH PULSE INPUT OF ETREMETH = 1. AMD WIDTH = 5. SARMPLEZ
EMTEF IMITIRL kE+-FINRL ks % K IMCFEMEMT FOF Fekx = 0 10 1
" F kD IMHFPLUT Fook EeTZRMF
0 . 1.000 1158
i 1 1.000 A
< B 000 1.000 y
e 12.20 1. 000 .
4 S, 1,000 o
5 S, 1. 000 i
= Flees . b
e 4. 76 i T
o Sibe = iy )
= S ol 0, 1
1 12.90 . .

QPTION 32: Plot F(T) or F(K) at user's terminal.

This option prints out a 6 by 8 inch plot of F(T) over
an interval of time specified by the user. The F(T) and T
axes are scaled identically to those of the Calcomp plot in
option 34 and thus this option may be used to preview (within
limits of printer resolution) exactly how a Calcomp plot
using option 34 would appear.

For discrete systems (TSAMP # 0), F(K) is plotted. In
this case, the plot will not be 8 inches long. Instead, the
increment of K that is plotted will be selected so that the
plot length will never exceed 8 inches.

F(T) and F(K) are normally scaled automatically, however,
the user may select his own scale by typing SCALE, OFF prior
to selecting the option.
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A sample plot is shown on the preceeding page.

OPTION 33: Printer plot.

This option is identical to option 32 except that the
plot generated is twice as wide, twice as long, and intended
exclusively for disposition to a iine printer. The plot is
always written to a local file called ANSWER {regardless of
whether the switch ANSWER is on or off). After execution of
TOTAL has been terminated, the user may send the file ANSWER
to the printer using the ROUTE or DISPOSE commands.

OPTION 34: Calcomp plot of F(T) or F(K).

This option produces a Calcomp plot and Stores it in a
local file PLOT which the user can later dispose to the
plotter when TOTAL has been terminated.

The user is first asked to enter the initial and final
time to be plotted. Since the time axis will have ten divisions
on the plot, it is usually wise to select the duration of the
plot to be a number evenly divisible by ten. If the switch
SCALE is on, TOTAL will automatically scale the magnitude
axis to even divisions which will extend over the range of the
function in the region of time to be plotted. If SCALE is
off, the user will be asked to specify the minimum and maximum
axis values. In this case, since the F(T) axis is always six
divisionslong, the axis length should be chosen to be evenly
divisible by six for best results.

Finally the user is asked to input a title to be drawn

above the plot. The title may have up to 50 characters.
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A guide which is 50 characters long (including the brackets)

is printed to aid the user as shown below:

[————m——- ENTEF TITLE S0 CHRFACTERT MAY §—o-m———an :
SAMFLE TITLE UZIMG ALL S0 CHAFARCTERZ AT AN EXAMPLE

If no title is desired the user may simply enter a
blank space.

TOTAL also provides the capability for drawing more than
one plot on the same set of axes. After MULT, ON has been
typed, all subsequent plots are placed on the next set of axes.
This will continue until MULT, OFF is typed or until a plot
other than a time response (i.e. root locus or frequency
response) is generated. When multiple plots are drawn, the
F(T) axis is scaled to the maximum and minimum values of the
first response plotted. If subsequent plots exceed the axis
range clipping will occur, so it is recommended that the
largest plot be drawn first (or a large enough axis specified
with SCALE, OFF).

The physical size of the plot may be controlled by setting
the variable FACTOR equal to the desired scale. Normally, with
FACTOR = 1, the plot will be 6 x 9 inches. Typing FACIOR = 2
before selecting the option number will double the size of all
future plots. FACTOR = 0.5 will reduce the plot to half size.

It is recommended that the user end TOTAL after every
four or five plots and dispose them to the plotter to avoid
incurring the wrath of the computer installation operator.

(TOTAL can always be restarted without loss of information by
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using option 1 to recover all data stored in MEMORY.) Grid
lines will be drawn on all plots whenever the switch GRID is

ON. (See option 93, Section 2.10)

OPTION 35: Print time or difference equation.
If the system is continuous (TSAMP = 0), option 35 will

print the time function as follows:

THE TIME FUMCTION IZ

FiThi=
-3, 4444 T EHP«-5, 0000 I3
-1.4215 E“F o—5, 0000 T
L OE55] EwF =2, GO0 T3 ZIHc 6. 0000 T+ [Zd,.e3550
1. 000 ExF e 0. 2,

For discrete systems (TSAMP # 0), the difference equation

corresponding to CLTF(z) = F(z)/R(z) is printed:

FPLIE)Y = ¢ 0. KR SN o
S 0. e i~ 103 = .z —1.2000nain reoF ik —
S o 5_00000@ﬂ' GeF Ik~ 20 - 1 LESOOGONn P eF E -
Fh . FERCH— g = Llosonond G eF k-

1

O

QPTION 36: -Partial fraction expansion of CLTF_(or_OLIF).

This option performs the partial fraction expansion of
a transfer function in s or z providing that the order of the

numerator is less than the denominator and there is no more

than one repeated pole. For example,

1000(s + 4)
s(s + 10)2(3 + 2 + j6)

6 0 6 ‘On 8 - 0329 ‘0078 +
lo)z*zsofﬁi’stz-% T s e L%

and is tabulated by option 36 as shown on!the next page.

CLTF(s8) =

expands t.o

CLTF(s) = % -

(s +
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Note that a pole at the origin due to the presence of a

step input was included. Option 39 may be used to select an

impulse input if this pole is not desired.

OPTION 37: List time response figures of merit.

Option 37 computes most of the characteristics of a time

response that are of interest to the user including rise time

(the time to go from 10% to 90% of the final value), duplication

time (time from zero to first intersection with the final value),

peak time (time to

reach highest peak), setting time (last time

at which the response was outside a 2% envelope around its

final value), peak

final value of the
OPTION > 37

COMTIMUOWE TIME
WITH STEF 1HELD

FIZE TIME:
DUFLICATION TIME:
FEHRE TIME:
ZETTLIMG TIME:
FEARE “ALLE:

FIMAL “ARLUE:

value (magnitude of highest peak), and the

response as time approaches infinity.

FESFOMIE FOF CLTF (3D
OF ITRENETH = 1.

TF=
TD=
TP=
TS=
MF=
F I'I.I -

A sample output: for an underdamped system is shown above.

OPTION 38: Quick sketch at user's terminal.
Option 38 is similar to option 32 except that the user can

specify initial time ,final time, and the time increment to be
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plotted (thereby controlling the length and resolution of the
plot.) In addition, the plot is automatically scaled to use
the entire width of the paper giving maximum resolution, but
usually resulting in unusual scale divisions. This option is
primarily intended for the user who is only interested in a
quick sketch of the general shape of the response curve and

not in reading values off the plot.

OPTION 39: Select step, ramp, impulse, pulse, or sine input. ‘

The default input for all time response options is a unit
step function, however, the user may select other inputs using
option 39. If TOTAL is in continuous mode (TSAMP = 0) when
this option is selected the user is asked to input ramp slope,
pulse width, etc., in seconds. For discrete mode (TSAMP # 0)

these variables are input in terms of number of samples.

2.5 ROOT LOCUS OPTIONS

Option 40 through 49 provide the user with a variety of
tools for studying the root locus of the open-loop transfer
function (OLTF). In order to use this option effectively it
is important that the user understand thoroughly the equations
and variables involved.

Root _l.ocus Fgquations

In its simplest sense, the open-loop transfer function is

just a ratio of two polynomials in s (or z). For example:

N : 2
OLT}“(S) = OL;\P()I.Y(Sl A 35 + 9s +6

OLDPOLY(S) = 533 2462 + 945 + 120

is a possible open-loop transfer function where OLNPOLY and

A-33




 ~~

OLDPOLY are array names in TOTAL containing the QOpen-Loop
Numerator POLYnomial and Open-Loop Denomiantor POLYnomial
coefficients respectively. If these polynomials are factored,

the same transfer function can be written as shown below:

_ OLNK +« OLZERQ _ 3+ (s +1)(s + 2
OLTF(s) = BLDK ~ OLPOLE = 2~ (57 (s + 4)(5 »

where OLPOLE and OLZERO are complex arrays of pole and zero
coordinates in the s-plane. OLNK (the Qpen-Loop Numerator
constant) and OLDK (the QOpen-Loop Denominator constant)
together comprise the total fixed open-loop gain (OLNK/OLDK).

However, the entire concept of root locus centers around
varying the overall open-loop gain (static loop sensitivity)
and observing how the poles of the closed-loop system move in
the s-plane. This static loop sensitivity is defined in TOTAL as

OLK = GAIN * (OLNK/OLDK)
where GAIN is an added gain factor which is varied from zero
to infinity along the root locus. Since the system gain
(OLNK/OLDK) remains constant, OLK also varies from zero to
infinity. In fact, if OLNK/OLDK = 1.0, GAIN = OLK is the
static loop sensitivity. The sensitivity at a given point on
the root locus is also defined as

product of distances from locus point
OLK to each pole in the_system

'product of distances from locus point
to each zero in the system

Using this definition of OLK, GAIN is just OLK/(OLNK/OLDK). In
other words, GAIN is the amount of gain that must be added in

the open-loop to the fixed system gain (OLNK/OLDK) to produce

the desired closed-loop poles.
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General Comments

The root locus is computed one branch at a time within
a regioq of the complex plane which the user can specify.
Calculations begin from poles within the region or locus points
on the boundaries and proceed until the locus branch leaves the
region of calculation or terminates on a zero. Locus points
are calcualted DEL units apart and printed every DELPR units.
Option 49 describes all of the optional variables which may be
used to adjust boundariés, step sizes, and other program functions.
By typing ECHO, OFF (see Section 2.10) the user can
suppress the listing of poles and zeros at the beginning of each

option. As always, if the switch ANSWER is on, output will be

written to the local file ANSWER instead of the user's terminal.

Calcomp Plots

The user can obtain a Calcomp plot of the root locus
within the specified region of calculation for options 41, 42,
43, and 48 by typing PLOT, ON prior to selecting the option
number. After each plot, the switch PLOT is automatically
turned back off to prevent accidental generation of unwanted
plots. More than one root locus may be drawn on the same set
of axes by typing MULT, ON prior to generation of the first
plot. Plots will continue to overlap until MULT, OFF is typed
or until a plot other than root locus (i.e., time or frequency
response) is generated. Additional switches controlling plot
titles, etc. are described in option 93.

Zero-angle Root Locus

The zero-angle root locus is automatically computed
instead of the usual 1800 locus whenever OLK is negative.
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OLK = GAIN * (OLNK/OLDK) < 0

The user can arrange this by simply setting OLK, GAIN,
OLNK, or OLDK equal to a negative number. Similarly, if the
system gain (OLNK/OLDK) is negative and the 180°2 locus is
desired, the user can make OLK positive by making GAIN
negative, and so on.

OPTION 40: List options.

This option gives a quick reference list of options 40
through 49.
OPTION 41: General root locus.

This option computes each branch of the open-loop transfer
function (OLTF) over a specified bounded region of the complex
(s or z) plane. Output consists of a tabular listing of locus
pointslfor each branch or sub-branch of the locus and a
Calcomp plot (written to file PLOT) if the switch PLOT is on.
If z-plane is selected (TSAMP # 0) the unit circle will be
drawn on the locus plot.

OPTION 42: Root locus with a GAIN of interest.

This option is identical to option 41 except that the

user is asked to specify GAIN and GTOL. GAIN is the variable
part of the static loop sensitivity OLK:

OLK = GAIN * (OLNK/OLDK)

Option 42 calculates the exact values of the closed-loop ]

roots at the value of GAIN specified. As in 41, a tabular

listing of points spaced DELPR units apart is printed, however
within a range # GTOL of the value of GAIN specified, every
point calculated (spaced DEL units apart) is printed.
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The user is cautioned that the root calculated at the

specified GAIN is only the point at_the current calculation
step size, DEL, which is closest to the value of GAIN specified.
To come closer to the exact value, DEL must be made smaller.

If a Calcomp plot is requested, the roots at the GAIN of

interest are marked on the plot.

OPTION 43: Root locus with a damping ratio of interest.
This option is similar to option 42 except that the GAIN

of interest is automatically calculated at a value of damping
ratio, ZETA, which is of interest. After the value of GAIN
is found (by searching along a constant zeta line until an
intersection with the locus occurs), option 43 is identical to
option 42. The user is asked to input the desired value of
ZETA (between 0 and 0.9), RAD, and GTOL where GTOL has the same
meaning as in option 42. The ZETA line may interesect the
locus more than once. If the further point is desired, RAD
(the distance from the origin at which the zeta search starts)
should be set large enough to miss the unwanted 1ntérsection.
Ihe user is cautioned that if the intersection with the
ocus_occurs outside the specified boundaries, the zeta search
which stops at the boundar ill fail and GAIN will retain its
old value. Should this happen, it is only necessary to extend

the BB (top) and CC (left) boundaries to include the intersection
and try again.
On the Calcomp plot a radial line will be drawn from the

origin corresponding to the specified ZETA. The roots at the

corresponding GAIN of interest are also marked on the plot.
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OPTION 44: List n points on a branch of interest.
This option is intended primarily to investigate parts

of the locus which are of special interest. Only one branch
of the locus is tabulated, beginning at a specified point
given by input variables XSTART and YSTART. The user also
specifies the number of points (NPOINTS) to be calculated
along the locus at the current step size DEL. No plot is
available with this option.

QPTION 45y List all points on a branch of interest.

This 'is similar to option 44 except that all points on the
branch starting at XSTART, YSTART and lying within the
specified boundaries are calculated.

OPTION 46: List locus roots at a GAIN of interest.

This option is a truncated version of option 42. The
only output is a list of roots at the specified value of GAIN
of interest. No plot is generated.

QOPTION 47: List locus roots at a ZETA of interest.

This option is a truncated version of option 43. The
only output is a 1list of roots at the specified ZETA of interest.
Again, the user is cautioned that if the intersection of the
locus and zeta line occurs outside the specified boundaries
it will not be found. Extending the BB (top) and CC (left)
boundaries will solve this problem.

QPTION 48: Plot root locus at user's terminal.

This option produces a printed plot of the root locus

within the specified boundaries AA (right, BB (top), CC (left),
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and DD (bottom). Since the plot is always six divisions (six
inches) wide, if the user picks the right and left boundaries
to be some multiple of six units apart, the plot scale will
have nice even divisions. Also, since the locus below the
real axis is identical to that above it, the user may often
find it advantageous to locate the lower (DD) boundary just
below the axis to limit the number of print-out lines produced.

Sometimes when pole and/or zeros are very close together,
not all of them will show up on the plot due to limits in
resolution. Shrinking the boundaries to include just the area
of interest will usually solve this problem. Since poles are
always placed on the plot after the zeros, a cancelled pole-
zero pair will appear as a pole.

Sample plots produced by option 48 are shown on the
preceeding pages. Notice hLow the boundaries AA, BB, CC, and

DD were set prior to typing the option number.

OPTION 49: Print current values of all root locus variables.

Option 49 is designed to help the user remember all of the
special-purpose variables and their current values. These
variables-are optional, but add considerably to the power of the
program. They may be specified directly in OPTION mode by
typing, for example, "AA = 4.5" or“"GAIN = 1000 etc. These

variables include:s

DEFAULT
NAME DEFINITION VALUE
AA Right boundary in the complex plane +1.0
BB Top boundary +3.0
cC Left boundary -5.0
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DEFAULT
N NAME DEFINITION VALUE
( DD Lower boundary -3.0 |
BOUND A scale factor which multiplies AA, BB, 1.0
CC, and DD by its value when the next ‘
root locus option is executed and then ¢
resets itself to BOUND = 1.0.
ZETA Damping ratio of interest for which 0.0
roots are found in options43 and 47.
RAD Distance from the origin at which the 0.01

: zeta intersection search is started.

4 GTOL A region around the gain of interest 0.0 1
(GAIN) for which extra locus points are (|
printed. If GTIOL = 0, no roots of ‘
interest are calculated. i

DEL Calculation step size between locus points, 0.1 ‘
DELPR Printing step size between locus points. 0.2 ;
FIGURE If FIGURE # 0, the value of FIGURE will 0.0 i

be printed on the Calcomp plot. For

example, if FIGURE = 3, the title "FIGURE

NUMBER 3" will be drawn. Subsequent

plots are numbered 4, 5, etc., until
FIGURE is set back to 0.

2,6 FREQUENCY RESPONSE OPTIONS

The next ten options (50 - 59) perform continuous or

discrete frequency response analysis of either open or

closed-loop transfer functions.

To make fullest use of these

options, the user should be aware of several important mode

control switches:

and TSAMP.

CLOSED, ANSWER, DECIBEL, DEGREES, HERTZ,

With the exception of TSAMP, these switches are

set in OPTION mode by typing "CLOSED, ON" or HERTZ, OFF, etc.

CLOSED selects either the closed-loop transfer function

(CLTF) or the open-loop transfer function (OLTF) for analysis.

ANSWER ccntrols whether the output comes to the user's terminal

or goes to the file ANSWER.
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output in decibels, when it is off, linear magnitude is output.
Similarly, DEGREES and HERTZ select degrees vs. radians and
hertz vs. radians per second respectively. See option %3 for
further information on these switches.

TSAMP is not actually a switch in the on-off sense. It
is a variable containing the value of the sampling time in
seconds. When TSAMP = 0, TOTAL assumes that the system to be
analyzed is continuous and expressed in terms of the Laplace
operator s. If TSAMP is given some positive value, the system
is considered to be discrete in terms of the z-transform
operator z with the specified sampling time.

Note that switches must be set while in OPTION mode before
typing the desired option number. Switches remain as set until
changed by the user and need not be retyped before every option.

As always, pribr to selecting any option the user must
supply a transfer function using an appropriate input option
(options 0 - 9),.

OPTION 50: List options.

This option provides a quick reference list of options
50 through 59.

QPTION 51: Tabular listing.

This option tabulates the magnitude and phase angle for
a range of frequencies. The user is asked to specify the
initial, final, and delta frequencies in hertz or radians per
second depending on the switch HERTZ. Units for the tabulated
magnitude and phase are dependent upon switches DECIBELS and
DEGREES respectively. |
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OPTION 52: Iwo-cycle scan of magnitude.
Option 52 tabulates the response magnitude over two
cycles (powers of 10) of frequency. Fifteen points per cycle
are tabulated at frequency increments designed to space them P
evenly over the cyclé when on a logrithmic scale. The user is
asked to specify the power of ten of the starting frequency.
For example, if the desired starting frequency was 0.01 = 10'2. ;
the user would type simply *"-2". Option 52 would then tabulate 3
30 points spaced logrithmically over a range from 0.01 to 1.0. i
Similarly, typing “1" would specify the range from 10 to 1000. {
Again, the units of the variable tabulated depends on {
i
switches DECIBELS, DEGREES, and HERTZ. A sample option is ¢
i
shown below: ||
gy
grFTION *  S& l
CLDZED-LOOF FREDLEMCY FEIFDMIE LIIMs CRFTION SE i
i
EMTEF FOWEF OF STARFTIMNG FREGZ ¢-2 FOF .01« ETCY > 0 {
WoRRD - ZEC) DECIEELZ WYFRDZEC DECIBELE
1, 0000000 17446115 10, 000000
e N R LED1ETERE 12, 000600 =
1.4000000 L I3IETESS 1, GO -12.347702
17000000 L SOTOSS4EE 17000000 =3, 19312
2, 0n0nnnn LT0S21074 20, 000000
Z.S000000 1.1108e77 2S. nngoan
S, 00000nag 1. 6078770 S0 000000
S.S000000 2.1911475 25, 000000
G, 0000000 c.a - S0, 000000
LS0ONa0n0n Do 45, 0nonan
S, 000nann 4, 0= SO, 000000
& DOOUOGD 4,31 w0, oooono
s D ] 2 BT TO.00G000
2. 0000000 -. 617 S0.000000 t
B O0000000 “g 59 0. 00H00n (
1
OPTION ;
!
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OPTION 53: TIwo-cycle scan of phase angle.
Option 53 is identical to 52 except that phase angle is

tabulated instead of magnitude.

