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INTRODUCTION

Although the Nyquist criterion [1] has been known for over half a
centun&, it has resisted generalization until recently. Interestingly,
those generalizations which have been formulated re;ain the simple
graphical character of the classical test, even when one is studying
systems defined on abstract spacés. The earliest generalizations of
the Nyquist criterion were the Circle and Popov criteria formulated
in the early sixties as nonlinear and/or time-variable perturbations
of the classical test [2], [3]. More recently MacFarlane [4], and
Barman and Katznelson [5] have extended the test to the case of fre-
quency response matrices while one of the authors has formulated a
Nyquist-Tike sufficiency condition for Lipschitz continuous operators
on abstract spaces [6]. Finally, in a recent paper the authors gave a

stability test for multivariable digital filters which was formulated

in terms of a continuum of Nyquist plots [7], [8]. In all cases the

tests remain simple graphical conditions on the complex plane. The
resultant criteria yield necessary and sufficient conditions in the case
of linear time-invariant systems (including the multivariable and matrix
generalizations) and sufficient conditions in the cases of nonlinear
and time-variable systems.

The thrust of this_paper is to show that with a slight modificatfon,
the continuum of Nyquist plots used in the multivariable Nyquist test
of [7] can be reduced to a classical single variable Nyquist plot plus
a test to verify that the filter has no poles in the region |z;] = |z,]

el i :m .’-n:waﬁ.‘-fmm\?‘-"”'
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= ... = |z;] =1, the multivariable analog of the iw- axis.

Although every attempt is made to minimize details the theorem

illustrates the essential algebraic topological nature of the Nyquist

criterion, with homotopic arguments playing a significant role in

derivation. For a more detailed discussion of the algebraic topological

nature of Nyquist theory the reader is refered to [7], [8] and [9].
In particular, [9] gives an algebraic topological derivation of the
classical Nyquist criterion. .

In the following section several Hurwitz-like stability tests

are reviewed and a new test of the Hurwitz-type test is formulated.

In the third section a homotopic 1nterpretat1on of the classical Nyquist

criterion is formulated, this being used to derive the desired multi-
variable Nyquist criterion from the Hurwitz conditions in the fourth
and fifth sections. Finally some examples of the theory are given in

section 6.

Hurwitz-1ike Tests

Denote the vector space of complex n-tuples by ¢". For the
purposes of our multivariable stability theory, there are five inter-

esting subsets of 2". First there is the polydisk, defined as
Pl a2 Y P ] f2] £ 1. 1 = 1y...000 (1)

It plays the same role in the multivariable theory as the unit disk
(or right half plane) in single variable theory.
Next, there are three separate notions of the boundary of ",

A11 are necessary for the theory of this paper. First is the dis~




t%nguished boundary denoted by T where

™ = ((275..02,) in 2" |lzg] =1, 1 = 1,...,m) ™
T"‘serves as the multidimensional analog of the ifw-axis. In particu-.
iar the frequency response [10] of a digital filter is the evaluation
A §f jts transfer function over T". Geometrically 1" is an n-dimensional
torus whfch reduces to the unit circle of the complex plane in the .
single variable'case. ™isa "boundary" for P" in the sense that it
is a subset of P" for which all coordinants of P" simultaneously také
on extremal values. |

A second notion of boundary for P" is defined by requiring only
that n-1 éoordinats take on extremal values. This boundary set is

denoted by M" where

W oo {(zy0eeasz) 8" [lrgl = 1, 1 = oo kel b,
s |z 01 (3)
and where k ranges from 1 through n. |
' The final notion of boundary requires that at least one of the
coordinates take on extremal values. This notion is the usual topo-

logical boundary since it coincides with the usual concept of boundary

- of the set P" in the sense of point set topology [11]. The topological

boundary is denoted by 8" where

B" = {(z9s...42p) in g" lz4] <1, i=1,...,n and Izl =1 for
| " some k} (4)
Finally we define a subset, H", of P" whose relevence to the

stability problem was originally indicated by Huang [12].




H' = ((27,.00020) 10 8" | [24] = 1, 41,000 k-05 2] <15 24 =

0,i=k+1,...,n}; (5)
Here k varies from 1 through n. Note, that W =K =P and 7' =8
hence these sets become redundant and all reduce to either the unit
disk or unit circle in the single variable case.

Shanks [13] was the first to give a Hurwitleike test for the
stability of multidimensional digital filters. His condition states
essentially that the fi]tér transfer function must have no poles in p".
In the single variable case, the pole set of a transfer function is
discrete. Howaver, in the case of higher dimensional filters, the
pole set is an infinite continuum. Using this fact, Huang [12] showed
that a transfer function has a pole in P2 if and only if it also has a
pole in H2. This is not toimply that the only bo]es of the transfer
function 1lie in H2 but rather that the pole set is so large that it cannot
pass through P2 without intersecting the subset Hz. Anderson and Jury
[14] extended Haung's theorem to the n-dimensional case by showing
that a transfer function has a pole in P" if and only if it has a pole .
in H". The proof of Haung's theorem and its generalization is tediously
-straightforward but requires a clever application of the maximum modulus
theorem. .

A result somewhat similar to Huang's can be formulated in terms
of the topological boundary. To derive such a condition, one exploits
the fact that the pole set of a multivariable (n > 2) rational function
is an infinite continuum (more precisely no connected component of the
pole set is compact [15]).. As such, the only way the pole set can

intersect P" is if it crosses the topological boundary, 8". This

i 2 e
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implies that a transfer function has a polé set intersecting " if
and only if the pole set has a non-void intersection with B".

Now observe that B" can be viewed as the union of a family of (n-1)
variable polydisks (parameterized by k and the value of Z,» lzkl =1).
Hence the above argument can be repeted td show that the transfer
function has a pole set intersecting the topological boundary of such
an (n-1)-variable bo]ydisk if it has é pole set intersection p".

Upon iterating the arghment (n-1) times and eliminating redundant sets,
one eventually arrives at the foi1bwing condition:' the transfer
function has a pole in P" if and only if it has a pole in Mt ;

The above various Hurwitz-like stability tests for multivariable
digital filters are summarized as follows:

Therorem 1: Let a causal myltidimensional digital filter be character-
ized by a rational transfer functibn in several complex variables.
Assume the numerator and denominator polynomials are relatively prime.
- Then the following are equivalent stability conditions:

i) the pole set of the transfer function has a null

intersection with P".

ii) the pole set of the transfer function has a null

intersection with B".

iii) the pole set of the transfer function has a null
intersection with H".
iv) the pole set of the transfer function has a null

intersection with M".

The easiest way to evaluate the stability tests based on the
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above conditions is by a compurison of the (topological) dimension

of the sets where one checks for the existence of poles. In particular,

P is 2n-dimensional, B" is (2n-1)-dimensional, while H" and M" are
both (n+1)-dimensional. Again realize that the equivalences of Theorem
1 follow from the fact that the pole set is an infinite continuum
whose complex dimension is (m-1) where m is the number of complex
variables of the specific function. Finally observe that a pole is

implicitly used to mean a specific point in the "pole set."

Nyquist Theory

The task of this section is to construct the concepts of a
Nyquist contour, a Nyquist plot, encirclement, and degree, all in '
topological terms which are thus extendable to the muitivariable case.
A1l of our conditions will be stafgd in terms of the zero set of a
relatively prime denominator polynomial of a transfer function. Hence
we will deal exclusively with polynomials in several complex variables
rather than rational transfer functions.

Traditionally engineers view the Nyquist contour as a subset of
the complex plane. This point of view is somewhat erroneous. Mathe-

matically speaking the Nyquist contour (the usual closed semicircle,

the imaginary axis, or the unit circle) is a continuous map (of bounded

1

variation) frdh T to ¢". The image of this map, called the trace of

the map, is the traditional engineering notion of the Nyquist contour.
In this paper T] is the unit circle of the complex plane. In the single

variable case (classical digital filter stability) one works with a




“Nyduist contour" defined by r(e) = a = exp(ie) for 0 < 8 < 27, 8 = arg(a).

In the multivariable case, the map will take on values in zn forcing the
"Nyquist contour" to be a more involved entify. Observe that we ére tak-
ing liberties with the calssical definition of the Nyquist contour and
plot. In an abstract sense, there is no essential difference although
the specific applications (classical feedback stability or presently
digital filter stability) are somewhat alien.

In this paper a Nyquist plot is defined as the composition of the

Nyquist contour, T, with a polynomial in several complex variables,

I, as per Figure 1. Note that

|
T Acr
Figure 1: The Nyquist plot as a composition of maps.

the polynomial map from ¢" to £ is analytic and it is this property which -
makes the theory go. Thus the Nyquist p]ot_is a continuous map of bounded
variation from T' to ¢. |

The concept of encirclement is intimately related to the topological
concept of homotopy. Keeping this association in mind, let X be an

arbitrary topological space and let u and y be continuous Functions
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of bounded variation defined on T'l with values in X: u:T]+X and x:T]*X.

The maps p and A are said to be homotopic if there exists a continuous

map, P, defined on the product space Tlxl, I = [0,1], with values in X

such that 9(«,0) = u(e) and p(e,1) = A(e). In essence, a homotopy is

a continucus deformation of the curve y into the curve A. This concept

defines an equivalence relation on the set of continuous maps from T]

" to X--i.e. two -curves are equivalent if one can be continuously deformed

into the other. A curve is said to be homotopically trivial if it

is homotopic to a constant map. Note that the use of an abstract

~ topological space, X, in the definition of homotepy, is fundamental to

the concept, since all curves with values in ¢" or R" are homotopically
trivial. Although we are interested in the properties of functions
defined on ¢n, a number of non-trivial topological spaces arise in our
analysis. In particular the torus, Tn, and the punctured plane. Hefe the
concept cf encirclement may be defined for maps taking their values in

g - {0}. This is a highly nontrivial space in which the distinct
equivalence classes of homotopic maps can be indexed by the integers
corresponding to the number of times a curve encircles the point zero.
This number is termed the degree, n(y,0), of the map, y, and can be

computed by the formula [11]
P -1
n(y,0) = 57 [ (2-0)" dz | (6)
Y

where y is the curve in question and y does not take on the value zero.
The desire is to make a binary decision on whether or not the map en-

circles zero. This may be defined in purely homotopic terms by saying
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that a map u:TJ+¢ - {0} does not encircle zero if it is homotopically
trivfai (homotopic to a constant map). The concept.may then be extend-
ed to maps taking values in ¢ which do not pass through the point zero -
by viewing them as maps with values in £ - {0}.

The significance of these homotopic concepts in algebraic topology
[11] is due to the fact that the equivalence classes of homotopic maps
form a group, n(x), where X is the space in question. =(X) is called the
fundamental group of X. More precisely, if we have two maps u:T1 + X

1

and A:T =+ X, such that u(1) = A(1), their concatenation y * J\:T'l + X

is defined by .

2
A(a”) o0< (a) <=
[l (e) = = srafel <

u(az) ] §§rg(a) < 2%

Intuitively, w*A, is a curve which first follows A as arg(a) goes from

0 to = and then follows u as'arg(a) goes from = to 2w. Moreover,.since

u(1) = x(1), then u*x is continuous if u and A are continuous. Clearly
concatenation is invariant under homotopic equivalence [11]. (i.e. if

M is-homotopic to Mo and Ay is homotopic to Xy then p; * 9 is homo-

topic to up * Az). As sdch it defines a binary operation on the equivalence
classes of homotopic curves u:T] + X with a fixed value for pu(1). Thus the
groub operation of =(X) is concatenation [11]. In classical algebraic topo-
logy, the properties of n(¢ ) = 0 since all maps taking values in ¢

are homotopically trivial. On the other hand n(¢_- {0}) is isomorphic

to the additive group of integers where the "degree function" is the

isomorphism.
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Using this machinery we now formalize a statement of the "classical"

Nyquist criterion. Consider the "obvious" Myquist contour, r:T] Y A

defined as r(e) = o = exp(i arg(a)] with the corresponding Nyquist plot
A°r:T] + ¢ where A is a polynomial in one variable.

Theorem 2: (Nyquist) Let A be a polynomial on £. Then A has no zeros

in P] (the unit closed disk) if and only if Aer does not pass through

nor encircle zero.

Main Theorems

Here the multivariable Nyquist theory is derived from condition
(iv) of Theorem 1. Let a causal digital filter transfer function be
H(zl,...,zn) = B(z],...,zn)/A(z],....zn) where A and B are relatively
prime. The system so characterized is stable if and only if A has no
zeros in M"--i.e. the zero set of A does not intersect M". Now M"
can be expressed as a union of single variable polydisks as follows.
First, for any given set of (n-1) elements, aj» of T]. indaxed by the
integers 1,2,...,k-1, k+1,...,n, embed a single variable polydisk into
¢" as

1
P (a-‘,---,uk_]s',akﬂ,---,an)

= ({2yseenazy) 10 212y = 0gs 1 = 1yein ke,

(SAPPPAN HEM IR ) (8)
By comparison with equation 3, one can verify that
n
Wy o C U PR ey
SRS " L

Hence the digital filter is stable if and only if A has no zeros in
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each of the polydisks P](g];...,ak_],zk,ak+]....,an). Moreover, since
these are dependent on only one coordinant, one may test for zeros of
A in P](“l"‘”“k-]';’“k*]"“’an) by sequentially testing for zeros

of .the single variable polynomial Aoy seeesay_1sZsap se--50,) in the

.single variable polydisk P] as defined in the introduction. Each such

test can be executed using the "Nyquist theorem." ThiS yields a stabi1ity1

test for a function of several variables which takes the form of a con-
tinuum of classical Nyquist p]ots{
Lemma 3: Let A be a polynomial mapping z" to ¢". Then A has no zeros

in P" if and only if each of the Nyquist plots for the family of single

variable polynomials.

