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ABSTRACT

This paper presents results of experimentation aimed at identifying

su i table startin9 rules for discrete event simulations. A starting rul e is

a decision rule that tells a simulation analyst when to begin col lecting

data that are relatively free of the initial conditions of a simulation . The

starting rules described here rely for decision making on a compari son between

a p r ior i informa tion on interarr iva l and serv ice times and corres pon di ng

sample quantities computed during the course of a simulation . Testing of

the fi rst proposed rule on a single—server queueing simulation with exponen-

tial interarrival and service times revealed a seriou s inadequacy. However,

an examination of just how this inadequacy arose led to a second proposal for a

starting rule. When tested in a parallel simulati on the second rule produced

conside rably more favorable results. In addition , a perusal of the distri-

bution of starting time for 1000 replications suggests a direction for future

research aimed at reducing thi s starting time.
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1. Introduction

Among statisti cal probl ems that arise in the course of running a discrete

event simulation , the effect of initial conditions on simulation output has long

occupied a prominent position . Initial condi tions refer to the state of critical

variables at the begi nn ing of a s imula ti on run . Because of the dependence among

phenomena in a simulation and the temporal nature of much of this dependence,

the choice of initial conditions infl uences the time paths of these phenomena.

Since interest traditionally has focused on steady state behavior, research on

the topic of initial conditi ons has concentrated on ways of diluting their

influence on the sample records used for analysis. Gafarian , Ancker and

Morisaku (1977) have reviewed and evaluated the published proposals for

solving this probl em. Their findings reveal that a viable solution remains

to be uncovered. The present paper provides a framework for research into this

topic and , based on initial findings , reconiuends procedures to overcome the

probl em of initial conditions . The procedures rely on ancillary information

that is availabl e to the simulation user and , when properl y used , can in duce

acceptable behavior in sampl e paths .

The analysis of queueing systems represents the most coninon use of discrete

event simulation . To begin a simulation run of a queueing system one needs to

specify the state of congestion that prevails at that moment . Since the purpose

of inquiry is to uncover congestion characteristics , one can hardly be expected

to meet this need with anything but frustration . Nevertheless , there Is one

set of initial conditions whose effect on time paths is relatively straightforward.

If a simulation begins with an arriva l to a system with no busy servers and no

queues one anticipates that the system will appear uncongested near the beginning
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of the run. That is , queue lengths and waiting times appear shorter than one

would expect in the steady state . Although thi s set of initial conditions leads

to undesirabl e behavior, its ease of implementation relati ve to other initial

condition s gives it grea ter appeal in practice . The procedures to be described

here all begin with this initial condition which , as we show, can be made to

pose no special problem.

To overcome the inadequacy of past proposals this paper presents an approach

to solving the initial conditions problem that uses ancillar y information avail-

able to an analyst before and during execution o f a  simulation of a queueing

system . This informa tion consists of arri val and service rates or their corre s-

ponding reciprocals , mean interarri val and mean service times . The principal

idea is to compute sample quantities such as sample mean interarri val and ser-

vice times and compa re them with their corresponding t rue values. When the

deviations between sample and corresponding true quantit ies fall within prespeci-

fied to lerances one begins data collection for purposes of statistical inference

about the steady state . Prior to beginning the experimental part of this study,

the rationale here was that making sample quantities representative of their

corresponding time quantities would make the state of the system at the time

that data col lection conriences representative of the true steady state. As our

results will show , putting the system exactly in the steady state exceeds the

capacity of our suggested rule. However, the rule does enable one to put a

system into a state of above average congestion . This alternative capacity has

value since if the choice lies between beginning data collection in an under-

congested or overcongested system, most analysts would prefer the overcongested
situation . This is especially true If the purpose of the analysis is to infer

con ges ticn cha racteri stics.

L _ _ _  _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Although one easily appreciates the notion of a data collection starting

rule based on a compari son of sample and theoretical value s, seve ral issue s

need reso l uti on before one can implement such a rule. The issue s include:

ì. Which quantities should enter the decision to start data
collection ?

2. What should the tolerance be for the comparison of sample
and theoretical quantities?

3. What explicit form should the starting rule assume?
4. For w hich quantity doe s one w i sh to collec t data?
5. How does one evaluate a rule ’s perfo rmance?
6. How does the tolerance affect the performance of the rule?

Although the present paper addresses each of these issues, one can~iot claim

answers that apply across all conceivabl e queueing simulations . Neverthel ess,

our f~ndings do reveal procedures that should prove useful for many single

server queueing systems and conceivably for some multiserve r system as well.

