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This report details the development of a computer-aided

design program f or continuous and discrete control systems.

The program described is fully interactive and provides

complete error detection, abort protection, and several

levels of user assistance. In addition to digital and

continuous time response, frequency response, and root locus,

the program allows block diagram manipulation, state-space

analysis, and a variety of continuous to digital transformations.

Built-in polynomial, matrix, and scientific calculators are

also provided. A user’s manual and programmer’s guide are

included to aid in further development of the program.
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AN INT~~ ACTIVE COMPUTER-AIDED DESIGN PROGRA M

( FOR DIGITAL AND CONTINUOUS CONTROL SYSTEM

ANALYSIS AND SYNTHESIS

I. Introduction

Guidance and control is a field characterized by

problems which require a lot of computation. Many of these

computations are conceptually simple, but require a lot of

time and effort to perform. As a result, people working in

the field spend a lot of time doing routine cã-lcülations

instead of concentrating on problems worthy of their skill and

training. The obvious solution is to use a computer to

perform these tasks . 
.

Background and Problem Statement

Many computer-aided design programs have been written

with the intention of reducing the computational effort

required to solve guidance and control problems. (Refs . 2, 3,

4, 5. 6, 7, 8, 9, 14, 22 , 28, 29 , 34, 35). Most perform the

functions for which they were intended very well. Unfortunately

many suffer from poorly designed user interfaces which, while

not affecting their actual results, have seriously impaired

their efficient use.

To point out this problem, some of the more frustrating

experiences which inevitably occur when using computer-aided

S design programs are given on the next page. Not all programs

_ _ _  -
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suffer from each of these problems , but few avoid them all.

( (1) The progra m terminates abruptly because the user
accidentally typed an illegal character . All
information typed is lost and the user must start
over. . 

‘I
(2) In the middle of a long string of input data the

user inadvertantly entered an incorrect value . The
program runs its course producing meaningless output
and when it terminates, the user must start over.

(3) The progra m terminates abruptly because an incorrect
data value caused some internal equation to become
computationally unsolvable. All  current data is
lost and the user must start over,

(4) The program actually operates correctly, producing
the~ desired results and terminating normally. The
user then want~ to try another run with only one
small change in the input . The user must retype all
of the input data .

(5) The user finally obtains the needed results from a
particular program. He then wishes to perform a
different function on the same set of data. He ‘

starts another program and must retype his input data
( again, this time using a different format.

It is this continued typing and retyping of input data

that makes current computer-aided programs difficult to use.

If computer-aided design is to reach its full potential, some

effort  must be made to reduce this workload and to protect

users from their own mistakes.

The problem is that computer-aided design programs are

usually written only as they are needed to solve some

particular set of problems currently of interest. Since the

programmer is only writing the progra m as a quick means to

some other end, he spends very little time in perfecting the

program itself. He is generally satisfied, because of his

2
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H own t ime  c o n s t ra i n t s , i f  the progra m just  acceuts data and j

outputs correct an swers • Few peonl e have t i m e  to make

programs onerate convenien t l y .  J
As a result, there is a lot of computational assistance

ava il - i bl e  today but little of it is easy to use. Savings

in c o mp u t a t i o n  t i m~ which  should be realized are lost in the

e f f o r t  of operating the progr~~ms themselves .

~~~~~~~~~~~~~~~~~~~~~~
Ii computer-aided design software is to be i mproved , it

must be designed with two equally important goals in m in d :

(1) It must be capable of solving whatever class of problems

is of interest , and (2) it should requiro as li.ttle effort

from the user’s standpoint as possible. Onl y if these goals

( are accompl i shed together will users he able to obtain all

the benefits of computer-aided design .

The purpose of this investigation i_ s to develop a

computer-aided design program which will provide all of these

benefits to people working in the field of guidance and control .

To this end the following goals have been determined :

(1) To consolidate as many existing computer-aided design
programs as possible into one package so tha t users
can realize the benefits of a standard input for;i~it ,the convenience of having every function at their
fingertips , and the of liciency of a unified data
structure where input does not have to be retyped
for every phase of a problem .

(2) To create new program functions in area s where
currently existing tools are unavailable or inadequate.

3

_ _ _ _  - .- - -_ - -
~~~

- 
-J - - -~~~~~



(3) To design and develop an efficient  user inter face
which gives the user complete control of the progra m( and its data with a minimum amount of typing .

(4) To develop a program structure which is easy to learn,
maintain , modi fy ,  and extend .

ADproach

The approach used in this investigation will be one of

uniform , modular , standardized top-down design . While this

approach is defined in detail in Chapter IV , the basic idea

is a simple four step process:

(1) An overall picture is f irst  obtained of what the
program is to do and how it is to operate as a single
large “black box .” This is accomplished by essentially
attempting to write the user ’ s manua l f irst  so tha t
every function the program is to perform is clearly
defined .

(2) The single black box defined in step 1 is then( broken down into several smaller boxes (modules) each
of which must then be defined as thoroughly as the
original box .

(3) Step 2 is repeated on each new set of boxes until
eventually a level is reached where each module
performs only a single elementary function .

(4) Finally, the elementary modules are constructed and
tested individually usLnp~ a standard programming styleand then combined until eventually the original black
box has been realized.

Thus, the program is designed “from the top down” to

obtain a uniform final structure but built “ from the bottom up. ”

Constraints

The following constraints were placed on this investigation

either by the resources available or the nature of the problem

C itself:



r

(1) The goal K ‘!l is t be ~~~‘ : ff i c i  ( ‘n t ly  1 i m i  ted to al in. :
rtc co ;rtnl i sh: ;e ig  by a singl  0 m d ]  vidu. i l.  i n a I 5 ::iuri th

( peri od of t ime .

(2)  The cocl i ng mus t  he n i r fo :-mod us ing  t h e  ~O~~T~~\\  I ’ .’
C O ;i i n ut rr  la nguage ~‘cm i i s e  m m K t  o~ the  c~ i rrent : 1 v
ex is tin : ’, r o ’r ~nn~; ~.‘ hi e h  are to be incl ided in t h u  4ove ra l l  DaC~Z:1;’e ~‘~‘r ’  been ~ r~ t ten in t h i s  1 i; ii , , e.
~~~~~~~~ 2 , 3 ,~~, 5 , , 7 , c~,9 ,1’i , 22 , 2~~, 29 , 3”: , 35)  ;~nd i t  is
1’, er1r~ra 1 1 v acci . ’;) tn ( i  as a sta nd ard  in the  f ~uld

r 
(h ( ’  •

p 
( 3) The program is constrained to operate in less than

60 , 0U0~ words of core umory b~ the corn utc ’r Sy st em .
(~~ef .  ~ i )

(4)  T li ’ . nr ogr~im must lunct i  on rd i ab ly  producing correct
resul t s .

n _ LrLnJ~llLl o sophy

Throughout the design , th e fo l l owing  phi losophy wi l l  he

followed : “the user ’s time is more valuable  than the comnut o ’ S

t ime . ” ~i i i l e  i t  is t rue tha t a computer ’ s t ime is more exponsi~~e

on a mi nute fo r  minu te  basis , it is much cheaper on a probie~i

fo r  pr obl em basis  ( because of i ts  speed). Thi. s i.s the only

fair means of compari son since the object is to solve a Certain

number of problems at minimum expense, not to use up a certain

amount of time at m i n i m u m  expense1 Therefore, the prime

directive of this study will be: When a choice must be made,

minimizing user time must take precedence over minimizing

computer time . No effort wtll be spared to simplify the use of

routines which are needed by so many people so much of the tine.

c
S
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I I .  Development of Ini t ial Progra m Fun~ ti ons

(
As mentioned in the introduction , the objective of this

design study is to develop a computer progra m which is both

fully interactive and capable of solving the problems of

interest. This chapter develops the requirements for the

second of these goals. The f i r s t  will be discussed in Chapter

III.

The ultimate motivation behind this investigation is the

desire to obtain a tool which is capable of performing every

computation needed in the field of guidance and control. To

demonstrate the magnitude of this undertaking, the following

list has been compiled . While the list is by no means complete,

it is representative of the kinds of functions which are needed .
( A discussion of why these functions are needed is beyond the

scope of this report, but the fact that they are needed is

documented (as indicated below) in more than one reference in

the literature.

Need~ for Cornp~ter Assistance in
_Guidance and~Gpntrol

(1) Root locus in the s, z, w, and w ’ planes. (Ref s. 13 ,
20, 21, 27 , 28, 33)

(2) Discrete and continuous time response. (Ref s. 14, 20,
21, 23, 27 , 28, 30)

(3) Discrete and continuous frequency response. (Ref s. 20,
21, 23, 27 , 28, 30)

(4) Discrete, continuous, and stochastic system
simulations. (Ref s. 20, 23, 26, 30)

(5) Power spectrum analysis. (Ref s. 25, 30)

6
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(6) Sensitivity analysis. (Refs. 20, 21, 27 , 28)
(7) Relative and global stability analysis . (Refs. 20, 21)
(8) Polynomial operations including addition , subtraction ,

multiplication, division , factorization , and
expansion. (Refs. 13, 14, 20, 21, 23, 27 , 28, 30)

(9) Matrix operations including :
Addition , subtraction , multiplication, inversion,
and transposition .
Computation of adjoint, cofactor, and determinant .
Similarity transformations and rank determination.
Eigenvalue and eigenvector calculation .
State transition and resolvant matrix computation ,
Diagon~lizatton and Hermite normal form reduction.

(10) Discrete to and from continuous system representation
transformations and approximations . (.~efs . 14 , 23,
25 , 30)

(11) State-space model to transfer function model
conversion. (Refs. 13, 14, 20, 21, 23, 25, 27, 28,
30, 34)

(12) Transfer function conversion to state-space canonical
forms . (Refs. 14, 20, 21, 23, 27 , 28, 30, 34) ;

(13) Conversion between state-space canonical forms.
(Refs. 14, 20, 23, 27, 34)

( (14) Continuous filter design including Butterworth,
Chebyshev, elliptic, and other realizations. (Refs . 14,
23. 25 , 30)

(15) Digital filter design including finite (FIR) and
infinite (IIR ) impulse response realizations.
.(Refs. 14, 23, 25, 30)

(16) Signal processing and analysis including convolution,
Fourier transformation, integration, differentiation,
correlation, and RMS analysis. (Refs. 14, 23, 25 , 30)

(17) Classical control design including gain, lead, and
• lag compensation and Guillemin-Truxal techniques.

(Refs. 20, 21 , 27)
(18) Modern control including state-variable feedback,

modal control, and observer design. (Ref S. 20, 21,
27 , 34)

(19) Direct digital des ign including minimal prototype,
dead-beat response, windowing, frequency sampling
and mean-square error techniques . (Ref s. 14, 23,
25 , 30)

(20) Optimal control design including solution of the
Ricattt equation and performance index adjustment.
(Refs. 20, 24, 2~)

7
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• (21) Non-linear control design including phase plane
methods , linearization , and curve f i t t ing  techniques .
(Refs. 20 21, 22)

(22) Stochastic control analysis and Kalman filter design,
(Refs. 21, 26)

(23) Partial fraction, continued fractiOn, and :ppwer~series expansions. (Refs. 14, 20, 21, 22 , 23, 27 , 28)
(24) Equation solution including ordinary and partial

differential equations and sets of linear algebraic
equations. (Refs. 22, 28)

(25) Word length, quantization, and sampling rate analysis.
(Refs. 14, 23, 30)

(26) Block diagram manipulation including addition and
multiplication of transfer functions, and the closing
of unity and non-unity feedback loops. (Ref S. 13,
14, 20, 21, 23, 27)

Determination of Priorities

Because of the size of the above list, this study cannot

hope to accomplish everything. Therefore, it is necessary to
( 4

select which subset of these functions should be developed

first. Such a selection should give priority to functions

which are of greatest and most general use in the field, especially

those which would be useful in performing other higher level

functions. This section describes how priorities were assigned

and what functions were selected for implementation during

this investigation.

To aid in assigning priorities which would develop the

most general and widely useful functions first, a survey was

taken of textbooks in the field. (Refs. 13, 14, 20, 21, 22 , 23,

24, 25 , 26, 27 , 28, 30, 34). A priority was assigned to each

function in relation to (1) the number of different areas of

8
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control (digital , continuous , stochastic, optimal , etc.) in

• ( wh i ch :  i t  ~•ia s used and (2) the frequency with which it  was

needed in each area . No formal scoring procedure was used ,

but each f u n c t i o n  was evaluated according to the following

general. guidelines:

k (1) Computations which  were required extensively in :i ore
than one area were given top priority w i t h  those
encountered most o ft e n  being considered f i  r st .  \ot
only are such funct ions  the most genera l iv  u s efu l
but they may often serve as bui ld ing blocks fo r  ‘ ore
comr)lcx functions.

(2) SpeCialized Functions that were considered f l :nda uer i t a l
to a particular area of study were given the second
highest priority.

(3) ‘lore advanced procedures needed for serious work in
the field were selected next . ~t this n o i n t  t ilo
functions became so snecialized that Priorities hmd
to be assigned based on the needs of i n d i v i d o t i  s
alPeady using the program as it was being dcvelo’ od .

( (4)  Sta te -of - the-a r t  computational techniques shoulo be
added to the complet e package as they are develoo( ’d .

Using these guidelines , the following areas were selecu’d

as being essential first level elements of a comnrehensi’~e

computer program for guidance and r’ontrol work :

(1) Root locus analysis.
(2) Discrete and continuous time response.

• (3) Discrete and continuous frequency response.
(4) Block diagram manipulations .
(5) Polynomial operations.
(6) Matrix operations.
(7) Scalar operations . 

V

(8) Classical control design techniques. V

(9) Modern control design techniques.
(10) Continuous to discrete transformations.

9
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These are the features that will be included in the

• ( program developed during this investigation. In addition to

V being a useful set of functions themselves, they are

• sufficiently general to allow development of a program

structure which can accornodate any other function which may

eventually be added . In other words , they provide a basis on

which a data-base and an interacttve user interface for the

final program can be developed and tested. Development of the

data base is the topic of the next section . The interactive

user interface will be discussed in Chapter III. V

Discussion of Data-base Variables Needed

In order to realize the goal of a unified expandable

program where all routines use the same set of input data, it
( is necessary to develop a data-base of variables in which

this information can be stored. While the actual realization

of this data-base will be covered in Chapter IV, this section

discusses what kinds of variables may be necessary to store all

of the information needed by the program.

The most commonly needed piece of information for the
V functions to be realized is the transfer function. Root locus,

time response, and frequency response routines all require

input in this form as do many of the conventioanl control

system design techniques. Block diagram manipualtions are,

by definition, performed on transfer functions.

A transfer function is represented either as a ratio of

polynomials or in factored form as a collection of poles,

10
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zeros, and gain constants. Thus, to represent a transfer

• 
( function in the common data-base, provision must be made to

store its numerator and denominator polynomial coefficients,

• • the real and imaginary parts of its poles and zeros, and
I,

whatever gain constants may be associated with it.

The number of transfer function storage locations that

V should be provided is dependent upon the single function which

uses the most of them, which in this case is the set of block 
V

diagram manipulations. Since these manipulations, in general,

operate on two transfer functions to produce a third, at least

three storage locations should be provided. An additional

location for storing intermediate results would also be very

useful, bringing the recommended minimum number of transfer

functions to four. Naturally, if space permits, additional

transfer functions could always be used to improve the

versitility of the program.

Using similar reasoning, at least four arrays of polynomial

coefficients should be provided to allow easy execution of

polynomial operations. While such arrays could use the same

locations in which transfer function numerators or denominators

are stored, it is recommended (if space permits) that they be

kept separate to minimize user confusion. Also, since

corresponding to each polynomial there is a set of polynomial

roots, it may be beneficial to provide storage locations for

them. This would allow users to refer to polynomials in

either factored or unfactored form.

V 11
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Matrice s form another large class of variables for which

V ( storage locations must be provided . V~~t least five matrix

arrays are needed to represent a system in state-space

notation including: system ,input , output , direct transmission ,

and state variable feedback rnatricCs If both discrete and

continuous systems are to he represented simultaneously, an

additional two arrays will be needed to store the discrete

system and discret e inPut matric ’~ s These seven :n~lt r i x

locations wi l l  probably have to double as working regts t ’rs

for matrix arithmetic due to storage limitations.

F inal ly , each program in the package will und oubtably have

i ts  own set of scal.ar variables to use. Provision should be

made to include such variables as they become necessary .

It must be remembered tha t ,  whi le  the var iables

recommended above are suf f ic ien t  for the need s of the routines

developed in th i s  study , it may be necessary to provide new

storage location s as new features are added . For example ,

when signa l processing routines are included , it may be

necessary to add locations for storage of number sequences ,

and so on. Wha t ever data structure is developed should be

f lexible  enough to allow continued expansion as the program

grows.

C)
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III. Development of the Interactive User Interface

(
The second major goal of this investigation is to make a

program which is not only computationally powerful, but also

very easy to use. This requires tha t a user be able to specify,

with a minimum amount_ of typing, exactly which operations the

program is to perform and what data it is to use. The following

list defines the features that a program must have if a

truely efficient user interface is to be achieved:

(1) Protection against premature program termination due
to input errors.

(2) Ability to recover from input errors without starting
over.

(3) Ability to selectively display the value of any
program variable at any time.

(4) Ability to selectively modify the value of any
variable at any time.

(5) Ability to transfer the contents of any one variable
to any other variable without manually retyping the
data.

(6) Ability to use. the output of one program function as
the input to another without manually retyping the

• data.
(7) Ability to provide help to the user at any time,

especially when input requested by the program is not
understood .

(8) Ability to selectively list the options available to
the user whenever needed.

(9) Ability to stop the program and restart it later
without losing any data.

(10) Ability to abort a command without terminating the
entire program.

(11) Ability to assume different modes of operation to
tailor fit the program ’s performance to the user’s
preferences.

0 
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(12) Ability to control the flow of the program from
function to function with complete freedom and as( little effort as possible.

In short, an efficient user interface is one which

requires a minimum amount of typing by the user while providing

maximum control of the program.

Design of interactive features differs from the design

of computational features in that the former must be built into

the most basic parts of the program ’s internal structure while

the latter can be added at anytime. Adding an interactive

feature will, in general, require modifications to the entire

structure from the ground up while adding another computational

function generally has little effect on the rest of the

program. For this reason, all of the user interface goals

outlined above will be included as goals of this design study
( from the very beginning. It would be very difficult to add

one at a later date.

For the purpose of discussion, an interactive user

interface can be divided into four parts, including: program

control, data-base control, error protection, and user

assistance. The next four sections discuss these parts and

what features they should include. While recommendations will

be made concerning how these features might work, discussion

of their actual implementation will be saved for Chapter IV.

_ _ _ _ _• Program Control Interface

Complete program control may be defined as the ability to

• randomly select program functions in any order at any time

14
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without regard for what functions may have been previously

( selected. Such control is highly desirable because it gives V

the user maximum flexibility to use the available functions

to their fullest potential. It also protects the user from

getting ”locked in” to pre-selected sequences from which there

is no escape short of complete program termination. Complete

program control places all of the program functions at the

user’s finger tips and allows the user to define what operations

are to be performed .

This kind of control, however, is not without its hazards.

If the user is completely free to select functions in any order,

he is also completely free to make mistakes. Great care must

be taken when designing a control interface of this type, to

ensure that when a user does make an error, it results only in

an error message and not in a program abort.

This section discusses ways in which complete program

control can be provided. The subject of error protection

will be covered later in this chapter.

Two widely used methods for providing program control are

to have the user type a command or select an option number.

(Refs. 2, 3, 4, 5, 6, 7, 29) Each of these techniques has

its own desirable features. Commands put the user in very

direct control of the program and are particularly useful for

simple, frequently used functions with few parameters.

Unfortunately, when a program has a lot of options, commands

require a user to learn a large vocabulary before he can use

(V the program effectively. This is always undersirable,

4 15
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I

especially from a beginner’s standpoint .

C For the purposes of this program, it is recommended that V

the best features of both methods be used. When a function is

simple and frequently used, it is easy to remember and may be

provided as a command name. More complicated and less

frequently used functions are more difficult to remember and
V may be best presented to the user as a list of option numbers

to which he can refer.

One final item which should be discussed under this

heading is the “switch” concept. Certain functions which allow

the user to select his own favorite modes or operation (such

as whether angles are calculated in radians or degrees, or

whether the program should repeat (echo) all input it receives),

may best be provided as a series of switches. Switches are
( simply logical variables which can be set either “on” or “off”

V 

by command from the user. Such swi~rches may be used in any

case where the user has a choice between one of two modes of

operation. They are particularly beneficial in that the

user can custom ta.ilor the program to suit his own preferences .

Very simply, a switch should be used for the type of command

that is to remain in effect until changed by the user.

Data-base Control_Interface

Complete control of the program functions alone is not

enough to provide an efficient user interface, The user must

also be provided with control of the data-base on which the

0
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functions operate. This is important because the user will often

( want to use data already stored in the computer with only

minor changes in its form or location. Incomplete data-base

control may require the user to do unnecessary retyping

V which is contrary to the goal of easy operation,

In this report, complete data-base control is defined as

the ability to list, modify, and transfer the contents of any

variable used by the program. This section discusses some of

the possible techniques that can be used to give the user

this kind of control.

The 
V fi element of a data-base control interface

which must be developed is a reference system which will allow

the user to designate which storage locations are to be operated

upon. While some sort of reference system which assigns a

number to each location in the data-base is a possibility, the

preferred technique is to give every variable or variable array

a name. The user can then refer to each storage location by

typing its corresponding variable name. This system will work 
V

well as long as care is taken to see that each V variable is

given a logical, easy to remember name. A discussion of
V 

variable names chosen for the program being developed as a

part of this study is given in Chapter IV.

To list the contents of any variable location, it is 
V

possible to have a command or option called “list variables”

which, when selected, would ask the user to specify which

variable(s) should be listed. A far more simple and direct

p 
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approach, however , would be to have the user simply type the
V variable name as a command to list tha t variable. This

technique is nearly optima l in the sense that it requires a

minimum amount of typing Vbythe user . 
V

Similarly, there could be a command called “modify

variables’S which would ask the user to specify which variable

to change and its new value. The easiest technique, however,

is to simply type the variable ’ s name and subscripts (if  any)

followed by an equa l sign followed by its new value, all on

one line as a comma nd to make the indicated modification.

Transfer of information from one variable to another is

a more complicated procedure . For simple scalar variables , the

easiest technique is probably the same as for modification as

described above. That is, the user can type the name of the

( variable to receive information followed by an equal sign

followed by the name of the variable from which the information

V is to be obtained . For arrays of variables, where the meaning

of an equal sign would be less clear, a special copy command 
V

could be used . One form of such a command could bez V

“COPY,VA RA ,VARB” which would instruct the program to copy 
V

the contents of the variable named VARA into the one named

VARB . Either or both of these procedures would perform the

required transfer operation with minimum user effort,

Error Protcc~t ton and Recovery Interface

One of the most frustrating problems that plague

interactive programs today is the devast~ttng effect of•

V t  
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inadvertant input errors. For the purpose of this discussion ,

( these errors can be placed into three general classesi

V 

( 1) Typing an illegal cha racter.
(2) Typing a number outside the range of acceptable values

for a particular variable.
(3) Typing a number which will cause an arithmentic

operation to become uncomputable.

All three error types can result in immediate termination of V

the program and complete loss of data . When this happens , the

user is lef t  with no recourse but to begin typing this input

all o’,er again.

Since most of the time spent using a program is devoted

to typing in data , i f the unnecessary retyping caused by these

errors could be avoided , a tremendous improvement in efficiency V

could be achieved . This section discusses several ways in

which the effects  of inevitable user errors can be eliminated .
V 

As long as standard FORTRAN READ routines are used to

receive input from the user, there is little that can be done

about commOn typographical errors. (Ref. 15:5-5). Once the

REAl) routine has been called , control ts out of the prq~rammer ’s

hands until the routine has successfully obtained the requested

input . If an input error is encountered, the REA D routine will

either print the cryptic message: “ERROR , RETYPE RECORD AT THIS

FIELD” or terminate the program completely. No opportunity

for calling a recovery routine is ever provided ,

The only good solution is to develop an alternate read

subprogram to replace the standard FORTRAN one. Such a

subprogram could read data in alphanumeric format (a standard

19 V
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FORTRAN format which will accept ~jj~ character) and then( convert it to usable form using a translation routine. Any

illegal characters detected when converting a line of data 
V

would be called to Vthe user ’s attention by an understandable

error message and the user given an immediate opportunity to

make the needed correction. This approach would vir tual ly

eliminate the greatest single cause of abnormal program

termination: the typographical error .

Errors caused by the user typing a number outside the

range of acceptable values are easy to avoid. All that is

necessary is to test each number when it is received to ensure

that it is within its legal l imi ts,  If it is not , an error

message can be printed and the user asked to retype the number.

Finally, errors due to illegal arithmetic operations must

V be eliminated . This is somewhat more difficult than the

preceding kind of error because it requires the programmer

to anticipate every possible arithmetic error. The only sure

method is to test the argument of every operation that can

produce such an error before the operation is executed . This

can make programming somewhat more difficult but the resulting

product is far more reliable. Table I lists some of the

common functions which can cause abnormal program termination

if they are given an illegal argument.

V User As~!stance Interface

To make an interactive program equally convenient for

C both the beginner and the experienced user, a special kind of

20
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Some common functions that have possible illegal arguments.
V r

Function Symbolic Name Error Condition 
V

Division A/B B = 0

Natural Logrithm ALOG(A) 
V 

A ~ 0

Common Logrithm ALOG 1O(A) A � 0

Square Root SQRT(X) X < 0

Arcsine ASIN(A) IA I> 1 
V

Arccosine ACOS(A) V JA(> 1

Exponential EXP(A) IA I ~ 675.84*

* Number is a function of word length and may di f fe r  from
machine to machine.

V 
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user assistance interface must be developed . This interface

( must be able to teach a new user how to operate the program,

provide quick memory refreshing and prompting for the familiar

user, and yet stay completely out of the way of the expert

who has no need for help.

The first and most important function that the user

assistance interface must perform is to provide the user with

a list of options that are available to him. The user should
V 

be able to obtain this list at .any time but it should ~~~ be

printed out automatically. Nothing is more irritating to an

V experienced user than to have to wait for a program to nrint

unwanted information . Since a large progra m wil l , in genera l ,

have more options than a user will want to see at one time,

the list of options should be divided into groups according

to function so that the user can get a short list of options

for the group in which he is interested.

Finally, provision should be made for several levels of

prompting when the user is requested to input data. The

experienced user may want his prompts to be short and to the

point such ass “ENTER WMIN ,WMAX > “ . The new user, however,

V may not know that “WMIN” and “ WMAX” are and will need a more

detailed request for information, One possible solution to

this need would be to have the program routinely give only V V

brief prompts and if the user does not understand what is 
V

needed he can type a question mark for further details. V

V t  H
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The thing tha t should be remembered is that users do

( not always have a user’s manual handy when they are using a

program. If the user assistance interface is properly

designed , such a lack should not be a serious handicap.

Summa~ry

An eff ic ient  user interface has been defined as one

which gives the user maximum control of an interactive

V program with minimum input effort. The purpose of this

V chapter has been to develop the requirements for such an

interface with the goal of making a program truely easy to

use.

Vj
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JV . Deve1 o~~ne nr and Ri ’al  iza t .  I on ()~ Interna l Structure

(
_

The proceeding chantors have d e f i n e d  the needs and

sneci~ led the goals for  operation o .  the program to be

devel oped . This chanter di scusses the actual internal

r ea l i za tion  of the program . The external real izat ion wil l

be dis cussed ‘V\ ~~~~th  the results of th is  study in Chapter V .

The program to be described was given the name TOT\L

to ref lect  the fact  that it is intended to eventually perform V

the total range of computations needed in the field of guidance V

and control . The ton funct ional  areas selected in Chapter I I

and al l  of the interactive features discussed in Chapter III

were co!~bi ned i nto a program wi th  a f o r m  pe rrn it t i 11~ . continued 
V

growth. How this was accomplished is the subject of the

fol l owi ng Sections .

Design \nD roach

One of the problems with software design in the past has

been that, in the interest of minimizing program size and

memory requirements , program understandability and maintainability

have been sacrificed . Programmers have relied on intuition ,

experience , and “ pet tricks” to optimize their programs without

realizing that such tricks make i t  very d i f f i cu lt for others

to understand and use the coding . As a result, the life of

V 

most software has been very short because improving computer

( V
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systems and changing needs soon render any one version of

( coding obsolete, If the original author of the program is

no longer available , and if no one else can understand the 
V

coding well enough to bring it up-to-date, the program dies

a rapid death. Software designers frequently find themselves

“re-inventing the wheel” because it is easier to write an

V entirely new program than to understand and modify an old

one. This is an obvious waste of time and resources.

Recently there has been an increasing awareness of the V

need for standardized programming techniques which are 
V

universally understandable. One such attempt to provide this

standardization is the “Structured Analysis and Design

Technique” (SADT) developed by SofTech, Inc. (Ref .31 *6).

( SADT is a highly developed methodology involving many

functional analysis and system design concepts. Three of these

concepts which were particularly useful in the development of

TOTAL were, modularity, top-down design, and documentation.

(Ref. 32, 2-1). The following paragraphs briefly discuss

these concepts and how they were applied to TOTAL.

Modularity. Structured Analysis uses the concept of

modularity to develop complex programs in a “divide and

conquer approach.” By successively breaking the program into

more and more, smaller and smaller, well-defined modules, the

analyst finally arrives at small enough pieces so that the

function of each individual module can be easily understood

() V,
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and its interface to other modules clearly seen. Thus, the

( complex program that could not be understood in its total

view can be well understood by seeing each of its modules and

how they fit together. In fact, once this modular breakdown 
V

is created, replacement modules can be designed and “plugged-in”

to improve the performance of the total program.

TOTAL was designed using this modular approach by making

extensive use of subprograms and program overlays (to be

discussed in this chapter). The most bastc functions (such

as polynomial multiplication, and elementary matrix row

reduction) were developed first. These routines were then

used as building blocks for higher-level functions (such as 
S

transfer function multiplication and matrix inversion) which

( in turn were used for still higher level functions (such as

block diagram manipulation and state-space analysis). The

modular design approach was put to such extensive use in the

development of TOTAL that many of its programs and subprograms

consist of almost nothing but calls to lower level subprograms. V 
-

To~-down design. In order to develop the modular

decomposition described in the preceedthg paragraphs, it was V

necessary to work “from the top down.” The top-down design

approach consists simply of viewing the program from the

highest level, most general viewpoint, and then breaking down

this view into finer and finer levels of detail. Without

V this approach, modular decomposition would be difficult. 
V

V~~
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I
For example, in the development of TOTAL, it was not known

( that polynomial multiplication and addition modules would be

needed until the fundamental goal of block diagram manipulation

capability was broken down into the need to add and multiply

transfer functions which in turn required the routines to

handle polynomials.

TOTAL was designed using the top-down approach as

V 
follows* First, the program was divided into ten functional

V 

areas as described in Chapter II. Each of these areas was

then further divided into specific functions which were to

become the individual options and other performance features

in the finished program. Next, the necessary algorithms and

procedures needed to perform each function were either located

or developed. Finally, the specific blocks of coding and

subprograms needed to implement each procedure were written.

Throughout this top-down design process, d~cisions were made

with program simpl icity, size limitations, and interactive

requirements in mind .

Documentation. The third fundamental concept used in the

design approach for TOTAL was the need for continuous

documentation. This concept is simply that documentation is V

best when it is produced continuously throughout the project

while the design decisions are being made and can still be -~
seen in context. (Ref. 31 , 2-9) By recording why particular

decisions were made and what factors influenced them, future

C
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extension and modification of the program can be made

( easier.

The primary reason for using this concept during the

development of TOTAL , however , was that it helped to avoid

a documentation phase at the end of the project. Since all

steps taken in developing the program were recorded as they

occurred, the resulting documentation precisely matched the

final working program. Appendix B, the Programmer’s Manua l

I or TOTA L, is the result of attempts during this investigation

to achieve this desired complete documentatt~on.

Thus, the design process used in the development of
TOTAL was modular, top-down, and documentation oriented. The

remaining sections of this chapter discuss some of the more

( important design decisionsthat were made. 
V

Overlays vs. Sep~mentation

To perform all of the functions specified as goals in the 
V

preceeding chapters requires a very large program. In fact,

the programs and subroutines used in TOTAL collectively

require more than 600.0008 words of central memory. Since

• many computer systems do not have this much memory available,

(Ref. 1 *1) and since most limit interactive users to a much

smaller amount (on the order of 60K) (Ref. 1 ,52), it was
V necessary to design a program structure which would never

V 

.~ require more than 60K at any one time. Two methods for

28
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fitting a large program into a small amount of memory are

( available including overlay generation and segmentation. V

Overlay generation is simply a way of dividing a large

program into a series of smaller programs each of which will 
V

fit into the available amount of memory. As each of these

programs (overlays) is needed, it is loaded into memory

replacing one which has just finished executing. A small

executive routine, written to control the overall flow of the

program, is responsible for calling each overlay into memory

as it is needed. This executive is called the main overlay

and remains in central memory at all times. The~small

programs which it controls are called primary overlays. Only

the main overlay and one primary overlay are ever in central

memory at a given time. Thus, the maximum amount of space

V needed by the entire program is just the sum of the space needed 
V

for the main overlay and the largest primary overlay.

Overlay generation is a simple process. It requires only

the addition of a few new statements to the otherwise normal

FORTRAN source code of the program.

- -. Segmentation is a much more powerful method of subdividing

a large program. Unlike overlays, it requires the addition

of no new statements to the program. Instead, a separate

set of control statements is written describing how the program

is to be divided , A special routine called SEGLOAD then reads

these contrdl statements and divides a compiled version of the

29
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program, as directed , automatically. Once a segmented version

( of the program has been generated, it is used like any other

program. 
V

Because of the large number of sophisticated control

directives that are available with SEGLOAL), segmentation is

a versatile technique. For this reason, it is highly

recommended by people who are thoroughly familiar with its

use. Unfortunately, segmentation is very complex and therefore

more difficult to learn. (A 41-page manual is needed to

describe the process -- Ref. 17).
Thus , there is a trade-off between overlay generation

and segmentation. Overlays are easier to use, but segmentation

is more powerful. Such a choice might merit careful

consideration if overlays were not capable of performing all

of the functions needed. However, since overlays can do 
V

everything required in this case, the fact that segmentation

is more powerful is irrelevant. In keeping with the goal of

making the program easy to extend or modify for as many

people as possible, the overlay technique must be selected.

The more powerful features of segmentation are simply not

needed. 
V

Complete information on overlays and segmentation is

given in Ref.17.
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V TOTAL ’s Overlay_Structure

V ( Once the overlay approach had been selected, it was only

necessary to divide the program into approximately equal V

pieces small enough to f it in 60 ,0008 words of central

memory . TOTAL was divided into one main overlay, seventeen

primary overlays and eleven secondary overlays. A general

flow chart showing this overlay structure is given in Fig . 1.

The main overlay (Overlay (0,0) in Fig. 1) holds the

common data arrays , establishes their default values, and

calls each primary overlay as it is needed . Since each

program function may be performed , in genera l , by any one of

these seventeen primary overlays, a short decision making

routine is used to determine which overlay should be called .

This routine is simply a massive computed GO TO statement in( the main overlay called the “master overlay selector” *

101 GO TO ( 1, 3, 3, 3, 3, 3, 3, 3, 3~ 9,
+ . 14,14,14,14,14,14,14~14~ 9, 9,+ 17,17,17,17,14,14,14~17’17’ 9,+ 2, 2, 2, 2, 2~ 2~ 2. 2~ 2. 9, 

- S

+ 4 ,  4, 4, 4 ,  4 ,  4 ,  4, 4 ,  4, 9,
+ 5, 5, 5, 5, 5, 5, 9, 9, 9, 9~
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 9,
+ 1 4,1 4,1 4,1 4,1 4,1 4,14 ,1 4,1 4,  9,
+ 16,16,16,16,16.16~ 9, 9,16,  9, V

+ 1~ 9, 13. 9, 18, 9, 9. 9, 9, 9 ) ,  NOPT

Entries in this GO TO statement are indexed by the option

number , NOPT , and are simply the statement numbers of the

V seventeen overlay calling statements shown in Fig. 2. If 4

a user selects, for example, option number 93, control is
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_______ —~L~~,O)_ 1 (O,0)--Main executive overlay
(0.0) H (*,0)--Primary overlay number *

—~L(9
,O) I (Called by main overlay)

(*,#)--Secondary overlay number #
—3( ( 1O ,0) 1 (Called by primary

overlay number *)

—~~(11,0)

—~j 13,0)1 S
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- 
V

______ ‘V ‘V
_______ 1( 16 , 1) 1  1( 16, 2 ) 1

—j (17,O)~

V -, Fig. 1. TOTAL ’s overlay structure.
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( CA LL OVERL A Y UPDATE
I CALL OVERLAY ( S HTOTA L , 1 , O )

GO TO 11111
CALL OVERL A Y P A R T L
2 CALL O VER L A Y(5 HT O T AL~~~2 .O)

60 TO 11111
CA LL OVERL A Y POLY
3 CALL OVERLAY (5 HTOTA L,3 ,O)

GO TO 11111
CA LL O V E R L A Y  R O O T L
4 CALL OVERLAY (5 HTOTA L ,4 ,0 )

IF( NOFT .EQ,48 )  GO TO 11
GO TO 11111

CALL OVERLAY FREOR
5 CALL OV ERLAY (5 HTOTA L~ 5 .O)

GO TO 11111
V CALL OVERLAY READER

6 CALL QVERL A Y (5 HT OTA L .6 . O )
GO TO 11111

CA LL OVERLAY DECODER
7 CA LL O V ERLAY(5 HT O TA L, 7 ,O)

GO TO 11111
CALL CALCULATOR (OVERLAY READER)
8 EXTCALC= .TRUE . V

CA LL OVERLAY (S HTOTA L,6 ,O)( GO TO 11111
CA LL OV ERLAY HELP
9 CALL OVERLAY (5 HTOTAL ,9 ,O)

GO TO 11111
CALL OV ERLAY DMULR
10 CALL OVERL AY (5H T OTA L , l 0 ,O )

GO TO 11111
CA LL OVE RLAY TTY PLOT
11 CALL OVERLAY (5HTOTAL , l1 ,0 )

GO TO 11111
V CALL OV ERLAY MISCELL

V 13 CALL OVERLAY (5HTC TA L .13 ,O)
60 TO 11111

CA LL OV ERLAY ~1A TRIX
14 CALL OVERL A Y ( 5 HT O T A L , 14 , O )

GO TO 11111
V CAL L OVE RLAY COPY1ER

15 CALL OVERLAY (5 HT OTAL .15 ,0 )
GO TO 11111

CALL OVERLAY XFORMS
16 CALL OVERLAY(5HTOTAL ,16,0) V 

V

V CA LL OV ERLAY BLOCKER 
V

V 

~ GO TO 11111

17 CALL OVE RLA Y (S HT OTAL ,17 ,0
GO TO 11111

Fig. 2. Primary overlay calling statements.
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transferred to the statement in the main overlay whose

S number appears in the 93rd entry of the master overlay

selector. In this case, statement number 13 would be

selected which is just the calling statement for OverLay(13,0) 
V

(see Fig. 2). Overlay 13 then executes option 93 and returns 
V

L control to the main overlay which repeats the entire process

for the next user command. Complete details on the main

overlay are given in Section 3 of Appendix B.

Primary overlays, like number 13, perform all of the

actual operations in TOTAL. Each is responsible for a certain

class of functions which may include option and command

execution, variable definition and modification, switch V

setting, user assistance, and interactive user interfacing.

If an overlay is too large for the given core restriction, it

is divided into secondary overlays that will fit. Primary

and secondary overlays are discussed in detail in Section 4

of Appendix B.

Data-base Deve~~pment

An important aspect in the internal structure development

of a program is the design of an effective data management

system. Variables must be stored in a manner that will permit

ready access by all parts of the program, easy modification

and inspection by the user, and efficient use of computer

V memory. There are four possible techniques for storing
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r
S information in a program. Each has its own advantages and

V ( disadvantages as descri bed below s - 
V

(1) Local variables. Local variables are used within
V a single program or subroutine for storage of

information while that particular routine is
executing. When the routine has finished , the space
in which such variables are stored is used for
something else and the varIable values are lost. Local
variables are useful as scratch registers which are
quickly accessa ble but which do not tie up any memory
locations when not in use.

(2) Global variables. Often it is desired to keep certain
variables in memory at all times so that they are
available to any routine which needs them. Such
variables are called global or common variables.
They have an advantage in that they are quickly
accessable and are not lost when execution passes from
one routine to another. They have a disadvantage in
that they take up memory locations at all times
whether they are in use or not.

(3) ~~~ uential-access f i les .  In the event that large
amounts ot V data must be stored , there may not be
sufficient  memory locations available in the computer .
One possibil i ty is to write all information to a( local file on a disk or other mass storage device.

V 
If the data is to be used in a single block, the

V 

simplest technique is to use a sequential format,
This means that data is written and read from the
local file in the same order. This technique is
slower than in-memory , but can handle much more V

information. It has an advantage over random-access
storage in that it can be coded with ordinary FORTRAN
WRITE statements. Its chief disadvantage is that
information must be read from the file in the same
order that it was written.

(4) Random-access files. Another form of mass storage
~~h[~~h is similar to the sequential-access file is
the random-access file. The chief difference and
advantage is that information may be written and read
on a random-access file in any order. The chief
disadvantage is the more complicated input/output
statements which are required.

35
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All four types of storage are used in TOTAL ’ s data
( structure to combine the advantages of each. Whenever

• possible, information needed only tempora rily during the

V execution of a single routine is stored in local variables

to conserve storage space. Informa~ Lon which is needed in

more than one routine, or which is used repeatedly throughout

the program is stored in global variables def ined by labeled - V

COMMON statements. A sequential access file is used to

provide a backup memory of all global variables so that the

program can be stopped and later restarted without loss of

information. Finally, a random-access file is used as a mass

storage device on which 24 additional transfer function arrays

and 19 additional matrix arrays can be stored .

(
Selection of Variable Names

In the development of a data-base control interface as

described in Chapter III , it was decided to assign a mnemonic

reference name to every variable or variable array in the

data-base. The only requirement placed on these names was V

V 
that they should be assigned in a logical , easily remembered V

manner. This section discusses what names were chosen and how

they were selected .

The data-base variables to be named were found to fall

into five general categories including; transfer functions,

polynomials, polynomial roots, matricies, and scalar constants.

- 
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/ Since these are natural divisions which are not difficult

(
~ to remember, it was decided to use them as the basis for

• root words from which individual names could be formed. The

following list shows the root words selected as reasonable

7 mnemonic names for each of the five groupss

Group Type ~,tiemonic Root Word

Transfer functions TF
Polynomials POLY

.- V - Polynomial roots ROOT
Matrices MAT
Scalar constants K

Once a root word had been determined for each group, all

that was necessary was to add one or two more letters to it to S

form a unique name for each variable in the group. These 
V

( additional letters should naturally be selected in some

logical manne— as described below for each groups

Transier functions. If transfer functions were to be

divided into four types according to function, one possible

partition might bes 1) forward transfer functions, 2) feedback

transfer functions, 3) open-loop transfer functions, and 4)

closed-loop transfer functions. This partition provides a

convenient basis for naming the four transfer function arrays

stored in the common data base. Since “G” and “11” are often

used in the literature for the forward and feedback transfer

V 

functions respectively, (Ref.20, 21,2.7)and since “OL” and “CL”

make reasonable abbreviations for “open-loop” and “closed-loop”, V

- - 
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the following name assignments ~;ere made f or the four data - 
V

C base t r ans f e r  func t ions :

( 1) GTF --  Forward transfer function
(2)  IITF - - Feedback transfer function

(3) OLTF - - Open-loop transfer function

(4) CLTF - - Closed-loop transfer function

Polynomia. There are 12 polynomial arrays to be fl~ - V~~ Od.

Four of the arrays are used as scratch registers for  polynomial
S 

ar i thmet ic  and , for s implici ty, were assigned the letters A ,

B , C, and U to dis tinguish  between them. The remaining eight

arrays are paired to form the nullerator and denominator

polynomials of the four transfer functions.  Thus, it was

logical to use the same letters (G , H , OL, and CL) in the

names of eac{i pair,  the letters “N” for  “ numerator ” and “1) ” for

( “denominator ” were used . The resulting polynomial names are

listed below:

(1) POLYA -- Coeff icients  of polynomial A
(2) POLYB -. Coefficients of pob~nomia l B
(3) POLYC - - Coefficients of polynomial C

V 

- 
(4) POLYD -- Coefficients of ppiynomial j~
(5) GNPOLY - -  GTF numerator polynomial

(6) GDPOLY - - GTF denominator polynomial
(7) HNPOLY - - tifF numerator polynomial
(8) HDFOLY - - ~ TF denominator polynomial
(9) OLNPOLY - - QJ~TF numerator polynomial
(10) OLDPOLY -- QkTF denominator polynomial
(11) CLNPOLY -- CLTF numerator polynoiial
(12) CLDPOLY -- cLTF denominator polynomial V

C 
38
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V Polynomial roots. Corresponding to the 12 polynomials

C named earlier are 12 arrays of polynomial roots. These

arrays can be distinguished in a natural way using the same

symbols used in the polynomial names and the root word “ROOT” .

Thus, ROOTA was used for the roots of POLYA , ROOTB for POLYB,

and so on. However, because transfer function numerator and

denominator roots are often called “zeros” and “poles ”

respectively1 it was decided to modify the root word in these

cases and substitute “ZERO” for “NROOT” and ~POLEbfor ‘ DROOT” .

This scheme resulted in the following name assignments for the

12 root arrays:

(1) ROOTA -- Roots of POLY~
(2) ROOTB -- Roots of POLYB

(3) ROOTC -- Roots of POLYC V

( (4) ROOTD - - Roots of POLYD

(5) GZERO -- GTF ZEROS (roots of GNPOLY)

(6) GPOLE - - GTF POLES (roots of GDPOLY)

(7) I-TZERO -- HTF ZEROS (roots of HNPOLY)

(8) 1-IPOLE -- HTF POLES (roots of HDPOLY)
(9) OLZERO -- OLTF ZEROS (roots of OLNPOLY)

(10) OLPOLE -- OLTF POLES (roots of OLDPOLY)

(11) CLZERO -- CLTF ZEROS (roots of CLNPOLY)

(12) CLPOLE -- CLTF POLES (roots of CLDPOLY) 
V

V Matrices. Since the letters A , B, C, D, F, G, and K

are common matrix names used in digital and continuous control

work, it was decided to use them for the seven matrix arrays

in the data base. Along with the root word “MAT” , these

V 
letters formed the names on the next page.

C S
~~~~~1 
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AMAT - - Continuous system matrix

