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ABSTRACT

This paper presents results of experimentation aimed at identifying
suitable starting rules for discrete event simulations. A starting rule is
a decision rule that tells a simulation analyst when to begin collecting
data that are relatively free of the initial conditions of a simulation. The
starting rules described here rely for decision making on a comparison between
a_priori information on interarrival and service times and corresponding
sample quantities computed during the course of a simulation. Testing of
the first proposed rule on a single-server queueing simulation with exponen-
tial interarrival and service times revealed a serious inadequacy. However,
an examination of just how this inadeGuacy arose led to a second proposal for a
starting rule. When tested in a parallel simulation the second rule produced
considerably more favorable results. In addition, a perusal of the distri-

bution of starting time for 1000 replications suggests a direction for future

research aimed at reducing this starting time.
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1. Introduction
Among statistical problems that arise in the course of running a discrete 5

event simulation, the effect of initial conditions on simulation output has long

occupied a prominent position. Initial conditions refer to the state of critical
variables at the beginning of a simulation run. Because of the dependence among
phenomena in a simulation and the temporal nature of much of this dependence,

the choice of initial conditions influences the time paths of these phenomena.

Since interest traditionally has focused on steady state behavior, research on
the topic of initial conditions has concentrated on ways of diluting their
influence on the sample records used for analysis. Gafarian, Ancker and
Morisaku (1977) have reviewed and evaluated the published proposals for
solving this problem. Their findings reveal that a viable solution remains
to be uncovered. The present paper provides a framework for research into this
topic and, based on initial findings, recommends procedures to overcome the
problem of initial conditions. The procedures rely on ancillary information
that is available to the simulation user and, when properly used, can induce
acceptable behavior in sample paths.

The analysis of queueing systems represents the most common use of discrete
event simulation. To begin a simulation run of a queueing system one needs to
specify the state of congestion that prevails at that moment. Since the purpose

of inquiry is to uncover congestion characteristics, one can hardly be expected

to meet this need with anything but frustration. Nevertheless, there is one |
set of initial conditions whose effect on time paths is relatively straigntforward.
If a simulation begins with an arrival to a system with no busy servers and no

queues one anticipates that the system will appear uncongested near the beginning ?




of the run. That is, queue lengths and waiting times appear shorter than one
would expect in the steady state. Although this set of initial conditions leads -
to undesirable behavior, its ease of implementation relative to other initial
conditions gives it greater appeal in practice. The procedures to be described :
here all begin with this initial condition which, as we show, can be made to
pose no special problem.

To overcome the inadequacy of past proposals this paper presents an approach
to solving the initial conditions problem that uses ancillary information avail-
able to an analyst before and during execution of a simulation of a queueing
system. This information consists of arrival and service rates or their corres-
ponding reciprocals, mean interarrival and mean service times. The principal
idea is to compute sample quantities such as sample mean interarrival and ser-
vice times and compare them with their corresponding true values. When the
deviations between sample and corresponding true quantities fall within prespeci-
fied tolerances one begins data collection for purposes of statistical inference
about the steady state. Prior to beginning the experimental part of this study,
the rationale here was that making sample quantities representative of their
corresponding time quantities would make the state of the system at the time
that data collection commences representative of the true steady state. As our
results will show, putting the system exactly in the steady state exceeds the
capacity of our suggested rule. However, the rule does enable one to put a
system into a state of above average congestion. This altemative capacity has
value since if the choice 1ies between beginning data collection in an under-
congested or overcongested system, most analysts would prefer the overcongested

situation. This is especially true if the purpose of the analysis is to infer

congesticn characteristics.
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Although one easily appreciates the notion of a data collection starting
rule based on a comparison of sample and theoretical values, several issues
need resolution before one can implement such a rule. The issues include:

1. Which quantities should enter the decision to start data
collection?

2. What should the tolerance be for the comparison of sample

and theoretical quantities?

What explicit form should the starting rule assume?

For which quantity does one wish to collect data?

How does one evaluate a rule's performance?

How does the tolerance affect the performance of the rule?