S~’ction 2 presents a discussion of the aforementioned issues and formulates

r~j i~ i,experimental results for which appear in Section 3 with evaluation . The

~v~ 1uation l eads to the formulation of an alternative , rule 2 , empirical results

for which also appear in Section 3 with a demonstration of its superiority over

rule 1 . As the reader already may have noted, the aforementione d rules allow

for a variable number of observation s to be omitted from a sample record at

the beginning of a simulation run . Because the experimenta l results indicate

that this number may be large, Section 4 formulates rule 3, a modification of

r u l e 2  ,that allows for a dramatic reduction in the number of unused observations.

The efficacy of this rule remains to be tested.

2. Problem Formulation

Conside r a simulation model of a queuelng system with m servers in

parallel, independent interarri val times with mean 1/A and independent service

times with mean 11w . Let T~ denote the elapsed time between arri vals of

—- -4
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jobs i-i and i and let S1 denote the se rv ice time of arriva l i . Assume

that the simulation begins with the arrival of job 1 to an empty queue and

m idl~ servers. Let X~ denote the system time of com pletion I where system

time denotes waiting time plus service time . Assume that an ultimate objective

of analysis is tu infer the characteristics of the system time stochastic

p rocess from a sample record of system times . Moreover, one w is hes to con duct

thi s analysis free of the undercongesting influence of the empty and idle

in ’itial conditions. Suppose the sample record is XN+l~ 
X N+2~

...
~

XN+M where

M is spec i fied. Then the problem at hand is to determine N in a simulation

rut’, ~c) that XN+l.... ~
XN+M each come from the steady-state probability di stri—

Sele ~. t i ng  a Rule

4After n completions occur during a simulation run one can estimate 1/A

-l ~ 1 ~anc l/.~ by n 
~ 

T.~ and n ~ S. respectively. Thes e estima tes are
i=l 1=1 ~

unbi~ ;ed and independent of initial conditions. In principle the closer the

sample quantities are to their respective means , the more one i nclines to believe

that subsequent Xn+i~ ~~~~~~ 
each represent steady-state system times. Then

one concei vabl e starting rule is

n n
N = mln(n : I~ T~ 

— n/A l 
~ 

6 1~ ~ S1 — n/wi � 6~ ) 0 < 6.~, 621=1 i*1

where one needs to specify the tolerances 6.~ and 62 explicit ly. We call

N the starting time since data collection starts with completion N+l

At the outset of inqu iry Into starting rules, working with two tolerances

would be difficult. An alternative system quantity of interest is the
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act ivifl level or traffi c intensity

• (1) p = arrival rate/no, of servers x serv ice rate

for which one has an estimate

- N N

~~~~ 
S1/m~ T~

~i=1 i=l

One starting rule base d on (1) i s

(2~ N = min(n: !p ,~ 
- 

~I ~~&) 0 < 6

ThL f~rst starting rule that we test is closely related to (2).

For fixed n a considerable amount is known about . We consider

on e s pec i al , but importan t, case. Suppose that interarri val times have a p

stage Erlang distribution with mean 1/A and that service time s have a q stage

Erlan~ distribution with mean l/~ . Then qp~/pp has an F distribution

with 2np and 2nq degrees of freedom. Moreover,

= pnp/(nq - 1)

This suggests that when working wi th Erlang distribut ions one use

= P~ (nq - 1 )/np for test purposes and consider

Rule 1 N = m in(n: Iø ,~ 
—

~~~~~ ~~6) 0 < 6 .

We note In passing that rule 1 wIll not be the ultimate reconinendation

that we make to potential users. However, a careful analysis of the results
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for this rule is a prerequisite for guidance in identifying a better rule.

This we do in Section 3.

Selecting a Tolerance Level 6

Let us now turn to the choice of 6 . It is not difficult to anticipate

an inverse relationship between N and 6 • Al so one expects that a smaller

~ should make the steady state more of a reality for subsequent system times .

Although we need to rely on experimentation to determine how 6 affects this

closeness to steady state one additional observation deserves attention. If

one were to choose 6 ~ for 0 < ~ then N woul d have a distribution

independent of p . This appears contrary to intention for one intuitivel y

expects initial conditions to influence less for, say, ~ 
= .7 than for

p = .9 . Therefore we avoid this approach to setting 6 l evels. Section 3

studies starting rules for 6 = .0025, .005, .01, .02, .05 and .1

Criteria for Eva l uating a Starting Rule

One now needs a method for evaluati ng rule 1. In particular , one want s

the rule to produce a sequence XN+l~ 
XN÷2)... of steady-state system times.

