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Subject: Secondary Flow Vorticity in the Passage of a Rotor
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Abstract: Secondary flow theories are reviewed which can be employed to
estimate the passage secondary vorticity near the inner wall of a
rotor. Applications of these theories to a rotor operating
within a boundary layer are discussed. For this case, the
effect of blade rotation and changing relative velocity
through the rotor on passage secondary vorticity become
important.
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[1] INTRODUCTION

In order to accomplish work in any rotor, angular momentum must be

imparted to the fluid. The lifting action of the rotor blades produces

cross channel pressure gradients. At a sufficient distance from the inner

wall, viscous effects are negligible and the pressure gradients are

balanced by streamline curvature. Close to the Inner wall, a boundary layer

exists. The t.i.uid within this boundary layer does not have sufficient

momentum to balance the pressure gradients imposed by the lxiviscid outer

flow. The result is a cross—flow component containing vorticity aligned

in the streamwise direction. This additional streamwise vorticity

causes a deviation in the rotor outlet angles. In some cases, this

streamwIse vorticity causes a roll—up of the low momentum fluid near

the wall into a vortex—type flow [l]*.

There are no simple techniques that accurately predict these inner

vail velocity gradient effects for rotational flows. It is important

to recognize that a satisfactory description of this boundary layer flow

cannot come from refinements of the two—dimensional boundary layer theory,

but rather from three—dimensional analysis. The reason is that boundary

layer behavior in rotors exhibit variations In its lateral direction. The

occurrence of these secondary flows which are boundary layer flows having

a component normal to the mainstream direction arise principally from

blade to blade and radial pressure gradients. Similarity between the

results of secondary flow analysis and the cross flow in the outer part

of a three—dimensional boundary layer has been established by Horlock (2J .

The distributed passage secondary vorticity generated by turning a boundary

layer flow is one of three possible types of secondary streamwise vorticity,

*Numbers in brackets refer to documents in the list of references. 

.- ~~.
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which can occur near the inner of a rotor. As discussed by Hawthorne [3],

three components of secondary vorticity are identified in the direction

of flow at the exit of a blade row. These secondary sources of vorticity

are usually regarded as a perturbation on the primary flow. They are

(1) a distributed passage vorticity in the blade passage which may result

in the formation of the so—called passage vortex, (2) the trailing shed

vorticity, and (3) the trailing filament vorticity. The latter two types

of vorticity are due to the vortex sheet leaving the blade trailing edge

and lead to the formation of another vortex which is opposite in rotation

to that of the passage vortex as shown in Figure 1. The trailing filament

vorticity is caused by the stretching of the vortex filaments as they

move over the surfaces of the blades. The last component of vorticity

is the trailing shed vorticity which is caused by the variation of circulation

along the span of the blades.

With the exception of trailing shed circulation which exists along

the blade even when the incoming flow is uniform, each of these vorticity

components could be attributed to the existence of the wall boundary

layer and not the change of the boundary layer due to viscous effects

as flow passes through the rotor. Therefore, the primary assumption

leading to the existing theoretical descriptions of secondary flows is

that viscous effects produce a boundary layer on the wall upstream of

the rotor. Whereas within the rotor, the imposed pressure gradients

play the major role and viscosity has little effect on the r~~ulting

secondary flows. This assumption is characteristic of what is generally

termed inviscid secondary flow analysis.

As shown in an analysis of secondary flows by Came and Marsh [4),

the total strength of these three secondary components of streamwise



17 August 1977
MLB:j ep

vorticity is zero in the flow downstream of a many bladed cascade.

However, this vorticity In the flow does have an effect on the flow field.

The primary effect of this secondary vorticity is a deviation In the

blade outlet angle due to the passage secondary vorticity . This deviation

can be quite large when the incoming velocity gradient to the rotor is

large or when the flow is turned through a large angle. The solution for

this deviation must be consistent with the trailing vortex sheet, but the

strength of this sheet does not need to be known.

Another effect of secondary distributed vorticity generated near

the wall of a rotor is evidenced by the existence of a cavitating vortex.

