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Abstract

We study the c—server queue with general interarrival times, exponential

service times and bounded group arrivals. It is shown that the stationary

density of the queue length before arrivals is of a matrix—geometric form,

provided that the queue is stable. The essential step in the computation of

that stationary density is the evaluation of a positive square matrix R as

the unique solution to a nonlinear matrix equation . The order of the matrix

R is given by the upper bound K on the sizes of the arrival groups.

Various other stationary distributions of waiting times, times in system

and the queue length at an arbitrary time can be expressed in terms of the

matrix R by means of formulas, which may readily be computationally implemented .

Key Words

Queueing theory, computational probability , general interarrival times ,

group arrivals, multi—server queue, exponential services, matrix—geometric

solution.
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1. Introduction

We discuss the queueing model GIX/M/c in which customers arrive in groups

at a c—server unit at time points which form a renewal process. The c ser-

vers have independent exponential processing times with the same rate ~i.

The times between group arrivals have the same distribution F(•) with finite

mean a and satisfying F(O+) = 0. The successive group sizes are independent,

bounded random variables with probability density 
~~~ 

1 < v < K} and mean n.

Without loss of generality , we require that 0K 
> 0.

It is well—known that in the case of single arrivals, the stationary

queue length density immediately prior to arrivals exists if and only if

c u a > 1 and is then a modified geometric probability density in which the

first c terms are obtained by solving a system of linear equations. We .

ref er to the book by D. Gross and C. M. Harris (6] or several other texts on

queueing theory for a discussion of this classical result.

The extension of this result to the case of bounded group arrivals appears

to be new. We shall obtain the stationery queue length density in a modified

matrix—geometric form. This main theorem leads to a highly efficient algorithm

and yields most of the other stationary distributions in elegant computable

forms.

The queue lengths immediately prior to arrivals form a Markov chain on

the nonnegative integers. The transition probability matrix P of that chain

has a form which depends on whether K > c  or 1 < K<c-1. The remainder

of this section is devoted to the detailed definition of the matrix P.

We define the quantities

K

(1) • (t) — _________ e~~e~~~~
t 

~~~~~~~~ 
for j >— K , t > 0 ,

~~max(l,—j) ‘ (v+j)!

and 

_ _- -—- _ _ _ _ _ _

- ~~~~~~~~ -- — - - -
~~~~~~~~~~

—-,-
~~~~~~~~~

-— -  --.-- - . -
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(2) a = 7 +~(t) dF(t), for j > —K.

The probability generating function A*(z) =
~~~~~~~~ 

a~_~ z
V
, is given by

K

(3) A*(z) =

where f*( ) is the Laplace — Stieltjes tranform of F( ). The mean A*’(l_)

is given by

(4) A*1 (1—) = K — y~ + ciia.

We further define the quantities (t), t > 0 , by

~~ rj 
( t )  = (~) e~~

h it  (l_ e hlt)n i
, for j < r <

= 0 , f o r r < j < c ,

= ~ ~~~~~~ ~~Cpt )  c l  ci (~) e~
’
~ 

( t— t) 
[l—e 

t T )  
]
C_i

dt,
0 (r—c—l) !

for r > c, 0 < j  < c—l ,

and

(6) P~~ )  O~, ~~~ ~ 
(t) dF(t), for i > 0 , 0 < j  < c—l.

-a 
~)=1 0 ‘~

The transition probability matrix P of the embedded Markov chain, obtained

by considering the queue length immediately prior to arrivals, is given by

(7) For K > c :

P00 ... 
~0 ,c—l a_~ 

... al_K a_K 0 0 0

P 10 
... Pi ,~ _i a1_~ 

... a2_K al_K a_K 0 0 ...
a 0

“20 ~2,c—l 
a2_~ 

... a
3...K 

a2_K al_K K

— 

~
‘3O ‘ ‘ ‘  

~ 3 ,c—l a 3_~ a4_K a3_K a2_K 8l—K a_K ...
P40 ~4 c—l a4_~ 

... aS_K a4_K a3...K a
2...K al_K ...

