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• • INTROD UCTION

Although the Nyquist criterion El] has been known for over half a

century , it has resisted generalization until recently. Interestingly,

those generalizations which have been formulated retain the simpl e

graphical character of the classical test, even when one is studying

systems defined on abstract spaces. The earliest generalizations of

the Nyqui st cri terion were the Circle and Popov criteria formulated

in the early sixties as nonlinear and/or time—variabl e perturbations

of the classical test [2] , [3) . More recentl y MacFarlane [4] ,, and’

Barman and Katznel son [5) have extended the test to the case of fre—

quency response matrices while one of the authors has fo rmulated a

Nyquist-ljke sufficiency condition for Lipschitz continuous operators

on abstract spaces [6]. Finally, in a recent paper the authors gave a

stability test for multivariable digital fil ters which was formulated

in terms of a continuum of Nyquist plots [7], [8]. In all cases the

tests remain simple graphical conditions on the complex plane. The

resultant criteria yield necessary and sufficient conditions in the case

of linear time—invariant systems (including the multlvariable and matrix

generalizations) and sufficient conditions In the cases of nonl inear

and time-variable systems.

The thrust of this paper Is to show that with a slight modification,

the continuum of Nyquist plots used in the multivariable Nyquist test

of [7] can be reduced to a classical single variable Nyqufst plot plus

a test to verify that the filter has no poles in the region )z1J a 1z 2 1
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= •. .  = lz ,11 = 1 , the multivariable analog of the i~~. axis.

Although every attempt is made to minimiz e details the theorem

illustrates the essential algebraic topological nature of the Nyquist

cri terion , with homotopic arguments playing a significant role in - 
. i

S
— derivation. For a more detailed discussion of the algebraic topological

nature of Nyquist theory the reader is refered to [7), [8] and [9).

In parti cular , [9] gives an algebraic topological derivation of the
classical Nyquist cri terion .

In the following section several Hurwitz-like stability tests

are reviewed and a new test of the Hurwitz-type test is formulated.

In the third section a homotopic interpretation of the classical Nyquist

cri terion is formulated , this being used to derive the desired mul ti —
variable Nyquist criterion from the Hurwitz conditions in the fourth

and fifth sections. Finally some examples of the theory are given in

sectIon 6.

Hurwjtz—l ike Tests

Denote the vector space of complex n—tuples by i”. For the

purposes of our multivariable stability theory, there are five inter-

esting subsets of ~~~~~
. First there is the polydtsk, defined as

= {(Zl~ •r •~
Zn) in 

g’~ ~~~ < i , I = l ,...,n} ( 1)

It plays the same role in the mul tivariable theory as the unit disk

(or right half plane) in single variabl e theory.

Next, there are three separate notions of the boundary of P’1.

All are necessary for the theory of this paper. First is the dis-
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tinguished boundary denoted by ~~ where

= {(z15...,z~) in ~~ ( iZ .~i = 1, 1 = l ,...,n} 
• 

. (2)

serves as the multidimensional analog of the hca—axis. In particu—

lar the frequency response [10] of a digital filter is the evaluation

of its transfer function over 1r~• Geometrically i” is an n-dimensional

torus which reduces to the unit circle of the complex plane in the
• single variable case. T’1 is a “boundary” for P~ In the sense that it

is a subset of P’~ for which all coordinants of P” simultaneously take

on extremal values . -

A second notion of boundary for P” is defined by requiring only

that n—i coordinats take on extremal values . This boundary set is

• denoted by Mn where

• M~ {Cz i i t • • • p zn ) in g
Y~ = ~~, I 1,...,k—l ,k+1, -

...,n; tZkI< 1 - ) (
~

)

and where k ranges from 1 through n.

The final notion of boundary requires that at least one of the

coordinates take on extremal values. This notion is the usual topo-

logical boundary since it coincides with the usual concept of boundary

• of the set P” in the sense of point set topology [11). The topological

boundary Is denoted by 8
11 where 

- •

• B’1 a {(z 15 ..., z~) in ~~ 1z 11 < 1 , j  = l ,...,n and Iz k I a 
~ for

some k} (4)

Finally we define a subset, H’1, of p” whose relevence to the

stability problem was originally Indicated by Huang [12) .

- .  •_— • - -  _ -  _ __.1
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= {(z1,...,z~) tn g
fl 

~ 
Iz~! = 1 , I—l ,...,k—l ; jzkI < 1; z1 =

• • 0,i=k+l ,...,n)~ (5)

Here k varies from 1 through n. Note, tha t M 1 H1 = P
1 and T1 B1

hence these sets become redundant and all reduce to either the unit

disk or unit circle In the single variabl e case.

Shanks [13] was the first to give a Hurwi tz-like test for the

stability of mul tidimensional digital fi l ters. His condition states

essentially that the fi l ter transfer function must have no poles in P~.

In the singl e variabl e case , the pole set of a transfer function ts
discrete. However , in the case of higher dimensi onal fi l ters , the

pole set is an inf ini te  continuum. Using this fact , Huang [12] showed

- that a transfer function has a pole in P2 if a~d only if it also has a
~‘ pole in H2 . This is not toimp ly that the only poles of the transfer

function l ie in H2 but rather that the pole set is so l arge that it cannot

pass through P2 without intersecting the subset H 2. Anderson and Jury

(14] extended Haung ’s theorem to the n-dimens ional case by showing
• 

that a transfer function has a pole in P~ if and only if i t  has a pol e -

in H’1. The proof of Haung ’s theorem and its generalizati on is tediously

- straightforward but requires a cl ever appl i cation of the maximum modulus -

~
:- theorem . .

r A resul t somewhat similar to Huang ’s can be formulated in terms

of the topological boundary. To derive such a condition , one exploits

the fact that the pol e set of a multi var iable (n > 2) rational function

r - Is an i nfinite continuum (more precisely no connected component of the

pole set is compact [15]).. As such , the only way the pole set can

Intersect P” i s if it crosses the topological boundary, B~. This

C . 
.
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impl ies that a transfer function has a pole set intersecting P’1 if
• and only if the pole set has a non—void intersection with B1’.

Now observe that B11 can be viewed as the union of a family of (n-i)

variable polydisks (parameterized by k and the value of Zk. IZkI = 1).

Hence the above argument can be repeted to show that the transfer

function has a pole set intersecting the topological boundary of such

an (n—1 )—variable polydisk if it has a pole set intersection P11.

Upon iterating the argument (n—i ) times and eliminating redundant sets,

• one eventually arrives at the following conditi on: the transfer

function has a pole in P11 if and only if it has a pole in N11.

The above various Hurwitz-like stability tests for multivariable

digital filters are summarized as follows:

Therorein l: Let a causal multidimensional digital filter be character—

ized by a rational transfer function in several complex variables.

Assume the numerator and denominator polynomials are relatively prime.

Then the following are equivalent stability conditions:

1) the pole set of the transfer function has a null

intersection wi th P”.

i i )  the pole set of the transfer function has a null

- intersection with B’~. 
- 

• .

- 

iii) the pole set of the transfer function has a null

Intersection with H11.

iv) the pole set of the transfer function has a nul l

intersection with M’1.

The easiest way to evaluate the stability tests based on the

_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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above conditions is by a compurison of the (topological) dimension
$

of the sets where one checks for the existence of poles . In part icular ,
P’1 is 2n—dtmensional , 8” is (2n—l)-dimensional , while H’1 and II” are
both (n+1)—dimensional . Again realize that the equivalences of Theorem

‘I follow from the fact that the pole set is an infinite continuum

whose complex dimension is (m—l ) where m is the number of complex

variabl es of the specific function . Finally observe that a pole is
implicitly used to mean a specific point in the ~pole set.” 

-

Nyguist Theory

The task of this section is to construct the concepts of a

Nyquist contour , a Nyquist plot , encirc lement , and degree , all in
topological terms which are thus extendable to the multivariable case.

All of our conditions will be stated in terms of the zero set of a

relatively prime denominator polynomial of a transfer function. Hence

we will deal exclus ively with polynomial s in several complex variabl es

rather than rational transfer functions .

Traditionally engineers vi ew the Nyquist contour as a subset of

the complex plane; This point of view is somewhat erroneous. Mathe-

matically speaking the Nyguist contour (the usual closed semicircl e,

the imaginary axis , or the unit circle) is a continuous map (of bounded

variation) from T1 to i”. The image of this map , called the trace of

the map, is the -tradi tional engineering notion of the Nyquist contour.

In this paper T1 is the unit circle of the complex plane. In the singl e

variabl e case (classical digital filter stability) one works with a

_ _ _ _• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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“Nyquist contour” defined by r (ci) = = ex p (i,o) for 0 < o < 2~r , e = arg(a).

In the multivariable case, the map will take on values in ~ forcing the

“Nyquist contour” to be a more invol ved entity. Observe that we are tak-

ing liberties with the calssical definition of the Nyquist contour and

plot. In an abstract sense, there is no essential difference although

the specific’ applications (classical feedback stability or presently

digital filter stability) are somewhat alien.

In this paper a Nyquist plot is defined as the compositi on of the
Nyquist contour, r, with a polynomial in several - complex variables ,

r, as per Figure 1. Note that

Aor

Figure . l: The Nyquist plot as a composition of maps. -

the polynomial map from to g is analytic and it is this property which

makes the theory go. Thus the Nyquist plot is a continuous map of bounded

variation from T~ to ~~~. •

The concept of encirclement is intimately related to the topological

concept of homotopy. Keeping this association in mind, let X be an

arbitrary topological space and let ~ and y be continuous 7unctions

_ _ _  ---- -~~~--~~~S
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1 .  . 1 1of bounded variation defined on I wi.th. values tn X: ~i:T -~X and ~:T +X.

The maps ~z and A are said to be homotopic if there exists a continuous

map, 0, defined on the product space T1xL , I = [0,1], wi th values in X

such that 0(a,0) = ii(a) and 0(ct,1) = A(ct). In essence, a homotopy is

a continuous deformation of the curve ji into the curve A. This concept

defines an equivalence relation on the set of continuous maps from

to X——i.e. two curves are equivalent if one can be continuously deformed

into the other. A curve is said to be hometopically trivial if it

is homotopic to a constant map. Note that the use of an abstract

topological space, X, in the definition of homotopy, is fundamental ‘to

— 
the concept, since all curves with values in ~?‘ or R

11 are homotopically

trivial . Although we are interested in the properties of functions

defined on a number of non-trivial topological spaces arise in our

F analysis. In particular the torus, T11, and the punctured plane. Here the

concept of encirclement may be defined for maps taking their values in

g — (0). This is a highly nontrivial space in which the distinct

equivalence classes of homotopic maps can be indexed by the integers

corresponding to the number of times a curve enci rcles the point zero.

This number is termed the degree, fl(,y,D), of the map, y, and can be

computed by the formula [11]

