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Theoretical probability distributions for two detector statistics
are derived and used to develop performance comparisons. "Statistic A"
is a sum of terms representing cross-correlations between a reference
channel and two auxiliary channels independent of the reference and
of each other except for a common sinusoidal signal component.
"Statistic B" is a version of statistic A normalized by the envelope
of the reference channel. Which of these statistics yields the
better detector is shown to depend upon the ratio of the noise
power received on the auxiliary channels to that on the reference:
when this ratio is less than 0.25, the normalized statistic is to
be preferred. Computational procedures are fully disclosed.
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DISTRIBUTIONS FOR TWO CROSS-CORRELATION
DETECTOR STATISTICS

INTRODUCTION

A three-channel communications system is postulated to have the
following elements: a reference channel and two auxiliary channels,
all occupying the same bandwidth. Let the reference channel output
be designated x (t) and the outputs of the auxiliary channels, x (t)
and x (t). For’no signal, each channel output is assumed to be !
indepéndent, zero-mean Gaussian with the variances

02 = N (reference)
¢ (1)
cf = oz = aN (auxiliaries)
The signal power received on these channels is taken to be
5, - 15% (reference)
o= skfsz (auxiliary #1) (1a)
s = ’skisz (auxiliary #2)
2
with ki + k: =1 (1b)

In this study, the probability distributions are derived for
two detector statistics obtained from samples of the channel outputs,
and some calculations of their performance are presented. Given
the glossary of notation shown in Table 1 and the detector model of
Figure 1,the two statistics to be studied may be written

gz, = 1g [2%2 cos? (¢ -¢ ) + 22 cos? (¢ -¢ )]1/2 (2)
A 2T § 0 2 2 "o
and
zg = 3 (22 cos? (¢ -4 ) + 2 cos® (¢ -¢ )] (3)
4
W v - A ST N OGN o AP - — =: TE——




Subscripts (unless otherwise noted):

NSWC/WOL/TR 78-37

Table 1

Glossary of Notation

O0:reference; l:auxiliary 1;
2:auxiliary 2

noise envelope

detector statistic

noise in-phase component

noise quadrature component

phase angle

auxiliary channel weighting factors

signal in-phase component

signal guadrature component

signal envelope

noise variance (reference channel)

auxiliary/reference noise power ratio

threshold value

nurker of post-integrations (=bandwidth-time product)

signal-to-noise ratio

gamma function

Bessel function, third kind, integer order n
Confluent hypergeometric function

Gaussian probability integral

Chi-squared probability integral

Hermite polynomial

Gaussian probability density function

———————
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MODEL
REF. W X
0
O—{ s8PF |
AUX. #1 5 SAMPLING AND
1 ARITHMETIC
" m | UNIT (MEMORY
LESS)
AUX. # 2 X

BANDPASS DETECTOR
FILTERS ALGORITHM

M=WT T L
M
M3z THRESHOLD [—O SIGNAL
i DECISION
i=1 NO
SIGNAL
z<T

POST-INTEGRATION

INPUTS: GAUSSIAN NOISE PLUS DETERMINISTIC SIGNAL

X, (=2, (t) COS(w_t- @, )+S(t) COS(w _t-¢)

=[ 3,01+ E(0)] cOS o t+ [ by 01+ M(0)] SIN_t

X, (=2, (t) COS(wW_t- ¢, )+kqS(t) COS(W _t-9)

=[a, 0+ ky £ ] cosw t+[b, 0+ Ky N0 | SING t
1 1 c 1 1 c

X, (t)=Z, (1) cos(wct-¢2)+ ko S(t) COS(w_t-9)

= [az(t)+ ko E(t)] COS w_t+ [bz(t)+ ko (1) ] SIN w_t

2 2 -
WITH kq® + ko =1

GAUSSIAN COMPONENTS ARE ZERO-MEAN, WITH

NO SIGNAL

DETECTOR STATISTICS (WT=1=M)

- 2 52 2 2 52 2
2,=1/24 /22 22 COS2(8,- ¢ 1+22 Z2COSA(§,,- ;)

2g=1/2 [ 22 cOS2($,-9,)+22C082(9,- ¢, ]

FIGURE 1 DETECTOR MODEL
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Statistic 2_ can be interpreted as a normalized version of statistic

, and botg represent combinations of correlations between reference
and auxiliary channel outputs. Successive calculations of zp and zg
are considered to be independent.

The joint probability density function (pdf) of the six in-phase
and quadrature channel output sample components is given by
p (a ,b ,a ,b ,a ,b) (4)
R SO S S R

1

= [0?(2mN)°]17! exp {-3Tx% [a(a - E)% + a(bo-n)2

+ (a-tk )2+ (b-nk)2+ (a-g£k)2+ (b-nk)? 1},
1 1 1 1 2 2 2 2

where

& S cos ¢

(5)

n S sin ¢

are the signal components.

