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| - ar distance between neighboring streamlines in b' direction
E ar distance between neighboring streamlines in n' direction
f’ g W . relative velocity
}
l -
i Q rotation vector
E relative vorticity vector (E-V'x§=m—2§)
R' radius of curvature of relative streamline
T radius of torsion of relative streamline
s' relative streamwise direction (flow direction)
n' principle normal direction of relative streamline defined
as positive toward center of curvature of the streamlines
b' bi-normal direction of relative streamline (;'x ;‘=§')
£ Qb- component of rotation vector in bi-normal direction
£ Qn- component of rotation vector in normal direction
mb, component of absolute vorticity vector in bi-normal direction
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W component of absolute vorticity vector in normal direction
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n
Wy component of absolute vorticity vector in streamwise direction
§ boundary layer thickness
L blade span
c blade chord
Q magnitude of rotation vector
r, rotor inner radius
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[1] INTRODUCTION

In order to accomplish work in any rotor, angular momentum must be
imparted to the fluid. The lifting action of the rotor blades produces
cross channel pressure gradients. At a sufficient distance from the inner
wall, viscous effects are negligible and the pressure gradients are
balanced by streamline curvature. Close to the inner wall, a boundary layer
exists. The fiuid within this boundary layer does not have sufficient
momentum to balance the pressure gradients imposed by the inviscid outer
flow. The result is a cross-flow component containing vorticity aligned
in the streamwise direction. This additional streamwise vorticity
causes a deviation in the rotor outlet angles. In some cases, this
streamwise vorticity causes a roll-up of the low momentum fluid near
the wall into a vortex-type flow [1]*.

There are no simple techniques that accurately predict these inner
wall velocity gradient effects for rotational flows. It is important
to recognize that a satisfactory description of this boundary layer flow
cannot come from refinements of the two-dimensional boundary layer theory,
but rather from three-dimensional analysis. The reascon is that boundary
layer behavior in rotors exhibit variations in its lateral direction. The
occurrence of these secondary flows which are boundary layer flows having
a component normal to the mainstream direction arise principally from
blade to blade and radial pressure gradients. Similarity between the

results of secondary flow analysis and the cross flow in the outer part

of a three-dimensional boundary layer has been established by Horlock [2].
The distributed passage secondary vorticity generated by turning a boundary

layer flow is one of three possible types of secondary streamwise vorticity,

*
Numbers in brackets refer to documents in the list of references.

TS ————




17 August 1977
MLB:jep

which can occur near the inner of a rotor. As discussed by Hawthorne [3],
three components of secondary vorticity are identified in the direction
of flow at the exit of a blade row. These secondary sources of vorticity
are usually regarded as a perturbation on the primary flow. They are

(1) a distributed passage vorticity in the blade passage which may result
in the formation of the so-called passage vortex, (2) the trailing shed
vorticity, and (3) the trailing filament vorticity. The latter two types
of vorticity are due to the vortex sheet leaving the blade trailing edge
and lead to the formation of another vortex which is opposite in rotation
to that of the passage vortex as shown in Figure 1. The trailing filament
vorticity is caused by the stretching of the vortex filaments as they

move over the surfaces of the blades. The last component of vorticity

is the trailing shed vorticity which is caused by the variation of circulation
along the span of the blades.

With the exception of trailing shed circulation which exists along
the blade even when the incoming flow is uniform, each of these vorticity
components could be attributed to the existence of the wall boundary
layer and not the change of the boundary layer due to viscous effects
as flow passes through the rotor. Therefore, the primary assumption
leading to the existing theoretical descriptions of secondary flows is
that viscous effects produce a boundary layer on the wall upstream of
the rotor. Whereas within the rotor, the imposed pressure gradients
play the major role and viscosity has little effect on the resulting
secondary flows. This assumption is characteristic of what is generally

termed inviscid secondary flow analysis.