(o2 WS A0 SN}

Although the present paper addresses each of these issues, one canaot claim |

answers that apply across all conceivable queueing simulations. Nevertheless, ;

our findings do reveal procedures that should prove useful for many single

server queueing systems and conceivably for some multiserver system as well. |
Section 2 presents a discussion of the aforementioned issues and formulates

ruic 1,experimental results for which appear in Section 3 with evaluation. The

evajuation leads to the formulation of an alternative, rule 2, empirical results

for which also appear in Section 3 with a demonstration of its superiority over

rule 1. As the reader already may have noted, the aforementioned rules allow

for a variable number of observations to be omitted from a sample record at

the beginning of a simulation run. Because the experimental results indicate

that this number may be large, Section 4 formulates rule 3, a modification of

rule2,that allows for a dramatic reduction in the number of unused observations.

The efficacy of this rule remains to be tested.

2. Problem Formulation

Consider a simulation model of a queueing system with m servers in
parallel, independent interarrival times with mean 1/ and independent service

times with mean 1/w . Let T1 denote the elapsed time between arrivals of




jobs i-1 and i and let Si denote the service time of arrival i . Assume
that the simulation begins with the arrival of job 1 to an empty queue and

m idie servers. Let xi denote the system time of cowpletion i where system
time denotes waiting time plus service time. Assume that an ultimate objective
of analysis is tu infer the characteristics of the system time stochastic
process from a sample record of system times. Moreover, one wishes to conduct
this analysis free of the undercongesting influence of the empty and idle
initial conditions. Suppose the sample record is XN+]’ xN+2....,xN+M where
M 1s specified. Then the problem at hand is to determine N in a simulation
run 50 that XN+1”"’XN+M each come from the steady-state probability distri-
pution.

Selecting a Rule

After n completions occur during a simulation run one can estimate 1/

3

n

anc 1/w by n°! ! T, and n"! I _S; respectively. These estimates are
i=] i=]

unbizsed and independent of initial conditions. In principle the closer the
sample quantities are to their respective means, the more one inclines to believe

that subsequent X X each represent steady-state system times. Then

G N i
one conceivable starting rule is

S

n
N =min(n: [ T, -n/x| <6,, S; - nfw| <68,) 0<6,,6, ,
ey R e 2 1 82

where one needs to specify the tolerances 8 and 8o explicitly. We call

N the starting time since data collection starts with completion N+1 .

At the outset of inquiry into starting rules, working with two tolerances

would be difficult. An alternative system quantity of interest is the




activity level or traffic intensity

arrival rate/no. of servers x service rate

(1)

©
i

A/mw
for which one has an estimate

N
Sm}) T

oy = I
N i=1

i=1 i

One starting rule based on (1) is

~

(2) N = min(n: [p, - 0| <5) 0<s

The first starting rule that we test is closely related to (2).

For fixed n a considerable amount is known about ;n . We consider
one special, but important, case. Suppose that interarrival times have a p
stage fZrlang distribution with mean 1/x and that service times have a q stage
Erlang distribution with mean 1/w . Then q;n/pp has an F distribution

with 2np and 2nq degrees of freedom. Moreover,

E(;n) = pnp/(nq - 1)

This suggests that when working with Erlang distributions one use

oy = pN(nq - 1)/np for test purposes and consider

Rule 1 N = min(n: | - o] <6) 0<s .

We note in passing that rule 1 will not be the ultimate recommendation

that we make to potential users. However, a careful analysis of the results




for this rule is a prerequisite for guidance in identifying a better rule.
This we do in Section 3.

Selecting a Tolerance Level &

Let us now turn to the choice of &6 . It is not difficult to anticipate
an inverse relationship between N and & . Also one expects that a smaller
§ should make the steady state more of a reality for subsequent system times.
Although we need to rely on experimentation to determine how 6 affects this
closeness to steady state one additional observation deserves attention. If
one were to choose § = qp for 0 <a then N would have a distribution
independent of p . This appears contrary to intention for one intuitively
expects initial conditions to influence XN+1 less forn, say, p = .7 than for
p = .9 . Therefore we avoid this approach to setting & 1levels. Section 3
studies starting rules for 6 = .0025, .005, .01, .02, .05 and .1 .