DISTRIBUTION OF STATISTIC A FCOR WT=1

In reference to the pdf shown in Equation (4), we define the
transformation of variables:

a =2 cos Yy z2 >0
0 0 o =
b = * sin y 0 2y < 2%
o S e
al = x1 cos Y- y1 sin y —o<x < (6)
1
b = xlsiny +y cos Yy —o<y <o
1 1 1
a =x cosy -y siny —o<x <o
2 2 2 2
b = sin + cos —o<y <®
p e 8 1 Y, A :

The Jacobean of the transformation is 2 , so that the joint pdf of
the new variables is -

pz( of Y Xx $ob Xy yz) =

z z V4 - 3
°pl( °cosy, usiny,xlcosy ylsiny,x151ny + ylcosy, (7

xzcosy-yzsiny, xzsiny+ yzcosy).
7
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After integrating out ¥ and y, we obtain
a 1
p (2, v, x, x)=—2— exp {-— [0(Z cosy-§)?
LA X : a(2mN) 2 20N »
(8)

+ a(zosiny-n)2 + {xl—S k1 cos (y-¢)}? + {xZ—S ]2 cos(y-¢)}%1} .

We now define another transformation:

Zo = v V2z z> 0
Y=v+4¢ v>0
with (9)
x‘ = y2z cos ¢/v 0 <y < 27
X, = Y2z sin ¢/v 0 < < 2%

The Jacobean of this transformation is 2 v2z/v?, so that the pdf
becomes

p (z, %, ¢, v) = R _ . exp {- 8.y [a(22zv2-2V/22zSv cos Y + S2)
4 av(mTN) 2 20N

+ 2z/v? - 2/2z S cos(z=6) cos Y/v + S?2 cos?yl} (10)
where
o = tan !} (kz/kl) (10a)

Using h? = 82/2N, expanding the second and fifth exponential terms
in series, and eliminating v by integration, we find

p. (z, ¥, ¢) = —Z2_ exp {-h?(1 + cos? y/a) } X
s a(mN) 2

s N . S —— e v—— R N e ——
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m!n!

m
1
* Z Z [Zh cos Y v %] {2—2 cos (z=-6) cos ¥ /—g]n

x / dv ot exp {-u; v¥ - M v 2}

o

= —2%  exp {-h?(l+cos?y/a)} Z E
nm=

(11)

[2hcosw/—]

o (TN) 2 m'n'

n
X [Z% cos (z-6) cosy /rg:] (é)(m-n)/4 K(m—n)/Z [;%%—},

where we have used p = - and u = -Z—I—\]- in integration formula 3,471.9
of reference 1. Aftér wrltlng th& factor exp{-h2cos?y/a} in series
form and using the intagration formula [reference 1, #3,661.2]

2T k 0, k=2r+l
du (a sin u + b cos u) = (12)
/ 2—2(2;) (a2+b?) ¥, k=2r,
0 2
we successively eliminate ¢ and ¢ hy inegration to obtain the pdf

(after recognizing a series for F )
T

& s v m+n - (m+3n)/2
o (2) = 4z h? 5 5 (h®z/N) o I' (m+n+%) (13)
g aN?2 m! (m+n)! (n!)? T (m+k)
m=0 n=0
x K (2z/N /&-)lFl(m+n+35; m+n+l;-h%/a).

The argument of the pdf is

zZ = 5 2 /x%4x?
e

1Ts 5, Gradshteyn and I. W. Ryzhik, Table of Integrals, Series, and
Products (4th Ed.), Academic Press, New York, 1965.
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= % z /Qa cosy+b sin )? + (a cosy+b siny)?
0 1 1 2 2
14)
IR e - 2 (
= = Z Z S - + - =
g 8 vEees® =4 ) +'d cos" G ) Zy
where Yy = ¢° and M=WT=1. As a check, we note that for no signal (h2?=0),
© ©
f dz P, (z;h?%=0) = f dx x K, (=) = 1. (15)
0 0
MOMENTS

Writing (13) in shortened form,

oo o0
4 2 m+n+1 22z
p (z2) = — 2 ; z f(m,n;e,h?,N) z B —1.
6 AmT n-n \n/g (16)
=0 n=0

aN?

and using the integral [reference 1, #6.561.16]

co

m+n+u+1
/ dx x Km_n(ax)

o
g > m+n+u u u (17)
= ;; (a) '(m + 5+ 1)T'(n + 5 + 1) I
we find that
o0 [+2]
E{Z2'} = awa)* T J £(m,njo,h?,N) (N/E)‘“*“r(m+‘-2‘+1)r(n+‘§‘+1).
m=0 n=0
(18)
For h? = 0, the moments are, explicitly,
E{z"|h%2=0} = (Wa&)* [I( 1‘2-+ 1)]2. (19)

10

. T -
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Thus for noise only,

{E{z} = N1/a/4 = .7854N/a

(20)
o, = Na /I-n7/16 = .6190N/a.
For small h? we have, approximately,
Wy o =y U B 2 u 1442
E{z"} = (Wa)" [T 5+ D]°[L + 5 Q + 5=)h*]. (21)

PROBABILITY INTEGRAL

Given the pdf (13), the corresponding (complementary) probability
integral is

o

Qp (1) = p.{2 > t} =/ dz p_(z)
T

2 © m+n(%)n

= e_h Z 2 (sh?) Sl L (i) Fl(m+n+%;m+n+l;-h2/a)
m=0 n=0 m! (n!)? (m+n)IT (m+k)

x f g TR, (22)

T

1
where
LR 21/NVo . (23)

To solve the integral, we use the fact that Kr = K—r and make the
change of variable

X = Tl/wz + 1 (24)

to get

[

LN+l f dw w (»/w!+1)m+rl Kn-m(Tl‘/w!+l)
1
o

1

0 wK (T V/W2+ 1)
& Tm+n+l/‘ dw (w2+1)D n-m' e
(Vw2 + 1)

o

11
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[+
22 2k+l (T /w = )

= N+l 7 (n) _/dw

1 k=0 </ J (/w’ + 1)n A (25)

k

m+n+1 ° n! 2

o kEO (n-k !) ('T—I) Kn-m-k-l(Tl) ’
where integral 6.659.3 of reference (1) was used. Substituting

this result in (22), using Kummer's transformation on the hypergeometric
function , and manipulating indices gives us
(%h2t )™

-h? (1+1/a) E
m!

