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A Foliage Penetration Summary

1 INTRODECTION

Successful alrborne radar design requires the consideration of many (nter-
related factors, When that radar must detect fixed and slow=moving ground targets
imbedded in a follage environment, the factors requiring consideration increase in
number and complexity due to the increased radar perlormance required, Some
of these factory are the percentage of energy tranamitted into the follage region,
the attenuation of electromagnetic energy in the fullage, the target backscatter
cross -section, and the effectas of multipath, We shall be concerned only with the
frequency dependence of the Iirst two Iactors: the transmisslon of RF energy into
and its subsequent attenuation within follage. Our approach shall be to review
existing, relevant data and theories and then to generate curves useful for the pre=
dietion of gystem performance :ln foliated environments,

2. FOLIAGE ATTENUATION REVIEW

We bepin by presenting existing data from various sources on the lolinge
attenuation of RF energy, L.V, Surgentl references many sources lor

(Received for publication 15 February 1078)

1. Surgent, L.V, (1874) Foliage Penetration Radar: History und Development
Technologz. Army Land Warfare Lab, erdeen Proving Ground, .




F electromagnatlc-fieid attenuation data in a report written for the Army Land
Warfare Lab, Data from these sources are shown in Figure 1, which was extracted
! from Surgent's report, The numbers of the figure pertain to the references listed
below the figure. Numbers that appear twice refer to maximum and minimum data
f values,

Chudleigh and Moultnn2 made a straight-line approximation for fleld attenuation
: : from an essentially different set of data sources then Surgent's, Thelr relationahip
] \ in

| i a=0.08 (t/100% 8 4B/m : £ in MHz . h )

3

Nathanson” summarizes the attenuation in follige via the following approximation:

ac=0,25 (0. 76 dB/m : f in GHz

s

e 0,044 (1/1000% "0 dB/m ; f in MHz

Nathanson references the work by Saxton and Lane that 1s displayed as curve 6 on
Figure 1 and was one of Chudleigh's references,

Lincoln l..l\bomtm‘y4 aaw [t to describe the relationship between attenuation
and frequency as

- N TORZwE ST gwre f e vos owas

', @ 0,16 + 0,3 log, (£/100) dB/m : I in MHz ;

- log, (1. 412 (1/1000% 3}

which {s obviously completely different [rom the Chudleigh ot Nathanson results,
Lincoln Laboratory usded data from Jansky and Bailey (curve 7 of Figure 1) as part
of their data in arriving at a resuit,

Over the [requency interval of 100 to 1000 MHz, these two formulations differ
little. However, as the frequency continues to increase, a divergence in calculated
attenuation develops. The Lincoln Laboratory prediction results in an attenuation
proportional to the logarithm of frequency, while the other approximations indicate
& variation proportional to some power of Irequency less than unlty. .

2, Chudleigh, W,, Mouiton, S, (1873) Long-Range Standoff Radar Surveillance
! Study, AFCRL-TR-~73-0145,

| 3. Nathanson, F,E. (1868) Radar Design Principles, McGraw Hill, p 18,
4. Lincoln Laboratory (1868) TR 472, pp 82-83.
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Flgure 1. Follage Attenuation va Frequency — Averagea of Measured Data
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These various approximations to the attenuation factor are all shown in Fig- ;
- : ure 2, and it {s obvious that Lincoln Laboratory Is the most conservative over the
. frequency interval shown, This conservatism is reasonable when frequencies be= i
low 100 MHz are to be considered, due to the spread in data shown in Figure 1, |
Finally, Flgure a* suggests that follage~induced losaes do not Increase with | 3
radar operating frequencies beyond 300 MHz when the incident ray grazing angle !
is greater than 6 degrees.
In spite of the divergent measurements depicted on Figure 1, the preponderance !
of data supports the conclusion that RF signal attenuation per unit of path length l .
increases as the frequency increases, I

:llll‘l
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@  JANSKY-BAILEY
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| ' Flgure 2, Follage Attenuation vs Frequency - Plot of Various
i : Formulations
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. ; *Appeared as Flgure 21 {n Appendix B orsR.ADC-TR-74-275, Vol II, Mult{lateration
A Radar Surveillance/Strike System (MRSY) Study.
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Flgure 3, Foliage Attenuation vs Frequency — Multllateration Study Report

3, FOLIAGE ATTENUATION FOIMULATION

How then can we explain Tigure 3, which rund counter to this measured trend?
Possibly through & purely mathematical development, which we shall now pursue.