V BMAT - - Continuous input matrix

CMAT - - Output matrix V

DMAT - - Direct transmission matrix

FMAT - - DLscrete system matrix

GMAT - - Discrete input matrix

KMAT - - State variable feedback matrix

Scalar constants. Twelve of the more than 60 scalar

variables found in the data base are polynomial constants

(highest order polynomial coefficients). These variables were

designated with the root word “K” and the same distinguishing

letters used for the polynomial arrays. The resulting variable

names are listed below :

( (1) PAK -- ~olynomial ~ constant
(2) P8K - - Polynomial ,~~~ constant
(3) PCK - - ~olynomial C constant
(4) PDK - - ~olynomial ~ constant
(5) GNK - - GTF numerator constant
(6) GDK - - GTF denominator constant -

(7) I-INK -- HTF numerator constant
(8) HDK - - HTF denominator constant

(9) OLNK - - QLLTF numerator constant
(10) OLDK - - OLTF denominator Constant

(11) CLNK -- V ~J,LTF numerator constant
( 12) CLDK - - QJ~TF denominator constant

The remaining scalar variables were too numerous and V 
V

different to be named in any standard manner. These variables

were simply given names to reflect their individual functions.

C Fortunately, they are only used for special purposes

40
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throughout the program and can be def ined as needed in
( appropriate sections of the user ’s manual (See Appendex A).

Realization of the Interactive User Interface

In Chaoter III it was stated that an interactive user 
V

interface was needed to perform a variety of functions,

including program control , data-base control , error protection

and recovery , and user assistance. This section describes, in

general terms, how each of these functions were reaLized .

Program control interface. This interface provides

control to the user in two ways: option numbers and commands.

Option numbers are used to allow the user to select any of the

actual computation functions in the program. They were

implemented by an input routine which, when it encounters a

valid ontion number , executes a computed GO TO statement with

a branch for each ootion. Commands were used to perform

simple funptions on the program itself such as the setting of

a mode control switch or the transfer of information from one

part of the program to another. They were implemented using

another input routine which, when it encounters an alphanumeric

name , consults a table of valid names and executes the command

corresponding to the matching element. A complete development

of the program control structure is given in Section 3 of the

programmer’s manua l (see Appendix B).

C
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Data-base control interface. The data-base control 
V

C interface allows the user to ( 1) display the contents of

a variable by typing its variable name, (2) modify the

contents of a variable by setting its name equal to the

desired new value , and (3) transfer the contents of one

variable to another by equating variable names.

This interface was implemented as a translator routine

which converts a string of user inputs such as variable

names , equal signs , and numer ical values into an array of

coded numbers. Control is then provided by another routine V

which f ollows the array of coded commands and perform s al l

of the necessary manipulations of variables in the data- V

base. The actual operation of this interface is discussed

under programs READER and DECODER in Section 4 of the

programmer ’s manual (see Appendix B).

Error protection and recovery interface. Error protection

and recovery is provided automatically by all input routines 
V

used in the program. All input from the user is read first

in alphanumeric format and then translated into useable

form while being checked for errors. If an error is found ,

the user is notified , all correct information is printed up

to where the error occurred, and the user allowed to continue

typing from that point. Complete details on this interface V

are given under subroutine READS in Section 5 of the

programmer ’s manual (see Appendix B).

C
42

_ _ _ _ _ _ _ _  

V

V±

V 
~~V~V V - - -~~ -~~~~~ ‘ - - V



1. 
V

Use~~ assistance interface.  An entire program in

( TOTAL ’ s overlay structure is devoted exclusively to printing H
user assistance messages . Whenever a need for help is

noted by any of the other interfaces, control is transferred S

to this program and an appropriate message is printed . -

Further details on this interface are given in Section 4

of the programmer ’s manual.

Summary

This chapter has been written to provide an overview

of how the internal structure of TOTAL was developed . It

is intended to bridge the gap between the development of

program specifications in Chapters II and I I I  and the

detailed accounts of the actual internal and external

realizations presented in the appendicies.

1
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S V. Results and Recommendations

(
The goal of this investigation was to develop a

computationally powerful, fully interactive computer program

capable of growing into a comprehensive computer-aided design

tool for the entire field of guidance and control , This

chapter describes what was actually accomplished and where

further work can be done.

Summary of Results

There were four major accomplishments produced as a

result of this study. These accomplishments include a working

computer program , a detailed user ’s manual , a fully documented

( programmer’s manual, and this report. The following 
V

paragraphs discuss the nature and extent of each of these

accomplishments.

The c~mputer pr~~ram, The most visible result of this

study is the program TOTAL which is now in use by faculty and

students at the Air Force Institute of Technology School of

Engineering. TOTAL can best be described as “an interactive

computer-aided design program for digital and continuous 
V 

-

control system analysis and synthesis.” This section describes, V

in general terms, the many functions which TOTAL can currently

perform.

TOTAL is designed as a tool to be used with as much

speed , agility, and confidence as one would use a familiar V 
V

V C
— 

V
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hand calculator. Its interactive interface allows the

( user complete freedom to select options, modify variables, and

give commands without fear of abnormal program termination

due to input errors of any kind . Its computational features

V provide an extensive array of powerful tools which may be

used directly or combined to form even more powerful functions.

The basic “building block ” tool s provided by TOTA L in its

current state of development include:

(1) Discrete and continuous root locus analysis including
tabular listings, printer plots, and CaVlcomp plots.

(2) Discrete and continuous time response analysis
including tabular listings, printer plots,
f igures of merit computation , and Calcomp plots.

(3) Discrete and continuous frequency response analysis V

including tabular listings , printer plots, and
Calcomp plots.

(4) Block diagram manipulations including addition and
multiplication of transfer functions and closing of
feedback loops.

(5) Discrete and continuous state-space to transfer
function conversions.

- (6) Continuous to discrete transfer function digitization
using impulse invariance, bilinear, and first- V -difference transformations.

(7) Polynomial operations including addition , subtraction,
multiplication, division, expansion, and factoring.

(8) Matrix operations including addition, subtraction,
multiplication, inversion, transposition, matrix
exponentiation, determinant computation , and Hermi te
normal for~u Vred~~~~~~~ti on. V

(9) Calculation of state-transition and resolvant
matrices.

(10) Scalar operations performed by a built-in 20-memory
scientific calculator.

V 
(11) Inverse Laplace and z-transforms. 

V

(12) Partial fraction expansion of transfer functions.

C
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The program also allows the user to define additional

( macro routines from the building blocks listed previously.

Provision is made for these routines and all other information 
V

stored in the program to be saved in external storage files

for use in subsequent runs of the program. Help is available

at all times providing several levels of user assistance.
r V

The features previously described form a very powerful 
V

subset of all the functions that are needed in the field.

TOTAL has been designed with a structure that will allow easy

addition of new capabilities as they are developed.

Th~~~ser’s manual . Development of a detailed user’s j
manual was as important as the development of the program

itself. Without such a manual, use of the program would have 3
to rely on word of mouth instruction and many of the most

sophisticated routines would remain forever unused. For this

reason, great care was taken to ensure that every worthwhile

bit of information concerning the program was included in a

clear and logical manner. Liberal use of examples was made

throughout the manual to further this end. The user’s manue l

was produced as a separate document entitled !J~er’s~J1anual for

TOTAL. It is included in this report as Appendix A.

The pror~.rammer ’s manuaj. The programmer’s manual was

V written to provide documentation on all programs and subprograms

used in TOTAL as well as a description of the overall structure

and internal operation of the program. It is intended for the

46
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individual who wishes to make his own modifications and 
V

( additions to the program and as a general aid in maintaining

the program or transporting it from one computer system to

another.

While the Programmer ’s Manua l fp~_TOTAL has been written

as a separate document specializing on the internal structure
V of TOTAL , it is best used in conjunction with the user ’ s manual

and the rest of this report . Thi s is because effective

progra mming requires a knowledge of what a program is supposed

to do and ~~~ it is supposed to do it in addition to ~~ j it is

supposed to work . The programmer ’s manual is included in thi s

report as Appendix B.

This report , This report has been written with the

intent of explaining what was needed in compUter-aided design 
V

for guidance and control, why it was needed, and the approaches

taken to obtain i t .  Because separate documents (Appendices

A and B) were written tO explain the actual internal and

external operation of the program, it was possible to omit this

information from the body of the report. Such an approach

streamlined the report considerably and allowed discussion

of philosophical and developmental considerations without 
V

getting lost in eccessive detail. Together with the appendices,

this report provides a thorough description of the program

from its conception through its current st~ate of development

to its fina l realization. -

C 47
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Recommendations for Further Devel~ pment

C There are two directions in which further development

computer-aided design software can be pursued: (1) the

addition of interactive graphics capability and (2) the

development of new program functions. V

Interactive graphics is a technique in which the user

controls the program wi th a light pen and in which output

is displayed instantly in a variety of graphica l forms .

The addition of interactive graphics fea tures to TOTAL

would be a project which , if successfully completed , would

provide a quantum leap in available computer-aided design

capability. Such a project would not require excessive

rewriting of existing programs because TOTAL has already been

developed with an interactive structure. The commands and option

numbers which control TOTAL are ideally suited for display in

a graphics menu format.

An area of greater interest to the guidance and control

student is the development of additional program functions.

All of the ground work and structure design for the program

has been accomplished during this investigation so that future

efforts need only be concerned with the theoretical and

computational aspects of the new functions themselves. There

is virtually unlimited room for continued development of

computer-aided design tools in the field of guidance and

control. The reader is referred to Chapter II for a list of

some of the potential areas where further work is needed.
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OVERVIEM OF TOTAL
(

TOTAL is designed as a tool to be used with as much speed,
agility, and confidence as one would use a familiar hand
calculator. To help the casual user get a quick idea of what
TOTAL is about, the following overview is provided.

* TOTAL is built around twelve general-purpose polyncinials
of maximum degree 50, and seven general-purpose 10 x 10
matrices.

* Eight of the polynomials may be paired to form the
numerators and denominators of four general-purpose V

transfer functions.

* With just these polynomials, matrices, and transfer functions,
the user is able to use the entire spectrum of ‘IOTAL’s
capabilities, which include: V

Add, subtract, multiply, divide, factor, expand, and
copy polynomials.
Add, subtract, multiply, invert, transpose, obtain
eigenvalues, preset, and copy matrices.

( Obtain root locus, frequency response, and time
V response in both continuous and digital domain of

open and closed-loop transfer functions.
Perform block diagram reduction.

V 
. Compute transfer functions from state-space. 

V

Transform between continuous and digital domains using
a variety of methods. - V

* A built-in 20-memory scientific calculator with a 4-register
• stack is available to the user at all times.

* The user may quickly list, transfer, or modify any variable,
at any time, anywhere in the program.

* Complete error detection, diagnostics, and abnormal
termination protection are provided . Specific help is 

V

• available at any time by simply typing a question mark.

V 

V
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SECTION 1. INTRODUCTION TO TOTAL
(_ H

The preceeding overview gave a capsule summary of what

TOTAL can do. This section summarizes how it works.

TOTAL is an interactive program. The user has at his 
V 

I

disposal 100 options and a few special commands with which V

he can manipulate a data base of 12 polynomials, 7 matrices, 
S

and roughly 60 scalar variables. Each option uses informat”in

stored in these variables to perform a particular function

and saves the results for output or future use. During

execution of TOTAL, the user has complete freedom to select

options, modify variables, and give commands at will. The

following paragraphs summarize what a person needs to know

to utilize the full power of this program.

1.1 TOTAL’S INPUT MODES

TOTAL has three modes in which it pauses for the user to

input information: OPTION, DATA , and CALCULATOR. Each mode

has its own vocabulary of allowable inputs and its own

characteristic prompt to the user.

OPTION mode.

OPTION mode is the primary command mode of TOTAL and is

characterized by the prompts

OPTION >
When TOTAL pauses in this mode, the user is free to type

any command, select any option, modify any variable, or list 
V

C’ any data. It is from thie mode that the user controls the

pro$ram .

A-2
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As many commands, options, etc. may be typed on one line

as desired. In fact , if the last item on a line is followed

by a comma. TOVrAL will wait for another line of input before

beginning execution. Input items must be seoarated by commas

~~~~ blanks.

DATA mote.

When an option has been selected and data is needed ,

TOTAL will ask for it. This is called DATA mode and is

characterized by a prompt of the form:

BITER ITEM1 • ITEM2 , ITEM3 >

In this mode, the user has a number of possible responses:

1. He can type in the desired values of the variables

requested, separated by commas or blanks, in which

case TOTAL will accept the data and continue what it

was doing .

2. If he does not understand what “ITEM1 , ITEM2, and

ITEM3” are, he can type “ ?“  and TOTAL will explain

what information is needed . V

V 3. If one of the numbers requested needs to be calculated ,

he can type “C” to enter CALCULATOR mode. When he

returns from CALCULATOR mode, the prompt (and any

numbers which he may have already typed) are repeated

and TOTAL waits where he lef t of f for the remaining

input , 
V

V 4. If ~~e of the items - is to have the same value as the
V f last time it was requested (or a default value) the

user does not need to input a number. He simply

j types a “*“ in the place of the item to be left V

A -3 -
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unchanged and continues with the rest of the input.

( 5. If the user wants to know what the current values of

the requested variables are , he can type “L” f or a

list. Numbers are listed in the order they were

requested, the prompt (and any numbers typed before

“L”) are repeated, and TOTAL waits where the user

lef t off for the remaining input.

6. If one of the numbers requested is currently stored

in one of the calculator registers, the user may type

X, Y,  Z , T or Ri through R20 in place of the

corresponding number. This is particularly useful

when returning from CALCULATOR mode using the “C”

opt ion .
V In fact , the user can access any variable in TOTAL

this way by typing “C” to go to the calculator, the

varjable !~s name to enter its value into the X register,

“C” to return from calculator , and “X” to tell TOTAL

to use the value now stored in the X register.

7. If, for any reason, the user wishes to abort and i 
V

return to OPTION mode instead of continuing he may do

so by typing “$“ .

The user may mix any of the above responses as needed

while in DATA mode. TOTAL remains in this mode unt il all S

requested data has been supplied.

CALCULATOR mode . 
-

CALCULATOR mode may be entered at any time by typing “C”.

C The calculator operates like an HP-45 calculator (using reverse

polish notation) and is designated with the prompts ~~~*

A-4
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When this prompt is displayed , the user may type a

number, a key name (type KEYS for a list), or a “?“  for a

brief explanation of the calculator. CALCULATOR mode is

terminated by typing another “C” whereupon TOTAL returns to

the mode from which it came . Complete details on TOTAL’s

calculator are given in Section 5 of this manual .

1.2 TOTAL’S OPTIONS

TOTAL presently contains 100 options which have been

divided into groups of 10 according to gc.ieral function. The

following is a list of the ten main groups.

0 - 9 Transfer function input options
10 - 19 Matrix input options S

V 20 - 29 Block diagram manipulation and state-space options
30 - 39 Digital and continuous time response options S
40 - 49 Root locus options
50 - 59 Digital and cont inuous frequency response options
60 - 69 Polynomial operations •
70 - 79 Matrix operations
80 - 89 Digital and continuous transformation options
90 - 99 Miscellaneous options

The first option in each group simply lists the next ten

options. For example , option 30 lists options 30 - 39.

Complete details on these options are given in Section 2 of

this manual. A tabulated list of all options is located inside

the back cover.

13 TOTAL VS VARIABLES

Every variable in TOTAL’s data base may be directly listed

or modified by the user from OPTION mode. Typing a variable ’s

V 
name will list the current value of that variable. Typing a

P
~~~~~~

V
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V name, followed by an equal sign , followed by a number or
V (

~ another variable name will assign the value to the right of

the equal sign to the variable on the left. Polynomial

coefficients are referred to with subscripts, for example

POLY(1) refers to the highest order coefficient in POLYA .

Matrix elements are referred to with two subscripts.

A complete list of all variables is available at any

time using option 97. Details on how to modify and use variables

are given in Section 4.

1.4 HELP -

Help is available to the user at all times and may be S

requested in two ways. In option mode, typing the command

( “ HELP, option number” will give the user a short explanation

of the option number specified. In all modes , the user may

type “?“ for assistance.

I
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SECTION 2. COMPLETE DESCRIPTION OF OPTIONS

C 
V

TOTAL presently contains 100 options arranged in groups

of ten according to function. To execute an option , the user

simply types the option number . TOTAL will then ask for

-: needed information (if any) and execute the option .