n(y,0) = 
~~~~~~~~ 

f (z-0Y~ dz (6)

where y is the curve in question and y does not take on the value zero.

The desire is to make a binary decision on whether or not the map en-

circles zero. This may be defined in purely homotopic terms by saying

*
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that a map ~.i:T~’~ - (0) does not encircle zero if it is homotopically

trivial (homotopic to a constant map).- The concept. may then be extend—

- - 
ed to maps taking val ues in ~ which do not pass through the point zero

by viewing them as maps with values in ~ — (01.

The significance of these homotopic concepts in algebraic topology

[11] is due to the fact that the equivalence classes of homotopic maps

form a group, ‘w(X), where X is the space in question. it(X) is called the

fundamental group of X. More precisely, if we have two maps 1,1:11 X
• and x:T1 + X, such that u(l) = L(l), their concatenation ~ * A :T1 + X

is defined by
0< arg(cz) < it

= I• Lu(~
2) it <arg(~a) < 2~ 

-

- ‘ Intuitively, p*A , is a curve which first follows A as arg(a) goes from

0 to it and then follows ~i as arg(~) goes from it to 2it. Moreover, since

p(1) = x(l), then ~~ is continuous If ,.
~ 
and A are continuous. Clearly

concatenation is Invariant under homotopic equivalence [11]. (i.e. if

• is homotopic to and A 1 is homotopic to then p1 * A1 ‘is homo—

topic to * x2). As such it defines a binary operation on the equivalence

classes of homotopic curves p:T1 -‘~ X with a fixed value for ~i(1). Thus the

group operation of ir(X) ts concatenation [11]. In classical algebraic topo—

logy, the properties of ir(g11
) = 0 since all maps taking values in ~“

are homotopically trivial . On the other hand ~r (~ - (0)) is isomorphic

to the additive group of tntegers where the “degree function” is the

I somorphi sm.

- 

.._ ~~~~~~~~~~~~~ .: ~~~~
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Using this machinery we now formalize a statement of the “classical ”

Nyquist criterion. Consider the “obvious ” Nyquist contour, r:T1 +

defined as rCa) = a = exp[i arg(c&)] with the corresponding Nyquist plot

AGF:T1 + ~ where A is a polynomial in one variable.

Theorem 2: (Nyquist) Let A be a polynomial on ~~~. Then A has no zeros

in P1 (the unit closed disk) if and only if Aor does not pass through

nor encircle zero.

Main Theorems

Here the multivariabl e Nyquist theory is derived from condition

(iv) of Theorem 1. Let a causal digital fil ter transfer function be

= B(z 1,..., z11
) / A (z 1,..., z11

) where A and B are relatively
prime. The system so characterized is stable if and only if A has no

zeros in M’1-—i.e. the zero set of A does not intersect N1
~. Now N11

can be expressed as a union of single variabl e polydisks as follows.

First, for any given set of (n-i) elements, ~~~~ of T
i , indexed by the

integers l ,2,...,k—l , k+l ,...,n, embed a single variable polydisk into

g11 as -

1P ~~~~~~~~~~~~~~~~~~~~~~~~~

= ((z 1 ,. . . ,z11) in ~~~ = a~ , i = 1 ,... ,k—l

k+l,...,n;IzkI < 1 ) (8)

By comparison with equation 3, one can verify that -

n
= Ii a

1 
U • Pl (ct~~

...
~
akl ~~~

ak+l ... ,a
11

k=l i~

Hence the digital filter is stabl e if and only if A has no zeros in

1 
—- -~~~~~-- - . ~-——--- - — - • - —----~- - --
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each of the polydisk.s P1(u1 .,... ,aki ,Zk,ak+l,...,afll. Moreover, since

these are dependent on only one coordinant, one may test for zeros of

A in P1(ap...)a~..1$..u~~1)...,cifl) by sequentially testing for zeros

• of - the single variable polynomial A(al,...,ak_l ,Zk,ak÷l,... ,a11) in the

single variable polydisk P1 as defined in the introduction. Each such

test can be executed using the “Nyquist theorem.” This yields a stability’

test for a function of several variables which takes the form of a con-

tinuum of classical Nyquist plots.

Lemma 3: Let A be a polynomial mapping i” to ~~~~~~
. Then A has no zeros

in P” if and only if each of the Nyquist plots for the family of single

variable polynomials.

A(c&l,...,akl,zk,ak÷l,...,afl) for k+l ,...,n and in T1 , do not

pass through nor encircle zero.

Lemma 3 is essentially equivalent to the condition formulated in
• references [7] and [8]. However , the present condition arose from the

fact that A has no zeros in M11 whereas the previous test grew from the

fact that A has no zeros in H11. As was shown in references [7] and [8]

the lemma can be implemented as a practical test in the two dimensional

case. Here one simply chooses a finite sat of ~‘s In T~ and plots the
corresponding Nyquist loci . • Since T~ ‘is compact, this discretizatlon

can be made ‘to yield as much accuracy as desired. Unfortunately, In

• the multivariable case our family of Nyquist plots Is parameterized

by “n” (n—i )-dimensional tori.

The purpose of - the first main theorem is to show that the family

of Nyquist plots of Lemma 3 is reducible to “n” class cal single variable 

-~-•- . -------— - - . - . —.-- - - .-- --- --- - -  5 -
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Nyquist plots and one further test. To this end we reformulat e the

classical Nyquist contour used to test the single variable function
A( al, .. ., c~~l, zk, xk+i , . . . , a

fl
) as a Nyquist contour taking its values

in define the Nyqu ist contour , r(al~
...,cxkl~

.,ak+iP...,afl ):T
1-.
~

by the equality

T(a 1,... ,cLk_l ,c&,czk+l,....,un)

(9)

Clearly, the Nyquist plot Aor(cti
~
...,ak_l~

cL,ak÷i,...,afl) coincides

with the Nyquists plots of Lemma 3. Thus Lemma 3 can be reformulated

in terms of these plots. The key attribute of these mul tivariable

Nyquist contours is that the entire family of Nyquist contours for a

fixed k are homotopically equivalent.

Lemma 4: For any given set of ct .1 ’ S in T1 , I =

the Nyquist contour r(ctl,...,ak_l ,.,ak+l~
...,afl) is homotopic in

to the Nyquist contour r(l ,...,l ,.,l ,... l).
1 nProof: Consider the homotopy ~:T xI~T def in ed by

0(a, t) (exp[i e l ( l_ t ) ] , . . . , exp [io k_ l ( l_ t ) ] ,c~,exp [j e k+l ( l_ t ) ],

... ,exp[ie11(l—t)J) (10)

where 9.~- =- arg(a1) for any set X~ cT~, i = l ,..., k— 1 ,k+1 ,.. .,n. Here

Ø(a ,t) is in I~ for all a and t. Moreover

= fexp(i °i~ ’~ 
.. ,exp(iBk_i ),cL , -

- exp(iek+l ),. ..,exp(io11
)]

= r(a1,... ,ak_,Iu ,ak÷l~
. ..,cx11

) (11)

- 

-

--~~~~~~~~~-~~~~~~~~~~~~~~~~~~ --  - 5  5 5- .
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and

O(a ,1) (l ,..., l ,a,l ,..., l)  = rCl ,..., l ,a ,l ,... ,l )  (12)

Hence 0 is the desired homotopy .

Theorem 3: Let A be a polynomial on ~~~~~~
. Then A has’ no zeros in

If and only If: -

(I) A has no zeros on T~, and S

(ii) The Nyquist pl ots for th’è single variabl e functions

- A( l ,..., i ,zk l ,...,l )  k = l ,...,n do not encircl e zero.

Proof: Since the images of the family of Nyqu ist contours defined

by equation 9 cover I11, the fact that none of the Nyquist plots of

Lemma 3 go through zero implies that A has no zeros on T’~. Thi s

verifies the necessity of condition ( i ) .  To veri fy the necessity of

condition ( i i )  observe that the “n” Nyquist plots of condition (ii)

are a subset of the family of Nyquist plots of Lemma 3.

• 
To verify the sufficiency of the theorem, observe that, if A

has no zeros on T~, then A restricted to I~ is a continuous map from

to ~ — (01. Now, since the continuous images of homotopic maps

are homotopic, the fact that the Nyquist contours

ak÷l)...,Ufl) and r(l,...,l ,.,l ,...,1) are homotopic for any fixed k

wi th aj  in Ti , I = 1,. ..,k—l ,k+l ,...,n, implies that the Myquist

plots Aor(czk.,.l~
.,ak+l~

...,afl) and Aor(l ,...,l ,.,1,...,)) are homo-

topic in ~ — (0); hence all such Nyquist plots encircle zero if and

only if the Nyquist plot for Aor( 1 ,..., l ,.,l ,...,1) encircles . As

such, if A has no zeros on T11 we are assured that none of the Nyquist

plots of Lemma 3 go through zero , whereas If the en” Nyquist plots

- . . ~~~~~~~~~ ~~~~~~
.5 - -~~~5 - - - • - - - —-•-~~~ - 5 - -  ~~~~~~ -~~~---  ~~--~~~--- -- --5- . . _ _ _ _



5- . . - 5- .- .
~~ 

S • - 15

Aor(l,...,l ,.,l ,.-.,l) do not encirc le zero , then none of the Iiyquist
plots of Lemma 3 encircle zero. ~[tth, the final observation that the

Nyquist plot for the single variable function

coincides with Aor(l ,...,1 ,.,l ,...,1) this verifi.es the sufficiency

of the theorem. -

Surely this theorem is a true generalization of the classical

Nyquist theorem in that it tests for stability, using only distinguished

- • 

- boundary (iw—axis) information. Moreover, the test ‘is n-dimensional ,

hence superior to any 0f the Hurwitz-type tests.

Intuitively speaking the result is both surprising and expected.

It is surprising because one tests for zeros of an n-variabl e function

using single variabl e Nyquist plots as opposed to some type of n—dimen-

sional encirclement. It was expected, however , since a polynomial con-
tains a finite amount of ‘information (a finite number of coefficients),

so that only a finite number of tests need be executed. In this

light the condition of Lemma 3 seemed superfluous.

Again , Theorem 3 is aesthetically pl easing since it uses only

frequency res ponse information. However , by cleverly consideri ng
the implications of this information as per [12], [14], one may concoct

an equivalent test. Essentially the test will be a consequence of

condition (iii) of Theorem ‘I and hopefully will be easier to implement.

Theorem 4: Let A be a polynomial mapping q~’~ to q~~. Then A has no

zeros in p11 If and only if

(1 ) A has no zeros on I~, and

(.11) The Nyquist plots for the singl e variable functions

k = 1 ,...,n, do not encircle zero .

5-
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• Proof: Note fIrst, that from [7], and [8], it Is known that A has no

zeros In ~ if and only if the Nyquist plots of A (al
~
...,ak..l,zk,0,...,0)

for k = l ,..,n and for each and every a1 in TI do not enc ircle nor pass

through . zero

Since A has no zeros In p”, it immediately follows that A has
no zeros on T~. Moreover , the Nyquist plots of condition (ii) are a
subset of the Nyquist plots of the stability result noted above. Thus

the forw~ird direction is shown. -

Conversely suppose- condition (i) and condition (ii) hold. Since

A has no zeros in Ti’, Lemma 4 guarantees that the Nyquist plots of
A(ai,...,cir_1 ,Zn) for each and every a1 in i

1 are homotopic to one
• another. In particular they are hornotopic to A(l ,...,l ,z11). Thus

any member of this family of Nyquist pl ots encircl es zero if and only

if A(1,.. .,l ,z~) encircles zero. 
S

Now if the Nyquist plot of A(l ,...,l,z11) does not, encircle zero,
. 1then A(ci1,...,a111 ,O) $ 0 for each and every a1 in T In other words

A(z 1,...,z111 ,O ) has no zeros on the n—l dimensionaltorus; ((21,... ,z11)

~~~ = l;i = l ,...,n-l ;z11 = 0}. Repeating the above arguments- we

conclude that the Nyquist plot of A(l,... ,l ,z11_1,O) encircles zero if

and only if each of the Nyqu’fst plots of ~~~~~~~~~~~~~~~ encircles

zero. Continuing in this fashion, one verifies that the conditions of

the theorem are equivalent- to the condition of references [7], [8) as

stated at the beginning of the proof. The statement of the theorem

now follows. • 
- 

S

Observe that this theorem does not expl icitly use distinguished
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boundary (frequency response) information. However, the sequential manner

of the test does use such Information in an implicit way. Al so the test

• of Theorem 4 may be easier to implement since the zero dependence of

A(1,...,zk,O,...,O) tends to cancel terms in the original polynomial

which effectively diminishes the complexity of the test.

At this point we state and prove the final theorem of the section.

This theorem combines the “fl ” Nyquist plots of Theorem 3 into a single

Nyquist plot.

Theorem 5: Let A be a polynomial mapping ~ into ~~~~~
. Then A has no

zeros In pfl if and only if

(i) A has no zeros on T’~, and

(ii) - The Nyquist pl ot for the single variable function A(z,z,... ,z)
does not encircle zero. -

Before giving the formal proof of this theorem, we will sketch its de-

rivation as a corollary to Theorem 3. First observe that since an analytic

function is orientation preserving , [15], the degree of each of the single

variabl e Nyquist plots, Aor(l ,l ,...,1 ,.,l ,...,1) of Theorem 3, is non-

negative. Moreover, the degree function associated with the set of

closed curves is an isornorphism from ir(C - (0)) onto the additive group

of integers. Thus the degree of the concatenation (the group operation

in ir(C - (0))) of closed curves, will be the sum of the degrees of the

individual curves. Furthermore, the sum of non—negative integers is

zero If and only if each integer is zero. This implies that the

second hypothesis of Theorem 3 holds if and only if the single Nyquist

plot, obtained by concatenating the “n” Nyquist plots of Theorem 3,

r
- - —- -~~~- . -.  - - - - --5- .. - - . -5-- . --—-- - - - . - -  5- 
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does not encircle zero. Consequently Theorem 3 reduces to verifying

that A has no zero s on T11 and check ing their encirclement of zero by

the single Nyquist plot : 
-

(13)

where the equality of equation [13] Is due to the fact [11] that com-

position distri butes over concatenation.

Al though equation 13 reduces the mult ivariab i e stability test to

a single Nyquist plot, this plot is just the concatenation of the n

plots of Theorem 3. The resultant test , then , is no easier to impl ement

than the original test. Fortunately, this Nyquist plot is homotopic

- in • C - (0) to the Nyquist plot for the single variable function

A(z ,z ,... ,z), obtained by setting each of the dependent variabl es

of A equal to one another. To veri fy this contension , first observe

that this single variable Nyquist plot is equal to the Nyquist plot

Aor(•,.,...,.) where r(.,.,...,.):T1———C~ by taking the point a in T1

to (a ,a,...,ci ) in C~. Now, A has no zeros on I~. Hence a maps T~

continuously to C - (0). The Nyquist plot Aor (.,.,...,.) will

thus be homotopic in C — (0) to the Nyquist plot of equation 13

provided their corresponding Nyqu ’Ist contours are homotopic In Ti’.

This is , indeed , the case. However , the required homotopy is extremely

complex. As such, rather than wading through the details, we will -

simply sketch the required homotopy in the two variable case. Then

we proceed to an alternate proof of the Theorem based on a known,

but non—intuitive , theorem of functions of severa l complex variables.

• -J r
- -- - - - - - - - - --5- ‘—-~~~ -
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To sketch the required h.omotopy in the two variable case, represent

the torus, i2, as a square on the plane. Topolog’ically identify

opposite sides of the squares. Figure 2 illustrate such a square.

The point (z1,z2),1z1 ( ~z2~ 1 , in T2, corresponds to the point 
-

(e1,e2) on the plane where 61 arg(z1) and ~2
= arg(z2) ‘i.e. (z1,z2) =

(e 10l ,e~
02). In otherwords the upper and lower boundaries of the square

represent the same line on the torus since e~ = e~~
T and similarly for

the right and left boundaries of the square. Moreover, all four

corners of the square represent the same point , (— 1 ,-i). In the

sketch of Figure 2, the Nyquist contour r(.,l)*r(l,.) of equation [13]

corresponds to the curve, number 1 , which starts at (01,82) = (0,0) in

the center of the square traveling vertically to the top of the square.

It then goes from the bottom of the square vertically back to the 
-

center, from the center of the square curve I then passes horizontally

to the right hand boundary , and finally it returns ‘from the left hand

boundary of the square back -to the center. Since the upper and lower

boundaries of the square are identified , when the curve “jumps” from

the upper to lower boundary, it remains continuous (think of the square

being rolled up into a cylinder with the upper and lower boundaries

glued together). Simi larly for the “jump” from the right to left

boundary. Of course, curve 1 is closed since it starts and ends at the

same point.

The Nyquist contour r(,’) is represented in Figure 2 by curve 5,

which starts at the center of the square, goes diagionally to the upper

right hand corner of the square and then “jumps” to the lower left hand

corner of the square from which point It returns diagionally back to

the center. As before the curve is continuous and closed.
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The required homotopy between curves 1 and 5 is indicated on 
‘
Figure 2

by the three intermediary curves numbered 2, 3, and 4. As before these

- 
curves are continuous since the upper and lower boundar4es and the left

and right boundaries of the square are identi fied. Also. all the inter—

mediary curves begin and end at the base point (01,82) ~ (0,0). The

continuity of the intermediary curves is illustrated graphically in

Figure 3 wherein we have redrawn Figure 2 with the point (81,82) =

( +‘n , 4w) taken as the center point. 
- 
In this representation it is clear

that curves 2, 3, and 4 are continuous and converge to curve 5.

Although the homotopy required to complete our proof is neatly

illustrated In Figure 2, its explicit mathematical discription Is by

no means simple, even .for the two variable case. Consequent rather than

formalizing the tedious details of the required n-variable hoinotopy we

construct an alternate proof of Theorem 5 based on a theorem of several

complex variabl es. Since the theorem is appl icable to analytic functions

as well as polynomial:: this proof will also allow us to extend theorem

5 to the case of meramorphic transfer functions in several complex

variables.

Lemma 5: Let ~ = 
~
‘f1”f2’~••” f~ 

be a Continuous function mapping P
’1

to C~,n > 2, such that f(T1) CT” and each of its coordinate functions,

have positive degree when viewed as functions from T’1 to C, fIt l 1’1- .C.

Then for any analytic function g:C~-PC, g has a zero in P” if and only

if g has a zero ‘In T~Uf(P 1). The theorem appears on page 87 of reference

17 and Its proof will not be repeated here. In essence the theorem yields

an entire family of n-dimensional Hurwl tz-like tests (since T~ Is n—di men—

sional and f(P’1) is 2-dimensional) one for ‘each f satisfying the hypotheses
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of the theorem.

