
/ AD-A055 387 INCO INC MCLEAN VA FIG 9/2 ‘N
TERMINAL ACCESS PROCEDURES (TAP). (U)
APR 78 K WELLS. H HUBERT. N HAUSER F30602 77 C—OO’e 5

UNCLA SSIFI W INCO/1090—178 FR 3 D(F) RADC—TR— 7$—90 NL

A D A
055387 __________________________ __________________________ __

In~ _ _ _ __
_In -- I

110
_ _ __ _

fiffi 10
3.5

4 4 2 0
I I L •4O£

~_

_____ ~ i:.~

•
~

hI
lh11IlI125

~~~~~~
NATIONAL BUREAU OF STANDARDS
*CROCCPY 5E304.UTIO TEST CMAR T



FOR 9JRTI~R T!~~

RADC-TR- 78-90 __________

Final Technica l Report _____

Apr11 1978

TERMINA L ACCESS PROCEDURES (TAP)

Kenyon Wells
Mergery Hubert
Neal Heuser

INCO Incorporated

Approved for public release; distri bution unlimited .

Q ROME AIR DEVELOPMENT CENTER
C..) Air Forc. Systems Command

‘ I w Griffiss Air Force Sos., New York 13441
•

78 0 6 .0 7  013

- - . 
-
~~~~~

.—,

This report has been reviewed by the RADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public , including foreign
nations ,

RADC— TR—78- 90 has been reviewed and is approved for publication.

APPROVED: ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ cifr
/

PATRICIA IANGENDORJ
Project Engineer

APPROVED: $.1~~
I i/ ~ 4~’w

HOWARD DAVIS
Technical Director
Intelligence & Reconnaissance Division

FOR THE COMMANDER

• soim i’. iiuss
Acting Chief, Plans Office

If your address has changed or if you wish to be r~~oved from the RADC
mailing list, or if the addressee is no longer ~~~loy.d by your organize—tion, please notify RADC (IRDA) Griffiss AFB NT 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

W~t ~
_

_ _ _ _ _ _ - ~~~
. .-

~~

UNCLA SSIFIED
SECURITY C L A S S I F I C A T I O N Ok’ T H I S PAGE (*~on flat. Enter.d)

~~~ 
f REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

(
~ ~~ á~~~’49T k4~~u6ER 

• 
2. GOVT ACCESSION NO. ~ . RECI P IENVS C A T A L O G  NUMBER

~~~~ RADC~~~R- ,8- 9.0 J ~~ I 
_ _ _ _ _ _ _ _ _ _•1 (~~~~

~~~~~~~~~~ 

_
~1 

( ( ~ ~~ ~~~~~~~~~~~~~~~~~~
TERMINAL ACCESS PROCEDURES (TAP ) \..~~ Final ~~ chnical ~ eps’rt..- 15 Jan 77 — 14 Jan 7~~ .~

REPORT NUMBER

• . ..~~~~ ~~~ __ INco/lO9o-.178-FR~~~~~Fr-~

~2i ~~~~~~~

Nealj’Hauser I
~ _.. g~~~~~R~~I NG O R G A P 4 Z A T I O N  N A M E  A N D  A D D R E S S  tO P R O G R A M  ELEMENT . PROJECT . T A S K

A R E A  6 WORK UNIT  N U M B E R S
INCO , Incorporated 45941024
7916 Westpark Drive
McLean VA 22101 

___________________ ________

I t . C O N T R O L L I N G  O F F I C E  NAME AND A D D R E S S  / 1 - __________

Rome Air Development Center (IRDA ) 
Apr~~ •78

Criffiss AFB NY 13441 13 . NUMB ER O A J~I4. :::IT0RING ~ aa~~C~ Abli Iron, ConIrollin6 Off ice) 

UNCLASSIFIED

I T~~ D EC L A S S I F I CA T I O N O O W N G R A D I N G
I ‘I SCHEDULE• H’ ~~~~ /- )~~~~ 

N/A
16. D ISTRIBUTION ~~F~~TE MEN I /of Ihi. Repo~ I)

Approved for public release; distribution unlimited .

17 DISTRIBUTION S T A T E M E N T  (0 lb. ab.l,.rt enie,.d in flock 20. if diffefen t ft., ,, Repore )

Same

le . S U P P L E M E N T A R Y  N O T E S

RADC Project Engineer:
Patricia Langcndorf (IRDA)

I9~ KEY WORDS (Continue on feve rs.  side :1 nece s sary  n,,d iden ’If, by block number)

Data Dictionary
Distributed Data Base
Que:y Language Transparency —

S
i’

20. A B S T R A C T  (Conrfnoe 0~ rev.,.. .id. If n.ce.sary and id e n t i f y  by block n,rn,b.,)

This Final Technical Report details the design and development of the Terminal
Access Procedures (TAP) of the Transparent Integrated Intelligence Network
(TIIN). The TAP project is an integral part of the long—range development
of TIIN, a highly user—oriented distributed data access and processing
capability encompassing world—wide resources.

.5
.-

DD ~~~ l473fr EDIT ION OF I NOV ~ s IS OBSOI. ETE  UNCLA SSIFIED

SECURITY CLA SSIk ’ ICA TIO N OP THIS PAGE (N~~ n Dat. &,I esd)

~~~ 21 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ -



-~~ •~~~~~~~~~ - --~~~
- . -

~~~~~~~~~~~~ - ~~~-~~~~~- -

TABLE OF CONTENTS

Page No.
-
•

I SECTION I INTRODUCTION I—i

• 1. Overview 1—1
2. Development Approach I—i
3. Proj ect Obj ectives 1—3
4. Research and Development Activities 1—3
5. Interactive Network Inquiry Processor 1—4
6. Repor t Organization 1—5

SECTION II NETWORK ACCESS DIRECTORY 11—1

1. Introduction 11—1
2. Composition of the NAD 11—2
3. Functions of the NAD 11—8
4. Future Development 11—12

SECTION III NAD MAINTENANCE AND INTERROGATION 111—1

1. Introduction 111—1
2. Analyst AIDs Processor 111—i
3. User Da ta Descri ption Processor 111—5
4. Host Data Descr iption Processor 111—20
5. Future Development 111—26

SECTION IV QUERY LANGUAGE PROCESSOR IV—l

1 Introduction 1V 1
2. Transparency Examples Language IV—l
3. Data Request Intermediate Format IV—7
4. QLP Capabilities IV—18
5. QLP Design IV—20

APPENDIX A DEVELOPMENT BACKGROUN D t • ~~_ ‘ 1 —.-
~~~/ 

A—i

T f
APPENDIX B DESCRIPTION OF THE TIIN SYSTEM ~~. ~‘ Vj  B—i

- i)’

APPEND IX C GLOSSARY 
-
, I 0/ c~i

APPENDIX D IMPLEMENTATION LANGUAG E D—i
flf :

• APPENDIX E DBMS INTERFACE 
- ~ ~v:ts / E—i

• APPENDIX F BIBLIOGRAPHY ! F—i

/
i i i  

- 
t .~ (. -

~ v - i

~— _ _  - 

~N* 

1~~L? VWItD



LIST OF ILLUSTRATIONS

Figure No. Title Page No.