V The following is a detailed description of each option.

It is intended primarily as a reference for the user who

wants to know all the details’ about a particular option. The

more casual user may wish to use the tabular option listing

at the back of this manual for quick ref rence .

2. 1 TRANSFER FUNCTION INPUT OPTIONS

( 
- 

Many of TOTAL’s options center around the use or

manipulation of transfer functions. Time response, frequency V

response , and root locus options, for example, all require the V

input of a transfer function prior to beginning calculations.

Other options close feedback loops, add or multiply transfer

functions~ and perform related operations. TOTAL provides

V 
four working registers for this purpose:

GTF Forward Transfer Function
HTF Feedback Transfer Function
WLTF Open-loop Transfer Function
CLTF Closed-loop Transfer Function

All transfer function operations are performed with respect to

one or more of these registers.
V H



- 
~~~~~~~~~~

Each transfer function is made up of a numerator

polynomial and a denominator polynomial which are stored

in TOTAL as two arrays of polynomial coefficients. The

transfer functions listed previously may be defined in terms 
V

of these polynomial arrays as~

G - 
GNPOLY OLTF - OLNPOLYTF - 

~DPOLY OLDPOLY

HNPOLY C - CLNPOLYHTF HDPOLY LTF - i~roi~
Each of these polynomial array names has a specific meaning.

For example , OLDPOLY stands for QJ~TF Denominator POLYnomial .

Since each polynomial can be factored into a constant

times an array of roots , the four transfer functions may also

be defined as:

GNK • GZERO OLNK • OL2EROGTF GDK GPOL.E OLTF OLDK . OLPOLE

HZ ERO CLTF - CLNK • _CLZ ERO
HDK UPOLE - CLDK • CLPOE~

where GZERO, GPOLE, HZERO, HPOLE, OLZERO, OLPOLE, CI2ERO ,

and CLPOLE are complex arrays of polynomial roots and GNK,

GDK, HNK, HDK, OLNK, OLDK, CLNK, and VCLDK are corresponding

constants. These variables are discussed in greater detail

in Section 4.

Options 2 through 9 allow the user to input these

transfer functions in either of the forms described above. S

V OPTION 0: l4st potions. -

This option gives a quick reference list of options 0

through 9. The user may use this, like all options ending

A-8
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in zero, to refresh his memory about the next ten options
( when this manua l is not handy.

OPTION 1: Recover all data from file MEMORY.
While this is not a transfer function input option, it

V V i~ an input option and is placed here because of its importance.

Option 1 reads all the values for every variable in TOTAL

from a local file “MEMORY .” During execution of TOTAL, the

user may store the current values of all variables into memory

by using option 91. (See Section 2.10) Data is automatically

stored in MEMORY when the user types STOP.

Thus it is possible to end TOTAL, do something else, and

restart the program later using option 1 to recover the data

stored in MEMORY.

( OPTIONS 2. 3. 4, and 5: ~ojynomial form input.

These options are identical in format and allow the user

to input GTF, HTF , OLTF, and CLTF transfer functions,

respect ively, in polynomial form.

For example, if the user has an open-loop transfer function

(OLTF) available as a ratio of two polynomials, he may input

it using option 4,as shown on the following page.

Note that the input polynomials (OLNPOLY and OLDPOLY)

were immediately factored and their roots stored in

corresponding arrays (OL2ERO and OLPOLE). The listing shown

in boxes is suppressed if ECHO mode is off ( see option 93, g

Section 2.10)

(T
A -9
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OPTION > 4

(

V 

POLYNOMIAL INPUT OF OLTF (5)
ENTER MUM ~ DENOM DEGREES •OP _V OL IFCE) : 2 3

V 
ENTER 3 MUMER COEFF ——HI TO LO:
> 1 00 1 000 1 6 ci ci -

V DLTF MUM CDEFFIc:IENT: OLTF 2EROS ~SOLZEPO:’( lO u.0 ) SV.. 2 ( — 2 .000 ) + J (  U. )
( iooo . s.. 1 c —8. 000 ) + J( 0. - )

( i~~oo. :~ POLYNOMIAL c:OMSTAMT = 100.0

ENTER 4 DEMOM COEFF——H I TO LO:
V ) 1 26 154 650

OLTF DEMON COEFFICIENTS OLTF POLES (OLPOLE)
( 1.000 :~~~~~ V~~~~• 3 ( —3 .000 :‘ + 1’:: 5.000 :‘

26.00 -‘s.. 2 K —3.000 ) + J( —5.000 )
C 154.0 ) S.• 1 K —20. 00 :~ + j ’~ 0.
C 680. 0 ::‘ POLYNOMIAL COrV~STAMT = 1. 000

GRIN= 1.0 OLK= GAIN.’OLrW’OLDK: = 100. V

V 
OPTION > - 

V

The user also has the option, instead of typing the

actual numerator and/or denominator polynomial itself, of

specifying another source of those numbers if they already

exist in some other polynomial in TOTAL’s memory. For example

if the user responds, as underlined, to the prompt below:

- 
ENTER MUM & DENOM DEGREES (OR SOURCE): 2~POLYR

it will still be necessary to enter the three numerator

coefficients, but the denominator coefficients will, be

copied form POLYA automatically .

C V 

V L
A-1O
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Similarly, typing:(
ENTER MUM DEMON DEGREE -: <OR :~:OIJPCE~ CLNFOLYU POLYC-

will tell TOTAL to get the numerator coefficients from V

CLNPOLY (closed-Loop flumerator POLYnomial) and the denominator
polynomial from POLYC. Thus, once information exists in any
polynomial, it is available to any other polynomial.

The complete list of names the user may type includes:
POLYA , POLYB , POLYC, POLYD, GrIPOLY, GDPOLY, HNPOLY, HDPOLY ,
OLNPOLY, OLDPOLY, CLNPOLY, and CLDPOLY. For further
information on these polynomials, see Sections 2.7 and 4,

OPTIONS 6. 7. 8. and 9: Factored form input.
These options are identical in format and allow the user

( to input GTF, HTF, OLTF and CLTF transfer functions, respectively,
in factored form.

For example, if the user has a closed-loop transfer function 
V(CLTF) available as a set of poles and zeros , he may input it

using option 9 , as shown on the next page.
Note that the roots were entered as actual x-y coordinates

( e + j~~values) in the s-plane . Also, note that the input

roots (CI2ERO and CLPOLE) were immediately expanded into V

polynomials and the coefficients stored in corresponding
arrays (CL.NPOLY and CLDPOLY). The listing shown in boxes is

suppressed if ECHO mode is off (see option 93, Section 2.10) 
V

(:
A- il
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OPTION > 9

FACTORED IN PUT OF CLTF ’ :SSV)
ENTER MUM DEMOM DEGREES <OR SOURCE): 2,:3

ENTER NUMERATOR CONSTANT : 100

ENTER EACH ROOT——R E. IM
CLZERO ’~ 1’ = —~~,OCLZERO ’ 2V ’=  —8~~0

FCLTF MUM COEFFICIENTS CLTF ZEROS (CLZERO)
C 100.0 V ’ ::V•• 2 K —2 .000 ) + J ’- 0. )
C 1000. : S.. I K —8.000 -

~ + J( 0. )
K 1600. :‘ POLYNOMIAL COMSTANT 100.0

ENTER DENOMiNATOR CONSTANT: 1

ENTER EA~:H POO1——P E~ IM
CLPOLE ( 1)= —:3~ 5
CLPOLE 2V .~~= 

•~~~~~~ V~~~~~ 3 0~~ + j (  —5.000 ) ASSUMED
CLPOLE V3:~~~= —2 0,0 V

CLTF DENOM COEFFICIENTS CLTF POLES (CLPOLE) 
V

V ( 1.000 :~ •• 3 K — 3.000 ::‘ + J’~ 5.000 )
( C 26. 00 )S.. 2 c —3. 000 ) + J C —5. 000 )

( 154.0 >5.. 1 C —20.00 
V:, + J( 0. )

C 680.0 POLYNOM IAL CUMSTAMT= 1.000

CLK= (CLNK’CLDK)= 100.

OPTION > 
V

The user also has the option, instead of typing the

poles and/or zeros directly, of specifying another source of

those numbers if they already exist in some other array in

tOTAL’s memory. (For examples, see explanation under options

2, 3, 4, and 5.) The complete list of names the user may

type to specify a source includes ROOTA , ROOTS, ROOTC, ROCID,
- V 

~~EI~c~ GPOLE, HZ ERO , HPOLE, OLZ ERO, OLPOLE, CLZERO , and CLPOLE.

For further information on these root arrays see Section 4.
- 

V 
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Li MATRIX INPUT OPTIONS

OPTION 10* List options.

This option gives a quick reference list of options

iO through i9.

OPTIONS 11 through 17: Matrix inout options.

These options are identical in format and allow the user

to input AMAT , BMAT, CHAT, DMAI, KNA T , FMAT , and GMAT, (as

defined under option 19), respectively. For example , if the

user wishes to input BMA T he would use option 12.

OPTION > 12 -

INPUT OF ( BMAT ] MATRIX:
ENTER MATRIX S IZE: PCW5~COLUP1NI V> 3’4

ENTER 4 ELEMENTS PER RObI :
V ROW 1 > 11 12 1:3 14

( R O W 2 > 2 1 22 2:3 24

ROW 3 > 31 32 33 34

CDL > 1 2 3 4
V ROW

1 11.00 12.00 13.00 14.00 V

2 21.00 22.00 23.00 24.00
3 31.00 32.00 33.00 34.00

The listing shown inside the inner box is suppressed if

ECHO mode is off. (See option 93, Section 2.10)

Note that in the first exampl e ther e were fewer row s 
V

than columns and the user was asked to enter BMPIT by rows

In the case where the opposite is true the user is asked to

enter by columns.
(V  

-
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OPTION > 16

INPUT OF C FMRT ] MATRIX :
V ENTER MATRIX SIZE: PQW5~COLUMMS :~ 5,2
‘V

V 
- ENTER 5 ELEMENTS F-ER COLUMN:

COLUMN 1 11 21 31 41 51

COLUMN 2 > 12 22 :32 42 52 
V 

V

CDL > 1 2
ROW

1 11.00 12.00
2 21.00 22.00
3 31.00 :32.00
4 41.00 42.00
5 51.00 52.00

Once again the inner box is suppressed if ECHO mode is of 1.

V OPTION 18* HelD user set up state-space system model.

This option is a fast way to input all the matrices

needed for a state-space model. It works in the same manner

as inputting the matrices individually using options 11 to

17. but it dimensions each matrix automatically to make it

conform with the given system. V

Specifically, after stating whether the system is to be 
—

continuous (using AMAT , BMAT , CHAT, DMAT , and KNAT) or

discrete (using FMA T, GMAT , CHAT, DMAT , and KMA T) , the user
is asked to type in the numbers of states (order of system),

number of system inputs , and number of system outputs. This

then determines the size of each matrix and the user is asked

for the elements of’ each matrix in the same way as for options

ll to l7.
V 

V

U
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OPTION 1:~~ Explain the use of the above matrices.

Option 19 simply prints the following message.

OPTION > 19
EACH MATRIX AVAILA BLE TO THE USER IN OPTIONS 11-17 (TYPE10 FOR LIST) MAY BE USED AS A SCRATCH/STORAGE REGISTER FORMANIPULATING MATRICES USING OPTIONS 71-79 (TYPE 70 FOR LIST).
IN ADDITION , THE MATRICES MAY BE USED TO REPRESENT DIGITAL
OR CONTINUOUS CONTROL SYSTEMS ACCORDING TO THE FOLLOWING V

EQUATIONS:
CONTINUOUS 5 XDOT (T) = AMAT . x(T) + BMAT . U(T)Y(T) = CHA T • x( T )  + DMA T • U(T) V

WH ERE U(T) = GAIN . (R(T) - KM&T X(T))
DISCRETE: X(Ki1) = FMA T X(K) + GMAT • U(K

Y(K) CHAT X(K) + DMAT . U(K
V 

U(K) = GAIN (R(K) - KA~1~ . X(K) )
OPTION 18 IS AVAILABLE TO HELP THE NEW USER INPUT THE

- V REQUIRED MATRICES. THE MORE EXPERIENCED USER MAY INPUT
V THEM DIRECTLY USING OPTIONS 11-17.

OPTION > V

The definitions for U(T) and U(K) above are standard

state-variable feedback equations . If the feedback is not

in state-variable form, KNAT may be set equal to zero and any
feedback specified in transfer function form as HTF. (see options
3 and 6, Section 2.1)

2.3 BLOCK DIAGRAM MANIPULATION OPTIONS

OPTION 20* List oDtion5.

This option gives a quick reference list of options

20 through 29.

OPTION 21: Form OLTF Irom GTF and HTF. V

This option multiplies GTF and ~1~F to form OLTF. the

open-loop transfer function (OLTF) is defined in TOTAL as

C A-iS 
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OLTF - GTF • HTF

GNPOLY HNPOLY
GDPOL? • HDPOLY

When option 21 is executed, the following operations

are performed on variables in TOTAL.

OLNPOLY = GNPOLY • HNPOLY
OLDPOLY GDPOLY • HDPOLY

OLNK - OLNPOLY( 1
OLDK = OLDPOLY( 1

OLK GAIN . OLNK/OLDK

In short , option 21 simply multiplies two transfer functions

to form a new transfer function . This feature is thus useful

for combining transfer functions in cascade.

OPTION 22~ Form CLTF from GTF and HTF.

V Thi s option forms the closed-loop transfer function (CLTF)

from a forward transfer function (GTF), a feedback transfer

( function (HTF) , and a f orward gain constant (GAIN) as follows :

+ 
- 

i.J GAIN J—4 GTF7
L~~ F k  V

GAIN GTF
I + GAIN GtP~~ HTF

GAIN • GNPOLY
- GDPOLY
- 

1 GAIN • GNPOLY HNPOLY
+ 

~~~OLY HDPOLY

GAIN • GNPOLY • HDPOLY V

GDPOLY • HDPOLY .GAIN • GNPOLY HNPOLY

V where GAIN is some constant which the user can define. 
V

When option 22 is executed, the following operations are

• C pert oriued on variables in TOTAL.

V A~16
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I

CLNPOLY = GAIN GNPOLY • HDPOLY
CLDPOLY = GDPOLY . HDPOLY + GAIN • GNPOLY • HNPOLY( CLNK = CLNPOLY(1) - 

V

CLDK = CLDPOLY(l)
CLK - CLNK/CLDK 

-

The user must supply GTF. HTF, and GAIN prior to
selecting option 22. (See Sections 2.1 and 4.1)

OPTION 23: Form CLTF from OLTF with unity feedback.

If OLTF is a known open-loop transfer function for a

system with unity feedback, this option will calculate the
V 

closed-loop transfer function CLIF as

GAIN _ j—~ ( OLTF

- GA IN~~~OLTFCLTF = 
~ + GAIN OLTF

( GAIN • OLNPOLY
OLDPOLY

- 
1 + GAIN • OLNPOLY

OLDPOLY

GAIN OLNPOLY
OLDPOLY + GAIN OLNPOLY

where GAIN is some numerical constant which the user can

define.

When option 23 is executed , the following opera tions

are performed on var iab les in TOTAL .

CLNPOLY = GAIN • OLNPOLY
~LDPOLY = OLDPOLY + GAIN ‘ OLNPOLY

CLNK - CLNPOLY(1)
CLDK - CLDPOLY( 1) 

V

CLK - CLNK /CLDK

C-
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OPTION 24: Form CLTF from GTF + HTF (pa rallel)

If GTF and HTF are two forward transfer functions with

the same input and outputs which are summed, this option forms

a combined transfer function (CLTF) as follows:

V 

~~~~HT F J

V _ _ _ _ _

~~~ GTF]

CLTF a GTF + HTF

GNPOLY ~ HNPOLY
- GDPOLY HDPOLY

• GNPOLJ HDPOLY +_GDPOLY • HNPOLY
GDPOLY • HDPOLY

When option 24 is executed, the following operations

( 
are performed on variables in TOTAL .

CLNPOLY a GNPOLY • HDPOLY + GDPOLY • HN POLY
CLDPOLY = GDPOLY • HDPOLY

CLNK = CLNP OLY( 1
CLDK * CLDPOLY(1

CLK a CLNK/CLDK

The user must supply GTF and HTF prior to selecting option

25~ (See Section 2.1)

OPTION 25: Form GTF(s) and HTF(s) from continuous
state- soac.~~

Given a state-space representation of the form

A (t) a (AMAT )~ (t) + (BMAT)~ (t )
X(t) • (CMAT)~~(t) + (DHAT)~ (t)

with state-variable feedback

M(t) — GAIN ‘ (~(t) - (KMAT)~ (t))

option 25 computes the forward transfer function GTF between

A c
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input I. and output j as

( GTF • ~~~ T(8[ - AMATY1~ + d

and the equivalent feedback transfer function from output j

to input I, as

HTF ~~T(51 - AMAT).b -
cT(sI - AMA T )b + d

where V

b = i th column of BMAT

~
T 

J th row of CHAT
d = ij th element of DMAT

V 

kT t th row of~~~4AT

Using option 25 is a simple matter. The user first 
V

supplies five matrices using options 11 , 12, 13, 14, and 15

(or option 18): V

AMAT (NA ,MA) Continuous system matrix 
V

V BMAT(NB,MB) Continuous input distribution matrix
CMAT(NC ,MC) Output matrix
DMAT(ND. MD) Direct-transmission matrix
KMKr(NK ,MK ) State variable feedback matrix

where

NA = MA • MC = MK = Number of states
MB • MD = NK = Number of inputs
NC a ND a Number of outputs

(NOTE; For single input-single out put (sIso) systems, BHAT

r 

becomes an NB by 1 column matrix, CHAT becomes a 1 by MC row

matrix, DMA T becomes a scalar, and KMA T reduces to a 1 by MK

row matrix.)

After the system matrices are set up, the user simply

selects opt ion 25. If the system is not SISO, TOTAL will ask

C
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which transfer functions are desired (between which input and

which output) and then store the results in GTF and HTF.

When option 25 is executed, the following operations are
V performed on variables in TOTAL:

GNPOLY = (CHAT) adj(sI - AMAT) • ( BriAr) + (DMAr)
GDPOLY = det(sI - AMAT)
HNPOLY = ( KNAT) . adj(sI - AMAT) . (BMAT)
HDPOLY = GNPOLY

GNK = GNPOLY( 1) HNK = HNPOLY( 1
GDK • GDPciLY( 1) HDK = HDP0LY(1

- V GK = GNK/GDK HK = HNK/HDK
and, as always, the roots of GNPOLY, GDPOLY, HNPOLY , and

HDPOLY are automatically stored in GZERO, GPOLE, WERO and

HPOLE respectively.

OPTION 26: Form GTF(zl and HTF (z) from discrete
~tate-space.

Option 26 functions exactly like 25 except that FMAT

( and GMAT are used in place of AMAT and SMAT . (If the same

V data are used, identical transfer functions result.) Option

26 is intended to reduce a discrete model of the following

form to transfer functions in z-plane.

~(k + 1) - (FMA T)~ (k) + (GMAT)~(k)
= (CMAT)A(k) + (DMAT)u(k) - .

V u(k) • GAIN • (~(k) - (KMA T)x(k))

OPTION 2~ s Write adloint of (sI - AMA T) to file ANSWER.

the adjoint of (SI - AMAT) is a matrix of polynomials in

s (or z) which is useful in computing the resolvant matrix:

(.1 - AMATY 1 - _ _ _ _ _ _ _ _ _ _ _ _

Option 27 tabulates each element of the adjoint matrix

(adj(aI - AMAT) ) as a column of polynomial. coefficients listed

( from highest to lowest power and writes them to local file
A -20
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ANSWER for later disposition to a line printer.

( For example, given the matrix

1-i 0 0
A M A T = I  1 - 2  0

L-2 0 -3

the correspondtng adjoint matrix is
V s2 + S s + 6  0 0

adj(sI - AMAT ) = s + 3 ~~~ 
~~~~~ + ~~ 0

-2s - 4  0 s2 + 3 s + 2

and option 27 tabulates it as follows:

— V

1.00 0. 0. S** 2
5.00 0. 0. S** 1
6.00 0. 0. S** O 

1•- - - - - - -  -

0. 1.00 I 0. S** 2
( 1.00 I 4.00 0. S** 1

3.00 3.00 0. S** 0 
V 

4 V

o. 1.00 S** 2 V

- - -2.00 0. 3.00 S** 1
—4.00 0. I 2.00 S** 0 V

The numerator and denominator of each element in the

resolvant matrix can thus be obtained using option 27 (to

find adj(sI - AMAT) and option 71 (to find det(sI - AMAT) ,

respectively.

OPTION 28; Guilleml,n-Truxal cascade comoensator desi&n. V

V 

The Guillemin-Truxa l, cascade compensator design technique V

involves selecting a desired closed-loop transfer function

A-21
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(CLTF) for a known plant ( GTF) and then f inding a cascade
( compensator (HTF) that, with unity feedback, will. give the t

desired CLTF. (See D’Azzo arid Houpis, Linear Control System

Analysis and Des~gn. pp 408-410).

HTF ____ GTF 1 -~~~~~ 

V

Option 28 simply solves for the HTF that will give the

desired results as follows :

~LTF - ~~GTF * I-rrF
1.GTF * HTF

or - 
V

GNPOLY *H 
- V

CLNPOLY 
• ~~ POLY

1 * HTFGDPOLY

or, solving for HTFs

HNPOLY - — GDPOLY *~~ LN~ QLY
HDPOLY GNPOLY * (CLDPOLY - CLNPOLY) V

The user must supply GTF and CLTF prior to selecting

option 28. (See Section 2.1)

V QfljON 29* Gujllemin-Truxaj feedback corij~ensatpr design.

The Guillemin-Truxa l. feedback compensator design

tschnique involves selecting a desired closed-loop transfer

f~~~tton (CLIF) for a known plant (GTF) and then finding a 
-

~~~~~ compensator (HTF) that will give the desired CLTF.
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V 
>[ GTF j

L~
TF

~~~

Option 29 simply solves for the HTF that will give the

desired results as follows:

GTFcLTF - 1 + G T F *H T F

or
- GNPOLY

CLNPOLY - GDPOLY
CLDPOLY - 

1 GNP~LY 
~ HTFGDPOLY

( or, solving for HTF,

HNPOLY GNPOLY * CLDPOLY
VVVV ~~GDPOLY * CLNPOLY V

HDPOLY - GNPOLY * CLNPOLY

The user must supply GTF and CLTF prior to selecting

option 29. (See Section 2.1)

2.4 TIME RESPONSE OPTIONS

The next ten options (30-39) perform continuous

or discrete time response analysis of either open or

closed-loop transfer functions. To make fullest use of these

options, the user should be aware of three important mode

control switches: CLOSED, ANSWER , and TSAMP. These switches

are described in the following paragraphs.

- j  
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CLOSED is a switch which determines whether the response

( calculated will be that of the open-loop transfer function

(OLTF) or the closed-loop transfer function (CLTF). Typing

“ CLOSED, ON” selectes CLTF while “CLOSED , OFF” selects OLTF .

Similarly, typing “ANSWER , ON” will cause all output to be

written to a local file ANSWER while “ANSWER , OFF” displays

the output at the user’s terminal. For further information

on these switches, see option 93. (Section 2,10) V

V TSAMP is not truely a switch in the on-off sense. It

is a variable containing the value of the sampling time in

seconds. When TSAMP = 0, TOTAL assumes tha t the system to be

analyzed is continuous and expressed in terms of the Laplace

operator s. ~~ TSAMP is given some positive value , the system

is considered to be discrete in terms of the z-transforrn

~perator z with the specified sampling time .

Note that all switches must be set while still in

OPTION mode before typing the desired option number . For 
V

example , typing: OPTION > ANSWER , ON CLOSED, OFF TSAMP

~~~~~, will execute option 31 with the switches set as shown.

Switches always remain as set until changed by the user and

need not be retyped before every option. V

Prior to selecting any option, the user must supply a

transfer function using an appropriate input option (options

0-9, Section 2,1) Functions are restricted to no more than
I

one repeated root which must be real. For the conttnuous case,

C
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the number of zeros must be less than the total number of poles

C and not more than one greater than the number of non-repeated

poles. For discrete responses , the order of the numerator

must not exceed that of the denominator .

Q~~ION 30: List options.

This option gives a quick reference list of options 30

through 39.

onicr~ 31: Tabular listing of F(T) or F(K) .

This option provides a tabular listing of the

time response values over a specified range of time . For

continuous responses (TSA MP = 0), the user is asked to specify

an initial time, final time, and the desired time increment,

and the values of T and F(T) are tabulated. For discrete

( responses (TSAMP ~ 0), where CLTF or OLIF has been supplied

as a z-transfer function , the user is asked to enter the

initial K , final K, and K increment for F(K) wh~~e K is an

index corresponding to a time T K * TSAMP. In this case K,

F(K) , input R(K), and K * TSAMP are tabulated as shown S

below for a pulse input and

CLTF~ 
.
~ 

6.Oz
V 

— (z + 0.2)[z - 0.7 ± 30.2)

The input R(K) for either continuous or discrete systems

may be selected using option 39.
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- 
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OPTION 32~ Plot F(T~~ç~r FLKVLat user’s terminal.
V ( This option prints out a 6 by 8 inch plot of F(T) over

an interval. of time specified by the: user. The F(T) and T

axes are scaled identically to those of the Calcomp plot in

option 34 and thus this option may be used to preview (within

limits of printer resolution) exactly how a Calcomp plot

using option 34 would appear.

For discrete systems (TSAMP ~ 0), F(K) is plotted. In

this case, the plot will not be 8 inches long. Instead, the

increment of K that is plotted will be selected so that the

plot length will never exceed 8 inches.

V F(T) and F(K) are normally scaled automatically, however,

the user may select his own scale by typing SCALE, OFF prior

‘ to selecting the option.
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A sample plot is shown on the preceeding page.

( 

OPILON 33: Printer plot.

This option is identical to option 32 except that the 
V

plot generated is twice as wide, twice as long, and intended

exclusively for disposition to a line printer. The plot is

always written to a local file called ANSWER (regardless of

whether the swi tch ANSWER is on or off). After execution of

TOTAL has been terminated, the user may send the file ANSWER

to the printer using the ROUTE or DISPOSE commands.

OPTION 34: Calç.gj~p plot of F(T) or F(K~.

This option produces a Calcomp plot and Stores it in a

local file PLOT which the user can later dispose to the

plotter when TOTAL has been terminated.

The user is first asked to enter the initial and final.

time to be plotted. Since the time axis will have ten divisions

on the plot, it is usually wise to select the duration of the

plot to be a number evenly divisible by ten. If the switch

SCALE is on, TOTAL will automatically scale the magnitude

•
. axis to even divisions which will extend over the range of the

function in the region of time to be plotted. If SCALE is

off, the user will be asked to specify the minimum and maximum V 

-

axis values. In this case, since the F(T) axis is always six

divisions long, the axis length should be chosen to be evenly

divisible by six for best results.

Finally the user is asked to input a title to be drawn

above the plot. The title may have up to 50 characters.

f
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A guide which is 50 characters long (including the brackets)

is printed to aid the user as shown below:

C ENTEF TITLE I~~~ V 
V 

I:~~A~~Ai TEF-~ t V ~~~~ 
V ] V 

a
?

:AF’lPLE TIT LE U::IN,~ ALL ~~~~ ~~~~~~~ F’ :: At - i E:-F.r1F-LE

V 
If no title is desired the user may simply enter a

blank space. V

TOTAL also provides the capability for drawing more than

one plot on the same set of axes. After MULT, ON has been
V 

typed, all subsequent plots are placed on the next set of axes.

This will continue until MULT , OFF is typed or until a plot

other than a time response (i.e. root locus or frequency

response) is generated . When multiple plots are drawn, the

F(T) axis is scaled to the maximum and minimum values of the
( first response plotted. If subsequent plots exceed the axis

range clipping will occur, so it is recommended tha t the

largest plot be drawn first (or a large enough axis specified

with SCALE, OFF) .

The physical size of the plot may be controlled by setting

the variable FACTOR equal to the desired scale. Normally, with

FACTOR = 1, the plot will be 6 x 9 inches. Typing FACTOR = 2
bef ore selecting the option number will double the size of all

future plots. FACTOR = 05 will reduce the plot to half size.

It is recommended that the user end TOTAL after every

four or five plots and dispose them to the plotter to avoid

incurring the wrath of the computer installation operator.

( (TOTAL can always be restarted without loss of information by
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using option 1 to recover all data stored in MEMORY.) Grid

( lines will be drawn on all plots whenever the switch GRID is

ON. (See option 93, Section 2.10)

V 
OPTION 35: ~~int

_ttme or differenc~~eguatiOfl.

V 4 
If the system is continuous (TSA MP = 0), option 35 will

print the time function as follows:!V~ THE T IN E F IJr4I: T I OTV I r -
:

F T V I=  
V

— 4 • 4 4 ~~’~ T E~ V : F _ 5 .  I C C ~~ T~
— 1 . 4 :~ 1~ 

E.V F V I_
~~~. ñii’i~ T;-

E. V F V _ E .  cU 1
V

: : :II 4 ~ —.~ •T -e- j24 .EV ~~~

1. I:, : ::i E - .P U. T-

For discrete systems (TSAMP ~ 0), the difference equation

corresponding to CLTF(z) = F ( z ) / R (z )  is printed :

F I - I LI . I •F -

4. I CI . •:.P~~
:_  1~ — I: _ 1 . 2 C1 1 Oi V C •F~~~~~

V_ 1~~

( ~i. . ci U Ii  c i:  — 2 — ‘. I L ) : :
:
! CI I — V _ V

+ ,V 1
:
1 

V V, *F_ I
:
~~

V _ I I — .1U~_ ,) L W _I •F I- —

Q~T1ON 36: -Partial  fraction expansion of CLTF_(or_OLTF1.

This option performs the partial fraction expansion of

a transfer function in s or z providing tha t the order of the

numerator is less than the denominator and there is no more

than one repeated pole. For example,

CLTF( s) 1000(s + 4) V

s(s • 10) (s + 2 ± 36)

expands 1:0

1 6 0.56 -0.78 - 0.29 -0.78 + 0.29
CLTF(s )*i+ ( 10)!~~~~s .1o)

+ s + 2 _ J 6  + s + 2 + J 6

and is tabulated by option 36 as shown bnl the next page.
- 

- H
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Note that a pole at the origin due to the presence of a

step input was included . Option 39 may be used to select an

impulse input if this pole is not desired.

OPTION 37~ List time regponse figures of merit.

Option 37 computes most of the characteristics of a time

response that are of interest to the user including rise time

(the time to go from 10% to 90~ of the final value), duplication

time (time from zero to f i rs t  intersection with the final value),

peak time ( t ime to reach highest peak), setting time (last time

at which the response was outside a 2~ envelope around its

final value), peak value (magnitude of highest peak), and the V

V 

final value of the response as time approaches infinity.

OP TION V~

C ON T I T 1 L I C L i TIT lE FE: F ON:E FE.FV C LTF I~~
SV~~

V
I

liVIITH -:TEF- INF~ IT OF ::TF- Erj t~T~-4 = 1.

FV I E TIME: TF- = • 1:Ec5 I : ’ E
t,I IFV L IIA T IOFV 4 T INE: T D . 3 C i  19
PEA~ T I M E :  TP= ~~

;;V44 1
: E TT LIr a i~ T I N E :  TV = 2. 19~ E U
PEA~ 

V -A L I V E :  FIP = 1.~~~~V 7 1~~
FIr-IAL IV V A L ~ _lE:  F’~’= 1. ‘:‘ c ’:’ c’ :- V .

A sample outputt: for an underdamped system is shown above.

Q~TION 38: Quick sketch at user ’s terminaj. F.
Option 38 is similar to option 32 except that the user can

specify initial time ,f t nal time , ~~~ the time increment to be
A-32
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plotted (thereby controlling the length and resolution of the

plot.) In addition , the plot is automatically scaled to use

the entire width of the paper giving maximum resolution , but 
a

usually resulting in unusual scale divisions. This option is

pr imar i ly  intended for  the user who is only interested in a

quick sketch of the general shape of the response curve and

not in reading values off the plot .

OPTION 39: Select step, ramp1 impul~~~~ p~lse, Or_sine input .

The default input for all time response options is a unit

step function , however, the user may select other inputs using

option 39. If TOTAL is in continuous mode (TSAMP = 0) when

this option is selected the user is asked to input ramp slope ,

¶ pulse width , etc., in seconds. For discrete mode (TSAMP ~ 0)

these variables are input in terms of number of samples.
(

2~~ R0OT_LQCU~ OPTI ONS

Option 40 through 49 provide the user with a variety of

tools for studying the root locus of the open-loop transfer

function (OLTF). In order to use thi s option effectively it

is important that the user understand thoroughly the equation s

and variables involved .

Root Locus Eq uations

In its simplest sense, the open-loop tr~ isfer function is

just a ratio of two polynomials in s (or z). For example:

- - - OLNP OLY( s) 3s2 + 9s +6 V

oLrE(s) - 
~tiYPOLY(s) 

- 

2s 3 + 24s~~* 94s + 120

is a possible open .-loop transfer function where OLNPOLY arid
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OLDPOLY are array names in TOTAL containing the Qpen-~oop( 
~jumerator POLYnomial and Qpen-Loop Denomiantor POLYnomial

coefficients respectively. If these polynomials are factored ,

the same transfer function can be written as shown below :

OLTF( ) — QL~ K QLZE~CJ - 3 • (s + 1)(s + 2) 
V

- 

- S - OLDK OL POLE - 
~~~~~~~ (s + 3)(s +

where OLPOLE and OLZERO are complex arrays of pole and zero

coordinates in the s-plane . OLNK ( the Open-Loop Numerator

constant ) and OLDK ( the Qpen-Loop Denominator constant)

together comprise the total fixed open-loop gain (OLNK/OLDK).