Proof of Theorem 5: To prove theorem 5, we appl y Lemma 5 with f defined

by f(z) = (z,z,.. . ,z). Since each coordinate function f1(z) = z is the

identity map the coordinates all have degree one the hypotheses of

Theorem 5 are satisfi ed. As such , the polynomial A:C~ -‘
~ C (an arbitrary

analytic function , g:C~’ ÷ C, could be used with equal validity) has a
n .  . . . n 1zero in P if and only if it has a zero in T Uf(P ) .  Now,

f(P1) = {(z,z,...,z) in C
~I I z I < i) (14)

is just a polydisk in one variable embedded in C~. As such, via the

classical single variable rlyquist criterion the existence of zeros of

A in f(P’1) may be determined using the Nyquist plot Aor(.,.,...,.) whose

Nyquist contour r (,.,...,.) follows the boundary of f(P1). This Nyquist

plot is , however, just the classical Nyquist plot for the single variab~e
- function A(z,z,... ,z). Thus, if we check to see if A has no zeros on

and that the Nyquist plot for A(z,z,... ,z) does not encircle zero

we are assured that A has no zeros in Thit Jf(P l
) and thus by Theorem 6

we are assured that A has no zeros in P” as was to be shown.

Examples

Example 1 -

Consider the six-variabl e fourth order polynomial

A(z1,z2,z3 z4,z5,z6) = l0z1Z2z3z44 + 2z~z2 + z1z~z~ + z~ + 3 (15)

For which the image of A restricted to is plotted in Figure 4. Since

zero is not in the image condition A. of the theorem ‘is satisfied and -

we may proceed to check condition B. This requires that we test the
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Nyquist plots for the six one variabl e functions

A(z1,l ,1,l ,l,l) = llz1 + 2z~ + 4 116.1

A (l,z2,1,1 ,1 ,1) = 12z 2 + 5 (17.)

A(l,l ,z3,1,.l,l) = 10z3 + z~ + 6 (18.)

A(1,1-,l ,z4,1,l) = 10z4 + 4 + 6 (19.)

A(l ,1 ,l ,l ,z5,l) = lOz~ + 7 (20.)

and

A(l,l ,l ,1,l ,z6) z~ + 16 
• 

(21 .)

for encirclements of zero. The resultant plots are sketched in Figures

5a through 5f. where we see that five of the six plots encircle zero.

As such, the system is unstable .

- _ _ _ _ _ _

• 

-

Figure 4. Plot of A (T”) for the six variable function of equation 12.

p
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-4 ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I 7 
-

- 

a. liz 1 + 2z~ + 4 b. 12z 2 + 5

-

. 

± 
~~~~~~~~~~~~~~~~~~~~ I7 

(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . a.

‘
~

...

° 

...
)

c. lOz3 + z3 + 6 d. 1024 +4+ 6

/ -

/ 15

0 7 
• ) 0

e. 1Oz~ +7 f. z~ +16

Figure 5. Nyquist plots for the six single variable functions
of equations 13 through 16.
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Example 2: In this case we apply Theorem 4 to the same polynomial of

Example ‘1. Again the image of II
~ under A does not contain zero so we

must perform the sequential tests outlined in Theorem 4.

Step 1: Consider the Nyquist plot of A(l ,...,l ,z6) = z~ + 16

- iw

- 3 QncircIem~ntS

- 
- 

0 
- 

~~~~~~~~~ 

-

Figure ~~. Nyquist pl ot of A(1,...,z5) does not encircle zero.

Step 2: Since the first Nyquist pl ot fai ls  to encircle zero , consider

the Nyquist plot of A(1,...,l ,z5,0) = l0z~ + 6. Clearly this Nyquist

pl ot encircles so the filter is unstable .

~ Lw
2 ~nc~rcJ~mcnts

• 

- 

<

~~~~~~~~~~~~~~~~~~~

I6 

-

Figure 7. Nyquist plot of A(l ,...,l ,z5,0). 

—-5-5 - - -  --- ~~~~~~-----5- -5 ~~~~~—•- - --
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Example 3: In this we apply ‘Theorem 5 to the Same polynomial of the
previous examples. Notice that in this case the curve ‘is of higher
order and appears compl icated. There al so may be some numerical problents in

obtaining an accurate Nyquist plot of thi s curve.

Clearly A(Tr
~) ~ 0 as in the previous exampl es. Thus consider the

Nyquist plot of A(z1,...,z6) = z7 
+ 13z6 + 3z3 

+ 3 where we have set

z = z
• 

= ... = z .1 6 
_______

encirct~menj-s

8:~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~

/

/

) 

I0 17

FIgure 8: The single Nyquist plot of A.(z,z,z,z,z,z)

Observe that the number of -times the curve of Figure 8 encircles

zero equals the number of times all the curves of Figure 5, taken to—

gether, encircle zero.

Lastly it is i nteresting to wonder at. the useful ness of these

plots for the design engineer. The authors bel ieve that in time these

~

--— -— - - - - -—-5— - -5 - - 5 - - - - - - - - -5—  - -  -- -~~~~~--~~~
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plots will be shown to supply a large amount of information on the behavior

of a system.

Acknowledgement: The authors wish to acknowledge Rodney Trotter who

ran numerous computer programs verifying the Nyquist tests herein.
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THREE GRAPHICAL TESTS FOR THE STABILITY OF

MULTIDIMENSIONAL DIGITAL FILTERS~

by
- R. DeCarlo, R. Saeks , and J. Ilurray -

Abs tract

This paper discusses three graphical tests for determining the

sta bi l ity of multid imensional digital filters characterized by an

appropriate transfer function in several complex variables. Each

test is carried out as a finite number of “Nyquist” plots in the com-

plex plane.

Introduction

Recently two of the authors constructed an algebraic topological

proof of the Nyquis t Cri terion (2) (3). The value of this rather

sophisticated approach has been harvested ‘in generalizations to systems

characterized by transfer functions in several compl ex variables ( 1)

(2) (3), in particular multidimensional digital filters. Specifically

the paper illustrates three graphical tests , similar to the classical

Nyquist test, carried out in the complex plane , wh ich determine the

stability of a multidimensional digital filter with a transfer function

= B(Z•ii•••~
Zn)/A(Zii •• ~~~~ where z .~ are compl ex variables

and A and B are relatively prime pol yn omials. The purpose of the paper

is to consider these three tests as appl i ed to two different examples .

Background and Main Theorems

Basic to the theory is the 2n ( real ) dimensional polydisc (8)

wh i ch is the 9’~ analog Of the unit disc of ~~~. Mathematically the poly-.

$ Supported in part by AFOSR Grant 74-263 1D

t
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disc pfl is

-
~ pn = i: (z11...,z )  in ~n ( ~z1 ( ~- 1 , ‘i =

There are four separate notions of boundary of the polydisc (l)(8).

First is the usual topological boundary

Br
~ = { ~~~~~~~~ in ~~‘ 1z 11 1 , 1 =

and = 1 for some k I

Second is the distinauished boundary

Tn { (z1,. ~~~~ in ~~~ 1z 11 = 1 , 1 =

~ serves as the multidimensional analog of the jw-axis. In particular

the frequency response (7) of a digital filter is the evaluation of its

transfer function over Tr
~.

Thirdly we have

I (z 1,...,z1~) in ~~ Iz~I = 1, i =

IZ kI < l }

where k ranges from 1 through n. This is a boundary notion In the sense

that n-i coordinates take on extremal values. Finall y, the las t notion

of “boundary ” is

Hn = { ~~~~~~~~ is g~1~ 1z 1 1 = 1 , 1 = 1 ,... ,k—l;

IZ kI •~.l; z 1 = 0, i = k+ 1 ,...,n)

where again k varies from 1 to n. The Importance of this concept was

first noted by Huang (5). later it was generalized in (7).

_ _ _ _ _ _ _ _ _ _ _  _ _  
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With these notions of boundary one may prove the following Theorem .

The proof , however , of the following equivalences Is found in the ref-

erences (1) (2) (5) (7) (9).

Theorem 1: let a causal multid imensional digital filter be character-

ized by a rational transfer function in several complex variables. Assume

the numerator and denominator polynomials are relatively prime. Then the
-

• 

following are equivalent stability conditions:

(I) the pole set of the transfer function has a nul l inter-

section wi th pn

(ii) the pole set of the transfer function has a null inter-

section with B’1

(iii) The pole set of the transfer function has a nul l inter-

section with H~
1

(iv) the pole set of the transfer function has a null inter- -

section wi th Mn.

The trouble with these condi tions is that the actual test ‘is carried

out in a higher dimensional space. For example p’~ is 2n dimensional , B’~

is (2n—1) dimensional , while H’1 and M’1 are both (n+l) dimensional . In-

tuitively, the equivalences of this theorem follow because the pole set

of a rational function in several complex variables is an Infinite con—

tinuum which must intersect the different boundaries of the polydisc If

it intersects the polydisc at all.

With the intuition gained ‘In (2) (3) (7) ‘the authors were able to

simplify these results to graphical tests in the complex plane. The

following three theorems are the fruit of this endeavor. Before stating

I 
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these theorems , one final  definit ion is in order.

• The “Nyq u ist plot” of a polynomi al , f ( ’ ) ,  in one compl ex variable

is defined to be the image of T~ under the map f(’) where T’1 is the unit

circle of the compl ex plane. With this in hand , we have the following

three tests. Again the proofs can be found in the references (1) (2)

(3) , (9).

Theorem 2: let A be the denominator polynomi al of a multidimensional

digital filter as characterized in Theorem 1. A is a polynomial mapping

to ~~~. Then A has no zeros in P”~ (i.e. the fil ter is stable) if and

only if

(i) A has no zeros on T’1 , and

(ii) The Nyqu’ist plots for the single variable functions

A(l ,...,l ,zk,l ,...,l )  k = 1,...,n do not encircle zero.

Theroem 3: Let A be as above. Then A has no zeros in P” (i.e. the filter

is stable) if and only if

(i) A has no zeros on I”, and

(ii) The Nyquist plots for the single variabl e functions

A(1,...,1 ,Zk,O,...,O) k = l ,...,n, do not encircle zero.

Theroem 4: let A be as above. Then A has no zeros in pfl (i.e. the filter

is stable) if and only if

( I )  A has no zeros on i’1, and

(ii) The Nyquist plot for the singl e variable function A(z,z,... ,z)

does not encircle zero

Each of these tests has essentially the same two parts. First one per—

forms the appropriate encirclement test(s); if zero is not encircled , one

then proceeds to check the image of the distinguished boundary.

_ _



~

36

This order of testing (encirclement first, then frequency response) seems

in most cases to be preferable to the reverse order, since much less com-

putation ‘is involved in the encirclement tests; however, in cases where -

the frequency response is known a priori , or must be plotted in any case,

the order is iimiaterial .

It might appear that the third test (Theorem 4) is the best, since

it involves only one encirclement test; however, in many cases the- reF-

ative complexity of the polynomial A(z,z,...,z) will more than offset

this advantage. Similarly, in many cases, Theorem 3 may be much eas ier

-

‘ 

to apply than Theorem 2. (This is illustrated in the first example)

Theorems 2 and 4 , however,do have two advantages. The first is mainly

philosophical ; these Theorems give a test for stability purely in terms

of the frequency response of the function A , which corresponds closely

with the idea of the -Nyquist criterion in one variable. The second

advantage is that by filling in the interior of the encircl ement plot(s)

and taking this region together with the image of the distinguished

boundary, one obtains the image of the entire polydisc, from wh ich one

can get an accurate idea of stability margins. (The point here is that we

have found the image of a 2n-dimensional set--the polydisc--by plotting

an n-dimensional set and a 1-dimensional set).

EXAMPLES

In this section we apply each of the above tests to two examples.

Example 1:

A(z 11 z2) = 5/4 4 4 + 1/2 z1z~ + 1/2 4 z2 + 3 z1 4 + 3 4 z2
- 4_ 4 + 3 z 1z2 - 2 z 1

_ 2 z
2 + l

) 



— 

S 37

In this case , we have

A( z, l )  = 1/2 + 13/4 z2 + 9/2 z - 2 - 

-

A(l ,z) = 1/2 z3 
+ 13/4 z2 + 9/2 Z - 2.

These polynomial s are identical ; the image of the unit  ci rcle be ing given

in Fig. l(a).*

Since this curve encircles the origin , we deduce immediately that the 
-

filter is unstable; for purposes of illustration , we will carry out the

other tests .

A(z ,O) = -z2 — 2z +1

A(l ,z) is as before (Fig. 1(a)); A(z ,O) is pl otted (for z = e’IO)

in Fig. 1(b). Again , either pl ot suffices to verify instability , and

clearl y A (z ,O) gives the simpl er test.

1~ apply the third test, we calculate

A(z ,z) 9/4 z4 + 6 z 3 + z2 - 4 z + l

and the image of the unit circle under this mapping is plotted in Fig. 1(c).

The relative complexity is apparent; however, it again verifies instability .

F inally , we plot the image of the distinguished boundary in Fig. 1(d);

it can be seen that it does not include the or igi n, although it does in

some sense “encircl e” it.

The second example shows that this last kind of “encirclement Is

irrelevant; nothing can be deduced from it.

*(This illustrates the obvious fact that if the polynomial Is syimietric

in z1,...,z,~, then the n plots in Theorem 2 in fact reduce to 1 plot-—

- 

- ‘ 

usually simpl er than the plot in Theorem 4. Such syit~netry is quite common).

4,’

- - -5 -
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Exampl e 2:

A(z 1, z2 ) = (2 1 + 2)~ (z 2 + 2)~
As before, the plots for A(z,l) and A(l ,z) are identical

A(z ,1) 27(z

A(1,z) = 27(z + 2)~; 
-

This plot is given in Fig. 2(a); it does not encircle 0.

In th is case, the plot for A(z,O) = 8(z + 2)~ differs from the previous

plot only by a scale factor; we do not draw it separately. -

Finally, the plot for A(z,z) = (z + 2)6 is given in Fig. 2(b);

again it does not encircle the origin.

Thus , in order to determine stability in this case, it is necessary

to plot the Image of the distinguished boundary; this is done in Fig. 2(c).

Since this Image does not contain the origin (although it does surround it),

we conclude that the filter Is stable. This of course is obvious analytic-

ally; the present example is merely to illustrate the tests.

Note: Because of the magnitudes of the numbers involved , Figs.2(a) - 2(c)

are not drawn to scale.
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A NYQUIST-LIKE TEST FOR THE STABILITY

OF TWO DIMENSIONAL DIGITAL FILTERS*

by

R. DeCarlo, R. Saeks , and J . Murray

ABSTRACT: This paper constructs a Nyquist-like test for the stability
of two dimensional digital filters. Tile test takes the form of a con-
tinuum of classical one variabl e Nyquist plots parameterized by the
elements of the un it circle of the complex plane. Since the parameter
space Is compact the test can be accurately approximated by a finite
number of classical one variable Nyquist plots and is therefore readily
impl emented on a computer.

A two dimensional digital fil ter is characterized by a rati~,na1

transfer function in two complex variables

1 
B(z 1,z2)
A( z 1,z2)

where A(z1,z2) and B(z1,z2) are relatively prime polynomials in z1 and

z2. For the purpose of th is paper we say that the d igital f i l ter is

stable if A(z1,z2) $ 0 for Iz~I < 1 and 1221 ,~. 1. This structural stability con-

di tion Implies that the filter is bounded-input bounded output stable

though as recently shown by Goodman1 the condition is actually slightly

stronger. Huang showed that this 4-dimensional stability condition was

actually equivalent to the 3—dimensional condition that A(z1,z2) $ 0 for

1z11 = 1 and 1z21 < 1 or ~z1~ < 1 and z2 = 0 wh ich we use as the basis

of our theory.

The key to the formulation of our Nyquist-like theory ‘is the obser-

vation that from an abstract analytic function point of view the classical

one variable Nyquist plot is simply a method of determining whether or not

*Thjs research supported in part of AFOSR Grant 74-2631 and ONR contract
76—C-1136..
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an analytic function in one variable has zeros in an appropria te region

by pl otting the image of the function on the boundary of the region. To

obtain a Nyquist theo ry in two variables we therefore decompose the region

of C2 in which A(z 1,z 2 ) is forbidden to have zeros by Huang ’ s theorem in-

to the union of a family of one variable regions to which the classical

Nyquist theorem applies . More precisely, for each complex number ~ of

magnitude one we define the disk D~ in C
2 by

2. 0 {(e~~ ,z2) ; 1z21 U

and we define the disk D~ by

3. D~ = ((z1,O) ; ~z1~ ~. 1}

Now, Huang ’s theorem may be restated as “the digital filter is stable if

and only if A(z1,z2) has no zeros in the disks and 0 
~~ 

1”.

Observing that each disk is fixed in one of its variables the polynomial

A(z 1,z2) restricted to any of the above defined disk’ s is an anal ytic

function of one variable and hence the classica l Nyquist test can be used

to check for zeros within the disk. In particular , A( z 11z2) has zeros in

the disk D if and only if the Nyquist plot for the one variable function

A(e~~,z2) does not equal or encircle zero. Similarly, A(z1,z2) has no

zeros in the disk D0 If and only if the Nyquist plot for the one variable

function A(z1,0) does not equal or encircle zero. Combining these obser-

vations we obtain the following stability theorem.

Theoren: A digital filter characterized by the two variabl e transfer

function
B(z 1,z2)
A(z1,z2) 

- 5 -
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where A(z 1,z 2 ) and B(z 1,z 2) are relatively prime polynomial s in two

variabl es is stable (structurally stable) if and only if the Nyquist

plots for the family of one variabl e functions

- 
A(e~~,z2) ; Ia! 1

and

A(z 1 ,0)

do not equal or encircl e zero.

Al though the theorem formally implies that one check a continuum

of Nyquist plots parameterized by the complex numbers of magnitude one,

in fact , since this set of numbers is compact one can obtain a test with

arbitrarily good resolution using only a finite number of plots. Indeed,

in a somewhat different context the authors have shown that a similar con-

tinuum of Nyqui st plots can actually be reduced to a single plot without

inducing any erro r into the s tabi l i ty  test.2 The following examples are

based on a f ini te  approximation to the continuum of plots required by

the theorem .

Example 1: Let the transfer function of a digital fil ter be

B(z ,z )

Z11~Z2 1 + .25z1 + .25z2 A(z 1, z2 )

Step 1: Draw the Nyquist plot for A(z1,O). This curve, shown in Figure

1, does not encircle zero . So we proceed to the next step as outlined

in the theorem. iw~

Figure 1: Nyquist plot of A(~1,O) for exampl e 1.

~~ ‘Ma~~~ o~ ‘~~~~-‘-~- ~~~~~~~~~~~~~~ 
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Step 2: NOW cons’:~r the fami ly of Nyquist plots for the funct ions
A(e 1~ ,z1) ; 

= 1. This family of curves does not encircle “0”

as indicated in Figure 2. Thus the filter is stable.

.4i