Criteria for Evaluating a Starting Rule

One now needs a method for evaluating rule 1. In particular, one wants

the rule to produce a sequence X 1 X of steady-state system times.

N+
For singie server queueing models Lindley's equation tells us that [ 4 ]

N2

(3) X = max(0, XN - TN+1) + SN+1 K

N+1

which implies that xN+] is a function of XN. TN+1’ and S However,

N+1 °
only XN conceivably could depend on the initial conditions at the beginning

of the simulation. Therefore, if XN does not have the steady-state distribu-

tion one is skeptical that X does; if XN+] does not have the steady-

N+1
state distribution one is skeptical that XN+2 does, etc. Here one can regard

xN as the initial condition that determines the extent to which XN+1' xn+2....

have steady-state distributions and XN+] as the observation most influenced by

,_._...-.....-.-..-..-ll.lllllllllllllllllllllllllllllllllllil‘




this initial condition. The remainder of this paper concentrates on the
distribution of XN+] as the criterion of evaluction.

Tests Used for Evaluation

To test rule 1 we use a single server (m = 1) model with Poisson arrivals
and exponential service times. For specified A, w and & we compare the
empirical cumulative distribution function of XN+1 for 1000 independent relica-
tions with the theoretically known steady-state cumulative distribution function
(c.d.f.) , which is exponential with mean /(1 -p) [4 ] .

Let Nj denote the starting time on replication j and xj the system

+
. NJ 1
time of completion Nj+1 on replication j . Consider J vreplications with

sample data X] +],...,XJ N.+] which are independent and identically distri-

1 J
buted when using rule 1. We wish to test the hypothesis H

N

0° XN 41X N4

1 J

have the c.d.f.
(4) F(X) =1-e '(]/D = ])X

Under HO the statistics

- ] 5
iy (10 - 1)X

are independent uniform deviates with c.d.f.

G(y) =y

The empirical c.d.f of the Yj's is for all vy

J
1
GJ(.Y) a 3 ng] I(o’ .Y](Yj) ’




I being the indicator function. To check H0 one examines the deviations
aly) = G4(y) -y B<yztl,

or functions of these deviations. For the Kolmogorov-Smirnov goodness-of-fit

test one uses the test statistic

D* = sup |a(y)]
y

Critical values of the test statistic appear in Miller (1956) and Owen
(1962). For the chi-square goodness-of-fit test with K equiprobable cells
the statistic is

g Ll R : 2
BE ]tAh/K) - a(i/K - 1/K)]
1:

which for large J has the chi-square distribution with K - 1 degrees of

freedom under HO . For the Anderson-Darling test [ 1 ] one uses the statistic

1
W Lm0 - ey
0

which is particularly sensitive to departures of Gd(y) from G(y) in the tails

of the distribution, Critical values of the test statistic appear in Lewis[ 5 ].
The aforementioned statistics test for departures from H0 . In many cases,

including the present, it is of interest to study the nature of the departure if

HO is rejected. For us the most desirable alternative is to show that X] S
el

seosX have a distribution that is stochastically greater than the steady-
J5N g+

state time distribution. Let W and V be random variables with c.d.f.'s F.. and F

W 0




One says that W 1is stochastically greater than V if Fw'](u) - Fv'](u)
is non-negative and not identically zero on the open interval (0,1) , where

=1 - : : .
Fw and FV ) denote the right continuous inverses of F, and F

W '
In the present case this means that the system times x],N]+1""’xJ,N

respectively.

g+

exhibit more congestion than steady-state system times would show.

The Kolmogorov-Smirnov test allows one to check the hypothesis

X

H]: X]’N]+],.... JN have a distribution that is stochastically

S

greater than the F in (4). The test statistic is

D = -inf a(y)
y

Dwass (1962) describes an additional helpful measure of discrimination. The

statistic

1
y of oo, 0)(a())y

gives the proportion of G(y) that lies below G(y) =y . Under H0 U has
the uniform distribution on (0, 1) . If H] is true one expects U to be
close to unity.