However, the entire concept of root locus centers around

varying the overall open-loop gain (static loop sensitivity)

and observing how the poles of the closed-loop system move in

the s-plane. This static loop sensitivity is defined in TOTAL as

( OLK = GAIN * (0LNK/OLDK)

where GAIN is an added gain factor which is varied from zero

to infinity along the root locus. Since the system gain

(OLNK/OLDK) remains constant , OLK also varies from zero to

infin i ty .  In fac t,  if OLNK/OLDK = 1,0 , GAIN = OLK j~ the

static loop sensitivity. The sensitivity at a given point on

the root locus is also defined as

product of distances from locus point 
V

OLK to each pole in the_~y stem V

product of distances from locus point
to each zero in the system

V 
Using this definition of OLK, GAIN is just OLK/(OLNK/OLDK). In

V other words, GAIN is the amount of gain that must be added In

the open-loop to the fixed system gain (OLNK/OLDK) to produce

the desired closed-loop poles.
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__ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V_ V ~~~~~~~~~ 
- V



- - --———---— -— - - V~~~~~~ V 
VV V

4

General_Comments
V ç The root locus is computed one branch at a time within

a region of the compl ex plane which the user can specify.

Calculations begin from poles within the region or locus points

V on the boundaries and proceed until the locus branch leaves the

region of calculation or terminates on a zero. Locus points

-: are calcualted DEL units apart and printed every DELPR units.

Option 49 describes all of the optional variables which may be

used to adjust boundaries, step sizes , and other program functions.

By typing ECHO, OFF (see Section 2.10) the user can

suppress the listing of poles and zeros at the beginning of each

option . As always , if the switch ANSWER is on , output will be

written to the local file ANSWER instead of the user’s terminal.

Calcomp Plot s

The user can obtain a Calcomp pLot of the root locus

within the specified region of calculation for options 41. 42 ,

43, and 48 by typing PLOT, ON prior to selecting the option

number . After each plot , the switch PLOT is automatically

turned back off to prevent accidental generation of unwanted

plots. More than one root locus may be drawn on the same set

of axes by typing MULT , ON prior to generation of the f i r s t

plot. Plots will continue to overlap until MULTI OFF is typed

or until a plot other than root locus (i.e., time or frequency

response) is generated. Additional switches controlling plot

titles, etc. are described in optioi-i 93• V

Zero-angle Root Locus

1~ The zero-angle root l ocus is automatically computed

instead of the usual 1800 locus whenever OLK is negative.
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OLK = GAIN * (OLNK/OLDK) < 0

( The user can arrange this by simply setting OLK, GAIN,

OLNK. or OLDK equal to a negative number. Similarly, if the

• system gain (OLNK/OLDK) is negative and the 180° locus is

desired, the user can make OLK positive by making GAIN

negative, and so on.

OPTION 40: List options.

This option gives a quick reference list of options 40

through 49.

QPTLON 41: General root locus.

This option computes each branch of the open-loop transfer

function (OLTF) over a specified bounded region of the complex

(s or z) plane. Output consists of a tabular listing of locus

points for each branch or sub-branch of the locus and a

Calcomp plot (written to file PLOT) if the switch PLOT is on.

If z-plane is selected (TSAMP ~ 0) the unit circle will be

drawn on the locus plot.

OPTION 42: Root locus with a GAIN of interest.

This option is identical to option 41 except that the

user is asked to specify GAIN and GTOL. GAIN is the variable

part of the static loop sensitivity OLKs

OLK = GAIN * (OLNK/OLDK)

Option 42 calculates the exact values of the closed-loop

roots at the value of GAIN specified. As in 41, a tabular

listing of points spaced DELPR units apart is printed, however

within a range ± GTOL of the value of GAIN specified , every

~ C point calcula ted ( spaced DEL units apart ) is printed.
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r
The user is cautioned that the root calculated at the

( specified GAIN is only the point at the current calculation

step size, DEL, which is closest to the value of GAIN s~ecifLed.

1• To come closer to the exact value. DEL must be made smaller.

If a Calcomp plot is requested, the roots at the GAIN of

interest are marked on the plot.

OPTION 43: Root locus with a damping ratio of interest.

This option is similar to Option 42 except that the GAIN

of interest is automatically calculated at a value of damping

ratio, ZETA, which is of interest. After the value of GAIN

is f ound (by searching along a constant zeta line until an

intersection with the locus occurs), option 43 is identical to

option 42. The user is asked to input the desired value of

ZETA (between 0 and 0.9), RAD, and GTOL where GTOL has the same

meaning as in option 42. The ZETA line may interesect the

locus more than once. If the further point is desired, RAD

(the distance from the origin at which the zeta search starts)

should be set large enough to miss the unwanted intersection.

The user is cautioned that if the intersection with the

locus_occurs outside the specified boundaries, the zeta search

~~!~t~ h stops at the boundary) will fail and GAIN will retain its

old vatue. Should this happen, it is only necessary to extend

the BB (top) and CC (left) boundaries to include the intersection

and try again.

On the Calcomp plot a radial line will be drawn from the

origin corresponding to the specified ZETA. The roots at the

corresponding GAIN of interest are also marked on the plot.
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OPTION_44s List n ooint~ on a branch of interest.( This option is intended primarily to investigate parts

of the locus which are of special interest. Only one branch

of the locus is tabulated, beginnIng at a specified point

• I 
given by input variables XSTART and YSTART. The user also

specifies the number of points (NPOINTS) to be calculated

along the locus at the current step size DEL. No plot is

available with this option.

~PTION 45~ List all po~~ts on a branch of interest.

This i.s similar to option 44 except that all points on the

branch starting at XSTART, YSTART and lying within the

specified boundaries are calculated.

OPTION 46: List locus roots ata GAIN of interest.

( This option is a truncated version of option 42. The

only output is a list of roots at the specified value of GAIN

of interest . No plot is generated .

Q~TION 4~ s List locus roots at a ZETA of interest.

This option is a truncated version of option 43. The

only output is a list of roots at the specified ZETA of interest .

Again, the user is cautioned that if the intersection of the

locus and zeta line occurs outside the specified boundaries

it will not be found . Extending the BB (top) and CC (left )

boundaries will solve this problem.

OPTI1~4 48: Plot root locus a~~user ’s terminal.

This option produces a printed plot of the root locus

within the specified boundaries A/i (right , BB (top) , CC (left),

C
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OPTION > RA=1 BB=5 CC=—11 DD=—5 48

OPEN—LOOP (OLTF~ FOOT LDC.U .: IJ:I:IM,~ OPTION- 48p

REGION OF CALCLJLATION—FERL~ CC= —1 1 .0 TO AR= 1.00
I F•1AJ: Dt~ = —5 . 00 TO B~= 5. 00

8 — - —  -- +
— — —   +

8 X 
— — — — .  + 

+ :~
— — _   

+

— - .. + .. +

8—————— — +———8
- + 8

— — .— — — + ::
8 — — — Q + 8

( — — — — — +
8 — — — — — + 8
.. ..- ~~~~~~••• .•- ••• ..

8 — — — — — + 8

8 — — — — — + 8
— — .— — — 0 + 8

8 — — — + 8
— — .. — — + 8 

•• .— ——— •X 
8 — —  •• + 8

— — —  •• + 8

:~ — — — — — + ::
— — — — — + 8

8 + 8 
— 

:: —   — + 8

8 —  — — + 8

GRID :XFiLE: ;:—A~ I :  1 INCH= 2.0000
Y—A~:IC: 1 INCH= 2.0000

OPTION >
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OPTION > R P— 2 BB 3 CC=—8 DD —2 48

OPEN—LOOF ‘.DLTF) ROOT LOC’J Uc.ING OPTION 48

REGION OF CALCULATION— REAL : CC= —8. 00 TO AA = —2. 00
IMAJ : ~~~~= — 3 . 0 0  TO BB= 3.00

— — — — —
r

8 — — — — - —
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-
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I .
and DD (bottom) . Since the plot is always six divisions (six

( inches) wide, if the user picks the right and left boundaries

to be some multip le of six units apart , the plot scale will

have nice even divisions . Also , since the locus below the

real, axi s is identical to that above it , the user may often

find it advantageous to locate the lower (DD) boundary just
I,
, below the axis to limit the number of print-out lines produced.

Sometimes when pole and/or zeros are very close together,

not all of them will show- up on the plot due to limits in

resolution. Shrinking the boundaries to include just the area

of ~5nterest will usually solve this problem. Since poles are

always placed on the plot after the zeros, a cancelled pole-

zero pair will appear as a pole.

( Sample plots produced by option 48 are shown on the

preceeding pages. Notice how the boundaries AA . BB, CC, and
DD were set prior to typing the option number.

OPTION 49: Print current alues ~~_all root locus variables.

Option 49 is designed to help the user remember all of the

special-purpose variables and their current values. These

variablesraj~~optionaj, but add considerably to the power of the

program. They may be specified directly in OPTION mode by

typing, for example, “M - 4.5” or”GAIN * 1000” etc. These

variables includes
DEFAULT

NAME DEFINITION VALUE
AA Right boundary in the complex plane + 1.0
BB Top boundary .3.0
CC Left boundary -5.0- C .

A-41
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DEFAULTNAME DEFINITI ON VALUE
DD Lower boundary -3.0
BOUND A scale factor which multiplies AA , BB, 1.0

CC, and DD by its value when ~~~ nextroot locus ~~tion ~~ executed and thenresets itself to BOUND = 1.0.
ZETA Damping ratio of interest for which 0.0

root s are found in options 43 and 47.
RAD Distance from the origin at which the 0.01

zeta intersection search is started.
GTOL A region around the gain of interest 0.0

(GAIN) for which extra locus points are
printed. If GTOL = 0, no roots of
interest are calculated.

DEL Calculation step size between locus points. 0.1
DELPR Printing step size between locus points. 0.2
FIGUR E If FIGUR E p1 0, the value of FIGURE will 0.0

be printed on the Calcomp plot. For
example, if FIGUR E = 3, the title “FIGURE
NUMBER 3” will be drawn . Subsequent
plots are numbered 4 , 5, etc., until

( FIGUR E is set back to 0.

2.6 FREQUENCY RESPONSE OPTIONS

The next ten options (50 - 59) perform continuous or

discrete frequency response analysis of either open or

closed-loop transfer functions. To make fullest use of these

options , the user should be aware of several important mode

control switches: CLOSED, ANSWER, DECIBEL, DEGREES , HERTZ ,

and TSAMP . With the exception of TSAMP , these switches are

set in OPTION mode by typing “CLOSED, ON” or HERTZ , OFF, etc.

CLOSED selects either the closed-loop transfer function

(CLTF) or the open-loop transfer function (OLTF ) for analysis .

ANSWER ccntrols whether the output comes to the user ’s terminal

0 or goes to the file ANSWER . When DECIBEL i. on, magnitudes are
A-4 2
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output in decibels, when it is off, linear magnitude is output .

( Similarly, DEGREES and HERTZ select degrees vs. radians and
hertz vs. radians per second respectively. See option ~i for

further information on these switches.

TSAMP is not actually a switch in the on-off sense. It

is a variable containing the value of the sampling time in

seconds. When TSAMP = 0, TOTAL assumes that the system to be

analyzed is continuous and expressed in terms of the Laplace

operator s. If TSAMP is given some positive value, the system

is considered to be discrete in terms of the z-transform

operator z with the specified sampling time.

Note that switches must be set while in OPTION mode before

typing the desired option number. Switches remain as set until

changed by the user and need not be retyped before every option.

As always, prior to selecting any option the user must

supply a transfer function using an appropriate input option

(options 0 - 9).

OPtION 50* kist options.

This option provides a quick reference list of options

50 through 59.

OPTION 51: Tabular listjn&.

This option tabulates the magnitude and phase angle for
a range of frequencies. The user is asked to specify the

initial , final, and delta frequencies in hertz or radians per

second depending on the switch HERTZ • Units for the tabulated
magnitude and phase are dependent upon switches DECIBELS and

C DEGREES respectively.

4. A-43
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QPTIQN~~2: Two-cycle scan of magnitude.

( Option 52 tabulates the response magnitude over two

cycles (powers of 10) of frequency. Fifteen points per cycle
a

are tabulated at frequency increments designed to space them

evenly over the cycle when on a logrithmic scale. The user is

asked to specify the power of ten of the starting frequency.

For example, if the desired starting frequency was 0.01 = io
.2 ,

the user would type simply “-2” . Option 52 would then tabulate

30 points spaced l.ogrithmically over a range from 0.01 to 1.0.

Similarly, typing “ 1” would specify the range from 10 to 1000.

Again, the units of the variable tabulated depends on

switches DECIBELS, DEGREES, and HERTZ. A samplc option i8

shown below;

OPT I ON :> 52

C.LO: .ED—LO~ F FPEC’uEN’:~
- F E: POt4: E U:~ING OPT ION 52

ENTER POl EP OF : TPF’TIN!3 FREt: ~—2 FOP . ~ ETC. :)

II PAD .~ EC ~I DEC IPE L3 FFit • ::EC ’ IIEI: rEEL::

1. 0 0 0 o : o o  . 1744~~1 1! 10. 00 1:00 :  —5 . i
i ~~lIII I I l  I I  251t~~~:r— 12 1 1 1 1 1 1 1  I I  —

~~~ 1_  1 ~
1 4 1 1 1 1  :4:27!!~ 14 1 1 1 1 1 1 1  I —1 2 ~~~~~~~~
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~~~ : I __
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~~~~~
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OPTION 53* Two-cycle scan of’ phase ang.~~( Option 53 is identical to 52 except that phase angle is

tabulated instead of magnitude.

OPTION 54: Plot magnitude or angle at user ’s terminal. —

This option prints out a 6 x 8 inch plot of magnitude or

phase angle over a range of frequency specified by the user.

The plot axis are scaled identically to those of the Calcomp

-: plots in options 55 and 56. Thus, this pption may be used to

preview (within limits of printer resolution) exactly how a

Calcomp plot would appear. The magnitude axis is normally

scaled automatically to easily interpreted dimensions, however,

the user may select his own scale when the switch SCALE is off.

OPTION 55: Calcomp plot -- Linear freQuency axis.
( This option writes a Calcomp plot to a local file PLOT for

later disposition to a plotting device. The linear frequency

axis feature of this option is intended primarily for discrete

frequency response plots where the effects of aliasing are

being studied or for plotting small ranges of frequency.

The user is first asked to enter the starting and final

frequencies to be plotted. Since, in this option, the frequency

axis will have ten divisions on the plot, it is usually wise

to select the axis range to be some number evenly divisible by

ten. If the switch SCALE is on, the program will automatically . -

scale the magnitude axis. If SCALE is off, the user will be

asked to specify the minimum and maximum axis values . Again,

since the magnitude axis is always six d~visions long, the axis

A-45
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length should be chosen to be evenly divisible by six for
( best results.

The user is also given a choice for a plot of phase,

magnitude, or both on the same plot.

A plot title of maximum length 50 characters is also

requested.

OPTION 56: Calcomp plot -- Log frequency axis.

This option is similar to option 55 except the frequency

axis is logrithmic with some integer number of logrithmic

cycles. The user is asked to input the power of the starting

frequency (-2 for 0.01 3 for 1000, etc.) and the number of

cycles to be plotted (maximum of ten). As in option 55, the

plot may be in magnitude or decibels, degrees or radians, and

open or closed-loop depending on switch settings. Typing

GRID, ON will place grid lines on the Calcomp plot as with the

time response plots.

OPTION 57~ Tabulat e points pf interest.

This option is similar to option 37. It finds and

tabulates all response peaks, zero-db crossings, 180 degree

crossings. break frequencies, and asymtotes for the given

transfer function .

OPTION 58: Calcpmp Plot -- NYQUeSt polar plot.

This option produces a polar plot of magnitude vs. angle

with frequency as a parameter.

OPTION 59* Calcomp olot -- Nichp~L’s lo~ magnitude/angle
plot.

Option 59 produces a semi-log plot of magnitude vs. phase

angle with frequency as a parameter.
A-47
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2.7 POLYNOMIAL _OP ERATIONS
( There is a large class of control problems which requires

extensive manipulation of polynomials and their associated

first-order factors. Options 60 through 69 have been designed

to relieve the engineer of the extensive hand calculations

which would otherwise be necessary to solve these problems.

For complete understanding of these options, a few words of

explanation are necessary.

TOTAL has twelve general purpose polynomial arrays in

which the user can store polynomials of maximum degree 50.

The names by which the user can refer to these arrays are

POLYA , POLYB , POLYC , POLYD, GNPOLY, GDPOLY, HNPOLY, HDPOLY,
OLNPOLY, OLDPOLY, CLNPOLY, and CLDPOLY. POLYA through POLYD

are scratch registers used by options 61 through 69 for

polynomial arithmetic. The remaining eight polynomials are

paired to form four transfer functions GTF, HTF, OLTF, and

CLTF and are accessed by options throughout TOTAL.(See Section

4.5)

Corresponding to twelve polynomials are twelve n x 2

arrays of polynomial roots where the first- dimension is the

root number and the second designates either the real or

imaginary part of the root. The names by which the user can

refer to these corresponding root arrays ares ROOTA , ROOTB I

ROOTC, ROOTD, GZERO, GPOLE, I~ ERO, HPOLE, OLZERO, OLPOLE,

CI2ERO. and CLPOLE, respectively. —

The important thing to remember is that the polynomial
C and root arrays form inseparable pairs -- changing one will
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change the other. For example, changing a coefficient in

POLYB will automatically change the roots in ROOTB. Similarly,

• changing a root in ROOTD will result in new coefficients in

POLYD, and so on. Because of this direct relationship, the

polynomials and their roots are always printed out together

as shown below:

CLTF ~~~ DEr-iONIN~ ToP
I C.LDF-OL’- ‘ I :- CLPOLE ‘L ’1 ‘. •~~4~ :E: i:.. :: — .1261 I + 1  .6445

4 ~~ :.. — I + — p-44~~
3 . ..3~4a:  ‘ -0 _S_ i — ..37i~.7 + ._i’ j :.

4 I . 1 I:51’  .‘ eLD~.= . 6498

The polynomial shown in this example would read

CLDPOLY(s) = 0.6498~~ + 0.4086s2 + 0.3420s + 0.1056

and its corresponding factors as

( = O.6498(s + 0.1261 - j O.6445)(s + 0.1261 + j0.6445)(s - + 0.3767)

Note that the polynomial constant CLDK is equal to the

coefficient of the highest power of s and f.s simply the constant

that must be multiplied with all the factors to yield the

original coefficients of the polynomial.

Input of Polynomials

• When the user selects options 61 through 65 he will

receive the prompt:

E~(~ER POLYA & POLYB DEGREES (oR SOURCE) >
If he wants to type in the coefficients, he simply enters the

degree oI~ each polynomial and TOTAL will ask him for the

required coefficients. On the other hand , if one or both of’

the polynomials he wishes to enter are already stored in one

3 ’-
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of the twelve- polynomial arrays, he simply types the name of

(. that array in place of the polynomial degree in which case

TOTAL will get the needed information from that “source”.

The user may mix names and numbers as needed. In fact, since

the names POLYA and ROOTA refer to simply two forms of the

same polynomial, typing either name will transfer the same

information. The following examples show possible responses

to the same prompt; -

-• 

ENTER POLYA & POLYB DEGREES (OR SOURCE)> ~~~ENTER POLYA & POLYB DEGREES (OR SOURCE)> POLYB , GNPOLY
ENTER POLYA & POLYB DEGREES (OR SOURCE)> POLYC, ~
ENTER POLYA & POLYB DEGREES (OR SOURCE)> CLDPOLY, ROOTB
ENT ER POLYA & POLYB DEGREES (OR SOURCE)> POLYA , GZ ERO

Notice that if, as in the last example, the user wants to

leave the contents of POLYA unchanged, he simply types “POLYA”

( 
- in the appropriate spot .

After each polynomial is entered, it is echoed back to the

user~s terminal. To suppress this listing, the switch ECHO

should be turned off (see option 93, Section 2.10)

OPTION 60: List options.

Option 60 provides a quick reference list of options 60

through 69.

OPTION 61: Factor a ~olvnomj.~~~
If the user is only interested in finding the roots of ~

polynomial , option 61 is the fastest way . The user simply

enters the polynomial degree and its coefficients as requested .

Afterwards, the polynomial and its roots remain stored in

?OLYA and ROOTA, respectively for future use. .
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OPTION 62: 1\dd polynomials.

This option adds POLYA to POLYB , factors the resul t , and

stores the coefficients and roots in I~OLYC and ROOTC respectively.

OPTION 63: Subtract_pplynomials.

k Option 63 is identical to 62 except that POLYB is

subtracted from POLYA . The results are stored in POLYC and

ROOTC for future use.

OPTION 64: >lultiply polynomials.

This option stores the product of POLYA and POLYB to POLYC .

POLYC is then factored and its roots are stored in ROOTC . This

option is automatically aborted if the degree of the resulting

polynomial exceeds 50.

OPTION 65: Divide polynomials.

Option 65 divides POLYA by POLYB and stbres the quotient

polynomial in POLYC. If the division has a remainder, the

user is asked to enter a limi t on the number of rema inder

terms to be listed and the division continues into negative

powers of s until the division is complete or the limit is

reached . As always , POLYC is automatically factored into

ROOTC .

OPTION 66: Store any polynomial to POLYD.

POLYD serves as a scratch polynomial for storing

intermediate results. For example, if two pairs of polynomials

are to be multiplied and the results summed, POLYD could be

used to hold the first product while the second product was

being formed. Option 66 simply asks’ the user for the name

0
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of the polynomial to be stored and then copies it into POLYD.

( The contents of POLYD may be recovered at any time by typing

POLYD instead of the degree when it is requested . ( See “Input

of polynomials” in the introduction to Section 2.7)

The COPY command may be used in place of this option for

more versitile manipulation of information. For example,

typing COPY, POLYA , POLYC when in OPTION mode will, copy the

contents of POLYA into POLYC. See Section 3 for more

information on this command.

OPTION 67: Expand roots into POLYA.

If the user has a collection of first order factors

which he wishes to expand into an ~th order polynomial, he

should use this option. After entering the polynomial degree

( (number of factors) he will be asked to enter real and

imaginary parts of each root. Only one root may be typed

per line and both real and imaginary parts must be specified

as x-y coordinates in the complex plane. Conjugates, if any,

are automatically assumed, and each root is assigned an index

number for future reference. The resulting nth order polynomial

and its roots are stored in POLYA and ROOTA respectively.

OPTION 68: Expand ~
j + a)’~ into POLYA . -•

Option 68’ provides a quick method of expanding a multiple

order real root of the form (s • a)n into an ~
th order

polynomial. The user is asked to input a and n and the

result is stored in PCLYA .

C
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Q~IION 69: Activate polynomial calculator.
( For the individual who has more than one polynomial

operation to perform, option 69 is by far the recommended

procedure. This option is simply a three function calculator

which adds, subtracts, and multiplies polynomials. POLYA.

POLYB, POLYC, and POLYD are used as a four-register stack

of polynomials which can be “rolled” , “exchanged~’, and

manipulated as single numbers are handled in any reverse

polish notation calculator.

Operations always occur between POLYA and POLYB where

POLYA is the bottom or “X” register of the stack. Typing a

“+“, for example, adds POLYA to POLYB and leaves the results

in POLYA . The contents of POLYC then drop into POLYB and

POLYD is copied into POLYC. The contents of POLYD remain

unchanged. Similarly, typing a “ - “ subtracts POLYA from

POLYB, stores the results in POLYA , and drops the stack as

described above. To multiply POLYA and POLYB a “*“ is typed.

The user enters polynomial calculator mode by selecting

option 69 and receives the prompt

COMMAND OR DEGREE:

whereupon he may type EX, ROLL. LIST. STACK, •, - , *, $, the

name of one of TOTAL ’s twelve polynomials, or any number from

O to 50. The meaning of these commands is described below:

The numbers 0 to SO refer to the degree of a polynomial

the user wishes to enter . After such a command, the user is

A-53
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asked to enter the appropriate coefficients and the new

polynomial is placed in POLYA . What had been in POLYA gets

moved into POLYB, shoving POLYB into POLYC and POLYC into

POLYD. The former contents of POLYD are lost.

The user may also enter the current contents of any of

TOTAL’s twelve polynomials by simply typing the correct name

(as listed in the introduction to section 2-7). The

specified polynomial is automatically shoved into POLYA at the

bottom of the stack, and the contents of POLYD shoved out the

top of the stack and lost as described above.

~~ is the command to exchange the contents of POLYA and

POLYB. As with all operations in option 69, the corresponding

root arrays ROOTA and ROOTB are also exchanged.

ROLL is the command to rotate the contents of the stack

down and around • The following transfers occurs POLYB to

POLYA , POLYC to POLYB, POLYD to POLYC, and the original
contents of POLYA to POLYD. Note that no information is lost.

LIST lists the current contents of POLYA and the correspond-

ing array of roots ROOTA.

STACK lists all four polynomials in the stack in four
• columns with the highest power coefficients on top.

To end polynomial calculator mode, the user types a $.

An examp1~e of various calculator operations is given on

the following page. Items typed by the user are underlined.

The user may suppress the listing of commands at the beginning

by typing 69, S when selecting the option.

A-54
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OPTION > 69

( 
STACK LEVELS COMMA Ds-—MEANII-los:

EX ~— EX CHANGE FOLYA & FOLY B
POLYD ROLL — — R O L L  ~TAC K I:sow~iPOLYC + — * — — O P E R A TI O N 3
POLYB LIST ——LIST POLYA CONTEflTS
POLYA STACK —— DISP LAY STACK CONr EUTS

$ —— END OPTI~~1 69

COMMAN D OF: DEcREE: 4

ENTER 5 POLVA COEFF—-HI TO L0
> 1 2 23 34 45 54 -

COMMAND OR DEGREE: 3

ENTER 4 POLVA COEFF——H I TO LO:
> 1 3 5 7

COMMANt’ OR t’EGF:EE 5

E~~iER 6 FOLYA CO EFF—— HI TO [.0:
) 100 200 300 -100 ~00 600

(
COMMAND Oi~ DEGREE: STACK

POWER POLYA POLYB POLYC POLYE’

5 100.0
L 4 200.0 12.00

3 300.0 1.000 23.00 0.00
2 400,0 3.000 31.00 0.00
1 500.0 5~O00 45.00 0.00
0 600,0 - 7.000 56.00 0.00

COMMAND OR DEGREE: + -

COMMAND OR DEGREE : STACK -

POWER POLY A POLYB POLYC POLYD

5 - 100.0
4 200.0 12.00
3 301.0 23.00 0.00 0.00
2 403 ,0 34 .00 0,00 0.00
1 505.0 45.00 0.00 0.00( 0 607.0 56.00 0.00 0.00

COMMAND OR DEGREE: S



*

_ _ _ _ _ _ _ _ _ _
2.8 MATRIX OPERATIONS

( Another large class of control problems require the

individual to add , subtract, multiply, invert, transpose, and

obtain the determinants of constant coefficients matrices.

Options 70 through 79 are designed to facilitate this process

by removing some of the more laborous hand computations involved. • 1
To use these options, the user must first supply TOTAL

with the necessary matrices using options 10 through 19. Once

these matrices (of maximum size 10 x 10) have been stored in

some of seven arrays (AMAT , BMAT , CMAT, DMAT, Kt-IAT, FMAT, or

GMAT), the user is free to manipulate them using the options

about to be described . -

OPTION 70: List, options.

This option provides a quick reference list of options 70

through 79.

QPTION 71: compute ei,~envalues of AMAT.

The eigenvalues of AMAT are simply the roots of the

characteristic polynomial which is defined as the determinant

dec(sI - AMAT)
Option 71 simply evaluates the above determinant as a

polynomial in s and stores the resutt in POLYA. POLYA is then

factored and its roots, which are the eigenvalues of AMAT, are

stored in ROOTA .

OPTION 72: Add matrices.

This option adds AMA T to BMAT and stores the result in

CMAT. ~iatura1ly, AMAT and BMAT must have the same row and

column dimensions for this operation to be defined.
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OPTION 73~ Subtract_matrices,

( Option 73 is identical to 72 except that BMAT is

subtracted from AMAT. -

OPTION 74: Multiply matrices.

Option 74 performs the matrix multiplication

(CMAT) (AMAT ) . (BMAT)

For this operation to be defined, AMAT and BMAT must conform.

That is, the number of columns in AMAT must equal the number

of rows in BMAT. If AMAT is an NA x MA matrix , and BMAT is NB

x MB. where MA = NB. then CMAT will be an NA x MB matrix.

OPTION 75: Inverse of AMAT.

This option calculates the inverse of AMAT and stores the

result in CMAT . If AMAT is singular, an error message is printed.

Q~~ION 76: Transpose of AMAT. -

The transpose of a matrix is formed by interchanging its

rows and columns so that, for example, a 3 x 5 matrix becomes

a 5 x 3 matrix. This option transposes AMAT and stores the

result in CMAT .

OPTION 77s J~4entity matrix.

The identity matrix is a square matrix with ones on the

diagonal and zeros elswhere. This option sets CMAT equal to

a n x n identity matrix where n is specified by the user. This

identity matrix may then be moved to any other matrix where it

is needed using the COPY command described in option 79.

OPTION_liE Zero matrix.

This option may be used to set all the elements of DMAT

(- equal to zero. The user can then zero any other matrix by
‘ -
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~~ 74
copying the zeroed DMAT into it using the COPY command described

in option 79.

OPTION 79z Copy one matrix to another.

Option 79 prints a brief message telling how to use the

COPY command.

The COPY command has the following form

COPY, from, to -

where “from” is the name of the matrix to be copied and “to”

is the name of the matrix to recieve the data.

For example,

OPTION> COPY, AMAT, FMAT

will dimension FMAT to the same size as AMAT and store each

element of AMAT to the corresponding element of FMAT. AMAT is

unaffected by this operation. Notice that the COPY command

is typed when in OPTION mode.

In addition to the seven matrix names already mentioned

there are 19 additional locations in mass storage on the local

file MEMAUX . This auxiliary memory file brings the total -

number of addressable matrices to 26 -- one for each letter
in the alphabet.

*AMAT *~~~T *KI4AT PMAT UMAT ZMAIT
*BMAT *GMAT LMAT QMAT VMAT
*CM&T HMAT ~~1AT RMAT WMAT
*I~4AT IMAT NMAT SMAT XMAT

DIAT JMA T OMAT TMAT YMAT

The names marked * are working registers which may be

directly modified and manipulated. They are stored in local

fi le MEMORY (see option 1). The remaining names in the table

C! reside in MDIAUX and are only acceseable with the COPY command

(although they may be listed at the user ’s terminal as usual
-

. 
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• by typing their names). These matrices may be used as

C auxiliary storage locations whenever needed. For example, the

following commands are legal:

COPY. AMAT, XMAT
COPY, PMAT, QMAT
COPY, ZMAT , CMAT
See Section 3 for further information on COPY and other

commands.

2,9 DIGITIZATION OPTIONS

The next ten options (80-89) provide the user with several

means of transforming back and forth between digital and

continuous domains. Both transfer function and state-space

techniques are provided.

All transfer function transformations are performed

( in-place on the transfer function CLTF. TOTAL does not keep

track of whether the current CLTF is a function of s or z, it

is simply treated as an array of numbers. If an s to z

transformation is performed, TOTAL assumes that CLTF is a

• function of s. For z to s transformations, CLTF is treated

as a function of z. In all cases, for simplicity, when the

contents of CLTF are listed, the dummy variable s will be

used to represent either the Laplace s or the z-transform z.

The user is assumed to be capable of the mental gymnastics

necessary to substitute z for s when necessary.

The state-space transformations provided are between

A~AT and BMAT (the continuous system and input matrices) and

FMAT and GMAT (the discrete system and input matrices). All

t
%tlb 

_ _ _ _ _ _ _ _  - 

A-59



• — - I
- 

- 
•
. • -

~

• I four of these matrices can exist in TOTAL at the same time

( in contrast to the in-place transformations between CLTF(s)

and CLTF(z). In the latter case, the user may want to copy

the original contents of CLTF into some other location using

the COPY command, before they are modified with a transformation

option . -

Q~TION 8Q~ List options.

This opt ion provides a quick reference list of options

4 
- 80 through 89.

OflION 81: CLTF(s) to CLTF(z)_by impulse tnvari~nce.

- - The concept of impulse invariance is based on the fact

that if CLTF(s) is expanded into partial fractions

CLTF(s) = 
Ak

1_ s - s
k-i

where, in general, 3k is a complex number

a~~~a +j b

then the corresponding impul8e invariant z transfer function

4 is just

• cLTF(z) - A1,~ - 
A~Z 

-

/ s,..T ,  I s T
~~
j 1 - e ~~~z ’ ~~1 z _ e k

where T is the sampling time~, 
-

In other words, a pole at s a in the s-plane transforms

to a pole at e kT in the z-plane and the coefficients Ak of

the partial fraction expansion are equal . -

( Option 81 simply performs a partial fraction expansion of

a.TT(s), moves the poles from to e
5kT and multiplies the - 

-

- 
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resulting terms back together to form • CLTF(z).