I—i Transparent Integrated Intelligence Network Modules 1—2

111—1 Analyst Aids Processor Informational Levels 111—3

111—2 Analyst Aids Processor—Hierarchical Module Relation-
ship with Displays 111—6

111—3 Structure of Data Definition at User NAD 111—8

IV—l Synt ax Description of TAP Common Query Language IV-2

IV—2 Layout of DRIF and QNF IV—l0

IV—3 Syntax Description of the Reverse Polish Notation
(RPN) Used in the Conditional Table of the QNF IV—l2

IV—4 Standard Operator Codes in DRIF tV—l4

IV—5 Keyword Table IV—23

IV—6 Operator Stack IV—25

IV—7 Operand Stack IV—26

p

iv

- - ~~~~~~~~~~~~~ .. — - . .. . ~~~~ ~~~~~~~~~~~~ 
- - 

~~~~~~~~~~ 
... .~ ~~~~ _


~~~~~~~~~~~~~
--

~~~
- —

-. - --

~~~ 
-.

~~ ~~~
- - —

The Terminal Access frocedures (TAP) subsystem is one of five
subsystems encompassing the Transparent Integrated Intelligence Network
(TIIN). The goal of the TIIN is to develop a system capable of providing
to the intelligence analyst transparent access to a number of diverse data
bases . The goal of the TAP subsystem is to develop the interface from TIIN
users to the system . TIIN users fall into two groups : Analysts and data
base adminis trators . Analysts are those using the TIIN as an information
source whereas data base administrators are responsible for maintaining
the currency and Integrity of the TIIN data sources and data sinks. The
TIIN/ TAP processors developed for use by the analyst include the Analyst
Aids Processor and the Query Language Processor. The Analys t Aids
Processor is used in the process of query refinemen t. From broad based
subject categories the analyst Is able to pinpoint specific element names
to be used in the query . The Query Language Processor is then used to
submi t the query . The TI IN/TAP processors developed for use by the data
base adminis trator include the User Data Description Processor and the Host
Data Description Processor. The User Data Description Processor is used to
perform maintenance on the User NAD . Similarily , the Hos t Data Descriptiou
Processor is used to perform maintenance on the Hos t NAD .

The first task undertaken was an evaluation , and where necessary
modification was made of the Network Access Directory (NAD). The NAD is
the repository of information req uired by the TIIN modules concerning
location , content , and structure of network data bases. Individual
versions of the NAD are maintained at each host and user node. A single
Host NAD defines that portion of a particular host data base which is to
be made part of the network data base. A user NAP defines that portion
of the network data base which is accessible from the user node. This
portion may vary from user node to user node depending on the requirements
of users at each node as well as the processing capabilites available
at each node . A detailed description of the structure and content of both
the Host NAD and the User NAD is contained in Section II of the Final

P Technical Report.

Af ter evaluating and modifying both the Host and User NAD, processors
were developed to construct and maintain them . The Host Data Description
Processor is used by the host data base administrator to build the Host
NAD. The User Data Description Processor is used by the user data base
administrator to build the User NAP. Each of these processors runs in
the interactive mode with their respective data base administrators .
Both processors are password protected to avoid alteration of any NAP
by anyone other than an authorized data base administrator . Both pro-
cessors also seek to maintain the Integrity of the NAP by prohibiting the
data base administrator from performing certain functions until all pre-
requisite functions are performed.

The Analys t Aids Processor was developed to enable the TIIN analyst
to see descrip tions of network data base contents . These descriptions are
contained in each User NAP . They are used by the analyst to formulate his

‘V ideas into specific queries . At the highest level he is able to display

V 

- - - ,-.-.
~~~

- - - -- -~~
- — -

~
--

lists of general subject information from which specific subjects of
interest are chosen. For each selected subject a list of files relevant
to that subject may be displayed . From this list the analyst may select
particular files of interest . For each of these files a description of
the file is generated . The option also exists to display all of the file ’s
member elements. The analyst is now ready to formulate a query or a series
of queries.

The forma t for submitting a query is the Transparency Examples Lang-
uage (TEL). It has been developed as an example of a standard query
language. No knowledge of the location of data within the network is
needed to submit a query. the TEL query language is designed around the
Data Request Intermediate Form (DRIF) developed during the TIIN/QIP effort.
DRIF is the internal query representation. Several nice features have
been incorporated into the query language. One of these features is the
incorporation of both a host selection phrase and a file selection phrase
into the language. The host selection phrase is used to select a particu—
lar host data base towards which the query will be directed . The file
selection phrase selects a particular data file. Both of these phrases
are optional and if omitted the selection of a target data base and file
will automatically be made by TIIN. Another feature is the capability
to use either standard element names or locally defined user element
names in the query. This allows a familiar set of element names to be
used at each TIIN site. A third capability is provided by the responses
phrase. It enables the analyst to limit the amount of output returned in
response to his query. The Query Language Processor is extremely modular—
ized allowing many other features to be added to the language as the need
arises.

vi

EVALUATIO N

This report covers the terminal access subsystem necessary to providean intelli gence analyst transparent network access to diverse data
bases. The primary contribution it makes to Air Force capabilitieswill probably be aid in iden tif ying ac tual costs due to ~~ck of networkdata standards.

~~~~~~ ~~~~~~~~~~( PATRICIA M. LANGENDORF
Projec t Engineer

V

vu /vh f



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~

.

SECTION 1

INTRODUCTION

1. OVERVIEW

V This Final Technical Report details the design and development of
the Terminal Access Procedures (TAP) of the Transparent Integrated Intelli-
gence Network (TIIN) under Rome Air Development Center contract number
F30602—77—C—0045. The project is an integral part of the long—range develop—
ment of a Transparent Integrated Intelligence Network (TIIN) , a highly user—
oriented distributed data access and processing capability encompassing
world—wide resources. The Final Technical Report is the culmination of the
present TAP effort. More detailed information is found in the TAP Systeni/
Subsystem Specifications and the TAP Computer Program Documentation. An
overview of the TIIN system and its development background is found in
Appendices A and B of this report. Figure I—i gives an overview of TIIN.

2. DEVELOPMENT APPPOACH

The TIIN/TAP Project is INCO ’s fourth contract effort concerned
with the development of the Transparent Integrated Intelligence Network.
During the first phase of the project , research foc ussed on two dis tinc t
areas. The first area was that of the requirements placed on the Network
Access Directory (NAD) by the TIIN subsystems . The NAD should be designed
to maximize its utility by each TIIN module. The second area involved in
specification and developmen t of a common query language. The first specifi-
cation of this query language was done in the TAP Functional Description
released in July 1977. Also included in this document was an initial list
of functions to be performed by the Network Data Catalog Processor.

As the project progressed the list of specific requirements to be
met by the NAP was built and a new NAP design proposed . The new design in-
corporates the originally separate Network Data Catalog into a unified , but
expanded , NAD. The Network Data Catalog Processor was expanded in scope to
include maintenance of both tJser and Host NADs as well as providing NAP
information to the TIIN analyst. The processor was then divided into three
processors , each related to a particular set of functions. The Analyst Aids
Processor displays NAP information useful in query development to the TIIN
Analyst. The User Data Description Processor aid s the User DBA in perform-
ing User NAP maintenance. The Host Data Description Processor aids the Host
DEA in performing Host NAP maintenance. Each of these was documented in
technical memoranda.

The next step involved design of each of the four processors. The
design of each proceeded in a top—down structured fashion .

V Finally the processors were coded using RATFOR as the implementa-
tion language and TTDL as the terminal interface language. The writing of
this Final Technical Report, the System/Subsystem ~p~çifications, and the
Program Documentation concludes this project.