OPTION 54: Plot magnitude or angle at user's terminal.

This option prints out a 6 x 8 inch plot of magnitude or
phase angle over a range of frequency specified by the user.
The plot axis are scaled identically to those of the Calcomp
plots in options 55 and 56. Thus, this pption may be used to
preview (within limits of printer resolution) exactly how a
Calcomp plot would appear. The magnitude axis is normally
scaled automatically to easily interpreted dimensions, however, ;
the user may select his own scale when the switch SCALE is off.

QPTION 55: Calcomp plot -- Linear frequency axis.

This option writes a Calcomp plot to a local file PLOT for 4
later disposition to a plotting device. The linear frequency |
axis feature of this option is intended primarily for discrete
frequency response plots where the effects of aliasing are
being studied or for plotting small ranges of frequency.

The user is first asked to enter the starting and final
frequencies to be plotted. Since, in this option, the frequency
axis will have ten divisions on the plot, it is usually wise
to select the axis range to be some number evenly divisible by
ten. If the switch SCALE is on, the program will automatically
scale the magnitude axis. If SCALE is off, the user will be
asked to specify the minimum and maximum axis values. Again,

since the magnitude axis is always six divisions long, the axis
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length should be chosen to be evenly divisible by six for
best results.

The user is also given a choice for a plot of phase,
magnitude, or both on the same plot.

A plot title of maximum length 50 characters is also
requested.

OPTION 56: Calcomp plot -- Log frequency axis.

This option is similar to option 55 except the frequency

axis is logrithmic with some integer number of logrithmic
cycles. The user is asked to input the power of the starting
frequency (-2 for 0.01, 3 for 1000, etc.) and the number of
cycles to be plotted (maximum of ten). As in option 55, the
plot may be in magnitude or decibels, degrees or radians, and

open or closed-loop depending on switch settings. Typing

GRID, ON will place grid lines on the Calcomp plot as with the

time response plots.

OPTION 57: Iabulate points of interest.

This option is similar to option 37. It finds and
tabulates all response peaks, zero-db crossings, 180 degree
crossings, break frequencies, and asymtotes for the given
transfer function.

QPTION 58: com -- u ola .

This option produces a polar plot of magnitude vs. angle
with frequency as a parameter.

QPTION 59: lcomp plot -- Nicheol's log magni

Option 59 produces a semi-log plot of magnitude vs. phase

angle with frequency as a pazspeter.
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2.7 POLYNOMIAL OPERATIONS

There is a large class of control problems which requires
extensive manipulation of polynomials and their associated
first-order factors. Options 60 through 69 have been designed
to relieve the engineer of the extensive hand calculations
which wduld otherwise be necessary to solve these problems.
For complete understanding of these options, a few words of
explanation are necessary.

TOTAL has twelve general purpose polynomial arrays in
which the user can store polynomials of maximum degree 50.
The names by which the user can refer to these arrays are
POLYA, POLYB, POLYC, POLYD, GNPOLY, GDPOLY, HNPOLY, HDPOLY,
OLNPOLY, OLDPOLY, CLNPOLY, and CLDPOLY. POLYA through POLYD
are scratch registers used by options 61 through 69 for
polynomial arichmétic. The remaining eight polynomials are
paired to form four transfer functions GTF, HTF, OLTF, and
CLTF and are accessed by options throughout TOTAL.(See Section
4.5)

Corresponding to twelve polynomials are twelve n x 2
arrays of polynomial roots where the first dimension is the
root number and the second designates either the real or
imaginary part of the root. The names by which the user can
refer to these corresponding root arrays are: ROOTA, ROOTB,
ROOTC, ROOTD, GZERO, GPOLE, HZERO, HPOLE, OLZERO, OLPOLE,
CLZERO, and CLPOLE, respectively.

The important thing to remember is that the polynomial

and root arreys form inseparable pairs -- changing one will
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change the other. For example, changing a coefficient in

POLYB will automatically change the roots in ROOTB. Similarly,
changing a root in ROOTD will result in new coefficients in
POLYD, and so on. Because of this direct relationship, the
polynomials and their roots are always printed out together

as shown below:

CLTFCZy DEMOMIMARTOR

I ELDRPBEN T CLFOLE I

1 ¢ S 1lee T S —eal2sl X & T A

c ' LA rTIee L =, 1261 R -.mdas " !
3 i S ol tIee 1 ' —e3THBT P . K {
4 I L 105E a CLDE= . 53EE

The polynomial shown in this example would read

CLDPOLY(s) = 0.6498s3 + 0.4086s% + 0.34620s + 0.1056
and its corresponding factors as
= 0.6498(s + 0.1261 - j0.6445)(s + 0.1261 + j0.6445)(s + 0.3767)

Note that the polynomial constant CLDK is equal to the
coefficient of the highest power of s and is simply the constant
that must be multiplied with all the factors to yield the
original coefficients of the polynomial.

n of Pol mials

When the user selects options 61 through 65 he will |
receive the prompt:

ENTER POLYA & POLYB DEGREES (OR SOURCE) >
If he wants to type in the coefficients, he simply enters the
degree of each polynomial and TOTAL will ask him for the
required coefficients. On the other hand, if one or both of

the polynomials he wishes to enter are already stored in one
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of the twelve polynomial arrays, he simply types the name of
that array in place of the polynomial degree in which case
TOTAL will get the needed information from that "source".

The user may mix names and numbers as needed. In fact, since
the names POLYA and ROOTA refer to simply two forms of the
same polynomial, typing either name will transfer the same
information. The following examples show possible responses
to the same prompt:

ENTER POLYA & POLYB DEGREES (OR SOURCE) > 4

ENTER POLYA & POLYB DEGREES (OR SOURCE) > LYB, GNPOLY
ENTER POLYA & POLYB DEGREES (OR SOURCE) > POLYC, 4
ENTER POLYA & POLYB DEGREES (OR SOURCE) > CLDPOLY, ROQOTB
ENTER POLYA & POLYB DEGREES (OR SOURCE) > POLYA, GZERO

S

Notice that if, as in the last example, the user wants to
leave the contents of POLYA unchanged, he simply types "POLYA"
in the appropriate spot.

After each polynomial is entered, it is echoed back to the
user's terminal. To suppress this listing, the switch ECHO
should be turned off (see option 93, Section 2.10)

OPTION 60: List options.

Option 60 provides a quick reference list of options 60
through 69.

OPTION 61: Factor a polynomjal.

If the user is only interested in finding the roots of #
polynomial, option 61 is the fastest way. The user simply
enters the polynomial degree and its coefficients as requested.
Aftervards, the polynomial and its roots remain stored in

POLYA and ROOTA, respectively for future use.
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| OPTION 62: Add polynomials.
( This option adds POLYA to POLYB, factors the result, and
stores the coefficients and roots in POLYC and ROOTC respectively.

OPTION 63: Subtract polynomials.

Option 63 is identical to 62 except that POLYB is «
subtracted from POLYA. The results are stored in POLYC and
- ROOTC for future use.

OPTION 64: Multiply polynomials.

This option stores the product of POLYA and POLYB to POLYC. | ;
POLYC is then factored and its roots are stored in ROOTC. This |
option is automatically aborted if the degree of the resulting
polynomial exceeds 50.

OPTION 65: Divide polynomials.

Option 65 divides POLYA by POLYB and stores the quotient
polynomial in POLYC. If the division has a remainder, the
user is asked to enter a limit on the number of remainder

terms to be listed and the division continues into negative

powers of s until the division is complete or the limit is . ]

reached. As always, POLYC is automatically factored into

ROOTC. } i
OPTION 66: Store any polynomial to POLYD. |

POLYD serves as a scratch polynomial for storing ;
intermediate results. For example, if two pairs of polynomials

are to be multiplied and the results summed, POLYD could be

used to hold the first product while the second product was

being formed. Option 66 simply asks the user for the name
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of the polynomial to be stored and then copies it into POLYD.
The contents of POLYD may be recovered at any time by typing
POLYD instead of the degree when it is requested. (See "Input
of polynomials" in the introduction to Section 2.7)

The COPY command may be used in place of this option for
more versitile manipulation of information. For example,
typing COPY, POLYA, POLYC when in OPTION mode will copy the
contents of POLYA into POLYC. See Section 3 for more
information on this command.

QPTION 67+ Expand roots into POLYA.

If the user has a collection of first order factors

which he wishes to expand into an nth

order polynomial, he
should use this option. After entering the polynomial degree
(number of factors) he will be asked to enter real and
imaginary parts of each root. Only one root may be typed
per line and both real and imaginary parts must be specified
as x-y coordinates in the complex plane. Conjugates, if any,
are automatically assumed, and each root is assigned an index
number for future reference. The resulting nth

and its roots are stored in POLYA and ROOTA respectively.
n

QPTION 68 d + a nto POLYA.
Option 68 provides a quick method of expanding a multiple

th

order real root of the form (s + a)n into an n order

polynomial, The user is asked to input a and n and the
result is stored in POLYA.

A-52

order polynomial




OPTION 69: Activate polynomial calculator.
For the individual who has more than one polynomial

operation to perform, option 69 is by far the recommended
procedure. This option is simply a three function calculator
which adds, subtracts, and multiplies polynomials. POLYA,
POLYB, POLYC, and POLYD are used as a. fiour-régtster stack

of polynomials which can be “rolled".."exchanged". and
manipulated as single numbers are handled in any reverse
polish notation calculator.

Operations always occur between POLYA and POLYB where
POLYA is the bottom or "X" register of the stack. Typing a
"+", for example, adds POLYA to POLYB and leaves the results
in POLYA. The contents of POLYC then drop into POLYB and
POLYD is copied into POLYC. The contents of POLYD remain
unchanged. Similarly, typing a "-" subtracts POLYA from
POLYB, stores the results in POLYA, and drops the stack as
described above. To multiply POLYA and POLYB a "*" is typed.

The user enters polynomial calculator mode by selecting
option 69 and receives the prompt

COMMAND QR DEGREE:
whereupon he may type EX, ROLL, LIST, STACK, +, -, *, $§, the
name of one of TOTAL's twelve polynomials, or any number from
0 to 50. The meaning of these commands is described below:

The numbers Q to 50 refer to the degree of a polynomial

the user wishes to enter. After such a command, the user is
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asked to enter the appropriate coefficients and the new
polynomial is placed in POLYA. What had been in POLYA gets
moved into POLYB, shoving POLYB into POLYC and POLYC into
POLYD. The former contents of POLYD are lost.

The user may also enter the current contents of any of
TOTAL's twelve polynomials by simply typing the correct name
(as listed in the inﬁroduction to section 2-7). The
specified polynomial is automatically shoved into POLYA at the
bottom of the stack, and the contents of POLYD shoved out the
top of the stack and lost as described above.

EX is the command to exchange the contents of POLYA and
POLYB. As with all operations in option 69, the corresponding
root arrays ROOTA and ROOTB are also exchanged.

ROLL is the command to rotate the contents of the stack
down and around. The following transfers occurs POLYB to
POLYA, POLYC to POLYB, POLYD to POLYC, and the original
contents of POLYA to POLYD. Note that no information is lost.

LIST lists the current contents of POLYA and the correspond-
ing array of roots ROOTA.

STACK lists all four polynomials in the stack in four
columns with the highest power coefficients on top.

To end polynomial calculator mode, the user types a $.

An exampbe of various calculator operations is given on
the following page. Items typed by the user are underlined.

The user may suppress the listing of commands at the beginning
by typing 69, S when selecting the option.
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OPTION > &9
(’ STACK LEVELS! COMMANTIG——MEANTINGS $ "
EX ~=EXCHANGE FOLYA & FOLYE ‘
FOLYD ROLL  ~-ROLL STACK DOUH
FOLYC + - ¥ ~-0FERATIONS
FOLYR LIST =-LIST FOLYA CONTENTS ¢
FOLYA STACK ~=DISPELAY STACK CONTENTS '
w $ ~=-END OFTION &9
& COMMAND 0OF DEGREE: 4 ‘
: : ) ‘
e ENTER 5 FOLYA COEFF--HI TO LO? : ‘
5 > 12 23 34 45 564 |
COMMAND OR DEGREE! 3 :;
ENTER 4 FOLYA COEFF--HI TO L0} y ]
> 1357 | |
| |
COMMAND OR DEGREE! 5
EMIER & FOLYA COEFF--HI TO LO¢ ‘
> 100 200 300 400 509 400
{
COMMAND OR DEGREE: STACK |
J
FOVER FOLYA POLYE FOLYC FOLYD
; 5 100.0 !
. 4 200.0 12,00
f 2 300.0 1.000 23,00 0.00
! 2 400.,0 3,000 34,00 0.00 g
. 1 500.0 5,000 45,00 0.60 ;
COMMAND OR DEGREE: +
1
| COMMAND OR DEGREE: STACK
i FOWER FOLYA FOLYE FPOLYC FOLYD
5 100.0
' 3 301.,0 23.00 0.00 0.00
2 403,0 34,00 0.00 0.00
1 505.0 45,00 0,00 0,00
0 607.0 56.00 0.00 0.00 |
COMMAND OR DEGREE: $¢ ;
—— }
|
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2.8 MATRIX OPERATIONS

Another large class of control problems require the

individual to add, subtract, multiply, invert, transpose, and

obtain the determinants of constant coefficients matrices.

Options 70 through 79 are designed to facilitate this process

by removing some of the more laborous hand computations involved.

To use these options, the user must first supply TOTAL
with the necessary matrices using options 10 through 19. Once
these matrices (of maximum size 10 x 10) have been stored in
some of seven arrays (AMAT, BMAT, CMAT, DMAT, KMAT, FMAT, or
GMAT), the user is free to manipulate them using the options
about to be described.

OPTION 70: List options.

This option provides a quick reference list of options 70
through 79.

OPTION 71: Compute eigenvalues of AMAT.

The eigenvalues of AMAT are simply the roots of the
characteristic polynomial which is defined as the determinant

det(sI - AMAT)

Option 71 simply evaluates the above determinant as a
polynomial in s and stores the result in POLYA. POLYA is then
factored and its roots, which are the eigenvalues of AMAT, are
stored in ROOTA.

QPTION 72: Add matrices.

This option adds AMAT to BMAT and stores the result in
CMAT. Naturally, AMAT and BMAT must have the same row and
column dimensions for this operation to be defined.
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OPTION 73: Subtract matrices.
Option 73 is identical to 72 except that BMAT is

subtracted from AMAT.

OPTION 74: Multiply matrices.
Option 74 performs the matrix multiplication

(CMAT) = (AMAT) -+ (BMAT)
For this operation to be defined, AMAT and BMAT must conform.
That is, the number of columns in AMAT must equal the number
of rows in BMAT. If AMAT is an NA x MA matrix, and BMAT is NB
x MB, where MA = NB, then CMAT will be an NA x MB matrix.
OPTION 75: Inverse of AMAT.

This option calculates the inverse of AMAT and stores the
result in CMAT. If AMAT is singular, an error message is printed.

OPTION 76: TIranspose of AMAT.

The transpose of a matrix is formed by interchanging its
rows and columns so that, for example, a 3 x 5 matrix becomes
a 5 x 3 matrix. This option transposes AMAT and stores the
result in CMAT.

OPTION 77: Identity matrix.

The identity matrix is a square matrix with ones on the
diagonal and zeros elswhere. This option sets CMAT equal to
a n x n identity matrix where n is specified by the user. This
identity matrix may then be moved to any other matrix where it
is needed using the COPY command described in option 79.

QPTION 78: Zero matrix.

This option may be used to set all the elements of DMAT

equal to zero. The user can then zero any other matrix by
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copying the zeroed DMAT into it using fhe COPY command described
in option 79.

OPTION 79: Copy one matrix to_another.

Option 79 prints a brief message telling how to use the
COPY command.

The COPY command has the following form

cory, from, to
where "from" is the name of the matrix to be copied and "“to"
is the name of the matrix to recieve the data.

For example,

OPTION > COPY, AMAT, EFMAT
will dimension FMAT to the same size as AMAT and store each
element of AMAT to the corresponding element of FMAT. AMAT is
unaffected by this operation. Notice that the COPY command
is typed when in OPTION mode.

In addition to the seven matrix names already mentioned
there are 19 additional locations in mass storage on the local
file MEMAUX. This auxiliary memory file brings the total
number of addressable matrices to 26 -- one for each letter

in the alphabet.

*AMAT *FMAT *KMAT PMAT UMAT ZMAT
*BMAT *GMAT LMAT QMAT VMAT
*CMAT HMAT MMAT RMAT WMAT
*DMAT IMAT NMAT SMAT XMAT
EMAT JMAT OMAT TMAT YMAT

The names marked * are ﬁorking registers which may be

directly modified and manipulated. They are storéd in local

file MEMORY (see option 1). The remaining names in the table
reside in MEMAUX and are only accessable with the COPY command

(although they may be listed at the user's terminal as usual
3 A A-58




by typing their names). These matrices may be used as
auxiliary storage locations whenever needed. For example, the
following commands are legal:

COPY, AMAT, XMAT

COPY, PMAT, QMAT
COPY, ZMAT, CMAT

See Section 3 for further information on COPY and other

commands.

2.9 DIGITIZATION OPTIONS

The next ten options (80-89) provide the user with several
means of transforming back and forth between digital and
continuous domains. Both transfer function and state-space
techniques are provided.

All transfer function transformations are performed
in-place on the transfer function CLTF. TOTAL does not keep
track of whether the current CLTF is a function of s or z, it
is simply treated as an array of numbers. If an s to 2z
transformation is performed, TOTAL assumes that CLTF is a
function of s. For z to s transformations, CLTF is treated
as a function of z. 1In all cases, for simplicity, when the
contents of CLTF are listed, the dummy variable s will be
used to represent either the Laplace s or the z-transform z.
The user is assumed to be capable of the mental gymnastics
necessary to substitute z for s when necessary.

The state-space transformations provided are between
AMAT and BMAT (the continuous system and input matrices) and

FMAT and GMAT (the discrete system and input matrices). All
A-59
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four of these matrices can exist in TOTAL at the same time

in contrast to the in-place transformations between CLTIF(s)

and CLTF(z). In the latter case, the user may want to copy

the original contents of CLTF into some other location using
the COPY command, before they are modified with a transformation
option.

OPTION 80: List options.

This option provides a quick reference list of options
80 through 89.

QPTION 81: CLTF(s) to CLTF(z) by impulse invariance.

The concept of impulse invariance is based on the fact

that if CLTF(s) is expanded into partial fractions

N
CLTF(s) = Ag
S - Sk
k=

where, in general, S is a complex number
s =a + jb
then the corresponding impulse invariant z transfer functicn

is just

CLTF(z) = AAﬁL = Ak?
T, -1 K

ke 1 -e
where T is the sampling time.
In other words, a pole at s = S in the s-plane transforms

to a pole at ’kr in the z-plane and the coefficients Ak of

e
the partial fraction expansion are equal.

Option 81 simply performs a partial fraction expansion of

CLTF(s), moves the poles from 8, to "kr. and multiplies the
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resulting terms back together to form .CLTF(z).