~~~~

- The algorithm used does not allow repeated poles. An

approximate transform is still possible, however, if the

repeated poles are separated slightly before transformation.

OPTION 82: CLTF(s) to CLTF(z) by first-difference transform.

The first difference transformation involves the simple

substitution 
-
-

-: where T is a given sampling rate. Option 82 makes this

substitution into CLNPOLY(s) and CLDPOLY(s) and then reduces

the result to a simple ratio of two polynomials in z (CLNPOLY(z)

and CLDPOLY(z)) .

OPTION 83: CLTF(s) to CLTE(z) by Tustin transform.

This option is similar to 82 except that the substitution

made is

2 z - 1
• a — .

T z.1

OPTION 84* CLTF(z) to CLIF(s) by impulse invariance.

This option is just the inverse of option 81. CLTF(z)

Is expanded in partial fractions, the poles moved from Zk to
t ~

/1
~
Ln(zk) ,  and the resulting fractions multiplied together to

— 
f orm CLTF(s). Because of the algorithm used this option will

only work for z transfer functions which have at least one zero

at the origin of the z-plane.

• - Q~~ION 85: CLTF(z) to CLTF(s) by inverse first difference.

This option is just the inverse of option 82 and involves

the substitution

A- 61 • 
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where T was the sampling rate used to form the z-transfer

( function .

OPTION 86: CLTF~ z) to CLTF(s~~~~ inverse Tustin transform.

This opti on is just the inverse of option 83 and involves

the substitution

-
~ I 

s + T / 2

where T was the sampling rate used to form the z-transfer

tUflct iofl.

OPTION 87: Figd F>IA T and G’t\T from AMA T and B~L\T.

Option 87 uses a truncated power series method to

approximate FMA T (the discrete system matrix ) and G>IAT (the

discrete input matrix) from the continuous counterparts AMA T

and BMAT . The iterations are continued until an accuracy of

( ten signif icant  figures is obtained for all elements of each

matrix.  This method may therefore be considered, for practical
purposes , to be exact.

OPTION 88: Compute F~’1AT = exp (AMAT’~T).

Thi s option computes the component matrices of the state

transition matr ix  e~\T using the Cayley-Hamilton Theorem ( See

Shaum ’s Outline State Space and Linear Systems, pp 101- 102) and

sets FMA T = exp(AMAT*T) for a value of I specified by the user.
OPTiON 89: General transformation.

This option is a generalized form of the class of

transformation performed in options 82, 83, 85, and 86. It

involves the generalized substitution

ç s a ALPHA • 
~ 

or z = ALPHA

A -62
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where ALPHA , A , and B are constants which the user can

( define to perform any bilinear transformation which may be
of interest.

2.10 MISCELLANE OUS OPTIONS

The remaining options perform a variety of functions,
some of which are of particular interest.L OPTION 90: List options ,

This option gives a quick reference list of options 90
through 99.

~~TION 91~ Store all data in TOTAL to Lo~a~1 file MEMORY.
This option is the direct counterpart to option 1.

Normally, all data is automatically stored in MEMORY when the
user ends TOTAL by typing STOP. Option 91 allows the user to( store this data without terminating the program. It is
recommended that the user use this option from time to time to
prevent loss of all information in TOTAL in the event of an
abnormal termination, (Such an occurance is supposed to be
impossible with TOTAL, but nothing is ever 100/. fool proof.)
See Option 1 for further information on the use of MEMORY.

~~TION 92~
This is a spare option which was flot defined at the time

this edition of the user’s manual was prepared.

OPTION 93: List switch settLn,~~
This option prints out the current values of all switch

settings in TOTAL. Typing HELP, 93 gives a complete description

A-63 

- - - - - • - -~~~~~~~ - ~~~~~---~~~_
• - -



OPTION > 93

C 
—

TOTAL ’S NODE CONTROL SWITCHES ARE SET AT:

* ECHO: OFF CLOSED: ON
ANSWER: OFF HERTZ: OFF
PLOT: OFF DEGREES: ON
TITLE: OFF DECIBELS: ON
CAPTION : OFF MuLT: OFF
GRID: OFF sCALE: ON

FOR AN EXPLANATION OF THESE SWITCHES AND HOW TO SET THEM
TYPE: HELP,93

OPTION :> HELP,93

TOTAL HAS 10 SWITCHES WHICH CONTROL ITS PERFORMANCE.
THE USER MAY SET THESE SWITCHES WHEN IN OPTION MODE BY
TYPING: SWITCHNAME,ON OR SWITCHNAME,OFF

THE SWITCHES AND THE FUNCTIONS THEY CONTROL ARE:
~* 1

ANSWER ,ON CAUSES ALL OUTPUT TO GO TO FILE ANSWER
,OFF DISPLAYS OUTPUT AT USER ’S TERMINAL

ECHO ,ON INPUT IS ECHOED BACK TO THE TERMINAL
( ,OFF ECHO OF INPUT IS SUPPRESSED

CLOSED pON CLOSED—LOOP (CLTF) USED IF THERE ’S A CHOICE
,OFF OPEN—LOOP TRANSFER FUNCTION (OLTF ) IS USED

HERTZ ,ON FREQUENCY IS INPUT AND OUTPUT IN HERTZ
,OFF FREQUENCY IS IN RADIANS/SEC

DECIBELS ,ON MAGNITUDES ARE IN DECIBELS=20*ALOG1O (MAG)
,OFF ACTUAL MAGNITUDE IS OUTPUT

TITLE ,ON AN ADDITIONAL TITLE TO BE DRAWN OUTSIDE THE
BORDER WILL BE REQUESTED WHEN NEXT ROOT LOC
PLOT IS DONE. TITLE WILL BE DRAWN ON ALL
FUTURE PLOTS UNTIL TITLE,OFF IS TYPED.

CAPTION ,ON A 3—LINE CAPTION WILL BE REQUESTED AND
DRAWN WHEN NEXT ROOT LOCUS IS GENERATED,

,OFF THE OPEN—LOOP TRANSFER FN. IS DRAWN ON
ALL ROOT LOCUS PLOTS.

PLOT ,ON GENERATES CALCOMP PLOT FOR OPTIONS 41,42,43,a 48
pOFF NO PLOT (PLOT IS AUTOMATICALLY TURNED BACK

OFF AFTER EACH PLOT)
MULT ,ON FUTURE PLOTS ALL DRAWN ON NEXT AXIS SET

pUFF EACH PLOT IS DRAWN SEPARATELY
GRID ,ON DRAW GRID LINES ON PLOTS

,OFF OMIT GRID LINES ON PLOTS
SCALE ,ON AUTO SCALE CALCOMP PLOTS

pOFF LET USER SPECIFY SCALE

( 
- NOTE IF A SWITCHNAME IS TYPED WITHOUT ,ON OR pOFF ,

THE SWITCH IS TURNED ON.

OPTION >
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of each switch and how to use them. An example of both is
- 

• given on the following page. 
— 

-

OPTION 9~ *

This is a spare option as yet undefined.

Q~TION 95*

This option at the time of this writing is as yet undefined.

OPTION 96: List special commands.

This option gives a brief list of the special commands

that are allowed in OPTION mode. See Section 3 for a complete

description of these commands. This same list can be

generated by typing cOMMANDS.

OPTION 97~ List varjable name directory.

This option is designed to serve as a memory aid for the

user who is trying to remember a particular variable name.

These variables, and how to list and modify them are discussed

in detail in Section 4. This same list of variables may be

obtained at any time by typing VARIABLES.

OPTION 98* List main options.

This option lists the ten main option groups in TOTAL.

The same list may be obtained by typing the command s OPTIONS.

OPTION 99~ Give the introduction to TOT.~~
This option gives a brief introduction to TOTAL. It is

the same introduction obtained when the user types HELP.

- c  -
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SECTION 3. SPECIAL COMMANDS

I
TOTAL has a number of special commands which are designed

to enhance the user’s control of the program. In the list

below, items in capital letters are actual commands, items in

parenthesis are optional parameters, and those in small letters

refer to general command types. Underlined letters indicate

-

- the minimum abbreviation which is allowed for each item.

Commands may_by tvoed oniy in OPTION mode. (See Section 1.1)

The following are the special commands:

STOP. (~UP) End program (suppress messages)
HELP, (option number) Get help on (specified option

number)
Swttchname, (ON or OFF) Turn specified switch (on or

off)
QQ~Y, from, to Copy one variable to another

Skip to top of new output page
QELETE, root(I), (IETO) Remove a specified pole or

zero (display its value first)
CAI~CULATOR Delayed entry- to calculator mode
Q~EATE, keyname, string Define a macro with the specified

keyname to execute the specified
string of commands.

MOP. (SUP).

This command stores all data into local file MEMORY,

writes messages to notify the user of any files that have been

created during execution, and terminates TOTAL. These messages

are suppressed if the user types “STOP, S”.

HELP.. (o~tton number).

The user may obtain help on any option by simply typing

HELP followed by the option number of interest • For example

“HELP, 38” will give a brief description of option 38.
A-66
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~ qitchnam~~ iON _or OFF) .

( This command allows the user to set TOTAL’s twelve mode

• 
control switches which include ECHO, ANSWER , PLOT, TITLE ,

CAPTION, GR ID , CLOSED , HERTZ , DEGREES, DECIBELS, MULT, and

SCALE. These switches allow the user to custom tailor TOTAL’s

performance to his individual preference. See option 93 in

Section 2.10 for further details.

COPY, from, to.

The COPY command is a special utility which allows the

user to transfer the contents of entire arrays from one

location to another. COPY may be used to copy transfer

functions, polynomials, or matrices to other transfer functions,

polynomials, or matrices respectively. The program will

ignore attempts to copy a transfer function into a matrix, etc.

Transfer Functions. TOTAL has 28 transfer function

storage locations of which GTF, HTF, OLTF, and CLTF are working

registers stored on local file MEMORY and the remainder are

auxiliary registers stored on local f i le MEMAUX and are

accessable only with the COPY command. These transfer functions

include s

ATF ETF lIT MTF QTF UTF YTF
BIF FTF JTF NTF RTF VTF ZTF
CTF *G1T KTF OTF STF WTF *OLTF
DTF *}frH LTF PTF TTF XTF *CLTF

Transfers are legal between any two of the above locations .

For example, COPY, GTF , XTF will transfer GTF into XTF. GTF

• is unaffected.
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Polynomials. Transfer is also permitted between any two

( of TOTAL’s twelve polynomials including POLYA , POLYB, POLYC,

POLYD, GNPOLY, GDPOLY, HNPOLY, HDPOLY. OLNPOLY, OLDPOLY, CLNPOLY,

and CLDPOLY . For example, COPY . POLYA , ~LNPOLY will transfer

the contents of POLYA into CLNPOLY .

Matrices. Finally, TOTAL has 26 matrix locations which

may be addressed by the copy command. These matrices includes

*AMAT EMA T IMA T MMAT QMAT UMA T YMAT
*BMAT *FMAT JMAT NMAT RMA T VMAT ZMAT
*CMAT *GMAT *~4~T OMAT SMAT WMAT
*DMAT HMA T LMA T PMA T TMA T XMAT

Transfer is allowed between any two locations. For

example COPY, AMAT, QMAT copies AMA T to QMAT .

PAGE.

This command is primarily for use when the switch ANSWER

is on. It places a “1” in column 1 on the file ANSWER as a

carriage control character for a line printer. This causes

the printer to skip to the top of a new computer sheet before

continuing the printout. The PAGE command is particularly

useful for separating output between different problems and

t any time a new sheet of paper is desired. To execute this

command the user simply types H PAGE U

DELETE. root(I). (VETO ).

The user may modify the location of a pole or zero at any

time by simply typing its name , an equal sign , and its new

value . A pole or zero can be added in the same manner by

simply naming the root with the next highest index number .

(See Section 4.3) However, to remove a root and thereby reduce
0
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the order of the system, the DELETE command is required. For

( example typing “DEL ETE, CLPOLE(3) ” will remove pole number 3
from the closed-loop transfer function (CLTF), reduce the order

of the system by one, resequence the index numbers on the

remaining poles, and recalculate the coefficients in CLDPOLY.

If CLPOLE(3) has a complex conjugate, both roots will be deleted

and the system order reduced~-by two. If the user does not know

the index number of the root he wants to delete, he can type

the array name for a list. For example, typing “CLPOLE” would

list all pole locations and their corresponding index numbers.

The VETO command is an optional suffix. If “DELETE,

CLPOLE(3), VETO” were typed, the value of CLPOLE(3) would be

printed and the user asked to type “IES” or “NO” to delete or

not. This feature allows the user to confirm that h~ hast selected the right root before completing the deletion. The

user may abbreviate the command as “D, CLPOLE(3), V” if desired.

CALCULATC~R.

This command allows delayed entry into CALCULATOR mode.

Calculator is normally entered by typing a simple “C” . This

causes CALCULATOR mode to begin immediately when the carriage

return button is pressed, regardless of how many commands

preceed it in the string. For example,

OPTION > ECJJQ, Q~ 3~ 
AA~4 • 5 ~~~ DD=19

Wilt be executed in this orders

C ECHO, ON 38 AA-4.5 DD-19 -
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This is to allow the user to jump directly to calculator
(. mode at any time. If, however, the user wants to enter

calculator in the sequence he specified, he must use an

abbreviation longer than “C” , such as “CALC” . For example, I ~,

OPTION > ECHO , ON 38 AA=4 .5 CALC DD=19

CREATE. keyname. commandstring.

Using CREATE, the user can define his own macro command

made up of any combination of option numbers, commands,

variable names and other macros which he uses frequently.

In other words, this command makes TOTAL programable.

Three macro command names (key names) are allowed: AKEY,

BKEY, and CKEY . Each key can be made of up to 50 instructions

to ~o anything allowed in OPTION mode. These instructions are

• then executed like a subprogram any time the key name is typed.

For example, if the user wants to write a key which will

turn ANSWER on , change the value of a pole to the current value

in the X register of the calculator, and plot a root locus

using option 48, he can type:

CREATE, AKEY, ANSWER , ON OLPOLE(2)=X 48

and then hit the carriage return . From then on he can execute

the above sequence by simply typing “AKEY” . Now, suppose he

wants to run ten root-loci in a row , each with a different

pole location . He can type:

CREATE, AKEY, CALC, OLPOLE(3)”X, AKEY

Now when he types “AKEY”, TOTAL will pause in calculator mode

to give the user a chance to enter a number into the X register.

C 
- -
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After the user types “C” to leave calculator mode , execution

continues and the pole location is changed to the number he

entered. The final command in the string. “AKEY ” , allows AKEY
I -

to call itsel f and the sequence repeats, stopping in CALCULATOR

mode for the next pole location . This process continues until

the user types a $ to abort the endless loop. The us~er is
I icautioned that if he does not tnclude a pause to reauest input

some place in the loop, he will n~~
_
~~ve a cIj~nce to end the

loop with a “ $ “  and wfl.l have to abort:.. the prop~ram cgmpletely

with a “.~A” .

Since each macro key can have 50 steps , the user can write

a 150 step program by having one key call another.

Macro keys are particularly useful for reducing large

( complicated block diagrams at a single command , A user can

store each block of the diagram into one of TOTAL’s 28

transfer function registers and then write a key us ing the

COPY command and options 21, 22, 23, and 24 to reduce the

diagram to a single transfer function for analysis. The user

can then modify any variable in any block and instantly reduce

it to a single function with one key.

Other uses for TOTAL’s three macro keys should be

apparent to the user .
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SECTION 4. TOTAL’S VARIABLES

(
- TOTAL ’S data base is divided into variables of four

types: scalar constants, polynomial arrays of up to 51

coefficients, root arrays of up to 50 complex numbers, and

matrices of up to 10 x 10 elements. Each of these variables

may be listed by typing its variable name. Variable values

may be assigned or modified as described in the following

sections:

4.1 SCALAR VARIABLES

A list of scalar variable definitions is given at the

end of this section. The user can modify the values of these

( 
variables by simply setting the variable equal to a number or

another variable. The following list shows some of the

possible ways to modify GAIN, a typical scalar variable:

GAIN= 27.98 -- GAIN is set equal to 27.98
GAIN- OLK - - GAIN is set equal to the current value

of the scalar variable OLK
GAIN~ POLYA(3) - - GAIN is set equal to the third coefficient

(from the highest) of POLYA
GAIN* GZERO(1,2)-- GAIN is set equal to the imaginary part

of the first GTF zero
GAINS OLPOLE(3) -- GAIN is set to the real part (by default)

of the third OLTF pole
GA IN- AMAT(3 ,4) -- GAIN is set equal to the value of the

element in the third row and fourth
column of AMAT.

4.2 POLYNQMIAL ARRAYS

Polynomial coefficients are stored in arrays from highest

to lowest terms . For example , a second-order polynomial stored
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in POLYA would have the form
( 

POLYA (1) ~2 
• POLYA (2)s • POLYA (3)

- 
The user may list any coefficient of this polynomial by

typing its name “POLYA(2)” etc. Typthg “POLYA” without

subscripts will list all coefficients.

The user can modify any coefficient by setting it equal

to its desired value or another variable. The following list

shows some of the ways to modify the second coefficient of

POLYA (POLYA(2)). For example:

POLYA(2)=3.38 POLYA(2)=HPOLE(2,1)
POLYA(2)=X PoLYA (2)=HP0LE (2)
POLYA(2)=CLNPOLY(3) P0LYA(2)=DMAT(7, 3)

A list of TOTAL’s twelve polynomials and their definitions

is given at the end of this section. See the introduction to

( Section 2.7 for further information on the use of these

variables .

4~3 ROOT ARRAYS

For every polynomial array there is a corresponding root

array which contains a real and an imaginary part . The ~~~
root in the ROOTA array, for example, has the form

ROOTA(I ,1) + jROOTA(I,2)

where the second subscript designates the real or imaginary

part of the root ’s location in the complex plane . Roots may

&iso be ref erred to without the second subscript, in which ease

the real cart is assumed. Typing “ROOTA ” will li st all the

roots in the array while typing “ROOTA(2)” will list only the

real and imaginary part s of the second root .

‘3 A-7 3
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The real part of the second root in the ROOTA may be

( modified in any of the following ways .

ROOTA(2 , 1)= -2 ,5  ROOTA(2) = CLPOLE(6 ,1)
ROOTA(2)~ -2.5 ROOTA(2,1)= GAIN
ROOTA(2)~ POLYA(3) ROOTA(2)= KMAT(3,2)

Similarly, the imaginary part of the fourth open-loop

zero would be changed like this:

OLZ ERO(4 .2)= 32.8
OLZERO(4,2)= CLPOLE( 3,2)
OLZERO(4,2)= GNPOLY(13)

It is possible to change both real and imaginary parts of

a root at the same time as follows:

HPOLE(3)~ CLPOLE(2) - - Sets real and imaginary parts ofthe third HTF pole equal to the
real and imaginary parts of the
second ~LTF pole respectivelyROOTB( 2)~ GZERO(9) - - Sets real and imaginary parts of
the second root of POLYA equal to
the ninth zero of GTF

( CLPOLE(4)= 2.78~9 -- (See paragraph below )

The reader’s attention is called to the last example where

a semi-colon was used to separate the desired real and imaginary

values of CLPOLE(4). This is a special notation which tells

TOTAL to look for another number and assign it to the next

variable in the array . Since CLPOLE(4 ,1) was set equa L to

-2.78 , the semi-colon tells TOTAL to set cLPOLE(4 ,2) equal to

9. Wi thout the semi-colon, TOTAL would assume the 9 was an

option number and go execute option 9~ A list of TOTAL ’s

twelve root arrays is included in the variable definitions at

the end of thi s section . See the introduction to Section 2 .7

for further information on the use of these variables .
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4.4 MATRIX ARRAYS

( TOTAL has seven working matrix arrays of maximum dimension

• 10 x 10 which may be manipulated directly. (The 19 auxiliary 
-

- 

- matrices provided with the COPY command (see Section 3) can

only be modified by f irst  transferring their contents into

one of the seven working matrices described below.) These

arrays are defined at the end of this section.

The user may list any element of a working matrix by

typing its name and indicies. For example, the element in the

third row and second column of AMAT is listed by typing

“AMA T(3 ,2)”. The entire row can be listed by typing AMAT(3).

To list a column, the user must use a prefix: “COL ,AMAT(2)”.

Typing “AMAT” without subscripts will list the entire matrix.

(The 19 auxiliary matrices may also be listed in this manner,

but subscripts are not allowed.)

To specify the value of a particular element, say AMAT(3,2),

the user may type:

AMA T(3,2) = 77
AMAT(3,2)= X
AMA T(3 , 2)= POLYA(11)

and so on. The special semi-colon feature described in

Section 4.3 may be used to increment the column index by one.

For example, typing:

AMAT (3,2) = 14~ 28 ;64

would set A~.1AT(3,2)- 14 , AMA T(3 ,3)— 28 and AMA T(3 ,4) = 64. If

the maximum row dimension is reached during such a string, TOTAL - 

-

will move to the first column of the next row , and so on.
(•_- A-75
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4.5 TRANSFER FUNCTIONS

- Transfer functions in TOTAL are not separate storage

locations, they are just groups of other variables as defined

below:

GTF = GNPOLY/GDPOL Y (GNK*GZER0)/(GDK*GPOL E~HTF = HN POLY/HDPOLY (HNK *uzERo)/ (HDK *HP0LE )
OLTF = OLNPOLY/OLDPOLY = (OLNK*OLZ ERO)/(OLDK*OLPOLE) - -

CLTF = CLNPOLY/CLDPOLY = (CLNK*CLZERO)/(CLDK *CLPOLE) —

The variables which make up each of these transfer

— - functions may be listed or modified individually as described

in Sections 4.1, 4.2, and 4.3. The contents of every variable

associated with a particular transfer function may be listed

by typing a corresponding transfer function name. The contents

of all variables in one transfer function may be transferred

to the respective variables of another using, the COPY command

described in Section 3.

The four transfer functions described above are called

“working” transfer functions because their contents may be

manipulated directly. There are also 24 auxiliary transfer

functions which may be used pnly for storage and which cannot

be manipulated directly. These auxiliary storage locations

are accessable only with the COPY command as described in

Section 3.
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& SCALAR VARIABLE DEFINIT IONS
• PAK = POLYA( 1) ~olynomial A constant

P3K POLYB( 1) ~olynomtal B constant
PCK = POLYC( 1) ~olynomial C constant
PDK = POLYD( 1) Polynomial D constant
GNK = GNPOLY( 1) GTF numerator constant
GDK - GDPOLY( 1) Q.TF denominator constant
HNK = HNPOLY(1) HTF numerator constant
HDK = HDPOLY(1) HTF denominator constant
OLNK = OLNPOLY( 1) OLTE numerator constant
OLDK = OLDPOLY(1) QLTF denominator constant
CLNK = CLNPOLY(1) CLTF numerator constant
CLDK = CLDPOLY( 1) CLTF denominator constant

GK = GNK/GDK
HK = HNK/HDK
OLK = GAIN * (OLNK /OLDK ) = GAIN * GK * }~J (
CLK = CLNK/CLDK

GAIN = Added gain in the open loop
TSAMP = Sampl ing time in second s
FACTOR = Scale factor for calcomp plot size
X.Y,Z,T = Calculator stack registers -

( REGISTER(I) = Subscripted name f or referencing the
20 scalar calculator memory registers

• The remaining scalars are special purpose root locus
varia~1es and are described in greater detail in Section 2.5.

AA - Right root locus boundary
BB - Top root locus boundary

- - CC - Left root locus boundary
DD - Bottom root locus boundary
BOUND - Boundary scale factor
ZETA = Damping ratio of interest
RAD • Distance from origin in s-plane or z=1 in

z-plane along the zeta of interest at which
the search for a locus intersection starts.
(actually start ing~~~ in bot h planes)

GTOL - Range of interest around GAIN
DD~. - Calculation step size between locus points
D~~PR Printing step size between locus points
FIGURE - Optiona l figure number on locus plot s

C,
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POLYNOMIAL DEFINITIONS
( POLYA Coefficients of p~~ ynomial 

~~

,
POLYB Coefficients of polynomial B
POLYC Coefficients of polynomial C
POLYD Coefficients of polynomial 0
GNPOLY GTE numerator polynomial coefficients
GDPOLY GTF denominator polynomial coefficir ~nts
HNPOLY HTF numerator poj,,ynomial coefficients
HDPOLY HTF denominator polynomial coefficients
OLNPOLY OLTF numerator polynomial coefficients
OLDPOLY OLTE denominator polynomial coefficients
CLNPOLY CLTF numerator polynomial coefficients
CLDPOLY CLTF denominator polynomial coefficients

ROOT ARRAY DEFINITIONS

ROOTA Roots of POLYA
ROOTB Roots of POLYB
ROOTC Roots of POLYC
ROOTD Roots of POLYD
GZ ERO GTF zeros = roots of GNPOLY
GPOLE GTF poles roots of GDPOLY
I-~ ER0 HIT zeros roots of HNPOLY
HPOLE HIT poles = roots of HDPOLY
OI2ERO OLTF zeros = roots of OLNPOLY -

OLPOLE OLTF poles = roots of OLDPOLY
( CLZERO CLTF zeros = roots of CLNPOLY

CLPOLE QLTF poles = roots of CLDPOLY

MATRIX DEFINITIONS

AMAT Continuo4s System Matrix
BMAT Continuous Input Distribution Matrix
CMAT Output Matrix
DMAT Direct Transmission Matrix
KNAT State-variable Feedback Matrix
FMPT Discrete System Matrix —

GMAT Discrete Input Distribution Matrix

TRANSFER FUNCTION DEFINITIONS

GTF • GNPOLY/GDPOLY = (GNK*GZER0) /(GDK*GPOLE)
1rrF - HNPOLY/HDPOLY = (HNK*~~ERo)/(HDK*HPoLE)OLTF - OLNPOLY/OLDPOLY • (0LNK*0LZER0)/(0LDK*OLPOLE)
CLTF - CLNPOLY/CLDPOLY (CLNK*CLZERO) /(cLDK*CLPOLE)

/
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SECTION 5. TOTAL’S SCIENTIFIC CALCULATOR

(
• TOTAL ’s calculator uses reverse polish notation and

is modeled after an HP-45 hand calculator. It has a stack

of four registers, X, Y, Z , and T, where X is the display

or working register , and twenty memory registers. The user

may enter CALCULATOR mode at any time by typing a “C” and
leaves CALCULATOR mode the same ~~y. CALCULATOR mode is

designated by the prompt **, and the user may obtain a
listing of calculator keys F y  typing “KEYS” as shown below.

•• ~~~~~
‘-, .

POLL CH~. LOG MEMOF~EXCHANGE ::Iri ALOI3 -:TOPE
CL>:: co:  POLAF: PECALL
CLEA R TAN RECTANG LAST>::

( RECIPROC AL A: Iri FIX DTOF-
::.cluApE AC-a: ~C I PTOD
:~~pOOT AlAN LI::T DEGF:EES-i-T0x LN ~—T ACI< RADIAN::- ’
P1 EXP FASTSTRCI< K EYS

The meaning of these keys will be discussed later in
this section .

To enter a number into the X register, the user simply
types it. Numbers are entered automatically when fol lowed
by a blank , comma, or carriage return . Typing any of the •

‘
- -

variable names listed in Section 4 automatically enters the

variable ’s value into the X register. (Typing a complex
variable name with only one subscript will put the real part
into X and the imaginary part into y . )

An example of entering the numbers 1.0, 2.0, 3.0 and

4.0 is shown on the following page - 

- 

-

-

~~ 
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LI
( X= 0.000 000

•. 1 2 :3 4 :~
,TACK .

• 1= 1.000000
2. 0 00000

Y= 3 .0 00 00 0
4 . 0 0 0 0 0 0

•

The 1 is initially entered into the X register until it

is pushed up into Y by the 2. Subsequently, the 3 pushes the

2 and I up another notch. Finally, the 4 is entered leaving

the content s of the four stack registers as shown by the

STACK command .