~
‘5,~ —1 

a5_~ 
... a6_K aS...K a4_K a3_K a2_K
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For 1 < K < c—i:

P ... P 0 0 ... 000 O,c—l

~c—K-l,O ~c-4(-1,c-1 
0 0 0

p P a 0 ... 0c—K ,0 ... c—K ,c—l —K

P = 

;~
— ‘ °  ::: ~c—1 ,c—1 a_l 

:_2 :~ :::c,0 c,c—l 0 —1

~
‘c+1,0 “c+l ,c—l a1 80 ...

~
‘c+2 ,c—1 a2 a1 ... a3_K

The first c columns are given by Formula (6). The remaining columns are all

obtained by successively shifting the column [a_K, al_K , ... 1 downward one

place at a time.

2. The Main Theorem

Theorem 1

The Markov chain P is irreducible and aperiodic. It is positive recur-

rent if and only if ri < ciia.

For K> c, the invariant probability vector x — (
~~, x~, ...), parti-

tioned intoK —vectors, is given by ~~ — ~~Rk, for k >0. The matrix R is

strictly positive and its spectral radius is less than one.

Defining the Kx Kma trices ~~ n > 0 , by

a
K 

0 . . .  0 a
flK K 

... anK_2K+l

al_K 8—K 0 a
~ (_K+l • • •  aflK_2K+2

H 
(8) A~~~ , A n > 1 ,

a a . . .  a a . . .  a—1 2 4 C  n K l  n K K
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the matrix R is the minimal solution of the matrix equation

(9) R RnA ,

in the set X of nonnegative matrices of order K with spectral radiu s less

than one. The matrix R is the unique solution of (9) in the set X.

Defining the K x K matrices B , n > 0, by partitioning the first K

columns of the matrix P for K > c into K x K blocks, the matrix

(10) B[R ] = R~B ,

is a strictly positive, stochastic matrix. The vector is the unique

vector which satisfies

(11) = ~~ B [ R ] ,  ~~I—R)~~ e =  1,

where e = (1,1, . .  ., l) ‘.

For 1 < K  < c—l , we partition the invariant vector xa s (~~~~~, 
x1, x2,...),

where 
~k’ k > 1, has K components and has c—K components. The vectors

k > 1, are given by ~~ x
1
R~~

1
, where the matrix R is defined in the same

manner as above.

We partition the first C—K columns of P for K < c—l, into a (c—K) x

(c-K) block B00 and the remainder into K x (c-K
) blocks B 0, for n > 1.

The next K columns are partitioned into a first (c-K) x K block Boi 
and the

remainder into K x K blocks B~1~ for ii > i.

The c x c matrix B [R] ,  given by
B00 

B01

(12) B[R] — 5~~~~Rn l B~0 ER
n 1 BU1

n 1

is irreducible stochastic . The c—vector (~~ ,x1) is the unique vector

satisfy ing
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(13) (~~,x1
) (~~,x1) B(R], !~~~~ + X

1 
(I—R )1e =  1.

Proof

The matrix equation (9) was examined in detail for a more general

situation in [11]. We shall draw on results proved there, without repeating

the lengthy proofs.

The matrix A = A is readily seen to b~ a strictly positive

circulant stochastic matrix. Its invariant probability vector ii is given by

it = K 1
e’. The vector ~ =~~~~

‘ nA e satisfies ~r ~ = 1(1 A*’(]._) =— — — n 1  n— — —
K
1
(ciia + K— a) . This equality was proved in (12], Lemma 1.

In (11], we showed that a unique matrix R with the stated properties

exists if and only if it B > 1, or equivalently cua > r~. If cpa < r~, we

know that the queue cannot be stable. Since the matrix P is clearly irre-

ducible and aperiodic , we establish positive recurrence by proving that P

has a strictly positive invariant probability vector if cpa > ri.

For K > c, the remaining statements all follow by application of Theorem

2 in [11]. Since the matrices R and ~~ n > 0, are positive, so is B[R)

and hence the vector

For 1 < K < c—l, the matrix B[R] is positive , except for a triangular

corner on the upper right hand side. Such a matrix is clearly irreducible.