The algorithm used does not allow repeated poles. An
approximate transform is still possible, however, if the
repeated poles are separated slightly before transformation.

OPTION 82: CLTF(s) to CLTF(z) by first-difference transform.

The first difference transformation involves the simple

substitution
& } ) iz_%_ll

where T is a given sampling rate. Option 82 makes this
substitution into CLNPOLY(s) and CLDPOLY(s) and then reduces
the result to a simple ratio of two polynomials in z (CLNPOLY(z)
and CLDPOLY(z)).

OPTION 83: CLTF(s) to CLTF(z) by Tustin transform.

This option is similar to 82 except that the substitution
made is

¥, al

T z+1

OPTION 84: CLIF(z LIF(s) by impulse invariance.

This option is just the inverse of option 81. CLTF(z)
is expanded in partial fractions, the poles moved ftom z, to
@/ﬂln(zk). and the resulting fractions multiplied together to
form CLTIF(s). Because of the algorithm used this option will
only work for z transfer funcfions which have at least one zero
at the origin of ﬁhe z-plane.

OPTION 85: CLIF(z) to CLTF(s) by inverse first difference.

This option is just the inverse of option 82 and involves

the substitution

ety
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where T was the sampling rate used to form the z-transfer

function.

OPTION 86: CLTF(z) to CLTF(s) by inverse Tustin transform.
This option is just the inverse of option 83 and involves

the substitution

s + T/2
R e 7
where T was the sampling rate used to form the z-transfer

tunction.

OPTION 87: Find FMAT and GMAT from AMAT and BMAT.

Option 87 uses a truncated power series method to
approximate FMAT (the discrete system matrix) and GMAT (the
discrete input matrix) from the continuous counterparts AMAT
and BMAT. The iterations are continued until an accuracy of
ten significant figures is obtained for all elements of each
matrix. This method may therefore be ccnsidered, for practical

purposes, to be exact.

OPTION 88: Compute FMAT = exp(AMATT).

This option computes the component matrices of the state

transition matrix eAT using the Cayley-Hamilton Theorem (See

Shaum's Outline State Space and Linear Systems, pp 101-102) and

sets FMAT = exp(AMAT*T) for a value of T specified by the user.

'OPTION 89: General transformation.

This option is a generalized form of the tlass of

transformation performed in options 82, 83, 85, and 86. It

involves the generalized substitution

s-ALPHA-:—:—‘g or 2z = ALPHA « S+ 4
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where ALPHA, A, and B are constants which the user can

define to perform any bilinear transformation which may be

of interest.

2.10 MISCELLANEOUS OPTIONS

The remaining options perform a variety of functions,

some of which are of particular interest.

OPTION 90: List options.

This option gives a quick reference list of options 90
through 99.

OPTION 91:

Store all data in TOTAL to local file MEMORY.

This option is the direct counterpart to optiocn 1.

Normally, all data is automatically stored in MEMORY when the

user ends TOTAL by typing STOP. Option 91 allows the user to

store this data without terminating the program. It is

recommended that the user use this option from time to time to

prevent loss of all information in TOTAL in the event of an

abnormal termination. (Such an occurance is supposed to be

impossible with TOTAL, but nothing is ever 100% fool proof.)

See option 1 for further information on the use of MEMORY.
OPTION 92:

This is a spare option which was not defined at the time
this edition of the user's manual was prepared.

OPTION 93: ist h s ngs.

This option prints out the current values of all switch

settings in TOTAL. Typing HELP, 93 gives a complete description
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OPTION > 93

TOTAL‘’S MODE CONTROL SWITCHES ARE SET AT:

ECHO? OFF CLOSED? ON
ANSWER ¢ OFF HERTZ? OFF
FLOT? OFF DEGREES: ON
TITLE? OFF DECIEREL.S: ON
CAPTION: OFF MULT? OFF
GRID? OFF SCALE? ON

FOR AN EXFLANATION OF THESE SWITCHES ANDI HOW TO SET THEM
TYFPE: HELFs?3

"

OFTION > HELF,»93

TOTAL HAS 10 SWITCHES WHICH CONTROL ITS FERFORMANCE.
THE USER MAY SET THESE SWITCHES WHEN IN OFTION MODE RY

TYPING: SWITCHNAME»ON OR SWITCHNAME»OFF

THE SWITCHES AND' THE FUNCTIONS THEY CONTROL ARE?

ANSUWER »ON CAUSES ALL OUTFUT TO GO TO FILE ANSUWER
yOFF DISFLAYS OUTFUT AT USER‘S TERMINAL
ECHO sON  INFUT IS ECHOED BACK TO THE TERMINAL
yOFF ECHO OF INFUT IS SUFFRESSED
CLOSED »ON CLOSED-LOOF (CLTF) USED IF THERE‘’S A CHOICE
»OFF OFEN-LOOF TRANSFER FUNCTION (OLTF) IS USED
HERTZ »ON FREQUENCY IS INFUT AND OUTFUT IN HERTZ
»OFF FREQUENCY IS IN RADNIANS/SEC
DECIBELS »ON MAGNITUDES ARE IN DECIERELS=20X%AL0G10(MAG)
»OFF ACTUAL MAGNITUDE IS OUTFUT
TITLE »ON AN ADDITIONAL TITLE TO RE DRAWN OUTSIDE THE
BORDER WILL ERE REQUESTED WHEN NEXT ROOT LOC
FPLOT IS DONE., TITLE WILL BE DRAWN ON ALL
FUTURE FLOTS UNTIL TITLE»OFF IS TYFED.
CAFTION sON A 3-LINE CAPTION WILL BE REQUESTED AND
DRAWN WHEN NEXT ROOT LOCUS IS GENERATED.
»OFF THE OFEN-LOOF TRANSFER FN. IS DRAWN ON
ALL ROOT LOCUS FLOTS.
PLOT yON GENERATES CALCOMF FLOT FOR OPTIONS 41,42,43,% 48
»OFF NO PLOT (FLOT IS AUTOMATICALLY TURNED BRACK
OFF AFTER EACH FLOT)

MULT sON FUTURE FLOTS ALL DRAWN ON NEXT AXIS SET
sOFF EACH FLOT IS DRAWN SEFARATELY
GRID »ON DRAW GRID LINES ON FLOTS

yOFF OMIT GRID LINES ON PLOTS
SCALE sON  AUTO SCALE CALCOMF FLOTS
»OFF LET USER SPECIFY SCALE

NOTE: IF A SWITCHNAME IS TYPED WITHOUT »ON OR »OFF,
THE SWITCH IS TURNED ON.

OPTION >
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of each switch and how to use them. An example of both is
given on the following page.

OPTION 94:

This is a spare option as yet undefined.

OPTION 95:

This option at the time of this writing is as yet undefined.

OPTION 96: List special commands.

This option gives a brief list of the special commands
that are allowed in OPTION mode. See Section 3 for a complete
description of these commands. This same 1ist can be
generated by typing COMMANDS.

OPTION 97: List varjable name directory.

This option is designed to serve as a memory aid for the
user who is trying to remember a particular variable name.
These variables, and how to list and modify them are discussed
in detail in Section 4. This same list of variables may be
obtained at any time by typing VARIABLES.

OPTION 98: List main options.

This option-lists the ten main option groups in TOTAL.
The same list may be obtained by typing the command: OPTIONS.

OPTION 99: Give the introduction to TOTAL.
This option gives a brief introduction to TOTAL. It is

the same introduction obtained when the user types HELP.
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SECTION 3. SPECIAL COMMANDS

TOTAL has a number of special commands which are designed
to enhance the user's control of the program. In the list
below, items in capital letters are actual commands,items in
parenthesis are optional parameters, and those in small letters
refer to general command types. Underlined letters indicate
the minimum abbreviation which is allowed for each item.

Commands may by typed only in OPTION mode. (See Section 1.1)

The following are the special commands:

STOP. §§UP) End program gsuppress messages)
HELP, (option number) Get help on (specified option
number)
Swtichname, (ON or OFF) T?gg specified switch (on or
o
COoPY, from, to Copy one variable to another
AGE Skip to top of new output page
DELETE, root(I), (VETO) Remove a specified pole or
zero (display its value first)
CALCULATOR Delayed entry' to calculator mode
CREATE, keyname, string Define a macro with the specified

keyname to execute the specified
string of commands.

STOP, (SUP).

This command stores all data into local file MEMORY,
writes messages to notify the user of any files that have been
created during execution, and terminates TOTAL. These messages
are suppressed if the user types "STOP, S".

HELP, (option number).

The user may obtain help on any option by simply typing

HELP followed by the option number of interest. For example

"HELP, 38" will give a brief description of option 38.
A-66
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Switchname, (ON or OFF).

This command allows the user to set TOTAL's twelve mode
control switches which include ECHO, ANSWER, PLOT, TITLE,
CAPTION, GRID, CLOSED, HERTZ, DEGREES, DECIBELS, MULT, and
SCALE. These switches allow the user to custom tailor TOTAL's
performance to his individual preference. See option 93 in
Section 2.10 for further details.

CcorY, from, to. _

The COPY command is a special utility which allows the
user to transfer the contents of entire arrays from one
location to another. COPY may be used to copy transfer
functions, polynomials, or matrices to other transfer functions,
polynomials, or matrices respectively. The program will
ignore attempts to copy a transfer function into a matrix, etc.

Iransfer Functions. TOTAL has 28 transfer function
storage locations of which GTF, HTF, OLTF, and CLTF are working
registers stored on local file MEMORY and the remainder are
auxiliary registers stored on local file MEMAUX and are

accessable only with the COPY command. These transfer functions

include:

ATF ETF ITF MTF QTF UTF YTF
BTF FTF JTF NTF RTF VTF ZTF
CTF *GTF KTF OTF STF WTF *OLTF
DTF *HTH LTF PTF TTF XTF *CLTF

Transfers are legal between any two of the above locations.

For example, COPY, GTF, XTF will transfer GIF into XIF. GTF
is unaffected.
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Polynomials. Transfer is also permitted between any two

of TOTAL's twelve polynomials including POLYA, POLYB, POLYC,

POLYD, GNPOLY, GDPOLY, HNPOLY, HDPOLY, OLNPOLY, OLDPOLY, CLNPOLY,
and CLDPOLY. For example, COPY, POLYA, CLNPOLY will transfer

the contents of POLYA into CLNPOLY.

Matrices. Finally, TOTAL has 26 matrix locations which

may be addressed by the copy command. These matrices include:

*AMAT EMAT IMAT MMAT QMAT UMAT YMAT
*BMAT  *FMAT JMAT NMAT RMAT VMAT ZMAT
*CMAT  *GMAT *KMAT OMAT SMAT WMAT
*DMAT HMAT LMAT PMAT TMAT XMAT

Transfer is allowed between any two locations. For
example COPY, AMAT, QMAT copies AMAT to QMAT.
PAGE.

This command is primarily for use when the switch ANSWER
is on. It places a "1" in column 1 on the file ANSWER as a
carriage control character for a line printer. This causes
the printer to skip to the top of a new computer sheet before
continuing the printout. The PAGE command is particularly
useful for separating output between different problems and
any time a new sheet of paper is desired. To execute this
command the user simply types "PAGE".

ELET oot(I VETO) .

The user may modify the location of a pole or zero at any
time by simply typing its name, an equal sign, and its new
value. A pole or zero can be added in the same manner by

simply naming the root with the next highest index number.

(See Section 4.3) However, to remove a root and thereby reduce
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the order of the system, the DELETE command is required. For
example typing "DELETE, CLPOLE(3)" will remove pole number 3
from the closed-ioop transfer function (CLTF), reduce the order
of the system by one, resequence the index numbers on the
remaining poles, and recalculate the coefficients in CLDPOLY.
If CLPOLE(3) has a complex conjugate, both roots will be deleted
and the system order reduced. by two. If the user does not know
the index number of the root he wants to delete, he can type

the array name for a list. For example, typing "CLPOLE" would
list all pole locations and their corresponding index numbers.

The VETO command is an optional suffix. If "DELETE,
CLPOLE(3), VETO" were typed, the value of CLPOLE(3) would be
printed and the user asked to type "YES" or "NO" to delete or
not. This feature allows the user to confirm that he has
selected the right root before completing the deletion. The
user may abbreviate the command as "D, CLPOLE(3), V" if desired.
CALCULATOR.

This command allows delayed entry into CALCULATOR mode.
Calculator is normally entered by typing a simple "C". This
causes CALCULATOR mode to begin immediately when the carriage
return button is pressed, regardless of how many commands
preceed it in the string. For example,

OPTION > ECHO, ON 38 AA=4,5 C DD=19
will be executed in this order:

C ECHO, ON 38 AA=4.5 DD=19
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This is to allow the user to jump directly to calculator
mode at any time. If, however, the user wants to enter
calculator in the sequence he specified, he must use an
abbreviation longer than "C", such as "CALC". For example,

OPTION > ECHO, ON 38 AA=4,5 CALC  DD=19

CREATE, keyname, commandstring.

Using CREATE, the user can define his own macro command
made up of any combination of option numbers, commands,
variable names and other macros which he uses frequently.

In other words, this command makes TOTAL programable.

Three macro command names (key names) are allowed: AKEY,
BKEY, and CKEY. Each key can be made of up to 50 instructions
to do anything allowed in OPTION mode. These instructions are
then executed like a subprogram any time the key name is typed.

For example, if the user wants to write a key which will
turn ANSWER on, change the value of a pole to the current value
in the X register of the calculator, and plot a root locus
using option 48, he can type:

CREATE, AKEY, ANSWER, ON OLPOLE(2)=X 48

and then hit the carriage return. From then on he can execute

the above sequence by simply typing "AKEY". Now, suppose he
wants to run ten root-loci in a row, each with a different

pole location. He can type:

CREATE, AKEY, CALC, OLPOLE(3)=X, AKEY

Now when he types "AKEY", TOTAL will pause in calculator mode

to give the user a chance to enter a number into the X register.
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After the user types "C" to leave calculator mode, execution
continues and the pole location is changed to the number he
entered. The final command in the string, "AKEY", allows AKEY
to call itself and the sequence repeats, stopping in CALCULATOR
mode for the next pole location. This process continues until

the user types a $ to abort the endless loop. The user is

cautioned that if he does not include a pause to request input
some place in the loop, he will not have a chance to_end the

loop with a "$" and will have to abort. the program completely
with a "%A".

Since each macro key can have 50 steps, the user can write
a 150 step program by having one key call another.

Macro keys are particularly useful for reducing large
complicated block diagrams at a single commahd. A user can
store each block of the diagram into one of TOTAL's 28
transfer function registers and then write a key using the
COPY command and options 21, 22, 23, and 24 to reduce the
diagram to a single transfer function for analysis. The user
can then modify any variable in any block and instantly reduce
it to a single function with one key.

Other uses for TOTAL's three macro keys should be

apparent to the user.
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SECTION 4. TOTAL'S VARIABLES

TOTAL's data base is divided into variables of four
types: scalar constants, polynomial arrays of up to 51
coefficients, root arrays of up to 50 complex numbers, and
matrices of up to 10 x 10 elements. Each of these variables
may be listed by typing its variable name. Variable values
may be assigned or modified as described in the following

sections:

4.1 SCALAR VARIABLES

A 1list of scalar variable definitions is given at the
end of this section. The user can modify the values of these
variables by simply setting the variable equél to a number or
another variable. The following list shows some of the

possible ways to modify GAIN, a typical scalar variable:

GAIN= 27.98 -- GAIN is set equal to 27.98
GAIN= OLK -- GAIN is set equal to the current value

of the scalar variable OLK :
GAIN= POLYA(3) -- GAIN is set equal to the third coefficient

(from the highest) of POLYA

GAIN= GZERO(1,2)-- GAIN is set equal to the imaginary part
of the first GIF zero

GAIN= OLPOLE(3) -- GAIN is set to the real part (by default)
of the third OLTF pole

GAIN= AMAT(3,4) -- GAIN is set equal to the value of the
element in the third row and fourth
column of AMAT.

4.2 POLYNOMIAL ARRAYS
Polynomial coefficients are stored in arrays from highest

to lowest terms. For example, a second-order polynomial stored
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in POLYA would have the form

POLYA(l)sZ + POLYA(2)s + POLYA(3)

The user may list any coefficient of this polynomial by
typing its name "POLYA(2)" etc. Typing "POLYA" without
subscripts will 1list all coefficients.

The user can modify any coefficient by setting it equal
to its desired value or another variable. The following list

shows some of the ways to modify the second coefficient of

POLYA (POLYA(2)). For example:

POLYA(2;=3.38 POLYA&Z;:HPOLE(Z.I)
POLYA(2)= POLYA(2)=HPOLE(2)
POLYA (2)=CLNPOLY(3) POLYA(2)=DMAT(7,3)

A 1list of TOTAL's twelve polynomials and their definitions
is given at the end of this section. See the introduction to
Section 2.7 for further information on the use of these

variables.

4.3 ROOT ARRAYS

For every polynomial array there is a corresponding root
array which contains a real and an imaginary part. The Ith
root in the ROOTA array, for example, has the form

ROOTA(I,1) + jJROOTA(I,2)
where the second subscript designates the real or imaginary

part of the root's location in the complex plane. Roots may

also be referred to without the second subscript, in which case
e 1 ass . Typing "ROOTA" will list all the

roots in the array while typing "ROOTA(2)" will 1list only the

real and imaginary parts of the second root.
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The real part of the second root in the ROOTA may be

modified in any of the following ways.

ROOTA(2,1)= -2.5 ROOTA(2)= CLPOLE(6,1)
RoorA22;= -2.5 ROOTA(2.1;= GAIN
ROOTA(2)= POLYA(3) ROOTA(2)= KMAT(3,2)

Similarly, the imaginary part of the fourth open-loop

zero would be changed like this:

OLZERO(4,2)= 32.8
OLZERO(4,2)= CLPOLE(3,2)
OLZERO(4,2)= GNPOLY(13)

It is possible to change both real and imaginary parts of

a root at the same time as follows:

HPOLE(3)= CLPOLE(2) -- Sets real and imaginary parts of
the third HTF pole equal to the
real and imaginary parts of the
second CLTF pole respectively

ROOTB(2)= GZERO(9) -- Sets real and imaginary parts of
the second root of POLYA equal to
the ninth zero of GTF

CLPOLE(4)= 2.78;9 -- (See paragraph below)

The reader's attention is called to the last example where

a semi-colon was used to separate the desired real and imaginary

values of CLPOLE(4). This is a special notation which tells
TOTAL to look for another number and assign it to the next
variable in the array. Since CLPOLE(4,1) was set equal to
-2,78, the semi-colon tells TOTAL to set CLPOLE(4,2) equal to
9. Without the semi-colon, TOTAL would assume the 9 was an
option number and go execute option 9! A list of TOTAL's
twelve root arrays is included in the variable definitions at
the end of this section. See the introduction to Section 2.7
for further information on the use of these variables.
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4.4 MATRIX ARRAYS

TOTAL has seven working matrix arrays of maximum dimension

10 x 10 which may be manipulated directly. (The 19 auxiliary

matrices provided with the COPY command (see Section 3) can
only be modified by first transferring their contents into

one of the seven working matrices described below.) These

arrays are defined aﬁ the end of this section.

The user may list any element of a working matrix by

typing its name and indicies. For example, the element in the

third row and second column of AMAT is listed by typing
"AMAT(3,2)". The entire row can be listed by typing AMAT(3).
To list a column, the user must use a prefix: “COL,AMAT(2)".
Typing "AMAT" without subscripts will list the entire matrix.
(The 19 auxiliary matrices may also be listed in this manner,

but subscripts are not allowed.)