Once numbers have been entered, all operations occur

between X and Y. For example, typing a “+“ would add X to Y

( and leave the sum in X. The contents of Z then drop into Y and

T drops L.to Z. The contents of register T are unaffected .

Similar results are obtained by typing “ - “, “*“, or “I”, where

“1” divides Y by X and “-“ subtracts X from Y.

One final exampl e should clarify stack operation . If the

user wants to evaluate

(3.14 * 2.78 + 8.62 * 98.6)/6.02 -

he would type

** 3.14 2.78 * 8.62 98.6 * . 6.02 I
and TOTAL would print out the answer . What actually occurs in

the stack is this:

1. 3.14 is entered into X.
2. 2.78 is entered into X shoving 3.14 into Y .
3. X and Y are multiplied leaving 8.73 in X.
4. 8.62 is entered into X shoving 8.73 into Y.
5. 98.6 is entered shoving 8.62 into Y and 8.73 into Z.
6. X and Y are multiplied leaving 849.93 in X and dropping

8.73 back into Y.
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7. X and Y are added leaving 858.66 in X.
8. 6.02 is entered into X shoving 858.66 into Y.
9. Y is divided by X leaving 142.63 in X.

10. TOTAL print s out the contents of the X register as
the answer.

For further information on stack operations the user is

referred to someone who owns a Hewlett-Packard calculator.

All that remains now is to define the meaning of each key.

In the descriptions below,”old” refers to status before the key

is executed and “new” refers to status afterwards. Underlined

letters in each command show minimum abbreviation allowed.

~QJ~L Moves old Y to new X, old Z to new Y, old I to
- - new Z and old X to new T

~~CHANGE Moves old X to new Y and old Y to new X 
- 

-

~

CLX Clear X (sets X to 0.0)

~J~ AR Clear stack (sets X, Y, 2, and T to 0.0)
RECIPROCAL Sets new X equal to reciprocal -of old X

~Q~ARE Sets new X equal to old X squared

~Q~OOT Sets new X equal to square root of old X
YTOX Sets new X equal to old Y to the old X power and

move old Z into new Y and old T into new Z.
Enters 3.14159265358979 into new X, old X into
new Y, old Y into new Z and old Z into new T. 

- 

-
~

Change sign of X
Sets new X equal. to sin(old X)
Sets new X equal to cos(old X) -

Sets new X equal to tan(old X)
ASIN Sets new X equal to arcsin(old X)
ACOS Sets new x equal to arccos(old X)
AlAN Sets new X equal to arctan(old X)

Sets new X equal to natural log(old X)
LQQ Sets new X equal to common log(old X)

Sets new X equal to exp(old X)
ALOG Sets new X equal to 10(old X)

~QJ1AR Converts X and ‘1 in rectangular coordinates to
polar, where X is the magnitude and Y is the angle

L 
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RECTANG Converts X magnitude and Y angle to X and Y

rectangular coordinates
FIX followed by any number from 0 to 14 sets
all future calculator out put s to that many
decimal places
Similar to FIX except that numbers are thereafter
expressed in scientific notation with the

- • specified number of decimal places

J~IST Prints contents of X register. Useful for
displaying intermediate results in a long string
of calculator commands

~~~CK Prints contents of X, Y, Z , and T vertically
FASTSTACK Prints contents of X, Y , Z, and T horizontally

~1~ 10RY Prints contents of all 20 memory registers

~~QRE Must be followed by a number from 1 to 20. Stores
contents of X to specified memory register

~~QALL Must be followed by a number from I to 20. Recalls
the contents of specified memory register to X

- and shoves old X to new Y, old Y to new Z and old
Z to new I.

RCL Another abbreviation for RECALL

( LASTX Recalls the value of X prior to the last operation
DTOR Converts old X in degrees to new X in radians
RTOD Converts old X in radians to new X in degrees
Q~~ REES Put s calculator into degree mode and turns the

- 
switch DEGREE oâ -

RADIANS Puts calculator into radian’ mode and turns the
switch DEGREE off
Types out a list of all calculator keys

The user may use the calculator at any time - - even in

the middle of an opt ion during input of data . For further

information see Section 1.1.

C- 
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SUMMARY OF TOTAL’S OPTIONS

COMMAND- ATTACH,TOTA L ,ID=AFIT

COMMAND- TOTAL

WELCOME TO TOTAL- -TYPE HELP FOR INT RO - -TYPE STOP TO STOP

OPTION > HELP

TOTAL IS AN INTERACTIVE COMPUTER-AIDED DESIGN PROGRAM
FOR DIGITAL & CONTINUOUS CONTROL SYST EM ANALYSIS.
IT CONTA INS 100 OPTIONS DIVIDED INTO GROUPS OF 10
ACCORDING TO GENERAL APPLICATION.

OPTIONS ENDING IN 0 LIST THE NEXT 10 OPTIONS,
FOR EXAMPLE, OPTION 30 LISTS OPTIONS 30 THRU 39.

THE FOLLOWING ARE THE MAIN OPTION GROUPS:

0-9~ TRANSFER FUNCTION INPUT OPTIONS
- - 10-19: MATRIX INPUT OPTIONS

- 
20-29~ BLOCK DIAGRAM MANIPU LATION OPTIONS -

( - . 30-39 : TIME RESPONSE OPTIONS
40-49: ROOT LOCUS OPTIONS
5O-59~ FREQUENCY RESPONSE OPTIONS
60-69: POLYNOMIAL OPTIONS
70-79: MATRIX OPERATIONS
80-89~ DIGITIZATION OPTIONS
9O-99~ MISCELLANEOUS OPTIONS 

- 
-

WHEN INPUT IS REQUESTED BY TOTAL, THE USER MAY:

ENTER THE REQUESTED INFORMATION, OR:
TYPE ? FOR EXPLA NATION OF INPUT NEEDED ,
TYPE L FOR A LIST OF CURRENT VARIABLE VALUES,
TYPE * TO LEAVE AN ITEM UNCHANGED,
TYPE- C TO USE CALCULATOR BEFORE OR DURING INPUT,
TYPE $ TO ABORT THE OPTION,
TYPE X OR Y, Z, I, OR Ri THRU R20 TO TELL TOTAL

- TO GET REQUESTED INFO FROM CORRESPONDING
CALCULATOR REGISTER .

TO END TOTAL, TYPE STOP.

C -
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TRANSFER FUNCTION INPUT OPTIONS

* 0 LIST OPTIONS
* 1- RECOV ER ALL DATA FROM FILE MEMORY
* 2 POLYNOMIAL FORM- -GTF
* 3 POLYNOMIAL FORM- -HT F
* 4 POLYNOMIAL FORM- -OLTF
* 5 POLYNOMIAL FORM- -CLTF
* 6 FACTORED FORM- - - -GTF
* 7 FACTORED FORM- - - - Fif F
* 8 FACTORED FORM- - - -OLTE
* 9 FACTORED FORM- - - -CLTF

MATRIX INPUT OPTIONS

* 10 LIST OPTIONS
* 11 AMAT- -CONTINUOUS SYSTEM MATRIX
* 12 BMAT- -CONTINUOUS INPUT MATRIX
* 13 CMAT---OIJTPUT MATRIX
* 14 DMAT- -DIRECT TRANSMISSION MATRIX
* 15 KNAT- -STATE VARIABLE FEEDBACK MATRIX
* 16 FMAT -DISCRETE SYSTEM MATRIX
* 17 GMAT--DISCRETE INPUT MATRIX
* 18 SET UP STATE SPACE MODEL OF SYSTEM( * 19 EXPLAIN USE OF ABOVE MATRICES

BLOCK DIAGRA M MANIPULATION AND STATE SPACE OPTIONS

* 20 LIST OPTIONS
* 21 FORM OLTF = GTF * HTF (IN CASCADE)
* 22 FORM ~LTF = (GAIN*GTF)/ (1 + GA IN*GTF*HTF)
* 23 - FORM ~LTF = (GAIN*OLTF) 1(1 + GAIN*OLTF)
* 24 FORM CLTF = GTF + HTF (IN PARALLEL)
* 25 GTF(s) AND HTF(s) FROM CONTINUOUS STAT E SPACE MODEL
* 26 GTF(z) AND HTF(z) FROM DISCRETE STATE SPACE MODEL
* 27 WRITE ADJOINT(sI - AMAT) TO FILE ANSWER
*28 FIND HTF FROM CLTF & GTF FOR CLTF = GTF*HTF/(1+GTF*HTF)
* 29 FIND 1-if F FROM CLTF & GTF FOR CLTF a GTF /(i+GTF*HTF)

TIME RESPONSE OPTIONS

* 30 LIST OPTIQJS
* 31 TABULAR LISTING OF F(t) OR F(k)
* 32 PLOT F(t) OR F(k) AT USER’S TERMINAL
* 33 PRINTER PLOT (WRITT EN TO FILE ANSWER
* 34 CALCOMP PLOT (WRITTEN TO FILE PLOT
* 35 PRINT TIME OR DIFFERENCE EQUATION (F(t) OR F(k))
* 36 PARTIAL FRA CTION EXPANSION OF CLTF (OR OLTF)
* 37 LIST T-PEAK, T-RISE, T-SETL, T-DUP, M-PEAK, FINAL VALUE

t () * 38 QUICK SKETCH AT USER’S TERMINAL
:‘~ * 39 SELECT INPUT. STEP. RAMP. PULSE, IMPULSE, SINE
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C ROOT LOCUS OPTIONS

* 40 LIST OPTIONS
• * 41 GEN ERAL ROOT LOCUS a

* 42 ROOT LOCUS WITH A GAIN OF INTEREST
* 43 ROOT LOCUS WITH A ZETA ( DAMPING) OF INTEREST
* 44 LIST N POINTS ON A BRANCH OF INTEREST
* 45 LIST ALL POINTS ON A BRANCH OF INTEREST
* 46 LIST LOCUS ROOTS AT A GAIN OF INTEREST
* 47 LIST LOCUS ROOTS AT A Z ETA OF INTEREST
* 48 PLOT ROOT LOCUS AT U SER’S TERMINA L
* 49 LIST CURRENT VALUES OF ALL ROOT LOCUS VARIABLES

fREQUEN CY RESPONSE OPT iONS

* 50 LIST OPTIONS
* 51 TABULAR LISTING
* 52 TWO CYCL E SCAN OF MAGNITUDE
* 53 TWO CYCLE SCAN OF PHASE
* 54 PLOT F(w) AT USER’S TERMINAL
* 55 CALCOMP PLOT- -LINEAR FREQUENCY AXIS
* 56 CALCOMP PLOT- -LOG FREQUENCY AXIS
* 57 TABULATE POINTS OF INTEREST, PEAKS, BREAKS, ETC.
* 58 CALCOMP PLOT- -NYQUIST POLAR PLOT
* 59 CALCOMP PLOT- -NICHOLS LOG-MAG/ANGLE PLOT

POLYNOMIAL OPERATIONS

* 60 LIST OPTIONS
* 61 FACTOR POLYNOMIAL (P0LYA)
* 62 ADD POLYNOMIALS ( P0LYC = POLYA + POLYB)
* 63 SUB POLYNOMIALS ( POLYC = POLYA - POLYB)
* 64 MULT IPLY POLYS • (POLYC = POLYA * POLYB)
* 65 DIVIDE POLYS (POLYC + REM = POLYA / ~OLYB)
* 66 STORE POLY INTO POLYD
* 67 EXPAND ROO1~S INTO A POLYNOMIAL
* 68 (s + a)**n EXPANSION INTO A POLYNOMIAL
* 69 ACT IVA TE POLYNOMIAL CAL.CIJLATOR

~~TRIX OPERATIO~~
* 70 LIST OPTIONS
* 71 ROOTA = EIGENVALUES OF AMAT
*72 CMAT = AMAT + BMAT -

* 73 CMA T a AMA T - BMAT
* 74 CMAT a AMAT * BMAT
* 75 CMAT a AMA T INVERSE —

* 76 CMAT a AMA T TRANSPOSED
* 77 CMAT a IDENITY MATRIX
* 78 DMAT = ZERO MATRIX
* 79 COPY ONE MATRIX TO ANOTHER
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C DIGITIZATION OPTION S

* 80 LIST OPTIONS
* 81 CLTF(s) TO CLTF(z) BY IMPULSE INVARIANCE
* 82 CLTF(s) TO CLTF(z) BY FIRST DIFFERENCE APPROXIMATION
* 83 CLTF(s) TO CLTF(Z) BY TUSTIN TRANSFOR~iATION
* 84 CLTF(z) TO CLTF(s) BY IMPULSE INVARIANCE
* 85 CLTF( z) TO CLTF( s) BY INV ERSE FIRST DIFFERENCE
* 86 CLTF(Z) TO Ct~TF(s) BY INV ERSE TUSTIN
* 87 FIND FMAT AND GMAT FROM AMA T AND SMA T
* 88 COMPUTE FMA T = exp(AMAT ‘~ T) -

* 89 CLTF(x) TO CLTF(Y) BY X = ALPUA*C~ + A)/(Y + B)

MISCELLANEOUS OPTIQ~~

* 90 LIST OPTIONS
* 91 UPDATE MEMORY FILE WITH CURRENT DATA

92
* 93 LIST CURRENT SWITCH SETTINGS ( ECHO , ANSW ER , ErC)

94 -
95

* 96 LIST SPECIAL COMMANDS ALLOWED IN OPT ION MODE
* 97 LIST VARIABLE NAME DIRECTORY
* 98 LIST MAIN OPTIONS OF TOTAL

( * 99 GIVE THE INTRODUCTION TO TOTAL 
-

C H
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Append ix B
( SECTION 1. INTRODUCTION

This manua l is written to provide documentation on all
programs and subprograms used in TOTAL as well as a description

of the overall structure and internal operation of the program.
p

It is intended for the individual who wishes to make his own

modification and additions to the coding and as a general

aid in maintaining the program or transporting it from one

computer system to another.

The reader is assumed to be thoroughly familiar with the

external operation of the program. It is recommended that

• he read the User’s Manual for TOTAL completely before beginning

to use this manual. •

-
~~~~~~~0
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SECTION 2. DESCRIPTION OF OVERALL STRUCTURE

TOTAL is a large program. In its absolute form, with

all external references satisfied, it requires in eccess of

600.0008 words of central memory for execution. Since many

computer systems do not have this much memory available, and

most limit interactive users to a much smaller amount (on the

order of 60K), TOTAL has been designed with a structure of

overlays so as to not require more than 60K at any one time.

The following is a brief description of that structure:

2.1 HOW OVERLAYS WORK

Overlays are simply a way of dividing a large program

into a series of smaller programs, each of which will fit

into the available amount of core memory. As each of these

programs ( overlays) is needed , it is loaded into memory

replacing one which has just finished executing. A small

executive routine, written to control the overall flow of the

program , is responsible for calling each overlay into memory

as it is needed . This execut ive is called the main overlay

and remains in core memory at all times . The program segments

which it controls are called primary overlays. Only one

primary overlay may be in centra l memory with the main overlay

at a time . It is also possible to have another level of

overlays which can be called by a given primary overlay.

These programs are called secondary overlays .

C 
Each overlay is a separate program which is loaded into

memory and executed when it is called by a higher level overlay.

B-2
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Information is passed between overlays through labeled
(. common statements in the main overlay.

The use of overlays should become more apparent when

their use in TOTAL is described in the next section. For

further information, the reader is referred to the Q~~ FORTRA N

-- Reference Manual and the CDC Loader Reference Manual.

2.2 TOTAL’S OV ERLAY STRUC TUR E

TOTAL itt its present form uses one main overlay, seventeen

primary overlays, and eleven secondary overlays.

The main overlay simply holds the common data arrays,

establishes their default values, and calls each of the primary

overlays when needed , as determined by a short decision-making

( 
routine, This overlay is described in detail in Section 3. —

The primary overlays perform all of the actual operations

in TOTAL . Each is responsible for a certain class of functions

which may include , option and command execution, variable

definition and modification, switch setting, user assistance,

and interactive user interfacing. If an overlay is too large

for the given core restriction, it is divided into secondary

overlays that will fit. Primary and secondary overlays are

discussed in detail in Section 4.

Each overlay progra m is allowed any number of subprograms ,

each of which takes up some of the memory space allowed for

that overlay. These subroutines , are described in dept h in

Section 5.

8-3
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SECTION 3. DESCRIPTION OF MA IN EXECUTIVE OVERLAY

(

TOTAL’s main executive overlay performs four functions

vital to program operation. First, it houses in its PROGRA M

statement the definition of all input -output devices throughout 1 L

the program. Second , it contains all of the labeled common

statements for the data base (variables which are used by

more than one program and which must remain in central memory

at all times). Third, it initializes the values of all the

variables in the common data base. Finally, it contains the

routine which selects other overlays and controls the flow of

the entire program. Since a thorough understanding of this

overlay is essential to further modifications and additions,

the remainder of this section is devoted to a complete description

of its structure.

3.1 THE PROGRA M STATEMENT

The program statement for TOTAL is shown below.

PROGRAM TOTAL (INPUT=1OOB~QUTPUT 1OOB,AKEY 1QOB,BKEY 1OOB ,
+CKEY= 1 OOB ,ANSWER, MEMORY, DOOPLE= 1 OOB ,PLOT, TAPE 1 =AKEY,
+TAPE2=BKEY , TAPE3=CKEY , TAPE5= INPUT, TAPE6=ANSWER,
+TAPE7=OUTPUT MEMAUX=1000B, TAPES=1IEMAUX, TAPE9=ME1IORY,
+TAPE1O D000LE)

It performs three functions , including definition of

local file name, reference number, and buffer length for each

I/O device (tape) used by TOTAL . The name and purpose of

each of these tapes is given in Table I .

The choice of buffer size for each of these tapes is a

C trade-off between amount of memory used and speed of execut ion .
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A buffer is just a location in central memory where output is

( placed until it can be written to a tape by an output device.

Since output is usually generated much faster than it can be

written to tape, the buffer often fills up and ‘execution must

be interrupted until the output device can catch up. This

slows down execution time. By increasing the buffer size,

fewer interruptions are needed and the program runs faster at

the expense of space in central memory. Since space in a

program of this size is at a premium, buffer size must be

kept at the minimum value consistant with reasonably fast

operation.

The rule of thumb used in selecting buffer sizes in

TOTAL was that frequently used files which receive output in

large volumes are given large buffers (I000B to 2000B) while

all others are kept at the minimum size of 100B = 1008 = ~~10
words of central memory. Even with this careful assignment, 

*
76008 words of central memory out of the allowed 60,0008 are

devoted to buffer use in TOTAL. Should more space ever be

needed for any reason, reducing this buffer size, at the

expense of execution time, is a possible solution .

3.2 TQTAL’S COMMON DATA BASE

Figure 1 shows the labeled common statements which make

up TOTAL ’s data base. Every variable which must be passed

from overlay to overlay or which is needed throughout the

program for any reason must be placed in this array . Numbers

C not located in common are lost each time a new overlay replaces

an old one.
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. COtIMON/TOTAL1/AMAT ( 10,10) ~NA~ MA ,BMAT ( 10,10) ,NB,MB,CMAT ( 10,10), •

• +NC,MC,BMAT (10,10),NtI,MD,FMAT (10,10),NF ,MF,GMAT (10,10),NG,MG, .
• +AKPlAT (10~ 10)~~NK~ MK • F

• COPIMON/TQTAL7/FQLYA (51) ,POLYB (51) ,POLYC (~~1) ~FOLYD (51),
• +ROOTA (50~ 2),RfJOTB (50,2)~~ROOTC (50~ 2),ROOTt’(5O,2), •

• +NPA,NFB,NPC,NPtI,PAK~ PBK~ PCK~ PDK •
• COMMON/TOTAL9/GNPOLY (51),GDPQLY (51)~~GZERO (50~ 2),GPOLE (50~ 2)~
• +NGZpNGP ,GN,CINK,GDK
• COMHON/TOTL10/HNPOLY(51),HtIPOLY(51),HZERO (50,2),HPOLE (50~ 2), •
• +NHZ,NHP,HN~ HN K~ HDK •
• COMMON/TOTL 11/OLNPOLY (51),OLt’POLY (51),OLZERO (50,2)~~OLPOLE (50~ 2)~ •

• +NOLZ,NOLP,OLK,OLNK ,OLDI( •
• COMMON/TOTL12/CLNPOLY (51),CLDPOLY (51),CLZERO(50,2),CLPOLE (50,2), .
• +NCLZ,NCLP,CLK,CLNK,CLBK •
• CONMON/TOTL14/NOPT,IOPT,JOPT~ KOPT,LOPT~ MOPT,LPROMTiLASTOPT~ N6O •

COMMON/TOTL15/IFLAG (100),JFLAG (100~ ,KFLAG (20),’LFLAG
(20),NCALL (20).

• COMMON/TOTL16/X~ Y~ Z~ T,REG (2O)~ XLA ST
• COMMON/TOTL17/MCOMM ( 100) ,EIATM (100) ,MPT •
• COMMON/TOTL18/NRPT,NROUTE (10),NPT •
• C0MPlON/PARTL1/ZZZ(50),XR,NXX,YYY (50),W (~~0),CLOSE •
• COMMON/PARTL2/CR(5O),EC(50)~ OM (50),FE(5O),LL,IIATIN (4) •

• COMMON/PARTL4/FAX(2) ,AXMIN,FRANGE ,FTMAX,FTMIN •
• COMMON/PARTL5/RSLOPE,RWIDTH,RHIGHT,ROMEGA, INPUTR • — 

-

• COMMON/ROOTL1/BOlJND,FPN,IFOLt’,ISTAM,ITITL,ITHES~ RAD~ ZE TA
• CQMMON/ROOTL2/LLROOT~ DELPR(50) ~DEL(50) ,GAIN,OTOL,LN,IPLOT .
• COMMON/ROOTL3/XP (50) ,YP(~~0) ,XZ (50) , YZ ( 5 0)  ~N,M,XSTART,YSTART,TIME
• COMMON/ROOTL4/GA ,AA,BB,CC,DCi,JK
• COMMON/FREOR 1/WMIN,WMAX,DELW,YIN (3),NUP,NDOWN
• C0MMQN/FREQR2/KIND~CYCLENG ,NCYC , IPOW ,RANGE , ORDER
• COMMON/FREQR3/AMIN,AMAX ,AXLIN (2),AXDB (2),FNMAX,FNMIN -

• COMMON/BMULR/POLYO (51) ,ROOTO (50,2) ,NQ,POI(
• COMMON/REAL’ER/LCOM,LODV,LODI,L1DV,LCPLXV,L20V,LKEY,LABBR ,
• +LASTF,LMAT
• COMMON/LOGIC1/REOUEST,ECHO,EXTCALC,CALC,EOUAL~ COMMA,LIST
• COMMON/LOGIC2/CLOSED,DECIBEL,HERTZ,DEGREE,ANSWER,PLAT,GRID,SCALE
• CQMMON/LOGIC3/TEST~ ALRE ADY
• COMMON/MATRIXI/AIN(1O),IRUN ,NU,NY,NS,MU,LY
• COMMON/TTYPLT/OK.IPT
• COMMON/PLOTER/MULT , JPLOT , KPLOT , LPLOT ,FACT
• COMMON/X153/SCRTCH (153)
• COMIION/DIGIT/TSAMP, SAMPT ,ALPHAT,SIGlIAA , SIGMAB
• CONPION/tIASSTO/INMASS (47) • F
• DIMENSION ROOTR (50),ROOTI(50) .

• LOGICAL REOUEST~ ECH O~ EXTCALC,CALC,EQUAL,COMMA~LIST, •

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• LOGICAL TEST,ALREADY,GOPLOT

C . .

•..•.••..• •. • . • . ••..••••••••• • •••••.••••• •••• •1•••~~~S ••I••.•••• • ••• • .• . ••

Fig. 1. TOTAL ’s common data base .

- 

- B-7



Variables in this data base are initialized to their

default values at~the beginning of the main executive overlay .

3.3 DESCRIPTION OF THE MAIN EXECUTIV E OVERLAY

The discussion in this section is a detailed description

of TOTAL’s main executive overlay. The reader is referred to

the flow chart on the following page which may be helpful in

reading the remainder of this section.

When execution of TOTAL begins, all variables in the

common data base are initialized as described in Section 3.2.

The mass storage file M EMAUX is also opened. TOTAL then enters

OPTION mode at statement 11110 and calls program READER (overlay

6) to receive a string of commands, option numbers, etc. from

the user. READER compiles the user’s input, stores the commands

in coded form in the array MCOMM , sets the MPT pointer to the

first command in MCOMM and returns control to the executive

overlay at state’nent number 11111. REA DER is discussed in

much greater detail in Section 4.

Statement 11111 is the main control node of the entire

program. Every overlay returns control to this point when it

has finished executing. From this point, program flow runs

through a three level sorter to determine where control should

be transfered next. These levels include the internal routing

controller, the command type sorter, and the master overlay

selector . 
-

Internal routin& controller.

- 
- Thi s controller is a special utility which allows one

- 

- overlay to specify a sequence of additional overlays to be called
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I
before TOTAL moves on to the next user command. Normally,

when the user gives a command, the necessary overlay is

selected, it executes the command, and TOTAL moves on to the

next command. If, however, for some reason more than one

overlay is needed to complete the given command, the first

overlay called sets up the sequence of additional overlay

calls that will be needed and stores them in the array NROUTE.

TOTAL then executes all commands in NROUTE before moving on to

the next main command in the MCOMM array.

A typical example of this procedure is in the execution

of option 48-. Overlay 4 contains all of ~he necessary routines

for calculating points on a root locus. It does not, however,

have room for the routine which actually plots the points and

( 
an additional overlay (overlay 11) is needed. Now, when

overlay 4 has finished computing the points, it stores an 11

in NROUTE(1), sets the NRPT pointer equal to 1, and returns

control to the executive. The executive sees that NRPT is not

zero and uses the internal routing controller to send control

to the overlay number stored in NROUTE(NRPT ) = NROUTE( 1) 11.

NRPT is then incremented and when overlay 11 has finished ,

control is transfered to overlay number NROUTE(NRPT) =

NROU TE(2) - 0. Whenever a zero is encountered (as in this case) ,

TOTAL knows that the last internal command has been complete. - 
-
- 

-

-

NRPT is set back to zero and program flow passes on to the

command type sorter . Since NROUT E has a dimension of 20 , up

to 20 secondary commands can be specified if needed . An

overlay can even have itself called back when the series it

specified is finished by simply putt ing its own overlay number
B-b
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into the NROUTE array. This is how temporary interrupts to

( CALCULATOR or HELP modes are handled.

Command type sorter.

This routine begins at statement 11113 as shown in Fig. 2.

The command type sorter increments the MPT pointer, looks at

the coded command stored in MCOMM(MPT), and decides where the

program flow should go next. If the next item in the array

is a general command or variable operation (MCOMM(MPT) =

1, 2, 3, 4, or 5), program DECODER (overlay 7) is called to

decode and execute it. If MCOMM(MPT) = 6, the next command is

an option number and control is given to the master overlay

selector . The COPY command has an entire program (overlay 15)

devoted to it and so, rather than calling DECODER, control is

passed to overlay 15 directly. MCOMM (MPT) = 0 indicates that

the last command has been executed and the executive returns

to statement 11110 to call READER and ask the user for further

instructions.

Master overlay selector.

- Since each of TOTAL ’S options may be located, in general,

- 
- 

in any one of the 17 overlays, a method is needed to select

the correct overlay for a given option. This is done with a

massive GO TO statement called the “master overlay selector.”

101 GO TOC 1, 3, 3, 3, 3, 3, 3, 3, 3, 9,
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 9, 

9,
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9,
+ 2, 2, 2~ 2~ 2~ 2, 2~ 2~ 2~ 9~
+ 4, 4, 4, 4, 4, 4, 4~ 4, 4, 9,
+ 5~ 5, 5, 5, 5, 5, 9, 9, 9, 9,
+ 3~ 3, 3, 3, 3, 3, 3, 3, 3, 9,

C + 14,14,14,14 ~ i4, 14, 14, 14~ l4~ 9,
+ 16,16,16~ 16~ 16,16, 9r 9,16, 9,

f + 1, 9, 13, 9~ 18, 9, 9, 9, 9, 9),

B-li
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aitries 4n this computed GO TO statement are indexed

( by the option number, NOPT , and are simply the statement

numbers for the corresponding overlay calling statements.
• For example, if NOPT - 93, control is transferred to statement

number 13 which just happens to be the CALL statement for

overlay 13, and so on.

The value of NOPT is obtained in statement 88 from an

array DATM(MPT) which is indexed by the same pointer, MPT, as

the primary command array MCOMM(MPT). When the user types a

valid option number, the fact that it is an option number is

stored as MCOMM(MPT) = 6 and its actual value stored in

DATM(MPT). Complete details on these arrays are given under

program READER in Section 4.

Q~her operations performed in this overlay.

The “CHECK SUPPRESS” block in the flow chart is just a

look ahead operation to see if the user has typed an “S”

following the option number. If the suppress code j~ stored 
—

in MCOMM ( MPT + 1) , the logical variable REX~UEST is set to

.FALSE. to tell TOTAL to skip requesting any input it may need

to execute the option and just use the old (or default) values.

If the S code is found, MPT is incremented so that the SUPPRESS

command itself will not be executed the next time.

If the plotter has not been initialized and the upcoming

option will generate a plot, the “ INITIALIZ E PLOUER” block

will be executed. This routine ensures that the plotter is

initialized once and only once. ( Every time the plotter is

C 
initialized, a new banner is drawn on the PLOT file.)

When the block labeled OPENMS is executed, TOTAL calls
- B- 12
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H
the subroutine OPENMS to open the mass storage file MEMAUX.

If MEMAUX does not contain any information (from previous - 
-

• - runs of TOTAL), this routine fills all 45 storage sections 
•

I with zeros. If these arrays were not defined in this manner

and the user later tried to read from a location to which he

had not first written, a fatal error would occur and execution

-
~~ of TOTA L would end abruptly. -

After any overlay has finished executing, control is always

returned to statement 11111 and the cycles described above are

repeated. When the command STOP is finally typed, DECODER sets

- NOPT = -l and when statement 11113 is executed, overlay I is
- 

called to write all data in the common data base to local file

MEMORY and stop the program.

I c  H
B- 13
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SECTION 4. DESCRIPTION OF TOTAL’S OVERLAYS

(

This section is intended to document the structure,

purpose, and general operation of each of TOTAL’s primary

• overlays. The source listings of each of these programs

include liberal use of comment statements which are intended

-~~ to make them self-explanatory to the programmer. This

section contains additional information which may be useful

in understanding and using the program coding.

4.1 OVERLAY (1.O~ -- PROGRAM UPD~T~
Program UPDATE is one of TOTAL’s smallest overlays. It

performs only two functions, including writing information

from common to local file MEMORY and reading that information

back in.

When option 91 is selected, UPDATE is called by the main

executive overlay. Local file MEMORY (TAPE9) is rewound and

all variables in the common data base are written onto it.

The first number written is the code number “989” used to

identify the tape as a MEMORY file. After all information has

been saved with a series of simple WRITE statements, control

is returned to the main overlay .

The reverse sequence of events takes place when UPDATE 
- 

-

executes option 1. MEMORY is rewound and tested to see if its

first entry is “989” . If it is not , an error message is

printed, otherwise, the data is read back into the common data

C 
base and the option terminates as before.