Q. (t) =1 e
2 ! m=0

F(m+%)lFl(%;m+l;h2/a)
" (m) (2/oc‘rl)n f
n=0 \") T(m-n+%) k=0 k1

For noise only, QA

QA(TIh2=0) = TIKI(TI) = 21__ K, (J&L)

(t /2)k (26)
1 (t )

Km-n--k+1 e

is the probability of false alarm and is simply

NYa NVa /* (27)

DISTRIBUTION OF STATISTIC B FOR WT = 1

Beginning with p (2 P X X x ) as written in equation (8), we
make the following transformatlon of variables:

B V2X cosé 0 <A<®
x, = /2 sing with 0<8 < 2m (28)
Y =9 +¢ Gy x on

The Jacobean of the transformation is 1,

V4
P (2 ’ lr Gr w)
7 0

12

— - e o

+2)-28V/2\cosycos (-

giving
2

= 2
= 373#ﬁ71 expf{ - ZGN[a(Z =22 Scosy+S )

8)+S%cos?y]} (29)

E—
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Eliminating Zo by integration, we get
2

1 -=h =1
B ity exp{ ——[2)- ~
P, (X, &, U,) T P 2aN[2A 2SY2Xcosycos (§-6)
+ S%cos?y]}
T (2hcosy) ™ m gt
x 7 —1ET-—£— Ir'( 3+ 1), using h? = e
m=0 (30)
Integrating over § results in
2 2h
p, (A, ¥) = 51— exp{-h?(1 + S5 ¥) - 2100 2 cosp /§)
v (2hcos')m m
x ¥ -——ET—E— F s+ D) (31)
m=0
Expanding the Bessel function in its series form and using (12)
to integrate over w, we obtain 2n
: e o (3]
1 2 A h o YN
p. (M) = =% exp{-h?- =%} | J
= o N 2o T 20 nin
S (-h?/0)® T (mtn+k+y)
% k1 (m+n+k) 1 Fa2)
k=0
© m 2 2 n
e 5 0 SR h® (A/a°N) " T (m+%) . S
e exp{-h Eﬁ} Z R Y lFl(m+!5,m+1, h*/a) .

m=0 n=0

By using Kummer's transformation

. . - - -c - . -
lFl(a, b; -c) e 1Fl(b a;b;c), (33)
on (32), an alternative expression for (32) is found to be
°z° ’i‘ h2™ (A /Na2) "

P, (A= 'a%i' exp{-h? (1+1/a) - )

1 aN a0 Das m! (n!)* (34)
X o F) (s L h2/a).

13
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The argument of this pdf is

A= %(x? + x2?)
1 2
s 2 Y 2 % =
%[Zlcos (v ¢!) + chos (y ¢2)] Zy (35)
where y = ¢o and WT = 1.
When h? = 0, (32) and (34) reduce to
Pio (Ash?=0) = = exp{-A/aN}, (36)

the exponential distribution with parameter oN. Therefore, to a
factor, zZg (for no signal) is distributed as a chi-squared variable

with two degrees of freedom:

ZZB
2 2
—(1-['\7_'\' X©(2) for h = 0. (37)

MOMENTS

Using (34), we find that

EOMY = ¥y 7P (141/a)

©o

m
2 _-n
mZO ngo s m?(h{;?;?gfﬁié%n lFl(%;m+l;h2/a). i

For small h?, this expression reduces to

X

E{A"} = (Na)® u!(1+ h%/2a); (39)

thus for h? = 0, both the mean and standard deviation equal
Na--a result which is predictable in view of (37).

PROBABILITY INTEGRAL

Again using (34), the (complementary) probability integral
which corresponds is found from

4

Qp(t) = P {A > 7}

=e-h2(1+1/a)°z° T h2M70r (med)
m=0 n=0 m! (n!) 2T (m-n+%)

2]
n _-u
x/duu & ‘rl='r/aN,
T
1

1Fp (Gssm+1;h2/a)

(40)

14
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in which the integral is the incomplete gamma function T'(n+l;T ),
and is related to the chi-squared probability integral Q(x?|v):

n
T(n+l;T_ ) = nlQ(2T_|2n+2) = n! e 1 ] Tk/k! (41)
1 1 & 1
k=0
Putting the last expression in (41) into (40), we have

%o m n m_-n k
QB(T) = exp{ - L h? (1+1/0)} Z z z h2%a” ' (1/aN)

i m=0 n=0 k=0 ™' P! k!