3. Experimental Results

This section begins with a presentation of results for rule 1 for system

time in a M/M/1  queueing simulation with

w =1

A .7 and .9

é§ = ,0025, .005, .01, .02, .05, .1
J = 1000
Each of the 1 x 2 x 6 = 12 design points was replicated J = 1000 times and




T T —— "

10

- and ;. were
.+ ,N.
J,NJ 1 J NJ

recorded. To check on the correctness of the simulation 1000 replications

on each replication of each design point Nj, X

with Nj = 1000 for j =1,...,1000 were run for each design point. On
each replication system time was recorded.
Table 1 gives the goodness-of-fit statistics for the empirical c.d.f.'s

of X for each of the design points. For tests of size a = .05 the

j,Nj+]
critical values of the Kolmogorov-Smirnov, Anderson-Darling and chi-square
tests are .0430, 2.492 and 30.1 respectively. The results are dismal, H0
being rejected in all cases but the fixed starting time case of N = 1000 .
This last observation merely confirms the fact that initial conditions

hardly affect completion 1001 for p = .7 and .9 . To obtain insight into

the nature of the deviations, plots of A(y)/Yy(1-y) were prepared for each
c.d.f. in Figures 1 and 2 in the Appendix. Notice that for p = .7 the curves
of the deviations become negative as & decreases. By contrast for o = .9

the curves become more positive as & decreases.

Although initially puzzling the cause of poor performance becomes apparent
in Figure 3. It reveals that small system times usually occur with large
5N's (small p/(p + ;N)) and large system times occur with small ;N's
(large p/(p + ;;N)fr . The explanation of behavior is now apparent. When a
LN satisfies rule 1 it usually does so by entering the acceptance interval
[p -6, p+ 6] from above. This implies that completion N has either

large

a short service time or a long interarrival time. From (3) it is clear that

either of these manifestations inclines to reduce Xy¢1  through X Conversely,

N
a small on that satisfies rule 1 usually enters the acceptance interval from

1.
F(XN+]) » where ( 4 ) defines F , maps system time onto (0, 1) , as does
the transformation o/(p + py).

| '
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below. This implies that completion N has either a long service time or a

short interarrival time, manifesting a larger than average X

N+ °
An appropriate partition further clarifies this issue. Let A(a, b) = [a, b] !
for a <b . Consider the starting rules
Rule 1Ta N =min(n: o €A(p - 6, 0) and o, &€ Alp, p+6), i=1,...,n-1)
Rule 1b N = min(n: ;nC A(p, p + 8) and ;i¢ Alp -6, p), 1 =1,...,n-1). d

Together these give rule 1. Figures 4 and 5 show deviations for those of the
1000 replications that satisfy rule la and Figures 6 and 7 display deviations
for the remaining replications that satisfy rule 1b. The clarification is
relatively immediate. As & decreases rule la results in negative deviations
and rule 1b results in positive deviations. A little thought provides a
plausible explanation. In order for rule la to apply on rep]ication J the
service time for completion Nj tends to be larger than average. Consequently,
the associated system time is larger than average. The net effect is that the

distribution of system times based on rule la is stochastically greater than

the steady-state distribution of system time. A one sided test of the Kolmo-
gorov-Smirnov statistics with a = 0.05 for rule la easily confirms this obser-
vation for all & and p = .7 and .9 . Moreover, the U's provide additional
support. By contrast rule 1b produces system times whose distribution is

stochastically less than the steady-state distribution.
To summarize briefly, rule 1 cannot guarantee a steady-state distribution

as & decreases. However, rule la produces a stochastically greater than
distribution as & decreases. This behavior implies larger than expected

system times so that rule la leads to an overcongested system at the beginning

_ 3
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of data collection. Since the objective is to measure congestion we
regard this as a reasonable situation to induce when steady state is unob-
tainable.

To recommend rule 1b would be somewhat shortsighted. Clearly if
51 € A(p, p + 8) for i < n one cannot realize the conditions of the rule.