A(“l""’“k-]’zk’“k+1""’“n) for k+1,...,n and a; in T],<do not

- pass through nor encircle zero.

Lemma 3 is essentially equivalent to the condition formulated in
references [7] and [8]. However, the present condition arose from the
fact that A has no zeros in M whereas the previous test grew from the
fact that A has no zeros in H". As was shown in references [7] and [8]
the lemma can be implemented'as a bractical test in the two dimensional
case. Here one simply chooses a finife set of a's in T1 and plots the
corresponding Nyquist loci. " Since T1 is compact, this discretization
can be made to yield as much accuracy as desired. Unfortunately, in
.the multivariable case our family of Nyquist plots is parameterized
by “n" (n-1)-dimensional tori.

The purpose of the first main theorem is to show that the family

of Nyquist plots of Lemma 3 is reducible to "n" classical single variable
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Nyquist plots and one further test. To this end we reformulate the
classical Nyquist contour used to test the single variable function
A(“1""’°k-1’zk’°k+]""’“n) as a MNyquist contour taking its values
s n, s s o=
in £°; define the Nyquist contour, P(a]....,ak_],-,ak+],...,an).T -
by the equality

: r(a'l 2cee ,ak-] 9a’ak+] 90 e ,Gn)

=(u],...,ak_],c,ak+],....an) (9)
Clearly, the Nyquist plot AOP(a],...,ak_],c,uk+],...,an) coincides
with the Nyquists plots of Lemma 3. Thus Lemma 3 can be reformulated
in terms of these plots. The key attribute of these multivariable
Nyquist contours is that the ehtire family of Nyquist contours for a
fixed k are homotopically equivalent. |
Lemma 4: For any given set of ai'S in TT, B PR . B SRR
the Nyquist contour P(a],...,ak_],-,uk+],...,un) is homotopic in i
to the Nyquist contour r(1,...,1,+,1,...,1).

Proof: Consider the homotopy w:T]xI+T" defined by

Pa,t) = (exp[ie](l-t)],...,exp[iek_l(I-t)],a,exp[iek+](1-t)],
..,exp[ien(l-t)]) (10)
where 91~=.arg(qi) for any set A eT]. is= 1,...,k-1,k+1,...,ﬁ. Here

@(a,t) is in T" for all « and t. Moreover

P(x,0) = [exp(i e]),...,exp(iek_]),u,
exp(iak+]),...,exp(ien)]

= r(°1""’“k-]’a’°k+]""’°n) (1)
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_Hence @ is the desired homotopy.

Theorem 3: Let A be a polynomial on ¢n. Then A has no zeros in P"
if and only if: .

(i) A has no zeros on T", and

(ii) The Nyquist plots for the single variable functions
A(l,...,],zk,l,...,l) k =1,...,n do not encircle zero.

Proof: Since the images of the family of Nyquist contours defined
by equation 9 cover T", the fact that none of the Nyquist plots of
Lemma 3 go through zero implies that A has no zeros on . This
verifies the necessity of condition (i). To verify the necessity of
condition (ii) observe that the "n" Nyquist plots of condition (ii)
are a subset of the family of Nyquist plots of Lemma 3.

To verify the sufficiency of the theorem, observe that, if A
has no zeros on Tn, then A restricted to T" is a continuous map from
™ to g - {0}. Now, since the continuous images of homotopic maps
are homotopié, the fact that the Nyquist contours P(a],...,uk_],',

°k+]’;"‘°n) and r(1,...,1,+,1,...,1) are homotopic for any fixed k

with aj in T]. i=1,...,k=-1,k+1,...,n, implies that the Nyquist

plots Aor(ay_ys°say4qs---»a,) and Aor(1,...51,+,1,...,1) are homo-
topic in £ - {0}; hence all such Nyquist plots encircle zero if and
only if the Nyquist plot for Aor(l,...;l;-,l,...,l) encircles. As
such, if A has‘no zeros on T" we are assured that none of the Nyquist

plots of Lemma 3 go through zero, whereas if the "n" Nyquist plots
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Ror(l,...,1,+,1,...,1) do not encircle zero, then none of the Nyquiét
plots of Lemma 3 encircle zero. With the final observation that the
Nyquist plot for the single variahle function A(!,...,l,zn,l,...,1)
coincides with Aor(1,...,1,-,1,...,1) this verifies the sufficiency
of the theorem.

Surely this theorem is a true generalization of the classical
Nyquist theorem in that it tests for stability, using only distinguished
boundary (iw-axis) information. Mdreover, the test is n-dimensional,
hence superior to any of the Hurwitz-type tests.

Intuitively speaking the result is both surprising and expectéd.
It is surprising because one tests for zeros of an n-variable function
using single va}iable Nyquist plots as opposed to some type of n-dimen-
sional encirclement. It was expected, however, siﬁce a polynomial con-
tains a finite amount of information (a finite number of coefficients),
so that only a finite number of tests need be executed. In this
1ight the condition of Lemmé 3 seemed superfluous.

Again, Theorem 3 is aesthetically pleasing since it uses only
frequency response information. However, by cleverly considering
the implications of this information as per [12], [14], one may concoct
an equivalent test. Essentially the test will be a consequence of
condition (iii) of Theorem 1 and hopefully will be easier to implement.
Theorem 4: Let A be a polynomial‘mapping ¢n to ¢". Then A has no
zeros in P" if and only if -

(i) A has no zeros on T", and

(i1) The Nyquist plots for the single variable functions

A(],...,],zk,O,....O) k=1,...,n, do not encircle zero.
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Proof: Note fjrst; that from [7], and [8], it is known that A has no
zeros in P" if and only if the Nyquist plots of A(c1,...,uk,],zk.o,...,o)
for k = 1,...,n and for each and every a; in T] do not encircle nor pass
through.zero.

- Since A has no zeros in P", it immediately follows that A h&s
no zeros on T". Morédver, the Nyquist plots of condition (ii) are a
subset of the Nyquist plots of the stability resuft noted above. Thus
the forward direction fs shown.

Conversely suppose condition (i) and condition (ii) hold. Since
A has no zeros in T". Lemma 4 guarantees that the Nyquist plots of
A(“1”"’“n¥l’zn) for each and every aj in T] are homotopic to one
anothér. In particular they are homotopic to A(T,...,l,zn). Thus
any member of this family of Nyquist plots encircles zero if and only
if A(1,...,1,2,) encircles zero. :

"Now if the Nyquist plot of A(],...,1,zn) does not. encircle zero,
then A(a],.;.,an_],O) # 0 for each and every aj in T]. In other words
A(z],...,zn_1,0) has no zeros on the n-1 dimensionaltorus; {(z],...,zn)
ec” 2g) =131 = 1,...,n-15z = 0}. Repeating the above arguments we
conclude that the Myquist plot of A(],...,l,zn_],o) encircles zero if
and only if each of the Nyquist plots of A(°l""'°n-z’“n-]f°) encircles_
zeéo. Continuing in this fashion, one verifies that the conditions of
the theorem are equivalent to the condition of references [7], [8] as
stated at the beginning of the proof. The statement of the theorem

now follows.

Observe that this theorem does not explicitly use distinguished
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boundary (frequency response) information. However, the sequential manner
of the test does use such information in an implicit way. Also the test
of Theorem 4 may be easier to implement since the zero dependence of
A(l,...,zk,o,...,o) tends to cancel terms in the original polynomial

which effectively diminishes the complexity of the test.

At this point we state and prove the final theorem of the section.
This theorem combines the "n" Nyquist plots of Theorem 3 into a single
Nyquist plot. ._
Theorem 5: Let A be a polynomial mapping zn into ¢". Then A has no
zeros in P" if and only if

(i) A has no zeros on T, and

(ii) - The Nyquist plot for the single variable function A(z,z,...,z)

does not encircle zero.
Before giving the formal proof of this theorem, we will sketch its de-
rivation as a corollary to Theorem 3. First observe that since an analytic
function is orientation preserving, [15], the degree of each of the single
variable Nyquist plots, Aor(1,1,...,1,+,1,...,1) of Theorem 3, is non-
negative. Moreover, the degree function associated with the set of
closed curves is an isomorphism from =(C - {0}) onto the additive group
of integers. Thus the degree of the concatenation (the group operation
in #(C - {0})) of closed curves, will be the sum of the dagrees of the
ind{vidual curves. Furthermore, the sum of non-negative integers is
zero if and only if each integer is zero. This implies that the
second hypothesis of Theorem 3 holds if and only if the single Nyquist

plot, obtained by concatenating the "n" Nyquist plots of Theorem 3,




does not encircle zero. Consequent]y Thgorgm 3 reducgs to verifying
thaf A has no zeros on T" and checking their encirclement of zero by
the single Nyquist plot:

[Aor(-,1,...,1)]*[Aor(1,+,1,...,1)]* ... *[Ror(1,...,1,-)]

= ROLT(+51see s 1)* T (1y e T,en s 1)* onn *1(1,.n0100)] (13)

where the equality of equation [13] is due to the fact [11] that com-
- position distributes ovef concatenation. '
Although equation 13 reduces the multivariable stability test to
a single Nyquist plot, this plot is just the concatenation of tﬁe n
plots of Theorem 3. The resultant test, then, is no easier to implement
than the original test. Fortunately, this Nyquist plot is homotopic
- in .C - {0} to the Nyquist plot for the single variable function
‘A(z,z,...,z), obtained by setting ea¢h of the dependent variables
of A equal to one another. To verify this contension, first observe
that this single variable Nyquist plot is equal to the Nyquist plot
“AOT(*s%5...5) where r(-,-,...,-):T]---Cn by taking the point a in T]
to (a,as...,a) in g Now, A has no zeros on T". Hence a maps ™
continuously to C - {0}:. The Nyquist plot Aor(+,*,...,+) will
thus be homotopic in C - {0} to the Nyquist plot of equation 13
provided their corresponding Nyquist contours are homotopic in .
This is, indeed, the case. However, the required homotopy is extremely
complex. As such, rather than wading through the details, we will
simply sketch the required homotopy in the two variable case. Then
we proceed to an alternate proof of the Theorem based on a known,

but non-intuitive, theorem of functions of several complex variables.
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To sketch the required homotopy in thg two variable case, represent
the torus, Tz, as a square on the plane. Topologically identify
opposite sides of the squares. Figure 2 illustrate such a square.
The point (z],zz),lz]l = |z, = 1, in Tz, corresponds to the point
(e],ez) on the plane vhere 6; = arg(z]) and 8,° arg(z,) i.e. (z],zz) =
(eiel,eiGZ}. In otherwords the upper and Tower boundaries of the square

represent the same line on the torus since e'™ = ™1™ and similarly for
the right and left boundaries of the square. Moreover, all four

corners of the square represent the same point, (-1,-1). In the
sketch of Figure 2, the‘Nyquist contour r(-,1)*r(1,-) of equation L13]
corresponds to the curve, number 1, which starts at (e],ez) = (0,0) in
the center of the square traveling vertically to the top of the square.
It then goes from the bottom of the square vertically back to the '
center, from the center of the square curve 1 then passes horizontally
to the right hand boundary, and finally it returns from the left hand
boundary of the square back to the center. Since the upper and lower
boundaries of the square are identified, when the curve “jumps" from
the upper to lower boundary, it remains continuous (think of the square
being rolled up into a cylinder with the upper and lower boundaries
glued together). Similarly for the "jump" from the right to left
boundary. Of course, curve 1 is closed since it starts and ends at the
same point. | '

The Nyquist contour r(-,+) is represented in Figure 2 by curve 5,
which starts at the center of the square, goes diagionally to the upper
right hand corner of the square and then "jumps" to.the lower left hand
corner of the square from which point it returns diagionally back to

the center. As before the curve is continuous and closed.
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The required homotopy between curves 1 and 5 is indicated on.Figure 2

by the three intermediary curves numbered 2, 3, and 4. As before these

4 cufves are continuous since the upper and lower boundaries and the left

and right boundaries of the square are identified. Also.all the inter-
mediary curves begin and end at the base point (e],ez) = (0,0). The
continuity of the intermediary curves is illustrated graphically in
Figure 3 wherein we have redrawn Figure 2 with the point (e],az) =
(+r, +w) taken as the center point. “In this representation it is clear
that curves 2, 3, and 4 are continuous and converge to curve 5.
Although the homotopy required to complete our proof is neatly.
illustrated in Figure 2, its explicit mathematical discription is by

no means simple, even.for the two variable case. Consequent rather than

formalizing the tedious details of the required n-variable homatopy we

construct an alternate proof of Theorem 5 based on a theorem of several
complex variables. Since the theorem is applicable to analytic functions
as well as polynomial: this proof will also allow us to extend theorem

5 to the case of meramorphic transfer functions in several éomp]ex
variables. '

Lenma 5: Let f = (f;,f,,...,f;) be a continuous function mapping P]

to ¢",n > 2, such that f(T])ch" and each of its coordinate functions,

f;» have positive degree when viewed as functions from T1 to C, fi.T]fT1+C.
Then for any analytic function g:Cn+C, g has a zero in P" if and only

if g has a zero in T"Uf(P]). The theorem appears on page 87 of reference
17 and its proof will not be repeated here. In essence the theorem yields
an entire family of n-dimensional Hurwitz-like tests (since ™ is n-dimen-

sional and f(P]) is 2-dimensional) one for each f satisfying the hypotheses
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of the theorem.