I—i

I
_ _ _

. ~~~~~~~~~~~~ .
0 I I I ~~ ~~ L) ~~ I I

— Io I V-_~._~J I
~~~~LP~ I

1.4

I ~~~~ ~ 0

V) ~~~ • 0~~J
=0  I L~~~~ 0

L~i 0 ~~
z

— 0 i I ~~ ‘/‘ I 

I
_ _ _ _ _  

w

C ~~. 1/) 
‘~ ~~ iI II~~~~~~L) - _________ Q

“ ‘..-‘ 0(./) 0v ,~~~ I I
I I0’~~~~ I 

I 
~~ 

I Z

— L _ _ _  00
‘.4

I I
I I I w

‘I

‘-4

~~~~

l I

~~~

I-~~ ~~ c ~~ 
I.~J C I I ~‘ L)

V~~~VI ~~ ~~ 14 0 Li..
L~JC.~~I— I ’  ~~~<

~~~~ w 
L)

~~ I=.- L)1
~ ~~ I ~~ W

~~ — 1/) .~~ 1~J
1 Z

~~

1.i
14.1 1...)

~~
i— Z Z I i 14.1 1— cIj

o~~~~~~ .- 00
w

1J

0. I Z-J— — I C II-. I I— Q 0’

H.
=

t 7

I

I-. I ;:: I~~~.
I I

I~
— I~. ~~~L)

i ~~~~~ I -< - I
_ _ _ _ _ _ _ _ _ _ ___ 0Li~

_ _ _

I

I~~~~~~ 1
_ _ _

A~~~

~

)J
I

I ~—. 1.4.1
z 14JZ 1.4.11—(

~~~~~~~LQ~~ ...J~~~V  if \

~~~~~~~~~~~~~~~) 

I

_ _ _ _ _ I _ I I ~~~~~
~~~ r I ‘ ~~~~~~~~ $4

I ~~~~~~~~ I 
_ _ _ _ _  

I~~J<
00
‘.4

_ _ _ _ _  _ _ _ _ _  

L~~~~~~ .J _ _ _ J _~~~ I

c~~ i~~— o c~ ~~ I I I I ’ c  c~~ I~~~ I ~~~~~~Q C I 18.10 I I ~~~~-O  I
~~ ~ 

VI I > - (.~~V) I I ~~~~ I— I

I.LJ <~~ H I I I

~ 0- c,, 1f) 
~~ ~ I _ i< I

— 14.1 > 18.1 I I 44.1 ~~ 144 1- 0— ~~ I
L1J 4..~ Q I <~~ ~ I I ~~~‘ 0—  Z I

18.1 ~~ __I (.f) 1.? I I —‘ “I I..) 

1 
~ ~V) ~~ ~~ I I ~~ 0.0 .18J I

18.10. I ~~~~~~0- I I ..~10. I ~
C I I  

_ _ _

r~~i I ~~~~ II~~~~c~ I i ~~~~~ I

C I

~Z~1
1-2

- — - ~~— - - -~-~~~‘ - ~~~~~~~



~~~~~~ -- -~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~- - ---

3. PROJ ECT OBJECTiVES

The tasks and objectives of the TIIN/TAP projcct were:

o to analyze the NAP and determine its ability to meet
the requirements of the TIIN su~ cystems,

o to make any needed changes to the NAP based on the
requirements as determined in the first task,

o to design , develop and implement a processor which
will allow an analyst to retrieve Information useful
in formulating a query from the NAP,

o to design, develop and implement a processor to aid
the DBA In maintaining the NAP,

o to develop an example of a user query language,

o to design, develop and implement a query language
processor for translating standard query language
into DRIF (Data Request Intermediate Form),

o to investigate the requirements for an interactive
Network Inquiry Processor which will guide the
analyst through the process of making an inquiry
without recourse to a formal language.

4. RESEARCH AND DEVELOPMENT ACTIVITIES

The following research and development activities were performed
in compliance with the contract~

o analysis of NAB content and structure ,

o development of distinct Host and User NAP to meet
the requirements of the Host and User TIIN modules ,

o documentation of NAP design ,

o development of an Analyst Aids Processor to be used
by the TIIN Analyst for displaying useful NAP infor-
mation ,

o development of a Host Data Description Processor
which allows the Host DBA to build and maintain

• . the Host NAP,

1—3

—
~

—
~~ a,r- .ri ~~Lrrrr - - . ~~~~~~~~~ —~S~ —.~~~~~~~~ - ---- —~- --- ‘ — -

-
~~~~~

o development of a User Data Description Processor
which allows the User DBA to build and maintain the
User NAP

o development of a BNF specification of the TIIN
standard query language

o development of a Query Language Processor for the
TIIN standard query language

o delivery of the Functional Description

o delivery of the Test Plan and Procedures

o delivery of the Final Technical Report

o delivery of the System/Subsystem Specifications

o delivery of the Program Documentation

o delivery of the four processors coded in RATFOR.

5. INTERACTIVE NETWORK INQUIRY PROCESSOR

The TAP system is one of the five subsystems comprising TIIN.
Each of these five subsystems focuses on a particular portion of the TIIN
design. The initial focus of the TAP effort was strictly towards
providing methods for aiding the analyst in the query submission process.
The three major tasks defined were:

o The development and implementation of a Network
Data Catalog and a Network Data Catalog Processor
used by the analyst in the determination of particular
data bases and particular files of interest. This
determination could be made with only a limited prior
knowledge of subject areas of interest .

o The development and implementation of a Query Language
Processor which will translate the Transparency
Examples Language into DRIF (the internal query repre-
sentation).

o The development and implementation of an Interactive
Network Inquiry Processor which would develop the DRIF
query f ormat f r om the analyst’s responses to questions
posed by the processor.

As the TAP project began, the project engineer pointed out
that the third task was little more than a combination of the first two and
provided no new required capability to the TIIN system . The designs with
which the project should be concerned were those which provide the basic

1—4

_ __ _ _ _ _ _ _ _ _ _ _ _



~~~~~ -—-- -~~~~~--~~ - - -~~.— - . -  -- - -,~~~~~~~--~~~~~- -~~~ --~ - - ~~~~ -

TIIN capabilities such as a common query language, the ability to query
several heterogeneous data bases, the ability to merge response files from
multiple host data bases into a comprehensive report, etc. This direction
required the planned TAP effort on the Interactive Network Inquiry
Processor to be redirected towards the more important goals of the overall
TIIN project . The following areas of development summarize this redirection.

o An evaluation of each of the subsystem’s requirements
for the MAD was performed resulting in the separation
of the NAP into Host and User components. The results
of this effort are found in Section II of this report .

a The highly redundant Network Data Catalog was eliminated
by merging it with the User NAP. This decision and
resultant design is documented in both Sections II
and III of this report .

o Two new processors, the User Data Description Processor
and the Host Data Description Processor , have been
added to the TIIN systems. These processors build
and maintain the User NAD and Host NAD, respectively .
A description of these processors is found in Sections
111—3 and 111—4.

o A determination was made of future enhancements to
both the Aanlyst Aids Processor and the Query Language
Processor which would , to a large extent , provide the
capabilities specified for the Interactive Network
Inquiry Processor. These enhancements are documented
in Sections Ill—S and IV—4.

o Specifications for a set of DBMS interface routines were
developed . These routines will be used in the future
design of all TIIN modules requiring file management
services. All of the routines specified assume the
hierarchical file structure described in the TIIN
Response Normalization, Final Technical Report. A
description of these routines is found in Appendix E
of this report.

o A High Order Language was selected for use as a design
tool to be used in clearly defining the design of
future TIIN modules. The language is described in
Appendix D of this report.