For single server queueing models Lindley ’s equation tells us that [ 4 ]

(3) XN+l = max( 0, XN - TN+l ) + SN+l

which implies that is a function of XN, TN+l ’ and SN+l . However ,
only XN conceivably could depend on the initial conditions at the beginning

of the simulation . Therefore, if XN does not have the steady-state distribu-

tion one is skeptical that does; if XN+l does not have the steady—

state distribution one is skeptical that does, etc . Here one can regard
as the initial condition that determines the extent to which XN+l, XN+2)...

have steady-state distributions and XJ~÷1 as the observati on most infl uenced by

— —

-~~
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this initial condition . The remainder of this paper concentrates on the
distribution of XN+l as the cr iterion of evalu a tion.

Tests Used for Eva luation

To test rule 1 we use a single server (m = 1) model wi th Poisson arri vals

and exponential service times. For specified A , w and 6 we compare the

empirical cumulative distribution function of XN+l for 1000 independent relica-

tions with the theoretically known steady-state cumulative distri bution function

(c.d.f.) , which is exponential with mean p1(1 - p) [4  ]
Let N~ denote the starting time on replication j and X .  N +1 the system

J ,  j
time of completion N~+1 on replication j . Consider J replications with

sample data X 1 ~ N +1 which are independent and identically distri-
‘ J

buted when using rule 1. We wish to test the hypothesis H0 : X 1 N ~~~~~~~ N +1‘ 1  ‘J
have the c.d.f .

(4)  F ( x )  = 1 - e ~~~~ 
- l)x 0 ~

Under H0 the statistics

= 1 - ~~~~ 
l)Xj N.+l j =

are independe nt un i form deviates with c.d.f .

G ( y ) z y  0 < y ~~~1

• The empirical c.d.f of the Y~ ’ s is for all y

G~(y) 
~ 

1(0, ~](Y j )
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I being the indicator function . To check H0 one exa mines the dev iati ons

~(y) = G ~(y) - y  0 < y < 1

or functions of these deviations . For the Kolmogorov-Smi rnov goodness-of-fit

test one uses the test statisti c

= sup I~
(
~)I

y

Critical values of the test statistic appear in Miller (1956) and Owen

(1962). For the chi-square goodness-of-fit test with K equiprobable cells

the statist ic is

2 K 2x = JK ~~ [~(i/K) 
- t~( i / K - 1/ K)]

i =1

which for large J has the chi-square di stribution with K - 1 degrees of

freedom unde r H0 . For the Anderson-Darling test [ 1 ] one uses the statistic

n f~[A(y)] 2/y(l - y)~dy

which is particularly sensitive to departures of G~(y) from G(y) in the tails

of the distri bution , Critical values of the test statistic appear in L~~is[ 5 3.

The aforementioned statistics test for departures from H0 . In many cases ,

including the present, it is of interPst to study the nature of the departure if

H0 is rejected. For us the most desi rable alternative is to show that x1 N +1’
have a distri bution that is stochastically greater than the steady-

state time distribution. Let W and V be random variables with c.d.f.’s Fw and Fv

-
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One says that W is stochastically greater than V if Fw
’
~

(u) - Fv~~
(u)

is non-negative and not identically zero on the open interval (0,1) , where

Fw~ 
an d FV

1 denote the right continuou s inve rses of Fw and F
~ 

respectively.

In the present case this means that the system times x1 N +1’... N +‘ 1

exhibit more congestion than steady-state system times would show.

The Kolmogorov-Smirnov test allows one to check the hypothesis

H : X 1 N +1’~~~~
j N +1 have a distribution that is stochastica lly1 ,

~~~~

greater than the F in (4). The test stati stic is

0 = -inf ~(y)y

Owass (1962)  descri bes an additional helpful measure of discrimination. The

stat i  st ic

U = J. ‘I: 0)(~(y))dy

gives the proportion of G(y) tha t lies below G(y) = y . Under H0 U has

the un i form distributi on on (0, 1) . If H 1 is true one expects U to be

close to unity .

3. Experi mental Results

This section begins wi th a presentation of results for rule 1 for system

t ime in a M/M/l queueing simulation with

w 1
A = .7 and.9

6 .0025, •005, .Ol, .02, .05,. 1

= 1000

Each of the 1 x 2 x 6 12 desIgn points was replicated J = 1000 time s and
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on each replication of each design point N ., x~ N +1 and 
~~~

• N were
3 J ’j J ’j

recorded. To check on the correctness of the simulation 1000 replications

with N~ = 1000 for j = 1,...,l000 were run for eac h des ign po int . On

each replicati on system time was recorded.