Assume that a forest reglon, of tree hefght h, ls a region uof lossy dielectric
material with a constant relative permittlvuy und conductivity given by ¢' and.c
respectively, According to Tamir, 5 this madel may not be reallstic for frequen-
clos above 100 MHz, based on data taken by lagn and Parker of SRI In 1980.
Tamir concludes that for lower frequencies the model Iy good, Surgem notea that
the dielectric slab model for the forest has been shown to be valid for RI"'s up to
L Band, if the model {8 utilized only for 8 "''background conﬂguratlon." This con-
cluaion, Surgent indicates, reasults from Lincoln Laboratory's work . However,
we ghall cuntinue and apply this modei for frequencies above 100 MHz to the prolS-_
lem of RF field attenuation within the alab reglon.

5. ’ra(mlr, lf' (1867) On radio-wave propagation in foreat environments, APs-18
No, 6}, -

6. Lincoln Laboratory (1668) Tactical Radar Program, ESD-TR-68-384, Quarterly
Progresa Report.
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PRPREESYPYSEPIPTION DY-CEE

The forest i:: 1eglon Il of Figure 4, The incident RF energy from reglon I has
the E field porpendicular to the plane of incidence and its propagation vector makes
the angle By» with the normal to the semi-infinite forest region. In this develop~-
ment, the finite thickness of region II is not accounted for.

€ ko

[EVU TURE S PN

GQrele-]e¥) T .
h .

|

Figure 4, Problem Geometry ‘

; From Maxwells Ilquations, assuming e:l“’t time dependence in both regions, In

! region II we have i

v X nz =32 tjuel, s (o +jue) By

s jue (el - je) Ez

L
!
. . |
O 2 Jw € ﬁz P
9. |
: with €' = a/we . !
: !
: We know that the wave propagation in each region can be written ag l
he
E B '
i . JRe Ty 22 :
i R-E xe . n 1 ky-wu e ] .
] )
‘ - |
i = . 2 -x 2 - L i
: It k2 WM, €y . :
.. [
., : Utllizing this complex propagation constant, we can solve for the fields in the two

, reglony in the same manner ay for lonsless dielectrlcs, arriving at the following

i equations resulting from the requirement for the continuity of the electric feld at
the interface between reglons I and II: R

10




[ 4
~ -jk,sine,y . ik sing,y +HK_ oy
E 4 1 v E"e 1 I Ex e y2 . '
xl xl 2 i
| .
|
This requires that kl gin 0" kyz, which i3 real, and then kzz = Jkg - k;z. !
! "Thus we have waved propagating’ in the +y direction and the -z direction, The +y i
3 directed wave iy unattenuated, while the -z wave is attenuated as l
[ 1
X |
9 ; " 1
3 o re2® | i(Bjad ;
where | i
1 2 2 .2 /2. e ain g 11/2 P
;: k,g = [ H, €,y =K sin 0100 s kile' = fe" - sin o . ! :
‘, We can solve for the attenuation, «, arriving at :
k|
y . ) 2 2 2 1/2 |
L kl Je! sin 0 € 2 sin 0y ;
:l o - 1 - —— 0(-:_—,) - 1- i .
’ . J2 € ]
J
‘ Thus, the one-way power attonuation through a forest of height h (metery) {4
1 | ATTEN - -8,086 ¢ hdB P
L )
- !
| It ta obvious that for a fixed conductivity and fixed real part to the dielectric :
[ congtant, €', that as the frequency increases ¢"/e¢' approaches zero, Thus for v . b
3 large enough .1
& 2 .~4ln2 6;
(&) =\t ;
|
and we can write b
" !
" k !” n o ;
| . __1!___ 1 = - e nepers/m (n !
' Vc' - ain? 0 Ve' - sin? 6 .
{ . L 1 }
. ‘ which is seen to be independent of frequency, At some aufficiently large frequency -‘ f
3 and normal Incidence [
‘ 1
I .

11 3
!
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n.oc

a:x nepers/m N ° 377 ohms .

2e!