6. REPORT ORGANIZATI ON

This report describes the TAP research and development work
which was performed between January 1977 , when the contract began, and
January 1978 when it expired. The four sections of the report in conjunction
with the eppend icies cover all phases of the research performed under the

I—S

-~

TIIN/TAP contract. The reader who is unfamiliar with the TIIN system
should read Appendices A , B and C to familiarize himself with the whole
system before reading the rest of the report. The paragraphs which follow
give a brief description of each section and each appendix of the report.

a. Section I: Introduction

The first section gives an overview of the goals and accomp-
lishments of the TAP effort .

b. Section II: Network Access Directory

This section provides a detailed description of the MAD and
its functions within the TIIN. The concept of separate Host and
User HAD is emphasized.

c. Section III: NAB Maintenance and Interrogation

This section descrIbes the function and design of each of
the three processors acting as interfaces between three separate
groups of users and the NAD. The Intelligence analyst uses
the Analyst Aids Processor to display NAD information useful
in query development . The Host DBA uses the Host Data Description
Processor to build and ina~ntain the Host NAB. The User DBA uses
the User Data Description Processor to build and maintain the
User NAD.

d. Section IV: Query Language Translator

This section describes both the Transparency Examples Language
and the translator which converts it to DRIF. A detailed dis—
cussion of the DRIF is also included.

e. Appendix A: Development Background

This appendix discusses the background and philosophy
behind the development of TIIN.

f. Appendix B: Description of the TIIN System

This appendix discusses the functions provided by each of the
modules in the TIIN systen . Also included is a grouping of
modules into their respective subsystems.

g. Appendix C: Glossary

This appendix is a glossary of terms relating to TIIN in
particular and distributive processing in general.

1—6

h. Appendi x D: I~~1ementation Language

This appendi x briefly discusses the features of the current
TIIN implementation language.

i. Appendix E: DBMS Interface

This appendix describes the function of each of the subrou—
tines used in TAP as interfaces to a DBMS.

1. Appendix F: Bibliography

This appendix lists published material which is relevant to
TIIN/TAP.

SECTION II

NETWO RK ACCESS DIRECTORY

1. INTRODUCTION

The Network Access Directory (NAD) is the repository for all
information required by the system about the contents of network data bases.
This information will be used by TIIN in responding to an intelligence
analyst ’s query . It will also be used by TIIN in response to the analyst ’s
application programs which request data from the network. Included in this
pool of information are the following items.

o Data Location

o Data File Contents

o Standard Data Element Names

o User Data Element Names

o Host Data Element Names

o Data Privacy Locks

o Response Pile Structures

o Value Conversion Algorithms

o Data Files’ Subject Content.

This information, as well as any additional Information later
deemed necessary , is contained in two functionally distinc t portions of the
MAD. The first portion has been named the User NAD . A single User HAD will
be built for each user node in the network. It will contain the bulk of the
data needed by all of the User TIIN modules to perform their respective
functions. Information specifying the mapping from user element names to
standard element names and information specifying the location of elements
within the network is typically found here.

Informational content of the User NAP is controlled by the User DBA
(or possibly several privileged users). In controlling the content of the
NAB the User DBA has control over that portion of the network’s data which
is available to analysts at his site. If the User PEA does not include a
data base, a data file, or a data element in the User NAD then that data
is unavailable to TIIN analysts at the node. $

I

Il—i

-~~~~~~~~~~~~~~~~~~~
-

The analyst who needs any of this unavailable data must know
which host data base to query, which file to query and which host element
names to use in his query. Without this exact knowledge the analyst is
restricted to entering queries which the User DBA has chosen to allow.

The content of the Host HAD is controlled by the Host DBA (or
possibly a set of privileged users). By exercising this control the Host
DBA decides what portion of his Host Data Base will be made accessible to
the network. He also determines the requirements , if any, an analyst must
meet in order to access his portion of the network data.

The remainder of this section discusses in detail the content of
each of the User and Host NAB files. The use of each of these files by the
TIIN subsystems which have been investigated to date is also discussed.
Finally, a discussion of future enhancements to the NAD and the reasons
for each closes out this section.

2. COMPOSITON OF THE NAD

The NAD consists of a set of hierarchical files. Each Host NAP
contains two of these files. The first file describes in detail the
characteristics of each of the host elements. The second describes the
response file format associated with each host data file. Each User NAB
contains a minimum of five files. One of these files maintains information
about each data base within the network to which the user has access. A
group of files (one for each accessible host data base) contains information
regarding the content of each host ’s data files. Two additional files
maintain information about standard element names and values and user element
names and values. Finally , a file used as a thesaurus of NAB subject
information is maintained .

a. User NAP

The User NAP is the primary source of information about data
location and data format for all TIIN modules labeled user modules.
I t contains information about all data elements which are accessible
to users at this node . If information concerning any particular
data element is not contained in the User NAB for a node then that
data is inaccessible to TIIN components at that node. This allows
the scope of knowledge of users at any given node to be determined
by the Data Base Administrator for that node . He is the individual
who will decide what will and what will not be added to the User
NAP. The number of data bases to which the User Data Base
Administrator may grant access is limited only by the number of
host data bases which have been made available to the TIIN
network and the storage space available to the User HAD .

In the following descriptions of NAP files the name of
the file is given first . This item is followed by the description
of a record. The number to the left of each text description

11—2

~1

represent the hierarchical level of the item given
within the record . The underlined items are da ta element names.
The non—underlined items are names of the segments whose elements
immediately follow. At any given hierarchical level the data
element names will preced e the segment names for the following
level. The * to the left of the level indicator indicates that
this particular segment may have more than one occurrence within
the parent segment . The text in parenthesis to the right of a
data element name indicates the type of the corresponding data
element value. Unless otherwise specified the key to each record
is the first level 1 element listed . The key to a level n segment
is the first element at level n + 1.

(1) Data Base Location File

The Data Base Location File contains one record for each
host data base known at this particular user npde. Tach record
in this file contains three elements. The Host Data Base
Identifier specifies the identity of the Host NAP which
contains detailed information about the Host Data Base to
which this record applies. The DBMS field identifies the
Data Base Management System which maintains this particular
Data Base. Finally, the Text Description field contains a
verbal descript ion of this par t icular Host Data Base. This
field is not used in ternally by TIIN but exists solely for
the purpose of supplying descriptive information about the
Data Base to an Intelligence Analyst.

DATA LOCAT ION BASE FILE

0) DATA BASE INFORMATION

1) DATA BASE IDENT IFEER (VARYING LENGTH CRARAC1ER STRING)

1) DUllS (VARYING LENGTH CHARACTER STRING)

1) TEXT DESCRIPTION (VARYING LENGTH CHARACTER STRING)

(2) Data Base Content File

A User MAD will contain one or more files of this type.
One o f these files will be created for each data base
queriable from the node. Each one of these files is given

11—3

~
-_ - - - - - -

~~~
---

~~~~~~~ 
- - _

~~~~~~
- - - - -

~~~~
- - - -

a name equivalent to the Data Base Identifier Element in the
corresponding record in the Data Base Location File. Each
record defines the content of a single Host file. It consists
of the f ile name , a list of f ile elements, a list of subjects
related to the file and a text description of the file.