As shown in an analysis of secondary flows by Came and Marsh [4],

the total strength of these three secondary components of streamwise
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vorticity is zero in the flow downstream of a many bladed cascade.
However, this vorticity in the flow does have an effect on the flow field.
The primary effect of this secondary vorticity is a deviation in the
blade outlet angle due to the passage secondary vorticity. This deviation
can be éuite large when the incoming velocity gradient to the rotor is
large or when the flow is turned through a large angle. The solution for
this deviation must be consistent with the trailing vortex sheet, but the
strength of this sheet does not need to be known.
Another effect of secondary distributed vorticity generated near
the wall of a rotor is evidenced by the existence of a cavitating vortex.
The appearance of the cavitating vortex is similar to that shown in
Figure 2. The structure of the vortex varies with velocity gradient-rotor
configuration. The magnitude of the minimum pressure coefficient (cpmin)
associated with this vortex depends on both the primary and secondary
vorticity. However, the resultant strongly swirliﬁg flow appears to be
organized by the secondary vorticity.
Theoretical understanding of secondary flows through a rotor is
aided by approximate solutions of the fluid flow equations that govern
the flow process. The equations themselves are approximate because
certain simplifying assumptions must be made before the solution can be
obtained. However, any secondary flow theory which is applicable to the
vortex problem must be least include the effects of blade twist, variable
relative velocity through the rotor, large velocity gradients and
rotation.
The objective of this report is to review and discuss secondary flow

theories which can be employed to estimate the vorticity created near the
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inner wall of a rotor. There are many different approaches to the derivation
of secondary flow equations; however, Horlock [5] in a discussion of a
paper on secondary vorticity in axial compressor blade rows shows that
the different approaches all lead to essentially the same result. A
helpful review of secondary flow theories can be found in the papers of
Lakshminarayana and Horlock [6], the staff of NASA Lewis Research Center
[7], Hawthorne and Novak [8], Lakshminarayana and Horlock [9] and Salvage

[10].

[2] PASSAGE SECONDARY VORTICITY IN A ROTOR

The equation of motion for incompressible flow with reference to axis

rotating at constant angular velocity (5) is given in Greenspan [11l] as
Exi + 2000 = - v'(%) - VW2 - 1/2@xE) ¢ @xD)] - /)T RT'SW (1)

where the prime denotes differentiation with respect to the rotating frame
(ﬁ), W is the relative velocity and E is the relative vorticity given by,

E#V'xﬁQG~2§. Taking the curl of Equation (1) gives the vorticity equation
@V)E = VU - 20'x G + W' E . (2)
Expessions for the absolute secondary vorticity (w) defined along a

relative streamline valid for a rotor are obtained from Equation (2) by

Lakshminarayana and Horlock [9]. The resultant equations are

ar [?L] s U A LN I )
' ) .
9s W WR "2 wz w2
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3%7 [wn'w] =

W A
s ::?' ::?' + oy - V% )
where as shown in Figure 3, s', n', b' represent the natural coordinates for
the relative flow, W is the relative velocity, W and w . are absolute
1 vorticity resolved along the relative streamline (s') and the principal
normal direction (n'), Q is the rotation vector and R' is the radius of
curvature of the relative streamline. In this relative coordinate system
indicated by the primes, the streamwise direction (g') is defined along the
flow direction, the principal normal direction (;') is defined toward the
center of curvature of the steamlines, and the bi-normal direction (g')
is defined as s'x n'=b'. Further definitions and descriptions of the flow
in this relative coordinate system are given by Lakshminarayana and Horlock [9].
The means by which the streamwise component of vorticity is produced in

this relative flow are similar to those in a stationary system. However, it

is important to note that additional secondary vorticity is generated when
ax; has a component in the relative streamwise direction. Rotation has no
effect when the absolute vorticity vector lies in the s'-n' plane and the
rotation (5) has no component in the bi-normal direction (g').