T (m+X%)

X Flwemigy 151 (8 m+l; h?/a). (42)

RECEIVER GPERATING CHARACTERISTICS FOR WT = 1

In order to compare the properties of statistics A and B,
we shall first obtain receiver operating characterstics from the
expressions already derived, that is, for WT = 1, 1In the next

section, an approximation technique will be used to extend the
comparison to arbitrary WT.

The relationships known as receiver operating characteristics
may be expressed in the present application by (h? = SNR)

P. = f(h%; P

D Fa’ % W) (43)

in which the decision model depicted in Figure (1) is assumed:
B, = Pr{z > ra} = Qi(Ta), i=na,B (44)
where T is the false alarm threshold determined from
A eI & -
Ppp B Qi(ra, h*= 0) = pr{z > T, h'= 0}. (45)

For statistic A, from (27) we have

Ppp = LI Kl(Tla)’ Ton ™ 21a/N/a. (46)
Using Table 9.8 of reference (2), the following values can be
calculated:
PFA T1a
.0097=10"2 5.8 L
.00103~10"* B (47)
.000105~10" " 10.6

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical
Functions, NBS Applied Mathematics Series ¥55, Government
Printing Office, Washington, 1970.

15
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For statistic B, from (42) it is evident that

Pop ™ exp{-1/aN}, (48)

from which we may calculate

PFA Ta/Na

0.01 4.60517

0.001 6.90776 (Statistic B) (49)
0.0001 9.21034 WT = 1

Calculation of the probability integrals to find probabilities
of detection jis more involved, but relatively straightforward.
Using the computational approaches and programs described in the

appendices, QA (equation (26)) and QB (equation (42)) were obtained

for several values of the auxiliary-to-reference power ratio a, as
shown -in Figure (2).

As expected an obvious feature of the information displayed
in Figure (2) is that, for fixed reference power (N), performance
is improved (smaller SNR required) as the noise power on the
auxiliary channels is decreased (o decreased). What is interesting
in this figure is what it reveals about the relative performance
of the two detector statistics. It is evident that, because of
different sensitivities to a, statistic 2 is better for o > 0.25
but statistic B is better for a < 0.25. The interpretation seems
to be that the reference's amplitude information (Zo) becomes more

important as the auxiliary channels become more noisy.

PERFORMANCE STUDY FOR WT > 1

To illustrate the extension of the theoretical results
we have obtained for WT = 1 to cases in which WT is arbitrary,
we examine the crossover effect of o on the relative performance
of the two statistics for consistency as WT increases. Specifically,
we compare values of minimum detectab.e signal (MDS) for PD = 0.5 and
PFA = 0.01, expressible as
A

2 s = = ,01
h*{a, WP: P = .5, P, } (50)
Using the moments for WT shown in (18) and (38) as inputs
to the Cornish-Fisher expansion described in Appendix B, we £ind
MDS by varying the SNR until

MDS

t(h?; Q = .5, a, WT) = t(h%=0; Q = .01, a, WT) (51)

where T is the inverse function of Q(t), the complementary probability
integral. The results of this procedure are shown in Figure (3), in
which we see that a = .25 continues to be a crossover value for
choosing the better statistic.

16
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FIGURE 2 RECEIVER OPERATING CHARACTERISTICS (WT=1), NOISE POWER RATIO (Q) VARIED
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The behavior of the MDS as shown in Figure (3) is so consistent
that it gives us confidence in further extending the results of
Figure (2) with such approximate generalizations as

MDS (WT) = MDS(WT=1l) - .5 - 5 loglo(WT), (52)
where MDS is specified in dB.

Taking the data of Figure (3) and making WT the family
parameter results in Figure (4). 1In this presentation, the crossover
behavior we have been noting is displayed directly. The curvature
of the results for statistic A discourages us from making any bold
statements about the general dependence upon a. However, if we
make use of the central limit theorem to say, as WT + e, ‘

z ~ N(m,, oz//WT) (53)

where m_ and c; are the mean and variance for WT = 1, then asymptotically
(51) beComes

e T 2 e
m,(h*) =m (r?= 0) + x ,, o (h?®=0)/VWT. (54)
In addition, since h%<<1l, we may write
Bmz h2=0
2 | = ——
h ;{; = x.01 oz(h 0)//WT. (55)

Finally, if as in reference 3 we define

AMDS = h%/(x OI/JWT)
am_ h?=0
L G MORA] 1, (56)
3h?

we can compare asymptotic behavior of the two statistics on a common
basis.

From (20), (21), and (39), we get

AMDSA 1.576/(1+1/2a)

(57)

AMDS

B 20..

Figure 5, a plot of (87), confirms what we have already concluded
from the previous results, namely, that statistic A provides better
detection performance for o > .25, approximately. In addition,

for a>>1, statistic A's MDS relative to the baseline (which happens
to be that of a square law statistic) is no worse than 2 dB. We

see also, that although B is the better detector for a < .25, r is at

C. N. Pryor, "Calculation of the Minimum Detectable Signal for Practi=-
cal Spectrum Analyzers," NOLTR 71-92, 2 Aug 1971.
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most worse by 2 dB here, too; whereas when B is the worse detector,
its performance degrades indefinitely as o increases.
CONCLUSION

Further comparisons can be made with the theoretical results
and computational procedures documented in this report.