DArA BASE CONTENT FILE

0) FILE INFORMATION

1) FILE NA1IE (VARYING LENGTH CHARACTE R STR ING)

1) TEXT DESCRIPTION (VARYING LENGTH CHARACTE R STRING)

*1) ELE~~NT INFORMATION

2) STA1’IDARD ELEI€NT NAME (VARYING LENGTh CHARACTE R STRING)

*1) SUBJECT INFORMATION

2) SUBJECT N AME (VARYING LENGTH CHARACTER STRING)

(3) Standard Elemen t File
-

-

This file is used to define each TIIN standard
element available at this node. If an analyst enters a
query containing standard element name s which are not
contained in this f i le , the query will be rejected . It
should be pointed out here that the fact that an element
is present and associated with a file and a Data Base in a
User NAP does not guarantee that it is available to the user .
It mus t also be contained in the Host NAD which defines the
Data Base in question and the user must meet the particular
requirements for access which the Host Data Base Administrator
ultimately determines. The fields contained in each record
include the element name , type , unit of measuremen t and text
description. The element type will specify whether the
element is a character string , an integer , a date , a pair of
coordinate s , etc. The unit of measurement field specifies
the standard element unit of measurement. Finally ,
associated with each element is a list of Da ta Base
Identifier — File Name pairs which are used to determine
in which files the element is contained .

11—4

______________________ —- - - — -~~~~———--—-- -

STANDARD ELE~~ NT FILE

0) STANDARD ELEMENT INFORMATION

1) STANDARD ELEMENT NAME (VARYING LENGTH CHARACTER STRING)

1.) STAND ARD ELEMENT TYPE (INTEGER)

1) STANDARD ELEMENT UNIT OF MEASUREMENT (INTEGER)

1) TEXT DESCRIPTION (VARYING LENGTH CHARACTER STRING)

*1) FILE INFORMATION

2) DATA BASE IDENTIFIER (VARYING LENGTH CHARACTER STRING)

2) FILE NAME (VARYING LENGTH CHARACTER STRING)

(4) User Element File

This f i le defines all local User elements . It exists
so that a User Data Base Administrator may define elements
which are local to his node only. The User Elements f ile
provides for the mapping of User Element Names to Standard
Element Names and User Element Values to Standard Element
Values. Each record contains the User Element Name, Type,
and Unit of Measurement. I t also contains the associated
Standar d Element Name and a Value Conversion Algorithm
Ident i f ier .

USER ELEMENT FILE

0) USER EL~~~~ T INFORMATION

1) USER ELEMENT NAME (VARYING LENGTH CHARACTER STRING)

1) USER ELEMENT TYPE (INTEGER)

1) USER EL~~~NT UNIT OF MEASUREMENT (INTEGER)

1) STANDARD ELEMENT NAME (VARYING LENGTH CHARACTER STRING)

1) VALUE CONVERS ION ALGORITHM IDENTI FIER (INTEGER)

n — S

~—~~~~--~ .-- ---— ~~~~~ —--- .--- --—- --

(5) Subj ect File

This file ex ists solely for the purpose of aiding an
analyst in formulat ing his query . Internal ly this f i le is
not used fo r que ry or response translation or routing. It
is used to enable an analyst to display the files associated
with his subject selection . A record in the file consists
of the Subject Name and a l ist of Data Base Iden t i f i e r — File
Name pairs specif ying all f i les which cove r the subject .

SUBJECT FILE

0) SUBJECT INFORMATION

1) SUB JECT NAME (VARY ING LEN GTH CHARACTER STRING)

*1) FILE INFORMATION

2) DATA BASE IDEN TIFIER (VARYING LENGTH CHARACTER STRING)

2) FILE NAME (VARYING LENGTH CHARACTER STRING)

b. Host NAP

The Host NAD is the primary source of info rmation for the
TIIN modules responsible for standard—to—host query conversion
and host—to—standard data stream conversion . The Host QIP will
use the information in the Host NAP to convert standard
element names into their equivalent host element names.
Standard element values will be converted to Host element values
via an algorithm chosen by a Host NAD entry . Only those elements
whose names are in the NAD are legal entries in a query . By
selectively adding element names to the Host NAD the Hos t Data
Base Administrator decides which elements within the data base
will be known to the network and , furthermore, which may be used
for retrieval purposes only and which may be used for qualification
purposes only . This gives the Host Data Base Administrator control
over the privacy of his data. The description which follows of
the various files comprising the host NAD uses the same documen-
tation conventions as were used in the User NAD description.

(1) Host Data Base Description File

The Host Base Description File is used for translation of
TilN etandard queries into host dependent queries . These queries

h — b

-
~ .~

-- ~~~

are then submitted to the host DBMS and a response is
received. The Host Data Base Description File will be used
by the Response Normalization modules to produce a
standardized response file.

A record in the Host Data Base Description File repre-
sents a single host file. It contains the file name and a
list of elements available within the file. Each element
entry contains the host element name , type, unit of measure—
men t , and maximum value length (the length in bytes of the
longest element). Also included is the corresponding
standard element name, standard—to—host and host—to—standa rd
value conversion algorithm identifiers and an identifier of
the response file segment in which the element is contained .
Finally, a variable length field is included which will con-
tain the special characteristics associated with this parti - --
ular data base. The length of this field will vary from Host
MAD to Host NAP depending upon the Host Data Base in question .

HOST DATA BASE DESCRI PTION FILE

0) FILE INFORMATION

1) FILE NAME (VARYING LENGTH CHARACTER STRING)

*1) ELEMENT INFORMATION

2) HOST ELEMENT NAME (VARYING LENGTH CHARACTER STRING)

2) HOST ELEMENT TYPE (INTEGER)

2) HOST ELEMENT UNIT OF MEASUREMENT (INTEGER)

2) HOST ELEMENT MAXIMUM VALUE LENGTH (INTEGER)

2) STANDARD ELEMENT NAME (VARYING LENGTH CHARACTE R STRING)

2) STANDARD TO HOST VALUE CONVERSION ALGO RITHM IDENTIFIER (INTEGER)

2) HOST TO STANDARD VALUE CONVERSION ALGORITHM IDENTIFIER (INTEGF~~

2) SEGMENT DESCRIPTOR IDENTIFIER (INTEGER)

2) SPECIAL CHARACTERISTICS (VA RYING LENGTH BYTE STRING)

11—7

(2) RNF Descri pt ion File

Each record in th is f i l e describes the format of a
single hierarchical response f i l e . Each host f i le described
in the Host NAD has a par t icu lar response f i l e representation
and thus a corresponding record in the RNF flescription File.
A record consists of a set of hierarchically related segmen t
descriptors which in turn consist of a variable number of
element descriptors . The segment d e s c i i pto rs def ine the
hierarchical s t ruc ture of the data record. The element
descr iptors define the name , type , maximum length , and unit - •

o f measurement of each of the response f i l e ’s data elements .
All of t h i s descript ivc in fo rma t ion w i l l be appended onto
the front of every response f i le so tha t the f i l e will be
comp lete ly defined and able to be manipu la ted by TI IN at any
node through which It passes .

RNF DESCRIPTION FILE

5) FILE INFORMATION

1) FILE MANE (VARYIN G LENGTH (!~A RA CT ER STR ING)

*1) SEGMENT IN FORMATION

2) SEGMENT I DENT IFIER (INTEGER)

2) PARENT SEGMENT IDENTIFIER (INTEGER)

*2) ELEMENT INFORMATION

3) STANDARD ELF~ENT NAME (VARYING LENGTh CHARA CTE R STRING)

3) STANDARD F’JiMEt~T TYPE (I., ~T~~-:R)

3) STANDARD ELEMENT UNIT ~i
L
~1EAS UREMENT (INTEGER)

3) STANDARD ELEMENT MAX I MUM VALLTE l ENGTh (INTEGER)

3. FUNCTIONS OF TIlE NAD

The goal of the ThIN development e f f o r t is the design of a system
which will allow a user transparent access to a multitude of data base
management systems . This means tha t an analys t with minimal knowledge of

-- - -
~~~~~~~~~~~~~~~

--
~~~~~~


query languages, data base management systems, and communications protocols
will be able to sit down at a TIIN terminal and get answers to his
questions. The completeness of the answers will depend on the amount of
information within the network which has been made available to the analyst.
Factors constraining informtion retrieval include the following

o The analyst’s personal security clearance is
not at the proper level to view or query data

o Access to the appropriate data base has not been
granted to the user ’s site . This may be for any
number of reasons including security or a
lack of computing fac i l i t ies (i.e., disk storage
faci l i t ies)

o The analyst ’s query is so broad based that a
return of the huge response file to the analyst’s
site would be prohibitively expensive. Too many
network resources would be required for too long
a length of time

o The analyst is unable to enter an intelligible
query even with the help of the TAP Analyst Aid
Processor

o The dat a base con tain ing n ecessary response data
has not been brough t on—line to the network . This
must be done by the data base administrator at the
data base site.