Proof of Theorem 5: To prove theorem 5, we apply Lemma 5 with f defined

by f(z) = (z,2,...,2). Since each coordinate function fi(z) = z is the
identity map the coordinates all have degree one the hypotheses of
Theorem 5 are satisfied. As such, the polynomial A:c" + C (an arbitrary
analytic function, g:cn + C, could be used with equal validity) has a

zero in P" if and only if it has a zero in TnUf(P]), Now,
£(P') = ((z.z,...,2) in C"|]2] <13 (14)

is just a polydisk in one variable embedded in g As such, via the
classical single variable Nyquist criterion the existence of zeros of
A in f(P]) may be determined using the Nyquist plot Aor(-,+,...,+) whose
Nyquist contour r(-,-,...,+) follows the boundary of f(P]). This Nyquist

plot is, however, just the classical Myquist plot for the single variable

* function A(z,z,...,z). Thus, if we check to see if A has no zeros on

T" and that the Nyquist plot for A(z,z,...,z) does not encircle zero
we are assured that A has no zeros in T"Uf(PT) and thus by Theorem 6

s
we are assured that A has no zeros in P as was to be shoun.

Examples
Example 1

Consider the six-variable fourth order po]yndmial

A(Z]s22323’.24325’26) — ]02]222324Z§ + 22?22 + Z]Z%Zz + Zg *+ 3 (]5)

For which the image of A restricted to Tn is plotted in Figure 4. Since
zero is not in the image condition A. of the theorem is satisfied and

we may proceed to check condition B. This requires that we test the
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Nyquist plots for the six one variable functions

Azl LLLY) = gy +22f + 4 (16.)
A(1,z2,1,1,1,1) =12z, + 5 (17.)
A(1,1,23,1,1,1) = 1023 + 25 + 6 (18.)
R(1,1.1,25,0,1) = 102; +2p 46 ' (19.)
A(1,1,1,1,25,1) = 1025 +7 | (20-)
and v : 5
A(1,1,1,1,1,2) = z2+ 16 | | (21)

for encirclements of zero. The resultant plots are sketched in Figures
) 5a through 5f. where we see that five of the six plots encircle zero.

As such, the system is unstable.
; \2.

é Figure 4. Plot of A(T") for the six variable function of equation 12.
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Figure 5. Nyquist plots for the six single variable functions
of equations 13 through 16.




Example 2: In this case we apply Theorem 4 to the same polynomial of

Example 1. Again the image of T" under A does not contain zero so we
must perform the sequential tests outlined in Theorem 4.

Step 1: Consider the Nyquist plot of A(1,...,1,2g) = zg + 16

ALW

3 encirclements

~

Figure C. Nyquist plot of A(],...,zs) does not encircle zero.

Step 2: Since the first Nyquist plot fails to encircle zero, consider

the Nyquist plot of A(l,...,],zs,O) = 102§ + 6. Clearly this Nyquist

plot encircles so the filter is unstable.
Alw

2 encirclements

Figure 7. Nyquist plot of A(1,...,1,25,0).
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Example 3: In this we applleheorem 5 to the same polynomial of the
previous examples. Notice that in this case the curve is of higher

order and appears complicated. There also may be some numerical problems in

obtaining an accufate Nyquist plot of this curve.
Clearly A(T") # 0 as in the previous examples. Thus consider the

Nyquist plot of A(z],..{,zs) = z7 % ]026 + 3z3 + 3 where we have set

6
encirclements

Figure 8: The single Nyquist plot of A(z,z,2,2,2,2)

Observe that the number of times the curve of Figure 8 encircles
zero equals the number of times all the curves of Figure 5, taken to-
gether, encircle zero.

Lastly it is interesting to wonder at the usefulness of these

plots for the design engineer. The authors believe that in time these
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.plofs will be shown to supply a large amount of information on the behavior

of a system.

Acknowledgement: .The authors wish to acknowledge Rodney Trotter who

ran numerous computér programs verifying the Nyquist tests herein.
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THREE GRAPHICAL TESTS FOR THE STABILITY OF
MULTIDIMENSIONAL DIGITAL FILTERSs

by
R. DeCarlo, R. Saeks, and J. Murray

Abstract
This paper discusses three graphical tests for determining the
stability of multidimensional digital filters characterized by an
aperopriate transfer function in several complex variables. Each
test is carried out as a finite number of "Nyquist" plots in the com-

plex plane.

Introduction

Recently two of the authors constructed an algebraic topological
proof of the Nyquist Criterion (2) (3). The value of this rather
sophisticated approach has been harvested in generalizations to systems
i characterized by transfer functions in several complex variables (1)
(2) (3), in particular multidimensional digital filters. Specifically
k .the paper illustrates three graphical tests, similar to the classical
Nyquist test, carried out in the complex plane, which determine the
st2ability of a multidimensional digital filter with a transfer function
H(z},....zn) = 8(21,....zn)/A(zl,....zn) where z; are complex variables
and A and B are relatively prime polynomials. The purpose of the paper
is to consider these three tests as applied to two different examples.

Background and Main Theorems

Basic to the theory is the 2n (real) dimensional polydisc (8)
ﬂ which is the g" analog of the unit disc of ¢. Mathematically the poly-

$ Supported in part by AFOSR Grant 74-2631D
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disc P" is
P" = ¢ (z],...,zn) in ¢"| |21| <1, 1% N,....00
There are four separate notions of boundary of the polydisc (1)(8).
First is the usual topological boundary
n .
8" = {A(z],....zn) ing | Izl <1, i =1,....n
and |z, | = 1 for some k}
Second is the distingquished boundary
n :
™eq (z],...,zn) ing I |zi| =1, i=1,...,n}
T" serves as the multidimensional analog of the jw-axis. In particular
the frequency response (7) of a digital filter is the evaluation of its
transfer function over T".
Thirdly we have
M' = { (250002) I B0 | 24| =0, 4 = 1,00, k0, 00,0005 f
lzkl <11}

where k ranges from 1 through n. This is a boundary notion in the sense
that n-1 coordinates take on extremal values. Finally, the last notion

of "boundary" is

Hn = { (2]9---a7-n) is ¢n Iz~|l

|z, <152, 20,1 =k+1,...,n)

where again k varies from 1 to n. The importance of this concept was

first noted by Huang (5). Later it was generalized in (7).
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With these notions of boundary one may prove the following Theorem.
The proof, however, of the following equivalences is found in the ref-
erences (1) (2) (5) (7) (9).
Theorem 1: Let a causal multidimensional digital filter be character-
ized by a rational transfer function in several complex variables. Assume
the numerator and denominator polynomials are relatively prime. Then the
following are equivalent stability conditions:
(i) the pole set of the transfer function has a null inter-
section with P"
(ii) the pole set of the transfer function has a null inter-
section with B"
(iii) The pole set of the transfer function has a null inter-‘
section with H"
(iv) the pole set of the transfer function has a null inter-.
section with M".
The trouble with these conditions is that the actual test is carried

out in a higher dimensional space. For example P" is 2n dimensional, B"

is (2&-1) dimensional, while H" and M" are both (n+1) dimensional. In-
tuitively, the equivalences of this theorem follow because the pole set
cf a rational function in several complex variables is an infinite con-
tinuum which must intersect the different boundaries of the polydisc if
it intersects the polydisc at all.

With the intuition gained in (2) (3) (7) the authors were able to
simplify these results to graphical tests in the complex plane. The

following three theorems are the fruit of this endeavor. Before stating




these theorems, one final definition is in order.
' The "Nyquist plot" of a polynomial, f('), in one complex variable

is defined to be the image of T] under the map f(') where T] is the unit

circle of the complex plane. With this in hand, we have the following
three tests. Again the proofs can be found in the references (1) (2)
(3) (9).

Theorem 2: Let A be the denominator polynomial of a multidimensional
digital filter as characterized in Theorem 1. A is a polynomial mapping
g" to ¢. Then A has no zeros in p" (i.e. the filter is stable) if and
only if

- (i) A has no zeros on T, and

(ii) The Nyquist plots for the single variable functions

A(l,...,],zk,l,...,l) k =1,...,n do not encircle zero.

' Theroem 3: Let A be as above. Then A has no zeros in pn (i.e. the filter

is stable) if and only if
(i) A has no zeros on T", and
(ii) The Nyquist plots for the single variable functions
A(],...,l,zk,o,...,O) k=1,...,n, do not encircle zero.
Theroem 4: Let A be as above. Then A has no zeros in P" (i.e. the filter
is stable) if and only if
(i) A has no zeros on ™, and
(ii) The Nyquist plot for the single variable function A(z,z,...,2)
does not encircle zero
Each of these tests has essentially the same two parts. First one per-
forms the appropriate encirclement test(s); if zero is not encircled, one

then proceeds to check the image of the distinguished boundary.




_”-'“
36

This order of testing (encirclement first, then frequency response) seems
in most cases to be preferable to the reverse order, since much less com- f

putation is involved in the encirclement tests; however, in cases where

the frequency response is known a priori, or must be plotted in any case,
the order is immaterial.

It might appear that the third test (Theorem 4) is the best, since
it involves only one encirclement test; however, in many cases the rel-
ative complexity of the polynomial A(z,z,...,z) will more than offset
F this advantage. Similarly, in many cases, Theorem 3 may be much easier
to apply than Theorem 2. (This is illustrated in the first example)
Theorems 2 and 4, however,.do have fwo advantages. The first is mainly j
phi]osﬁphica]; these Theorems give a test for stability purely in terms |
of the frequency response of the function A, which corresponds closely |
with the idea of the Nyquist criterion in one variable. The second
advantage is that by filling in the interior of the encirclement plot(s)
and taking this region together with the image of the distinguished
boundary, one obtains the image of the entire polydisc, from which one
can get an accurate idea of stability margins. (The point here is that we
have found the image of a 2n-dimensional set--the polydisc--by plotting

an n-dimensional set and a 1-dimensional set).

EXAMPLES g
In this section we apply each of the above tests to two examples.

Example 1:
2 3

A(z],zz) = 5/4 z% 25 + 1/2 2,2, + 1/2 z? z, +3 1, z% +3 z2

1 %2

g 9 B
-2z -2, +3 2,2, - 2 zy - 2 z, + 1]

L.A ——et PR A gl il




In this case, we have

A(z,1) = 1/2 25 +13/4 22 + 9/2 2 - 2

A(1,2) = 1/2 25 + 13/4 22 + 9/2 z - 2.

These polynomials are identical; the image of the unit circle being given
in Fig. 1(a).* - '

Since this curve encircles the origin, we deduce immediately that the
filter is unstable; for purposes of illustration, we will carry oué the
other tests.

A(z,0) = -z2 -2z +1

A(1,z) is as before (Fig. 1(a)); A(z ,0) is plotted (for z = eie)
in Fig. 1(b). Again, either plot suffices to verify instability, and
clearly A(z,0) gives the simpler test.

To apply the third test, we calculate

Alz,z) = 9/8 2% + 6 25 + 2% - 4z +1
and the image of the unit circle under this mapping is plotted in Fig. 1(c).
The relative complexity is apparent; however, it again verifies instability.
Finally, we plot the image of the distinguished boundary in Fig. 1(d);
it can be seen that it does not include the origin, although it does in
some sense "encircle" it.

The second example shows that this last kind of "encirclement" is

irrelevant; nothing can be deduced from it.

*(This illustrates the obvious fact that if the polynomial is symmetric

in ZyseeasZps then the n plots in Theorem 2 in fact reduce to 1 plot--

usually simpler than the plot in Theorem 4. Such symmetry is quite common).
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Example 2:

A(z],zz) = (z1 + 2)3 (z2 + 2)3
As before, the plots for A(z,1) and A(1,z) are identical

A(z,1) = 27(z + 2)3

A(LzZ) = 27(z + 2)3;
This plot is given in Fig. 2(a); it does not encircle 0.
In this case, the plot for A(z,0) = 8(z + 2)3 differs from the previous
plot only by a scale factor; we do not draw it separately.

Finally, the plot for A(z,z) = (z + 2)6 is given in Fig. 2(b);
again it does not encircle the origin.

Thus, in order to determine stability in this case, it is necessary
to plot the image of the distinguished boundary; this is done in Fig. 2(c).
Since this image does not contain the origin (although it does surround it),
we conclude that the filter is stable. This of course is obvious analytic-
ally; the present example is merely to illustrate the tests.
Note: Because of the magnitudes of the numbers involved, Figs.2(a) - 2(c)

are not drawn to scale.
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A NYQUIST-LIKE TEST FOR THE STABILITY
OF TWO DIMENSIONAL DIGITAL FILTERS*

by

R. DeCarlo, R. Saeks, and J. Murray

ABSTRACT: This paper constructs a Nyquist-like test for the stability
of two dimensional digital filters. The test takes the form of a con-
tinuum of classical one variable Nyquist plots parameterized by the
elements of the unit circle of the complex plane. Since the parameter
space is compact the test can be accurately approximated by a finite
number of classical one variable Nyquist plots and is tharefore readily
implemented on a computer.

A two dimensional digital filter is characterized by a ratiounal
transfer function in two complex variables
B(zl,zz)
1
i Alzl,zzi
where A(zl,zz) and B(zl,zz) are relatively prime polynomials in z and
z,. For the purpose of this paper we say that the digital filter is

stable if A(zl,zz) # 0 for |21| <1 and izzl < 1. This structural stability con-

dition implies that the filter is bounded-input bounded output stable

though as recently shown by Goodman1

the condition is actually slightly
stronger. Huang showed that this 4-dimensional stability condition was
actually equivalent to the 3-dimensional condition that A(zl,zz) # 0 for
|21| =1 and lzzl <lor |z;| <1 and z, = 0 which we use as the basis
of our theory.