In order to verify that B[R]  is stochastic, it suff ices  to check that

B~~~ ÷ER~~~ 
B 1e e.

nl

The lef t hand side may successively be written as

~~~~ (B~~~ + B 1e) ~ R
n_i 

( - 

~~~ ••~~ •‘ 

A~~) =

(I-RY~ e 
- (I—R)~~ ~~~ R

’1A e  e.

v—O
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The left invariant vector (~~ ,x1
) of B[R] , normalized so that

+ x
1
(I—R)~~ e = 1, is uniquely determined and positive. It is now a routine

matter to verify that the positive probabL’ ~y vector x = (~~ ,x1,x1
R,x1

R2,...)

is the invariant vector of P.

Corollary 1

For K > c, the stationary mean queue length L1, including the customers

in service, prior to arrivals is given by

(14) L1 
= ~~~~~~~ (vKe + u) = ~~ (I-RY~ u + K~~ (I— R)

2Re ,

where u — (0, 1, 2, . . .,  K—l)’.

For 1 < K < c—l , the corresponding formu la is

(15) L1 = ~~~~~~~ + ~~ x~RV
~~ [ (c-K) e + (v-i) Ke + u~ -

+ (u + (c— K) e ]  + ~~ (I—R) 2 Re ,

where u ’ = (0, 1, ... ,  c—K—i)’.

Corollary 2

If the customers in arriving groups are numbered 1, 2, . . . ,  so as to

specify the order in which they will enter service, the stationary waiting

time distribution Wr
(•)

~ 
1 < r < K , of the rth customer in a group is given

by

(16) W
r
(X) = 

~~c—r 
x
1 
‘U(x) + 

~~~ax(O ,c_~~l) 
x~ Ei+r_c (cp ,x) ,

for x > 0, where U(•) is the degenerate distribution and E.K
(cp ,.) is the

Erlang distribution of order k with parameter cp .

Proof

th
With probability x~ , the r customer in the arriving group finds

i+r—l customers ahead of him . If i+r—l < c—i, he does not have to wait.

_ _ _ _ _ _ _  _
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If i+r—1 c , he waits until the number of customers ahead of him drops to

c—i, or equivalently until i+r—c services have been completed . Since during

that time all c servers are busy , the distribution of the time to complete

i+r—c services has an (cp ,~) distribution .

Corollary 3

The stationary distribution W*(.) of the server backlog, Immediately after

the arriva l of a group is given by

(17) W*(x) =Eo ~~~~~~x • G
i+ 

(x) +
r l  i<c—r

~~~~6 > x
1 ~i+r c 

(cp, ) *
r=l i—max(0 ,c—r+ i)

-Ux j
where G~(x) = (l—e ) , for x > 0.

Proof

Conditioning on the size of the arriving group , we see that if r cus-

tomers join and there are at most c—r customers present , the backlog con-

sists of the time until i+r customers are processed . The distribution of

that time is Gi+
(.).

If r customers join and there are already I present, so that

I + r > c , the backlog consists of the time until only c customers remain,

plus the time required to serve those c customers by c parallel servers.

This leads readily to the second term.

3. The Queue Length in Continuous Time

In this section, we assume that F(’) is not a lattice distribution.

Analogous, but cumbersome formulas hold in the lattice case.

By ~~, we denote the vector of probabilities Yj, J > 0, where Yj is the

probability that j customers are present at time t in the stationary version

of the queue. We shall find it convenient to partition the vector i in the

_________ _________ 

~ -- -_ .  -,-.- — - ,. 
~~
, . - _ _
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same manner as the vector x was partitioned above . We shall again need to

distinguish between the formulas for the cases K > c and 1 < K < c—l .

It is also convenient to introduce a stochastic matrix P which has the

same general form as the matrix P, defined In Formula (7), except that the

corresponding entries are defined by

(18) l—F(t)
= I ( t)  a dt, for j  > —K

~ij ~ 
(t) 

l~~~t) dt, for i > 0 , 0 < j  < c—i .

We shall partition the matrix P in the same manner as in the proof of

Theorem 1 and the corresponding matrices in the partition will be denoted by

the same letters, but distinguished by tiides.

By a classical application of the Key renewal theorem, the probabilities

j > 0 , are related to the probabilities j > 0 , by

(19) Yj ~~~~
0r ~~~ax(0 ,j-r)~~~~O ~i+r,j 

(u)[l-F (u)]du, j > 0 ,

where for u > 0,

(u) = 0 for j > i > 0,

= e~~~
Ll 

(cp u),~~~~ for i > j  > c ,
(i—i)!