~~~~~~~~~ 
-i- i .71

1.5

.5 
____ 

1 ____

Figure 2: Nyquist plots for A(e1~,z2) for example 
•
2.

Example 2: Now consider the fil ter whose transfer function ‘is

5. H( Z 1~ Z 2) 1 — 
B(z 1,z2)

1 + .5z1 + .5z2 + 1.2z1z2 
— A(z 1,z2)

Step 1: Consider A(z1,0). This Nyquist plot is illustrated in Figure

3 and does not ~ncircle zero.

I

, 
— 

~
y2 ”0 

L

Figure 3: Nyqufst plot for A(z1 ,O) for examole 2. -
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At this point no decision can be made so proceed to step 2.

Step 2: Consider the family of functions A(e~~,z2) lal = 1.

Nyquist plots for some of tiese functions are shown in Figure 4.

They indicate that the fil ter is indeed unstable.

____  
Z 1 .71-j- i.7 I

Z~~~4 \ .  \\
I

~~~
I

1~

FIgure 4: Nyquist plots for A(e~~,z2) for example 2.
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Ano ther Proof and a Sharpen ing of Huan g ’s Theorem

By

John Murray

ABSTRACT: Two further proofs of Huang ’s Theorem on the zeros of analytic
tunctions of two variables are given; the first is similar to previous
proofs, but is made shorter by the use of a known maximum modulus principle;
the second is completely different, using a theorem of Rudin which actually
gives a sharper result than Huang ’s. Finally ‘ft is indicated how a corres-
pondingly sharper result may be obtained in higher dimensions.

In [5] Huang stated and gave an incomplete proof of the following

theorem:

THEOREM:

A two-variable polynomial P(Z1,Z2) has a zero in the polydisc 112 =

((Z1,Z2) I~
2i1 < 1, < U if and only if it has a zero in the set

H
2 

= {(Z1,Z2) fZ1~ = 1, < 1 }U {(Z1,O) IZ1~ < 1 }

Two proofs of the Theorem have appeared f2,3], both appealing to the

maximum modulus principle; the first proof here is similar but shorter since

it uses a convenient known version of the maximum modulus principle.

We will use the following notation :

U = {Zl IZ I <U

11= {ZI IZI <1}

I = U~ !ZI = 11

U” = UxUx...xIJ (n times)

1]” = tixi]x. . .xti (n times)

= lxix.. .xT (n times )

H~ = {(Zi,Z2)IIZ 1 I = 1, fZ2( < 1 }

H~ = (Z i,O )IIzi I ~~1}

Then H2 H~ UH~.

ii 
- -

~~~~~~
--.-—------

~
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Proof I:

* Assume P (Z 1,Z2) has a zero (Z~, Z~) in Let V denote the connected

component of the zero-set of P(Z1,Z2) which contains (Z~,Z-~) and let W =

Vu1{(Z1,Z2)~ IZ1I <1}. If (Z~,Z~) j W , (Z~,Z~) ~ H~~~ H2; we can therefore

assume that (Z~,Z~) c W $ 0. We consider the function l IZ 2 restr icted

to the analytic set W; if this function is not analytic, there is a point

in W such that Z2 = 0, i.e., there is a zero in H~. If the function is

analytic, then by the maximum modulus principle [4,p. 106] I 1/Z21 can not

have a strict maximum in W. Thus, since < 1 and (Z~, Z~) c W, there

is a po int (Z~,Z~) ~ 11 fl{(Z1,Z2)~ 1Z 1 1 = 1) such that t4i < 1. By continuity ,

P(4, Z~) = 0; thus (4~4) is a zero of P in H~. Q.E.D.

Before proceeding to the second proof, one further definition is needed:

If ‘y: 1J-~tJ is continuous, by Ind ‘yoE we will mean the usual winding number

of the closed curve v(e2~
T1t ), 0 < t < 1, about the origin. (In what follows ,

this curve will never go through the origin).

Proof II:

We will use the following theorem of Rudin {6,p. 87]