The appearance of the cavitating vortex is similar to that shown in

Figure 2. The structure of the vortex varies with velocity gradient—rotor

configuration. The magnitude of the minimum pressure coefficient (Cpmjn)

associated with this vortex depends on both the primary and secondary

vorticity. However, the resultant strongly swirling flow appears to be

organized by the secondary vorticity.

Theoretical understanding of secondary flows through a rotor is

aided by approximate solutions of the fluid flow equations that govern

the flow process. The equations themselves are approximate because

certain simplifying assumptions must be made before the solution can be

obtained . However, any secondary flow theory which is applicable to the

vortex problem must be least include the effects of blade twist, variable

relative velocity through the rotor, large velocity gradients and

rotation.

The objective of this report is to review and discuss secondary flow

theories which can be employed to estimate the vorticity created near the
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inner wall of a rotor. There are many different approaches to the derivation

of secondary flow equations; however , Horlock (5] in a discussion of a

paper on secondary vorticity in axial compressor blade rows shows that

the different approaches all lead to essentially the same result. A

helpful review of secondary flow theories can be found in the papers of

Lakshminarayana and Horlock (6], the staff of NASA Lewis Research Center

[7], Hawthorne and Novak [8], Lakshminarayana and Horlock [9] and Salvage

[10].

[2] PASSAGE SECONDARY VORTICITY IN A ROTOR

The equation of motion for incompressible flow with reference to axis

rotating at constant angular velocity (~2) is given in Greenspan [11] as

+ ~~~~ = — V’ — v’ [w2 / 2 — 1/2 ((2xr) ((~xr)] — (~
jj p)V’ xV ‘xW (1)

where the prime denotes differentiation with respect to the rotating frame

((2), ~ is the relative velocity and ~ is the relative vorticity given by,

~~V ’ xW=w—2~2. Taking the curl of Equation (1) gives the vorticity equation

(~•V’)~ (t.V’)~ 
— 27’x((2xW) + (p/ p)V’ 2

~ . (2)

Expessions for the absolute secondary vorticity (w) defined along a

relative streamline valid for a rotor are obtained from Equation (2) by

Lakshminarayana and Horlock [9]. The resultant equations are

~~~~~~ 

[;~:] — ~~~~~~ + 
2(2

b~
W

~~ — 

2(7 ,wb, + (~.t/p )~~’ . (3) 

~~~~~~~ - - - —.•~~-- . -. - - - -—~~~—
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W(%, Ww ,
~~
ab, 2

~~~~~
-
~
- [w ,W] = — 

8b’ ~~ 
+ (l1/p)n V’ ~ (4)

where as shown in Figure 3, s’, n’, b’ represent the natural coordinates for

the relative flow, W is the relative velocity, mi , and u 1 are absolute

vorticity resolved along the relative streamline (s’) and the principal

normal direction (n ’), ~2 is the rotation vector and R’ is the radius of

curvature of the relative streamline. In this relative coordinate system

indicated by the primes, the streaniwise direction Cs’) is defined along the

flow direction, the principal normal direction (n’) is defined toward the

center of curvature of the steamlines, and the bi—norinal direction (b’)

is defined as s’x n’=b’. Further definitions and descriptions of the flow

in this relative coordinate system are given by Lakshininarayana and Horlock [9].

The means by which the streamwise component of vorticity is produced in

this relative flow are similar to those in a stationary system. However, it

is important to note that additional secondary vorticity is generated when

(7xW has a component in the relative streamwise direction. Rotation has no

effect when the absolute vorticity vector lies in the s’—n ’ plane and the

rotation ((2) has no component in the bi—normal direction (b’).

The equations for secondary vorticity created in the passage namely

Equations (3) and (4) are extremely difficult to apply because they are

partial differential equations. Therefore, some simplifying assumptions

and specification of the flow field must be made for each application. The

basic flow parameters for this case discussed in this paper are a thick

boundary layer entering the rotor and the rotor operating at a flow

coefficient near 1.0. It is also important to note that the primary

flow through the rotor is rotational.

L ~~~~~~
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In order to evaluate the relative importance of the terms that describe

the passage secondary vorticity, the vorticity equations were first

nondimensionalized. Then an order of magnitude evaluation can be used in

the selection of the terms.