= (
~~

) ( le~~
”)1~~ ~~~~~ for 0 C ,

U i—c—i
I —c~ir (cpr) ,c~ 

~~ 
—p (u—T )

~c—j —pj(u—r) 
d— e (i—c—i )! 

cp L e e C ,

for I > c > j > 0.

Formula (19) is not particularly enlightening, but shows upon inspection

that

(20) y x ~~.

By considering the partitioned forms of the matrix P, we obtain computa—

tionally useful formulas .

i



F 

9

Theorem 2

For K � c, we obtain

(21) 20 
= ~~~ BERI = ~~~ ~~~~~ R

’
~B ,

n—0

~~ R~~
1 
A(R], for I > 1,

where A[R] = R~
’A .

For 1 1 K I c—i, we obtain

(22) = 
~~ ~oo + X

1 
~~~~~ Rn 1

n i

- n-i-R Bnln1

= A [R1, for i > 2.

Proof

By direct computation and by application of Theorem 1.

Corollary 4

For K > c , the mean queue length L2 at an arbitrary time point in the

stationary version of the queue is given by

(23) L
2 

= ~~ ~~(R] + (I_R)
_1
A [R]3 U + K~~ (I-R)

2 
A[R)e,

vhere u (0, 1, . . . ,  K—i)’.

The corresponding formula for the case 1 < K < c—i is

(24) L2 — 

~~ ~~~ 
u ’ + (c—K) 

~~~ 
Bol! + 

~o5oi~ 
+ B

oER) 
U’

+(c-K) 
~~ 

B1(Rle  + Xl B1IR] U + 
~~ 

(I-R)~~ AIR] U +

Kx1 (I—R)
2 A [R Je + ‘c~ (I—R) 1 

~ (R]e ,
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where u =  (0,l,...,K— i)’, u ’ = (0,i,...,c—K—l), ÜQ[RJ =~~~~~R
11
~~B 0,n l

and ~1(R1 ~~~~~~~~~~~
n i

4. Numerical Methods

We first note that the matrices P and P, for a general value of K

are simply related to the corresponding matrices for K = 1. Let Q and Q

be the transition probability matrices corresponding to the case K 1,

and let for any infinite stochastic matr ix  X with index set {0 ,l ,2 , . .. .}

the “shifted” matrix 1~X be def ined by

(25) (~X)~~ = for I > 0, j > 0,

then it is easy to see that

(26) P — 01Q + 62~Q + ... +

— + 82 + ... + OK~
K_l

~ .

It is itherefore sufficient to discuss the computation of the entries of

the matrices Q and Q. Except for the first c columns, all entries

of Q and Q involve only the quantities

(27) b
~ 

I e~~~
t (cl.it)’~ dF(t), — I e~~~~ 

(c l.it) ” 
. l-F(t) 

dt,

for v > 0.

A simple partial integration shows that

(28) 
~~~~~~~~~~~~~~~~~~~~ 

for v > 0,
.1— 0

so that only the quantitites 
~
b
~
) rema in to be found. In general, ~~ latter

require a careful numerical integration. If F(•) has a density, quadrature

formulas using the properties of Laguerre polynomials may be profitably

imp1~~ented. If F(.) Is a discrete distribution , the probability density

_______________ — . ~~~~~~~~~~~
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{b
~
} is a mixture of Poisson distributions and the b

~ 
can be evaluated by

a simple recursive scheme using the recurrence relation for the Poisson

probabilities. In the important case, where F(.) is a distribution of phase

type [8), the probabilities {b
~
} can also be evaluated by a numerically

stable recursive method , which does not involve any numerical integrations

[9,103.

In order to compute the f i rs t  c columns of Q, we first note that the

rows labeled 0,...,c—l , have l,...,c positive elements respectively . More-

over the row—sums are equal to one. These entries may be computed by routine

numerical integrations.

Next , we observe that

c—i r—c+l 
-

(29) )  
~rj 

= — >~~ 
b = cpa b +l, for r > c.

j=0 v—0

Also, for 0 < j < c—i.

(30) 
~~~~ ~~~~~ 