If ~ = 
~~~~~~~~~~ 

u ÷ t i ” is a continuous mapping such that ~(T) CT”

an d Ind ~b 1, oE > 0 for al l  i , then f(Z 1.Z2~...Z~) has a zero in 13” if and only
i-f f(Z1,. . . ,Z,~) has a zero in the set I” U o(ti). (Here f is any function

anal ytic on U~ and continuous on U’~)
To apply this theorem, we take n = 2, and define ~(Z) as follows :

(2Z,0) IZ I  < ½
‘

(Z/jZ l , (21z1—1)z) , 1/2 < lZ~ ~ 1.

o Is clearl y cont inuous , an d

O j (e 21
~~

t ) e2
~

T i
~ I = 1,2,
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so 0(1) c:i2, and Ind 0,~ oE = 1, 1 1,2.

Thus if P(Z1,Z2) has a zero in U
2, it has a zero in T2 U 0 (11); th is set

is clearly a subset of H2, and the resul t follows. Q.E.D.

We note the following : Firstly, we have proved only one direction

of the implication : the other is trivial . Secondly, both of the above

proofs apply to functions anal yt ic on U2 an d cont i nuous on ~2 and not

merely to polynomials. Thirdly, proof II yields a considerably sharper

result than Proof I (or any previous proofs of Huang ’s Theorem) in that

the set which must be tested for zeros is a proper subset of H; in fact

dim (12 U 0 (11)) = 2, while dim H = 3. Fourthly, a correspondingly

sharper version of the higher-dimensional extension of Huang ’s Theorem

[1] can be obtained by defining

0(Z): 11-..U” by

0(Z) = ~~~~~~~~~~ ~~~ 
(n~Z~ - k + 1)Z , 0,...,O), k - 1 

IZI ~;~
-

k
thl entry

f o r l < k < n .

Finally, other choices of 0 will yield other, possibly simpler , tests;

this Is explored in [7].
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ABSTRACT

Two sets of necessary and sufficient conditions for the existence

of a polynomial spectral factorization of a given polynomial are proved.

These conditions are shown to be necessary and sufficient for the

existence of a rational spectal factorization of the spectral function

of any rational function and necessary but not sufficient for the ex-

istence of a spectral factorization of the rational function itself.

Here the term “spectral factorization” is to be understood as a factor-

ization into the product of a function without poles and zeros in the

open unit polydisc, and a function without poles or zeros in a region

inverse to the open unit polydisc. These conditions are seen to give

extremely severe restrictions on the spectral function of the given

polynomial or rational function, and hence, on the amplitude response

of any possible quarter-plane purely recursive (stable) digital filter.

The implications of these restrictions for the design of minimum-phase

finite—impulse—response and stable infinite—impulse—response filters

are discussed. In particular, it is shown that the difficulties

which many researchers have encountered in stabilizing two—dimensional

infinite—impulse—response filters are inherent in the problem and can

not be avoided by a refinement of technique; any method which attempts -

to stabilize a filter by finding a stable denominator polynomial whose

spectral function matches (or closely approximates) that of a given un-

stable denominator polynomial must fail for a large class of polynomia1~.

This is because there is no stable polynomial having the same spectral

function as a polynomial in this class (nor even approximating it well);

thus, it is precisely the attempt to match the amplitude response of

the unstable filter which forces the new filter to be unstable also.

This is in sharp contrast to the situation in one dimension , where any

rational spectral function has a rational spectral factorization. 
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Intro duction:

The subject of two-dimensional digital filters has received consi-

derable attention of late: in particular, two—dimensional spectral fac-

torizatlon has been treated in a number of papers - It is considered in

great detail in reference [1]. The major problem which arises is that in

general the spectral factors of a rational transfer function are not

rational: some further processing, such as truncation and smoothing , is

usual ly employed to yield approximate rational factors. It is , therefore ,

somewhat surprising that the class of rational functions for which a ra-

tional spectral factorization exists does not seem to have been Investi-

gated. I~ this paper, we give two sets of conditions which must be satisfied

by such functions (theorems 1 and 3); a converse is given which may be

appl ied to the numerator :and denominator polynomials separately. Now, the

polynomial spectral factors (when they exist) of a given polynomial are

minimian- and maximum-phase polynomials; conversely, every such polynomial

gives rise to trivial spectral factors. Motivated by thi s, we apply the re-

sults of theorems 1 and 3 to the particular case of minimum—phase polynomials

(i.e., polynomials without zeros in the unit polydisc).

In this context , the ma in consequences of the resul ts of th is paper may

be broad ly outl ined as follows :

I )  A g iven polynomial has exactly the same amplitude response as a

mlnimtnn-phase polynomial if and only if the classical one—vari able

method (of factoring the original polynomial into a product of two

polynomials devoid of zeros in certain regions) can be applied .

(This result is in fact implicit in [1], but does not appear to

have been explicitly stated in the literature). The corresponding

statement for minimum-phase , stable rational functions is false ,

howève~. -
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ii) If the conditions given in theorems 1 and/or 3 are not satisfied ,

then not alone is there no minimum—phase stable rational function

having exactly the same amplitude response as the original ; the

original amplitude response can not even be approximated arbi-

trarily well by minimum-phase stable rational functions. This

follows from the fact that the conditions in theorems 1 and 3 are

conditions on the amplitude response which are preserved under

any reasonaI~e k ind of convergence.

iii) The conditions in theorem 3 are easily visualized and surprisingly

stringent; they require essentially that the gain of the filter,

averaged over certain directions in the frequency plane, have no

variation in a perpendicUlar direction . (see the discussion follow-

ing theorem 3). Thi s g ives extremely severe restrictions on the

amplitude response of minimum-phase FIR filters, minimum-phase

stable h R  f i l ters , and the denominator polynomial of arbitrary

stable h R  filters.

iv) It has been pointed out by Bose [9] and Woods [10], and again Is

Implicit in [], that there exist purely recursive fi lters whose am—

l itude responses are not realizableas the amplitude response of

any stable purel y recurs ive fi lter , an d that consequentl y any

stabilization method which attempts to match the ampl itude re-

sponse of the original filter is doomed to failure. The restrict-

ions referred to in iil),above , reinforce thi s conclusion and

identify the precise properties of the examples in [9] and [10]

which make stabilization impossible.

Definitions and Notation:

Our notation will follow that in [2]; we repeat It here for convenience.

For simplicity we restrict ourselves throughout to two dimensions , alt hough

- F- --

- -- - -5
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there does not appear to be any difficulty in extending the results to

higher dimensions. Thus all functions are assumed throughout to be rational

functions of two complex variables unless otherwise stated; we further ex-

clude the zero function . Two—dimensional complex space will be denoted

by ç2 
,i.e, ((Z1, Z2)j Z1 and Z2 are complex numbers}. The open unit

2

pol yd isc wi ll be denoted by U ,i.e.,

U
2 

{(Zj,Z2)c ~Z1~ <1 and 1z2i <1}

and its closure will be denoted by U
2
:

((Z1, Z2)c ~
2

t IZ 1I <1 and 1Z 21 <l}

2
The distinguished boundary of the unit polydisc will be denoted by 1

{(Z1, Z2)~ c2 i 1Z 11 = 1 and ~~ = l}

The frequency response of the filter whose transer function is f(Z1,Z2) is

simply the restriction of f to T . We will find it convenient to denote this

restriction by f*

The one-dimensional sets corresponding to the above are:

U = {Z E $~ IZ I <l}

11= {Z c 
~ I IZI <U

I = {Z e 1 IZI =1)

We need one further subset of

{(Z 11 Z2) c I 1Z 11 >1 and I Z 2I >1). 
2

By the Fouri er coefficients of a function h (e1,e2) defined on T we

mean the numbers

0



I2 ~ 12 namn = 12 j j h(e1,o2) e
_
~~
m01+ ne2)d81 do2.

4ir 0 0

Final ly, let us state precisely what we mean by the term spectral

factorization . Several different forms of spectral factorization are treated

in [1]; here we will be concerned only with the simplest form: if f i s a

rational func tion, it will be said to have a (rational , quarter-pl ane)

spectral factorization if f = f1f2 where f1 and f2 are rational functions,
2 2

f1 has no poles or zeros in U , and f2 has no poles or zeros in V . Several

coninents are in order concerning this definition :

i) By “rational ” we mean onl y “finite-order” ; i.e., the funct ions

are assumed to be expressible as the quotient of two (finite-order)

polynomials.

i i )  The quarter-plane property enters only in connection with the

regions in which the factors are assumed to be zero- and pole—free;

in particular , if f has no poles or indeterminacies on i
2
, and has

a quarter-plane spectral factorization, then there Is a quarter-

pl ane causal , stable filter whose ampl itude response is equal to

f* I .
iii) It woul d possibly be more natural to work wi th tP and V~~ rather than

U2 and V2 (especially when considering stability). However, to do

so would compl icate the statements of the theorems considerably, and

It is usually clear whether or not the results will hold with U2 and

V2 in place of U2 and V2. (One needs only to check for zeros and
2

poles on T ) .  In general, if the “closed ” vers ion is not obv ious ,

It is not true; 1 - Z1 Z2 wi ll  serve as a counterexample i n all

such cases.
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iv) To simplify the statements of the theorems, the definition has

been given in terms of the rational function f itsel f, rather than
2

- 
. the spectral function (f * I ; however, the conditions given in the

2
theorems actually involve only If~I

2 2
v) We note that V is defined to be a subset of ~ ; thus the behaviour

of functions at infinity is irrelevant to our purposes.

Spectral Factorization:

Our first criterion for the existence of rational spectral factors is

very much in the spi rit in which spectral factorizatlon is treated in [1];

it is a trivial consequence of theorem 5.4.7 in [2).

Theorem 1:

If a rational function f on 
~~2 

has a rational spectral factorizatlon

then the Four ier coefficents amn of log ~f*f are zero for all pairs of in-

tegers (m,n) such that m ~ o, n ~ o, and m and n have different signs -

that is , for all integer points in the second and fourth quadrants The

converse is true for polynomial f.

As mentioned above, this criterion invol ves only the absolute value

of f; It follows that the existence of spectral factors imposes restrictions

on the amplitude response of a two-dimensional filter - in contrast with

the situa tion in one dimension . The above criter ion , however , does not

present these restrictions in an easily visualized form - for instance, it

is difficult to guage exactly how severe the restrictions are. For this

rea son , we next present conditions which are stated in terms of the log-

amplitude response Itself, rather than its Fourier coefficients. This

result takes an approach which seems to differ substantial ly from those

previously known; it gives easily visualized necessary conditions on those

rational functions which admit a rational spectral factorizatlon. Before

we sta te th is theorem, however , we first present a simple result which will
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be used in the proof, and is also of separate interest; one of its conse-

quences is that when rational spectral factors exist, the usual one—dimensional

stabilization method (for unstable denominator polynomials) can be used.

Theorem 2:
- ; If the rational function f admits a rational spectral factorization,

“ I

then there is a rational function f (with deg f < deg f) such that

=

2

and f has no poles or zeros in U

Aga i n , the converse holds for polynomial f.

Thus , if the denominator polynomial of an unstable filter has polynomial

spectral factors, there is a stable fil ter of at most the same order wi th

the same ampl itude response (provided the polynomial has no zeros on T
2) .

Again most of the proof is contained in [2]; we fill in the details

here: suppose f has rational spectral factors, then f = f 1 ~- where f1 has no

poles or zeros in U and P and Q are polynomials wi thout zeros in V
~. m n

Let P = Z1 Z2 P (l / Z1, l/Z 2) , Z2 ~ 0 , Z1 $ 0

where m is the degree of P in Z 1, n is the degree of P in Z2, and ~ is the

polynomial whose coefficients are the complex conjugates of the coefficients

of P. Clearly P is a polynomial of degree less than or equal to the degree

of P, and so is also defined for Z1=0 and Z2=O. Now if P(Z1,Z2) = 0 for

Z1 $ 0 and Z2 $ 0, then ~(l /Z1, lIZ2) = 0; this implies that either

2

Il /Zil < 1 or 1 hz 2! 1 (s ince P has no zeros in V )

and so either

IZ 1I 1 or 1Z21 1 , i.e., (Z1, Z2) U2
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2
Thus the only possible zeros of P in U are for Z1 = 0 or Z2 = 0. But

by standard results in the theory of several complex variables [8], if

the zero—set were nonempty, this would imply that either Z1 or Z2 was a

factor of P, which is impossible by our choice of m and n. Thus P has
2 2

no zeros in U . Finally, on T
m m

IP(Zi,Z2)I = IZ 1 Z2 V (l/Z i , l/Z 2 ) I  
= IV(Y1,Y 2) I  = IP(Zi-,Z2)I.

Q is defined similarly and has similar properties. Then
It.

P

Q

clearly has the required properties.

Conversely, suppose f is any polynomial for which there is a
2

rational function f without poles or zeros in U such that

If*l = If* I

then f/~ is rational and analytic in Ii , and -

I(f/ f )* I = 1

It.

Thus by theorems 5.2.5 and 5.2.6 in [2], f/f = P/Q where P and Q are
- 2 2

polynomials, P has no zeros in V , and Q has no zeros in U . Then
It.

f= P f /Q

gives a rational (in fact, polynomial) spectral factorization of f.

The Second Criterion:

Our second set of conditions for the existence of a rational

spectral factorization is given in the following: 

--5 ~~~~~~ - - -5.~~~~ - - 5 -  -
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If a rational function f on ~ admits a rational spectral factori-

zat ion , then

~~ 
log jf(eime , ~~~ 

0 + 

~ )Id e

is a constant independent of ‘v , (0 < ~ < 2 w ) ,  for all integers m > o and

n > 0.

Again, these conditions depend only on the amplitude response of f.

The simplest condition is that for m = I and n = 1; it can be easily visua-

l ized by drawing two adjacent squares in the 0
1 ~~2 

- plane on which the

amplitude response is defined (the frequency response extends to the entire

~ 1~~2 - plane by periodicity), and drawing lines L1 with slope.l and length

2ir12 on these squares; see figure 1.

Then the condition for m = 1 , n = 1 can be restated as: the “average”

ampl itude of the function f along the line Li is a constant 
- that is, it

is as independent of the particular line L1 chosen. (“Average” here is to

be understood as the geometric mean of the amplitude , or the arithmetic

mean of the log-amplitude). Alternatively, we may say that the average

level of the amplitude over any line of slope 1 and of length 2n~2 is in-

dependent of the position of the line in the o1e2— plane. (For example, we
A

coul d vary the L~ over the dotted square in the direction n ) .  The condi-

tions for higher m and n have a similar interpretation , with a slope of

n/rn instead of 1, and l ength 2 iW &+n 2 instead of 2irr’Z; clearly, if m and

n are not relatively prime , the corresponding condition is superfl uous.

This theorem then gives a striking l imi tation on the amplitude re-

sponse of a rational function which admits a rational spectral factorl—

zation; even the simplest of the conditions (that for n.mzl) implies that

---5=- - --5— - —  - --- - - --- - - - —
~
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such a function can not accurately approximate an ampl itude which has
A

large variations in overall level in the direction n shown in figure 1.

Proof 0f Theorem 3:

In view of theorem 2, it suffices to prove this under the assumption
2

that f has no poles or zeros in Ii . This assumption implies that f has a

holomorphic logarithm in U
2
. Then, for any integers m > 0, n > o and any

real number v,

log q(Zm , ~ eJ’I!) -

is a holomorphic function of one complex variable for Z ~ U. Thus

Re(log f(Zm, Zn e3~))

is a harmonic function in Ii, and so by the mean-value property of harmonic

functions

~ f Re (lo g f(Zm , ~ e3”~)) do = Re (log f(0m o~ efl))

i .e .,  i f
21T 

Re (hog f(eJmO , e~~
0
~

’) )) do = Re(log f(o,o))
2 ff  0

But Re log w = log jwj for w $ 0, and so

~~ ~ 
~~~~ If(e

Jmo , ej(~
l0 +Y )

)I do = log I~(°~°)I

and the right-hand side is independent of v (and, incidentally, of in and

n also).

An obvious question which arises is the extent to which the converses

of these results hold. In fact, the converse of Theorem 3 holds for poly-

nomials, and modified converses of both Theorems 1 and 3 hold even for

rational functions. The modification takes the following form : I f the

Fourier coefficients of log If*t (where f is a rational function) vanish
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it.

for inn < o , then there is a rational function f with rational spectral

factors , (equivalentl y, a rational function without poles or zeros in U2),~such
- tha ::~ If* I = If*I. (A similar statement holds for Theorem 3). However,

the proofs of these converses involve some technical analytic details , and

so are relegated to an appendix.

The modification in the above converses lies, of course , in the fact

that we cannot conclude that f itself has rational spectral factors; thus

there are some rational functions which can be stabilized without changing

the amplitude response but to which the classical 1-variable factorization

technique cannot be applied . A simple example of this is the function

Z1 +Z2 l
f(Z1, Z2) = Z1 + Z2 - Z1Z2

Here, If*l is Identically 1-, and so has trivial spectral factors; but f It-

self clearly does not.

Al though the converses of theorems 1 and 3 are proved in the appendix ,

there is another result related to the converse of Theorem 3; by

strengthening the cond f ton for m=n=1 alone, we can get a stronger converse

for polynomials. Before we state this converse, however , we first give a

stability criterion (used In the proof of the converse) which , although

previously known, [3], has not appeared in the engineering literature.

Although not as sharp (in terms of dimension) as some other known criteria [4],

it has two advantages which make it useful for theoretical purposes: first,

it is given In terms of a one—parameter family of discs without the lower-

dimensional test in [5]; and second, unl ike most other stability tests, which

conclude the nonvanishing of a polynomial on if from Its nonvanishing on

some subset of if which contains 1
2
, this test allows the polynomial to

vanish at some points in T , but concludes only that the polynomial does

-

~ 

~1_~
_

~
__ 

-— -~~~~~~~~ ~~~~- __-—-

~~~~
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2

not v a n i s h  on U . The criteri on is:

Theorem 4:

Suppose a polynomial f has no zeros in the set

{ (Z 1, Z2) U
2 

= IZ2I };

then ‘F has no zeros in U
2
.

This is proved in a much more advanced context in [3]; however, it

can al so be easily proved by applyi ng one of the criteria in [4] to the

polydi scs

= {(Z1,Z2) £ ~
2 l iz 1, < r, ~Zz~ < r)

for o<r<l . 
- - 

.

For the hypotheses imply that f has no zeros on the distinguished boundary

of Ur (for o.crcl), and none on the set

{(Z1,Z2) £ ~
2

~Z1=Z2 fl ‘U
2

-

Thus by theorem 5 in [4], f has no zeros in tJ~ for any r < 1, and so f has

no zeros in U

We can now state and prove the partial converse to theorem 3.

Theorem 5:

If f is a polynomial with the property that

~~ log 

~ 
e,e e ) ) Icf O = log If(o,o)I i .for ocyc2ir ,

then f has no zeros in U

Thus we strengthen the condition for m=l and n 1  in theorem 3 by

specifying that the constant in question is to be log If(o,o)1: it then

follows not only that f has ra tional spectra l factOrs , but that it is
2

actually zero -free in U

- —--- --5- — - 5 —-  _ ‘-
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By theorem 4, it suffices to prove that f has no zeros in the set 68

{(Z1,Z2) u2~Iz1I = 1Z21} -

But this set is the union of the open discs

{(Z1,Z2)I-Z2 = e~
’
~Z1, IZ1I<l r-,’For o < Y  < 2ir; 

-

we therefore wish to prove that f has no zeros In any of these discs;

or equiva 1en~ly that the function f, of one variable defi ned by

f, (Z) = f(z,z~J~) has no zeros in the open unit disc. Applying Jensen’s

formula [6, p.299] for the unit disc to ~~ we get

~~ Jo 
log J f, (ei° ) t de  = log J f ,(o)J_ ~ log 1Z 1 1 -

where the sunination is over all the zeros (counted with multiplicity) of

f, in the unit disc. Expressing this in terms of f:

- 

-~ J 1o9 J f ( e 38 ,e~~0~ V) )~ j 6 = log Jf(o,o)J_~~ log IZ~ 1

and so ) log ,Z1 1 = 0.

Since for any Z1 in the open unit disc log 1Z1 1 c o, the conclusion follows.

(It is clear from the proof that we always have -

~~ c:~ c
~ 