The key to the formulation of our Nyquist-like theory is the obser-
vationvthat from an abstract analytic function point of view the classical

one variable Nyquist plot is simply a method of determining whether or not

;ghzs rgsearch supported in part of AFOSR Grant 74-2631 and ONR contract
-C=1136.. . :
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an analytic function in one variable has zeros in an appropriate region
by plotting the image of the function on the boundary of the region. To
obtain a Nyquist theory in two variables we therefore decompose the region
of €2 in which A(zl,zz) is forbidden to have zeros by Huang's theorem in-
to the union of a family of one variable regions to which the classical
Nyquist theorem applies. More pracisely, for each complex number a of

magnitude one we define the disk Da in C2 by

i
2. 0, = {(e " 1Zp) 5 25| < 11
and we define the disk Do by

3. D, = {(250) 5 [z;] < 1)

Now, Huang's theorem may be restated as "the digital filter is stable if
and only if A(zl,zz) has no zeros in the disks D  and D_ [z} = 1".
Observing that each disk is fixed in one of its variables the polynomial
A(zl,zz) restricted to any of the above defined disk's is an analytic
function of one variable and hence the classical Nyquist test can be used
to check for zeros within the disk. In particular, A(zl,zz) has zeros in
the disk Du if and only if the Nyquist plot for the one variable function
A(ei°,zz) does not equal or encircle zero. Similarly, A(zl,zz) has no
zeros in the disk D° if and only if the Nyquist plot for the one variable
function A(zl.o) does not equal or encircle zero. Combining these obser-

vations we obtain the following stability theorem.

Theoreni:: A digital filter characterized by the two variable transfer

function
B(zl,zz)
Nz,.2,)
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where A(zl.zz) and 8(21’22) are relatively prime polynomials in two
variables is stable (structurally stable) if and only if the Nyquist

plots for the family of one variable functions

A(eia.zz) s Ja] =1
and

A(zl,o)
do not equal or encircle zero.

Although the theorem formally implies that one check a continuum

of Nyquist plots parameterized by the complex numbers of magnitude one,
in fact, since this set of numbers is compact one can obtain a test with
arbitrarily good resolution using only a finite number of plots. Indeed,
in a somewhat different context the authors have shown that a similar con-
tinuum of Nyquist plots can actually be reduced to a single plot without
inducing any error into the stability test.2 The following examples are

based on a finite approximation to the continuum of plots required by

the theorem.

Example 1: Let the transfer function of a digital filter be

R
W .2521 + .2522 A(zl,zz)

4. H(ZI,ZZ) -

Step 1: Draw the Nyquist plot for A(zl.o). This curve, shown in Figure
1, does not encircle zero. So we proceed to the next step as outlined

in the theorem. iw A

= V|
l

Figure 1: Nyquist plot of A(zl.O) for example 1.

PvTn— " v o o p—




Step 2: Now consider the family of Nyquist plots for the functions
A(e’“,zl) i |e] = 1. This family of curves does not encircle "Q"

as indicated in Figure 2. Thus the filter is stable.

E, =i
A
T+ 4i
'EL=1
15 |
oYV i
S \_/l

Figure 2: Nyquist plots for A(eid;zz) for example 2.

Example 2: Now consider the filter whose transfer function is

1 B(2,,2,)

5. H(z -
1+ .5z, + .5z, + 1.22122 Alz),2,)

1°%2) =

Step 1: Consider A(zl,ﬂ). This Nyquist plot is illustrated in Figure

3 and does not 2ncircle zero.
AP w

—— + —_— ;
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Figure 3: Nyquist plot for A(z,,0) for examoie s

47
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At this point no decision can be made so proceed tc step 2.
Step 2: Consider the family of functions A(ei°,zz) v |a] = 1.
Nyquist plots for some of thase functions are shown in Figure 4.

They indicate that the filter is indeed unstable.

A w

Figure 4: Nyquist plots for A(eiu,zz) for example 2.
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it uses a convenient known version of the maximum modulus principle.
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Another Proof and a Sharpening of Huang's Theorem

By

John Murray

ABSTRACT: Two further proofs of Huang's Theorem on the zeros of analytic
functions of two variables are given; the first is similar to previous
proofs, but is made shorter by the use of a known maximum modulus principle;
the second is completely different, using a theorem of Rudin which actually
gives a sharper result than Huang's. Finally it is indicated how a corres-
pondingly sharper result may be obtained in higher dimensions.

In [5] Huang stated and gave an incomplete proof of the following
theorem:
THEOREM: ‘

A two-variable polynomial P(Zl’zz) has a zero in the polydisc Ué = i
{(2,,1,) IIZII < 1, |22| < 1} if and only if it has a zero in the set i
Hy = (22, | 123] = 1 12,0 <1 W 1(z3.0) [1Zg] < 1)

Two proofs of the Theorem have appeared £2,3], both appealing to the

maximum modulus principle; the first proof here is similar but shorter since

We will use the following notation:
U= {zZ| |z| <1}

{Z| |z| <1}

T=1{(Z] |Z] = 1}

U

(==
3
"

UxUx...xU (n times)

UxUxX...xU (n times)

-
=
]

TxTx...xT (n times)
(23.2)|133] = 1, 1z, < 1b
3 = ((23,0)]17)] < 1

Then Hz = Hé UHS.

ps = P
= No-
" "
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Proof I:
' Assume P(ZI,ZZ) has a zero (Z?, Zg) in Ué. Let V denote the connected

component of the zero-set of P(ZI’ZZ) which contains (Zi,lg) and let W =

VAL(Z,,2,) 12| <13, I (23.23) £ W, (23.23) e Hy S Hys we can therefore

assume that (Zg,Zg) e W#P. We consider the function 1/Z2 restricted

to the analytic set W; if this function is not analytic, there is a point

in W such that 22 =0, i.e., there is a zero in HE. If the function is

analytic, then by the maximum modulus principle [4,p. 106] |1/22| can not

have a strict maximum in W. Thus, since IZgl <1 and (Z?, Zg) e W, there

is a point (20,25) € W N{(Z,,2,)|1Z;] = 1} such that |2)] < 1. By continuity, 1

P(23, 23) = 0; thus (23,23) is a zero of P in Hj. Q.E.D.

Before proceeding to the second proof, one further definition is needed:

If v: U > U is continuous, by Ind ¥oE we will mean the usual winding number

of the closed curve w(ez"it), 0 <t <1, about the origin. (In what follows,
this curve will never go through the origin).
Proof II:

We will use the following theorem of Rudin [6,p. 87]

If & = (31,85,...58,): U~ U" is a continuous mapping such that #(T) <T"
and Ind &, of > 0 for all i, then f(Zl,Zz,...Zn) has a zero in U" if and only
if £(Z;,...,Z.) has a zero in the set T" U 6(U). (Here f is any function
analytic on U" and continuous on U?)

To apply this theorem, we take n = 2, and define &(Z) as follows:

(22,0) ozl <%

8(2) = {
(2/1z]. (2|Z]-1)2) , W2 < 2] £ L

® is clearly continuous, and

61(921111:) 4 eZniE i=1,2,

- — -
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i so 8(T) =72, and Ind &; oF = 1, i = 1,2. |
Thus if P(ZI’ZZ) has a zero in UZ, it has a zero in T2 U & (U); this set
is clearly a subset of H2’ and the result follows. 9.E.D.

We note the following: Firstly, we have proved only one direction
of the implication: the other is trivial. Secondly, both of the above

2 and continuous on Ue and not

proofs apply to functions analytic on U
merely to polynomials. Thirdly, proof II yields a considerably sharper
result than Proof I (or any previous proofs of Huang's Theorem) in that
the set which must be tested for zeros is a proper subset of H; in fact
dim (T2 Ud (U)) = 2, while dim H = 3. Fourthly, a correspondingly
sharper version of the higher-dimensional extension of Huang's Theorem
[1] can be obtained by defining

8(2): U~>TU" by

1 8(2) = (fhreee ool R (IZ] - K+ 12, 0,0,0), K5 L < ) < &

+
kth entry
for 1 <k <n.
Finally, other choices of & will yield other, possibly simpler, tests;

this is explored in [7].
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ABSTRACT
Two sets of necessary and sufficient conditions for the existence

| of a polynomial spectral factorization of a given polynomial are proved.

These conditions are shown to be necessary and sufficient for the

existence of a rational spectal factorization of the spectral function
s of any rational function and necessary but not sufficient for the ex-
istence of a spectral factorization of the rational function itself.-
Here the term "spectral factorization" is to be understood as a factor-
ization into the product of a function without poles and zeros in the
open unit polydisc, and a function without poles or zeros in a region
inverse to the open unit polydisc. These conditions are seen to give
] extremely severe restrictions on the spectral function of the given
polynomial or rational function, and hence, on the amplitude response
of any possible quarter-plane purely recursive (stable) digital filter.
The implications of these restrictions for the design of minimum-phase

finite-impulse-response and stable infinite-impulse-response filters

are discussed. 1In particular, it is shown that the difficulties

which many researchers have encountered in stabilizing two-dimensional
infinite-impulse-response filters are inherent in the problem and can
not be avoided by a refinement of technique; any method which attempts:
to stabilize a filter by finding a stable denominator polynomiai whose
spectral function matches (or closely approximates) that of a given un-
stable denominator polynomial must fail for a large class of polynomials.
This is because there is no stable polynomial having the same spectral
function as a polynomial in this class (nor even approximaging it well);
thus, it is precisely the attempt to match the amplitude response of

the unstable filter which forces the new filter to be unstable also.

This is in sharp contrast to the situation in one dimension, where any

IS

rational spectral function has a rational spectral factorization.

e ———————-
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Introduction:

The subject of two-dimensional digital filters has received consi-
derable attention of late: 1in particular, two-dimensional spectral fac-
torization has been treated in a number of papers - it is considered in
great detail in reference [1]. The major problem which arises is that in
general the spectral factors of a rational transfer function are not
rational: some further processing, such as truncation and smoothing, is
usually employed to yield approximate rational factors. It is, therefore,
somewhat surprising that the class of rational functions for which a ra-
tional spectral factorization exists does not seem to have been investi-
gated. In this paper, we give two sets of conditions which must be satisfied
by such functions (theorems 1 and 3); a converse is given which may be
applied to the numerator :and denominator polynomials separately. Now, the
polynomial spectral factors (when they exist) of a given polynomial are
minimum- and maximum-phase polynomials; conversely, every such polynomial
gives rise to trivial spectral factors. Motivated by this, we apply the re-
sults of theorems 1 and 3 to the particular case of minimum-phase polynomials
(i.e., polynomials without zeros in the unit polydisc).

In this context, the main consequences of the results of this paper may
be broadly outlined as follows:

i) A given polynomial has exactly the same amplitude response as a

minimum-phase polynomial if and only if the classical one-variable
“method (of factoring the original polynomial into a product of two
polynomials devoid of zeros in certain regions) can be applied.
(This result is in fact implicit in [1], but does not appear to
have been explicitly stated in the literature). The corresponding
statement for minimum-phase, stable rational functions is false,

however.
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ii) If the conditions given in theorems 1 and/or 3 are not satisfied,
then not alone is there no minimum-phase stable rational function
having exactly the same amplitude response as the original; the ﬂ
original amplitude response can not even be approximated arbi-
trarily well by minimum-phase stable rational functions. This
fallows from the fact that the conditions in theorems 1 and 3 are
conditions on the amplitude response which are preserved under
any reasonable kind of convergence. ’

iii) The conditions in theorem 3 are easily visualized and surprisingly

stringent; they require essentially that the gain of the filter,

averaged over certain directions in the frequency plane, have no
variation in a perpendicular direction. (see the discussion follow-

ing theorem 3). This gives extremely severe restrictions on the

amplitude response of minimum-phase FIR filters, minimum-phase
stable IIR filters, and the denominator polynomial of arbitrary
stable IIR filters.

iv) It has been pointed out by Bose [9] and Woods [10], and again is
implicit in [1], that there exist purely recursive filters whose am-
litude responses are not realizable as the amplitude response of
any stable purely recursive filter, and that consequently any
stabilization method which attempts to match the amplitude re-
sponse of the original filter is doomed to failure. The restrict-
ions referred to in 111).above, reinforce this conclusion and
identify the precise properties of the examples in [9] and [10]
which make stabilization impossible.

Definitions and Notation:

Our notation will follow that in [2]; we repeat it here for convenience.

For simplicity we restrict ourselves throughout to two dimensions, although

i
l e s
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there does not appear to be any difficulty in extending the results to
higher dimensions. Thus all functions are assumed throughout to be rational
functions of two complex variables unless otherwise stated; we further ex-
clude the zero function. Two-dimensional complex space will be denoted

by ¢2 ,i.e, ¢2 = {(Z;, Z3)| Z, and Z, are complex numbers}. The open unit
polydisc will be denoted by U2 ,i.e.,
U = (21a2a)e €7 | |21] <1 and 23] <)
and its closure will be denoted by UZ:
U= (21, )e 61 |2] <1 and [Zo] <D}
The distinguished boundary of the unit polydisc will be denoted by TZ:
T's (21, e €1 |2] =1 and [2,] = T

The frequency response of the filter whose transer function is f(Z;,Z;) is
2
simply the restriction of f to T . We will find it convenient to denote this

restriction by f*.
The one-dimensional sets corresponding to the above are:
U={Zet | |Z] <1}
U=1{Zec¢ | |Z] <1}
T=(Zec¢| |Z] =1}
We need one further subset of ¢2:
Ve ((22) € ¢ | |22 >1and 2] 510,
By the Fourier coefficients of a function h (e,,6,) defined on T2 we

mean the numbers

-
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2 [ 2w :
I I h(el,ez) efJ(mel* "ez)del de,.
4 gD

N'—.