22
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APPENDIX A

OUTLINE OF COMPUTATIONS

The general form of the computations which are special enough
to be discussed in themselves is the infinite series

fl(x) = fz(x) exp{-h? -h?/a} Sz(x) (a-1)
where, given the values of the arguments,
© m n
S =] A(mG(m) ] B(m, n) | cC(k). (A-2)
2 m=0 n=0 k=0

Truncating the series at m = m_, and expanding on (A-2) to show
the computational approach we write

S5 = A(0)G(0)B(0,0)C(0)
Moo
+ ) A(mG(m) {B(m,0)C(m,0,0) (A-3)
m=1
m n
+ )] B(m,n)[C(m,n,0) + ] C(m,n,k)]}
n=1 k=1

Common to each of the specific forms which are treated separately
below is the function

G (m) 1Fq Vs mtl; h2/a) (A=-4)

2mo. 5
(am-D)n? [(m=1+h%/a) G(m-1)-(m-1)G(m-2)], m > 2 .

G(0) and G(l) are computed directly from
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@ ¥
Folks 1 %) = ) X (%)
T r=0 (ri)? ¥
1
> B {x) (A=-5)
r=0 ©°
<F
using D, (r) = (%)
C (r:)z r
= x(r-%)DO(r—l)/rz, r> X (A-6)
with o
DO(O) = 1.
Similarly, 1Fl(ls; 2; x) is computed using
¥ (%)
o £
Dy(r) = 7 DT
= x(r - %D, (r-1)/r (r+1) (A-7)
with Dl(O) =1,

Satisfactory results were accomplished when truncation of the series
was such that

B, (£} < 10, (A-8)

The form (A-2), besides being more convenient than a triple
infinite summation, was chosen to imitate the power series
mee
s, =] )" Em, (A-9)
m=0

with the idea being that h? is most often the major parameter
(sometimes also being large) and truncaticn such that

(h*)™2 (m,)<.0001 S (A-10)

will insure convergence in h?. For the most part this has worked
well, although for a>2 and a<% in some cases a more sophisticated
approach (not assuming so uniform convergence) might be warranted,
judging from the behavior of QA(T) and QB(T), for example, when

their values are 0.9 and higher.




QA(T)—-Equation (26)

£ = 7

2 1
A(m) = hzrl/Z)m/(m!)z

|
= (h211/2) A(m-l)/mz, m> 1
A(0) =1
- (m} T(mt+%) n
B(m,n) = (r) g o (2/a11)
= (;%;) (m-n+1) (m-n+%) B(m, n-1)/n, n > 1
1
B(m,0) = B(0,0) =1
C(m,n,k) = C1(k)Km - k+l(T )
c, (k) = (v /2%
= (1,/2) ¢ (k=1)/k, k > 1

c (0) =1

1

r+l(T ) = 2rK_ (t )/T I (Tl), r > 2
K—r(Tl) = Kr(Tx)

T
e

1
Ko(Tl) and eT‘Kl(Tl) tabulated in reference (2).
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(A-11)

(a-12)

(A-13)

(A-14)

(A-15)




QB(T)--Equation (42)

f = exp(-t/aN)

2

A (m)

(h2)™/m!

NSWC/WOL TR 78=37

= (h?) A(m-1)/m, m > 1

A (0) 3

B(m,n)

n

B(m,0)

c(kx) = (t/aN)¥/x!

I (m+k) /o n!T (m-ntk)

(m-n+%)B(m,n-1)/an, n > 1

B(O'O) = i

= (t/aN) C(k-1)/k, k > 1

c(0) 1

U
E{ZA}--Equation (18)

£ = (Wo)¥
2

A(m) = (h?)7(m?!)?2

= h?A(m-1)/m?*, m > 1

A(0)

1

m

B(m,n)

B(m,0)

B(0,0)

C(m,n,k)

I (m+%)T (m+1) T (m=-n+pu/2+1) T (n+pu/2+1)

T (m-n+%) T (m-n+1) (n!)2 o®

(A-16)

(a-17)

(A-18)

(A-19)

(A=20)

(A-21)

(m=n+%) (m=n+1) (n+u/2)B(m,n-1) /(m-n+u/2+1)an?, n > 1

(m+p/2)B(m-1,0), m > 1
[T (u/2+1) ]2

0, k > 1
1, k =0

(A-22)

(A-23)
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E{Z;}—-Equation (38)

£ = (Ne)® T (p+1) (A-24)

A(m): same as (A-17)

B(m,n) = (u+l) T (m+k)/a”(n!)?T (m-n+k)

(u+n) (m-n+%) B(m,n-1)/an?, n > 1 (A-25)

B(m,0) B(0.0) =1

C(m,n,k): same as (A-23)
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APPENDIX B

COMPUTATION OF INVERSE PROBABILITY INTEGRAL

An asymptotic expansion for arbitrary probability distributions,
adapted from § 26.2.49 of reference (2), is useful for computing
minimum detectable signal (MDS). Known as the Cornish-Fisher
expansion, it can be written

Tp ~ m + oW(xp)//ﬁ (B-1)
with wix) = x + [dez] + [Y2d3+yid“]
Ll g R (B-2)
= [Yuds+Y:d9+Y1st1o+Y:Ygd11+Y:d1z]
Fie

where, by definition
Priz > Tp} = P (B-3)
The random variable z, the detector decision variable, is assumed

to be the mean of M independent, identically-distributed samples
{zi} with moments and cumulants as follows:

M
z= = ] =, (B-4)

2
]
A
]
(o]
—
N
—

Vo e Vartzi} (B=5)
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k =E{z23}-3k ¢k =~ k?
3 i 2 1 1
K = B{2%}-4k k - 3c?-6k k2-k"
4 i 3 1 2 £ 1 3
k = E{23}-5¢ k - 10k Kk -10k k2-15c k2?-10k k3-k?® (B-6)
5 1 4 1 2 3 3 1 1 2 2 1 1
k = E{2%)}-6x Kk =15k k -10k%15¢ k2-60Kk Kk K
6 i 5 1 2 4 3 b1 1 2 3

=15k %-20k k¥-45k2k2-15¢ Kk*-x°®
2 3 1 12 2 1 1

A '<3/(Ml<:)!'i

g Ku/MK:

T s (ME’K:)!E (B-7)
1 s KS/MZK:

The number xp and the coefficients {di} are related to the Gaussian

distribution and are given in Table (2) for several values of p,
where columns 2-4 were taken from page 936 of Reference (2).

The brackets around the terms in (B-6) correspond to orders
of magnitude with respect to M. A test case run for the non-central
chi-squared distribution and using only the first two bracketed
terms yielded results 8% and 3% below the true value of MDS for
M =5 and M = 50, respectively.

These coefficients can also be used to approximate the
probability density function via the Edgeworth series, as shown
in reference (4).

*L. E. Miller, "Computing R.0.C. for Quadratic Detectors,"” NSWC/WOL
TR 76-148, 10 Oct 1976.

B=-2
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TABLE 2

COEFFICIENTS FOR CORNISH-FISHER EXPANSION

P
.0001 .001 .01 1 .5 .9

a =x, | 3.71902 3.09022 2.32635 1.28155 0 -1.28155
a, | 2.13852 1.42491 .73532 .10706 |-.16667| .10706
a, | 1.67838 .84331 .23379 -.07249 0 .07249
a  [-2.34115 -1.21025 -.37634 .06106 0 -.06106
a .92761 .30746 -.00152 -.03464 | .02500] -.03464
d_|-5.17267 | -1.89355 -.17621 .14644 |-.08333]| .14644
a | 4.87514 1.86787 .25195 -.11629 | .05247| -.11629
a, .35118 .04591 = 03176 .00227 0 -.00227
a, |-2.62416 -.59060 .07888 .00776 0 -.00776
a | -3.48080 -.70464 .16058 .01086 0 -.01086
a 1] 17.56966 4.29304 -.32621 |-.10858 0 .10858
d F12.61271 | -3.32708 .07286 .09585 0 -.09585

B-3

e L ————————— . 35T
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APPENDIX C

COMPUTER PROGRAMS

BASIC programs for computing RCC ard MDS are listed in the
figures which follow. Subroutines common to two or more programs
are listed separately. Given the computational outlines of

Appendix A, the listings are nearly self-explanatory. Additional
comments:

Program OAS. (Figure 6). Given the values of «, T ar KO('r1 ¥y

a
and Kl(Tla)’ computes QA(T) for the values of h? specified by the
user.

Program QBS. (Figure 7). Given the values of a and T
computes QB(T) for the values of h? specified by the user.

Program MDA. (Figure 8). Given the values of «a, PFA' and WT,

computes false alarm threshold via Cornish-Fisher. Then computes
detection thresholds for the values of h? specified by the user, who
interpolates to get MDS.

Program MDB. (Figure 9). Same as MDA but for statistic B.

Pr— sk DT ¢ T e M— ———— - re———— Vy——
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PROGRAM  QASS534

1D

2Fp

S5 REM

IN G(169),K(118)
1=42ATNC1)

PROGRAM TO COMPUTE

7 PRINT "PROBABILITY INTEGRAL FOR STATISTIC A (WT=1)"
18 READ A1,T1,A

12
135
18

DATA 1,5.8,.81

PRINT "GIVEN: ALFHA,TAU1,PFA ="A1,T1,A

PRINT

17 PRINT “H(DB)”,"PD”,”LAST M"
20 GOSUB 709
25 K2=-1

38 H=164K2
35 X=H/A1

N=0
GOSUR 898
A2=B2=1

68 C2=1

$2=6(9) *K(1)

70 M=M+1
75 K(M+1)=24H4K(M) /T1+K(N-1)

IF M<2 THEN 99

85 GOSUER 8440
90 A2=A2¢H*T1/2/M¢2

198
195
196
197
198
199
200
202
243
204
205
219
215
220
225
300
709
745
710
715

FIGURE 6 PROGRAM TO COMPUTE PROBABILITY INTEGRAL FOR STATISTIC A (WT=1)