The normal vorticity equation can now be evaluated in the following

manner:

V - ab, -
— = W — —V

0

Li) ,n — S
V/ iS c

0

Wb t

W / R ’ 
W
b t T

o m  R

where

V0 
“.‘ initial relative velocity

iS “. boundary layer thickness

R’ ~v camber radius at mid—span

a,0, ~v distance between neighboring streamlines in b’
direction

2. “.‘ blade span

RR 
‘s.. rotor tip radius

r ‘\. rotor inner radius.

Applying these nondimensional variables to Equation (4) and ignoring

viscous terms in the normal direction, we find

________________________________________________

_______ j
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w 2 i~;, w 2 
~~~~~~o 3 — — o 10 o n 

_ _ _

C 
((t)~~, W) = 

R’ r — 
— 

— 
- 

—
, 

(5—a)
38 m T ab, ~~

a

or

W W , 3%~—i-— {w , ~~ = ____ 
b 

— 
— 

n 
— 

(5—b)
m T ab, 35’

The ratio of boundary layer thickness to rotor tip radius is of order one

for the applications considered in this paper. Also, the blade chord (c)

is an order to magnitude less than the camber radius. Therefore, the

normal relative vorticity equation becomes

W Li)3 n b
35 n ab , 3s

Equation (6) can be integrated by combining the two terms into one

differential. The result is

V1 a14
(i)

fl I Wnj W a .1, ,

where the subscript 1 refers to the rotor inlet and unnumbered subscripts

refer to any position along a streamline in the rotor. This simplified

equation shows a dependence of the relative component of the normal

vorticity on the variation of relative velocity (W) along a streamline,

on the relative component of the absolute inlet normal vorticity (w~j)

and on the flow convergence—divergence in the bi—normal direction (ab,).

Equation (7) can be evaluated along a relative streamline if the

streamline spacing Cab,) in the bi—norinal direction is known. This can

be easily estimated by applying a numerical technique, such as the

_________________-

~~~~~~~~~~

- -

~~~~~

~-
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streamline curvature method, to the primary flow field. For some rotors

having a high hub to tip ratio, the streamline spacing in the radial direction

remains constant and Equation (7) then becomes

V
(8)

This result relates the change in the relative component of the absolute

normal vorticity (w
a,) to changes in the relative velocity (W). Also,

assuming a weak shear flow so that the axial velocity remains constant

gives

cos
Wfl~ cos 8 (9)

The last two relationships are commonly used for secondary flow cascade

theory.

In a similar manner, the streamwise secondary vorticity equation

can be nondimensionalized and evaluated as follows:

Li) , —
—

~ 
s’ 6

R’ 6m

w s in ’V b’ — n12 sin $

R’ —

____________________________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where

‘V ‘~a rake angle of the rotor

(2 ‘~u magnitude of rotational vector of rotor.

Applying these additional nondmmensional variables to F’uation (3)

for the streamwise vorticity we get

w , 2w , R’12sin ’I’ 2 (2 , w , 2(2 , w ,6 s n in b n n b
W
0 ~2 

- ____

2—3 w ,c 1 1 s
e 10’

• The second term on the right—hand side of Equation (10) is of order one

because the flow coefficient is of order one. This term is due to

• curvature Induced secondary vorticity. The third term is also of ordet

one and is due to rotation—induced secondary vorticity. However, bo th

of these terms are as important to secondary flow development as the

first term.

The fourth term on the right—hand—side of Equation (10) is a viscous

dissipation term which can be neglected in most cases. Even if the

Reynolds number is based on local parameters in the boundary layer , this

term is still small compared to the other terms. This result is due to

the boundary layer thickness being the same order as the rotor tip radius

and much larger than the blade chord. These gradients are not as large

as would be the case if the boundary layer thickness would be much let

than the rotor tip radius. However, this viscous term does approach

one near the viscous sublayer. 

~- -~
_
~~ —-—-- —.—~~~~~~~~~~ ~~~~~~ _ - .~~~~~_ ~~

. _ _ 

.