Finally, let us state precisely what we mean by the term spectral

factorization. Several different forms of spectral factorization are treated

in [1]; here we will be concerned only with the simplest form: if f is a

rational function, it will be said to have a (rational, quarter-plane)

spectral factorization if f = f,f, where f, and f, are rational functions,

2 2
f1 has no poles or zeros in U, and f, has no poles or zeros in V . Several

comments are in order concerning this definition:

i)

ii)

iii)

By "rational" we mean only “"finite-order"; i.e., the functions

are assumed to be expressible as the quotient of two (finite-order)
polynomials.

The quarter-plane property enters only in connection with the
regions in which the factors are assumed to be zero- and pole-free;
in particular, if f has no poles or indeterminacies on TZ, and has

a quarter-plane spectral factorization, then there is a quarter-
plane causal, stable filter whose amplitude response is equal to

| F*].

It would possibly be more natural to work with U2 and V2 rather than
U2 and V2 (especially when considering stability). However, to do
so would complicate the statements of the theorems considerably, and
it is usually clear whether or not the results will hold with U2 and
V2 in place of U2 and V2. (One needs only to check for zeros and
poles on Tz). In general, if the "closed" version is not obvious,
it is not true; 1 - Z; Z, will serve as a counterexample in all

such cases.
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iv) To simplify the statements of the theorems, the definition has
been given in terms of the rational function f itself, rather than
the spectral function !f*lz; however, the conditions given in the
theorems actually involve only |f*|2.

2 2
v) We note that V is defined to be a subset of ¢ ; thus the behaviour

of functions at infinity is irrelevant to our purposes.

Spectral Factorization:

Our first criterion for the existence of rational spectral factors is
very much in the spirit in which spectral factorization is treated in [1];
it is a trivial consequence of theorem 5.4.7 in [2].

Theorem 1:

If a rational function f on Cz has a rational spectral factorization
then the Fourier coefficents 3 of log [f*| are zero for all pairs of in-
tegers (m,n) such that m # o, n # 0, and m and n have different signs -
that is, for all integer points in the second and fourth quadrants The
converse is true for polynomial f.

As mentioned above, this criterion involves only the absolute value
of f; it follows that the existence of spectral factors imposes restrictions
on the amplitude response of a two-dimensional filter - in contrast with
the situation in one dimension. The above criterion, however, does not
present these restrictions in an easily visualized form - for instance, it

is difficult to guage exactly how severe the restrictions are. For this

reason, we next present conditions which are stated in terms of the log-
amplitude response itself, rather than its Fourier coefficients. This
result takes an approach which seems to differ substantially from those
previously known; it gives easily visualized necessary conditions on those
rational functions which admit a rational spectral factorization. Before

we state this theorem, however, we first present a simple result which will
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be used in the proof, and is also of separate interest; one of its conse-

quences is that when rational spectral factors exist, the usual one-dimensional

stabilization method (for unstable denominator polynomials) can be used.
Theorem 2:
If the rational function f admits a rational spectral factorization,

N N
then there is a rational function f (with deg f < deg f) such that

"
i

% 2
and f has no poles or zeros in U .

Again, the converse holds for polynomial f.

Thus, if the denominator polynomial of an unstable filter has polynomial
spectral factors, there is a stable filter of at most the same order with
the same amplitude response (provided the polynomial has no zeros on T2).

Again most of the proof is contained in [2]; we fill in the details

here: suppose f has rational spectral factors, then f = f, g-where f, has no
2 2
poles or zeros in U and P and Q are polynomials without zeros in V .
~ m n

Let P =2, 2, P (1/2,,1/2,), 2, # 0, 2, # 0

where m is the degree of P in Z,, n is the degree of P in Z,, and P is the

. polynomial whose coefficients are the complex conjugates of the coefficients
'; g N
of P. Clearly P is a polynomial of degree less than or equal to the degree

N
of P, and so is also defined for Z,=0 and Z,=0. Now if P(Z,,Z,) = 0 for

|
|
|
|
|
|
E

Z, # 0and Z, # 0, then P(1/Z,, 1/Z;) = 0; this implies that either

2
[1/Zy] <1 or |1/Z,] < 1 (since P has no zeros in V)
and so either

2
'le l] or 'Zzl 1], i.e., (ZI! Zz) é U
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v

2
Thus the only possible zeros of P in U are for Z, = 0 or Z, = 0. But
by standard results in the theory of several complex variables [8], if
the zero-set were nonempty, this would imply that either Z, or Z, was a
N Y]

factor of P, which is impossible by our choice of m and n. Thus P has

2 2
no zeros in U . Finally, on T

n m m RS

IP(Z1,22)| = |21 2o P (V/11,1/25) | = |P(Z1,22)| = |P(Z1.22)].

N
Q is defined similarly and has similar properties. Then

N

N
=1 L4

clearly has the required properties.
Conversely, suppose f is any polynomial for which there is a

Y 2
rational function f without poles or zeros in U such that

/

(477

[F] = %]
then f/? is rational and analytic in U , and

N
| (F/F)*| =1
N
Thus by theorems 5.2.5 and 5.2.6 in [2], f/f = P/Q where P and Q are
2 2

polynomials, P has no zeros in V , and Q has no zeros in U . Then

N
f = Pf/Q
gives a rational (in fact, polynomial) spectral factorization of f.

The Second Criterion:

Our second set of conditions for the existence of a rational

spectral factorization is given in the following:
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Theorem 3:

f : . 2
g If a rational function f on ¢ admits a rational spectral factori-

r zation, then

2 L j + ;
%i I'o" log 'f(ejme’ giln e ?))|de

is a constant independent of ¥, (0 < ¥ < 2 «), for all integers m > o and
n > o. '

Again, these conditions depend only on the amplitude response of f.
The simplest condition is that form =1 and n = 1; it can be easily visua-
lized by drawing two adjacent squares in the 6, 6, - plane on which the
amplitude response is defined (the frequency response extends to the entire
6152 - plane by periodicity), and drawing lines Li with slope 1 and length
2n/Z on these squares; see figure 1.

Then the condition form = 1, n = 1 can be restated as: the "average"
amplitude of the function f along the line Li is a constant - that is, it
is as independent of the particular line L1 chosen. ("Average" here is to
be understood as the geometric mean of the amplitude, or the arithmetic
mean of the log-amplitude). Alternatively, we may say that the average
level of the amplitude over any line of slope 1 and of length 2avZ is in-
dependent of the position of the line in the 6,08,-plane. (For example, we
could vary the L; over the dotted square in the direction ﬁ). The condi-

tions for higher m and n have a similar interpretation, with a slope of

n/m instead of 1, and length 2n/m +n2 instead of 2n/Z; clearly, if m and

n are not relatively prime, the corresponding condition is superfluous.
This theorem then gives a striking limitation on the amplitude re-

sponse of a rational function which admits a rational spectral factori-

zation; even the simplest of the conditions (that for n=m=1) implies that
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such a function can not accurately approximate an amplitude which has

A
large variations in overall level in the direction n shown in figure 1.

Proof of Theorem 3:

In view of theorem 2, it suffices to prove this under the assumption
2
that f has no poles or zeros in U . This assumption implies that f has a
2
holomorphic logarithm in U . Then, for any integers m > o, n > 0 and any

real number Y,

log =, i* ejv)
is a holomorphic function of one complex variable for Z ¢ U. Thus
Re(log f(Z", 2" ed¥))

is a harmonic function in U, and so by the mean-value property of harmonic

functions

n|—

Y I Re (log f(Z", Z" ej?)) de = Re (log f(o™, o" ejw))
T

2m : -
i.e.,.% [0 Re (log f(eJme, eJ("e+y))) de = Re(log f(0,0))
™

But Re log w = log |w| for w # 0, and so

2w . .
I ) log lf(eJme, ed(no +w))| de = log |f(0,0)]

nN|—
=)

and the right-hand side is independent of v (and, incidentally, of m and
n also).

An obvious question which arises is the extent to which the converses
of these results hold. In fact, the converse of Theorem 3 holds for poly-
nomials, and modified converses of both Theorems 1 and 3 hold even for
rational functions. The modification takes the following form: If the

Fourier coefficients of log |f*| (where f is a rational function) vanish

..IlIIllIlI-lIIlllllIlllII-IiIlIllllllllll-lIl-l-...i-....-...__-_rg
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N
for mn < o, then there is a rational function f with rational spectral

factors, (equivalently, a rational function without poles or zeres in U2}, such

: N
~that'”: |f*| = |f*|. (A similar statement holds for Theorem 3). However,

the proofs of these converses involve some technical analytic details, and
so are relegated to an appendix.

The modification in the above converses lies, of course, in the fact
that we cannot conclude that f itself has rational spectral factors; thus
there are some rational functions which can be stabilized without changing
the amplitude response but to which the classical 1-variable factorization
technique cannot be applied. A simple example of this is the function

21 #1215 =1
f(ZLQ Zz) = Zl + ZZ = ZIZZ

Here, |f*| is identically 1, and so¢ has trivial spectral factors; but f it-
self clearly does not.

Although the converses of theorems 1 and 3 are proved in the appendix,
there is another result related to the converse of Theorem 3; by
strengthening the conditon for m=n=1 alone, we can get a stronger converse
for polynomials. Before we state this converse, however, we first give a
stability criterion (used in the proof of the converse) which, although

previously known, [3], has not appeared in the engineering literature.

Although not as sharp (in terms of dimension) as some other known criteria [4],

it has two advantages which make it useful for theoretical purposes: first,

it is given in terms of a one-parameter family of discs without the lower-

dimensional test in [5]; and second, unlike most other stability tests, which

conclude the nonvanishing of a polynomial on U2 from its nonvanishing on
2
some subset of U2 which contains T , this test allows the polynomial to

2
vanish at some points in T , but concludes only that the polynomial does

B g sme
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not vanish on U . The criterion is:

Theorem 4:

Suppose a polynomial f has no zeres in the set

2
(21, Z5) e U []Zi] = |Za]};
then f has no zeros in U2.

This is proved in a much more advanced context in [3]; however, it

can also be'easi1y proved by applying one of the criteria in [4] to the
polydiscs

3 2
U, = {(Z1,22) € ¢ [1Za] v, |Z2] < 1)

for o<r<l.

For the hypotheses imply that f has no zeros on the distinguished boundary

_2
of U, (for o<r<1), and none on the set
o 2 .
{(21,25) € ¢ |7)22} n U
2
Thus by theorem 5 in [4], f has no zeros in Ur for any r < 1, and so f has

2
no zeros in U .

We can now state and prove the partial converse to theorem 3.
Theorem 5:
If f iS a polynomial with the property that

2n L
%& Io log If(eJe,eJ(e+v)) de = log |f(0,0)| for o<y<2r,

then f has no zeros in U,

Thus we strengthen the condition for m=1 and n=1 in theorem 3 by
specifying that the constant in question is to be log |f(0,0)]|: it then
follows not only that f has rational spectral factors, but thaf it is

2
actually zero-free in U .
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By theorem 4, it suffices to prove that f has no zeros 1in the set

. : 2],
{(Zy4,2Z3) € U |Z,] = |Zz|}
But this set is the union of the open discs

{(Z1,22) |2, = eIz, |Zy]<11.for 0 < ¥ < 2n;

we therefore wish to prove that f has no zeros in any of these discs;

or eqhivalenﬁ1y that the function f? of one variable defined by

f, (z) = f(Z,Zejv) has no zeros in the open unit disc. Applying Jensen's
formula [6, p.299] for the unit disc to f?, we get .

%ﬂ!‘:’* log lf, (_ej")[de = ch>9 lfv‘°’l‘f Tog llii

where the summation is over all the zeros (cpunted with multiplicity) of

f, in the unit disc, 'Expressing this in terms of f:

%} J:ulog ,f(eje’ej(°+?)),de = log lf(o;o)lf;'z’log 1Z;

and so } log |Z4] = 0.
Since for any Zi in the open unit disc log |Zi| < 0, the conclusion follows.
(It is clear from the proof that we always have

4 Izplog lf(eje ej(°+?))|de:> Tog If(o o)l .

2w )o . - ’ s

it follows from this that in fact the apparently weaker condition

2n 2w .
1 Jjey _je, - l
4“2 Io Io log If(e ,€ )|d61d92 log lf(o,o)

2
is sufficient to guarantee that f is zero-free in U . See [2,p.73]).

Stable IIR Filters and Minimum-phase FIR Filters:

The very close relationship of spectral factorization to the nonvanishing
2
of polynomials in U , and thereby to stable IIR filters (via the denominator
polynomial) and minimum-phase filters (via the numerator polynomial):@is al-

ready clear from the previous sections. The force of theorem 2 is that

R -5
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purely from the point of view of amplitude response transfer functions having

rational spectral factors are equivalent to those without poles or zeros in
Uz. Thus the restrictions on amplitude response in theorems 1 and 3 apply
to the denominator polynomial of any stable IIR filter; the contribution of
the denominator polynomial to the overall émplitude response of the filter
(in the case of an all-pole filter, the entire amplitude response) must
satisfy the restrictions imposed by theorems 1 and 3. We have, therefore,
identified the properties of the amplitude response which make it iqpossib]e
to stabilize a filter; if the original amplitude response has large overall
variation in the "wrong" directions, attempting to find a stable filter which
closely matches this response is futile. Close matching of the émp]itude
forces instability. This has already been shown by example by Bose [9] and
Woods [10]: we now see that it.is the variations in the amplitude response

in the "wrong" direcﬁions in their examples which accounts for their be-
haviour.