In order to realize these goals several problems must be solved .
These problems have been divided into five areas of study which have evolved
into the five TIIN subsystems. These five subsystems are TILF (Transparent
Intelligence Language Facility), QIP (Query Intermediate Processor), RN
(Response Normalization), TAP (T-’rminal Access Procedures), and QDNC (Query
Di stribution Executive/Ne twork Communications In te r face) . To date
development has been done on the first four subsystems. QDNC remains to be
started . The NAD requirements documented here deal only with the first four
subsystems.

a. QIP Req uirements

(1) QNF Generator

The QNF Generator converts the DRIF (Data Request
Intermediate Fo rmat) into the QNF (Query Norma l Format) .
Logically this step involves converting the query with user
defined element names and values into the same que ry with
standard element names and values. Also , host file selection
is done by this module. The NAD dependent functions performed

11—9

include user element name to standard element name conversion,
user element value to standard element value conversion,
standard element name and value validation, and host file
selection. The f irs t two functions listed require a NAP
mapping to user element names to standard element names .
There is also a requirement for value convers ion algorithm
selection. Standard element name and standard element value
validation require a list of all TIIN standard element names
and their corresponding value representations . Host f i le
selection req uires a mapping of TII N element names t o thei r
associated f i les . All of these functions are performed by
the user QIP and all necessary data should be contained in
the use r section of the NAD .

(2) QTF Processor

The QTF Processor is responsib le for t rans la t ing standard
element names and standard element values into their host
f i le equivalents . The NAD requirement is mapping of standard
element names to host element names for each host f i le . There
is also a requirement for the NAD to provide for value
t rans la t ion al go ri thm selection so that standard element
values may be t rans la ted into their host equivalents . All
of this information logically belongs in the host section
of the MAD because it is host f i l e dependent .

b. RN Require ments

The Host RN is required to take a host DBMS report and convert
i t into a normalized response f i l e . This requires the conversion
of host data into an equivalent standard representation and the
restructuring of a host DBMS report into a standardized f i le
st ructure . The value convers ion requires a mapp ing of host element
name s to sta ndard element names and an associated value translation
algorithm iden ti f i e r . In order to res t ruc ture the host report
into a normalized response file , the st ructure of the file , includ-
ing the relationship between element swi th in each record , must be
known . This information as applies to each host f i le must be
p resent in the host portion of the NAD .

c. TAP Req uirements

The TAP Analyst Aids Processor (AAP) wi l l provide the ‘nalyst
wit h the capabil i ty to peruse the descriptions of data base
contents which are available at his par t icular node . This
information should aid him in formulating a query . The list
below enumerates the functions performed by the AAP. The required
content of the NAP to allow the AAP to per fo rm these functions is
included with each function .

I l—h O

_ - -

~~

-.

~~~~~ 

______ - -- - - 
- --



o List all subjects available in alphabetical
order. Allow the analyst to specify the
beginning and ending character strings to
be used in bounding the search. This requires
a NAB f ile con taining all subjects available
at the node which is sorted in alphabetic
sequence .

o Given a particular subject , list all files
containing information pertaining to that
subject.  This requires that each subject
record in the subject NAP f i le  contain an
index of host files to which this subject
app lies.

o Given a part icular  f i le , list all elemen t s
contained within i t .  This requires that each
record in the NAP ’s Data Base Content File
contain an index of ThIN elements which are
contained in the host f i le as well as a text
description of the host f i le .

o Given a part icular f i le , list all sub j ects t o
which the f i le  applies. This requires a cross
index of subjects contained within each f i le .

o List descr iption an d fo rmat o f TIIN standar d
element name . This requires a f i le  of standard
element names where each record contains the
elemen t name , a tex t ual de scr iption of the
element, and a description of the element

• value format.

All of these NAD requirements pertain to the user portion of
the NAP .

d. TILF Requi rements

TILF makes no demands on either the Host MAD or the User NAD.
It does , however , have the responsibility of maintaining the NAD.
As a result of the concep t of separate Hos t and User NAP ’s , a
separate processor has been developed to handle the maintenance
functions on each. These processors have been named the Host
Data Description Processor (HDDP) and the User Data Description
Processor (UD DP). They maintain the Host and User NAPs respectively.
Although both processors are functionally part  of the TILF

• subsystem , they have been designed under the TAP contract due to
the renovation of the NAP. The design of these two modules is
described in Chapter III of this repor t .

Il—il



---~ - --- ~~~ - - - - - --

4. FUTURE DEVELOPMENT

a. Multifile Queries

A p rimary objective of ThIN development is the mul t i f i l e
query capability . This capability should exist under both user
contro l and system control. User control provides the analys t
with the necessary tools for specif ying several pa r tial que r ies
aimed at particular host files together with a set of operators
to be used in merging the multiple responses into a single r esponse
file.  Under system control TIIN would automatically perform these
operations given only a single query with no target f i le .
Additions to both Host and User NADs are anticipated before these
capabilities may be realized .

( 1) Host NAD

At the host end , peculiarities of the various Hos t Data
Base Management Systems must be determined . For each Host
DBMS the special characteristics of the system which a f f e c t
qu ery submission or response retrieval must be noted and the
appropriate information added to the Host NAD (provision
has been made for just  this with the inclusion of a Special
Cha racteristics Field in the Host Elements File) . In
addition to DBMS specif ic  in fo rmation , the Host HAD must
include additional in fo rmat ion which will allow r esponse f ile
merger.

( 2 ) Use r NAP

The User NAP must contain all information needed in the
decomposition of a query into part ial  queries aimed at various
host f i les .  The required information for this operation is
yet to be determined .

b. Data Acc ess Controls

Once a determination is made of the desirable level of access
con t ro l to host data , the requi red data f or en fo rcin g this  con t rol
must be added to both Host and u se r NADs .

c. Up date Procedu res

Since the NAP is itself a Distr ibuted Data Base , a method of
main taining i ts integr i ty  as well as its informational  timeliness
must be determined. It is extremely important  that an update made
to a local NAP be made available to all other a f fec ted  NAPs .

11—12



SECTION ill

MAD MAINTENANCE AND INTEROGATION

1.. INTRODUCTION

This section describes the MAD interrogation and update functions
available to three classes of TIIN users . The f i rs t  class of users consists
of intelligence analysts who will be submitting queries to the system. They
are concerned with getting answers to their questions. They are given the
ability to display those portions of the HAD which may aid them in the query
submission process. These users are not given the ability to modify the
NAP in any way . A second class of users consists of User Data Base
Administrators . Each is charged with the responsibility of maintaining
a single User MAD . This task requires the ability to display , add to , and
delete from the HAD . A set of modules is provided which perform these
func t ions for the DBA while requiring minimal knowledge of the MAD structure
from him. The third class of users cons ists of the Host Data Base
Administrators . These users maintain the Host MAD ’s jus t as the User DBA ’s
maintain the User NAP ’s and thus are provided with a similar set of functions .

2. ANALYST AIDS PROCESSOR

The Analyst Aids Processor displays MAD informat ion to the
intelligence analyst. Specifically, this processor allows an analyst to
display :

o Alphabetical lists of subjects available
at the node

o Lists of files pertaining to particular
subj ects

o Lists of subjects covered by particular
files

o Lists of elements contained within particular
files

o Descriptive information about any data base

o Descriptive information about any file

o Descriptive information about any element .

This information will be used by the analyst in the identification of files
and elements which he will use with in his query. Section III.2.a identifies
the functions available to the analyst and their usage . Section III .2.b
details the overall design of the processor.

111—1



~ 
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~

-

a. Analyst Functions

An analyst ’s interrogation session will proceed through a
sequence of displays. The displays are arranged by levels of
information where the highest or entry level contains lists of
subjects while the lowest level contains detailed f i le element
Information . This structure is shown in Figure 111—1 . At each
step in the diagram the analyst has the choice of whether to go
up or down a single level but may not advance through more than
one level per command . The intent of this process is to guide
the analyst from thoughts of general subject areas to specific
file and element names which may be used to submi t a query . The
following paragraphs serve to clarif y the actions taken by t he
analyst and the system when proceeding through this process.

An intelligence analyst ’s session with the Analyst Aids
Processor begins with the following selection menu .

SELECT TW~SACTION TYPE:

1. LIST ALL SUBJECTS IN CATALOG .
2. LIST ALL SUBJECTS IN CATALOG WHICH BEGIN WITH CHARACTER STRIN G ____

3. LIST ALL SUBJECTS IN CATALOG BETWEEN CHARACTER STRINGS

AND

4 . TERMINAT E SESSION

ENTER YOUR CHOICE________

The analyst will then make a selection . If he has not decided to
select all subjects fo r display he wi l l see a display requesting
the input of e i ther one or two character strings to be used for
bou nding the list of subjects displayed . Now the subject list is
disp layed followed by this message .

1
ENTER SUBJECT OF INTEREST . I~ NONE , ENTER NONE:___________

If the analyst replies with “NONE ” the original menu will be
flashed and he may again request a list of subjects. If the
analyst instead chooses a subject , a list of al l files dealing
with that particular subject will be displayed to him . He now
knows which files may be of interest and is flashed the following:

ENTER FILE OF INTEREST . IN NONE , ENTER NONE

.

111—2

F ~~~~~~

-- --

~~

- -

~

-• -