B3=E2
S1=B2#K (M+1)
FOR N=1 TO M

R3=R3*#2%(H-N+1)#(H-N+.5)/N/A1/TI

c2=1
SP=K(M-N+1)
FOR J=1 TQ N
C2=C2xT1/2/J

IF (N-N-J+1)<@ THEN 155

58=50+C2+K (N-N-J+1)
6OTO 140
§O=58+C2¢K(N+J-H-1)
NEXT J

51=51+H3%59

NEXT N

L=52
§2:52+A2¢G(N) 51
L=(52-1)/S2

L2=

IF L>.0881 THEN 78
P=S24T1#EXP(-H-X)
IF P<.5 THEN 282
IF L2=1 THEN 202
L2=1

L=104L

6070 198

PRINT 18+K2,P,N

IF PCLY THEN 388
L1=P

IF P>.99 THEN 389
K2=K2+.1

IF P>2+A THEN 38
K2=K2+.4

6070 38

STOP

REM SUBROUTINE FOR BESSEL FUNCTION
K(8)=.5181258183+EXP(-5.8)
K(1)=.5524676495+EXP(-5.8)

RETURN

sl T S e S

C=2
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PROGRAM  @BS534

5 DIN G(188)

10 P1=4%ATN(1)

15 REM PROGRAN TO COMPUTE
28 PRINT "PROBARILITY INTEGRAL FOR STATISTIC B (WT=1)"
25 READ A1,T,A

39 DATA 1,4.68517,.81
35 PRINT "GIVEN: ALPHA, TAU, PFA "A1,T,A
48 PRINT

45 PRINT "H(DB)","PD","LAST H"
58 PRINT

55 T1=T

48 K2=-2

65 H=184K2

76 X=H/Al

75 M=9

86 GOSUK 849

85 A2=B2=1

95 §2=6(@)

108 H=N+1

165 IF M<2 THEN 115

119 GOSUK 848

115 A2=A2+¢H/N

125 B3=R2

138 $1=R2

135 FOR N=1 T0 K

140 B3=E3#(N-N+.5)/A1/N
145 €2=88=1

150 FOR J=1 T0 N

155 C2=C24T1/J

168 $O=59+C2

165 NEXT J

176 $1=51+R3+50

175 NEXT N

180 L=52

185 §2=52+A2+G (M) +S1
198 L=(52-1)/52

195 IF L>.9881 THEN 189
208 P=S2+EXP(-T1-H-X)
285 PRINT 10+K2,P M
2071F P<L1 THEN 309

288 L1=F

216 IF P>.99 THEN 380
215 K2=K2+.1

228 IF P>2+A THEN 65
225 K2=K2+.4

236 GOTO 65

308 STOP

FIGURE 7 PROGRAM TO COMPUTE PROBABILITY INTEGRAL FOR STATISTIC B(WT=1)
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PROGRAN  MDAS34

S DIM G(188),V(6),E(6),K(8)
6 DIN D(12)

14
15
29

684

REM PROGRAN TO COMPUTE
PRINT "FA THRESHOLD AND MDS FOR STATISTIC A"
READ A1,A,M1
DATA 1,.01,18
PRINT "GIVEN: ALPHA, 0A, NT ="A1,A,M!
FRINT
GOSUB 688
PRINT "HC(DB)","TA","LAST N"
PRINT
K3=-.2
K4=-.11
5=.01
FOR K2=K3 TO K4 STEP K3
H=18¢K2
X=H/A1
M9=2
GOSUR 809
FOR I=1 TO 6
6=V(I)
n=4
§2=6(8) %642
A2=1
B3=G42
H=K+1
IF H<N9 THEN 133
GOSUER B8&#
A2=A2¢H/N42
B3=B3*(¥+1/2)
S1=B2=B3
FOR N=1 TO M
B2=B2% (M-N+.S)*(N-N+1)$(N+1/2)/(H-N+1/2+1)/A1/N42
51=51+B2
NEXT N
L=82
52=52+A2+G(N)*51
L=(§2-L)/82
IF L>.8881 THEN 1290
E(I)=82%A14(1/2)%EXP(-H-X)
N9=H
NEXT 1
60SUB 1198
GOSUB 1548
PRINT 188K2,T,M9
NEXT K2
STOP
REM DEFINE GANMA(1+41/2)=U(I)
V(1)=SAR(ATN(1))
V(2)=1
V(3)=V(1)%3/2
V(4)=2
V(5)=V(3)45/2
V(6)=6
REM FALSE ALARM THRESHOLD
FOR I=1 T0 &
ECI)=V(I)$2+A14(1/2)
NEXT 1
GOSUB 1188
GOSUB 1508
PRINT "FALSE ALARM THRESHOLD ="T
PRINT
A=.5
RETURN

FIGURE 8 PROGRAM TO COMPUTE FA THRESHOLD AND MDS FOR STATISTIC A

C-4
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FROGRAM  MDIBS34

5 IIM G(188),V(6),E(8),K(6)

4 DIN D(12)

19 REM PROGRAM TO CONPUTE

15 PRINT "FA THRESHOLD AND NDS FOR STATISTIC K"
29 READ A1,A,M1

25 DATA 1,.601,18

38 PRINT "GIVEN:ALPHA, PFA, WT ="Al,A,M!
35 PRINT

49 GOSUB 488

45 PRINT "H(DR)","TA","LAST M"

59 PRINT

55 K3=-.2

57 Kd=-.11

g K5=.81
5 FOR K2=K3 TO K4 STEP K5

9 H=184K2

5 X=H/A1

8 H9=2

85 GOSUE 840

98 FOR I=1 T0 &

190 =9

185 52=G(#)