It is also of interest to note that, in the Shanks procedure of minimizing

2
II |fg-1]| de,de,

over all polynomials f of given degree (where g is the original polynomial),

if the allowable f's were restricted to those which have polynomial spectral
factorizations, the procedure would yield a polynomial devoid of zeros in Uz.

It does not appear that this observation can be used as the basis for a work-
able stabilization method, however, since the condition that f have polynomial
spectral factors is intractably nonlinear in the coefficients of f; and further,
in many cases this procedure would yield an f which was only marginally stable.
For the same reasons, restricting oneself throughout the design procedure to
polynomials which satisfy the condition in theorem 5 does not appear to be a

feasible method of ensuring stability.

R
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Examples and Comments :

An example of the behaviour of those polynomials not possessing poly-
nomial spectral factors has already appeared in thé literature, although
in a different context; we repeat this example here.

7 2 2 2 2 2 2
A(Zy,25) = 1 -.752, + .92y + 1.5Z, - 1.22,2, + 1.30,Z, + 1.2Z, + .92,1, + .51,2,

This polynomial was studied in [7]; the associated Shanks polynomial was
found to be stable but to have a substantially different amplitude response .
from that of A (for more details, see [7]). The fact that A does ‘not have
polynomial spectral factofs was established by checking the copdition in
theorem 3 for m=n=1 and ¥ = 0, ¥ = w, with the following results: (correct to
nine decimals)

2n 4 v
%& Io log lA(eJe, eJe)'de = .696570700

2n ; L i
1 I Tog |A(eJ°. eI+ 4s = 1.134686936

2r Jo

As an example of a polynomial with rational spectral factors, we have
2 2 2 2
B(Z;,Z2) = 1 + 2.25Z, + 2.25Z, + .52, + .5Z, - 6.52,2, - 7,1, - 117,
-
- 42,2,
This factors into (1 + .25Z; + .25Z, + .5Z,Z,)(1 + 2Z, + 22, - 82,Z,)

2 2
the first factor factor having no zeros in U , the second none in V ; re-
2
versing the second factor gives a polynomial without zeros in U :
N
B(Z1,22) = (1 + .25Z; + .25Z, + .5 2,Z5)(-8 + 2Z, + 2Z; + 2,Z,)
B ol 2 2 2.2
= <8-2A1, + .5 7y + .57, + 1.252,Z, + 1.252,Z, + .51,1,,

~
and B has the same amplitude response as B.
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In order to gain some idea of the stringency of the conditions in
theorem 3, let us consider the case of an ideal band-pass filter. By
an ideal band-pass filter we will mean a filter whose amplitude response
is equal to 1 on some subset, A, of the square 0<8,<2m, 0<8,<2w, and
equal to K << 1 on the complement of A.(of course this specification con-
tinues over the whole plane by periodicity). This of course is not the
amplitude response of any rational function, but in practice for cértain
shapes of the set A, one may wish to approximate such a response by a
rational function. One easily sees that up to a scale factor, the averages
in theorem 3 are in this case merely the fraction:

length of the line Li lying in the complement of A
Total length of the line Li

It is easily seen from this that there are very few passband shapes of
practical interest which satisfy even the first of these conditions (where
n=1 and m=1); in otherlwords, very few which can be accurately approxi-
mated by transfer functions having rational spectral factors. (This is
not to imply that one would in practice be restricted to such filters; the
above discussion is meant solely as an indication of the severity of the
restrictions on the amplitude of such filters).

Finally, we remark that there does not seem to be any difficulty in
extending the results in this paper to higher dimensions, and to multi-

dimensional systems other than digital filters.
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APPENDIX

The converses to Theorems 1 and 3.

These converses involve some technical ideas and results from [ 2]; the
most important ideas are those of inner function [2,p.105], outer function
[ 2,p. 72], Poisson integral [2, p.17] and the classes N(U?) [2, p.44] and
N»(U2) [2, p.44].
We will also use the following notation from [ 2] (Here f is an analytic

function on U ):

i, f(ed®1, %) A lim_ f(red®1, red®2 )
r-+1
will denote the radial limit of f

(this is clearly consistent with our previous use of f*);

ii. For w = (w;, Wp) € T2 . fw(Z) will denote the one-varible
function defined by
fw(Z) A f(Zwy, Iwy);
iii. if @ is a function defined on T2 which is absolutely integrable
there, ] :
o(m.nla 77z ﬁ'" ﬁ"exp(-jmex,-jnez) 0 61,62) dopde,
will denote the Fourier coefficients of .

2
iv. For any function Q on T ,

an (2
Z%T Io' Io" 0(e,,6,) de,de; will be denoted by

ITZ 0 dn or I 0 (w) dm (w).
T2

We will first prove the converse to Theorem 1, and from this derive

the converse to Theorem 3. First of all, however, we need the following
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lemma (which is given as a problem in [2]).
Lemma Al:
If § is a real-valued function defined on T2
such that
1
0 eL(12) (fe, [ |0 fne<e)
T2
and
O(myn) =0 for mn < O,
then there is an outer function f on U2 such that
PLO] = log|f| |
(where P[ ] denotes "Poisson integral of").

Proof
O(m,n) (mon) % (0,0)
Let a__ = 3
i 1/2 §(m,n)  (m,n) = (0,0)
and let
2,,2,) = : T ol
9l g m=0 nio amn : 2.

This series clearly converges uniformly on compact subsets of U2,

and so defines an analytic function there.

o e o
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If we let f = &9
2
then f is analytic in U , and
-] @ m n ! 4
Tog [fl = = = a_ ryr; exp(jme; + jne,)
m=0 n=0
+ z z °3;h rT rg exp (-jme, -jney)
m=0 n=0
= > by 6 (m,n)rlmlrl"'exp(jmel + jne, )
Mm==o® A==
= PLY) ; [2.:p.17]
Next we prove that f is outer; we have (for O<r<1)
J 2logﬁtlf(r‘w)ldl“ (w) < J o109 f(r,w)l|dm(w)
T T ‘
. ITZIP[¢](rw) | dm(w)
< JT2|$(W)|dm(w) [2,Thm.2.1.3(c)]

< 0o
and so f ¢ N(UZ).

Now f* exists almost everywhere on T2 [2,Thm.3.3.5] and log|f*| = ¢ almost
everywhere on 12 [2,Thm.2.2.1]; thus log |f| = P[log |f*|] and so
F e Ne(U?) [2,Thm.3.3.5, and Tog |£(0)] = [ , Tog | #+(w)ldn(w).
T

Thus f is outer.

Q.E.D.

We can now prove the converse to Theorem 1:
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Theorem A2:

Let f(21,22) be a rational function ($0), and let

0 = log |f*|
If ﬁ(m,n) = 0 for mn<0, then there is a rational function g without poles

2

or zeros in U such that |g*| = |f*|.

Proof:
By Lemma Al, there is an outer function g such that

log |g| = P[log|f|].
This implies

log |g*| = log |f*| almost everywhere on T,
Therefore, for almost all w e T2

log |g; (2)] = log If; (Z)| for almost all ZeT [2,Lemma 3.3.2],
and g is outer for almost all w eT? [2,Lerma 4.4.4].

For any such w, let Z], S5 e Zn denote the poles, and Z — Zm the

n+l’
zeros, of fw(Z) in U, and let

- n m >
Ll 6 S8 e SRR pan
sz'1 k=ﬂ+] Z'zk

Then ;w has no poles or zeros in U and is rational; hence, fﬁ is outer. Since

g, is outer, we have f,/9, is outer. Also If‘*l = Ifh*l, and so lfw*l = |g,*|
for almost all ZeT. Thus f,/9, is inner. But a function which is both outer

and inner is a constant of modulus 1, and so

s oY ¢
Oy " © fw for some real V.
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Thus g, s rational for almost all WE:TZ, and so 9 is rational for all
weE, where E< T2 is a compact set of positive measure (by the inner
regularity of the measure). It follows by [2,Thm. 5.2.2] that g is
rational (since the vanishing of a polynomial P on a set of positive measure

in T2 would imply
log [P+ ¢ LI(T%)
and so P = 0.)
Thus g is a rational function without poles 6r zeros in U2, and
lg*| = |f*]  almost everywhere in T2

and so, since g and f are both rational,

lg*| = |f*| on T2
Q.E.D.

We next prove. the converse to Theorem 3:

Theorem A3:
Let f(Z],Zz) be a rational function (¥ 0) and let

0 = log |f*|

¢ R W
2r Io ¢ (me, ne + ¥)de  is a constant independent of ¥ for each
pair (m,n) with m>0 and n >0 then there is a rational function g without

poles or zeros in UZ such that |g*| = |f*|.
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Proof:
Let m>0, n>0, and let £ # o be an integer.

Then

]
o

2T 2T
I JAmy J O(me,ne +v)de dy
o © 0

2m (27 |
T [o Jo eH™ 0 (mo,ne +v)dody

"
o

Making the change of variables defined by

we get
2T %91 + 27

1 . .
m Jo L—‘e, exp (jamez- jene;) ¢ (e,,02)derde; =0
m

and since the integrand is periodic in 6, and e,

2T f2T
Jo -Io exp- (jame, - jane;) ¢ (e,,8,)de,de; = 0

and so 6 (-gn, gm) =0 for all £$ 0, m>0 andn >0,

that is,

a(m,n) =0 for all m,n with mn < o.

The result now follows from Theorem A2.

q.E.D.

Finally, we note that if f in Theorem A3 is a polynomial, then the converse
in Theorem 2 implies that f has polynomial spectral factors. Thus we have the

full converse of Theorem 3 for polynomials.
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SYMMETRIC HALF-PLANE FILTERS

John Murray

ABSTRACT

A class of two-dimensional recursive digital filters called symmetric
half-plane filters is discussed; some properties of these filters are derived
and it is shown that in certain situations these properties may give the
symmetric half-plane filters both theoretical and practical advantages over

previously proposed filters. In particular, they are ideally suited to highly

parallel processing.

INTRODUCTION

In the literature on 2-dimensional recursive digital filters, two main
types of filter have been studied; these are the quarter-plane filter (e.g.[1],
[2]) and the asymmetric half-plane filter [3]. Basically, the two correspond
to two different concepts of causality. The general stability conditions
for a wide class of filters (including symmetric half-plane) were discussed in
[4]; unfortunately, however, those filters are not recursively implementable in
general. Here we will consider a class of filters which are recursively im-

plementable, and satisfy the same stability conditions as those in [4].

SYMMETRIC HALF-PLANE FILTERS

By a symmetric half-plane filter we will mean a (causal, recursive) 2-di-
mensional digital filter, the denominator of whose transfer function is of
the form

- N
M2 ; o 1 o Ly -

L L
- ne_N
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This differs from the filters in [4] in that m goes from 1, rather than 0,

to M; i.e., this filter omits all of the row m=0 except for the constant

term; the asymmetric half-plane filters omit half of this row. The filter (1)
is recursively realizable, since the computation of the output at any point
depends only on the outputs in previously computed rows; looked at from another
point of view, each row of output depends only on previous rows of output. This
has two effects; firstly, it focuses attention on the row as the basic element
in the filter; secondly, it implies that all the outputs in a given row may be
computed in parallel, since each output in a row depends only on outputs in
previous rows, and not on any of the outputs of the same row. This is the main
practical advantage of this class of filters - it would be of significance, how-"

ever, only in real-time hardware applications of 2-dimensional filtering, and
these seem to be few.

SOME_PROPERTIES

Using the methods in [4], one can easily derive the following:

The filter (1) (i.e., the all-pole filter whose denominator is A(Z],Zz)) is
stable if A(Z,,Z,) # 0 for all (Z,, Z,) such that IZ]| =1 and |22| < 1.

We note that this set is the same as that for the symmetric half-plane filter
in [4]; it is smaller than that for the asymmetric half-plane filters [3]. It
is the smallest "instability set" (known to the author) of any recursively im-
plementable class of filters.

However, there is a price to be paid; the amplitude response of the filter
is restricted as follows:

2 1 .
If A(Z],Zz) is of the form (1), and if 377;7757 is the transfer function of a
stable filter, then

2
Joﬂlog |A(eI®1,e392)| dq, = 0 (2)

independently of 9.
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Thus, the average gain along any line of length 2n parallel to the 8,-axis is
constant; or in other words the filter cannot have variations in the 6,-direction

in overall (average) gain. Equivalently, if the cepstrum of |A(ej°1, ejez)l is

® @ A n m
given by J 7 3mn I Iz

M=-= N=-~=

then :on = 0, for all n.
This follows immediately from (2) and the definition of the cepstrum; (2)
will be proved in a forthcoming paper.
This implies that in order to realize an arbitrary magnitude function, the
filter must either have a (nonminimum-phase) numerator polynomial, or the filter
must be cascaded with a 1-dimensional filter in 21. It is very easy to calculate

the ideal amplitude response of this filter.
DESIGN AND IMPLEMENTATION CONSIDERATIONS

It is conceptually convenient (and in a large number of cases, computation-
ally efficient) to implement the convolution in the Z]-direction by means of the
Fourier Transform. (It is assumed from the beginning that the dimension of
the array to be filtered is a known fixed constant in the Z]-direction. i.e., each
row is of the same fixed width). From this point of view, and regarding each row
as a single entity described by its 1-dimensional Z-transform, the coefficients

- in (1) are irrelevant; what matters are the M functions
d(el®) = a4 (eforyN
m p=-N ™n )

Further, the stability requirement for the filter is equivalent to the requirement

that for each fixed 6,, the filter defined by

§ 1

I1 ém(eJel)zg.‘ + 1
m=

is 1-dimensionally stable. Finally, the functions Qm(ejel) do not have to be
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analytic or meromorphic functions; this is seen by letting N+«. In other words,
the roots of Qm(ejel) can vary quite arbitrarily with 6;. Thus, we can design
the one-variable filter Aal(Zz) by any one of the usual one-variable design
methods we choose (yielding a stable filter) for each 8;: the result will be a
stable two-variable filter: further, if our one-variable method gives poles and
zeros explicitly, we have the same for our two variable filter, which can there-
fore be expressed as a cascade of filters of degree 1 in Z,. Finally, if one
desires a filter of finite degree in Z,, one can solve the following approximation

problem (for each m, 1 <m < M); minimize (over bmn)

N < .
Jng; - o J9, :
[l I byne b,(e’"1) || subject to

n=-N
N
| 7 b ej"°1| < 1 for all e,, where
mn
n=-N
Sm(ejel) denotes the m-th pole of Ae,(zz) as a function of ;, and || || denotes

some error norm.