To specify the value of a parcicular element, say AMAT(3,2),

the user may type:

AMAT(3,2)= 77

AMAT(3,2)= POLYA(11)
and so on. The special semi-colon feature described in
Section 4.3 may be used to increment the column index by one.
For example, typing:

AMAT(3,2)= 14;28;64

would set AMAT(3,2)= 14, AMAT(3,3)= 28 and AMAT(3,4)= 64. If

the maximum row dimension is reached during such a string, TOTAL

will move to the first column of the next row, and so on.
A-75

At .




4.5 TRANSFER FUNCTIONS

. Transfer functions in TOTAL are not separate storage

locations, they are just groups of other variables as defined

below:
GTF = GNPOLY/GDPOLY = (GNK*GZERO) /(GDK*GPOLE)
HTF = HNPOLY/HDPOLY = (HNK*HZERO)/(HDK*HPOLE)
OLTF = OLNPOLY/OLDPOLY = (OLNK*OLZERO) /(OLDK*OLPOLE)
CLTF = CLNPOLY/CLDPOLY = (CLNK*CLZERO)/(CLDK*CLPOLE)

The variables which make up each of these transfer
functions may be listed or modified individually as described
in Sections 4.1, 4.2, and 4.3. The contents of every variable
associated with a particular transfer function may be listed
by typing a corresponding transfer function name. The contents
of all variables in one transfer function may be transferred
to the respective variables of another using the COPY command
described in Section 3.

The four transfer functions described above are called
"working" transfer functions because their contents may be
manipulated directly. There are also 24 auxiliary transfer
functions which may be used only for storage and which cannot
be manipulated directly. These auxiliary storage locations
are accessable only with the COPY command as described in

Section 3.
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PAK
PBK
PCK
PDK
GNK
GDK
HNK
HDK
OLNK
OLDK
CLNK
CLDK

GK
HK
OLK
CLK

GAIN

TSAMP
FACTOR
X,Y,Z,T
REGISTER(I)

AA

BB

cc
DD
BOUND
ZETA
RAD

GTOL
DEL
DELPR
FIGURE
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SCALAR VARIABLE DEFINITIONS

POLYA(1) Polynomial A constant
POLYB(1) Polynomial B constant
POLYC(1) Polynomial C constant
POLYD(1) Polynomial D constant
GNPOLY(I; GTF numerator constant
GDPOLY(1 GTF denominator constant
HNPOLY(1) HTF numerator constant
HDPOLY(1) HTF denominator constant
OLNPOLY(1) OLTF numerator constant
OLDPOLY(1) OLTF denominator constant
CLNPOLY(I% CLTF numerator constant
CLDPOLY(1 CLTF denominator constant
GNK/GDK

HNK/HDK

GAIN * (OLNK/OLDK) = GAIN * GK * HK
CLNK/CLDK

Added gain in the open loop

Sampling time in seconds

Scale factor for calcomp plot size
Calculator stack registers J
Subscripted name for referencing the
20 scalar calculator memory registers

The remaining scalars are special purpose root locus
variables and

are described in greater detail in Section 2.5.

Right root locus boundary

Top root locus boundary

Left root locus boundary

Bottom root locus boundary

Boundary scale factor

Damping ratio of interest

Distance from origin in s-plane or z=1 in
z-plane along the zeta of interest at which
the search for a locus intersection starts.
(actually starting w, in both planes)

Range of interest around GAIN

Calculation step size between locus points
Printing step size between locus points
Optional figure number on locus plots
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( POLYA
POLYB
POLYC
POLYD
GNPOLY
GDPOLY
HNPOLY
HDPOLY
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ROOTA
ROOTB
ROOTC
ROOTD
GZERO
GPOLE
s HZERO
HPOLE
OLZERO
OLPOLE
{ CLZERO
CLPOLE

AMAT
BMAT
CMAT
DMAT
KMAT
FMAT
GMAT

GTF
HTF
OLTF
CLTF

POLYNOMIAL DEFINITIONS

Coefficients of polynomial A
Coefficients of polynomial B
Coefficients of polynomial C
Coefficients of polynomial D

GTF numerator polynomial coefficients
GTF denominator polynomial coefficients
HTIF numerator polynomial coefficients
HTF denominator polynomial coefficients

OLNPOLY OLTF numerator polynomial coefficients
OLDPOLY OLTF denominator polynomial coefficients
CLNPOLY CLTF numerator polynomial coefficients
CLDPOLY CLTF denominator polynomial coefficients

ROOT ARRAY DEFINITIONS

Roots of POLYA
Roots of POLYB
Roots of POLYC
Roots of POLYD

GTF zeros = roots of GNPOLY
GTF poles = roots of GDPOLY
HTF zeros = roots of HNPOLY
HIF poles = roots of HDPOLY
OLTF zeros = roots of OLNPOLY
OLTF poles = roots of OLDPOLY
CLTF zeros = roots of CLNPOLY
CLTF poles = roots of CLDPOLY

MATRIX DEFINITIONS

Continuoys System Matrix

Continuous Input Distribution Matrix
Output Matrix

Direct Transmission Matrix
State-variable Feedback Matrix
Discrete System Matrix

Discrete Input Distribution Matrix

TRANSFER FUNCTION DEFINITIONS

= GNPOLY/GDPOLY = (GNK*GZERO) /(GDK*GPOLE)
= HNPOLY/HDPOLY = (HNK*HZERO%/%HDK*HPOLE)
= OLNPOLY/OLDPOLY = (OLNK*OLZERO)/(OLDK*OLPOLE)
= CLNPOLY/CLDPOLY = (CLNK*CLZERO) /(CLDK#*CLPOLE)
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SECTION 5. TOTAL'S SCIENTIFIC CALCULATOR

TOTAL's calculator uses reverse polish notation and
is modeled after an HP-45 hand calculator. It has a stack
of four registers, X, Y, Z, and T, where X is the display
or working register, and twenty memory registers. The user
may enter CALCULATOR mode at any time by typing a "C" and
leaves CALCULATOR mode the same way. CALCULATOR mode is
designated by the prompt *%*, and the user may obtain a

listing of calculator keys by typing "KEYS" as shown below.

e LEYE

FOLL CHI Las MEMORY
EXCHAMGE TIN ALOG ZTOFE
CL= (1 FOLAF FECALL
CLERF THN FECTANMG LEST

{ FECIFROCHL AZIN FIx DTOF
IRUARRE ACO: =CI rRTOD
IprROOT ATAMN LIET DEGREES
YTOX LM ETACK RADIANZ
FI ExP FRETSTRACK KEYE

The meaning of these keys will be discussed later in
this section.
To enter a number into the X register, the user simply
types it. Numbers are entered automatically when followed
by a blank, comma, or carriage return. Typing any of the
variable names listed in Section 4 automatically enters the
variable's value into the X register. (Typing a complex
variable name with only one subscript will put the real part
into X and the imaginary part into Y.)

(F An example of entering the numbers 1.0, 2.0, 3.0 and
4.0 is shown on the following page:
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W= 0.000000

e 1 2 2 4 EZTACE

T= 1.000000
o= 2000000
V= 3.000000
K= 4., 000000

The 1 is initially entered into the X register until it
is pushed up into Y by the 2. Subsequently, the 3 pushes the
2 and 1 up another notch. Finally, the 4 is entered leaving
the contents of the four stack registers as shown by the
STACK command.

Once numbers have been entered, all operations occur
between X and Y. For example, typing a "+" would add X to Y
and leave the sum in X. The contents of Z then drop into Y and
T drops ii.to Z. The contents cof register T are unaffected.
Similar results are obtained by typing "-", "*", or "/", where
»/» divides Y by X and "-" subtracts X from Y.

One final example should clarify stack operation. If the
user wants to evaluate

(3.14 * 2.78 + 8.62 * 98.6)/6.02
he would type

** 3,14 2.78 * 8.62 98.6 * + 6.02 /

and TOTAL would print out the answer. What actually occurs in
the stack is this:

1. 3.14 is entered into X.

2. 2.78 is entered into X shoving 3.14 into Y.

3. X and Y are multiplied leaving 8.73 in X.

4. 8.62 is entered into X shoving 8.73 into Y.

5. 98.6 is entered shoving 8.62 into Y and 8.73 into Z.

6. X and Y are multiplied leaving 849.93 in X and dropping
8.73 back into Y.
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7. X and Y are added leaving 858.66 in X.

8. 6.02 is entered into X shoving 858.66 into Y.

9. Y is divided by X leaving 142.63 in X. |
10. TOTAL prints out the contents of the X register as

the answer.

For further information on stack operations the user is

referred to someone who owns a Hewlett-Packard calculator.

All that remains now is to define the meaning of each key.

In the descriptions below old" refers to status before the key

is executed and "new" refers to status afterwards. Underlined

leEters in each command show minimum abbreviation allowed.

|

t

Pl

old Y tonew X, old Z tonew Y, old T to f ‘
L

ROLL Moves
,; new Z and old X to new T
* EXCHANGE Moves old X to new Y and old Y to new X R
CLX Clear X (sets X to 0.0) o
CLEAR Clear stack (sets X, Y, 2, and T to 0.0)
RECIPROCAL Sets new X equal to reciprocal .of old X B
SQUARE Sets new X equal to old X squared
SQROOT Sets new X equal to square root of old X ;
YTOX Sets new X equal to old Y to the old X power and 5
. move old Z into new Y and old T into new Z. .
PL Enters 3.14159265358979 into new X, old X into |
new Y, old Y into new Z and old 2 into new T. l
CHS Change sign of X ; 1
SIN Sets new X equal to sin(old X) =
cos Sets new X equal to cos(old X) : : 1
TAN Sets new X equal to tan(old X)
ASIN Sets new X equal to arcsin(old X) 1
ACOS Sets new X equal to arccos(old X) : g
'AIAE Sets new X equal to arctan(old X) h
LN Sets new X equal to natural log(old X) 1
LOG Sets new X equal to common log(old X)
EXp Sets new X equal to exp(old X)
ALOG Sets new X equal to 10(°ld X)
POLAR Converts X and Y in rectangular coordinates to

polar, where X is the magnitude and Y is the angle

A8l

T il iy




RECTANG

o)
—
>

7]
0
4

LIST

%2
—~
>
(@]
~

FASTSTACK
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0
=

b
3
b

=
o
]

3
(]
o

=

REES

RADIANS
KEYS

the middle of an option during input of data. For further

information see Section 1.1l.

Converts X magnitude and Y angle to X and Y
rectangular coordinates

FIX followed by any number from O to 14 sets
all future calculator outputs to that many
decimal places

Similar to FIX except that numbers are thereafter
expressed in scientific notation with the
specified number of decimal places

Prints contents of X register. Useful for
displaying intermediate results in a long string
of calculator commands

Prints contents of X, Y, 2, and T vertically
Prints contents of X, Y, Z, and T horizontally
Prints contents of all 20 memory registers

Must be followed by a number from 1 to 20. Stores ﬁ
contents of X to specified memory register !
Must be followed by a number from 1 to 20. Recalls i

the contents of specified memory register to X
and shoves old X to new Y, 0ld Y to new Z and old
Z tonew T.

Another abbreviation for RECALL

Recalls the value of X prior to the last operation
Converts old X in degrees to new X in radians
Converts old X in radians to new X in degrees

Puts calculator into degree mode and turns the
switch DEGREE oni

Puts calculator into radian mode and turns the
switch DEGREE off

Types out a list of all calculator keys

The user may use the calculator at any time -- even in ?
i
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SUMMARY OF TOTAL'S OPTIONS

COMMAND- ATTACH,TOTAL,ID=AFIT

COMMAND- TOTAL

WELCOME TO TOTAL--TYPE HELP FOR INTRO--TYPE STOP TO STOP
OPTION > HELP

TOTAL IS AN INTERACTIVE COMPUTER-AIDED DESIGN PROGRAM
FOR DIGITAL & CONTINUOUS CONTROL SYSTEM ANALYSIS.

IT CONTAINS 100 OPTIONS DIVIDED INTO GROUPS OF 10
ACCORDING TO GENERAL APPLICATION.

OPTIONS ENDING IN O LIST THE NEXT 10 OPTIONS,
FOR EXAMPLE, OPTION 30 LISTS OPTIONS 30 THRU 39.

THE FOLLOWING ARE THE MAIN OPTION GROUPS:
0-9: TRANSFER FUNCTION INPUT OPTIONS

- 10-19:  MATRIX INPUT OPTIONS

20-29; BLOCK DIAGRAM MANIPULATION OPTIONS

- 30-39: TIME RESPONSE OPTIONS

40-49: ROOT LOCUS OPTIONS

50-59: FREQUENCY RESPONSE OPTIONS
60-69: POLYNOMIAL OPTIONS

70-79: MATRIX OPERATIONS

80-89: DIGITIZATION OPTIONS
90-99: MISCELLANEOUS OPTIONS

~ WHEN INPUT IS REQUESTED BY TOTAL, THE USER MAY:

ENTER THE REQUESTED INFORMATION, OR:

TYPE ? FOR EXPLANATION OF INPUT NEEDED,

TYPE L FOR A LIST OF CURRENT VARIABLE VALUES,
TYPE * TO LEAVE AN ITEM UNCHANGED,

TYPE: C TO USE CALCULATOR BEFORE OR DURING INPUT,
TYPE $ TO ABORT THE OPTION,

TYPE X OR Y, Z, T, OR Rl THRU R20 TO TELL TOTAL

TO GET REQUESTED INFO FROM CORRESPONDING
CALCULATOR REGISTER.

TO END TOTAL, TYPE STOP.




TRANSFER FUNCTION INPUT OPTIONS

% ok 3k Ok ok 3 % % F %
VONOANSWN-O

LIST OPTIONS

RECOVER ALL DATA FROM FILE MEMORY
POLYNOMIAL FORM--GTF

POLYNOMIAL FORM--HTF

POLYNOMIAL FORM--OLTF

POLYNOMIAL FORM--CLTF

FACTORED FORM----GTF

FACTORED FORM----HTF

FACTORED FORM----OLTF

FACTORED FORM----CLTF

MATRIX INPUT OPTIONS

10
11
12
13
14
15
16

17
18
19

¥ 3% ok Ok Ok o Ok 3 %

BL

21
22
23
24
25
26
27
28
29

% b b o O Ok o % % 2%

30
31
32
33

35
36
37

39

t R R R R R R IR

LIST OPTIONS

AMAT--CONTINUOUS SYSTEM MATRIX

BMAT- -CONTINUOUS INPUT MATRIX
CMAT--OUTPUT MATRIX

DMAT--DIRECT TRANSMISSION MATRIX
KMAT- -STATE VARIABLE FEEDBACK MATRIX
FMAT--DISCRETE SYSTEM MATRIX
GMAT - -DISCRETE INPUT MATRIX

SET UP STATE SPACE MODEL OF SYSTEM
EXPLAIN USE OF ABOVE MATRICES

DIAGRAM MANIPULATION AND STAT PACE OPTION

LIST OPTIONS

FORM OLTF
FORM CLTF

GIF * HIF §1N CASCADE)

(GAIN*GTIF)/ (1 + GAIN*GTIF*HIF)

FORM CLTF = (GAIN*OLTF)/(1 + GAIN¥*OLTF)

FORM CLTF = GIF + HIF  (IN PARALLEL)

GTF(s) AND HTF(s) FROM CONTINUOUS STATE SPACE MODEL
GTF(z) AND HTF(z) FROM DISCRETE STATE SPACE MODEL
WRITE ADJOINT(SI - AMAT) TO FILE ANSWER

FIND HTF FROM CLTF & GTF FOR CLTF = GTF*HTF/(1+GTF*HTF)
FIND HIF FROM CLTF & GIF FOR CLTF = GIF /(1+GTF*HIF)

NSE (9}

LIST OPTIONS

TABULAR LISTING OF F(t) OR F(k)

PLOT F(t) OR F(k) AT USER'S TERMINAL

PRINTER PLOT 2WRITTEN TO FILE ANSWER

CALCOMP PLOT (WRITTEN TO FILE PLOT

PRINT TIME OR DIFFERENCE EQUATION (F(t) OR F(k))
PARTIAL FRACTION EXPANSION OF CLTF (OR OLTF)

LIST T-PEAK, T-RISE, T-SETL, T-DUP, M-PEAK, FINAL VALUE
QUICK SKETCH AT USER'S TERMINAL

SELECT INPUT: STEP, RAMP, PULSE, IMPULSE, SINE
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ROOT LOCUS OPTIONS

40
41
42
43
44
45
46
47
48
49

33k 3k ok o o 3 o 3

LIST OPTIONS

GENERAL ROOT LOCUS

ROOT LOCUS WITH A GAIN OF INTEREST

ROOT LOCUS WITH A ZETA (DAMPING) OF INTEREST
LIST N POINTS ON A BRANCH OF INTEREST

LIST ALL POINTS ON A BRANCH OF INTEREST

LIST LOCUS ROOTS AT A GAIN OF INTEREST

LIST LOCUS ROOTS AT A ZETA OF INTEREST

PLOT ROOT LOCUS AT USER'S TERMINAL

LIST CURRENT VALUES OF ALL ROOT LOCUS VARIABLES

FREQUENCY RESPONSE OPTIONS

50
51
52
33
54
33
56
57
58
59

¥ ok 3ROk o 3k % %

LIST OPTIONS

TABULAR LISTING

TWO CYCLE SCAN OF MAGNITUDE

TWO CYCLE SCAN OF PHASE

PLOT F(w) AT USER'S TERMINAL

CALCOMP PLOT--LINEAR FREQUENCY AXIS

CALCOMP PLOT--LOG FREQUENCY AXIS

TABULATE POINTS OF INTEREST: PEAKS, BREAKS, ETC.
CALCOMP PLOT--NYQUIST POLAR PLOT -

CALCOMP PLOT--NICHOLS LOG-MAG/ANGLE PLOT

POLYNOMIAL OPERATIONS

60
61
62
63
64
65
66
67
68
69

¥ ok ok o oF Ok 3 3 %%

LIST OPTIONS

FACTOR POLYNOMIAL (POLYA)
ADD POLYNOMIALS (POLYC
SUB POLYNOMIALS gPOLYC \
MULTIPLY POLYS . (POLYC = POLYA * POLYB
DIVIDE POLYS (POLYC + REM = POLYA / POLYB)
STORE POLY_ INTO POLYD

EXPAND ROOTS INTO A POLYNOMIAL

(s + a)%**N EXPANSION INTO A POLYNOMIAL
ACTIVATE POLYNOMIAL CALCULATOR

POLYA + POLYB)
POLYA - POLYB;

+ hnan

MATRIX OPERATIONS

70
71
72
73
74
75
76
77
78
79

LR R IR R IR R

LIST OPTIONS

ROOTA = EIGENVALUES OF AMA
CMAT = AMAT + BMAT '
CMAT = AMAT - BMAT

CMAT = AMAT * BMAT

CMAT = AMAT INVERSE

CMAT = AMAT TRANSPOSED
CMAT = IDENITY MATRIX

DMAT = ZERO MATRIX
COPY ONE MATRIX TO ANOTHER
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DIGITIZATION OPTIONS =

80
81
82
83
84
85
86
87
88
89

d ok ok ok ok Ok 3 % 3 #

MISCELLANEOUS OPTIONS

* 90
* 91
92
93
94
95
96
97
98
99

*

3% o 3 %

LIST OPTIONS , ‘
CLTF(s) TO CLTF(z) BY IMPULSE INVARIANCE !
CLTF{s) TO CLTF(z) BY FIRST DIFFERENCE APPROXIMATION
CLrpgs; TO CLTF(z; BY TUSTIN TRANSFORMAT ION

CLTF(z) TO CLTF(s) BY IMPULSE INVARIANCE

CLTF(z) TO CLTF(s) BY INVERSE FIRST DIFFERENCE |
CLTF(z) TO CLTF(s) BY INVERSE TUSTIN ‘
FIND FMAT AND GMAT FROM AMAT AND BMAT

COMPUTE FMAT = exp(AMAT * T)

CLTF(X) TO CLTF(Y) BY X = ALPHA*(Y + A)/(Y + B)

b
LIST OPTIONS ?
UPDATE MEMORY FILE WITH CURRENT DATA

LIST CURRENT SWITCH SETTINGS (ECHO, ANSWER, EIC)

LIST SPECIAL COMMANDS ALLOWED IN OPTION MODE
LIST VARIABLE NAME DIRECTORY 5
LIST MAIN OPTIONS OF TOTAL ; 1
GIVE THE INTRODUCTION TO TOTAL '
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Appendix B
SECTION 1. INTRODUCTION

This manual is written to provide documentation on all
programs and subprograms used in TOTAL as well as a description
of the overall structure and internal operation of the program.
It is intended for the individual who wishes to make his own
modification and additions to the coding and as a general
aid in maintaining the program or transporting it from one
computer system to another.