118 A2=1

120 H=N+1

125 IF MCN9 THEN 135

138 GOSUR B840

135 A2=A2+¢H/M

145 §1=B2=1

150 FOR N=1 TO

155 B2=B2# (I+N)*(N-N+¢.5)/A1/NA2
168 51=51+R2

165 NEXT N

167 L=52

178 $2=52+A2+6(K)+S1

175 L=(S2-L)/52

180 IF L>.8081 THEN 128

185 E(I)=52+¢V(1)*A1+T+EXP(-H-X)
199 H9=H

208 NEXT I

265 GOSUB 1189

219 GOSUB 1509

215 PRINT 19#K2,T,H9

220 NEXT K2

388 STOP

409 REM DEFINE FACTORIAL

405 V(1)=1

419 V(2)=2

615 V(3)=6

428 V(4)=24

425 V(5)=129

430 V(6)=720

435 REN  FALSE ALARM THRESHOLD
648 FOR I=1 T0 4

645 ECI)I=VU(1)#A14]

458 NEXT 1

455 GOSUE 1189

468 GOSUE 1588

465 PRINT "FALSE ALARM THRESHOLD ="T
478 PRINT

675 A=.5

480 RETURN

FIGURE 9 PROGRAM TO COMPUTE FA THRESHOLD AND MDS FOR STATISTIC B

Cc-5
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808 REN SUBROUTINE FOR 1F1(.5;M+1;X)

885 A9=B9=U=V=J9=1

818 A9=A9*X*(J9-.5)/J942

815 B9=B9*X*(J9-.5)/J9/(J9+1)

820 U=U+A9

825 V=V+B9

838 IF A9<1E-13 THEN 845

835 J9=J9+1

848 60OTO 819

845 6(8)=U

838 6¢(1)=V

835 RETURN

868 G(M)=2+M*( (N=1+4X)sG(M-1)~-(M-1)*G(N-2))/(2%M-1)/X
865 IF G(M)<G(M-1) THEN 875

878 G(M)=1

875 IF G(M)>=1 THEN 885

888 G(M)=1

885 RETURN

1169 REM COMPUTE CUMULANTS

1185 K(1)=E(1)

1119 K(2)=E(2)-K(1)42

1115 K(3)=E(3)-3+K(2)*K{1)-K(1)43

1128 K(4)=E(4)-4*K(1)*K(3)-3%K(2)$2-6%K(2)*K(1)+2-K(1) 24
1125 K{S)=E(5)-5+K(1)#K(4)-10+K(2)*K(3)-18+K(3) K (1)42
1138 K(3)=K(3)-15%K(1)*K(2)#2-18+K(2)*K(1)43-K(1)45
1135 KC6)=E(6)-6*K(1)*¥K(5)-15+K(2) *K(4)-19%K(3)42-15+K(4)*K(1)42
1148 K(6)=K(6)-68+K{1)*K(2)%K(3)-15%K(2)43-20+K(3)*K(1)43
1145 K(6)=K(6)-45%K(1)42%K(2)42-15%K(2)*K(1)M-K(1)44
1148 M2=SQR(N1)

11538 R1=K(3)/M2/K(2)#1.5

1155 R2=K(4)/M1/K(2)¢2

1168 R3=K(5)/M243/K(2)42.5

1165 R4=K(6)/K142/K(2)43

1178 RETURN

FIGURE 10 SUBROUTINES FOR HYPERGEOMETRIC FUNCTION AND FOR CUMULANTS
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1509
1585
1519
1515
1520
1522
1324
1525
1326
1528
1539
1332
1334
1335
= 1336
1549
1545
1558
1552
1554
1555
1356
1558
1568
1562
1564
1565
1567
1578
1575
1589
1582
1584
1585
1587
1598
1595
1685
1619
1615
1620
1625
1638
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REM CORNISH FISHER ROUTINE FOR INVERSE FROBABILITY INTEG.
REM ADMISSIERLE FROE: .641,.81,.5
IF A{.869 THEN 1558

IF A>.1 THEN 1588

N(1)=2.32635

[¢2)=.73532

[(3)=.23379

D(4)=-.37634

05)=-.08152

I{s)=-.17621

0(7)1=.25195

1¢8)=~-.93174

0(9)=.87888

D(18)=.16858

¢11)=-.32621

I12)=.87286

GOTO 1695

[(1)=3.89822

[{2)=1.42491

n¢3)=.84331

¢4)=-1,21825

D(5)=.3874¢4

(6)=-1,89355

Di(7)=1.86787

D(8)=.94591

0(9)=-.59064

De18)=-.70464

[(11)=4.29384

0(12)=-3,32788

GOTO 1685

pi1)=0(3)=0¢4)=9

D(2)==.16667

0(5)=.825

[(4)=-.98333

(7)=.05247

0(8)=0(9)=N(19)=9

D(11)=0(12)=9

H2=5QR(M1)

W=D(1)+R1*0(2)  +(R2*D(3) +R142%D(4)) +R3:+D(3)
W=W+(R1*R2#D(6)+R1434D(7)) +(RA*D1(8) +R242+11(9))
W=W+(R1*R3*D(18) +R142+4R2+4D(11) +R144%D0(12))
T=E(1)+5QR(K(2))*W/N2

RETURN

FIGURE 11 SUBROUTINE FOR CORNISH — FISHER EXPANSION