‘1 When the command STOP is executed, UPDATE does option 91.



returns unneeded local files , and terminates TOTAL .
( 

H
4.2 OVERLAY (2.0) -- PROGRAM TIM~~

Overlay (2,0) is Just a short executive overlay which

calls three secondary overlays as needed to perform digital

and continuous time response options. For continuous responses

(TSAMP = 0) or partial. fraction expansions (NOPT = 36), it
calls program PARTL (Overlay (2,1)). For discrete responses

(TSAMP ~ 0) or selecting inputs (NOPT = 39), DIGITR (Overlay

(2 ,2)) is called. If a Calcomp plot is generated (NOPT = 34),

PLOTFIN (overlay (2,3)) is called to finish drawing the titles,

axes, etc. Sections 4.3, 4.4, and 4.5 describe these three

secondary overlays.

4.3 OVERLAY (2.1) -- PROGRMI PARTL

Program PARTL uses a Heaviside partial fraction expansion

algorithm taken from the AFIT program of the same name. (Ref.1

Most other features, however, including plots, listings, and 
I 

-

function outputs, are new and greatly improved. Fig. 3

provides a general flow chart of the program. The blocks

labeled “standard interrupt routine” and “restart” are used

to allow temporary interruptions of the program to call the

CALCULATOR and HELP overlays. The value of NCALL(4) set and

used by these routines simply allows progra m flow to find its

way back to the statement at which the interruption occurred.

A complete explanation of these routines is given in Section 5

under subroutine READS.

At the beginning of PARTL, the transfer function of interest ~~~
--

B-15
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is loaded, multiolied by the transform of the input of

interest, and tested for legal form. A partial fraction
( expansion (PFE) is then performed and the desired time

function determined from an inverse Laplace transformation

of the PFE terms. Options 35 and 36 print out some of the

results of these computations while thay are being obtained ,

All other options use the general function subprogram FT(T)

to obtain the actual time response results. FT(T) gets its

information through labeled common statements and is described

more fully in Section 5.

4.4 OVERLAY (2,2) -- PROGRAM DIGITR.

Given an ~th order transfer function such as

C(z) - 
~~~Z + a2z + a 3

( R(zJ - 

z2 + b2z • b3

DIGITR calculates a discrete time response by forming the

recursive difference equation

c(k) = a1r(k) + a2r(k - 1) + a3r(k - 2) - b2c(k - 1) - b3c(k - 2) 
- -

and iterating it ~or some desired input sequence.

Subroutine RIN is used to supply the input sequence

(ramp, step, pulse, etc.) and subroutine PROGAT shifts the

arrays of past inputs and outputs and evaluates c(k) for each

new value of k.

After the response values are calculated over the range of

K specified , DIGITR plots and/or tabulates the results in much

the same way as PARTL. A flow chart for DIGITR is shown i ”

C- 
Fig. 4.
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Fig. 4. Flow chart for the program DIGITR .

B-18

— - --.. — — ~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ - -- - - - - 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — -  
~~~~~~~~~~~~~~~~ ‘~~

- -- -

- 
L__ 

~~~~~~~~~ ~
- 

~-~T —



H - 

-

-

-
i

— 4.5  OVERLAY (2 .3)  --  PROGRAM PLOTFIN.

( 
This program finishes up the Calcomp plots for PARTL

and DIGITR. Both programs are responsible for drawing their

own actual response curves, but PLOTFIN does the-rest ~~~~~~~
- -

including boxes, grids, title, time axis, and tic marks. The

actual coding itself is very straightforward and needs little

explanation. iF

4.6 OVERLAY (3.0) -- PROGRAM POLY.

POLY handles all transfer function input and polynomial

operations for TOTAL. It is responsible for 17 options,

including options 2 through 9 and 61 through 69, making it

one of the largest overlays in the program. Its structure,

however, is very simple. -

POLY is divided into 17 sections which are addressed by

branches of computed GO TO statements. For a given option

number, only one of these sections is executed before control

is returned to the main overlay. Thus, each section is

essentially independent of the others and it is not difficult

to understand the operation of any particular option.

The understandability of POLY is further enhanced by

extensive use of subroutines in its design. This modular

approach allows a person to study the program “from the top

down” by treating lower-level routines as “black boxes”

while studying those at a current level. Subroutines used in

POLY are discussed in detail in Section 5.

POLY does have one unique feature that is worthy of

mention s the use of an interrupt request to factor polynomials.
- 

8-19

- ~~~~~~~~ - -~~~~~~~_ _ _  - - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Because of the program’s size and the large number of subroutines

( it uses, there was not enough room for everything in a single

overlay. Therefore, the factoring subroutine DMIJLR was moved 
-

to a separate overlay (overlay 10) to make room for the rest.

With this approach, when polynomial roots are needed,

POLY terminates temporarily, overlay 10 is executed, and

POLY is restarted, beginning execution where it leit off. The

polynomial to be factored and its resulting roots are passed

between the two overlays with a labeled common statement.

The procedure described above is called the “standard

interrupt routine.” It is initiated by a series of FORTRAN

statements such as those found beginning at statement 8002 in

POLY . -

NRPT.1 Tell the executive (overlay(O ,0))that this is
( an interrupt request, not a normal termination.

NROUTE(1)=10 Tell the executive that this is an interrupt
request for overlay 10.

NROUTE(2)=3 Tell the executive to return control to overlay
3 (POLY) when overlay 10 has finished.

NCALL(l)=12 Tell the RESTART routine at the beginning of
POLY to jump to the 12th statement number in
its GO TO array when POLY is restarted (so

-

• 
that POLY will pick up at statement 8003 where .
it left of f ) .

GO TO 1OCO Send control to the executive so that it can
begin the above set of instructions.

The net effect of this interrupt routine is that it

allows one primary overlay to call another - - a feat not

normally possible with overlays. Further information on this

technique is presented in the discussion of subroutine READS

( in Section 5.
B-20
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4.7 OVERLAY (4.0) -- PROGRAM ROOTLO.

( ROOT1O is the executive primary overlay which control~s~.

the four secondary overlays that do all the root locus

options in TOTAL. It is essentially the original AFIT

program ROOTL , (Ref. 2 ) although it has been modified and

improved considerably .

A general flow diagram for ROOT1O is given in Fig. 5.

The secondary overlays it calls are described in the following

sections .

4.8 OVERLAY (4 .1) -- PROGRAM ROOTII .
ROOT11 sets up the Calcomp plot. It 1.s responsible for

drawing everything but the actual locus branches, including

boxes, titles, axes, labels, poles, and zeros. In addition,

this routine performs the search for locus points at a

specified Z ETA of interest. In s-plane the search is done

along a constant zeta line, beginning at a distance RAD from

the origin. In z-plane , the search begins at an undamped

natural frequency (..)~ = RAD and spirals from the z - 1 + jO

point in to the origin. ROOT11 draws the zeta line of interest

and , in z-plane (TSAKP ~1 0), it draws the unit circle.

4,.9 OVERLAY (4 .2)  -~~~ PROGRA M ROOTS.

ROOTS performs only one function. For a given value ot

GAIN, it calculates the closed-loop transfer function in

polynomial form. It then factors the denominator polynomial p
-

~~~~~~ 0 and prints out the closed-loop poles at the GAIN of interest. I
8-21 
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4.10 OVERLAY (4 ,3) -- PROGRAM ROOT12.

( • ROOTI2 is the workhorse of the root locus programs. It

computes the points on each branch of the locus within the

boundaries of calculation.

The method used to calculate the root locus is an iterative

search for one locus point at a time. Since points on the

locus are only desired within a set of boundaries specified

by the user, there are four types of root locus branches

which may occurt

1. A branch which lies entirely within the boundaries.

2, A branch which starts inside the boundaries and goes
outside.

3. A branch which starts outside and enters the region
of calculation, or which reenters the region after
having left it. 

-

4. A branch which lies entirely outside the boundaries.

Branches which start inSide the boundaries are found by

beginning at each pole within the region and using a circular

search routine (to be described later) to follow the branch

until it reaches a zero or goes outside the boundary. Branches

which enter the region from outside are found by searching the

boundaries for a branch crossing and then following the branch

with the circular search routine until it terminates at a zero

or leaves the region again. Branches which lie entirely outside i 
—

the region of calculation are skipped and an informative r
message orinted.

The circular search routine mentioned above is used after

the f i rs t  point on a given branch has been located . This

routine simply searches around a circle of radius DEL centered

- B-23
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at the point already known until, another locus point is

found which satisfies the root locus 180 or 0 degree angle

criterion . The new locus point is then used as the center of
• another circular scan and the process repeats until a point

is found which lies outside the boundaries or which is less

than DEL units from a zero.

Fig. 6 shows a flow chart depicting how each branch is

located by ROOT12. First, the branches beginning at each

pole are traced until they leave the boundaries or terminate

at zeros. Then the boundaries are searched for other incoming

branches and these branches are traced. When the entire

boundary of the region of interest has been searched, every

locus branch has been found and ROOT12 returns control to the

primary overlay ROOT1O.

(

4.11 OVERLAY (4.41 -- PROGRAM ADAPT.

Thi s overlay was written to allow interfacing of subroutine

READS with the other ROOTL overlays. Subroutine READS is used

throughout TOTAL in place of the standard FORTRAN READ statement

to receive data interactively while protecting against input

errors. Because of its size, there was not enough space for it

in any of the existing ROOTL overlays so a new overlay, ADAPT,

was written.

ADAPT is simply an input program designed to ask the user

for all the information needed for a given option number. It

prints out all prompting messages, calls READS ~ :eceive the

( 

user ’s input, and stores the input in the common data base for

use by the other root locus overlays.
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4. 12 OVERLAY (5 .0) -- PROGRA M FREQ R.

( FREQR is a very short executive program which simply

calls two secondary frequency response overlays. The first

overlay called, program FREQOUT, performs all of the actual

frequency response options. If a Calcomp plot is generated,

the second overlay , program PLOTSET, is called to finish the

details of the plot. FREQOUT and PLOTSET are described in

Sections 4.13 and 4.14.

4A 3 OV ERLAY (5~ 1) --PROGRAM FREQOUT.

FREQOUT performs all discrete and continuous frequency

response options. A general flow chart for the program is

given in Fig. 7.

Execution normally begins at statement 10. After a few

set-up operations, a seven branch computed GO TO statement is

executed to send the program flow to the section of the

program responsible for executing the given option number, NOPT. 
—

These seven sections (one for each frequency response option)

are independent of each other and they all return control to

statement 9999 which terminates FREQOIJT.

Because FREQOUT has been divided into small, independent

sections of coding, it is easy for a programmer to study a-

particular option of interest. The only sections which really

need further explanation are the Calcomp plot options (55 and

56) . These will be discussed shortly.

FRB~OUT uses two function subprograms to do the actual

(~~ 
frequency response cakulations . Function FW(W) returns the

magnitude of the response for a given value of frequency W.
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Function AW(W) returns the corresponding phase angle, The

j units of frequency used (hertz or radians per second), the

magnitude returned (linear or decibels), and the angle

returned (degrees or radians) are determined internally by

FW and AW based on the values of the logical variables HERTZ,

DECIBEL, and DEGREE respectively. Whether the values returned

are for open-loop or closed-loop transfer functions, and

whether the function is treated as discrete or continuous, is

also determined inside FW and AW based on values of CLOSED

and TSAMP respectively. The values of these variables are

specified by the user prior to selecting the option desired as j
described in Section 2.10 (option 93) of the User’s Manual

~~~ TOTAL. FW and ~W are described completely in Section 5

of this manual.

As mentioned earlier, the Calcomp plotting routines

(options 55 and 56) are of sufficient complexity to merit

further explanation. The expanded flow chart of these

routines given in Fig. 8 should be helpful in understanding

the following discussion.

Options 55 and 56 differ only in tha t the first uses a

linear frequency axis while the second uses a logrithmic

one. Because of the many similarities, much of the coding is

identical and has been combined. In fact, after obtaining

the magnitude and/or angle values at the appropriate

frequencies, both options use the same routine to finish

scaling and plotting the data .

C Option 55 begins at statement 200 by requesting the user

to specify a frequency range of interest. Option 56 begins
- B-28
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in a similar fashion at statement 300 . Both options then ask

the user to specify whether to plot phase only, magnitude

only, or both. The value of the variable “KIND ’ is

specified by the user ’s choice as~ 1 = ploc phase, 2 = plot

ma~~~itude , or 3 = plot both. KIND is then used as an internal

• flag to- control flow throughout the rest of the routine.

The f i r s t  set of calculations performed by either opt ion

is to fill the variable “ARRAY’ with 800 phase or magnitude

values~depending whether KIND = 1 or KIND = 2. If KIND = 3,
the magnitude values are computed, scaled, and plotted first

and the process then repeated for the phase.
- 

When the calculations are complete , ARRAY is just an

array of 800 points to be plotted at even intervals and it is

no longer necessary to know whether the points are spaced

linearly or logrithmically. (Logrithrnically spaced points on

a log axis are drawn the same as linearly spaced points on a

linear axis.) Thus, both options transfer control to statement

215 at this point.

Statement 215 begins the magnitude scaling routine for

an arbitrary array of 800 magnitude points. These points are

scaled either linearly or in decibels, depending on the value

of the logical variable DECIBEL. Once this selection is made,

the user is asked to specify the desired scale, or the array

is scaled automatically, depending on the logical variable

SCALE which the user can define. (See option 93 in Section 2.10

of the User’s Manual .)

After the axis scale has been determined , flow goes to
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statement 255 and the magnitude array and axis are plotted .

The program then terminates or, if KIND = 3, it cycles back

around to statement 320 or 340 to load , scale and plot the

phase response.

When FREQOUT finally does end option 55 or 56, it returns

control to the primary overlay FREQR, which cal ls program

PLOTSEt to finish the plot .

4.14 OVERLAY (5~ 2.~ -- PROGRAM PLOTSET.

PLOTSET is a short program which draws the entire Calcomp

plot for options 55 and 56, except for the actual response

curves. Its job includes drawing the boxes , axes, title, labels,

and grid lines using standard Calcomp routines.

4.15 OVERLAY (6 . O) -- PROGRA >1 READER.

READER is the program in TOTAL responsible f or all

interactive functions . It receives all input from the user

when in OPTION mode and translates it while checking for

errors into a coded set of numerical commands which TOTA L

can execute. READER also receives all input from the user in

CALCULATOR mode and performs all calculator operations .

READER is essentially a compiler. It reads input from the

user one 80-character line at a time and translates the

character patterns into a sort of “machine language” of

numbers which can be easily used for branching with FORTRAN

IF and computed GO TO statements. The compiler is capable of

recognizing a large variety of character patterns including~
command names, variable names, indicies, numbers, equations,

B-31
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options, several special characters such as “ $ “  and “?“ . It

can also handle abbreviations if they are unique.

The compiled results from READER are stored in two

arrays called MCOMM and DATM . Both arrays have a dimension

of 100 and are indexed by a pointer MPT. MCOMM contains the

type of an item such as whether it is a command or a variable,

etc. DATM contains the specific item identification, such as

which command or which variable. For example, if a series of

letters was found to be the name of a variable, the tact that

it was a variable is stored in MCOMM while its specific

variable number is stored in DATM. READER recognizes six

H different types of input items. The code which it assigns in

MCOMM to represent each item is shown below:

IT EM TYPE MCQMM CODE ~~~~ CONTENTS
Command Name 1 Command Number

Variable Name 2 Variable Number
Numerical Data 3 Number ’s Value

Open Parenthesis 4 Number of indicies to follow
Equal Sign 5 Number of equated item to

follow
Option 6 Option Number

The manner in which READER uses this code is best illustrated

by an example. If the user types a line of input as follows:

OPTION > ECHQ.ON A~ AT(8 , 5)=3 .1 4L5

READER would store the compiled results in MCOMM and DATM as

shown in Fig. 9. ‘ I
As each item in the input is coded , it is stored in the

MCOMN and DATh array elements , currently addressed by the index

pointer MPT. After each entry, MPT is incremented to point
5-32
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at the next empty location in the arrays. When an entire

( line has been compiled , MPT is set equal to 1 to point at the

first coded instruction and READER is terminated . These

coded instructions are then interpreted by the main executive

overlay (with the help of program DECODER (overlay (7,0) ) )

and executed in sequence. When the list of instructions has

been exhausted, READER is called again and the user is asked

for another line .

READER has a vocabulary of nearly 200 words which serve

as variable and command names which the user may type. This

vocabulary is stored in an integer array called TABLE, which

is currently dimensioned to allow up to 325 words . When the

compiler routine encounters a string of letters (A through Z)

that are separated from other characters in the input, it

stores them as a unit into a variable called WORD. The

contents of this variable are then compared with every name

stored in the TABLE array until a unique match is found. The

index number (position in the array TABLE) of the name which

matches becomes the compiled code for that name. This code is

then stored in the DATM array for future reference. If no

match is found anywhere in TABLE, the characters in WORD are

flagged as an input error,

New command or variable names may be added to TOTAL by

simply adding the new word to one of the ten DATA statements

which define the TABLE array. Actually, these DATA statements

define ten smaller tables which are stacked “end-to-end” with

C- EX~UIVALENCE statements to form the one large table called TABLE.

Each of these tables contains a particular name type as
- B-34
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listed below:

( TABLE NAME TX~E_OF NA~1 E IT _UOLpS

TABA A table of up to 50 command names
TABB A table of up to 50 real constant names

TABC A table of up to 25 integer constant names
TABD A table of up to 25 one dimensional array names

TABE A table of up to 25 complex variable names
TABF A table of up to 25 two dimensiona l array names
TABG A table of up to 50 calculator key names
TABH A table of up to 25 special abbreviations
TABT A table of up to 25 auxiliary transfer

function names
TABJ A table of up to 25 auxiliary matrix names

New names are added by simply adding on to the end of the

appropriate DATA statement. This will cause one of the 325 - 
I

index numbers which is not already in use by another name to

( 
become active. Thereafter, anytime the new name is typed , its

index number will be stored in the DATM array. The programmer

can then use this number to perform any operation he wishes to

define by testing for it anytime the DATM array is used

throughout TOTAL.

Complete details on how program READER actually compiles

the user’s inputs are beyond the scope of this manual. The

interested reader is referred to Appendix C for a more

complete discussion.

4J6 OVERLAYL7,O) -- PROGRAM DECODER.

DECODER is responsible for decoding the MCOM~M and DA T>1

arrays set up by READER and executing the resulting instructions .

- , 
- 
1 A flow chart for this program is given in Fig. 10.
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As described in Section 4.15, READER encodes input from

the user as one of six possible values of the variable MCOMM

(MPT) and stores additional information about the item in

DATM(MPT). The code used by READER is repeated below for

easy reference.

MCOMM (MP~~ ITEM NAME DATMLMPT) CONTENTS

:~ 
1 — Command Command Number
2 Varible Variable Number

[H 3 Numerical Data Actual value of datum

4 
- 

Open Parenthesis Number of indicies to follow
5 Equal Sign Number of equated items to

follow
6 - Option Option Number

Execution of DECODER begins with a computed GO TO

statement which senc~ program flow to one of six sections of

the program depending on the--value of MCOMM(MPT). The

remaining discussion is a detailed description of these six

sections.

The Command section. If MCOMrI (MPT)=1, the program f l ow

jumps to statement number 1000. This statement is another -

computed GO TO statement with 36 branches selected by the
• value of DATM(MPT). The 36 subsections addressed in this

manner each execute one of the 36 commands recognized by TOTAL.

When a particular command has been executed, MPT is incremented -

and control is returned to the GO TO statement at the beginning

of DECODER for the next instruction.

Not all of the 36 possible commands are actually executed j
by DECODER . Some of the command subsections only set up a

request in the NROUTE array for some other overlay to be called
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and return control to the main executive overlay which

executes the request . In the case of COPY (command number 18),

an entire overlay is needed to handle all the possible var iations

of a single command . This overlay (Overlay (15,0)) is called

directly by setting MCOMM (MPT)=7 and returning to the

executive through statement number 7000. (When the executive

sees MCOMM (MPT) =7 , it automatically calls overlay (15,0) to

execute the COPY command.)

The Variable section. If MCOMM (MP T)=2 , the program jumps

to statement number 2000 and subroutine MODIFY is called .

MODIFY is an elaborate subroutine which lists or modifies the

variable in TOTAL’s common data base, whose variable number

is stored in DATM(MPT). The exact action taken depends on the

value of MCOMM(MPT ) .

If MCOMM(MPT )  equals 1~~ 2, 3, or 6, the value of the

variable is simply listed at the user ’s terminal .  If the

variable is an array, all elements of t1~ array are listed .

No further action is taken and control returns to the beginning

of DECODER to fetch the next instruction.

If MCOMM (MPT+1)=4, the variable is known to be subscripted

with the number of indtcies stored in DATM (MPT+1). The actual

index values are then obtained from DATM(MPT+2) and (if there

are 2 indl.cies) DATM (MPT+3). If all of this information is

followed by anything other than MCOHM(LASTMPT+1)=5, the

value of the single array element with the given indtcies~.is

listed. If MCOMM(LASTMPT+1)~5 (where LASTMPT is the value of

C MPT which poLits to the location in DATM (MPT) where the last

index value was obtained), the array element with the given

- - 8-38
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indicies is set equal to the variable value stored in the

( next DATM location (DATM (LASTMPT+2)).

If MCOM~’1(MPT-s-1)=S, the variable is known to have been

followed by an equal sign in the original input , and it is

assigned the value of the number or variable stored in the

(MPT+2) location.

When subroutine MODIFY has f inished , it sets the MPT

H- pointer to point to the next instruction following the last

item of information it used in the MCOMM and DATM arrays.

Control is then returned to the beginning of DECODER to get

the next instruction.

Numerical iiata 1 open parenthesis , and equal stj~n sections.

These three sections print error messages and when TOTAL is

operating properly, should never be used . MCO MM (MPT) =3, 4 , or

5 shoUld only ever occur following a variable name and are

intended only for use by subroutine MODIFY as described above.

Since MODIFY always moves the MPT pointer past these numbers

when it has finished using them, they should never be

encountered when the main GO TO statement at the beginning of

DECODER is executed. These sections are only included to protect 
-

~ 
-

against abrupt termination of TOTAL in event that an error

occurs in one of the encoding or decoding routines.

Option section. If MCOMM(MPT)=6, DECODER jumps to state-

ment number 6000-.. Since the option number that must be

executed may, in general be found in any one of the 17 primary

overlays, DECODER simply returns control to the main executive —

C and allows it to call the appropriate overlay needed to

execute the option.

B -39
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Termination of DECODER. When MCOMM (MPT)=0, the list of

instructions stored in MCOM1M and DATM has final ly  bee~ exhausted

and DECODER ends. The main executive overlay immediately

• calls READER and the user is asked for further instructions

with the familiar prompt s OPTION > .

~J7 OVERLAY (9,0) -- PROQ~~M HEL P.

HB.S.P is a program consisting predominantly of PRINT

statements. Its sole purpose is to give help on each of

TOTAL ’s options. Its structure consists of a single computed

GO TO statement with a branch for each option. When a

particular branch is executed , the program simply writes a

short help message and then terminates, returning control to

the main overlay .

4.18 OVERLAY (10,0) -- PROGRAM FRACTOR.

FRACTOR is a program whose sole purpose is to call

subroutine DMULR to factor a polynomial. The program receives

the polynomial to be factored from any other overlay in TOTAL

through labeled common . After checking to ensure that the

highest power coefficient of the polynomial is non-zero (and

hence its degree correct), FRACTOR loads the polynomial into

a double precision array and then calls DMtJLR.

When DMULR finishes factoring the polynomial , it returns

¶ the roots as real and imaginary parts in two separate double - 
I

precision arrays. After zeroing the imaginary parts that are

(1 within 10 ’s of zero , FRACTOR copies the results into an array

in labeled common where they can be used by other programs
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and returns control to the main overlay .

4.19 OVERLAY (11,0) -- PROGRAM TTYPLOT.

TTYPLOT produces a printer plot of the root locus for

option 48. It is called only a f te r  all points on the root

locus have been calculated and stored as x-y coordinate pairs

on local file TAPEIO by the root locus programs (overlay (4,0)).

TTYPLOT then reads these yoints from TAPE1O and i,uts them on

the plot. • I

The printer plot is first set up in an array called

GRAPH(61,71) by storing alphanumeric characters for the

border , axes , grid , poles , zeros , and locus point s at j
appropriate locations in the 61 x 71 matrix. The plot is then

generated by printing the GRAPH array contents, one row at a

time, in al phanu’~neric format .

Points are placed in the GRAPH array, by mapping the region

of the complex plane defined by the locus boundaries AA , SB,

CC , and DD into a discrete-valued array 61 units wide and a

proportional number of units long. This is accomplished by

simply dividing the length of the real, axis to be plotted by

60 and allowing the result to represent one unit on the real

axis of the plot. Since most printers print 10 characters

per inch horizontally and only 6 lines per inch vertically,

one unit on the imaginary axis of’ the plot is chosen to be

10/6 times the size of a real axis unit. Once these units

have been chosen, each locus point is rounde4 to its nearest

discrete value on the plot and an alphanumeric character

stored in that location in the GRAPH array.
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TTYPLOT was written as a completely general program and could

be used to plot any set of x-y points stored on TAPE1 O (not

just root locus points.)

4.20 OVERLAY (I3~0) -- PROGRAM MISCELL.

This overlay is designed to serve as a catch-all for

miscellaneous options which do not fit into any other overlay
I,

(either logically or in terms of actual available space). At

present , MISC ELL only performs one option : Option 93.

The f i r s t  executable statement encountered in MISC ELL is:

IF(NOPT.EQ.93) GO TO 93

which sends program flow to statement 93 if the option number,

NOPT , is 93. If NOPT ~ 93, an error message is printed and

MISCELL is termLnated . Additional options may be added to this

overlay by simply including another IF statement. For

example, to add option 118, one would insert the statement :

“IF(NOPT.EQ.118) GO TO 118” after the first IF statement and

then add the new routine beginning statement 118.

4.21 OVERLAY (1~~,0) -- PROGRAM MATRIX.

MATRIX is just an executive program which directs the

selection of two secondary overlays called MATS and ‘IATOPR .

These overlays are discussed in the following two sections.

I

4.22 OVERLAY (14,1) -- F-ROG RA M MATS.

Program MATS is responsible for parts of the execution

of option s 11 , 12 , 13, 14 , 15 , 16, 17 , 18 , 19, 25 , 26, 77 , 78,
and 79. Each of these options is performed by a separate
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piece of coding addressed by a computed GO TO and several IF

statements at the beginning of the program.

MATS is primarily designed to start every matrix-related

• option in TOTAL by obtaining any input which may be needed.

Since options 11 through 17 involve only the input of data,

MATS performs them entirely. For other options, MATS only

I’ receives the needed input and leaves the actual computations

for MATOPR to perform after MATS has terminated.

By dividing the functions performed by the two programs

in this manner, MATOPR does not need to use the large input

subroutine READS at all and all of its space can be devoted

to performing the actual matrix operations.

4.23 OVERLAY (14.2) -- PROGRAM MATOPR S

As has been mentioned, MATOPR performs most of the matrix

operation options for TOTAL. Specifically, it is responsible

for options 25, 26, 27 , 71, 72 , 73, 74, 75, and 76. MATOPR

makes extensive use of subroutines in performing its many

functions. These subroutines include PHOFS, FACTO, ECHOS,

MADD , MATECHO , G ENMNPY , MINV , TRANPOS , and GTFHTF and are

discussed in Section 5.

4.24 OVERLAY ( 15.0) -- PROGRA M COPYIER.

COPYIER is a program designed to implement the COPY

command providing the ability to transfer variables from one

location to another in TOTAL ’s common data base . When COPYIER

is called , the variable names following the COPY command are

read as variable numbers from DATM(MPT+ 1) and DATM( MPT +2) .
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These variables may be of the following types i
( Local polynomial arrays in labeled common

Local complex root arrays in labeled common
Local matrix arrays in labeled common
Local transfer functions in labeled common
Auxiliary matrix arrays in the mass storage file MEMAUX
Auxiliary transfer function in MEMAUX

Depending on what kind of transfer is to be performed,

COPYIER selects one of ten routines to perform the operation.

v A list of routines which can be selected is given belows

Copy from one polynomial to another
Copy from one root array to another
Copy from one local matrix to another
Copy from a local matrix to an auxiliary matrix
Copy from an auxiliary matrix to a local matrix
Copy from one auxiliary matrix to another
Copy one local transfer function to another
Copy a local transfer function to an auxiliary one
Copy an auxiliary transfer function to a local one
Copy one auxiliary transfer function to another

Each of these operation is performed bya separate

section of coding in the program. When the transfer of

information is complete, COPTIER returns control to the main

overlay.

4.25 OVERLAY (16 0) -- PROGRAM XFORMSS

XFORMS performs a variety of transformations between

continuous and discrete transfer function representations.

The program is divided into nine sections which independently

perform options 81 through 89. These sections may be classified

according to three types of operation as described below.

Options 81 and 84 use a partial fraction expansion

technique to perform impulse invariant transformations between

s and z transfer functions. In both cases, the transfer
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function of interest is expanded into first order terms, the

( individual poles transformed, one at a time, from one domain

into the other, and the first order terms multiplied together

to form the transformed transfer function.

Options 82, 83. 85, 86, and 89 use a single subroutine

to perform substitution of the forms

s = ALPHA • (z + A)/(z + B)

or

z = ALPHA (s + A )/ ( s  + B)

Each option simply defines ALPHA , A , and B as needed for its

particular transformation and then calls subroutine BL~’ORM

(ALPHA,A ,B) to perform the transformation on the contents of

CLTF.

Options 87 and 88 simply call appropriate subroutines to

perform transformations on systems represented in matrix form.

When XFORMS has completed a transformation, control is

returned to the main overlay through statement number 9999.

4.26 OVERLAY (17.0) -- PROGRAM BLOCKER.

BLOCKER performs all block diagram manipulation options

for TOTAL, including options 21, 22 , 23, 24, 28, and 29. The

program is divided into six sections addressed by a single

computed GO TO statement. Each program section performs its

function using a series of polynomial manipulation subroutines

including POLYADD, POLYSUB. POLYMLT, FACTO, and EXPAND. These

subroutines are described in Section 5. The actual operations

0 performed using these subroutines are described in detail in

• ~‘ Section 2.3 of the User’s Manua l for TOTAL.
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- When blocker finishes an option , it returns control to

( the main executive overlay through statement number 9999.

I:

(
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SECTION 5. DESCRIPTION OF SUBPROG RA MS

(
This section is written to document each of the

subprograms used by TOTAL. It is intended to describe the

function and use of each routine in sufficient detail to allow

a programmer to make intelligent use of it whenever the need

arises. A cross listing of subprograms and main programs used

in TOTAL is presented in Table II for reference. From this
4

table one may see which subprograms are used in any given

program and also which programs use any given subprograms . In

addition, page numbers are included so that Table II may also

be used as a table of contents for the subprograms described

in this section.

For each subprogram, a standard sequence of information is
( presented including a description, the calling sequence, any

COMMON statements used, a definition of symbols, explanatory

• notes, and a list of subprograms used. When COMMON statements

are tabulated, only the variables in each statement that are

actually used by the subprogram are listed. Any variables not
r used (but presumably used elsewhere in TOTAL) are represented by

asterisks to preserve variable position in the COMMON statement .

5.1 FUNCTION FT.

The function FT obtains the value of a continuous time
response function f or a given value of T using the f unction FTT
and performs a superposition of two responses in the case of
a pulse input.

0 .
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Calling Sequence.

( X2FT (T)

COMMON statements used .

COMMON/PARTLS/* , RWIDT H ,*,*, INPUTR

Definition of symbols.

T = Time at which response is to be evaluated
INPUTR = 4 input is a pulse

~ 4 input is an impulse , step, ramp , or sinusoid
RW IDTII = Width of input pulse in seconds

Notes.