The equations for secondary vorticity created in the passage namely
Equations (3) and (4) are extremely difficult to apply because they are
partial differential equations. Therefore, some simplifying assumptions

and specification of the flow field must be made for each application. The

basic flow parameters for this case discussed in this paper are a thick

boundary layer entering the rotor and the rotor operating at a flow
coefficient near 1.0. It is also important to note that the primary

flow through the rotor is rotational.
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In order to evaluate the relative importance of the terms that describe
the passage secondary vorticity, the vorticity equations were first
nondimensionalized. Then an order of magnitude evaluation can be used in
the selection of the terms.

The normal vorticity equation can now be evaluated in the following

manner:
oo o AR
Wo nf a.b,
wn' ko gt - ;1
W°/6 wn' c
P L e s
T = ? — =
HO/Rm b RR
where

W N~ initial relative velocity
§ N~ boundary layer thickness
R; N~ camber radius at mid-span

a, v distance between neighboring streamlines in b'
direction

£ "~ blade span

RR N rotor tip radius

"
e

rotor inner radius.

Applying these nondimensional variables to Equation (4) and ignoring

viscous terms in the normal direction, we find
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2 2 (== 2 (== .=
W X w W, , W Ww, da,
e (I IR b -2 at "% (5-a)
Sec 33! n Rm'r = §ec ;£ 33"
or
Tollime BUgR S e
%{wn.i?}=g.fr e e — '_ab . (5-b)
ds' m T aps 9s'

The ratio cf boundary layer thickness to rotor tip radius is of order one
for the applications considered in this paper. Also, the blade chord (c)
is an order to magnitude less than the camber radius. Therefore, the

normal relative vorticity equation becomes

3 : W w aab, 6)
3s" (U’nt W) - a,, P .
Equation (6) can be integrated by combining the two terms into one
differential. The result is
W, ap,
1
" L @

nv"“’ni Wab'

where the subscript 1 refers to the rotor inlet and unnumbered subscripts
refer to any position along a streamline in the rotor. This simplified
equation shows a dependence of the relative component of the normal
vorticity on the variation of relative velocity (W) along a streamline,
on the relative component of the absolute inlet normal vorticity (wni)
and on the flow convergence-divergence in the bi-normal direction (ab.).
Equation (7) can be evaluated along a relative streamline if the
streamline spacing (ab,) in the bi-normal direction is known. This can

be easily estimated by applying a numerical technique, such as the
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streamline curvature method, to the primary flow field. For some rotors
having a high hub to tip ratio, the streamline spacing in the radial direction

(ab.) remains constant and Equation (7) then becomes

n nj w 8 (8)

This result relates the change in the relative component of the absolute
normal vorticity (wn,) to changes in the relative velocity (W). Also,
assuming a weak shear flow so that the axial velocity remains constant

gives

cos 81

cos B

= ' L]
Wie = Wnj , €
The last two relationships are commonly used for secondary flow cascade
theory.
In a similar manner, the streamwise secondary vorticity equation

can be nondimensionalized and evaluated as follows:

N B
& Wa L § b
R T
m
w sin ¥ Qb' o nn'
 sin ¢
1]
m
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where
Y ~ rake angle of the rotor

@ " magnitude of rotational vector of rotor.

Applying these additional nondimensional variables to Fquation (3)

for the streamwise vorticity we get

o 2 E
s |Wgr 0 an, / Rm N sin ¥ |2 Qb' w . 2 Qn' Wy
= |[§] WF " W W
2 i
3" w
RO | 1 s'
+ = ¢ — e - (10)
§ Re w2 3 b.2

The second term on the right-hand side of Equation (10) is of order one
because the flow coefficient is of order one. This term is due tc
curvature Induced secondary vorticity. The third term is also of order
one and is due to rotation-induced secondary vorticity. However, both
of these terms are as important to secondary flow development as the
first term.