Ta ble ‘I gi ves the goodness-of-fit stati stics for the empirical c.d.f.’s

of for each of the design points. For tests of size a = .05 the

cri tical values of the Kolmogorov-Smi rnov, Anderson-Darling and chi-square

tests are .0430, 2.492 and 30.1 respectively. The results are disma l , H0
being rejected in all cases but the fixed starting time case of N 1000

This last observation merely confi rms the fact that initial condition s

hardly affect compl etion 1001 for p = .7 and .9 . To obtain insight into

the nature of the deviations , plot s of ~(y) / Iy(l-y) were prepared for each

c.d.f. in Fi gures 1 and 2 in the Appendix. Notice that for p = .7 the curves

of the deviations become negati ve as 6 decreases. By contrast for p = .9

the curves become more positi ve as 6 decreases.

Although initially puzzling the cause of poor performance becomes apparent

in Figure 3. It reveals that small system times usually occur with large

~N
5 (small p/ (p  + 

~~~ 
an d large system times occur w ith small

(large p/( p + pN ) ) t . The explanation of behavior is now apparent. Whe n a

large 
~N satisfies rule 1 it usually does so by entering the acceptance interval

[p - a, p + a] from above . This implies that completion N has either

a short service time or a long i nterarri val time . From (3) it is clear that

eithe r of these manifestations inclines to reduce X~~1 thro ugh XN . Conversely,

a small that satisfies rule 1 usually enters the acceptance interval from

1•F( X ) , where ( 4 ) defines F , maps system time onto (0, 1) , as does
the transformation 

~~~ + 
~~~

I 
_ _  -



11
a. NJ NJ (0 ~~ a. a NJ iO ~~ in CO CO

NJ U) in a. N) .- a ~~ c~ io a. ~~ N. a
N.

N- ~~ O~ a. 0’ 0’ (0 U) N- ~~ U) N- in N)
N.. o ai 0~ a. a. in .— .— u, ,o in

Ni • . . .
a,

NJ CO ~~ ID CO NJ cO 0 N) a. a. ~~ 
N) ~~ U)

~~ X CO U) a t-. in NJ NJ ~~ a N. (
~) NJ U)

NJ NJ N) N) ~~ NJ

U) ~~ N J . -  N)~~~~ U) . a. N) O N .  ~~N J’ 0  U) a. ~~ U)~~~. ~~ ~~ a . -  ID
U) N- CO 0 N) 0 N) N) N) - (~ NJ N-
, - . - . - N J N JC ’

U) ~~ NJ .— N) 
~ in a U) 

~~ 
N.. a N. ~~NJ U) U) a. ~~ U) . a a. N) a a .- ID

U) N- CO C ) N )O N) CO N- a ID N J N-
— NJ NJ NJ a NJ .- .. ~ 0 a a

~~~~in i o a N J  N) it) N- N) C’J C O N - N J  N-
NJ NJ N) N- CO .- NJ CO N) CO a. a. U) a.

CO Q a. N- ID NJ NJ

o a CO a C) ~~ .- NJ NJ N- ~~ N) a.
~ a NJ a NJ N) a. NJ NJ a ~ a a a. 

N) ..-. a N. a in NJ N- a. Ni CO N)
U ) ) N )~~~~~~~N J N J N )  Q U ) ~~~~~~~N) N-

, - a C O a U ) C O . -  .-. O~~~~~~, - - a C O u )
a a .-  a a . -  U) m a .-  a a a  N)

a a a N ~~ N) .-. a a a a a c~)0 0 0 0 00 0  0 0 9 0e a . -

~~~~~C O I f l  C~J C O . - .-  NJ C O C O  ~~ NJ N ) U )
* NJ U) NJ ~~ N. N- U) NJ a a. U) a. N)

10 0) 10 N) NJ a .- — CO N)
a a a a a ~~ N) NJ NJ

+
U) ~~~u NJ it) N- 0 N- it) N- a a. a in U) NJ

4- 
N- N- U) NJ N- N) NJ N) C) NI 10 ~~ a. U)

U) U) ~~~~~~~~~~~~N J C ) N ) . -  tU~~~~~U ) N ) i n a . U )
U) CO a a a. cii NJ

4-) ~~ 
—---- —-— ~~~~~~~~~~~~~~~~~ - —

0 a a. a. a. a. a. N- CO .- a. a a. a. ~.,

V) 4.) Ia 0~~~~~~~~~~~~~~~~~ O N)~~~~~~~~~~~~~ 0 0 O
G) - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— 4~) .b a,
~~~~~. NJ a. ~~ a ~~ .- in in a. a a a.