~~~~~~~~~~~~~~~~ log (f(o,o)I ~

it follows from this that in fact the apparently weaker condition

-

~~~~~~~ 

2ir f2ir . j
~- 2  f J log J f (e Je l ,e e2 ) I d o lde 2 = log

Is sufficient to gua rantee that f is zero-free in U
2
. See [2 ,p.73]).

Stabl e II R Fi l ters and Minimum-phase FIR Filters:

The very close relationship of spectral factorization to the nonvan ishing

of polynomials in U~ , and thereby to stable h R  filters (via the denominator

polynomial ) and minimum-phase fi l ters (via the numerator polynoEni al) 1s al —

ready cl ear from the previous sections. The force of theorem 2 Is that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - —---—- —--—-----— -------- -- --
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purely from the point of view of ampl i tude response ,transfer functions having

rational spectral factors are equival ent to those without pol es or zeros in H

2
U . Thus the restrictions on ampl i tude response in theorems 1 and 3 apply

to the denominator polynomial of any stable h R  filter; the contribution of

the denominator polynomial to the overall amplitude response of the filter

(in the case of an all—pole filter, the entire amplitude response) must

satisfy the restrictions imposed by theorems 1 and 3. We have, therefore,

identified the properties of the amplitude response which make it im~possible

to stabilize a filter; if the original amplitude response has large overal l

variation in the “wrong ” direc tions , attempting to find a stable filter which

closely matches thi s response is futile. Close matching of the amplitude

forces instability. This has already been shown by example by Bose [93 and

Woods [10]: we now see that it is the variations in the amplitude response

in the “wrong ” di rections in their examples which accounts for their be-

haviour.

It is also of interest to note that , in the Shanks procedure of minimizing

JJ ~fg-h j
2 
de1do2

over all polynomials f of given degree (where g is the original polynomial),

i f the allowable f ’ s were restricted to those which have polynomial spectral
2

factor izations , the procedure would yield a polynomial devoid of zeros In U

It does not appear that this observation can be used as the basis for a work-

able stab i l iza tion method , however , since the con diti on that f have polynomial

spectral factors is intractabl y nonl i near In the coefficients of f; and further,

in many cases this procedure would yield an f which was only marginally stable.

For the same reasons , restricting oneself throughout the design procedure to

polynomials which satisfy the condition in theorem 5 does not appear to be a

feasibl e method of ensuring stability . 

- ----5—’-- - - -5—----
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Exampl es and Coninents:

An example of the behaviour of those polynomials not possessing poly-

nomial spectral factors has already appeared in the literature, al though
in a different context; we repeat this example here.

2 2 2 2 2 2A(Z1,Z2) = 1 - 75Z1 + .9Z 1 + 1.5Z 2 — l.2Z1Z2 + 1.3Z 1Z2 + l .2Z 2 + ;9Z 1Z2 + .5Z 1Z2

This polynomial was studied in [7]; the associated Shanks polynomial was
found to be stable but to have a substantially different ampl itude response

from that of A (for more details, see [7]). The fact that A does ’not have

polynomial spectral factot~s was established by checking the condition In

theorem 3 for m=nzl and ‘v = a, ‘V = ii, with the following results: (correct to

nine decimals)

~~ 
~~~~~ JA(e~~

, e30)ldo = .696570700

~- J
iog JA(eJ°, eJ(°

~~)Ido 
1.134686936

As an example of a polynomial with rational spectral factors, we have
2 2 2 2

B(Z 1,Z 2) = 1 + 2.25Z~ + 2.25Z2 + .5Z 1 + .5Z 2 - 6.5Z 1Z2 — Z 1Z2 - Z 1Z2
2 2

- 4Z 1Z2 
-

This factors into (I + .25Z1 + .2522 + .5Z1Z2)(i + 2Z1 + 222 - 8Z 1Z2)
2 2the fi rst factor factor having no zeros in U , the second none in V ; re—

2versing the second factor gives a polynomial without zeros in U ~

B(Z 1, Z2) = (1 + .25Z 1 + .25Z2 + .5 Z 1Z2)( -8 + 2Z2 + 2Z 1 + Z 1Z2)
2 

‘

2 2 2 2 2
= —8.2Z~Z2 + .5 Z1 + •522 + 1.25Z 1Z2 + 1.25Z 1Z2 + .5Z 1Z2,

and B has the same ampl itude response as B.

- -5 -—--5- --
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In order to ga in some idea of the stringency of the conditions in

theorem 3, let us consider •the case of an ideal band-pass filter. By

an ideal band-pass fil ter we will mean a fil ter whose amplitude response

is equal to 1 on some subset , A, of the square 0<01<211, 0<82<211, and

equal to K << 1 on the complement of A (of course this specification con-

tinues over the whole plane by periodicity). This of course is not the

ampl itude response of any rational func tion , but in practice for certain

shapes of the set A , one may wish to approxima te such a response by a

rational function. One easily sees that up to a scale factor, ~the averages

in theorem 3 are in th is case merel y the frac tion:

length of the l ine L1 lying in the complement of A
Tota l len gth of the l ine 

-

It is easily seen from this that there are very few passband shapes of

practical interest which satisfy even the first of these conditions (where

n=i and m 1 ); in other words, very few which can be accurately approxi-

mated by transfer functions having rational spectral factors. (This is

not to imply that one would in practice be restricted to such filters;- the

above discussion is meant solely as an indication of the severity of the

restrictions on the amplitude of such filters).

Finally, we remark that there does not seem to be any difficulty in

extending the results in this paper to higher dimensions , and to multi-

dimensional systems other than digital filters. 

- 5 - -- - - -5 A
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APPENDIX

The converses to Theorems 1 and 3.

These converses invol ve some technical ideas and results from [ 2]; the

most important ideas are those of inner function [2,p.l05], outer function

[ 2 ,p. 72], Poisson integral [2, p.17] and the classes N(tJ2) [2, -p.44] and

N*(U 2) [2, p.44].

We will also use the following notation from [ 2] (Here ‘F is an analytic

function on U ):

I. f*(ei~ 1, e~
e2) ~ lim _ f(rei0l , rei02 )

r+1
will denote the radial limi t of f

(this is clearly consistent with our previous use of f*);

Ii. For w = (w1, w2) c , f
~
(Z) will denote the one-varible

function defined by

f
~

(Z) ~, f(Zw 1, Zw2);

i i i .  if ~ is a function defined on i
2 
which is absolutely integrabl e

there ,

~~ 2 f2
11 f211exp (-imei -m e 2) ~ (e~,e~) de2de 1

will denote the Fourier coefficients of t~
.

2
iv. For any function $ on T ,

~~z 
f T J~

11 

~(e 1,e2) de2de 1 will be denoted by

J ~ 
din or f ~ (w) d in (w).

T2 J 12

We will first prove the converse to Theorem 1, and from this derive

the converse to Theorem 3. First of all , however, we need the following

~

- -- - -- -

~
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lemma (which Is given as a problem in [2]).

Lemma Al:

If ~ is a real-valued function defi ned on 12

such that

e L’ (T2) (i.e., 
JT2 

I dm< 
~
=)

and

~(m ,n) = 0 for mn < 0,

then there is an outer function f on U2 such that

P[~] = logjf~

(where P[ ] denotes “Poisson i ntegral of”) .

Proof (
~(m ,n) (m ,n) + (0,0)

Let amn 1/2 4 J (m ,n) (m ,n) = (o ,o)

and let

g(Z1,Z2) = 

m~o r~~ 
amn ZT z~.

This series clearly converges uniformly on compact subsets of U2,

and so defines an analytic function there .

0 

-a-- — — ~~~~~ -
- --— - --- - —~~~~~~~~~ 
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7.4

If we let ‘F = e9

2

then ‘F is analyti c in U , and

log j f~ ~ a~~ rT r~ ex p (jme 1 - 
+ jne2)

m=o n=o

+ E z 
~ 

rT r~ exp (-jme 1 - m e 2)
m=o n=o

E z $ (m ,n)r~ini r~hl1 exp(jmej + jne2 )mz_~ fl~~~~

= P[t~] - [2,,p.l7]

Next we prove that f is outer; we have (for O<r<l )

J 2 log~)f(rw)idm 1w) .
~~ J 2 I l o g I f ( r ,w) I I d m ( w )

J12 1 1t.vi) ~dm(w)

~ f 12 I~~w I d m w [2,Thm.2.1.3(c)]

S 

<

and so f c N (U 2).

Now f* exists almost everywhere on i2 [2, Thm.3.3.5] and log~f*~ = l~ almo st
everywhere on i2 [2,Thm.2.2 l]; thus log ~~ = P[log lf*I) and so
f ~ N~ (U 2) [2,Thm.3.3.5], and log l f ( 0 )I  = 

112 
log I f *( w ) I dm ( w ) .

Thus f Is outer.

Q.E.D.

We can now prove the converse to Theorem 1:

t _ 
_ _ _  _  t
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Theorem A2:

Let f(Z 11Z2 ) be a rational functi on (~O) ,  and let

= log J f * J 
-

If ~(m ,n) = 0 for mncO, then there is a rational function g without poles

or zeros in U2 such that ~g*~ =

Proof:

By Lemma Al , there is an outer function g such that

log J g j  = P[logjfj].

This impl i es

log ~g*~ = log ~f*( almost everywhere on

Therefo re , for almost all w ~T2

log g~ (Z)~ = log if ~ (Z) ~ for almost all  ZcT (2,Lenmia 3.3.2],

and Is outer for almost all w ~i
2 [2, Les~ina 4.4.4) .