= cpa
r=c j=0 ~

These relations can be used as accuracy checks and also to define truncation

rules In procedures to evaluate the quantities 
~~~ f or r > c, 0 < j < c—i.

In general , these quantities may be computed by solv ing the system of

differential equations

(31) (t) 
~~ ~~~~~ 

(t) + i.i(i+l) 3~~1,~~ 1
(t)~ r > c, 0 < j < c—I.

numerically, after truncation at a sufficently high index r. We note that

the system is inhomogeneous, since (t) is equal to e~~~t (CP~)
r_c+l,

,c (r—c+1)l

for t ~~c. The initial conditions are +r+l,j(O) 0, for r > c , 0 < j  < c—i.

The probabilities are then obtained by a progressive numerical integration

method, such as Simpson’s rule.

__________________________
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A routine partial integration yields that

i j—l
(32) 

~rj 
— 

~j ~~~~~~~ 
for 1 < J < c—l , r > c.

The quantities 
~r0 

may be found by

— ~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 

for r 
~~
c.

The preceding discussion applies to any distribution F() and lists

computational shortcuts, which are useful in all cases. If F() is a

probability distribution of phase type, it is possible to compute all

entries of Q and Q by recursive schemes , which do not require any numer-
ical integrations whatever. The details of this, as veil as extensive

numerical examples will be discussed elsewhere.

The next major step in the algorithm is the computation of the matrix R.

The equation (9) may be quite eff iciently solved by successive substitution

in

(34) — ~~~~~~ A
n 0
n#l

starting with R — 0. Extensive numerical experience, with matrices of order

as high as fif ty, indicates that convergence is rapid , except for queues

which are close to critical.

The matrix B(RJ may be routinely computed . Since B[R] Is stochastic,

the row—sums of the computed matrix should be close to one. Row—sums cx—

ceeding 1 — l0~~ can usually be attained without excessive computational

efforts.

A further accuracy check is obtained by verifying that the matrix

i[R3 + (I—R)~~ AER) is stochastic. In practice, a large number of terms

of the probability densities x and ~ , as well as the distribution of waiting
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times and a variety of moments may be computed at a small cost and to an

adequate degree of accuracy .

5. Related Queueing Models

The literature on the Gu M/c çueue and its various generalizations is

• fairly extensive. A useful set of references is given in the paper [2] by

U.N. Bhat, which deals with transient results in the case of single arrivals.

F. G. Foster [4] and F. G. Foster and A. G. A. D. Perera [5] deal with

group arrivals of fixed group sizes for the single server case. It may be

verified.that the roots inside the unit disk of the equation (1) in [4] are

the eigenvaiues of the matrix R, corresponding to the GI
k
/M/l queue, discussed

there.

The extensions to bulk service, treated by P. B. M. Roes [13] and K.

Shyu [14], affect only the analytic expressions for the entries of the matrix

P, but not the general nature of the partitioning of P. The latter determines

the form of the steady—state vector, so that the bulk arrival—bulk service

extension of the Gu M/c queue may be treated by routinely adapting the method

given here.

The algorithmic papers by F. S. Hillier and F. D. Lo [7], 0. S. Yu

[15], and D. M. Avis [1] deal with Erlang service times and heterogeneous

servers, but involve single arrivals. Although also in this case, a matrix—

geometric characterization of the steady—state vector may be given, the

dimension of the matrix R is so large that it does not provide us with a

feasible computational alternative to the method proposed by these authors.

Finally we note that the GI
X
/M/c queue with bounded group sizes for the

arr ivals, may also be considered as a particular case of an SM/M/c queue in

which some of the sojourn time distributions of the semi—Markovian arrival

process are degenerate. Details of this construction may be found in E.

_ _ _  

-—
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Liniar [3, p. 378]. The matrix—geometric characterization, given in

Corollaries 3 and 4 of Neuts [ii] of the steady—state queue length distri-

bution for the SM/M/l queue may be generalized in a direct manner to the

SM/M/c queue. This approach would lead to the same computational results

via different algorithmic steps and there may be some merit in an empirical

comparison between the two methods.

~1

•1• 
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