Ia, ~~ 5~ U) — ID CO ~~ NJ N- Ia~ 
NJ N) ~~ U)

I— I .~~~ —• NJ NJ N) Ni N)
4- U) — —-___________

CO ‘0 N) ~~ N) a U) N) Ci 10 a i-. NJ inI N) N.. U) ~~ a ci, ai CO U) CO NJ a’ N) COa U) N- ~0 ~~ 10 0 ID N- 10 10 U) a a oU) 
~) NJ Cii c., N) C’t a a a a a a .— aa) .~~

~~ 4-) 
_____ ______________________________•0

o S.~ CO in N) ‘~ a ~~ cii 0 ‘0 a N.. NJ Ia-
o N) N- CO ~~

- a Ni CO Ia’ ID CO NJ a. N)a U) N- ~0 a 10 N) U) iD ID ID a ~~NJ ~~ cii NJ C’) NJ a NJ — a a a —
.0

_________ _____________________________________ 0

~~ N) 4) ci CO NJ NJ Ia U) N- a. 0 N- N)
0 c i  NJ 4) NJ N- U) NJ ~~ 0 10 N-

0 N)~~~~~~N . t iC Q •

N) N) 4) ~~ U) Ia ii) CO N) NJ .—

_ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _

I_i in a. ci a. it, ~ N. it) .- .-. .- in 0ci ci a. a. a. in ~~ a a a a a in

I,

iO N- 0’ in 0 N- a. i4) Cii N- 0 inN) 0 Ia’ CO N.. it) N- 10 U) .—
14) NJ a)

ci in a. ~ a. in CO p.. a. a a ci N) 4-N- ~ . U) N) NJ a N- U) a a U) U)
.
~~
. .

~~
. in m in ~ NJ ~ .-— a a a a NJ

• 0

CO ci in a. m a. in NJ in a ci’ N) N)
* N. ~~ it) N) NJ a ~ - N- C’) 0 — N- in 4-)Ia Ia ‘0 N) iD ~ NJ a. 0 N) a N. 10 NJ

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C’ U N J . - .-  0 00
_ _ _ _ _  In

a,
in cii — iti U) NJ .— ~~~•0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

U N. ci



- -

12

below. This impl i es that completion N has either a long service time or a

short interarrival time , manifesting a larger than ave rage X~~1
An appropriate partition further clarifies this issue . Let A(a, b) [a, b]

for a ‘. b . Consider the starting rules

Rule la N = min(n: 
~n C A(p - 6 , p) and p .~ ~~ A(p, p + o) , i = 1 ,...,n-1)

Rule l b N = min(n: p
~ 

C A(p , p + a) and ~ A(p — 6 , p) , i = 1 ,...,n—1)

Together these give rule 1. Fi gures 4 and 5 show deviations for those of the

1000 replications that satisfy rule 1a and Figures 6 and 7 display deviations

for the remaining repl ications that satisfy rule lb. The clarification is

relatively ini~ediate. As 6 decreases rule la results in negative deviat ions

and rule lb results in positive deviations. A little thought provides a

plausibl e explandtion. In order for rule la to apply on repl ication i the

serv ice t ime for completion N~ tends to be larger than average. Consequently,

the associated system time is larger than ave rage . The net effect is that the

distri bution of system times based on rule la is stochastically greater than

the steady-state distri bution of system time. A one sided test of the Kolmo-

gorov—Smlrnov statistics wi th a = 0.05 for rule la easily confirms thi s obser-

vation for all 6 and p = .7 and .9 . Moreover, the IJ1 s provi de additional

support . By contrast rule lb produces system times whose distribution i s

stochastically less than the steady-state distribution.
To summarize briefly, rule 1 cannot guarantee a steady-state distribution

as 6 decreases. However, rule la produces a stochastically greate r than

distribution as 6 decreases. This behavior implies larger than expected
system times so that rule la leads to an overcongested system at the beginning

.. , --— . — .  
~~
- - , - . -
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of data collection . Since the objective is to measure congestion we

rega rd this as a reasonabl e situation to induce when steady state is taiob-

tam able.