At some sulficiently small frequency €' = Eg—' » et - aln2 8y ® gt - c052 ¢1, where

¢, ls called the grazing angle. Then °
r"—“ P . 1/2
a -—\-/2—°——9- #(e' - cos® ¢1)2 +e"? - (e - cos? ¢,)

u € €' W _a
0 EUSRE ESEN nol @

The latter is the form for attenuation of a plane wave in a conducting medium, as
glven by Ramo, Whinnery, and Van Duzer.7 This form also holds If ¢! = 1 and
¢ = 0° '

Equations (1) and (2) suggest that the attenuation can be written 1s

a = vonatant X {06 dB/m

over some frequency range, after which it transitions to a constant value,

This eriticul frequency can be found as follows: The constant attenuation con-
dition applies when

2

6 2 @ (€ -cosd
= <« s
(uco e') ('?") ( € )

or

o

f» —————a— = fc . '
Zﬂeo(t'-cos ¢1) -

As the condition pertains to the square of I, f ~ 10!‘0 should yield the constant
attenuation condition

7. Ramo, Whinnery, and Van Duzer (1865) Flelds and Waves in Communication
Elecironics, John Wiley & Sons, N, Y,

12
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4

N 1

a B T S ————— ——————————
Je' - cosl2 ¢1

For low frequencies,

[ 2
PN NP
we ¢ - cos ¢1
o
or
f« g -IC '

'Mzo(c' - c052 ¢l)

Again, tw -;.90- ahould be sufficient for o = {7 fu S Tamlr5 indicates that the range
of values for ¢! and ¢ should be leas than the limits he used, These were, for Ire-
quencies between 50 MHz and 100 MHz, 1,05 <ce' <1,15and 0,08 <o < 0. 16

m8/m. l..tppmm8 used the following values, considered good at 2 MHz:

¢ =e 0.02<0<0,06 5/m ., .,

Surgent! suggested that at 100 MHz
1,01 <et <1,

It i3 hard to conclude that o {s conatont with frequency from this sampling of data.
However, we can make this assumption and proceed, as our intent is to derive
total attenuation in foliage curves consistent with the values on Figures 1, 2, and/or
3. Therefore, assuming some representative dielectric constant values, let us
obgerve the resulting values for o in dB/m for varying radar ranges and helghts as
presented on Figure 5, It is obvious that high dielectric constants reduce the foresat
path length and the resultant attenuation rate In foliage fera constant conductivity,
Plgure 6(e) most closely approximates Figure 3 in terms of the irend of the curves
with frequency. ‘The specilic curve, however, could not be reproduced,

How can the curves of Figure 5 be compared to those of Figure 27 Figure 2
contains measured attenuation versus frequency and has no hint of a plateau on th~

8. lippman, B.A. (1065) Jungle as a Communication Network, ARPA Keport.
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attenuation, Figure b tn turn s based upon an assumption of constant dielectric
" conatant and conductlvity with [requency, It was shown that for a sufficiently low p -

frequency the attenuation can be written as

Th e e sy e o

a = 8,888V o Jl dB/m . (3)
] i
‘, l This form agrees well with measured rates, with the Irequency dependency varying 1

- from log, o r°' 3 to log, o tal ". However, this form for the attenuation should be
l good only lor frequencies well below 1,8 MHz, as this is the previously defined
' oritical [requency for values of o = 107 S/m and ¢' = 1, This critical frequency
would suggest a constant value of a above 20 MHz, which is not supported by meas~
urement,

Also, the attenuation would vary as

u = 0,173 VIyy, dB/m
which doesn't agree with Figure 2 (that 1s, at 10 MHz, o = 0.66 dB/m, not
0,01 dB/m),
To make Eq, (3) approximate the data of Figure 2 at 100 MHz, we must choose
o and ¢ to be of the following ordera of magnitude: ¢'~ 1,0ando v 1,6X 10°7 8/m.
: The latter quantity is 2 orders of magnitude below Tamir's smallest value, For
i various fixed conductivities in this range, curves of attenuation per meter of forest
! height are shown in Figure 8,
i From Figureas 5 and 6, it can be concluded that the constant complex conductlv-
' ity with frequency model {s incorrect,
A better model can be derived, The measured data of Figure 2 should hold for
@ wave In the forest that was generated at normal incidence. In this cage, K

1/2 _
) -1 neper/m .

Q
H ]
=
s
| P
—
+
—~
A_Ill

It we assume ¢' = constant and ¢'/¢' « 1, then
“ ; b av n c!w!

|
1ok
! : L where n = wave impedance 3ln torest (real) = \I“o/‘o" % 1207 ohma, Then, using
[ Nathanson's approximation” for the wave attention, we find

18
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otf =22 e = 0,86 S uS/m s tinMHz s €01
o
It seeme resonable then to use this variation in off) in evaluating the signal atten-
uation. This has been done, and the results are shown in Figures Ta through 7d.