To overcome this inadequacy consider

~ ~

Rule 2 N = min(n: | By ~ B £ 8 and ;n >p ])

n=-

This rule allows for starting data collection only when ;n demonstrates &n

increase over p But one expects this to happen when completion n+l1 has a

n-1°
longer service time or shorter interarrival time than average thereby contribu-
ting to an above average system time.

For each value of p» and ¢ 1000 replications were run using rule 2 and

X was recorded. Table 1 shows the goodness-of-fit statistics. Also, for

N+1
a=0.05 and p = .7 a test of the Kolmogorov-Smirnov statistic D~ supports
the assertion that rule 2 has induced a "stochastically greater than" distribu-
tion for XN+1 . Fer p =.9 D supports this type of behavior only for

6§ = .0025 . Figures 8 and 9 show the deviations.

On the basis of the accumulated empirical evidence to date, one iﬁclines
to recommend the use of rule 2 with & =.0025. Although we do not quarrel
with this recommendation, this advice should be regarded as a temporary measure

on at least three grounds. Firstly, we have no experience with p > .9 .

Secondly, we have no experience with multiserver systems. Thirdly, the sample

quantiles of starting time for rule 2 and 6§ = .9 in Table 3 are cause for concern.

Notice that, although 90 percent of the starting times are less than 3099,

one percent exceeds 48334. In our opinion the risk of excessive cost is far

too great to regard rule 2 as an end in itself. Therefore, research on starting
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rules that produce shorter starting times 1is in order. Section 4 outlines
prospective research on this extension. The motivation for the approach
relies on an empirical observation that as & decreases the correlation

between N and X becomes small. Although this observation needs

N+1
careful study, the preliminary evidence encourages us to consider its impli-

cations for starting rules.

. Table 3
Sample Quantiles of Starting Time for Rule 2
p=.9
pr(N <n) =p

5\p .01{.02 .05 {.10{.25 [ .50 .75 .90 .95 .98 .99 | maximum | mean
o pid]i2 2|4 6 13 31 82 ‘ 14 242 457 536 33
05612 |2 4|5 |10 22 55 173 335 644 759 1861 74
021314 619119 43 |1 535 | 1193 2350 | 4274 10230 | 248
01} 4 |5 9 |14 |29 69 | 223 | 1112 | 2268 6981 | 10592 56953 | 642
005 4 |7 12 118 | 45 111 | 400 . | 1917 | 6318 | 14098 25718 193990 | 1586
0025 | 4 |9 |19 (34 | 73| 191 | 117 (3099 [9670 27512 |48334 | 525550 | 3471

4. An Iterative Rule

The observation that XN+1 and N may be uncorrelated for small & suggests
an approach to effecting the same result that rule 2 induces at a considerably

smaller cost. Suppose X and N are independent and let

N+1

qj o P"(N iJ) ’
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based on rule 2. Also define the local sample activity level

XN
. S.
0 _ jeEml+l Y N-ml-1

18 N ’ N - ml
T

j=mI+1 J

where m 1is a positive integer and 1 is the integer part of (N-1)/m .
This sample activity level applies for the M/M/1 and may require an adjust-
ment in its correction factor for distributions other than the exponential.

Consider the rule

Rule 3 N* = min(n: I;I,n - p| <6 and ;I 1o ;I -

and mI # n-1) .

In words this rule requires us to use a sample activity level based on at
most m Ppast completions. The quantity I denotes the number of times we

~

need to reset or N i.e., the number of iterations. A little thought shows
L]

that
= = - i i =
pr(l = i) = (1 qm) q, 84 % PR

Then 1 has a geometric distribution with mean (1 - qm)/qm and variance
(1 - %n)/q%n . Also, the mean number of completions E(N*) required to

meet rule 3 satisfies

m(1 - g, )/ g < E(N*) SWe -

Now a user may choose m to suit one's convenience. However, from the

optimality viewpoint one prefers the m that minimizes m/qm . If several




mm- -

m's

this
rule
tion

rule
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lead to identical minima then one prefers the largest among them since
minimizes var (mI) = (1 - qm)(m/qm)2 . Naturally, the efficacy of

3 remains to be verified by careful experimentation. If this verifica-
is realized we will have a considerably more desirable starting time

than rule 2.
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