-
~~~~
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The rate of change of the streainwise vorticity from Equation (10)

simplifies to

~~ - 

2(i) , 
+ 

2(2b , w 
- 

2(2
n~
0)
b~ (11)

~a ’ t W J  
~~~~

‘

Integrating Equation (11) in the streamwise direction yields

w4 
- 

2w ,ds ’ 
+ ~ ~~~~~~~~~~ — 

~ ~~~~~~~~~~~ 
(12-a)

where wbi %W/R’.

Solving Equation (12—a) for one finds that

2
2w , 

2 212 ,w , 
2 2(2 ,w , V

W
2 J ~~~ cia’ + W2 J ~

‘
2 

~ ds ’ — V2 J - b ds ’ + W9 , . (12—b)

If the nonuniform flow through the rotor was such that the relative

streamlines and the absolute vortex lines lie on cylindrical surfaces

(wb,~0) and the rotation vector ((2) is parallel to the axis of the

cylindrical surfaces, then Equation (12—a) would become

— — J ~~~ 
ds’ . (13)

This relationship is commonly used in most cascade flow calculations.

In summary for a rotor having the following characteristics:

1. low hub—to—tip ratio,

• 2. rotor operating flow coefficient of approximately one

3. nonuniform flow over the span of the blade, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the following two equations are needed to estimate the passage secondary

flow:

V
1 a~,j• (i) = i tI .  - (7)n’ ~~l W a b ,

V
= V~ J~ ~~~ 

ds’ + V2 
~ 

n da ’ — V2 J ~~ ds’ + . (12—b)

[3] OTHER APPROXIMATE FORNS FOR THE STREAMWISE VORTICITY

It is important in seccndary flow analysis to understand the flow

field in order to determine which vorticity terms are important. Numerous

analytical and semi—analytical relationships have been used to calculate

the streamwise vorticity.

Many investigators [12—16] have derived expressions for cascade

secondary vorticity. The basic analysis is due to Squire and Winter

(12]. Their expression assumes that the flow is incompressible and

inviscid. Also, they assume a constant velocity along the streamlines

which implies that the normal component of vorticity remains constant.

Their result for a rotating frame of reference is

— a 2w~~ c’ (14)

where € ‘ is the turning angle of the relative streamline.

Hawthorne [13] developed a more general theory for the secondary

flow. For an inviscid and incompressible fluid the equation written

for a rotating frame of reference would be
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2 V’I

1~~~
}2 

— (~ —J — 2 J ~~~~~~~ 
~ de’ (15)

where V’I/p—Wxw and y is the angle between the bi—normal direction and the

normal to the Bernoulli planes or stream surfaces. The validity of such

an analysis has been confirmed by several experimental investigators for a

stationary cascade.

Loos and Zwaanweld [14] have tried to simplify Equation (15) by

assuming w8~~O and cosy l. This is a key assumption which implies that

the stream surface are surfaces of revolution. However, it is very

unlikely that stream surfaces in any real cascad e ar e surfaces of

revolution. Their equivalent expression in a rotating frame of

reference is

___________ 
sin282 

— sin2~j

- 

— 

cos81 cos82 [if 2~~l~ + 2 
(16)

This equation allows only for a constant axial velocity through the rotor

and a small angle of turning.

Marsh (15) has extended this result to include the effect of

a change in axial velocity on the secondary flow at exit from a cascade.

It is shown that for a row of inlet guide vanes the change of axial

velocity across the blade row has a significant effect on the secondary

vorticity. His expression in an equivalent rotating frame would be

V,~2 cos81 
____________(1)82 