These results are very much different from those obtained by vaing constant
conductivity, but the results for normal incidence agree with measured data. In
Figures B, 0, and 10, these curves are plotted in log-log fashion to show their
agreement with Figure 3. By design, the attenuation agrees at normal Incidence
with Nathanson's estimate, As the incidence angle departs from normal incidence
(80%), the attenuation Increases, This agrees with the model in which the attenua-
tion per meter ls constant at a given fraquency, but the path length changes with
incidence angle, Sinoe at nesr-zero=-degrees incidence the propagation constant k
is nearly parallel to the dielectnic surlace, and the component of k parailel to this
{nterface {8 real, all the attenuation must be absorbed by the propagation factor
normal to the dielectric interface, kz.

A physical model to explain this assumed variation of conductivity is as follows:
The foreat ia Hlled with one type of materia) of conatant conduotivity and permittive
ity. However, this material {s formed into numerous, assorted, rod-shaped bodies
of various lengths, diameters, and length-to-diameter ampect ratios. Also, far
more space is filled with twig and branch-gize objects than is filled with trunk-size
objecta, This variation in density of object aize results in a greater current
denaity being produced at higher Irequencies via there being more resonant objects
at the higher Irequencies, Of course, greater current denasity tmplies a higher
conductivity, and greater attenuation over a given path length,

If the above lu true, the difference between 400 and 1000 MHz at 32 incidence
is 5.6 dB/m vs 1.2 dB/m one-way nttenuation (¢! = 1, 08),

Queries were made to locate substantiation of Figure 3 at RADC and Lincoln
Laboratories, but no originator could be found. It is thus advisable to use Figure B
as & more realistic estimate of attenuation in foliage. Figure § is selected over
Flgures 8 and 10 as a dislectric constant of 1,05 is more consistent with Tamlr5

and Surgentl-l conclusions, - -
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Flgure 8, Follage Attenuation per Unit of Forest Height vs Frequency =
Variable Conductivity € = 1,05
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A TRANSMISSION COEFFICIENT FORMULATION

Follage nttenuation, however, {s not the only contributor to signal loss, At
the smaller grazing angles, ¢1, a significant portion of the tnoident energy is re~
flected [rom the dielectric discontinuity. The relationship governing the trans-
mission into and reflection from the forest-air interface will be developed next.

For our horlzontally polarized electric field, again from Figure 4, the Holds
must satiafy the following conditions at the boundary of reglona I and Il

. - +
+ = -I + =
Ex1 E"l Exz , I v Hyl Hyz ,

that ia, continuity of Helds at the boundary.
1f the flelds in the §w0 regiona can be defined as planar with a real or complex
propagation constant (e" * as fleld travelling in -z direction),

s s Sk y+k, 2)
B-p k-E %o , Ke(p-jak , B ~E e 7

20
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v
i Then from
\ iy
e oo l.s g s (-2 .
| Vxl’""j“”‘o“ 3% 0y D02 =¥ 3z Ex*? ( E?Ex)
\A
: g E, o 0
.
! 2§ Ex(sz - kyi) , ,
i 1
i . In reglon I for the Incident fleld % :
‘.’ E - E -
| - ot W —L. e |
} | Hyl 21 H‘l Yy |
! . ]
and for the reflected fleld X
+
' —'H : “;—" . 'I
b 4! i
. |
": Similarly, In reglon Il &
- l
' Ex2 - ’UHO (
) -
! Hyz 2y
X L Inserting these ratios into the boundatry conditions yields
1 ; X
S B’ 2k
a Y
y e v ""° tranamiasion coefficlent .
! Exl LU - . -

As

7., 2
k =J§_-k . Kk, vk, =kosing , k, *Kcoes
zg 2 7y, Yy ¥y 3 1 2 1 1

B ot e R




mma e i =

RSt S SR —

. et e

and

kg s Mg €ple! - je) = k?(z' -je")

we have
g "
Xg o 2 cod 01
—=| =z p- .
Ex1 cos §, t J" - je'' - aln® ay

Il we allow 0, 7/2, = -0 unlesy ¢' - je" - ain® 0, =0 properly, But this cannot
be if ¢" # 0, Thuy, for either ¢' > 1 or ¢ #0, ay grazing incidence is approached
the tranamlasion into medium two goes to vevo. This loss must be added to the
actual attenuetion in medium two,
The incident power in reglon 1 is given by
2
/2y

P,

1 " -
E-ne(ﬁxn) E"x

The power lowing through region II at the interface is

1 y W
Py~ |y Re (B, xH)D) )
Ay
a - Ex2 " a
H2-Hyy’flizz=-m-;-(-kz2y-l-ky2z) ’

weo can write

k
EX
T TR, 2 s » -
sznz szxx———-w0 { k22y+ky2 7)
Ex;z Ex- 2
" LI | a| "
- (k, 2+k, ¥ =- K, .