The fourth term on the right-hand-side of Equation (10) is a viscous
dissipation term which can be neglected in most cases. Even if the
Reynolds number is based on local parameters in the boundary layer, this
term is still small compared to the other terms. This result is due to
the boundary layer thickness being the same order as the rotor tip radius
and much larger than the blade chord. These gradients are not as large
as would be the case if the boundary layer thickness would be much lets
than the rotor tip radius. However, this viscous term does approach

one near the viscous sublayer.
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The rate of change of the streamwise vorticity from Equation (10)

simplifies to

) [“s.]BZm. 2,0, 20,0,

n
+ — + - . (11)
9s W WR w2 w2

Integrating Equation (11) in the streamwise direction yields

msa Wgg 2 2wn,ds' 2 ZQb,mn,ds : ZQn,wb,ds

W, W ")l Y T 2 )

2 1 i 1 W 1 W
where Wy e "~ W/R'.
Solving Equation (12-a) for wsi one finds that
: 20, s MW . 2 o, W,
! = —_— - —_— —_— -

wg) Wz ! R ds' + wz 1 wz ds wz ! wz ds' + msi wl . (12-b)

If the nonuniform flow through the rotor was such that the relative
streamlines and the absolute vortex lines lie on cylindrical surfaces
(wb.-O) and the rotation vector (§) is parallel to the axis of the

cylindrical surfaces, then Equation (12-a) would become

2

wg} wg! 2w _,

W, "W % I WR? e by o
1

This relationship is commonly used in most cascade flow_calculations.
In summary for a rotor having the following characteristics:
1. low hub~to-tip ratio,
2, rotor operating flow coefficient of approximately one

3. nonuniform flow over the span of the blade,
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the following two equations are needed to esﬁimate the passage secondary

flow:

Wl abi

W ag,

wnv - mni s (7)

2 2
2(1) ' 2 |(L) [} 29 lm L w
' =W J N ds' + W, J —Eﬁﬁill— ds' - W, J Bl g% 4 ws) 2 . (12-b)
1

Uaz = ¥y
1

[3] OTHER APPROXIMATE FORMS FOR THE STREAMWISE VORTICITY

It is important in seccndary flow analysis to understand the flow
field in order to determine which vorticity terms are important. Numerous
analytical and semi-analytical relationships have been used to calculate
the streamwise vorticity.

Many investigators [12-16] have derived expressions for cascade
secondary vorticity. The basic analysis is due to Squire and Winter
[12]). Their expression assumes that the flow is incompressible and
inviscid. Also, they assume a constant velocity along the streamlines
which implies that the normal component of vorticity remains constant.

Their result for a rotating frame of reference is
wsy - wsi =2, ¢ (14)

where €' is the turning angle of the relative streamline.
Hawthorne [13] developed a more general theory for the secondary
flow. For an inviscid and incompressible fluid the equation written

for a rotating frame of reference would be
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a? s! . l"_'l cos Y
[WT ’ - [:T] =2 I—P———wz de' (15)

where V'I/p-ﬁxa and Y is the angle between the bi-normal direction and the
normal to the Bernoulli planes or stream surfaces. The validity of such
an analysis has been confirmed by several experimental investigators for a
stationary cascade.

Loos and Zwaanweld [14] have tried to simplify Equation (15) by
;=0 and cosy=l. This is a key assumption which implies that

1

the stream surface are surfaces of revolution. However, it is very

assuming Wg

unlikely that stream surfaces in any real cascade are surfaces of
revolution. Their equivalent expression in a rotating frame of
reference is

4 wni sin282 - sinZ;I]

i P cosB1 c0582 (82-81) i 2 __J ' (16)

This equation allows only for a constant axial velocity through the rotor
and a small angle of turning.

Marsh [15] has extended this result to include the effect of
a change in axial velocity on the secondary flow at exit from a cascade.
It is shown that for a row of inlet guide vanes the change of axial
velocity across the blade row has a significant effect on the secondary

vorticity. His expression in an equivalent rotating frame would be

Vx, cosB1 w“i
o R ) i
Ws, Vx; cosB, wgy *+ E;;gz—zsggz (1/2 sin28,
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vx "K; tanBz-tanBI
= 2Vx, sin28,) - (8,-8y) tanB,-tanB, __J 7 an

Lakshminarayana and Horlock [16] have extended Equation (15) to include
the effect of stream surface (Bernoulli surface) rotation on the strength
of secondary vorticity. They used an expression by Dean [17] in which
the direction and magnitude of the warping of real stream surfaces is
related to the blade geometry. This expression in terms of a rotating

coordinate system is

T c dw

__.—__e'z
] ]
2 2W€12 db

¥ (18)
where the streamlines are assumed to follow the curvature of the blade
camber line. As can be seen from Equation (18), stream surface rotation
becomes important when the incoming velocity gradients (%%T) are large
and when the flow is turned through a large angle (g').