(1) If INPUTR ~ 4, FT calls FTT once and simply returnsthe results to the calling program. If INPUTR = 4,
FIT is called twice for values of time I and
T-RWIDTH and the results subtracted using superstition
to obtain the pulse response.

Subprograms used.

FIT

( 5.2 FUNCTION FIT .
• The function FIT calculates the value of a continuous
time response function for a given value of T using information
placed in common by the program TIMER.

calling sequence.

X FTT(T)

COMMON statements used.

COMMON/PARTL1 /ZZz(50) ,XR NXX,YYY(50) ,w(50)
COMMON/PA RTL2/CR( 50) , EC( 50) , OM( 50) , FE( 50) , LL
Definition of symbols.

T = Time in seconds at which function is to be evaluated.
The variables in COMMON form the coefficients of the
function to be evaluated which has the form .

12 LL
~~ F1(I) -

~ + ~~~ (F2(I) + F3(I)) where
I i  121

C F1(I) - ZZZ(I) * EXP(xR*T)
F2(I) YYY(I) * ExP(w(I)*T)
P3(I) — CR(I) * ~~p(EC(I)*T) * sIN(oM(I)*T + FE(I)
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5.3 SUBROUTINE PROPGAT.

The subroutine PROPGAT iterates a recursive difference
equation of the form s

c(k) = A(1)r(k) + A(2)r(k - 1) + ... + A (N) r(k - N + 1)
- B(2)c(k - I) - ... - B(N) c(k - N + 1) •

to obtain the current value of c(k) given the past N input s and
outputs.

Calling sequence.

CALL PROPGAT (A ,B,R ,C,N,K)

Definition of symbol s.

A = Vector array of coefficients of R terms
B = Vector array of ceofficients of C terms
R = Vector array of past N input s ( including present )
C = Vector array of past N outputs (including present)
N = Order of difference equation
K = Current index value

Notes.

(1) The value of r(k - M) is stored in R(M + 1) and
- similarly, the value of c(k - M) is stored in( C(M + 1), and so on .

Subprograms used.

RIN

5.4 FUNCTION RIN.

The function RIN computes the current input r(k) for use
by PROPGAT . tt i.s capable of generating an impulse, step,
ramp, pulse , or sinusoid depending on the value of INPUTR .

Calling seouence.

X - RIN(K)

COMMON statements used.

COMMON/DIGIT/ISAMP
COMMON/PARTL5/RSLOPE, RWIDTH, RHIG HT, ROMEGA , INPUTR

Definition of svmbo.~~
0 K - Index value of the sampling instant in question

TSAMP - Sampling time in seconds

B-SO
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RSLOPE = Ramp input slope in units/sample
RWIDTH = Pulse input width in samples( RHIGHT = Magnitude scale factor for any input
ROMEGA = Frequency of sinusoidal input
INPUT R = 1 RIN = RLIIGHT if K = 0

= 2R IN = RH IGHT i f K � O
= 3 R I N = S L O P E * K i f K � O
= 4 RIN = RHIGHT if 0 � K < RHWIDT}!
= 5 RIN = RHIGUT * SIN(ROMEGA*TSAMP*K)

5.5 SUBROUTINE POLAR.

The subroutine POLAR converts a set of cartesian
coord inates AC and BD to polar form as a magnitude FACT and
an angle FACTR .

Calling sequence.

CALL POLAR

~QMMON statements used.

COMMON/POLARC/AC , BD,FACT, FACTR

Definition of symbols.

AC = x-coordinate
BD = y-coordinate
FACT = Magnitude = SQRT(AC**2 + BD**2)
FACTR = Angle in degrees = ATAN(BD /AC)

Notes .

(1) The angle FACTR is returned as a value between ± 7~

5.6 SUBROUTINE SPECS.

The subroutine SPECS finds the continuous time response
figures of merit rise time, duplication time, peak time, setting
time, peak value, and final value. It also writes these values
to an output device.

Calling sequence.

CALL SPECS

COMMON statements used.

0 COMMON/TOTL14/*,*,*,*,*,* * ,*,N60
COMMON/PARTL1/ZZZ(50),XR NXX,YYY(50),W(50)
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COMMON/PARTL2/CR(50), EC(59) ,OM(50) , FE( 50) ,LL

( COMMON/PA RTL3/FINVAL , DEL

Definition of symbols.

NGO = 6 Output is written to file ANSWER
= 7 Output is written to user’s terminal

FINVAL = Final value of response computed by program TIMER
DEL = Iteration step size

The remaining variables listed above are defined in
Section 5.2.

Notes.

(1) This subroutine finds every peak in the time response
over a range of time from 0 to eight times the
longest time constant, and picks the biggest one.

Subprograms used.

FT ZEROIN PEA K

5.7 SUBROUTINE ZEROIN.

The subroutine ZEROIN finds the first value of T after( T = TMIN, where the function FT(T) equals some specified value
GOAL using an iterative search procedUre..

calling sequence.

CALL. ZEROIN(T,GOAL,TMIN ,TMAX,LUCK)

~Q~ 4ON statements used.

COMMON/PARTL3/FINVAL , DEL

Del tnttton of symbols.

T = Value of time where FT(T) = GOAL
GOAL = Value of FT for which a corresponding time is to

be found
TMIN - Starting value of time range to be searched
TMA X - Final value of time range to be searched
LUCK = 0 No such time was found between TMIN and TMA X

= 1 The search for I was successful -

FINVAL - Final value of the function
DEL - Starting step size of search (chosen by SPECS to be

one tenth of the shortest period of oscillation in
the function.)

k _ 
_ _  - 

B-52

-_ _ _  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



“a
is 

• 
‘-

Notes.

(1) If the correct T Cannot be found , the value of I( returned is T = 0.

(2) The iterative search used is continued until FT(T)
is within io

_6 * FINVAL of the specified GOAL.

Subprograms used.

FT

5.8 SUBROUTINE PEAK.

The subroutine PEAK finds the first value of T after
I = TMIN where the slope of FT(T) is zero, using an iterative
search technique.

Calling sequence.

CALL PEAK(T,TMIN,TMA~(,LUCK)

COMMON statement s_used.

COMMON/PA RTL3/F1NVAL, DEL

Definition of symbols. -

I = Value of time where slope of FT is zero
IMIN = Starting value of time range to be searched
TMAX = Final value of time range to be searched
LUCK = 0 No peak was found between TMIN and TMA X

= 1 The search was successful
FINVAL = Fina l value of the function
DEL = Starting step size of the search

Notes.

(1) If the function is increasing at TMIN, the search
looks for a local maximum. If the function is
decreasing, the search looks of a local minimum.

(2) The search is terminated when the value of TMAX is
reached or when three values of time are found close
enough together that the value on either side of the
peak changes by less than io 6 

* FINVAL units.

Subprogcams used.

FT
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5.9 SUBROUTINE ECHOS.

( The subroutine ECHOS is an output routine which is used
to print polynomial coefficients and roots is a compact table.

Calling sequence.

CALL ECHOS(ROOT, POLY, NP, PK)

COMMON stateJii~nts used.

COMMON/TOTL14/ *, *, *, *, *, *, *. *. NGO

Definition of symbols.

ROOT(50 , 2)= Array of roots to be printed
POLY(51) = Array of coefficients to be printed
NP = Order of polynomial to be printed
PK = Polynomial constant to be printed
NGO = 6 Output is printed on TAPE6 = ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

5.10 SUBRO~JTINE POLLECHQ.

The subroutine POLECHO is an output routine which
( tabulates polynomial coefficients to ten decimal places with

corresponding index numbers.

Calling sequenc.~~

CALL POL ECHO (POLY , NP)

CQMMON statements used.

COMMON/TOTLI4/*, *, *, *, *, *, *, *, NGO

Definition of symbols.

POLY(5i) = Array of polynomial coefficients to be printed
NP = Order of polynomial
NGO = 6 Output is printed on TAPE6 = ANSWER

- 7 Output is printed on TAPE7 = OUTPUT

~~11 SUBROUTINE RTECHO.

The subroutine RTECHO is an output routine designed to
print out the real artd imaginary parts of an array of polynomial
roots to ten decimal places. The routine also prints an index

0 number for each root.

B-54
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I
Calling sequence.

( CALL RTECHO(ROOT,NP)

COMMON statements used .

COMMON/TOTL14/*, * , ~~, *~ * , * , *, * , NGO

Definition of symbols.

ROOT(50 ,2) = Array of 50 complex numbers where ROOT(I.1)
is the real part and ROOT(I,2) is the
imaginary part of the I th root to be printed

NP = Number of roots to be printed
NGO = 6 Output is printed on TAPE6 = ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

5.12 SUBROUTINE MATECIIO.

The subroutine MATECHO is an output routine designed to
print the elernent5 of a matrix of arbitray dimensions.

Calling sequence.

( CALL MAT ECHO(AMAT, NA , MA)

COMMON statements used.

COMMON/TOTL14/*, *, * , * 1 *, *, *, *,NGO

Definition of cymbols,

AMAT(10,10) = Matrix of elements to be printed
NA = Number of rows in AMAT
MA = Number of columns in AMAT
NGO = 6 Output is printed on TAPE6 = ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

Notes.

(1) If the matrix to be printed has more than five
columns, and NGO = 6, each row of the first five
colunu~is is tabulated first followed by any remainingcolumns lower on the output page. If NGO = 7, all
columns are tabulated side-by-side.
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5.13 SUBROUTINE TFEC}IO.

( The subroutine TFECHO is an output routine which tabulates
the numera tor and denominator polynomial coefficients and
roots of a transfer function in a compact form.

* Calling sequence.

CALL TFECUO(NAME,LET,ZERO ,POL E ,POLYD ,GNP ,GDK.NZ,NP)

COMMON s~~tements used.

COMNON/TOTL14/* , * , *, * , *, *, *, *, NGO

Definition of symbols.

NAME = Left justified Holerith constant containing the
initials of the transfer function to be printed.
These initials have the letters IF appended to
them forming the transfer function name.

L~T = Number of letters stored in NAME (usually 1 or 2)
ZERO(50,2) = Complex array of transfer function zeros
POLE(50,2) = Complex array of transfer function poles
POLYN(51) = Array of denominator coefficients
GNP = POLYN(1)
GDP = POLYD(1)

= Order of transfer function numerator( NP = Order to transfer function denominator
NGO = 6 Output is printed on TAPE6 = ANSWER

= 7 Output is printed on TAPE7 = OUTPUT

5d4 SUBROUTINE POLYADD.

The subroutine POLYADD adds polynomial A and polynomial
B to form polynomial C.

Calling sequence.

CALL POLYADD(A , B C, NA , NB, NC, AK , BK ,CK)
Definition of symbols.

A(51),B(51) Polynomials to be added where A(i) is the
highest order coefficient of polynomial A
and so on.

C(51) = Resulting sum of A and B
NA,NB ,NC = Order of A , B, and C respectively
AK =A( 1
BK = B(1

C CK C(1

B-56
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~~15 SUBROUTINE POLYSUB.

The subroutine POLYSUB subtracts polynomial B from( polynomial A to form polynomial C.

Calling sequence.

CALL POLYSU B(A ,B ,C ,NA ,NB,NC , AK,B K ,CK) 
-

Definition of symbols.

See section 5.14

Subprograms u~~4.

POLYADD

5.16 SUBROUTINE POLYMLT.

The subroutine POLYMLT multiplies polynomial A by
polynomial B to form polynomial C. If the order of C is
greater than 50 the routine aborts.

Calling sequence.

( CALL POLYMLT(A ,B ,C,I)~A;NB,NC, AK ,BK,cK), RETURNS (number)

Definition of symbols.

Number = Statement number in calling program to which
control is to be returned if the product C
has an order greater than 50.

(All other symbols -- see Section 5.14)

5.17 SUBROUTINE EXPAND.

The subroutine EXPAND expands the roots of a polynomial
into a corresponding set of polynomial coefficients.

Calling sequence.

CALL EXPAND(ROOTR .ROOTI,GAIN ,NF , POLY)

Definition of symbots.

ROOTR(5O) = Array of root real part s
ROOTI(50) = Array of root tmagthary parts

C
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GAIN = Numerical constant to be multiplied together
• with the roots to form the coefficients

( NP = Number of roots to be expanded
POLY(51) = Resulting array of coefficients where POLY(1)

is the highest order coefficient and is always
• equal to GAIN.

‘1

5.18 SUBROUTINE FACTO.

The subroutine FACTO is a setup subroutine which calls
subroutine DMULR to factor a polynomial.

G~l 1 ing_~equenç~.

CALL FACTO(POLYQ , ROOTQ ,N QI PQK)

Definition of symbols.

POLYQ(51) = Array of coefficients of polynomial to be
factored where POLYQ(1) is the highest order
coefficient . -

ROOTQ(50 ,2) = Array of resulting roots where ROOTQ(I,1)
is the real part of the I th root and ROOTQ(I,2 )
is the imaginary part.

NQ = Polynomial order
PQK = POLYQ(1)

Subprograms used .

DMUL R

5.19 SUBROUTINE DMULR.

The subroutine DMUL R is a polynomial factoring subroutine.

Calling sequence .

CALL DMULR(CO E,N1,ROOTR I ROOTI)

Definition of symbols. L.
COE(51) = Double precision array of coefficients of the

polynomial to be factored
Ni = Order of polynomial
ROOTR(50) = Double precision array of real parts of

result ing factors
ROOTI(50) Double precision array of corresponding

imaginary parts.
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5.20 SUBROUTINE MADD.

( The subroutine MADD adds or subtracts matrix A and
matrix B to form matrix C. If A and B do not have some
dimensions , the routine aborts.

Cailing sequence. .

CALL MADD(A ,B.C,NA ,NB ,NC ,MA ,MB ,MC,S),RETURNS(nUmber)

Definition of symbols.

A(1O,10),B(iO,iO) Input matrices
C(i0,iO) Output matrix
NA ,NB ,NC Number of rows in A , B, and C
MA ,MB II MC Number of columns in A , B, and C
S = +1 B is added to A

= -1 B is subtracted from A
Number = The statement number in the calling program to

which control is to be returned if the subroutine
aborts.

Notes.

• 

• 

(1) Every coefficient in the B matrix is multiplied by
S and the result added to the A matrix.

( •

5.21 SUBROUTINE GENMMPY.

The subroutine GEN ,,PY post-multiplies the matrix A by
the matrix B and stores the results in matrix C. If A and B
do no conform, the routine aborts.

Calling sequence

CALL GE MMPY(A,B ,C,NA ,NB ,NC ,MA ,MB ,MC),R~~URN3(number)

Definition of symbols.

(See Section 5.20)

5 .~2 jUBROUTINE MTh.~~
The subroutine MINV performs the inversion of a square,

non-singular matrix of maximum size 10 x 10. If the matrix is
not square, singular, or too big, the routine is aborted.

. 0
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calling sequence.

( CALL MINV(A ,B,N,M),RETURN5 (number)

Definition of symbols.

• A(10,10) = Input matrix
B( 10 ,iO) = Inverted output matr ix
N = Number of rows in A and B
M Number of columns in A and B

-- Number = The statement number in the calling program to
which control should be returned if the routine
aborts.

_ _ _ _ _
5.23 SUBROUTINE TRANPOS.

The subroutine TRANPOS transposes (exchanges rows and
columns) the matrix A to form C.

~~l I ing~sequence.

CALL TRANPOS(A ,C,NA ,MA ,NC,MC)

Definition of ~ymbols.

A (i0,10) = Input matrix of maximum size 10 x 10
C( 10 , 1O) = Transposed output matrix• NA ,NC = Number of rows in A and C
MA ,MC Number of columns in A and C

~~~4 SUBROUTINE MATIN.

The subroutine MATIN is an input routine which interactively
requests the input of a matrix one row (or column) at a time .

calling sequence.

CALL MATIN (AMAT ,NA ,MA ,NA ME) ,RETURNS( input )

Definition of symbol s.

A MAT( 1O ,1O) = Matrix to be input
NA = Number of rows in AMA T
MA - Number of columns in AMA T
NAMS = Alphanumeric name of matrix to be input
Input = Statement number in calling program to which control

is to be returned if the subroutine READS requests
an interrupt to call calculator or HELP.

~~bprograms used.

-
~ 

I ’  READS MATECHO
8-60
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5.25 SUBROUTINE PIIOFS.

The subroutine PHOFS uses Leverrier~s Algorithm to( compute adj(sI  - a) and det(sI - A). If the input A matrix
is not square the routine is aborted .

Calling sequence.

CALL PHOFS(A ,NA ,MA ,DET),RETIJRNS (number) .

COMMON statements used.

COMMON/A DJNT/ADJ( 1 0,10,10)

Peflinition of symbols.

A( 10 ,10) = A square input matrix
- NA = Number of rows in A

MA = Number of columns in A
DET(11) = Array of coefficients of the polynomial det(sI - A)

where DET(1) is the lowest order coefficient
ADJ( i0 ,1O ,10) = Adjoint matrix adj(sI - A) where the first

two indices define the row and column
number of each matrix element and the third
is an index on the polynomial coefficients
of each element

Number = Statement number in calling program to which contol
is to be returned if the routine is aborted.

Subprograms used.

MMPY

5.26 _SUBROUTINE MMPY.

• The subroutine MMPY is a special matrix multiply routine
used by PHOFS and EXPAND. It multiplies matrices A and B
and stored the product in C. —

• calling sequence.

CALL MMPY(A ,B,C,M,K,N)

Pe.finition of symbols.

A (M,K),B(K,N) Input matrices
C(M,N) Output Product Matrix
M,K,N Matrix dimensions

(i 5.27 SUBROUTINE CADJB.

The subroutine CADJB computes the polynomial G(s) from
the matrix product (C)T(adj(sI - A))B, where the adjotnt
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matrix is supplied as ADJ(10,10,10).( Calling sequence.

CALL CADJB(C ,B ,G)
a

COMMON statements used .

r COMMON/ADJ(1O , 1O ,1O)

Definition of symbols.

C(10) = Input a vector
B(1O) = Input b vector
ADJ(10,10,1O) = Input matrix containing adj(sI - A)
G(1O) = Output array of polynomial coefficients of the

~ 
forma 8 7 2G(1)s + G(2)s + G(3)s • . . . + G(8)s + G(9)s + G(1O)

Notes.

(1) The subroutine PHOFS (or its equivlent) must be called
prior to callir~ CADJB to define the values ofADJ(1O 10,10).

( 5.28 FUNCTION FW.

The function FW caluclates the discrete or continuous
open or closed-loop frequency response magnitude in linear
magnitude or decibels for a given frequency in hertz or radiansper second.

~~ljtng sequenc~ .

F= FW (W)

COMMON state~~~t~j~sed.

COMMON/TOTL11/OLNPOLY(51), OLDPOLY(51), OI2ERO(S0,2),
OLPOLE(50,2)
+NOLZ , NOLP. OLK, OLNK, OLOK
COMMON/TOTL12/CLNPOLy(51), CLDPOLY(51), CI2ERO(5O,2)CLPOLE( 50 2)
+NCLZ , NCLP,CLK,CLNK,CLDK
COMMON/DIG IT/TSAMP
COMMON/LOGIC2/cLos~~. DECIBEL, HERtZ, DECREE

DefinItion of symbols.

(
~
. NOLZ - Degree of OLNPOLY polynomial
‘- NOLP - Degree of OLDPOLY polynomial

I
’ 
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NCLZ = Degree of CLNPOLY polynomial
NCLP = Degree of CLDPOLY polynomial

C W = Frequency at which the response magnitude is to be
evaluated. If HERTZ = .TRUE., this frequency is
assumed to be in hertz. If not, the value of W is
assumed to be in rad/sec. a

All other variables are defined in Section 4 of the
~~~~~~ Manual for TOTAL .

5.29 FUNCTION AW.

The function AW(W) is identical to FW (see Section 5.28)
except that the value returned is the phase angle of the
discrete or continuous open or closed-loop transfer function
frequency response.

5.30 SUBRO1rrIN~~R.~~~~
The subroutine READS is an elaborate interactive input

routine which provides complete error protection and recovery
and allows the user to retain control of the calling program
even ~jen it is awaiting some numerical data inpu :. It is
designed to be used in place of the standard FORTRAN READ( statement whenever any input is needed.

Call ing~~ea~ence.

CALL READS(D AIN ,NO) , RETURNS (INRUPT , REPEAT)

COMMON statements used.

COMMON/TOTL16/X,Y,Z,T REG(20)
COMMON/TOTL17/MCOM’l(100),DATM (100),MPT
COMMON/TOTL18/NRPT,NROLJTE(10) ,NPT

Definition of symbols.

DATN(60) = Array in which input numbers received are
returned to the calhtrg program.

NO - Number of input numbers that READS is supposed to
obtain before returning control to the calling

INRUPT • Actual numerical statement number in the calling
program to which control 1.8 to be returned if the

program.

user requests a temporary interrupt (or complete
abort) from entering data by typing a s?” . “C”,
or “$“ . (See Note (1) below.) —

I C
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REP EAT = Actual numerical statement number in the calling
program of the user prompt statement which
printed the request for input prior to calling
READS. This feature allows READS to repeat user
prompts when necessary (after any interrupt) by
temporarily returning control to the calling -

-‘ program . • a

X,Y,Z,T REG(20) = Variables in COMMON from which the user
can tell READS to get a requested piece
of data instead of typing the number
itself. (See Note (1) below.)

MCOMM( 100) , DATM,MPT = Optional variables which may contain
a sequence of commands to be executedq by the calling program where ~4PT isthe index number of the command
currently being executed . The only
thing READS does with these variables
is set them to zero if the user
requests a complete abort with a II$I I ,

(See Note (1) below.)
NPT = Number of variables which have been currently inpu t

by the user. When NPT = NO, READS has completed its
task and returns control normally to the statement
immediately following the CALL READS statement in
the main program.

NROUTE(1O) = Array used by the “standard interrupt routine”
(See Note (2)) to specify the code number for

t the routine to be called in the main program
during a temporary interrupt request by the
user.

NROUTE(1) = 8 if the user types a ~I~~~ Is interrupt request
= 9 if the user types a “?“  interrupt request

NRPT = Index on NROUTE(NRPT) which is set equal to 1
during an interru~~request.

flotes.

(1) When input is requested by READS the user mayt

Enter the requested numbers or
Type “C” to request a temporary return to the calling

program at statment number INRUPT. NROUTE ( 1)
is set to 8 to indicate that this is a ~I~~~~II

interrupt. This function is designed to allow
the user to temporarily Jump to a calculator
routine from the middle of inputting data
(although it can be used for any kind of
interrupt desired).

Type “?“ to request a tempory return to the calling
I -  

- program at statement number INRUPT. NROUTE(1)
is set to 9 to indicate that this is a “?‘
interrupt. This function is designed to allow

C the user to temporarily jump to a help routine
for explanation of the input needed (although
it can be used for any kind of interrupt
desired.)
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Type “L” to list the current values of the requested
variables. The first NO elements of the
DATN array are listed .

Type “*~ ‘ to leave the current value of a requested
variable unchanged . NPT is incremented by
one and READS waits for the next number in
the sequence. (If NPT = NO, READS ends.)

Type “$“ to completely abort not only the current
input of data but also the current option
being executed and any additiona l options
which may have been stored in the MCOMM and
DATM arrays awaiting execution.

Type “X” or “Y” , “Z” , ‘T” , or “Ri ” through “R20” to tell -

READS to get the current number being requested -

from the corresponding variable in labeled
COMMON X, Y, Z, 1, or REG(1) through REG(20)
respectively. READS stores the specified
value into DATN(NPT), increments NPT, and
looks for the next requested value. If NPT = NO,

• READS ends.
Type “P1” to “Pn” to set NPT equal to any number between

1 and n = NO. This allows the user to skip
around in l1.st of variables requested to enter
only certain variables or to modify the values

- 
of variables already input. When Pn is typed,
READS waits for the user to specify the value
of the n th variable and then continues to

( increment NPT from that point.
(2) The subroutine READS initiates what is called the

“standard interrupt routine” for whatever program calls
it whenever a user types a “C” , “7” or “$“ . Thi s
interrupt routine is just a sequence of commands stored
in the array NROUTE which direct the flow of the calling
program until the interrpution has ended. It works
as follows z When READS encounters an interrupt
character, it stores the code number of the program
which is to be called in NROUTE(1), sets the pointer
NRPT = 1 and returns control to statement number INRUPT
in the calling program, This statement then stores
the code number for the program which contains it in
NROUTE(2) and returns control to the main executive
overlay. The executive sees that NRPT = 1, so it
calls whatever program has been specified in NROLJTE(i)
and increments NRPT. When the program called has
finithed executing the executive calls the program
specified in NROUTE(2) which in turn calls the
subroutine READS again and the interrupt procedure is
over. READS then repeats the prompt to the user and
all data that had been entered prior to the interrupt
(as a reminder) and waits for the user to enter the
remaining data (or request another interrupt).

U
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Appendix C

This appendix is intended to provide supplirnental

-
~ information on the program READER which i.s discussed in

Section 4.15 of Appendix B. Its purpose is to describe how

READER handles a line of input data and how it interprets

each character it encounters in the line.

How Input is Received

READER reads an 80 character line into an array of 80

words called IN(80) using a right justified, zero-fill

hollerith (Ri ) format. This means that each 60 bit word in

the array is filled with zeros except for the six least

( significant bits which contain the display code of a given
- 

character in the line. (A display code number is just an

integer from 0 to 63 corresponding to one of the 64 possible

characters which may be typed from the user’s keyboard. For

example, the letter “L” has a display code of 13 and ~.s

represented by the six binary digits: OOi1~1.) Using

this technique, a line of 80 keyboard characters is stored in

an array 80 words long as a sequence of numbers between 0 and

63. REA DER is then able to operate on this array of numbers

using a compiler code.
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READER’s Compiler Code

The compiler code used by READER is shown in Fig. 1. It

consists simply of an array of binary data 64 words long which

defines the meaning of each of the 64 keyboard characters in

up to 20 different situations (modes of operation) in the

program.

The code works like thiss Associated with each keyboard

character there is a 60 bit word of coded information stored

in the array A. If the binary number represented by these

60 bits is written in octal (base 8). the resulting form is a

20 digit string of digits between 0 and 7. If each of these

digits is considered as a piece of information (i.e. a number

between 0 and 7), then each word in the array A can store 20

pieces of information about its corresponding keyboard

( character. This information can therefore be used to tell the

compiler how to treat a particular character in 20 different

situations.

How the Code is Used

At this point it may be helpful to give the reader an
example of how a keyboard character can have different meanings

in different situations. Suppose, for example, that the

compiler is operating on a sting of keyboard characters which

are intended to represent a floating point number. If any

character other than 0, 1. 2, 3, 4, 5, 6, 7, 8, 9, +, -. or
“.“ is encountered, the compiler may assume that the current

C-
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L A (L) KEY L A (L) KEY

1 11111111141114444166 : 33 22222222222222222222 5
2 11111111141114444111 A 34 22222222222222222222 6
3 11111111141114444111 B 35 222?2222222222222222 7
4 1111111 1141 1144441 11 C 36 22222222222222222222 8
5 11111111141114444111 II 37 22222222222222222222 9
6 11111111141114433111 E 38 11111111141114244132 +
7 111 11111141114444111 F 39 11111111141114244132 —

8 11111111141114444111 G 40 11111111141114444136 *
9 11111 111141114444111 H 41 11111111141114444136 /

10 11111111141 114444111 I 42 11111111141114444166 C
11 11111111141114444111 J 43 11111111111114444166 )
12 11111111 141114444111 K 44 11111111141114444144 $
13 1111111114 11 14444 111 L 45 11111111141114444166
14 11111111141114444111 ii 46 11111111131115555166
15 111111111411 14444 111 N 47 11111111131115555166 ~
16 11111111141114444111 0 48 11111111141114441122 •
17 11111111141114444111 P 49 11111111141114444133 *
18 11111111141114444111 0 50 11111111141114444166 C
19 11111111141114444111 R 51 11111111141114444166 ]
20 11111111141114444111 S 52 11111111141114444166 %
21 11111111141114444111 1 53 11111111141114444166 U

22 11111111141114444111 U 54 11111111141114444166
23 11111111141114444111 V 55 11111111141114444166
24 111111 11141114444111 W 56 11111111141114444166 &
25 111111111411144441 11 X 57 111111111411 14444 166
26 11111111141114444111 Y 58 11111111141114444144 ?

27 11111111141114444111 Z 59 111111111411 14444166 -(
28 22222222222222222222 0 60 11111111141114444166 >
29 22222222222222222222 1 61 11111111141114444166 C
30 22222222222222222222 2 62 11111111141114444155 \
31 22222222222222222222 3 63 11111111141114444155

- 32 22222222222222222222 4 64 111111111411155551 66
65 77777777757776666777

Fig. 1 READER’s Compiler Code

C
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number has terminated and subsequent characters belong to some

( other input item. As long as each new character examined is

0 through 9, this condition will hold true. However, after a

decimal point has been encountered , further decimal points are

not allowed and the meaning of the character “ .“ must be

changed from “decimal point” to “error - - too many decimal

points.”

To implement the above simple example, two different

meanings must be defined for the character ‘ . “ . These

meanings can be coded as two different numbers in two of the

20 possible entries in the element of the A array which

corresponds to the character “.“ .

What this means is that the 64 keys can be divided into

up to seven groups by each of the 20 columns of numbers stored

in the A array. When a particular column is selected, the

value of the number in that column corresponding to a

particular character is the group to which that character

belongs in the column. For example, in Fig. 1, the number 3

appears in the second column of a(L) (from the right) across

from the keyboard characters, +, - , * I, and #. Thus, these

five characters belong to the same group when column two is

selected, In the same column, th~ number 2 appears across from

the keys 0, 1, 2, 3, 4, 5. 6, 7. 8, 9, and “ .“ placing them in

another group. -

Continuing with the example of reading a floating point

number, it is desired to divide the possible characters into

/ C-4
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groups of valid number characters, valid number terminating

( 
characters, and illegal characters to be flagged as input

errors. The fourth column of the A array makes such a

division, as show below,

PARTIIION PERFORMED BY COLUMN 4

Number in Characters assigned Meaning of
column 4 to that number the group of characters

1 decimal point Legal decimal point
2 0 1 2 3 4 5 6 7 8 9  Legal digit
3 E Exponent of number
4 Letters and special Illegal characters

characters not in
any other group

5 blank, comma, semicolon Valid number terminates -

When the first character of a number is encountered

in the input string, the compiler goes to “mode 4.1 and reads

subsequent characters using the partition of column 4. If

the next character encountered is in group 2, it is accepted

as a legal digit, the compiler remains in mode 4, and moves

on to the next character. If a character in group 4 is found,

it is not accepted and an error message is given. If the
I character belongs to group 1 (in this case it is a decimal

point( the point is accepted as a legal part of the number, 
I I

but the compiler shifts into mode 5 before continuing to the

next character. Mode 5 is just another partition of characters,

this time as defined by column 5 of the A array. The new

partition is identical to the old except that the character

“.“ has been moved from group 1 (where it meant “decimal point”)

C! -
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~ - to group 4 (where it means “illegal character”). For the

C remainder of the current number, the compiler never returns

to mode 4 and a second decimal point remains illegal. Similar

modes are defined by other columns to allow the characters

“,“ and “ -“ at the beginning of a number or just following

the letter “E” in the exponent but no where else, and so on.

Numbers are obtained from a particular column by masking

L 
out everything except the six bits in the column of interest.

These bits are then converted to their decimal equivalent and

stored in the variable LGO for for use in a computed GO TO

statement. Statements 205 and 260 in READER perform such

- operations.

(
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