Wl y2, Wi, 2
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Then
3] -2
,E ‘ 5
X X
2 * 2 *
Py -*-5;)-;-0— Re (Fz ) s pro lRe (Ez )'
with

Kook, y+(k, +3k )2
Y

Ag

Kyy » ky atn o,

kz2 = kl \{c' - cou’ 4 - e,

the real part of k. I8
‘2

K 1/2
3 « L [c' - cosa él + {(c' - 0052 ¢1)2 + c“2]

2R B
and
1/2
P, 3 3 e - cos® ¢1 + ﬁc' - cou® ¢1)2 + ¢”2
-Fl—“ "r’ cos él + 3 .

For small grazing angles, ‘l -+ 0, what in the relative size of ¢" to
e - con® ¢;7 Using the formulation for volume conductivity developed previously,

olth = 0,272 x 10710 #/4 g/

;' -__U__ - 0.0 - 2 H
¢ ve,, }T]T«" cos” ¢, for all cuses where ¢! = 1,08

a3
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Therefore

p v
-f’%“ | o2 Je

This tranamission coefficlent tu plotted in Figure 11 for various values of
dielectric constant and a variable conductivity, For the range of values choson,
it is obvious that the conductivity plays no role, If the conduntivity is increased
by u factor of 10, then the tranamission coefficient is only weakly dependent upon
frequency, ay shown on Figure 12, This is due to ¢' = -u-’g- +0asw - w, Forall
cases it {a obvious that for grazing angles leas than 4°, th8 transmitted signal is
soverely attenuated; that t9, 10 loglwl2 > 3 dB, even at 13° grazing angle, It thus I
seems that overcoming the specular reflection from foliage requirey u significant :
radar transmitter power increase,

If it i8 argued that both the conductivity and permittivity are constant with [re- '
quency, the percentage of power pensetrating the follage remalus the same at fre- :
quencies above 100 MH2, as the transmission coefficlent is relatively insensitive
to the oonductivity, In fact, usinga o = 0, 15 mS/m, » decreases for frequencies
below 100 MHz, as shown in Figure 13,

In resdearching the subject of the fraction of the Ineident power that enters
regloh I1, 1 found another formulation for the tranymiyston coefficlent that has been
utillzed by others, o Thiy formulation i3

e Pt W R ot b ittt e, e b e

Nin 201 sin 202_

with 0 n?g 6y 88 defined in FFlgure 4. This equation was, in turn, extracted from
Stratton. A review of Stratton shows that thly equation gived the fractlon of power
normally incldent on reglon 1l that enters region I, Thid {8 not the aame ay the
total power in reglon I1 relative to the total power incident from region I, as given
by

2 cos nl - 2 ain 01

2
-rl Ve ) sin 02
cos g, + J; - je" - 8in 0

T o

9, Labitt, M, (1678) Visibility of Targets as Seen From a Long-Range Alrborne
b ™ HM-SHB.

Radar, Lincoln Lab Memo
10. Stratton, J,A. (1041) Electromagnetic Theory, p 486, McGraw Hill.
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Ife" = 0, we can write

sin 2p, 2cos 6, sin 6,

T =
2
sin (91 + 6y

and the results differ by

qv  co8 0y "~ gin ¢1

T ° cos 62 : sin¢2

Thus at small grazing angles, a larger transmigsion loss is caleulated herein
than that derived in Labitt,®

Combining now the tranamission loss and the attenuation loss we can derive
the two-way signal loss experienced by an AMT! radur looking for targets under a
foliage canopy. Of course, this excludes the other lozs mechanisms previously
mentioned, Choosing for parametér €' = 1,05 ¢=0,86 uS/m at 1 MHz, and a
forest height of 50 ft (15,24 m), the results are as tabulated in Table 1,

Table 1. Total Foliage Aktenuatlbn Example -

8 Freq, GHz ¢ dB/m lw2 | Total Atten, dB
40 0.4 0. 56 7 a1
1.0 1,2 7 50.
120 0.4 0.42 2 16. 8
1.9 0.8 2 28. 4
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