Hopefully this will become clearer on consideration of the following example.
EXAMPLE

We wish to design a filter with second-order Butterworth response in Z, to
approximate the fan filter whose passband is the set |8,| < |8,]|. For fixed o,
therefore, the filter is a 1-dimensional filter whose passband is the set |e| < |e,].
Using the bilinear transform technique, we find the second-order continuous

Butterworth filter
]
1+ V2 S/mc + Szlmg

transforms into
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“! (142,

-:-/zuCOIo(z.cl-z)z,o(.czoh.col)z: |

(3)

while its (stable) poles transform into - |

a+ e GFha - o (732 )

and

1+ oG im- i)

for w_ > 0.

In accordance with the usual frequency warping, we take w. = | tan el/2[; however,
we note that this éauses stability problems at 6,=0 and 6,=r; we therefore take

a small perturbation ofu,, e.g., i

1 .e i3 ‘\A%:-_:n‘é%};_:_: (4)

The filter can now be directly implemented by multiplying the Fourier transform

of the previous output rows by the appropriate functions according to (3) and (4)
and performing the recursion from row to row directly.

Alternatively, if a finite-order (in Z;) filter is desired, we must solve
the problem: Minimize (over b,,)

2w §-1 [ N
-!o lg;;{l-ngz:: o}fff - 3 bln'jn.'ld'x

N .
9
subject to lnz_“b:ﬁ‘j" 1)<y forall o

and similarly for the other root. The resulting filter may then be implemented in
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cascade. It should be pointed out that while the above optimization problem is
not simple, it is one-dimensional.

Finally, the above example was chosen for simplicity and convenience rather
than realism. Clearly a Butterworth filter is not optimal for this problem,
especially when it yields a design which is not all-pole; if we have to store
input rows (as well as output rows) we may as well use them, and design an
elliptic type filter; alternatively, we might use a filter which is all-pole
in its discrete form.
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Introduction : -

The concepts delineated in this paper arose in part from an
introductory study of Riemann surfﬁces. Associated with an analytic
function is a Riemann surface. It has the property that the image
of simply connected regions in the complex plane are simply connected
on the Riemann surface.

The point made here is that the Nyquist criterion is trivial
for simply connected regions. Moreover, if one can work on the

é Riemann surface, this trivality carries over to the general case.

To illustrate the point, let Figure 1-a be the image of the right
half plane under an analytic.map. The region is not simply connected.
Figure 1-b shows the "same region" as it might appear on an r

appropriate Riemann surface. Here the region is simply connected.

%E Q:‘\\’\

s \
Oy

<
\

i \ (o)

Figure 1

Under the hypothesis that f is bounded at infinity, the boundary
of the region in Figure 1-b is the image of the imagimary axis as

indicated by the darkened line in Figure 1-a.
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Now remove "-1" (this may be a set of points) from the Riemann
surface. The essential argument we need is that the Nyquist contour
16 the complex plane is homotopic to zero if and only if "-1" is in
the interior of its image on the Rimann surface.

Although motivated by the intrinsic properties of Riemann surface,

this paper drops any further discussion of the concept so as to

simplify the exposition. Instead, the paper exploits the fact that
the Nyquist contour is a simple closed curve in the complex plane.
Mathematically we draw only on the intuitive concept of homotopic

triviality as found in algebraic topology.

In the sequel, we prove the c]aésical stability results via
homotopy theory. In particular, we utilize covering space theary.
We believe our analysis is clearer and maore intuitive than has
hitherto appeared. Moreover, we believe that this research indicates
that the nub of the Nyquist criteria is in fact homotopy theory.
In a future paper, we will generalize these results to functions of
several complex variables and their application to the stability of

of multi-dimensional digital filters.

Mathematical Preliminaries

Firstly, let £, £,, and E+ be the complex plane, the closed
right half plane, and the open right half plane respectively. Let
E_ =¢ - £,. Basic to homotopy theory is the concept of a path.

A path or a curve in the complex plane is a continuous function

v:[0,1]+£. For this paper all paths are understood to be
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rectifiable--i.e. vy is a];f a function of bounded variation. (2)
vy is a closed path if y(0) = y(1). y is a simple closed path if y
is a closed path and has no self intersections. The image of
I = [0,1] under y is called the trace of y and is denoted by {y}.

Two closed curves yd and v, are homotopic (vg - vq) in € if
there exists a continuous function r: I x I + ¢ such that:

(a) r(s,0) = yo(s) 0<s <l

(b) r(s,1) = Y](s) 0<s<1

(¢) r(o,t) = r(1,t) 0<t<l

Intuitively, vy is homotopic to A8 if one can continuously
deform Yo into y;. Moreover, it is easily shown that the homotopy
relation is an equivalence relation. (4) (5)

Another important property of a closed curve is its index. The
index of a closed curve, y, with respect to a point "a" not in {y}
5

n(yia) = zer J (z-2)7'dz (2)
Y

Observe that

[(z-a)"'dz = [d(In(z-a)) = [d(In|(z-a)|) + i[d(arg(z-a))
Y Y ¥ Y

= i[d(arg(z-a))
Y

This integral therefore measures i times the net increase in angle that

the ray r of Figure3 accumulates as its tip traverses the curve y.
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Figure 2

Following the comments of J. Barman and J. Katzenelson (1),
for the integral to be well defined it is necessary to specify the
appropriate branch of arg(z-a) at each point of the integration.

We will assume the choice of branch as outlined in (1).

Finally, we point out that this definition of index (encirclement)
is a special case (i.e. in the plane) of the general topological
concept of Brouwer degree. (4) (5) (6)

At any rate n(y;a) = 0 if and only if v is homotopic to a point
in ¢ - {a}. (cf. prop 5.4, ref. 2) Simply then, a closed curve v
does not encircle the point "-1" if and only if y is homotopic to a
point in £ - {-1}. We will henceforth refer to such a y as being
homotopically trivial.

Conversely, y encircles "-1" if and only if y cannot be continuously 3
deformed to a point in £ - {-1}. Clearly these ideas indicate that
the Nyquist encirclement condition is fundamentally a homotopy
concept.

To further illucidate the point, let &(s) be a rational transfer
function depicting the open loop gain of a scalar single loop feedback
system. Suppose all poles of é(s) are in a_ and é(u) <M<w Via

the Nyquist Criteria, the closed loop system is stable if and only

if ﬁ(s) = a(s)/(1+§(s)) is stable; if and only if the image of the
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imaginary axis, under §(s), (the Nyquist plot of é(s)) does not pass
nor encircle "-1". :

Specifically, the encirclement of "-1" by the Nyquist plot
implies there exists at least one So in §+ such that §(so) = -1.
Thus the Nyquist contour is homotopically trivial in £, - {3’1(-1)}
if and only if the Nyquist plot is homotopically trivial in
oe,)--1).

Motivation for this approach also arose from a close scrutiny
of the classical proof of the Nyquist criteria which depends on tﬁe
argument principle. The argument principle supplies unnecessary
although specific information in that it counts the number of times
."=1" is encircled. This may account for the apparent difficulty in
generalizing the Nyquist criteria. Nevertheless, the affinity
between homotopy and encirclement ideas led the authors to a minor
study of algebraic topology.

In our setting, aigebraic topology establishes a topologically
invariant relationship between a metric space, X, and an algebraic
group called the fundamental group of X, denoted by =(X). The
relationship is topologically invariant in that homeomorphic spaces
have isomorphic fundamental groups.

Specifically, the fundamental group is a set of equivalence
classes of closed curves. Each equivalence class consists of a set
of curves homotopically equivalent. The group operation is

"concatenation" of curves.




For example, the fqndamental group ofA¢ consists of one

element, ig, the identity, since all closed curves are homotopic to
zero. If X =€ - {-1}, then n(X) has a countable number of elements:
ix_(the identity) equal to the equivalence class of all closed curves
not encircling "-1" and the remaining elements, Hp fn=1,2, 3...)
consisting of the equivalence class of all closed curves encircling
“-1", n times. Moreover, M concatenated with Wy is equal to the
element M

Now let X and Y be metric spaces. Let f: X = Y be locally
homeomorphic. In particular, assume that for each point y in Y there
exists an open neighborhood G of y such that each connected component
of f'](G) is homeomorphic to G under the map f. Under this condition
X is said to be a covering space of Y. (2) (4) Also let =(X) and
w(Y) be the fundamental groups associated with X and Y respectively.
With these assumptions, f effects a group isomorphisa (i.e. a one to
one onto mapping preservinggroup operations) ¢¢ between w(X) and a

subgroup of =(Y) as in the following diagram. (4) (5)

X £ ST )

N

< WY

N
>
F‘

Figure 3




F is the functor which establishes the relationship between a

topological space and its fundamental group.
Before judiciously taiﬁoring the complex plane so as to apply
the above result, we distinguish between a critical point and a
critical value. A point z, in £ is a critical point of a differentiable
function f if f'(zo) = 0. A critical value of f is any point w =

f(zo) whenever z_ is a critical point.

(]
Now suppose f:£ - £ is a rational function whose set of poles

is P = {P], sl Pn}. Let Q = {qy5 -..» qn} be the set of all points

in 7 such that f(qi) is a critical value of f. Note that there may

be qi's which are not critical points. To see this consider g(z)'=

zz(z-a). g(0) = 0 implies "0" is a critical value of g, but g(a) =

0 with g'(a) # 0. Finally, define T = {tilti = f'](-l), f=1,...40}.
Note also that since f is a rational function, P, Q and T are finite

sets. Define X = ¢ - {P Q T} and define Y = f(X).

Lemma 1: Under the above hypothesis, X is a covering space of Y.
Proof: For X to be a covering space of Y, each y in Y must have an
open neighborhood Gy such that each component of f'](GY) is homeo-
morphic to Gy. Using the inverse function theorem (7 ) we construct
such a neighborhood.

Let {Xy5 ---» xk} = f"(y) Qhere again the finiteness of this
set is a consequence of the rationality of f. Let w1, . Nk be

disjoint open neighborhoods of Xps eevs X respectively. Since
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<

f is analytic on X and since f'(x) # 0 for all x in X, the inverse
function theorem guarantees that there exist open neighborhoods

U;CH; (1 = 1, ...,k) such that U; is homomorphic to V, = £(u,),

e

where it follows that V; is an open neighborhood of y.

Thus £71(V0...UV,) = GU...U U . Define V = v, N...03,.
Clearly V is an open neighborhood of y and f'](v)c:U]LJ...lJ Up-
Since each U; is homeomorphic to ;D\, L V) U; is homeomorphic
to V. ;

Therefore each y in Y has an open neighborhood Gy such that °
f'ltey) has each of its components homeomorphic to Gy. It follows : f§

that X is a covering space of Y. : |

: Corollary: The fundamental group =(X) of X is isomorphic to a sub-
broup N of =(Y).

This corollary says that a closed curve in X is homotopically

trivial if and only if its image under f is homotopically trivial.

The Scalar Nyquist Criterion

In this section we apply the above corollary to an "ugly"
Nyquist contour. After proving the Nyquist Theorem using this ”hgly“
contour we relate it to the usual Nyquist cdntour. This will

establish the classical result.

Let a(s) be a rational function which represents the open loop
gain of a scalar, single-loop unity feedback system. We assumé

§(s) # 0. Thus the closed loop system has a transfer function
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h(s) = g(s)(1+a(s)™".

We will say that the closed loop system ﬁ(s) is stable if
and only if h(s) has all its poles in ¢_ and h(=) < = .

Let P = {py, ..., p,} be the set of poles of §(s) and let
Q = {qy, ...,qy} be the set of points q; such that §(qi) is a critical
value of g. Define T = (t,|t, = £ 1(-1), i = 1, ..., 1}. Finally,
let X = ¢ - {PUQuT} and Tet Y = f(X). Lemma 1 implies X is a
covering space of Y under the mapping f. '

Assume for the present that ;(im)# "1" for <= <w <. The
first task is to construct the "ugly" Nyquist contour as well as
the classical contour. Define the ulgy contour to be YR where
vyp: I » Xcf is a path whose tracg is illustrated in Figure 4-2.
Note that R is chosen strictly greater than max ([p;/, [qjl, [t l)
for 1 <i<n, 1 <j<mand] <k <1. The indentations, along
the imaginary axis into the right half plane, are of radius
0 < e<e,. These semicircular indentations are made around all
points of P lying on the imaginary axis and around all points q4
of Q lying on the iw-axis with q; £ T. The other "indentations"
{again of radius e, 0 < € < ¢,) are slits into £, which encircle all
points of P and all points q; of Q (q; £ T) which are in E+ so as
to eliminate these points from the interior of the contour. We
have also labeled these slits uy, ...,u, where_each uj maps an
appropriate subinterval of I onto the specified subset of {vp}-

The parellel lines, connecting a pole in £ _ with the semicircular

portion of Yp» are actually the same line segment (slit) traversed
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in opposite directions. Note thdt we have indicated the usual
- counterclockwise orientation. to the path. Thus the only points

2 (-}
encircled by YR are points of T which are in £,.