~~~ 
cos82 1 + cosB1 cos82 

[

~~/2 sin282
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N2  ii
~~~~ 

tan8~—tan81~
— 2V~1 

s1u28
1
) — (82—81) 

[
tan8z

_tan8i jj . (17)

Lakshminarayana and Horlock [16] have extended Equation (15) to include

the effec t of s tream surfa ce (Bernoull i surface ) rotation on the strength

of secondary vorticity. They used an expression by Dean [17] in which

the direction and magnitude of the warping of real s tream surfaces is

related to the blade geometry. This expression in terms of a rotating

coordinate system is

ii c dW ,2
Y~~~~~

_
2Wc~2 db~~

C (18)

where the streamlines are ass umed to follow the curv ature of the blade

camber line. As can be seen from Equation (18), s tream surface rotation

becomes important when the incoming velocity gradients (
~~

-
~
) are large

and when the flow is turned through a large angle (c’).

Using Equation (18) in Equation (15) gives their equation for

the streamwise vorticity assuming a constant axial velocity and the

stagnation pressure varies only in the spanwise direction. Again, the

equivalen t express ion for a ro tating referen ce frame is

11d~j~ 1w~~ 2Wn~ [~
in282 

— sin2$
1 82~

81
~V J 2 

— 1W j 1 
= 
cosB1 cos82 

[__ 
2 + 2

— !(..±. ~~~~~ 
{8

~
_ 8

~ + 
8~sin282—8~ sin281

f 

. • -.-_~~~~-- — - -  -~~~ _ , - • ~~~-—~~~~~~~- 
—4
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3 3
— ~2c 82—B1cos 8

~ 
— 

2 
— 
~-(82

cos28
2—81

cos28
1)

- 1(B~
sin282

_8
~
sin281

) + ~ (sin282-sin281~~~ . (19)

Dixon [18] developed an equation which can be applied to calculate

the secondary flow in an annular casc ade having a low hub/ tip radius

ratio. In his analysis, vortex filaments were transported by a plane

primary flow which was irrotational; however, the stream surfaces of

the pr imary flow are no t necessar ily at the same radius before and af ter

the cascade. The essential result for the outlet streamwise vorticity is

cosB r sin8 V V d

~~
j cos8~ 

+ Wn1 ~~ sin82 
— ~~ tan82 + P

2cos82 ~ 
(20)

where P
2 
is the dis tance be tween blades at exit,

(21)

and

F — ~~
L(r

1 Vr1 
— r2 

Vr2) • (22)

This is essentially the result obtained by Hawthorne and Novak [8] for

a plane flow in a stationary coordinate system.

Smith [19) has presented an analysis which allows secondary

vorticity to be calculated for mainstream secondary flows using the

conventional axisyssnetric solution as the basic flow, i.e., the flow

is assumed to remain on surfaces of revolution. A major assumption of
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Smith’s analy sis is that the distor tion of those stream surfaces is not

large. A relation for the secondary streamwise vorticity in the flow at

the trailing edge plane was achieved with aid of the vortex laws. The

expression obtained is

(23)

where a is the distance between the exit streamlines, rVA is the blade

circula tion in the actual flow , i.e., primary and secondary flow, and

is the blade circulation in the primary flow.

It is important to note that there are differences in the definition

of the primary flow between Smith’s theory and other theories. However,

Horlock [5) shows that all approaches lead to basically the same cascade

secondary flow theory.

[4) SU~*(ARY

Equations for the development of streamwise secondary vorticity in a

blade passage for rotating systems are derived from vector equations for

vorticity using intrinsic coordinates. Comparisons can be made between the

secondary vor tic ity equa tions for a ro tor opera ting at a flow coeff icient

near one and those which are commonly used in cascades.

The equations for a ro tor opera ting at a flow coeff icient near one

show a coupling of equations for the vorticity components parallel and

normal to the streamlines. In order to solve this set, the equa tions

were noadimensionalized with respect to the characteristic parameters

for this three—dimensional flow. The resulting equation for the stream—

wise vorticity allows for convergence of the streamlines in the radial

—S



—20— 17 August 1977
MLB :jep

direction, for the effec ts of ro tation , and for the effec ts of streamline

curvature.

Streamwise component of vorticity is produced in a blade passage

through deflection of the relative flow having a normal vorticity

component. Additional effects on the streamwise vorticity occur due to

rotor rotation and streamline curvature. It is interesting to note that

both a relative velocity increase through the rotor and stream surface

rotation decreases the amount of vorticity generated by the turning of the

normal vorticity vector through the rotor.
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Figure 3 — Notation for Rotating Coordinate System
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Figure 4 — Flow Through a Blade Passage