The reader is assumed to be thoroughly familiar with the

external operation of the program. It is recommended that

he read the User's Manual for TOTAL completely before beginning

to use this manual.
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SECTION 2. DESCRIPTION OF OVERALL STRUCTURE

TOTAL is a large program. In its absolute form, with
all external references satisfied, it requires in eccess of
600.0008 words of central memory for execution. Since many
computer systems do not have this much memory available, and
most limit interactive users to a muéh smaller amount (on the
order of 60K), TOTAL has been designed with a structure of
overlays so as ro not require more than 60K at any one time.

The following is a brief description of that structure:

2.1 HOW OVERLAYS WORK

Overlays are simply a way of dividing a large program
into a series of smaller programs, each of which will fit
into the available amount of core memcry. As each of these
programs (overlays) is needed, it is loaded into memory
replacing one which has just finished executing. A small
executive routine, written to control the overall flow of the
program, is responsible for calling each overlay into memory
as it is needed. This executive is called the main overlay
and remains in core memory at all times. The program segments
which it controls are called primary overlays. Only one
primary overlay may be in central memory with the main overlay
at a time. It is also possible to have another level of
overlays which can be called by a given primary overlay.
These programs are called secondary overlays.

Each overlay is a separate program which is loaded into
memory and executed when it is called by a higher level overlay.
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Information is passed between overlays through labeled
common statements in the main overlay.

The use of overlays should become more apparent when
their use in TOTAL is described in the next section. For
further information, the reader is referred to the CDC FORTRAN
Reference Manual and the CDC lLoader Reference Manual.

2 TOTAL'S OVERLAY STRUCTURE

TOTAL in its present form uses one main ove:lay. seventeen
primary overlays, and eleven secondary overlays. i

The main overlay simply holds the common data arrays,
establishes their default values, and calls each of the primary !
overlays when needed, as determined by a short decision-making
routine, This overlay is described in detaii in Section 3. ;

The primary overlays perform all of the actual operations
in TOTAL. Each is responsible for a certain class of functions
which may include. option and command execution, variable
definition and modification, switch setting, user assistance,
and interactive user interfacing. If an overlay is too large
for the given core restriction, it is divided into secondary
overlays that will fit. Primary and secondary overlays are }
discussed in detail in Section 4.

Each overlay program is allowed any number of subprograms,
each of which takes up some of the memory space allowed for
that overlay. These subroutines, are described in depth in
Section 5.
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SECTION 3. DESCRIPTION OF MAIN EXECUTIVE OVERLAY

TOTAL's main executive overlay performs four functions
vital to program operation. First, it houses in its PROGRAM
statement the definition of all input-output devices throughout
the program. Second, it contains all of the labeled common
statements for the data base (variables which are used by
more than one program and which must remain in central memory
at all times). Third, it initializes the values of all the
variables in the common data base. Finally, it contains the
routine which selects other overlays and controls the flow of
the entire program. Since a thorough'understanding of this
overlay is essential to further modifications and additions,
the remainder of this section is devoted to a complete description

of its structure.

3.1 THE PROGRAM STATEMENT

The program statement for TOTAL is shown below.
PROGRAM TOTAL(INFUT=100E,0UTFUT=100B»AREY=100BysBKEY=100E,»
+CKEY=100Ey ANSWER » MEMORY » DOODLE=100KyFLOT » TAFE1=AKEY »
+TAPE2=BKEY y TAFE3=CKEY » TAFPES=INFUT» TAFE&6=ANSWER »

+TAPE7=0UTFUT » MEMAUX=1000E» TAFEB=MEMAUX s TAFE?=MEMORY »
+TAPE10=DO0ODLE)

It performs three functions, including definition of
local file name, reference number, and buffer length for each
I/0 device (tape) used by TOTAL. The name and purpose of
each of these tapes is given in Table I.

The choice of buffer size for each of these tapes is a

trade-off between amount of memory used and sﬁeed of execution.
B-4
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A buffer is just a location in central memory where output is
placed until it can be written to a tape by an output device.
Since output is usually generated much faster than it can be
written to tape, the buffer often fills up and execution must
be interrupted until the output device can catch up. This
slows down execution time. By increasing the buffer size,
fewer interruptions are needed and the program runs faster at
the expense of space in central memory. Since space in a
program of this size is at a premium, buffer size must be
kept at the minimum value consistant with reasonably fast
operation.

The rule of thumb used in selecting buffer sizes in
TOTAL was that frequently used files which receive output in
large volumes are given large buffers (1000B to 2000B) while
all others are kept at the minimum size of 100B = 1008 = 7710
words of central memory. Even with this careful assignment,
76008 words of central memory out of the allowed 60.0008 are
devoted to buffer use in TOTAL. Should more space ever be
needed for any reason, reducing this buffer size, at the

expense of execution time, is a possible solution.

3.2 TOTAL'S COMMON DATA BASE

Figure 1 shows the labeled common statements which make
up TOTAL's data base. Every variable which must be passed
from overlay to overlay or which is needed throughout the

program for any reason must be placed in this array. Numbers

not located in common are lost each time a new overlay replaces

an old one.
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00 0000000000000 0000000000000 0000000000000000000000000000000 00000000000

*
* .
. COMMON/TOTAL1/AMAT(10+10) yNAYMAYEMAT(10510) sNEyMEYyCMAT(10+10)» .
. +NCyMCyDIMAT(1010) s NDy MOy FMAT(10+10) yNFyMF s GMAT(10+10) sy NG MGy .
. +AKMAT(10¢10) y NKy MK .
N COMMON/TOTALZ7/FOLYA(S1) yFPOLYER(S1) »POLYC(S1)»FOLYD(S1)» .
* +RO0DTA(S092) yROOTRB(S0+2) yROOTC(S0»2) yROOTD(S052) » .
N +NPAYNFEsNFCyNFDyFAKyPEK s FCKy PIIK .
. COMMON/TOTAL?/GNFOLY(S51)yGDFOLY(S51)yGZERO(SO0»2) yGFOLE(SO0»2) .
. +NGZ sy NGF y GK y GNK y GDIK .
. COMMON/TOTL10/HNFOLY(S51) yHDFOLY(S1) sHZERO(S0y2) yHFOLE(S0+2) » .
. +NHZ s NHF » HK « HNK y HIIK .
. COMMON/TOTL11/0LNFOLY(S51) yOLIFOLY(S1)yOLZERO(SO¢2)»0OLFOLE(SOs2)s o
. +NOLZyNOLP yOLK» OLNK» OLIIK .
o COMMON/TOTL12/CLNFOLY(S1)»CLIFOLY(S51)yCLZERO(S092) yCLFOLE(SO0¢2)y
. +NCLZyNCLFyCLKyCLNKyCLDK .
. COMMON/TOTL14/NOFT»IOFPT» JOFPTyKOFTyLOFTyMOFT s LPROMTyLASTOFT »NGO .
. COMMON/TOTL1IS/IFLAGC100) » JFLAGC100} yKFLAG(20) sLFLAG(20) yNCALL(20) .
N COMMON/TOTL16/XsY»ZsToREG(20) s XLAST .
. COMMON/TOTL17/MCOMMC100) yIATMC(100) o+ MPT .
. COMMON/TOTL18/NRFTsNROUTEC10) s NFT .
. COMMON/FARTL1/ZZZ(S0) s XRyNXXy YYY(S50)yW(50) yCLOSE .
° COMMON/FARTL2/CR(S0) yEC(S50) »OMCS0) s FE(SO) »LLyDATINC(4) .
. COMMON/FARTLA/FAX(2) yAXMINsFRANGE s FTMAX»FTMIN .
. COMMON/FARTLS/RSLOFEsRWIDTHyRHIGHT y ROMEGAy INFUTR .
. COMMON/ROOTL1/BOUNDyFFNy IFOLDy ISTAMy ITITL Yy ITHESYyRADYZETA .
. COMMON/ROOTL2/LLROOT s DELFR(S0) »yDEL(S50) s GAINsGTOL yLN» IFLOT .
. COMMON/ROOTL3/XF(S50) sy YF(S50) o XZ(S50) s YZ(S0) syNs My XSTARTyYSTART» TIME
. COMMON/ROOTLA/GAYAAYBEyCCyDI1y JK .
. COMMON/FREQRL1/WMINy WMAXyDELWyYINC3) s NUF s NDOWN .
. COMMON/FREQR2/KINDsCYCLENGsNCYC » IFOW» RANGE s ORDER .
. COMMON/FREQR3/AMINs AMAXy AXLINC2) »AXDEB(2) y FNMAXyFNMIN .
. COMMON/DMULR/FOLYQ(S1) »ROOTQA(S0»2) yNQyFQAK .
* COMMON/READER/LCOMsLODNVyLODI yLIDVyLCPLXVyL2DOVILKEYyLABER .
3 "’LASTF'L"QT .
. COMMON/LOGIC1/REQUESTyECHOYEXTCALCyCALCEQUAL » COMMALIST .
N COMMON/LOGIC2/CLOSEDyDECIREL yHERTZ » DEGREE y ANSWER yFLATyGRIDySCALE
. COMMON/LOGIC3/TEST»ALREADY .
. COMMON/MATRIX1/AINC10) s IRUNYNUyNYsNSyMUsLY .
* COMMON/TTYPLT/0Ks IFT .
. COMMON/FLOTER/MULT » JFPLLOTyKPLOTyLFLOT»FACT .
. COMMON/X153/SCRTCH(153) .
. COMMON/DIGIT/TSAMF s SAMFT s ALFHAT » SIGMAA» SIGMAER .
. COMMON/MASSTO/INMASS(47) .
o DIMENSION ROOTR(S0)yROOTI(S0) .
. LOGICAL REQUESTyECHOYEXTCALCyCALCyEQUAL y COMMAYLIST .
N +CLOSEDYDECIBEL yHERTZ y DEGREE s ANSWERyPLAT yGRID» SCALE .
. LOGICAL TESTyALREADY»GOFLOT .
L] *
L

GO 000 00000000000 0000000000000 0000000000000 00000000 0000000000000 0000000

= Fig. 1. TOTAL's common data base.
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Variables tn this data base are initialized to their

default values at.the beginning of the main executive overlay.

3.3 DESCRIPTION OF THE MAIN EXECUTIVE OVERLAY

The discussion in this section is a detailed description
of TOTAL's main executive overlay. The reader is referred to
the flow chart on the following page which may be helpful in
reading the remainder of this section.

When execution of TOTAL begins, all variables in the
common data base are initialized as described in Section 3.2.
The mass storage file MEMAUX is also opened. TOTAL then enters
OPTION mode at statement 11110 and calls program READER (overlay
6) to receive a string of commands, option numbers, etc. from
the user. READER compiles the user's 1nput..stores the commands
in coded form in the array MCOMM, sets the MPT pointer to the
first command in MCOMM and returns control to the executive
overlay at statement number 11111. READER is discussed in
much greater detail in Section 4.

Statement 11111 is the main control node of the entire
program. Every overlay returns control to this point when it
has finished executing. From this point, program flow runs
through a three level sorter to determine where control should
be ttansferéd next. These levels include the internal routing
controller, the command type sorter, and the master overlay
selector. '

Internal routing controller.

This controller is a special utility which allows one
overlay to specify a sequence of additional overlays to be called

B-8
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before TOTAL moves on to the next user command. Normally,
when the user gives a command, the necessary overlay is
selected, it executes the command, and TOTAL moves on to the
next command. If, however, for some reason more than one
overlay is needed to complete the given command, the first
overlay called sets up the sequence of additional overlay
calls that will be needed and stores them in the array NROUTE.
TOTAL then executes all commands in NROUTE before moving on to
the next main command in the MCOMM array.

A typical example of this procedure is in the execution
of option 48. Overlay 4 contains all of the necessary routines
for calculating points on a root locus. It does not, however,
have room for the routine which actually plots the points and
an additional averlay (overlay 11) is needed. Now, when
overlay 4 has finished computing the points, it stores an 1l
in NROUTE(1), sets the NRPT pointer equal to 1, and returns
control to the executive. The executive sees that NRPT is not
zero and uses the internal routing controller to send control
to the overlay number stored in NROUTE(NRPT) = NROUTE(1l) = 11.
NRPT is then incremented and when overlay 11 has finished,
control is transfered to overlay number NROUTE(NRPT) =
NROUTE(2) = 0. Whenever a zero is encountered (as in this case),
TOTAL knows that the last internal command has been complete.
NRPT is set back to zero and program flow passes on to the
command type sorter. Since NROUTE has a dimension of 20, up
to 20 seéondary commands can be specified if needed. An
overlay can even have itself called back when the series it

specified is finished by simply putting its own overlay number
B-10
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into the NROUTE array. This is how temporary interrupts to
CALCULATOR or HELP modes are handled.

Command type sorter.

This routine begins at statement 11113 as shown in Fig. 2.
The command type sorter increments the MPT pointer, looks at
the coded command stored in MCOMM(MPT), and decides where the
program flow should go next. If the next item in the .array
is a general command or variable operation (MCOMM(MPT) =
1, 2, 3, 4, or 5), program DECODER (overlay 7) is called to
decode and execute it. If MCOMM(MPT) = 6, the next command is
an option number and control is given to the master overlay
selector. The COPY command has an entire program (overlay 15)
devoted to it and so, rather than calling DECODER, control is
passed to overlay 15 directly. MCOMM(MPT) = 0 indicates that
the last command has been executed and the executive returns
to statement 11110 to call READER and ask the user for further
instructions.

Master overlay selector.

Since each of TOTAL's options may be located, in general,

in any one of the 17 overlays, a method is needed to select

“the correct overlay for a given option. This is done with a

massive GO TO statement called the "master overlay selector."

101 GO TOC 19 3y 3» 3y 39y 3y 39 3y 39 9
14y14514914y149145149149 99 9
17917917917914514914517917 9>
2y 29 29 2y 2y 2y 2y 2y 2y 9
4y 4y 4y A4y Ay 4y 4y 4y 4y 9y
Sy S S» Sy Sy Sy 9y 99 99 9
3y 3y 39y 3y 3y Iy 3y 39y 3y 9
14,14,14514514,y14y14514+14y 9
169169169169169169 9» Prlby 9
1y 99 13y 9 18y 99 99 99 9» 9)» NOPT

PR AR
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Entries in this computed GO TO statement are indexed
by the option number, NOPT, and are simply the statement
numbers for the corresponding overlay calling statements.

For example, if NOPT = 93, control is transferred to statement
number 13 which just happens to be the CALL statement for
overlay 13, and so on.

The value of NOPT is obtained in statement 88 from an
array DATM(MPT) which is indexed by the same pointer, MPT, as
the primary command array MCOMM(MFT). When the user types a
valid option number, the fact that it is an option number is
stored as MCOMM(MPT) = 6 and its actual value stored in
DATM(MPT). Complete details on these arrays are given under
program READER in Section 4.

Other operations performed in this overlay.

The "CHECK SUPPRESS" block in the flow chart is just a
look ahead operation to see if the user has typed an "S*
following the option number. If the suppress ccde is stored
in MCOMM(MPT + 1), the logical variable REQUEST is set to
.FALSE. to tell TOTAL to skip requesting any input it may need
to execute the option and just use the old (or default) values.
If the S code is found, MPT is incremented so that the SUPPRESS
command itself will not be executed the next time.

If the plotter has not been initialized and the upcoming
option will generate a plot, the "INITIALIZE PLOTTER" block
will be executed. This routine ensures that the plotter is
initialized once and only once. (Every time the plotter is
initialized, a new banner is drawn on the PLOT file.)

When the block labeled OPENMS is executed, TOTAL calls
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the subroutine OPENMS to open the mass storage file MEMAUX.

If MEMAUX does not contain any information (from previous

runs of TOTAL), this routine fills all 45 storage sections
with zeros. If these arrays were not defined in this manner
and the user later tried to read from a location to which he
had not first written, a fatal error would occur and execution
of TOTAL would end aﬁruptly.

After any overlay has finished executing, control is always
returned to statement 11111 and the cycles described above are
repeated. When the command STCP is finally typed, DECODER sets
NOPT = -1 and when statement 11113 is executed, overlay 1 is
called to write all data in the common data base to local file

MEMORY and stop the program.
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SECTION 4. DESCRIPTION OF TOTAL'S OVERLAYS

This section is intended to document the structure,
purpose, and general operation of each of TOTAL's primary
overlays. The source listings of each of these programs
include 1iiberal use of comment statements which are intended
to make them self-explanatory to the programmer. This
section contains additional information which may be useful

in understanding and using the program coding.

4, OVERLAY (1,0) -- PROGRAM UPDATI

Program UPDATE is one of TOTAL's smallest overlays. It
performs only two functions, including writing information
from common to local file MEMORY and reading that information
back in.

When option 91 is selected, UPDATE is called by the main
executive overlay. Local file MEMORY (TAPE9) is rewound and
all variables in the common data base are written onto it.

The first number written is the code number "989" used to
identify the tape as a MEMORY file. After all information has
been saved with a series of simple WRITE statements, control
is returned to the main overlay.

The reverse sequence of events takes place when UPDATE
executes option 1. MEMORY is rewound and tested to see if its
first entry is "989". If it is not, an error message is
printed, otherwise, the data is read back into the common data
base and the option terminates as before.

When the command STOP is executed, UPDATE does option 91,
B-14
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returns unneeded local files, and terminates TOTAL.

4,2 OVERLAY (2,0) -- PROGRAM TIMER

Overlay (2,0) is just a short executive overlay which
calls three secondary overlays as needed to perform digital
and continuous time response options. For continuous responses
(TSAMP = 0) or partial fraction expansions (NOPT = 36), it
calls program PARTL (Overlay (2,1)). For discrete responses
(TSAMP # 0) or selecting inputs (NOPT = 39), DIGITR (Overlay
(2,2)) is called. If a Calcomp plot is generated (NOPT = 34),
PLOTFIN (overlay (2,3)) is called to finish drawing the titles,
axes, etc. Sections 4.3, 4.4, and 4.5 describe these three

secondary overlays.

4.3 OVERLAY (2,1) -- PROGRAM PART

Program PARTL uses a Heaviside partial fraction expansion
algorithm taken from the AFIT program of the same name. (Ref.l
Most other features, however, including plots, listings, and
function outputs, are new and greatly improved. Fig. 3
provides a general flow chart of the program. The blocks
labeled "standard interrupt routine" and "restart" are used
to allow temporary interruptions of the program to call the
CALCULATOR and HELP overlays. The value of NCALL(4) set and
used by these routines simply allows program flow to find its
way back to the statement at which the 1ntertuptibn occurred.
A complete explanation of these routines is given in Section 5

under subroutine READS.