For any such w , let Z1, • . .
~~~ 
Zn denote the poles , and ~~~~ ... Z~ the

zeros, of fw (Z) in U , and let

- n m
= ii 

- k it k 
- 

f (Z)
k=1 Zk2~ 

k=n+l Z_Z
k 

w

Then has no poles or zeros in U and is rational ; hence , ‘F~ is outer. Si nce

is outer , we have 
~W’~ W is outer. Also ‘~ w 1 If w*I, and so !‘Fw*I i~~~I

for almost all Z s T .  Thus is Inner. But a function which Is both outer

and inner Is a constant of modulus 1 , and so

— e~~ ~w for some real v.

1
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Thus g.
~ is rational for almost all w eT

2, and so is rational for all

w e E ,  where E~~~T2 is a compact set of positive measure (by the inner

regularity of the measure). It follows by [2,Thm. 5.2.2] that g is

rational (si nce the vanishing of a polynomial P on a set of positive measure

tn would Imply

log IP* I ~ L1 (T2)
and so P 0.)

Thus g is a rational function wi thout poles or zeros in U2 , and

19*1 = Jf* I almost everywhere in 12

r and so, since g and f are both rational ,

19*1 = If* l on T2 .

F Q.E.D.

We next prove- the converse to Theorem 3:

Theorem A3:

Let f(Z 1,Z2) be a rat ional func tion (~ 0) and let

= log If* I
If 1 1211

2~ j 4~ 
(me , no + v)do is a constant independent of ‘V for each

pair (m,n) with m ’o and n>o then there Is a rational function g without

poles or zeros in U2 such that Jg~ J = If*I
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Proof:

Let m >o , n>o, and let .~ + o be an integer.

Then

eJim ’V ~~~~(m0 ,,~~+ ’V ) cj 0 dv = 0

(211 (211
- 

Jo Jo e fl’V c~ (me ,no +v)dedv = 0

Making the change of variables defined by

0 101
m

= e~— fl. Oi,
in

we get

211 
~~0~~+ 211

~j Jo J~ exp (jjme2— j..Lne1) ~ (e 1,e2)de2de1 0

and since the integrand is periodic in 0~ and 02

(2 11 (2 11

J J exp- (j~me2 —j.~ne 1) 4 (e 1,e2)de2de 1 = 0

and so 4~ (-jn ,.tm)=0 for all .~~~0,m > o  and n > 0 ,

that is ,

~(m,n) = 0 for all m ,n wi th mn < o.

The result now follows from Theorem A2.

Q .E.D.

c

Finally, we note that if f in Theorem A3 is a polynomial , then the converse

in Theorem 2 implies that f has polynomial spectral factors. Thus we have the

— full converse of Theorem 3 for polynomials.

-
c 

_ _ _ _ _ _  
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SYMMETRIC HALF-PLANE FILTERS

John Murray

ABSTRACT

A class of two-dimensional recursive digital filters called symmetric

half-plane filters is discussed ; some properties of these filters are derived

and it is shown that in certain situations these properties may give the

symmetric half-plane filters both theoretical and practical advantages over

previously proposed fi l ters . In particular , they are ideal ly su ited to highl y

parallel processing.

INTRODUCTION

In the l iterature on 2-dimensional recursive di gital filters, two main

types of filter have been studied; these are the quarter-plane filter (e.g.[l),

[2]) and the as~ inetric half-plane filter [3). Basically, the two correspond

to two different concepts of causality. The general stability conditions

for a wide class of filters (including syninetric half-plane) were discussed in

[4]; unfortunately, however , those f i l ters are not recurs ivel y impl ementable in

general. Here we will consider a class of filters which are recursively urn-

plementable, and satisfy the same stability conditions as those in [4].

SY#IETRIC HALF-PLANE FILTERS

By a sy etrlc half-plane filter we will mean a (causal , recursive) 2-di-

~ nslona1 digi tal fi l ter, the denominator of whose transfer function is of

~. ~~~~

~~
. L

2) 
• I a.,,Z? ~~ ( 1)

.11 ~.-l

II. — --- - -~~~~~~ —- —-—-5— - - — — — — - - -5—--- —
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This differs from the filters in [4] in that in goes from 1 , rather than 0,

to M; i.e., this filter omits all of the row m=O except for the constant

term ; the asyninetri c hal f—plane fi l ters omi t half of this row. The filter (1)

is recursively realizable , since the computat ion of the output at any poin t
depends only on the outputs in previously computed rows; looked at from another

point of view, each row of output depends only on previous rows of output. This

has two effects; f i rstly, it focuses attention on the row as the basic element
in the filter; secondly, it implies that all the outputs in a given row may be

computed in parallel , since each output in a row depends only on outputs in
prev ious rows , and not on any of the outputs of the same row. This is the main

practical advantage of this class of filters - it would be of significance , how- -

ever , only in real-time hardware applications of 2-dimensional filteri ng, and
these seem to be few.

SOME PROPERTIES

Using the methods in [4], one can easily derive the following :

The filter (1) (i.e., the all-pol e filter whose denominator is A(Z1,Z2)) i s

stable if A (Z1,Z2) p~ 0 for all (Z 1, Z2) such that ~Z~ I = 1 and 1Z21 .~. 1.

We note that this set is the same as that for the syninetric half-plane fi l ter

in [4]; it is smaller than that for the asymmetric half-plane filters [3]. It

is the smallest “instability set” (known to the author) of any recursively Im-

plementable class of filters.

However , there is a price to be paid ; the ampl itude response of the filter

is restricted as follows: -

If A(Z 1,Z.,) is of the form (1), and i f A1Z Z ~ Is the transfer func tion of a
‘ 1’ 2’

stable fi l ter,’ then

(211 4 4
I log A( e~°h ,e~

O2)I do2 = 0 (2)
J O

i ndependently of e~ .
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Thus , the average gain along any line of length 2w parallel to the e2—axis is
constant; or in other words the filter cannot have variations in the 81-d irectlon

in overall (average) gain. Equivalently , if the cepstrum of IA ( e30’, ei02)l Is

given by ~ ~ ~~ 
Z1 Z~ ,

m=_~ f l..~

then = 0, for all n.

This follows immediately from (2) and the definition of the cepstrum; (2)

will be proved in a forthcoming paper.

This implies that in order to realize an arbitrary magnitude function , the

filter must either have a (nominirntsn-phase) numerator polynomial, or the f i l ter
must be cascaded with a 1-dimensional filter in Z1. It is very easy to calculate

the ideal ampl itude response of this fil ter.

DES I GN AND IMPLEMEN TATION CONSIDERAT IONS

It is conceptually convenient (and in a large number of cases, computation-

all y effic ient ) to impl ement the Convolu tion in the Z1-direction by means of the
Fourier Transform. (It is assumed from the beginning that the dimension of

the array to be filtered is a known fixed constant in the Z1 -direction, i.e., each

row is of the same fixed width). From this point of view , and regarding each row

as a single entity described by Its 1-dimensional Z-transform , the coefficients

In (1) are irrelevant; what matters are the M functions

a (ei°1) = a (e3~1)
N

n-N

Further , the stability requirement for the filter is equivalent to the requirement
that for each fixed o~, the filter defined by

A9 (Z 2)= N 
1~~

1 
~ ~m (eJO 1)Z~ + 1

mzl

- - 

is 1-dimensionally stable. Finally, the functions am (ei01) do not have to be
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analytic or meromorphic functions; this is seen by letting N-~~. In other words ,

the roots of a
~

(e
~
°’) can vary quite arbitrarily with 

~~ 
Thus , we can des ign

the one-variable filter A0 (Z2) by any one of the usual one-variable design
methods we choose (yielding a stable filter) for each e~: the result will be a

stable two-variable filter: further, if our one—variable method gives poles and

zeros explici tly, we have the same for our two variable filter, which can there-

fore be expressed as a cascade of filters of degree 1 in 22. Finall y, i f one

desires a filter of finite degree in Z1, one can solve the following approximation

problem (for each in, 1 < m  <N); minimize (over bmn)

II ~~ 
bmne

3
~
°1 

- 

bm~~~~)tI subject to
n=-N

I 
~ b ei~°1I < 1 for all 

~ i ’  where
n a_ N mn

~m~~
ie 1) denotes the m-th pole of A0 (12) as a function of e~, and 

~I It denotes

some error norm .

Hopefully this will become clearer on. consideration of the following example .

EXAMPLE

We wish to design a filter with second-order Butterworth response in Z2 to

approximate the fan filter whose passband Is the set I~2I lo~ t .  For fixed e~,

therefore , the filter is a 1-dimensional filter whose passband is the set je) < e
~I.

Using the bilinear transform technique, we find the second-order continuous

Butterworth fi 1 ter
1

1 + /2 S/w c +

transforms into

H
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(1 • Z3)2

(3)

whi le Its (stable) poles transform into

- 

(1 + —

(1 +

for ~ 0.

In accordance wi th the usual frequency warping , we take I tan e 1121; however,

we note that this causes stabil i ty problems at e~—O and e l aw ; we therefore take

a small perturbation of w
~
, e.g.,

Rain 1,/2) 2 + c
c ’V COa Ii/2~~~+ c  (4)

The fi l ter can now be directly impl emented by mu ltip lying the Fourier transform

of the previous output rows by the appropriate functi ons according to (3) and (4)

and performing the recursion from row to row directly.

Al terna tively, If a finite—order (in Z1) fil ter is desired, we must sol ve

the problem: Minimi ze (over b1~)

(2T 1/2. t
j _ J ?  tan •1/2 1 ~ b

. 10 1 i2+(l-j.) tan 
~~/2I J_1,

subject to ~ i for all

and similarly for the other root. The resulting filter may then be impl emented in

I -
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cascade. It should be pointed out that while the above optimization problem is

not simple , it is one-dimensional.

Finally , the above example was chosen for simplicity and convenience rather

than realism. Clearly a Butterworth fi l ter is not optima l for this problem,

especially when it yields a design which is not all—p ole; if we have to store

input rows (as well as output rows) we may as wel l use them, and design an

ellipti c type fi l ter;  alternativel y, we might use a filter whi ch is all-pole

in its discrete form.
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Introduction -

The concepts delineated in this paper arose in part from an

introductory study of Rlemann surfaces. Associated with an analytic 
-

function is a Riemann surface. It has the property that the image

of simply connected regions in the complex plane are simply connected

on the Riemann surface.

The point made here Is that the Nyquist criterion is trivial

for simply connected regions. Moreover, If one can work on the

Riemann surface, this trivality carries over to the general case.
To Illustrate the point, let Figure 1-a be the image of the right

half plane under an analytic.map. The region Is not simply connected.

Figure 1—b shows the “same region” as it might appear on an

appropriate Riemann surface. Here the region Is simply connected.

Figure 1 
-

Under the hypothesis that f Is bounded at infinity , the boundary

of the region in Figure 1-b is the image of the imaginary axis as

Indicated by the darkened line in Figure 1-a .

_ _ _  —4
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Now remove “-1” (this may be a set of points) from the Riemann

surface. The essential argument we need is that the Nyquist contour

in the complex plane is homotopic to zero if and only if “—1 ” is in

the interior of its image on the Rimann surface.

Al though motivated by the intrinsic properties of Riemann surface ,

this paper drops any further discussion of the concept so as to

simplify the exposition. Instead, the paper exploits the fact that

the Nyquist contour is a simple closed curve In the complex plane.

Mathematically we draw only on the intuit ive concept of homotopic

triviality as found in algebraic topology.

In the sequel, we prove the classical stability results via

homotopy theory. In particular, we utilize covering space theory.

We believe our analysis is clearer and more intuitive than has

hitherto appeared. Moreover, we believe that this research Indicates

that the nub of the Nyquist criteria is in fact homotopy theory.

In a future paper, we will generalize these results to functions of

several complex variables and their application to the stability of

of multi—dimensional digita l filters.

Mathematical Preliminari es

Firstly, let ~, ~~÷, and ~~ be the complex plane , the closed

right half plane, and the open right half plane respectively. Let
0

= - ~÷. Basic to homotopy theory is the concept of a path.

A path or a curve in the complex plane is a continuous function
C

~:[O,l]4. For this paper all paths are understood to be

0 

- - -- -- -5-  — -_-~_ -5—-_ --- - -i-
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rect ifiable——i.e. y is also a function of bounded variation. (2)

y is a closed path if y(0) = y(l). y Is a simple closed path If y

Is a closed path and has no self intersections. The image of

I [0,1] under y Is called the trace of y and Is denoted by {y}.

Two closed curves and are homotopic (vo - 

~~ 
in ~ if

there exists a continuous function F: I x I + ~ such that:

(a) r(s,0) a 0 c s c 1

(b) r(s ,l)  a y1 (s) 0 < S < 1

(c) r(0,t) a r(l,t) 0 c t c l

Intuitively, ‘r0 is homotopic to if one can continuously

deform Into y1. Moreover, it Is easily shown that the homotopy

relation Is an equivalence relatIon. (4) (5)

Another important property of a closed curve is its index. The

index of a closed curve, y, with respect to a point “a” not in {i}

is:

n(y;a) = 2~.f  (z-ai~dz (2)

Observe that

f (z-aY 1dz = fd(ln(z-.a)) = f d ( l n l ( z - a ) j )  + ifd(arg(z-a))
I I I I

= ifd(arg(z-a))
I

This Integral therefore measures I times the net Increase in angle that

the ray r of Figure 3 accumulates as its tip traverses the curve y.



Figure 2

Following the co~inents of J. Barman and J. Katzenelson (1),

for the integral to be wel l defined it is necessary to specify the

appropriate branch of arg(z-a) at each point of the integration.

We will assume the choice of branch as outlined in (1).

Finally , we point out that this definition of index (encirclement)

is a special case (i.e. in the plane) of the general topological

concept of Brouwer degree. (4) (5) (6)

At any rate n(I;a) = 0 if and only if q is homotopic to a point

in ~ — (a). (cf. prop 5.4, ref. 2) Simply then, a closed curve y

does not enc i rcl e the point “-1” if and only if y is homotopic to a

point in ~ - {—l}. We will henceforth refer to such a 
~ 
as being

homotopically trivial. -

Conversely, y encircles “-1” if and onl y if 
~r cannot be continuously

deformed to a point in ~ - {-l}. Clearly these ideas indicate that

the Nyquist encirclement condition is fundamentally a homotopy

concept.

To further illucidate the point, let g(s) be a rational transfer
function depicting the open loop gain of a scalar singl e l oop feedback

system. Suppose all poles of g(s) are in and g(co)  c M c ~~~. Via

the Nyquist Criteria, the closed loop system is stable if and only

If h(s) = g( s ) / ( l + g ( s ) )  Is stable; if and only if the image of the

-4
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imaginary axis, under g(s), (the Nyquist plot of g(s)) does not pass

nor encircl e “— 1” .

Specifically, the encirclement of “-1” by the Nyquist plot

implies there exists at least one ~ such that g(s 0) = -1.

Thus the Nyquist contour is homotopically trivial in ~ -

if and only if the Nyquist plot is homotopically trivial in

Motivation for this approach also arose from a close scrutiny

of the classical proof of the Nyquist criteria which depends on the

argument principle. The argument principle supplies unnecessary

although specific information in that it counts the number of times

“-1” is encircled. This may account for the apparent difficulty in

generalizing the Nyquist criter,a. Nevertheless, the af f in i ty

between homotopy and encirclement ideas led the authors to a minor

study of algebraic topology.

In our setting, algebraic topology establishes a topologically

invariant relationship between a metric space, X, and an algebraic

group called the fundamental group of X, denoted by ii(X). The

relationship is topologically invariant in that homeomorphic spaces

have isomorphic fundamental groups.

Specifically, the fundamental group is a set of equivalence

classes of closed curves. Each equivalence class consists of a set

of curves homotopically equivalent. The group operation is

“concatenation ” of curves.

I

_ _ _ _ _  -5 -5 _ _ _ _ _ _  -5



— - - -5-5— _ _ - 5 - -5 - - 5 - - - -  -~~~~~~~— —----- -~- ---5-5 

- ,  95

For example , the fundamental group of~~ consists of one

el ement , i~, the identity, since all closed curves are homotopic to

zero. If X = - (-1), then ir(X) has a countable number of elements:

IX (the identity) equal to the equivalence class of all closed curves

not encircling “-1” and the remaining elements, p~~ 
(n = 1 , 2, 3 . ..)

consisting of the equival ence class of all closed curves encircling

“-1” , n times. Moreover, 
~ 

concatenated with is equal to the

element

Now let X and V be metric spaces. Let f: X -~ V be l ocall y $

homeomorphic. In particular, assume that for each poin t y in V there

exists an open neighborhood G of y such that each connected component

of f~~(G) is homeomorphic to G under the map f. 
- Under this condition

X is said to be a covering space of V. (2) (4) Al so let ,r(X) and

• i(Y) be the fundamental groups associated wi th X and V respectively.

W i th these assumptions , f effects a group isomorphis~ (i.e. a one to

one onto mapping preservinggroup operations) $.f between ir(X) and a

subgroup of t r ( Y )  as in the following diagram. (4) (5)

x

‘I 
F 

- c çv LY)

Figure 3

_ _ _ _ _ _ _  
-5 -5-
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F is the functor which establishes the relationship between a

topological space and its fundamental group.

Before judiciously tailoring the complex plane so as to apply

the above result, we distinguish between a critical point and a

critical value. A point z0 in ~ is a critical point of a differentiable

function f if f’(z0) = 0. A critical value of f is any point w =
f(z0) whenever z0 is a critical point. -

Now suppose f:~ + ~ is a ra tional function whose set of poles

is P = {P 1, 
~~~ 

P,~}. Let Q = {q 1,  ..., q~} be the set of all points

in ~l such that f(q~) is a critical value of f. Note that there may

be q1
1 s whi ch are not critical points. To see this consider g(z)~~

z
2
(z—a). g~’(O) = 0 implies “0” is a critical value of g, but g(a) =

0 with g’(a) ~ 0. Finall y, define I = (t ilt i = f~~(—l ), i=l ,...,n}.

Note al so that since f is a ra tional funct ion , P, Q and T are finite
sets. Define X = — (P Q I) and define V = f(X).

• Lenina 1: Under the above hypothe sis , X is a covering space of V.

Proof: For X to be a covering space of V , each y in V must have an

open neighborhood G1 such that each component of f~~(G~) is homeo—
morphic to C1. Using the inverse function theorem (7 ) we construct

such a neighborhood.

Let {x1, .. ., X
k
} = f~~(y) where again the finiteness of this

set is a consequence of the rationality of f. Let W1, .. ., Wk be

disjoint open neighborhoods of x1, ..., X
k 

respectively. Since 

-- -5 
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f Is analytic on X and since f’(x) $ 0 for all x in X, the inverse

function theorem guarantees that there exist open neighborhoods

u1c~ 1 (I = 1 , ...,k) such that U1 is homomorphic to V1 = f(U1),

where it follows that V1 Is an open neighborhood of y.

Thus f 1(VlO...UVk) = u1~J...i) U~. Define V = V1 fl...(’~
Vk.

Clearly V is an open neighborhood of y and f~~(V)cU1U ... Li U~.

Since each U1 is homeomorphicto ~~~~~ f~~(V)C,U1 Is homeornorphic

to y.

Therefore each y in Y has an open neighborhood G~ such that

f~~tGy) has each of its components homeomorphic to G). It follows

that X is a covering space of V.
U

Corollary: The fundamental group ir(X) of X is isomorphic to a sub-
broup N of w(Y).

This corollary says that a closed curve in X is homotopically

trivial If and only if Its image under f is homotopically trivial.

• The Scalar Nyquist Criterion

In this section we apply the above corollary to an “ugly°

Nyquist contour. After proving the Nyquist Theorem using this “ugly~
contour we relate It to the usual Nyquist contour. This will

C
establish the classical result.