Niw ‘ Niw

\L\ () Figure 4 v (o)

x indicates a point of P; ® indicates a point of Q
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Letr dénote the classical Nyquist contour where o

r: I > g{J{=} as indicated in Figure 4-b.

Lemma 2: Under the above assumptions on 5 and (D ﬁ(s) is stable

if and only if the path aoYR does not encircle "-1".

‘ - Proof: Since g(iw) # -1, -= < w < =, there is a finite R such

é ‘ that TR encircles all points of T lying in £,. This fact together

i ~ with g being analytic on X implies that the statements of the Lemma
are well defined. a

Suppose h(s) is stable. Then ﬁ(s) has all poles in E_.

Equivalently ;(s) # -1 for all s_in £,- Thus TR does not encircle
any points of T implying that R is homotopically trivial in X.

' By corrollary to Lemma 1, §°YR is homotopically trivial in Y.

' Conversely, suppose that Q'YR does not encircle "-1". Then

aoyR is homotopically trivial in Y. The same corrollary implies

YR does not encircle any points of T. Thus all points of X which
map to "-1" are in E_.

At this stage let us compare the information of the Nyquist
plot, aor, with the "ugly" Nyquist plot, é.yRO.

Lemma 3: Let n be the number of poles of g in £,, then

2%T Ni (z-l)']dz = Z%T J (z-l)"dz +n
. 9’YR : ’]’

s ——— -
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Proof: Consider that

! I - - 1
2r1 [ (z-1)"'dz = Zn7 [ (2-1)"dz+ [ [ (z-1)7'dz
§° YR ger o §° u Kk

But [ (z-1)"Vdz = [ (3(2)-1)"'g%(2)ez

gouk L
If u, encircles a point of Q, then (Q(z)-l)'la'(z) is analytic
in the region bounded by ¥y and thus the integral approaches zew
uniformly for arbitrarily small e¢. Thus the integral is zero
these points.

If u encircles a pole of §(s) then since (a(z)-l)']a'(z) is
analytic in the region bounded by e

[ (3(2)-1g*(z)dz = [ d(In(g(z)-1) = In(g(z)-1) |  =2wi
Yk g | Y

for a suitable branch of the logarithm. The integral comes out
as negative 2xi since uy was traversed in the clockwise direction.
The conclusion of the lemma now follows.

At this point let us remove the restriction that i(iu) # -1
for -= < w <_=. We now give a proof of the classical Nyquist
criterion using the above concepts.

Theorem 1: Let g(s) be as above with the earlier restriction
removed. Then h(s) is stable if and only if the Nyquist plot of

a(s) does not pass through "-1" and encircles "-1" exactly n times
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where n is the number of poles of g(s) in §+.'
Proof: Suppose h(s) is stable, then all poles of h(s) are in

¢_and h(=) < =. Thus g(=) # -1 and g(s) # -1 for all s in .
Therefore via Lemmas 2 and 3 the Nyquist plot encircles "-1" exactly
n times.

Conversely suppose the Nyquist plot encircles "-1" exactly n .
times and does not pass through "-1". Thus 5(-) # -1 which implies
ﬁ(-) < =, Moreover since gor encircles "-1" n times and there are
n poles of g(s) in E+. we know that §oyR is homotopically trivial.
Thus R is homotopically trivial. Consequently there are no
points t, in £, such that §(t1) = -1. Thus ﬁ(s) is stable.

Matrix Case

Let the entries of an nxn matrix é(s) be rational fuﬁctions
in the complex variable s. Suppose é(s) depicts the open loop gain
of the single loop feedback system of Figure 6.

Ald JC? + %y } y Y

Figure 5§

i(s) and }(s) are n vectors whose entries are also rational functions

of s which represent the input and output of the system respectively.

R S —
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In this article, we assume each entry of é(s) is bounded at
X = ®. Thus é(s) as a mapping, é(-):¢ > g™ s analytic on £ except
at a finite number of points, the poles of its entries.

For Figure 6 to be well defined we require that det [I+§(s)] % 0

T

Thus there exists a closed loop convolution operator, H, such that

e e ————T

y = H*x. Moreover the Laplace transform of H, ﬁ(s) satisfies

A(s) = G(s)[1+6(s)]"

For the system of Figure 6 to be stable, ﬁ(s) must have all
its poles in £_ and have all its entries bounded at s = =,

Under the assumptions on ﬁ(s), the following factorization is
valid:

G(s) = N(g)o"(s)

where N(s) and D(s) are right co-prime, polynomial matrices in s
with det[D(s)]# 0. ‘Moreover sg s a pole of é(s) if and only if it
is a zero of det[D(s)]. (9)

Desoer and Schulman (3) have shown that the close loop operator
H is stable if and only if det[N(s)+D(s)] £0 for s in ¢_ and
det[I1+G(=)] £ 0. Using this fact, we state and prove the following:
Theorem 2: H is stable if and only if (1) the Nyquist plot of
det[N(s)+D(s)] does not encircle nor pass through "0", and (2)
det[1+6(=)] # 0,
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“Proof: By hypothesis we require det[I+G(=)] # 0. Therefore we only
must verify that det[N(s)+D(s)] # O for Re(s) > 0 if and only if the
Nyquist plot of det[N(s)+D(s)] does not pass through nor encircle 1
now, , |

Now the Nyquist plot of det[N(s)+D(s)] passes through "0" if and

T T e

only if det[N(s)+D(s)] has a zero on the imaginary axis--i.e. if and

only if the closed loop system has a pole on the imaginary axis. :
Finally assume the Nyquist plot of det[N(s)+D(s)] does not ﬁass

} : through "0". Observe that det[N(s)+D(s)]'is a polynomial and thus

' a rational function. As per Theorem 1, appropriately define X and Y

so that X is a covering space of Y under the map det[N(:)+D(-)]. The

above lemmas imply that the Nyquist plot of det[N(s)+D(s)] is homo-=
)

topically trivial if and only if there exists a point So in £, such

that det[N(s)+D(s)] = 0. The assertion of the theorem now follows. |
Observe that if one assumes the open loop gain to be stable !

(i.e. é(s) has all poles in §+_) then det[I+é(s)] can replace

dg;[N(s)+D(s)] in the above theorem. This follows since for all s

in g,, det[N(s)+D(s)] = det[I+G(s)] det[D(s)] with det[D(s)] # 0.

Thus in g, det[N(s)+D(s)] has a zero if and only if det[I+G(s)] has

a zero.
Finally, it is worthwhile to point out the relationship between

the above formulatéd multivariable Nyquist criterion and that formulated

by Barman and Katznelson! For this purpose we let Aj(iw); =1y veos B3

denote the n eigen values of G(iw). In general parameterization of

these function by iw is not uniquely determined but one can always

formulate such a function. Moreover these functions are piecewise
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analytic and can be concatonated together {n‘such a way as to form a

closed curve which Barman and Katznelson term the Nyquisf plot of é(s).

Now, since

det[I + é(iw)] = g [+, (iw)]
i=1 2

and the degree of'a product is the sum of the degrees 6f the ind{vidua1
factors and also equals the degree of the cancatonation of the factors,
the degree of the Barman and Katznelson plot with respect to “-1"
cofncides with the degree of our plot with respect to "0". As such,
even though the two plots are different their degrees coincide and hence

either can be used for a stability test.

Acknowledgement: The authors would like to acknowledge the contribution

of Dr. John Murray (Dept. of Mathematics, Texas Tech University) whose
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Continuation Methods for Stability Analysis
of Multivariable Feedback Systems*

R. Saeks, K. S. Chao and E. C. Huang
Texas Tech University
Lubbock, Texas 79409

Abstract,

Techniques for implementation o a Nyquist stability result for
a linear time invariant muliivariable feedback system are des-

cribed. The approach is based on continuation methods for com-
puting the system's eigenvalue loci.

I. INTRODUCTION )
The classical Nyquist stability criterion for single-input single-output,
linear time-invariant feedback systems has only recently been generalized
to multivariable feedback systems [1,2]. Stability theorems are expressed
in terms of the eigenvalue loci of the open loop transfer function G(s) of
the system. In particular if G(s) is stable, i.e., G(s) has no poles in
the right half of the s-plane or on the jw-axis, then a linear time-invari-
ant multivariable feedback system with n inputs and n outputs is stable if
and only if its generalized Nyquist plots(union of eigenvalue loci) does
not pass through or encircle the (-1, 0) point [1]. In order to apply the
multivariable Nyquist criterion, it is thus necessary to compute the eigen-
value loci as a function of frequency. For a given frequency, the eigen-
values can be calculated by using classical techniques. Since the eigen-
values are functions of frequency, normally one would have to repeat the
entire computational procedure for each frequency. In the actual stability
analysis, this repetition is however, impractical. Our approach to the
stability analysis of multivariable feedback systems is based on continu-
ation methods. The basic idea of all continuation methods is to convert
the solution of a parameterized family of algebraic problems into the
solution of a differential equation. Then if one can find the solution

*This research was supported in part by NSF Grants GK-36223 and
ENG75-09074 and AFQOSR Grant 74-2631d.
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of an initial problem by using classical methods the solutions to the

other problems can be obtained by integrating the associated differen-
tial equation with the initial solution as an initiai condition.

II. EIGENVECTOR APPROACH
Our first method is based on the approach described by Faddeev and
Fadeeva [3] and Van Ness et. al. [4]. A differential equation is written
with the eigenvalues as dependent variables and the frequency as variable
parameter. We then compute a set of initial eigenvalues by classical
analysis techniques and integrate the resulted differential equation to
obtain the required eigenvalues for each frequency. The eigenvalues Ai(m)
of G(jw) and their complex conjugates Xi(u) satisfy

G(jm)Xi(m) = Xi(m)xi(m) i=l52:0.:0:n0 (1)
and
6 (u)V; () = XV, (W) i-1,2,. (2)
where X. (m) and V., (w) are the correspond1ng eigenvectors of A, (w) and
(m) respect1ve1y, and G (jw) is the complex conjugate transpose matrix
or G(juw).
We differentiate (1) with respect to w to yield

<g§ X. V>

dx.
i _ dw 1 1 . o
dw ‘<xi, Vo> 5 ¥ & T B ceny B (3)

The differential equations involving xi and Vi are obtained as

n
o RO T T S SEREIR B (4)
@ e
dvi E Big¥an 12y @5 wves W (5)
—— = P 1J J
w j=1
where
dG
A =0 .=<a‘—n' xig V.> 1. # j. (6)
11 i 1J Xi-kj <Xj’vj>
dV,i
<E;’ X:> ;
311 o 09 81j = < j, xj> 1 # J-. (7)

Starting with a set of predetermined initial conditions 15(0) = 1A;4s
x1(°) = X;, and Vi(O) =Vyo fori=1,2, ..., n, we integrate (3), (4)
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and (5) to obtain the required eignevalues for each frequency. The eigen-
value loci are computed in a continuous manner by numerical integration.
III. JACOBIAN METHOD
For an nth order system, the above algorithm requires the numerical inte-
gration of a set of 3n equations and the computation of two sets of un-
wanted variables--namely the eigenvectars xi and Vi. These disadvantage,
can easily be avoided if the characteristic equation for the multivariable
feedback system can be predetermined. A much simpler method can be formu-
lated based on the approach for finding multiple solutions for a nonlinear
equation developed by Chao et. al. [5].

| Let the characteristic equation of G(jw) be given by an nth order polynomial
! in eigenvalue A with complex coefficients 4

Cf[a(w)] = | AT - G(juw)| = O. . (8)

Instead of solving (8) directly for each frequency, we consider two simul-
taneous differential equations of the form

| 4L - -f(t)  £(0) = f[a(uy)] = O |
' (9)
e 1 w(0) Wy | |
Assuming the nonsingularity of the Jacobian Matrix if
af af | (af af i
A dw ax 14
J= = " (10)
dw 3w
R 0 1
in the x-w space the algorithm (9) reduces to
o A £(0) 0
4 n
g—% +1 w(0) w, e
{ It is seen from the solution of (9)
f(t) = 0e"t = 0 (12)
o=+t
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that for any admissible pair of W, and A(mo) satisfying (8), the corres-
ponding trajectory will remain on the solution curve f=0 as w changes. The
. + or - sign is chosen depending on whether one would like to increase or

, decrease w. Equation (11) may now be solved by any numerical integration
techniques and the eigenvalue loci can be traced automatically by inte-

| grating only a second order differential system.

: IV. EXAMPLE

To illustrate the approaches presented, consider a linear time-invariant,

multivariable feedback system with open loop transfer function character-

| ized by
k
5 w2
s+ ¢

for which the characteristic equation is given by

2
fIa(w)] = 22-8x + (:g—:-lg-g— + J%ég-2)=0- (14)

1+ + w

The generalized Nyquist plots shown in the accompanied figure for the
cases where k=16 and 36 are obtained by applying the eigenvector approach
where as in the critical case, k=25, the Jacobian method has been used.

In all three cases, the equations are integrated using Euler's method

with a step size of 0.01. It is seen from the figure that the system is |
stable for k<25 since the generalized Nyquist plots do not encircle -1 j
point. |
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