~~~~~~~

Level 1 ALPNABETIZ~~ SUBJECTS LISTINGS 

J

Level 2 

[

FI LES D EALING WITH SINGLE SUBJ ECT

Level 3 SINGLE FILE DESCRIPT ION 1
Level 4 EL5~ENT S CONTA INI3) IN FILE SU BJ ECTS COV~~ W BY FIL E

‘~e~ ~ SING LE EL~~IENT INFORMATION

Figure I l l—i.  Analyst Aids Processor Informational Levels

111—3

-- - - - - - --

~

—- --- -—- -- - -  -~~~~—-~~~~~~~~~~~~~~~~~~ --~~~~~~ --~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -~~~-~~~--- ~~~~~~~~~ - - -

The analys t now has a list of all files pertaining to a particular
subject i~ f ron t of h im and is asked to choose a pa r t i cu lar f ile
fo r more detai led information . If he is not interested in any one
of the f i l es , he enters “NONE” and the previous list of chosen
subjects is again displayed . If a f i le selection is made~, a
desc ription of tha t f i le is displayed in conj unction wi th the
following selection menu .

SELECT TRANSACTION TYPE.

1. LIST ALL SUBJ E CTS TO WHICH THIS FILE PERTAINS .
2. LIST ALL EL~~~~4TS IN FILE .
3. NO TRANSACTION .

ENTER CROICE

The analys t now has three choices . He may return to the
prior list of files if “NO TRANSACTION ” is chosen. He may lis t
all the elemen ts con tained wit hin the f i l e or he may get a cross
index list of all subjects to which this f i le pertains .

I f an element display is selected , all elemen ts con tained
wit hin the f i le are displayed to the ana lys t . This is followed
immediately by the following prompt .

ENTER ELEMENT OF INTEREST. IF NONE , ENTER NONE________

In re sponse to this , the analyst will either enter an element name
of pa r t i cu la r interest or enter “NONE .” In the former case a
det ailed des.~r ipt ion of the element containing such items as
e lement name , element type , uni t of measurement , e t c . , is
displayed to the analyst. This is followed by a redisplay of
the element list and the prompt for choice of element . In the
latter case, the user has entered “NONE,” thus the system again
displays the f i le informat ion selection menu and again waits for
the analyst ’s choice .

The analyst ’ s f i nal possible response to the f i l e infort ~at ion
selection menu Is a request for a l isting of all subjects to which
the f i le pertains . The systems response to this request is a
list of all subjects to which this file applies. At the end of

(th is subje c t disp la y th e f ile infor mation select ion men u is again
displayed and the analys t may make his next selection.