At the beginning of PARTL, the transfer function of interest
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is loaded, multiplied by the transform of the input of
interest, and tested for legal form. A partial fraction
expansion (PFE) is then performed and the desired time
function determined from an inverse Laplace transformation

of the PFE terms. Options 35 and 36 print out some of the
results of these computations while thay are being obtained.
A1l other options use the general function subprogram FT(T)

to obtain the actual time response results. FT(T) gets its
information through labeled common statements and is described

more fully in Section 5,

4,4 OVERLAY (2,2) -- PROGRAM DIGITR.

Given an nth order transfer function such as

2
Cszl _ alz + 3,z + aj
R(z z2 + bzz + b3

DIGITR calculates a discrete time response by forming the
recursive difference equation
c(k) = alr(k) “ azr(k -1) + a3r(k - 2) - bzc(k -1) - b3c(k - 2)
and iterating it for some desired input sequence.

Subroutine RIN is used to supply the input sequence
(ramp, step, pulse, etc.) and subroutine PROGAT shifts the
arrays of past inputs and outputs and evaluates c(k) for each
new value of K.

After the response values are calculated over the range of
k specified, DIGITR plots and/or tabulates the results in much
the same way as PARTL. A flow chart for DIGITR is shown in

Fis. 4.
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4.5 OVERLAY (2,3) -- PROGRAM PLOTFIN.

This program finishes up the Calcomp plots for PARTL
and DIGITR. Both programs are responsible for drawing their
own actual response curves, but PLOTFIN does the-rest -
including boxes, grids, title, time axis, and tic marks. The
actual coding itself is ver& straightforward and needs little
explanation.

4.6 OVERLAY (3,0) -- PROGRAM POLY.

POLY handles all transfer function input and polynomial
operations for TOCTAL. It is responsible for 17 options,
including options 2 through 9 and 61 through 69, making it
one of the largest overlays in the program. Its structure,
however, is very simple.

POLY is divided into 17 sections which are addressed by
branches of computed GO TO statements. For a given option
number, only one of these sections is executed before control
is returned to the main overlay. Thus, each section is
essentially independent of the others and it is not difficult
to understand the operation‘of any particular option.

The understandability of POLY is further enhanced by
extensive use of subroutines in its design. This modular
approach allows a person to study the program “from the top
down" by treating lower-level routines as "black boxes"
while studying those at a current level. Subroutines used in
POLY are discussed in detail in Section 5.

POLY does have one unique feature that is worthy of

mention: the use of an interrupt request to factor polynomials.
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Because of the program's size and the large number of subroutines
( it uses, there was not enough room for everything in a single
overlay. Therefore, the factoring subroutine DMULR was moved
to a separate overlay (overlay 10) to make room for the rest.
With this approach, when polynomial roots are needed,

POLY terminates temporarily, overlay 10 is executed, and

% v o

POLY is restarted, beginning execution where it leit off. The
polynomial to be factored and its resulting roots are passed
between the two overlays with a labeled common statement.

The procedure described above is called the "standard

interrupt routine.” It is initiated by a series of FORTRAN
H statements such as those found beginning at statement 8002 in
POLY:
NRPT=1 . Tell the executive (overlay(0,0))that this is
{ an interrupt request, not a normal termination.

NROUTE(1)=10 Tell the executive that this is an interrupt
request for overlay 10.

NROUTE(2)=3 Tell the executive to return controcl to overlay
3 (POLY) when overlay 10 has finished.
NCALL(1)=12 Tell the RESTART routine at the beginning of
POLY to jump to the 12th statement number in
its GO TO array when POLY is restarted (so
that POLY will pick up at statement 8003 where .
it left off).

GO TO 10CO Send control to the executive so that it can
begin the above set of instructions.

The net effect of this interrupt routine is that it
allows one primary overlay to call another -- a feat not
normally possible with overlays. Further information on this
technique is presented in the discussion of subroutine READS

A (3 in Section 5.
: B-20
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4.7 OVERLAY (4,0) -- PROGRAM ROOT1O0.

ROOT10 is the executive primary overlay which pontfols&m
the four secondary overlays that do all the root locus
options in TOTAL. It is essentially the original AFIT
program ROOTL, (Ref. 2 ) although it has been modified and
improved considerably.

A general flow diagram for ROOT1O0 is given in Fig. 5.
The secondary overlays it calls are described in the following

sections.

4.8 OVERLAY (4,1) -- PROGRAM ROOT11.

ROOT11 sets up the Calcomp plot. It is responsible for
drawing everything but the actual locus branches, including
boxes, titles, axes, labels, poles, and zeros. In addition,
this routine performs the search for locus points at a
specified ZETA of interest. In s-plane the search is done
along a constant zeta line, beginning at a distance RAD from
the origin. In z-plane, the search begins at an undamped
natural frequency W, = RAD and spirals from the z = 1 + jO
point in to the origin. ROOT11 draws the zeta line of interest

and, in z-plane (TSAMP # 0), it draws the unit circle.

4,9 0OV Y (4 -- RA .

ROOTS performs only one function. For a given value ot
GAIN, it calculates the closed-loop transfer function in
polynomial form. It then factors the denominator polynomial

and prints out the closed-loop poles at the GAIN of interest.
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4.10 OVERLAY (4,3) -- PROGRAM ROOT12.

ROOT12 is the workhorse of the root locus programs. It
computes the points on each branch of the locus within the
boundaries of calculation.

The method used to calculate the root locus is an iterative
search for one locus point at a time. Since points on the
locus are only desired within a set of boundaries specified
by the user, there are four types of root locus branches
which may occur:

1. A branch which lies entirely within the boundaries.

2. A branch which starts inside the boundaries and goes
outside.

3. A branch which starts outside and enters the region
of calculation, or which reenters the region after
having left it.
4. A branch which lies entirely outside the boundaries.
Branches which start inside the boundaries are found by
beginning at each pole within the region and using a circular
search routine (to be described later) to follow the branch
until it reaches a zero or goes outside the boundary. Branches
which enter the region from outside are found by searching the
boundaries for a branch crossing and then following the branch
with the circular search routine until it terminates at a zero
or leaves the region again. Branches which lie entirely outside
the region of calculation are skipped and an informative
message printed.
The circular search routine mentioned above is used after

the first point on a given branch has been located. This
routine simply searches around a circle of radius DEL centered
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at the point already known until another locus point is
found which satisfies the root locus 180 or 0 degree angle
criterion. The new locus point is then used as the center of
another circular scan and the process repeats until a point
is found which lies outside the boundaries or which is less
than DEL units from a zero.

Fig. 6 shows a flow chart depicting how each branch is
located by ROOT12. First, the branches beginning at each
pole are traced until they leave the boundaries or terminate
at zeros. Then the boundaries are searched for other incoming
branches and these branches are traced. When the entire
boundary of the region of interest has been searched, every
locus branch has been found and ROOT12 returns control to the

primary overlay ROOT10.

4.11 OVERLAY (4,4) -- PROGRAM ADAPT.

This overlay was written to allow interfacing of subroutine
READS with the other ROOTL overlays. Subroutine READS is used
throughout TOTAL in place of the standard FORTRAN READ statement
to receive data interactively while protecting against input
errors. Because of its size, there was not enough space for it
in any of the existing ROOTL overlays so a new overlay, ADAPT,
was written.

ADAPT is simply an input program designed to ask the user
for all the information needed for a given option number. It
prints out all prompting messages, calls READS L. -eceive the
user's input, and stores the input in the common data base for
use by the other root locus overlays.
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4.12 OVERLAY (5,0) -- PROGRAM FREQR.

FREQR is a very short executive program which simply
calls two secondary frequency response overlays. The first
overlay called, program FREQOUT, performs all of the actual
frequency response options. If a Calcomp plot is generated,
the second overlay, program PLOTSET, is called to finish the
details of the plot. FREQOUT and PLOTSET are described in
Sections 4.13 and 4.14.

4.13 OVERLAY (5,1) --PROGRAM FREQOUT.

FREQOUT performs all discrete and continuous frequency
response options. A general flow chart for the program is
given in Fig. 7.

Execution normally begins at statement 10. After a few
set-up operations, a seven branch computed GO TO statement is

executed to send the program flow to the section of the

program responsible for executing the given option number, NOPT.

These seven sections (one for each frequency response option)
are independent of each other and they all return control to
statement 9999 which terminates FREQOUT.

Because FREQOUT has been divided into small, independent
sections of coding, it is easy for a programmer to study a. ::-
particular option of interest. The only sections which really
need further explanation are the Calcomp plot options (55 and
56). These will be discussed shortly.

FREQOUT uses two function subprograms to do the actual
frequency response calculations. Function FW(W) returns the

magnitude of the response for a given value of frequency W.
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Function AW(W) returns the corresponding phase angle, The
units of frequency used (hertz or radians per secaond), the
magnitude returned (linear or decibels), and the angle

returned (degrees or radians) are determined internally by

FW and AW based on the values of the logical variables HERTZ,

DECIBEL, and DEGREE respectively. Whether the values returned

are for open-loop or closed-loop trangfer functions, and
whether the function is treated as discrete or continuous, is
also determined inside FW and AW based on values of CLOSED

and TSAMP respectively. The values of these variables are

specified by the user prior to selecting the option desired as

described in Section 2.10 (option 93) of the User's Manual
for TOTAL. FW and AW are described completely in Section 5
of this manual.

As mentiohed earlier, the Calcomp plotting routines
(options 55 and 56) are of sufficient complexity to merit
further explanation. The expanded flow chart of these
routines given in Fig. 8 should be helpful in understanding
the following discussion.

Options 55 and 56 differ only in that the first uses a
linear frequency axis while the second uses a logrithmic
one. Because of the many similarities, much of the coding is
identical and has been combined. In fact, after obtaining
the magnitude and/or angle values at the appropriate
frequencies, both options use the same routine to finish
scaling and plotting the data.

Option 55 begins at statement 200 by requesting the user

to specify a frequency range of interest. Option 56 begins
) B-28
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in a similar fashion at statement 300. Both options then ask
the user to specify whether to plot phase only, magnitude
only, or both. The value of the variable "KIND" is

specified by the user's choice as: 1 = ploc phase, 2 = plot
magnitude, or 3 = plot both. KIND is then used as an internal
flag to control flow throughout the rest of the routine.

The first set of calculations performed by either option
is to fill the variable "ARRAY" with 800 phase or magnitude
values.depending whether KIND = 1 or KIND = 2. 1If KIND = 3,
the maghicude values are computed, scaled, and plotted first
and the process then repeated for the phase.

When the calculations are complete, ARRAY is just an
array of 800 points to be plotted at even intervals and it is
no longer necessary to know whether the points are spaced
linearly or logrithmically. (Logrithmically spaced points on
a log axis are drawn the same as linearly spaced points on a
linear axis.) Thus, both options transfer control to statement
215 at this point.

Statement 215 begins the magnitude scaling routine for
an arbitrary array of 800 magnitude points. These points are
scaled either linearly or in decibels, depending on the value
of the logical variable DECIBEL. Once.this selection is made,
the user is asked to specify the desired scale, or the array
is scaled automatically, depending on the logical variable
SCALE which the user can define. (See option 93 in Section 2.10
of the User's Manual.)

After the axis scale has been determined, flow goes to
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statement 255 and the magnitude array and axis are plotted.
The program then terminates or, if KIND = 3, it cycles back
around to statement 320 or 340 to load, scale and plot the
phase response.

When FREQOUT finally does end option 55 or 56, it returns
control to the primary overlay FREQR, which calls program

PLOTSET to finish the plot.

4.14 OVERLAY (5,2) -- PROGRAM PLOTSET.

PLOTSET is a short program which draws the entire Calcomp
plot for options 55 and 56, except for the actual response

curves. Its job includes drawing the boxes, axes, title, labels,

4,15 OVERLAY (6,0) -- PROGRAM READER.

k
ij and grid lines using standard Calcomp routines.
|

f? READER is the program in TOTAL responsible for all

‘ interactive functions. It receives all input from the user

4 when in OPTION mode and translates it while checking for

‘ errors into a coded set of numerical commands which TOTAL

can execute. READER also receives all input from the user in

CALCULATOR mode and performs all calculator operations.
READER is essentially a compiler. It reads input from the

user one 80-character line at a time and translates the

character patterns into a sort of "machine language" of

numbers which can be easily used for branching with FORTRAN

IF and computed GO TO statements. The compiler is capable of

(‘ recognizing a large variecy of character patterns including:

command names, variable names, indicies, numbers, equations,
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options, several special characters such as "$" and "7". It
can also handle abbreviations if they are unique.

The compiled results from READER are stored in two
arrays called MCOMM and DATM. Both arrays have a dimension
of 100 and are indexed by a pointer MPT. MCOMM contains the
type of an item such as whether it is a command or a variable,
etc. DATM contains the specific item identification, such as
which command or which variable. For example, if a series of
letters was found to be the name of a variable, the fact that
it was a variable is stored in MCOMM while its specific
variable number is stored in DATM. READER recognizes six
different types of input items. The code which it assigns in

MCOMM to represent each item is shown below:

ITEM TYPE MCOMM CODE DATM CONTENTS

Command Name 1 Command Number

Variable Name 2 Variable Number

Numerical Data 3 Number's Value

Open Parenthesis 4 Number of indicies to follow

Equal Sign 5 Number of equated item to
follow

Option 6 Option Number

The manner in which READER uses this code is best illustrated
by an example. If the user types a line of input as follows:
OPTION >  ECHO,ON AMAT(8,5)=3.1415 26
READER would store the compiled results in MCOMM and DATM as
shown in Fig. 9.
As each item in the input is coded, it is stored in the
MCOMM and DATM array elements, currently addressed by the index

pointer MPT. After each entry, MPT is incremented to point
B-32
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at the next empty location in the arrays. When an entire
line has been compiled, MPT is set equal to 1 to point at the
first coded instruction and READER is terminated. These
coded instructions are then interpreted by the main executive
overlay (with the help of program DECODER (overlay (7,0)))
and executed in sequence. When the list of instructions has
been exhausted, READER is called again and the user is asked
for another line.

READER has a vocabulary of nearly 200 words which serve
as variable and commanZ names which the user may type. This
vocabulary is stored in an integer array called TABLE, which
is currently dimensioned to allow up to 325 words. When the
éompiler routine encounters a string of letters (A through Z)
that are separated from other characters in the input, it
stores them as a unit into a variable called WORD. The
contents of this variable are then compared with every name
stored in the TABLE array until a unique match is found. The
index number (position in the array TABLE) of the name which
matches becomes the compiled code for that name. This code is
then stored in the DATM array for future reference. If no
match is found anywhere in TABLE, the characters in WORD are
flagged as an input error.

New command or variable names may be added to TOTAL by
simply adding the new word to one of the ten DATA statements
which define the TABLE array. Actually, these DATA statements
define ten smaller tables which are stacked "end-to-end" with
EQUIVALENCE statements to form the one large table called TABLE.

Each of these tables contains a particular name type as
B-34
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listed below:

( TABLE NAME TYPE OF NAME IT_ HOLDS
TABA A table of up to 50 command names
TABB A table of up to 50 real constant names
e TABC A table of up to 25 integer constant names
iv TABD A table of up to 25 one dimensional array names
L TABE A table of up to 25 complex variable names
i{ TABF A table of up to 25 two dimemsional array names
< TABG A table of up to 50 calculator key names
3 TABH A table of up to 25 special abbreviations
TABTY A table of up to 25 auxiliary transfer
function names
TABJ A table of up to 25 auxiliary matrix names

New names are added by simply adding on to the end of the

) , appropriate DATA statement. This will cause one of the 325
index numbers which is not already in use by another name to

( become active. Thereafter, anytime the new name is typed, its
index number will be stored in the DATM array. The programmer
can then use this number to perform any operation he wishes to
define by testing for it anytime the DATM array is used
throughout TCTAL.

Complete details on how program READER actually compiles

the user's inputs are beyond the scope of this manual. The
interested reader is referred to Appendix C for a more

1 complete discussion.

4,16 OVERLAY(7,0) -- PROGRAM DECODER.

DECODER is responsible for decoding the MCOMM and DATM
arrays set up by READER and executing the resulting instructions.
‘ A flow chart for this program is given in Fig. 10.
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As described in Section 4.15, READER encodes input from
the user as one of six possible values of the variable MCOMM
(MPT) and stores additional information about the item in |
DATM(MPT). The code used by READER is repeated below for

easy reference.

MCOMM(MPT) ITEM NAME DATM(MPT) CONTENTS
1 Command Command Number
2 Varible Variable Number
3 Numerical Data Actual value of datum
4 Open Parenthesis Number of indicies to follow
5 Equal Sign Number of equated items to
follow
-6 Option Option Number

Execution of DECODER begins with a computed GO TO
statement which sends program flow to one of six sections of
the program depending on the value of MCOMM(MPT). The
remaining discussion is a detailed description of these six
sections.

The Command section. If MCOMM(MPT)=1, the program flow

jumps to statement number 1000. This statement is another
computed GO TO statement with 36 branches selected by the ‘
value of DATM(MPT). The 36 subsections addressed in this

manner each execute one of the 36 commands recognized by TOTAL. ;
When a particular command has been executed, MPT is incremented ° ?
and control is returned to the GO TO statement at the beginning
of DECODER for the next instruction. :%

Not all of the 36 possible commands are actually executed

Lo

by DECODER. Some of the command subsections only set up a

cen B

request in the NROUTE array for some other overlay to be called
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and return control to the main executive overlay which

executes the request. In the case of COPY (command number 18),
an entire overlay is needed to handle all the possible variations
of a single command. This overlay (Overlay (15,0)) is called
directly by setting MCOMM(MPT)=7 and returning to the

executive through statement number 7000. (When the executive
sees MCOMM(MPT)=7, it automatically calls overlay (15,0) to
execute the COPY command.)

The Variable section. If MCOMM(MPT)=2, the program jumps

to statement number 2000 and subroutine MODIFY is called.
MODIFY is an elaborate subroutine which lists or modifies the
variable in TOTAL's commcn cata base, whose variable number
is stored in DATM(MPT). The exact action taken depends on the
value of MCOMM(MPT ).

1f MCOMM(MPT ') equals 1, 2, 3, or 6, the value of the

variable‘is simply listed at the user's terminal. If the
variable is an array, all elements of the array are listed.

No further action is taken and control returns to the beginning
of DECODER to fetch the next instruction.

If MCOMM(MPT+1)=4, the variable is known to be subscripted

with the number of indicies stored in DATM(MPT+l). The actual
index values are then obtained from DATM(MPT+2) and (if there
are 2 indicies) DATM(MPT+3). If all of this information is
followed by anything other than MCOMM(LASTMPT+1)=5, the

value of the single array element with the given indicies'is
listed. If MCOMM(LASTMPT+1)=5 (where LASTMPT is the value of
MPT which points to the location in DATM(MPT) where the last
index value was obtained), the array element with the given
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indicies is set equal to the variable value stored in the
next DATM location (DATM(LASTMPT+2)).

If MCOMM(MPT+1)=5, the variable is known to have been

followed by an equal sign in the original input, and it is
assigned the value of the number or variable stored in the
(MPT+2) location.

When subroutine MODIFY has finished, it sets the MPT
pointer to point to the next instruction following the last
item of information it used in the MCOMM and DATM arrays.
Control is then returned to the beginning of DECODER to get
the next instruction.

Numerical data, open parenthesis, and equal sign sections.