To recommend rule lb would be somewhat shortsighted. Clearly if

p
1 
C A(p, p + a) for i < n one cannot realize the conditions of the rule.

To overcome this inadequacy consider

Rule 2 N = min(n: - p~ < 6 and p~ >

Thi s rule allows for starting data collection only when demonstrates an

increase over 
~n l  • But one expects this to happen when compl etion n+l has a

longe r service time or shorter intera rri val time than average thereby contri bu-

ting to an above avera ge system time .

For each va l ue of and ~ 1000 replication s were run using rule 2 and

XN+l was recorded. Table 1 shows the goodness-of-fit statistics. Also , for

= 0.05 and p = .7 a test of the Kolmogorov-Smi rnov statistic 0 supports

the assert ion that rule 2 has induced a “stochastically greater than” di stri bu-

tion for X N+l . Fcr p = .9 D supports thi s type of behavior only for

6 = .0025 . Figures 8 and 9 show the deviations.

On the basis of the accunulated empirical evidence to date, one inclines

to recommend the use of rule 2 with a = .0025 . Although we do not quarre l

with this recommendation , this advice should be regarded as a temporary measure

on at least three grounds. Firstly, we have no ex per ience w ith p > .9

Secondly, we have no experi ence with multiserve r systems . Thirdly, the sample

quantiles of starting time for rule 2 and 6 = .9 in Tabl e 3 are cause for concern .

Notice that , although 90 percent of the starting times are less than 3099,

one percent exceeds 48334 . In our opinion the risk of excessive cost is far

too great to regard rule 2 as an end in itself. Therefore, researc h on starting
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rules that produce shorter starting ti mes is in order. Section 4 outl ines

prospective resea rch on this extension . The moti vation for the approach

rel ies on an empirical observation that as a decreases the correlation

between N and XN+l becomes small. Although this observation needs

carefu l study , the preliminary evidence encoura ges us to consider its impl i-

cation s for starting rules.

Table 3
Sample Quantiles of Starting Time for Rule 2

p = .9
pr(N < n )  = p

n

\~I .02 .05 .10 .25 .50 .75 .90 .95 .98 .99 maxImum mean

.1 2 2 2 4 6 13 31 82 141 242 457 536 33
.05 2 2 4 5 10 22 55 173 335 644 759 1861 74
.02 3 4 6 9 19 43 - 

131 535 1193 2350 4274 10230 248
.01 4 5 9 14 29 69 223 1112 2268 6981 10592 56953 642
.005 4 7 12 18 45 111 400 1917 6318 14098 29718 193990 1586
.0025 4 9 19 34 73 191 717 3099 9670 27512 48334 525550 3471

4. An Iterative Rule

The observat ion that XN+l and N may be uncorrelated for small 6 suggests

an approach to effecting the same result that rule 2 induce s at a considerably

sma l l er cost. Suppose XN+l and N are Independent and let

= pr(N~~ i)

_
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based on rule 2. Al so define the local sampl e activity leve l

• N
- s .
p j mi+l ‘~ N — m i — i
I,N N N - m I

r.
.j mI+l ‘~

where m is a positive integer and I is the integer part of (N-l)/m

This sample activity l~ve1 applies for the M/M/l and may require an adjust-

ment in its correction factor for distri bution s other than the exponential.

Consider the rule

Rule 3 N* = min(n: 
~~ 

- ~ a and ‘~I,n > ‘~i, n—l
and ml $ n-l )

In words thi s rule requires US to use a sample activity leve l based on at

most m past completions. The quantity I denotes the number of times we

need to reset ; i.e., the number of iterations. A little thought shows

that

pr(I 1) = (1 - q ) ~ ~ i = 0,1 

Then I has a geometric distri bution with mea n (‘I - q~)/~~ and vari ance

(1 - q )/q2 
. A l so, the mean number of completions E(N*) required to

meet rule 3 satisfIes

m(l 
~~~~~~~ E(N*) <m/ q~

Now a user may choose m to suit one ’s convenience. However, from the

optimali ty viewpoint one prefers the m that minimi ze s m/q . If seve ra l

$ 
.-

.1 -— — -  ---- -— ,- ~~~~
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m’ s lead to ident ical minima then one prefers the largest among them since

this minimizes var (ml) = (1 - ~~)(m/q~)
2 

. Naturally, the efficacy of

rule 3 remains to be verified by careful experimentation . If this verifica-

tion is realized we will have a considerably more desirabl e starting t ime

rule than rule 2.
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