Using Equation (18) in Equation (15) gives their equation for
the streamwise vorticity assuming a constant axial velocity and the
Again, the

stagnation pressure varies only in the spanwise direction.

equivalent expression for a rotating reference frame is

& W ani sin262 - sinZBl 62-81
[;_Jz G [T]l % cosBl c0382 2 s
2 S_p5 4 4
al %[;,% “’ni] Bi;Bl : stinZBz;‘BlsinZBl
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3 .3
B.-8
- Bgcossz-BicoszBl - —zi—l - %(BZCOSZBZ-BICOSZBI)

p2 %(BgsinZBZ-BisinZBI) % %(sinZBz-sinZBl) . (19)

Dixon (18] developed an equation which can be applied to calculate
the secondary flow in an annular cascade having a low hub/tip radius
ratio. In his analysis, vortex filaments were transported by a plane
érimary flow which was irrotational; however, the stream surfaces of
the primary flow are not necessarily at the same radius before and after

the cascade. The essential result for the outlet streamwise vorticity is

r cosB r, sinB W W d
B SR S | £ S S e | =k
Ws2 T, Ysy cosB, iy r, sinB, W, s g P,cosB, | W, v 189

where P, is the distance between blades at exit,

2
-5
s W°°
and
P ot v = r Vool (22)
" Wl 2 "tZ 5

This is essentially the result obtained by Hawthorne and Novak [8] for
a plane flow in a stationary coordinate system.

Smith [19] has presented an analysis which allows secondary
vorticity to be calculated for mainstream secondary flows using the
conventional axisymmetric solution as the basic flow, i.e., the flow

is assumed to remain on surfaces of revolution. A major assumption of
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Smith's analysis is that the distortion of those stream surfaces is not
large. A relation for the secondary streamwise vorticity in the flow at
the trailing edge plane was achieved with aid of the vortex laws. The

expression obtained is

T dar dr
1 va , Yy
[ 3 '
Wsy = @ 1¥1%1 g *E ar, (23)
0

where a is the distance between the exit streamlines, FVA is the blade
circulation in the actual flow, i.e., primary and secondary flow, and
Pv is the blade circulation in the primary flow.

It is important to note that there are differences in the definition
of the primary flow between Smith's theory and other theories. However,
Horlock [5] shows that all approaches lead to basically the same cascade

secondary flow theory.

[4) SUMMARY

Equations for the development of streamwise secondary vorticity in a
blade passage for rotating systems are derived from vector equations for
vorticity using intrinsic coordinates. Comparisons can be made between the
secondary vorticity equations for a rotor operating at a flow coefficient
near one and those which are commonly used in cascades.

The equations for a rotor operating at a flow coefficient near one
show a coupling of equations for the vorticity components parallel and
normal to the streamlines. In order to solve this set, the equations
were nondimensionalized with respect to the characteristic parameters
for this three-dimensional flow. The resulting equation for the stream-

wise vorticity allows for convergence of the streamlines in the radial
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direction, for the effects of rotation, and for the effects of streamline
curvature.
Streamwise component of vorticity is produced in a blade passage

through deflection of the relative flow having a normal vorticity

component. Additional effects on the streamwise vorticity occur due to
rotor rotation and streamline curvature. It is interesting to note that i
both a relative velocity increase through the rotor and stream surface |
rotation decreases the amount of vorticity generated by the turning of the

normal vorticity vector through the rotor.
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Figure 3 - Notation for Rotating Coordinate System
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Figure 4 - Flow Through a Blade Passage