These three sections print error messages and when TOTAL is
operating properly, should never be used. MCOMM(MPT)=3, 4, or
5 should only ever occur following a variable name and are
intended only for use by subroutine MODJFY as described above.
Since MODIFY always moves the MPT pointer past these numbers
when it has finished using them, they should never be

encountered when the main GO TO statement at the beginning of

DECODER is executed. These sections are only included to protect

against abrupt termination of TOTAL in event that an error
occurs in one of the encoding or decoding routines.

Option section. If MCOMM(MPT)=6, DECODER jumps to state-
ment number 6000.. Since the option number that must be
executed may, in general be found in any one of the 17 primary
overlays, DECODER simply returns control to the main executive
and allows it to call the appropriate overlay needed to
execute the option.
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Termination of DECODER. When MCOMM(MPT)=0, the 1list of

instructions stored in MCOMM and DATM has finally beea exhausted
and DECODER ends. The main executive overlay immediately
calls READER and the user is asked for further instructions

with the familiar prompt: OPTION > .

4,17 OVERLAY (9,0) -- PROGRAM HELP.

HELP is a program consisting predominantly of PRINT
statements. Its sole purpose is to give help on each of
TOTAL's options. Its structure consists of a single computed
GO TO statement with a branch for each option. When a
particular branch is executed, the program simply writes a

short help message and then terminates, returning control to

the main overlay.

4.18 OVERLAY (10,0) -- PROGRAM FRACTOR.

FRACTIOR is a program whose sole purpose is to call
subroutine DMULR to factor a polynomial. The program receives
the polynomial to be factored from any other overlay in TOTAL
through labeled common. After checking to ensure that the
highest power coefficient of the polynomial is non-zero (and
hence its degree correct), FRACTOR loads the polynomial into
a double precision array and then calls DMULR.

When DMULR finishes factoring the polynomial, it returns
the roots as real and imaginary parts in two separate double
precision arrays. After zeroing the imaginary parts that are

0-10

within 1 of zero, FRACTOR copies the results into an array

in labeled common where they can be used by other programs
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and returns control to the main overlay.

4.19 OVERLAY (11,0) -- PROGRAM TTYPLOT.

TTYPLOT produces a printer plot of the root locus for
option 48. It is called only after all points on the root
locus have been calculated and stored as x-y coordinate pairs
on local file TAPEIO.by the root locus programs (overlay (4,0)).
TTYPLOT then reads these ?S;nts from TAPE1O and puts them on
the plot.

The printer plot is first set up in an array called
GRAPH(61,71) by storing alphanumeric characters for the
border, axes, grid, poles, zeros, and locus points at
appropriate locations in the 61 x 71 matrix. The piot is then
generated by printing the GRAPH array contents, one row at a
time, in alphanumeric format.

Points are placed in the GRAPH array, by mapping the region
of the complex plane defined by the locus boundaries AA, BB,
CC, and DD into a.discrete-valued array 61 units wide and a
proportional number of units long. This is accomplished by
simply dividing the length of the real axis to be plotted by

60 and allowing the result to represent one unit on the real

S WP oA DG B <t T

axis of the plot. Since most printers print 10 characters

per inch horizontally and only 6 lines per inch vertically,

B

one unit on the imaginary axis of the plot is chosen to be

10/6 times the size of a real axis unit. Once these units

have been chosen, each locus point is rounded to its nearest
discrete value on the plot and an alphanumeric character

stored in that location in the GRAPH array.
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TTYPLOT was written as a completely general program and could
be used to plot any set of x-y points stored on TAPE10 (not

just root locus points.)

4.20 OVERLAY (13,0) -- PROGRAM MISCELL.

This overlay is designed to serve as a catch-all for
miscellaneous options which do not fit into any other overlay
(either logically or in terms of actual available space). At
present, MISCELL only performs one option: Option 93.

The first executable statement encountered in MISCELL is:

IF(NOPT.EQ.93) GO TO 93
which sends program flow to statement 93 if the option number,
NOPT, is 93. If NOPT # 93, an error message is printed and
MISCELL is terminated. Additional options may be added to this
overlay by simply including another IF statement. For
example, to add option 118, one would insert the statement:

"IF(NOPT.EQ.118) GO TO 118" after the first IF statement and

then add the new routine beginning statement 118.

4.21 OVERLAY (14,0) -- PROGRAM MATRIX.

MATRIX is just an executive program which directs the
selection of two secondary overlays called MATS and MATOPR.

These overlays are discussed in the following two sections.

4.22 OVERLAY (14,1) -- FROGRAM MATS.
Program MATS is responsible for parts of the execution
of options 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, &6, 7/, 78,

and 79. Each of these options is performed by a separate
B-42
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piece of coding addressed by a computed GO TO and several IF
statements at the beginning of the program.

MATS is primarily designed to start every matrix-related
option in TOTAL by obtaining any input which may be needed.
Since options 11 through 17 involve only the input of data,
MATS performs them entirely. For other options, MATS only
receives the needed input and leaves the actual computations
for MATOPR to perform after MATS has terminated.

By dividing the functions performed by the two programs
in this manner, MATCPR does not need to use the large input
subroutine READS at all and all of its space can be devoted

to performing the actual matrix operations.

4,23 OVERLAY (14,2) -- PROGRAM MATOPR.

As has been mentioned, MATOPR performs most of the matrix
operation options for TOTAL. Specifically, it is responsible
for options 25, 26, 27, 71, 72, 73, 74, 75, and 76. MATOPR
makes extensive use of subroutines in performing its many
functions. These subroutines include PHOFS, FACTO, ECHOS,
MADD, MATECHO, GENMMPY, MINV, TRANPOS, and GTFHTF and are

discussed in Section 5.

4.24 OVERLAY (15,0) -- PROGRAM COPYIER.

COPYIER is a program designed to implement the COPY
command providing the ability to transfer variables from one
location to another in TOTAL's common data base. When COPYIER
is called, the variable names following the COPY command are

read as variable numbers from DATM(MPT+1) and DATM(MPT+2).

B-43

e e




—
M,

;W

These variables may be of the following types:

Local polynomial arrays in labeled common

Local complex root arrays in labeled common

Local matrix arrays in labeled common

Local transfer functions in labeled common

Auxiliary matrix arrays in the mass storage file MEMAUX
Auxiliary transfer function in MEMAUX

Depending on what kind of transfer is to be performed,
COPYIER selects one of ten routines to perform the operation.
A 1list of routines which can be selected is given below:

Copy from one polynomial to another

Copy from one root array to another

Copy from one local matrix to another

Copy from a local matrix to an auxiliary matrix

Copy from an auxiliary matrix to a local matrix

Copy from one auxiliary matrix to another

Copy one local transfer function to another

Copy a local transfer function to an auxiliary one

Copy an auxiliary transfer function to a local one

Copy one auxiliary transfer function to another

Each of these operation is performed by.a separate
section of coding in the program. When the transfer of
information is complete, COPTIER returns control to the main
overlay.

4.25 OVERLAY 6,0) -- PROGRAM XFORMS.

XFORMS performs a variety of transformations between
continuous and discrete transfer function representations.
The program is divided into nine sections which independently
perform options 81 through 89. These sections may be classified
according to three types of operation as described below.

Options 81 and 84 use a partial fraction expansion
technique to perform impulse invariant transformations between

s and z transfer functions. In both cases, the transfer
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function of interest is expanded into first order ierms, the
individual poles transformed, one at a time,from one domain
into the other, and the first order terms multiplied together
to form the transformed transfer function.

Options 82, 83, 85, 86, and 89 use a single subroutine
to perform substitution of the form:

s = ALPHA + (z + A)/(z + B)
or

z = ALPHA * (s + A)/(s + B)
Each option simply defines ALPHA, A, and B as needed for its
particular transformation and then calls subroutine BIFORM
(ALPHA,A,B) to perform the transformation on the contents of
CLTF.

Options 87 and 88 simply call appropriate subroutines to
perform transformations on systems represented in matrix form.

When XFORMS has completed a transformation, control is

returned to the main overlay through statement number 9999.

4.26 OVERLA 7,0) -- P RAM BLOCKER.

BLOCKER performs all block diagram manipulation options
for TOTAL, including options 21, 22, 23, 24, 28, and 29. The
program is divided into six sections addressed by a single
computed GO TO statement. Each program section performs its
function using a series of polynomial manipulation subroutines
including POLYADD, POLYSUB, POLYMLT, FACTO, and EXPAND. These
subroutines are described in Section 5. The actual operations

performed using these subroutines are described in detail in

Section 2.3 of the User's Manual for TOTAL.
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, . When blocker finishes an option, it returns control to ,

( the main executive overlay through statement number 9999,
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SECTION 5. DESCRIPTION OF SUBPROGRAMS

This section is written to document each of the
subprograms used by TOTAL. It is intended to describe the
function and use of each routine in sufficient detail to allow | b
a programmer to make intelligent use of it whenever the need
arises. A cross listing of subprograms and main programs used

in TOTAL is presented in Table II for reference. From this

TN T S

" A
A

table one may see which subprograms are used in any given { |

program and also which programs use any given subprograms. In
addition, page numbers are included so that Table II may also

be used as a table of contents for the subprograms described

- srer

L in this section. f.

For each subprogram, a standard sequence of information is
| ( presented including a description, the calling sequence, any

COMMON statements used, a definition of symbols, explanatory

notes, and a list of subprograms used. When COMMON statements
are tabulated, only the variables in each statement that are f
¥ g actually used by the subprogram are listed. Any variables not |
used (but presumably used elsewhere in TOTAL) are represented by %

asterisks to preserve variable position in the COMMON statement.

. NCTION .

The function FT obtains the value of a continuous time
response function for a given value of T using the function FTT
and performs a superposition of two responses in the case of
! v a pulse input.
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2.2

Calling Sequence.
X = FT(T)

COMMON statements used.

COMMON/PARTLS5 /*, RWIDTH, * ,*, INPUTR

Definition of symbols.

T = Time at which response is to be evaluated
INPUIR = 4 1input is a pulse
# 4 input is an impulse, step, ramp, or sinusoid

RWIDTH Width of input pulse in seconds

Notes.
(1) If INPUIR # 4, FT calls FTIT once and simply returns

the results to the calling program. If INPUIR = 4,
FIT is called twice for values of time T and

T-RWIDTH and the results subtracted using superstition

to obtain the pulse response.
Subprograms used.
FTIT
FUNCTION FTT.

The function FTIT calculates the value of a continuous

time response function for a given value of T using information
placed in common by the program TIMER.

Calling sequence.
X = FTT(T)

COMMON statements used.

COMMON/PARTL1 /222 (50) , XR ,NXX, YYY(50),W(50)
COMMON/PARTL2/CR(50),EC(50),0M(50),FE(50),LL

Definition of symbols.

T = Time in seconds at which function is to be evaluated.
The variables in COMMON form the coefficients of the
function to be evaluated which has the form.

12 LL
FTT-= ) FI(I) =+ ) (F2(I) + F3(1)) where
I=1 I=1

it s 2= < e,
= %
F3 I; = CR(I) * EXP(ECgIg*T; * SIN(OM(I)*T + FE(I)
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5.3 SUBROUTINE PROPGAT.

The subroutine PROPGAT iterates a recursive difference
equation of the form:

c(k) = AQQ)r(k) + A(D)r(k = 1) + .o + A(N)r(k - N + 1)
- B(2)e(k - 1) - .o = B(N)e(k - N + 1)

to obtain the current value of c(k) given the past N inputs and
outputs.

Calling sequence.
CALL PROPGAT (A,B,R,C,N,K)

Definition of symbols.

Vector array of coefficients of R terms

Vector array of ceofficients of C terms

Vector array of past N inputs (including present)
Vector array of past N outputs (including present)
Order of difference equation

Current index value

ARZ20nw >
nnanannn

Notes.
(1) The value of r(k - M) is stored in R(M + 1) and

similarly, the value of c(k - M) is stored in
C(M + 1), and so on.

Subprograms used.
RIN

5.4 FUNCTION RIN.

The function RIN computes the current input r(k) for use
by PROPGAT. 1t is capable of generating an impulse, - step,
ramp, pulse, or sinusoid depending on the value of INPUIR.

lin u .
X = RIN(K)
{0) a ents used.

COMMON/DIGIT/TSAMP
COMMON/PARTL5 /RSLOPE, RWIDTH, RHIGHT , ROMEGA , INPUTR

Definition of symbols.

K = Index value of the sampling instant in question
TSAMP = Sampling time in seconds

B-50




A LEY
| @
¥

RSLOPE = Ramp input slope in units/sample |
RWIDTH = Pulse input width in samples 3
: ( RHIGHT = Magnitude scale factor for any input
; ROMEGA = Frequency of sinusoidal input
f INPUTR = 1 RIN = RHIGHT if K = 0
: X = 2 RIN = RHIGHT if K > 0
= 3 RIN = SLOPE * K if K 2 0 ‘ f
= 4 RIN = RHIGHT if 0 g K < RHWIDTH Rt
= 5 RIN = RHIGHT * SIN(ROMEGA*TSAMP*K) !

-

5.5 SUBROUTINE POLAR.

St

The subroutine POLAR converts a set of cartesian
coordinates AC and BD to polar form as a magnitude FACT and
an angle FACTIR.

LA

Calling sequence.
CALL POLAR

COMMON statements used.
COMMON/POLARC/AC, BD,FACT,FACTR

e

Definition of symbols. ! ;}
AC = x-coordinate :
BD y-coordinate

FACT = Magnitude = SQRT(AC*%*2 + BD**2)
FACTR = Angle in degrees = ATAN(BD/AC)

I_ﬂot:es .

(1) The angle FACTR is returned as a value between # TT .

5.6_ SUBROUTINE SPECS.
The subroutine SPECS finds the continuous time response
figures of merit rise time, duplication time, peak time, setting

time, peak value, and final value. It also writes these values
to an output device.

Calling sequence.
CALL SPECS

I state ts_used.

C COMMON/TOTL14 /% % ,% % % , % % , % ,N60 | |
5 COMMON/PARTL1 /22Z(50) , XR, NXX, YYY(50) , W(50)
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COMMON/PARTL2/CR(50), EC(59),0M(50),FE(50),LL
( COMMON/PARTL3/FINVAL, DEL

Definition of symbols. | 1

NGO 6 Output is written to file ANSWER i
7 Output is written to user's terminal b
FINVAL = Final value of response computed by program TIMER
DEL = Iteration step size

The remaining variables listed above are defined in
Section 5.2.

5 Notes. |
: (1) This subroutine finds every peak in the time response
@ over a range of time from 0 to eight times the

longest time constant, and picks the biggest one.
Subprograms used.

FT ZEROIN PEAK

5.7 SUBROUTINE ZEROIN.

The subroutine ZEROIN finds the first vélue of T after
( T = TMIN, where the function FT(T) equals some specified value
| GOAL using an iterative search procedure:.

Calling seguence.
CALL ZEROIN(T,GOAL,IMIN,TMAX,LUCK)

COMMON statements used.
COMMON/PARTL3/FINVAL, DEL

\ finition of symbols.

T = Value of time where FT(T) = GOAL
GOAL = Value of FT for which a ccrresponding time is to
be found

TMIN = Starting value of time range to be searched

TMAX = Final value of time range to be searched

LUCK = 0 No such time was found between TMIN and TMAX
= 1 The search for T was successful

FINVAL = Final value of the function : |

DEL = Starting step size of search (chosen by SPECS to be
one tenth of the shortest period of oscillation in
the function.)

S———
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Notes.

(1)

(2)

If the correct T cannot be found, the value of T
returned is T = 0.

The iterative search used is continued until FT(T)
is within 10-6 * FINVAL of the specified GOAL.

Subprograms used.

FI

5.8 SUBROUTINE PEAK.

The subroutine PEAK finds the first value of T after

T = TMIN where the slope of FT(T) is zero, using an iterative
search technique.

Calling sequence.
CALL PEAK(T,TMIN,TMAX,LUCK)

COMMON statements used.

COMMON/PARTL3/FINVAL, DEL

Definition of symbols.

T = Value of time where slope of FT is zero

TMIN = Starting value of time range to be searched
TMAX = Final value of time range to be searched
LUCK = 0 No peak was found between TMIN and TMAX
= 1 The search was successful
FINVAL = Final value of the function
DEL = Starting step size of the search
Notes.
(1) 1If the function is increasing at TMIN, the search

(2)

looks for a local maximum. If the function is
decreasing, the search looks of a local minimum.

The search is ferminated when the value of TMAX is
reached or when three values of time are found close
enough together that the value on either side of the

peak changes by less than 10°% * FINAL units.

Subprograms used.

FT
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5.9 SUBROUTINE ECHOS.

The subroutine ECHOS is an output routine which is used
to print polynomial coefficients and roots is a compact table.

Calling sequence.
CALL ECHOS(ROOT, POLY, NP, PK)

COMMON statements used.

COMMON/TOTL14/ *, *, *, *, *, *, *,6 *, NGO

Definition of symbols.

ROOT(50,2)= Array of roots to be printed
POLY(51) = Array of coefficients to be printed
NP = Order of polynomial to be printed

PK Polynomial constant to be printed
NGO = 6 Output is printed on TAPE6 = ANSWER
= 7 Output is printed on TAPE7 = OUTPUT

5.10 SUBROUTINE POLECHO.

The subroutine POLECHO is an output routine which
tabulates polynomial coefficients to ten decimal places with
corresponding index numbers.

Calling sequence.

CALL POLECHO(POLY, NP)

COMMON statements used.
COMMON/TOTL14/*, *, *, *, *, %, %*,6 %, NGO

Definition of symbols.

POLY(51) = Array of polynomial coefficients to be printed
NP = Order of polynomial
NGO = 6 Output is printed on TAPE6 ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

. SUBROUTINE RTECHO.

The subroutine RTECHO is an output routine designed to

print out the real and imaginary parts of an array of polynomial
roots to ten decimal places. The routine also prints an index

number for each root.
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Calling sequence.

CALL RTECHO(ROOT,NP)

COMMON statements used.

COMMON/TOTL14/%*, *, #*, #*, %, %, %, %, NGO

Definition of symbols.

ROOT(50,2) = Array of 50 complex numbers where ROOT(I,1)
is the real part and ROOT(I,2) is the

imaginary part of the I th root to be printed
NP = Number of roots to be printed

NGO 6 Output is printed on TAPE6
7 Output is printed on TAPE7

ANSWER
OUTPUT

5.12 SUBROUTINE MATECHO.

The subroutine MATECHO is an output routine designed to
print the elements of a matrix of arbitray dimensions.

Calling sequence.
CALL MATECHO(AMAT,NA,MA)

COMMON statements used.

COMMON/TOTL14/*, *, *, *, %, %, %, *,NGO
Definition of symbols.

AMAT(10,10) = Matrix of elements to be printed
NA = Number of rows in AMAT

MA = Number of columns in AMAT
NGO = 6 Output is printed on TAPE6

ANSWER
= 7 Output is printed on TAPE7

OUTPUT

Notes.

(1) If the matrix to be printed has more than five
columns, and NGO = 6, each row of the first five
columns is tabulated first followed by any remaining
columns lower on the output page. If NGO = 7, all
columns are tabulated side-by-side.
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3.13 SUBRCUTINE TFECHO.

The subroutine TFECHO is an output routine which tabulates
the numerator and denominator polynomial coefficients and
roots of a transfer function in a compact form.

Calling sequence.

CALL TFECHO(NAME,LET,ZERO,POLE, POLYD,GNP,GDK,NZ,NP)

COMMON statements used.

COWON/TOTLIA/*. *, *, k, %, %, %, %, NGO

Definition of symbols.