Let g(s) be a rational function which represents the open loop

gain of a scalar, single-loop unity feedback system. We assume
r

g(s) j~ 0. Thus the closed loop system has a transfer function

1~’
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li(s)

We will say that the closed loop system h(s) Is stable If

and only if li(s) has all its poles In ~ and h(a’ ) c

Let P = {Pp 
~~~

‘ ~~ 
be the set of poles of g(s) and let

Q {q1, . . .,q~} be the set of points q1 such that g(q1) Is a critical
value of g. Define I = {t 1 It1 = f1(-l), I = 1, . . . ,  11. Finally,

let X = — {P~3QuT} and let Y f(X). Lenina 1 implies X is a

covering space of V under the mappi ng f.

Assume for the present that g(lw)~ 
“-1” for -~~~ 

c ~ . Thç

first task Is to construct the ~ug1y” Nyquist contour as well as

the classical contour. Define the ulgy contour to be 1R where

yR: I -
~~ Xc~ is a path whose trace is illustrated in Figure 4—2.

Note that R is chosen strictly greater than max ((s~I~ (q~f, (tk()

for 1 < I c n, 1 c j c  m, and 1 c k < 1. The indentatIons, along

the Imaginary axis into the right half plane, are of radius

o < ~~~~~~~ These semicircular Indentations are made around all

points of P lying on the lmaginary axis and around all points q1

of Q lying on the i~—axls with q1 j T. The other “Indentations”

(again of radius e, 0 < £ < £0) are slits into 
~÷ 

which encircle all

- points of P and all points q1 of Q (q1 j T) which are In so as

to eliminate these points from the Interior of the contour. We

have also labeled these slits ‘11r where each ~ 
maps an

appropriate subinterval of I onto the specified subset of

The parellel lines, connecting a pole In g~ with the semicircular

portion of are actually the same line segment (slit) traversed

_ _ _  - 
j



L 99

in opposite directions. Note thdt. we have Indicated the usual

counterclockwise orientation , to the path. Thus the only points

encircled by TR are points of I which are in

H ~~~

• 

I) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4 (to)

x Indicates a point of P; • indicates a point of Q

LI _ _ 
j

il
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Let r denote the classical Nyquist contour where

F: I -~ ~ LJ(c.} as Indicated In Figure 4-b.

Lenina 2: Under the above assumptions on g and 1R’ h(s) Is stable

if and only if the path ~~~~ does not encircle “—1”.

Proof: Since g(i~) $ -1, ~~~~~~~~~~~~~~~~~~ there isa finite R such

that encircles all points of T lying In g9. This fact together

with g being analytic on X Implies that the statements of the Letina

are well defined.

Suppose li(s) is stable. Then li(s) has all poles In g.

Equivalently g(s) $ —l for all s in ~~÷
. Thus does not encircle

any points of T Implying that is homotopically trivial in X.

By corrollary to Lenina 1, goy~ is homotopically trivial In Y.

Conversely, suppose that does not encircle “-‘P. Then

901R Is homotopically trivial in V. The same corrollary implies

does not enclrcl: any points of T. Thus all points of X which

map to “-1” are in ~~~.

At this stage let us compare the information of the Nyqu’fst

plot, g.r, with the “ugly” Nyquist plot, 9•
~R0

Lenina 3: Let n be the number of poles of g In L,., then

211- 4 (z—l )’~dz 
• ‘2

~j~ 
j  (z—l r1dz + n

9. 9.,,?
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- Proof: Consider that

1 1 r
2 T  f ’ (z—li 1dz ~ !1 f (z-lY 1dz + 

~ 
f (z-1Y t dz

k=l9OyR gor 90Uk

But .f (z—l )~~dz J (~(z)-l )~~~’(z)dz
90Uk Uk

If 
~k 

encircles a point of Q, then (g(z)—l)1g’ (z) is analytic

in the region bounded by Uk and thus the Integral approaches zew

uniformly for arbitrarily small c. Thus the Integral Is zero

these points.

If 
~k 

encircles a pole of i(s) then since (~(z)— l~~
1
~ ’(z) Is

analytic In the region bounded by Uk:

f (~(z)-lg ’(z)dz f d(ln(q(z)-l) = 1n(g(z)—l) •2wI

1 . Uk Uk Uk .

for a suitable branch of the ‘IogaritPmi. The Integral comes out

as negative 2w1 since Uk was traversed In the clockwise direction.
- The conclusion of the lenina now follows.

At this poInt let us remove the restriction that g(iw) $ -‘I

for -~ c w <~~~. We now give a proof of the classical Nyquist

criterion using the above concepts.

O Theorem 1: Let (s) be as above with the earlier restriction

removed. Then h(s) Is stable if and only If the Nyquist plot of

g(s) does not pass through “-1” and encircles “-1” exactly n times
0

— -~~~~~~~~~~~~~~~ -
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0

where n Is the number of poles of g(s) in ~~~

Proof: Suppose h(s) Is stable, then all poles of li(s) are in

~ and h(~) c —. Thus g(cu) j& -1 and i(s) $ -1 for all s in

Therefore via Lemas 2 and 3 the Nyquist plot encircles “-1” exactly

n times.

Conversely suppose the Nyquist plot encircles “-1” exactly n

times and does not pass through “.1’• Thus g (ou ) ~ -l which implies

h(—) c ~~. Moreover since g.r encircles “— 1” n times and there are

n poles of g(s) In g,, we know that Is homotopically trivial .

Thus Is homotoplcally trivial. Consequently there are no

points t1 in ~~ such that g(t1) —1. Thus h(s) Is stable.

Matrix Case

Let the entries of an nxn matrix G(s) be rational functions

in the complex variable s. Suppose G(s) depicts the open loop gain

of the single ‘l oop feedback system of Figure 6.

1 ~ 9c~

Figure 5

x(s) and y(s) are n vectors whose entries are also rational functions

of s which represent the input and output of the system respectively.
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U

In this article, we assume each entry of a(s) Is bounded at 
-•

x = e. Thus a(5) as a mapping, ~(.):~ + gflXfl
, is analytic on ~ except

at a finite number of points, the poles of its entries.

For Figure 6 to be well defined we require that det [I+G(s)] ~ 0

I 
‘ 

Thus there exists a cl~~ed loop convolution operator, H, such that

y = H*x. Moreover the Laplace transform of H, H(s) satisfies

• 11(s) —

For the system of Figure 6 to be stable, H(s) must have all

Its poles in ~ and have all Its entries bounded at s = —.

Under the assumptions on i(s), the following factorization is

valid:

G(s) N(s)D~~(s)

• where N(s) and D(s) are right co—prime, polynomial matrices in s

with det[D(s))# 0. Moreover is a pole of G(s) If and only If it

Is a zero of det[D(s)]. (9)

Desoer and Schulman (3) have shown that the close loop operator

H Is stable If and only If det[N(s)+D(s)] t 0 for s In and

det[I+G(”)] ~~0. Using this fact, we state and prove the following:

Theorem 2: H is stable if and only if (1) the Nyquist plot of

det(N(s)+D(s)] does not encircle nor pass through “0”, and (2)

det(I+G(~)] ~ 0.
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~Proof: By hypothesis we require det(I+G(~)] $ 0. Therefore we only

must verify that det(N(s)+D(s)] $ 0 for Re(s) > 0 if and only If the

Nyquist plot of det[N(s)+D(s)) does not pass through nor encircle

“0”.

Now the Nyquist plot of detfN(s)+D(s)] passes through “0” If and

only if det(N(s)+D(s)] has a zero on the Imaginary axis——i.e. If and

only if the closed loop system has a pole on the Imaginary axis. 
•

• Finally assume the Nyqulst plot of det{N(s)+0(s)] does not pass

through “0”. Observe that det[N(s)+D(s)] is a polynomial and thus

a rational function. As per Theorem 1, appropriately define X and V

so that X is a covering space of V under the map det[N(.)i0(.)). The

above leninas imply that the Nyquist plot of det[N(s)+D(s)] Is homo—
o

topically trivial if and only if there exists a point s0 in such

that det[N(s)+D(s)) = 0. The assertion of the theorem now follows.

Observe that if one assumes the open loop gain to be stable
* a

(i.e. G(s) has all poles In 
~ ,. ) then det[I+G(s)] can replace

• deZ[N(s)+D(s)] in the above theorem. This follows since for all s

in g~, det(N(s)+D(s)] det[I+G(s)] det[D(s)) with det[D(s)] ~‘ 0.

Thus in ~ det[N(s)+D(s)] has a zero If and only if det(I+~(s)) has

a zero.

Finally, it Is worthwhile to point out the relationship between

the above formulated n~u
’ltivariable NyquIst criterion and that formulated

U 
by Berma n and Katznelson~ For this purpose we let x~(iw); J—1 , ...,

• denote the n elgen values of 6(1w). In general parameterlzation of

these function by 1w is not uniquely determined but one can always

formulate such a function. Moreover these functloàs are piecewise

_ _  _ _ _ _  ~
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analytic and can be concatonated together In ‘such a way as to form a

closed curve which Barman and Katznelson term the Nyquist plot of G(s).

Now, since

n
det[I + G(iw)] = it (1 + x. (1w))

j=l

and the degree of a product is the sum of the degrees of the individual

factors and also equals the degree of the cancatonatlon of the factors,

the degree of the Barman and Katznelson plot with respect to “-1”

coincides with the degree of our plot with respect to “0”. As such,

even though the two plots are different their degrees coincide and hence

either can be used for a stability test.

Acknowledgement: The authors would like to acknowledge the contribution
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Continuation Methods for Stability Analysis
of Multivariable Feedback Systems~

R. Sacks , K. S. Chao and E. C. Huang
Texas Tech University
Lubbock, Texas 79409

Abstract

Techniques for implementation ~ a Nyquist stability result for
a linear time invariant mul . ~ariab1e feedback system are des-cribed. The approach is base~i on continuation methods for com-puting the system’s elgenvalue ‘l oci.

I. INTRODUCTION
The classical Nyquist stability criterion for single—input single—output,
linear time—invariant feedback systems has only recently been generalized
to multivariable feedback systems [1 ,2]. Stability theorems are expressed
in terms of the elgenvalue loci of the open loop transfer function G(s) of
the system. In particular if G(s) is stable, i.e., G(s) has no poles in
the right half of the s—plane or on the jw-axls, then a linear time—invari-
ant multivariable feedback system with n inputs and n outputs ‘is stable if
and only if its generalized Nyquist plots(union of eigenvalue loci ) does
not pass through or encircle the (-1 , 0) point [1]. In order to apply the
mul tivariabl e Nyquist criterion , it is thus necessary to compute the eigen—
value loci as a function of frequency. For a given frequency, the e’igen—
values can be calculated by using classical techniques. Since the eigen—
values are functions of frequency, normally one would have to repeat the
entire computational procedure for each frequency. In the actual stability
analysis, this repetition is however, impractical. Our approach to the
stability analysis of multivariable feedback systems Is based on continu-
ation methods. The basic idea of all continuation methods Is to convert
the solution of a parameterized family of algebraic problems into the
solution of a differential equation. Then if one can find the solution

*This research was supported in part by NSF Grants GK-36223 and
ENG75-09074 and AFOSR Grant 74—2631d. -I
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of an initial probl em by using classical methods the solutions to the
other problems can be obtained by integrating the associated differen-
tial equation with the initial solution as an initial condition.

II. EIGENVECTOR APPROACH
Our first method is based on the approach described by Faddeev and
Fadeeva [3] and Van Ness et. al. [4]. A differential equation is written
with the eigenvalues as dependent variables and the frequency as variable
parameter. We then compute a set of initial eigenvalues by classical

~inalysis techniques and integrate the resulted differential equation to
obtain the required eigenva’l ues for each frequency. The eigenvalues x~(~)
of G(jw) and their complex conjugates X ,~(g) satisfy

G(j~)Xj(w) = x~(~ )X 1(~) i 1 ,2,...,n (1)
and

= X1(~ )V~(~) i— l ,2,... ,n (2)
where X.(w) and V.(w) are the corresponding eigenvectors of x.(~) and

~ (~) respectively, and G*(j~,~) is the complex conjugate transpose matrix
of G(jw).
We differentiate (1) wi th respect to c~ to yield

dx. X . V.>i , dw 1 1 i = l 2  n f3dw <X 1 , V 1>

The differential equations involving X1 and V 1 are obtained as

ndX 1 — 
a. .X . , 1= 1 , 2, ..., fl . (4)

1 3 3

dV 1 — B. .V., I = 1 , 2, ..., n. (5)
1 3 3

where
dG• <‘a~~

xi, vi> ~ 
j. (6)cL~ j~ O, a1~— cx1

_xj)<X~ vj>

dV
x

= 0, ~~ 
= <y~, x1

> ~ ~ (7)

Starting with a set of predetermined initial conditions x1(O) =

x1(O) — K10 and V 1(0) V 10 for 1 ‘1 , 2, ..., n, we integrate (3), (4)
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and (5) to obtain the required eignevalues for each frequency. The elgen—
value loci are computed in a continuous manner by numerical Integration.

III. JACOBIAN METHOD
For an nth order system, the above algorithm requires the numerical inte-
gration of a set of 3n equations and the computation of two sets of un-
wanted variables--namely the elgenvectors K 1 and V~. These disadvantage,
can easily be avoided if the characteristic equation for the multivarlable
feedback system can be predetermined. A much simpl er method can be formu-
lated based on the approach for finding multiple solutions for a nonlinear
equation developed by Chao et. al. £5).
Let the characteristic equation of G(jw) be given by an nth order polynomial
in elgenvalue A wi th complex coefficients

f[A(w)] I XI — G(jw ) I = 0. • (8)

Instead of solving (8) directly for each frequency, we consider two simul -
taneous differential equations of the form F

~~~~~= -f(t) f(O) = f[x(~0)] = 0

(9)
dw + ~~~ -

Assuming the nor~singulari ty of the Jacobian Matrix
Eaf afi h f  af
l a x  3w 1 lax aw

~~~ ~~ . 0 1 
(10)L3A 

~J L
in the x—w space the algorithm (9) reduces to

[~
f ; [fco)~ = . •

[
~
j [~(o)j [

~ 
(11)

It ‘is seen from the solution of (9)
f(t) — Oe t ; o - 

‘ (12)
“ I = 

~~ 
t.

_ _  — - -~~~~~~~ .-~~~~~~ --, - - -- ,.
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that for any admissible pair of w0 and A (w 0) satisfying (8), the corres-
ponding trajectory will remain on the solution curve f=O .as w changes. The

— + or - sign is chosen depending on whether one would like to increase or
decrease w. Equation (11) may now be solved by any numerical ‘integration
techniques and the eigenvalue loci can be traced automatically by inte—
grating only a second order differential system.

IV. EXPJIPLE
To illustrate the approaches presented, consider a linear time—invari ant,
mul tivariable feedback system with open loop transfer function character—
ized by

k4

s+2 (13)

for which the characteristic equation is given by

f[X(w)] = x2-8x + (9 + 1~ ~~~ + j
2SW 

2~~
0 (14)

The generalized Nyquist plots shown In the accompanied figure for the
cases where k1 6 and 36 are obtained by applying the eigenvector approach
where as in the criticdl case, k 25, the Jacobian method has been used.
In all three cases, the equations are integrated using Euler ’s method
with a step size of 0.01. It is seen from the figure that the system is
stable for kc25 since the generalized Nyquist plots do not encircle -l
point.

I
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