NAME = Left justified Holerith constant containing the
initials of the transfer function to be printed.
These initials have the letters TF appended to
them forming the transfer function name.

LET = Number of letters stored in NAME (usually 1 or 2)

ZERO(50,2) = Complex array of transfer function zeros

POLE(50,2) = Complex array of transfer function poles

POLYN(51) = Array of denominator coefficients

GNP = POLYN(1)

GDP = POLYD(1)

NZ = Order of transfer function numerator

NP = Order to transfer function denominator

NGO = 6 Output is printed on TAPE6 = ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

3.14 SUBROUTINE POLYADD.

The subroutine POLYADD adds polynomial A and polynomial
B to form polynomial C.

Calling sequence.

CALL POLYADD(A, B, C, NA, NB, NC, AK, BK,CK)
Definition of symbols.

A(51),B(51) Polynomials to be added where A(l) is the

highest order coefficient of polynomial A
and so on.

C(51) = Resulting sum of A and B

NA,NB,NC = Order of A, B, and C respectively
AK = A§1

BK = B l§

CK = C(1
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2.15 SUBROUTINE POLYSUB.

The subroutine POLYSUB subtracts polynomial B from
polynomial A to form polynomial C.

Calling sequence.

CALL POLYSUB(A,B,C,NA,NB,NC,AK, BK,CK)

Definition of symbols.

See section 5.14

Subprograms used.

POLYADD

5.16 SUBROUTINE POLYMLT.

The subroutine POLYMLT multiplies polynomial A by

polynomial B to form polynomial C. If the order of C is
greater than 50 the routine aborts.

Calling sequence.

CALL POLYMLT(A,B,C,NA,NB,NC,AK,BK,CK), RETURNS (number)

Definition of symbols.

Number = Statement number in calling program to which
control is to be returned if the product C

has an order greater than 50.
(A1l other symbols -- see Section 5.14)

2.17 SUBROUTINE EXPAND.

The subroutine EXPAND expands the roots of a polynomial
into a corresponding set of polynomial coefficients.

Calling sequence.
CALL EXPAND(ROOTR,ROOTI,GAIN,NF, POLY)

Definition of symbols.

ROOTR?SO; = Array of root real parts
ROOTI(50) = Array of root imaginary parts
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GAIN = Numerical constant to be multiplied together
with the roots to form the coefficients
NF = Number of roots to be expanded
POLY(51) = Resulting array of coefficients where POLY(1)
is the highest order coefficient and is always
equal to GAIN.

5.18 SUBROUTINE FACTO.

The subroutine FACTO is a setup subroutine which calls
subroutine DMULR to factor a polynomial.

Calling sequence.
CALL FACTO(POLYQ, ROOTQ,NQ, PQK)

Definition of symbols.

POLYQ(51) = Array of coefficients of polynomial to be
factored where POLYQ(l) is the highest order
coefficient. ;

ROOTQ(50,2) = Array of resulting roots where ROOTQ(I,1)

is the real part of the I th root and ROOTQ(I,2)
is the imaginary part.

NQ = Polynomial order

PQK = POLYQ(1)

Subprograms used.
DMULR

5.19 SUBROUTINE DMULR.

The subroutine DMULR is a polynomial factoring subroufine.‘

Calling sequence.
CALL DMULR(COE,N1,ROOTR,ROOTI)

finition of symbols.

COE(51) = Double precision array of coefficients of the
polynomial to be factored
Nl = Order of polynomial
ROOTR(50) = Double precision array of real parts of
resulting factors
ROOTI(50) = Double precision array of corresponding
imaginary parts.
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5.20 SUBROUTINE MADD.

The subroutine MADD adds or subtracts matrix A and
matrix B to form matrix C. If A and B do not have some
dimensions, the routine aborts.

Calling sequence.
CALL MADD(A.B.C.NA.NB.NC.MA.MB.MC.S).RETURNS(number)
Definition of symbols.

A(10,10),B(10,10) Input matrices

c(10,10) Output matrix
NA,NB,NC Number of rows in A, B, and C
MA, MB, MC Number of columns in A, B, and C

S =+]1 B is added to A
= -1 B is subtracted from A
Number = The statement number in the calling program to

which control is to be returned if the subroutine
aborts.

Notes.

(1) Every coefficient in the B matrix is multiplied by
S and the result added to the A matrix.

~-.

2.21 SUBROUTINE GENMMPY.

The subroutine GEN,,PY post-multiplies the matrix A by
the matrix B and stores the results in matrix C. If A and B
do no conform, the routine aborts.

Calling sequence
CALL GENMMPY(A.B.C.NA.NB.NC.MA.MB.MC).RETURNS(number)

Definition of symbols.
(See Section 5.20)

t

.

5.22 SUBROUTINE MINV.

The subroutine MINV performs the inversion of a square,
non-singular matrix of maximum size 10 x 10. If the matrix is
not square, singular, or too big, the routine is aborted.
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Calling sequence.
CALL MINV(A,B,N,M),RETURNS(number)
Definition of symbols.

A(10,10) Input matrix

B(10,10) Inverted output matrix

N = Number of rows in A and B

M = Number of columns in A and B

Number = The statement number in the calling program to

which control should be returned if the routine
aborts.

5.23 SUBROUTINE TRANPOS.

The subroutine TRANPOS transposes (exchanges rows and
columns) the matrix A to form C.

Calling sequence.
CALL TRANPOS(A,C,NA,MA,NC,MC)
Definition of symbols.

A%lO,lO; = Input matrix of maximum size 10 x 10
C(10,10) = Transposed output matrix
NA,NC Number of rows in A and C

MA,MC Number of columns in A and C

5.24 SUBROUTINE MATIN.

The subroutine MATIN is an input routine which interactively
requests the input of a matrix one row (or column) at a time.

Calling sequence.
CALL MATIN(AMAT,NA,MA,NAME),RETURNS(input)

finition of bols.

AMAT(10,10) = Matrix to be input

NA = Number of rows in AMAT

MA = Number of columns in AMAT

NAMS = Alphanumeric name of matrix to be input

Input = Statement number in calling program to which control
is to be returned if the subroutine READS requests
an interrupt to call calculator or HELP.

ubprograms used.

READS MATECHO
B-60
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5.25 SUBROUTINE PHOFS.

The subroutine PHOFS uses Leverrier's Algorithm to
compute adj(sI - a) and det(sI - A). If the input A matrix
is not square the routine is aborted.

Calling sequence.

CALL PHOFS(A,NA,MA,DET),RETURNS(number) ; } 7

COMMON statements used.

COMMON/ADJNT/ADJ(10,10,10)

Definition of symbols.

A(10,10) = A square input matrix
NA = Number of rows in A
MA = Number of columns in A |
DET(11) = Array of coefficients of the polynomial det(sI - A) {
where DET(1) is the lowest order coefficient ! |
ADJ(10,10,10) = Adjoint matrix adj(sl - A) where the first {
' two indices define the row and column
number of each matrix element and the third ¢
is an index on the polynomial coefficients g
of each element

Number = Statement number in calling program to which contol ‘

is to be returned if the routine is aborted.

Subprograms used.

MMPY

3.26 _SUBROUTINE MMPY.

The subroutine MMPY is a special matrix multiply routine
used by PHOFS and EXPAND. It multiplies matrices A and B
and stored the product in C.

Calling sequence.
CALL MMPY(A,B,C,M,K,N)

Definition of symbols.
A(M,K),B(K,N) Input matrices

C(M,N) Output Product Matrix
M,K,N - Matrix dimensions

5.27 _SUBROUTINE CADJB.

The subroutine CADJB computes the polynomial G(s) from
the matrix product (C)T(adj(sI - A))B, where the adjoint
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matrix is supplied as ADJ(10,10,10).

( Calling sequence.

CALL CADJB(C,B,G)

COMMON statements used. 1
- COMMON/ADJ(10,10,10)

Definition of symbols.

C(10) = Input & vector
B(10) = Input b vector
3 ADJ(10,10,10) = Input matrix containing adj(sI - A)
o G(10) = Output array of polynomial coefficients of the
9 forms 8 7 2
G(1)s” + G(2)s” + G(3)s’ + . . . + G(8)s“ + G(9)s + G(10)

Notes;

a4 gl

(1) The subroutine PHOFS (or its equivlent) must be called
prior to calling CADJB to define the values of
| ADJ(10,10,10).

{ 5.28 FUNCTION FW.

The function FW caluclates the discrete or continuous
open or closed-loop frequency response magnitude in linear

magnitude or decibels for a given frequency in hertz or radians
per second.

|
: Calling sequence.
| F = FW(W)

| COMMON statements used.

COMMON/TOTL11/OLNPOLY(51), OLDPOLY(51), OLZERO(50,2),
OLPOLE(50,2)

+NOLZ , NOLP, OLK, OLNK, CLDK

COMMON/TOTL12/CLNPOLY(51), CLDPOLY(51), CLZERO(50,2)
CLPOLE(50,2)

+NCLZ,NCLP,CLK, CLNK, CLDK

COMMON/DIGIT/TSAMP

COMMON/LOGIC2 /CLOSED, DECIBEL, HERTZ, DEGREE

Definition of symbols.

0 NOLZ = Degree of OLNPOLY polynomial
NOLP = Degree of OLDPOLY polynomial
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NCLZ = Degree of CLNPOLY polynomial

NCLP = Degree of CLDPOLY polynomial

W = Frequency at which the response magnitude is to be
evaluated. If HERTZ = .TRUE., this frequency is
assumed to be in hertz. If not, the value of W is
assumed to be in rad/sec.

A1l other variables are defined in Section 4 of the

User's Manual for TOTAL.

5.29 FUNCTION AW.

The function AW(W) is identical to FW (see Section 5.28)
except that the value returned is the phase angle of the
discrete or continuous open or closed-loop transfer function
frequency response.

5.30 SUBROUTINE READS.

The subroutine READS is an elaborate interactive input
routine which provides complete error protection and recovery
and allows the user to retain control of the calling program
even when it is awaiting some numerical data inpuc. It is
designed to be used in place of the standard FORTRAN READ
statement whenever any input is needed.

Calling sequence.
CALL READS(DATN,NO), RETURNS(INRUPT,REPEAT)

COMMON statements used.

COMMON/TOTL16/X,Y,Z2,T REG(20)
COMMON/TOTL17/MCOMM(100),DATM(100) , MPT
COMMON/TOTL18 /NRPT, NROUTE(10) , NPT

Definition of symbols.

DATN(60) = Array in which input numbers received are

returned to the callirg program.

NO = Number of input numbers that READS is supposed to
obtain before returning control to the calling
program.

INRUPT = Actual numerical statement number in the calling
program to which control is to be returned if the
user requests a temporary interrupt (or complete
abort) from entering data by typing a "?*, “C",
or "$". (See Note (1) below.)
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REPEAT = Actual numerical statement number in the calling
program of the user prompt statement which
printed the request for input prior to calling
READS. This feature allows READS to repeat user
prompts when necessary (after any interrupt) by
temporarily returning control to the calling
program.

X,Y,Z,T REG(20) = Variables in COMMON from which the user
can tell READS to get a requested piece
of data instead of typing the number
itself. (See Note (1) below.)

MCOMM(100) ,DATM,MPT = Optional variables which may contain
a sequence of commands to be executed
by the calling program where MPT is
the index number of the command
currently being executed. The only
thing READS does with these variables
is set them to zero if the user
requests a complete abort with a "$".
(See Note (1) below.)

NPT = Number of variables which have been currently input
by the user. When NPT = NO, READS has completed its
task and returns eontrol normally to the statement
immediately following the CALL READS statement in
the main program.

NROUTE(10) = Array used by the "standard interrupt routine"

(See Note (Z% to specify the code number for
the routine to be called in the main program
during a temporary interrupt request by the
user.

8 1if the user types a "C" interrupt request

9 if the user types a "7" interrupt request

NRPT = Index on NROUTE(NRPT) which is set equal to 1
+ during an interrupt request.

NROUTE(1)

Notes .
(1) When input is requested by READS the user may:

Enter the requested numbers or

Type "C" to request a temporary return to the calling
program at statment number INRUPT. NROUTE (1)
is set to 8 to indicate that this is a "C"
interrupt. This function is designed to allow
the user to temporarily jump to a calculator
routine from the middle of inputting data
(although it can be used for any kind of
interrupt desired).

Type "7" to request a tempory return to the calling
program at statement number INRUPT. NROUTE(1)
is set to 9 to indicate that this is a "7"
interrupt. This function is designed to allow
the user to temporarily jump to a help routine
for explanation of the input needed (although
it can be used for any kind of interrupt
desired.)
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Type "L" to list the current values of the requested
variables. The first NO elements of the
DATN array are listed.

Type "*" to leave the current value of a requested
variable unchanged. NPT is incremented by
one and READS waits for the next number in
the sequence. (If NPT = NO, READS ends.)

Type "$" to completely abort not only the current
input of data but also the current option
being executed and any additional options
which may have been stored in the MCOMM and
DATM arrays awaiting execution.

Type "X" or "Y","Z2","T", or "Rl" through "R20" to tell
READS to get the current number being requested
from the corresponding variable in labeled
COMMON X, Y, Z, T, or REG(1) through REG(20)
respectively. READS stores the specified
value into DATN(NPT), increments NPT, and

looks for the next requested value. If NPT = NO,

: READS ends.
Type "P1" to "Pn" to set NPT equal to any number between
. 1 and n = NO. This allows the user to skip
around in list of variables requested to enter
only certain variables or to modify the values
of variables already input. When Pn is typed,
READS waits for the user to specify the value
of the n th variable and then continues to
increment NPT from that point.
The subroutine READS initiates what is called the
"standard interrupt routine" for whatever program calls
it whenever a user types a "C", "7?" or "$". This
interrupt routine is just a sequence of commands stored
in the array NROUTE which direct the flow of the calling
program until the interrpution has ended. It works
as follows: When RFADS encounters an interrupt
character, it stores the code number of the program
which is to be called in NROUTE(1), sets the pointer
NRPT = 1 and returns control to statement number INRUPT
in the calling program. This statement then stores
the code number for the program which contains it in
NROUTE(2) and returns control to the main executive
overlay. The executive sees that NRPT = 1, so it
calls whatever program has been specified in NROUTE(1)
and increments NRPT. When the program called has
finished executing the executive calls the program
specified in NROUTE(2) which in turn calls the
subroutine READS again and the interrupt procedure is
over. READS then repeats the prompt to the user and
all data that had been entered prior to the interrupt
(as a reminder) and waits for the user to enter the
remaining data (or request another interrupt).
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Appendix C

This appendix is intended to provide supplimental

information on the program READER which is discussed in 3

Section 4.15 of Appendix B. Its purpose is to describe how
READER handles a line of input data and how it interprets

each character it encounters in the line.

I
How Input is Received 1
READER reads an 80 character line into an array of 80 ; i
words calied IN(80) using a right justified, zero-fill ;
hollerith (Rl1) format. This means that each 60 bit word in
the array is filled with zeros except for the six least ‘
significant bits which contain the display code of a given | ?
character in the line. (A display code number is just an
integer from 0 to 63 corresponding to one of the 64 possible
characters which may be typed from the user's keyboard. For

example, the letter "L" has a display code of 13 and is

- ————

represented by the six binary digits: 001101.) Using
this technique, a 1ine of 80 keyboard characters is stored in
an array 80 words long as a sequence of numbers between 0 and

63. READER is then able to operate on this array of numbers !
i

using a compiler code.
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READER's Compiler Code

The compiler code used by READER is shown in Fig. 1. It
consists simply of an array of binary data 64 words long which
defines the meaning of each of the 64 keyboard characters in
up to 20 different situations (modes of operation) in the
program.

The code works like this: Associated with each keyboard
character there is a 60 bit word of coded inforﬁation stored
in the array A. If the binary number represented by these
60 bits is written in octal (base 8), the resulting form is a
20 digit string of digits between 0 and 7. If each of these
digits is considered as a piece of information (i.e. a number
between 0 and 7), then each word in the array A can store 20
pieces of information about its corresponding keyboard
character. This information can therefore be used to tell the

compiler how to treat a particular character in 20 different

situations.

How the Code is Used

At this point it may be helpful to give the reader an
example of how a keyboard character can have different meanings
in different situations. Suppose, for example, that the
compiler is operating on a sting of keyboard characters which
are intended to represent a floating point number. If any
character other than O, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, or

"." 1s encountered, the compiler may assume that the current
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11111111141114444166
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114433111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
11111111141114444111
22222222222222222222

22222222222222222222

22222222222222222222
22222222222222222222

22222222222222222222

Fig. 1
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11111111141114244132
11111111141114244132
11111111141114444136
11111111141114444136
11111111141114444166
11111111111114444166
11111111141114444144
11111111141114444166
11111111131115555186
11111111131115555166
11111111141114441122
11111111141114444133
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444144
11111111141114444166
11111111141114444166
11111111141114444166
11111111141114444155
11111111141114444155
11111111141115555166
77777777757776666777

READER's Compiler Code
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number has terminated and subsequent characters belong' to . some
other input item. As long as each new character examined is

0 through 9, this condition will hold true. However, after a
decimal point has been encountered, further decimal points are
not allowed and the meaning of the character "." must be
changed from "decimal point" to "error -- too many decimal
points."

To implement the above simple example, two different
meanings must be defined for the character ".". These
meanings can be coded as two different numbers in two of the
20 possible entries in the element of the A array which
corresponds to the character ".".

What this means is that the 64 keys can be divided into
up to seven groups by each of the 20 columns of numbers stored
in the A array. When a particular column is selected, the
value of the number in that column corresponding to a
particular character is the group to which that character
belongs in the column. For example, in Fig. 1, the number 3
appears in the second column of a(L) (from the right) across
from the keyboard characters: +, -, *, /, and #. Thus, these
five characters belong to the same group when column two is
selected. In the same column, the number 2 appears across from
the keys 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and "." placing them in
another group.

Continuing with the example of reading a floating point

number, it is desired to divide the possible characters into
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groups of valid number characters, valid number terminating
characters, and illegal characters to be flagged as input
errors. The fourth column of the A array makes such a
division, as show below:

PARTITION PERFORMED BY COLUMN 4

Number in Characters assigned Meaning of
column 4 to that number the group of characters
1 decimal point Legal decimal point
2 0123456789 Legal digit
3 E Exponent of number
4 Letters and special Illegal characters
characters not in
any other group
5 blank, comma, semicolon Valid number terminates

When the first character of a number is encountered
in the input string, the compiler goes to "mode 4" and reads
subsequent characters using the partition of column 4., If
the next character encountered is in group 2, it is accepted
as a legal digit, the compiler remains in mode 4, and moves
on to the next character. If a character in group 4 is found,
it is not accepted and an error message is given. If the
character belongs to group 1 (in this case it is a decimal
point( the point is accepted as a legal part of the number,
but the compiler shifts into mode 5 before continuing to the
next qparacter. Mode 5 is just another partition of characters,
this timg as defined by column 5 of the A array. The new
partition is identical to the old except that the character

*." has been moved from group 1 (where it meant "decimal point")
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to group 4 (where it means "illegal character"). For the

remainder of the current number, the compiler never returns

to mode 4 and a second decimal point remains illegal. Similar

modes are defined by other columns to allow the characters

"+" and "-" at the beginning of a number or just following

the letter "E" in the exponent but no where else, and so on.
Numbers are obtained from a particular column by masking

out everything except the six bits in the column of interest.

These bits are then converted to their decimal equivalent and

stored in the variable LGO for for use in a compﬁted GO TO

statement. Statements 205 and 260 in READER perform such

operations.
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