111—4

t

_ _


~~~~ - - _ - --_ 

b. Processor Design

The Analyst Aids Processor is designed in a top—down fashion
with each level of module nesting corresponding to an information
level. The modules at any given level determine whether to call
an additional module , thus increasing the nesting level or whether
to return to the cal ling module , t hus decreasing the nesting level
based on the intelligence ana lyst ’s response to the curr ent TTDL
(Terminal Transparent Display Language) display. The calling of
another routine Is the response to an analyst ’s request f or mor e
specific data ( i.e . ,  f rom a f i le  display , r equesting a display of
the elements in the f i le ).  A return to the invoking module is
the response to an analyst ’s r equest for r etu rn to a pr ior , more
generalized , display ( i .e . ,  f rom a display of specific info rmation
about an element in a f i le , return to the list of all elements
in the f i le) .  Looping within a module is the response to an
analyst ’s request to redefine the current display . This module
nesting structure is shown in Figure 111—2. The module name is
listed together with the displays each module will flash to the
user. A display marked as saved Is unchanged in content until an
analyst command forces a change. Thus , the same display may be
flashed several times without requiring the analyst to define it
each time. A one shot display is flashed once without its contents
being preserved . In order to reflash the display the analyst must
reenter the key information .

3. USER DATA DESCRIPTION PROCESSOR

The User Data Description Processor guides the User Data Base
Administrator through the process of describing that  portion of all ne twork
data bases which will be available at his node. This is accomplished during
an interactive session. The processor prompts the DBA with a variety of
menu displays and requests for input.  The DBA ’s answer s are used to bu ild
the User NAD . The User NAD then serves as a directory of network data which
is now available at the User node.

a. User DBA Capabilities

(1) General Description

The Use r DBA ha s three major categories of information
which he defines in the User NAD . These three categories
are data description information , subject  information , and
user element information. The first category is by far the
most signi f ican t .  It includes the selection of the subset
of netwo~ k data bases , data f i les  and data elements to be
made available at the user node. This selection process
proceed s in an interactive session . The DBA f i r s t  defines
each file ’s component elements. The rules which must be
followed by the User DBA dur ing  th is  process are as follows :

111—5



-- - .-- ..-—--—-- ——~~
-- -—- .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.—

ANALYST AID S PROCESSOR
INFORMATIONAL DISPLAYS: NONE

SOETAIL

INFORMATIONAL DISPLAYS:
(1) SUBJECT LIST (SAVn))

4.
FD ETAIL

INFORMATIONAL DISPLAYS:
1) FILE LIST (SAV ~~)
2) FILE DESCRIPTION (ONE SHOT)

_
Jr 4.

SUM—LIST ELO~—LI ST

INFORMATIONAL DISPLAYS: INFORMATIONAL DISPLAYS :
1) SUBJ ECT LIST (ONE SHO T NONE

_ •1If
ELn4-DETAIL

INFORMATIONAL DISPLAYS:
1) EL~~1~~1T LIST (SAVID)
2) EL~~1~~IT DESCRIPTION

(ONE SHOT)

Figure 111—2. Analyst Aids Processor — Hierarchical Module
Relationships with Displays

111—6

_ _ _ _ _ - - - .

o A data base must be defined before any
of its component files are defined

o A f i le must be defined before any of
its component elements are defined

o An element must be defined in its standard
representation before it is included as a
file element.

These rules apply due to the relationships between data bases,
files, and standard element names as shown in Figure 111—3 .
The standard element names are the single global entity in the
TIIN. Each f i le in the network will have its elements defined
as standard elements at all user nodes having access to that
file. Thu s, the third rule requires the definition of the
standard element before inclusion of it in any file. The
first two rules are based on the structure of a data base. A
data base consists of a set of data files each of which con-
sists of a set of data elements. Each set is def ined before

—
its component elements are defined .

The second category of information maintained by the User
DBA is subject information. It consists of an alphabetical
list of topics , each cross referenced to a list of host data
files . The User DBA will both define the list of subjects
available at the User node and the mapping of these subjects
to files which may be queried at the node. There is only one
rule which the User DBA must follow when adding subject inf or—
mation to the NAD : The subject must be added to the NAD
before it is tied to any data f i le . Thu s , a User DEA will
f i rs t define a new subject , which will cause it to be added
to the alphabetized list of subjects, and then list the files
to which the subject applies.

The third category of information maintained by the User
DBA is user element information . This information makes it
possible for an analyst or group of analysts to use their own
element names and value representations in TIIN queries . They
are not required to know the standard elements as long as the
DBA has defined the needed user elements at the User node. In
order to do this the DBA must know the standard element name
to which the user element name maps and the identifier of the
conversion algorithm which will be used to convert user ele-
ment values into standard element values. The only rule

• a f fec t ing the addition of user elements to the NAD is that a
standard element must be defined in the NAD before any user
element which maps to i t .

111—i

z

C
.

— C

-r
z
.

I
$4

.4
C I

C
• ‘—4

-
~ 2 4-1

4-I
C p
o ‘.. $4z II~

4-

4-. I- Cz

H

111—8

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .~~~~~~ _ .. -.. ~~~~~ - , - ‘~~~~~~~--—— -

(2) Specific Capabilities

When the DBA activates the User Data Description Pro-
cessor he will be flashed the following selection menu.

SELECT TRANSACTION TYPE

1. DEFINE NAD 2. DEFINE DATA BASE
3. DEFINE FILE 4. DEF INE ELEMENT
5. DEFINE USER ELEMENT 6. DEFINE SUBJECT
7. DELET E NAD 8. DELETE DATA BASE
9. DELET E FILE 10. DELETE ELEMENT
11. DELETE USER ELEMENT 12. DELET E SUBJECT
13. ADD ELEMENT TO FILE 14. ADD SUBJECT TO FILE
15. DELETE ELEMENT FROM FILE 16. DELETE SUBJECT FROM FILE
17. DISPLAY INFORMATION 18. TERM INAT E SESSION

ENTER YOUR CHOICE:

The individual choices perform the following functions :

1: Def i ne NAD

This function is used by the User DBA to create a User
MAD. This function is normally only performed once per user
node .

2: Define Data Base

This function is used to add a new data base to the list
of those available for interrogation from the user node.
Data bases not contained in the User NAD may only be queried
by the use of a host file selection phrase and a host data
base selection phrase in the query .

3: Def ine File

This function is used to add a new host file to the
list of those available at the user node. The inclusion of
a host f i le within a User MAD allows TIIN to query the file
whenever the analyst enters a query pertinent to the f i le ’s
contents.

4: Define Element

This function is used to add a standard element name to
the MAD . The set of standard element names is used by the
analysts in the development of queries.

111—9

_ _ _ _ - -~~~~~ . - __ _______-_ -— —

~~~

-- - - - . —~~-___



5: Define User Element

This function is used to add User Elements to the MAD.
User Elements are local to a user node and when used in a
query will be translated into their standard element
equivalents.

6: Define Subject

This function is used to add a new subject or topic of
interest to the list within the User NAD . This subject lis t
is used by the analyst in the determination of possible files
of interest to him.

7: Delete MAD

This function will eliminate a User MAD from the TIIN
system. Since all the information contained in the MAD is
lost upon initiation of the function it should rarely be.
used .

8: Delete Data Base

This funct ion causes a given data base and all of its
files and elements to be deleted from the User NAD and thus
deleted from the realm of data available to analysts at the
node .

9: Delete File

This function causes a selected file and its elements
to be deleted from a User NAD. The file is no longer
available to a TI IN analyst at the node.

10: Delete Element

This function causes the deletion of a standard element
from the list of elements contained within a particular file.

11: Delete User Element

This function deletes a user element from the list of
those available at the user node . Once deleted the user
element name may no longer be used in an analyst ’s query .

12: Delete Subject

This function deletes a subject from the list of those
present in the NAD. A subject should be removed from each
file to which it pertains before it is total ly removed from
the NAD .

III— 10

,-

~

---—— —- - - - .~~~~~~ ..~ - . -~~~ _ _



13: Add Element to File

This function adds a standard element to the list of
elements contained within a particular file. An element mus t
be defined as a standard element using command 4 before it is
added to a file .

14: Add Subject to File

This function adds a subject to the list of subjects
covered by a particular file . This file will then be
included in any analys t ’s display of files pertaining to the
subject.

15: Delete Element From File

This function deletes an element from the list of
elements contained in a particular file. Once an element has
been deleted the file is no longer interrogated by TIIN in
response to a query containing that element.

16: Delete Subject From File

This function will cause the deletion of a subject
from any specified file . The specified file will no longer
be displayed In the list of f i les pertaining to the subject.

17: Display Informat ion

This function will cause a second menu to be displayed
to the DBA. This menu gives a choice of various User MAD
information which may be displayed .

18: Terminate Session

The terminate session function is used to terminate the
User Data Description Processor.

(3) Individual Function Inputs

Most of the functions on the transaction selection
menu will cause a second display to the analyst requesting
further input. These displays and their expected inputs are
defined below .

(a) The Define NAD function does not cause any display
to be flashed to the analyst.  It needs no input from
the DBA because it creates a set of files but does not
install any data in them.

111—11



____

(b) Def ine Data Base

This function causes the following to be displayed
to the DBA.

ENTER THE FOLLOWING INFORMATION ABOUT THE DATA BASE

1. DATA BASE NAME_________
2. DATA BASE MANAGEMENT SYSTEM_________
3. TEXT DESCRIPTION OF DATA BASE 

___________________

The DBA must then respond with the name of the data base
(must uniquely identify it with network) , the name of
the data base management system maintaining the data
base , and a verbal description of the data base. Once
this information has been entered , the User Data Descrip—
tion Processor will add a record to the User MAD Data
Bases File describing the data base. It will also
create a file whose records will describe each of the
new data base files. The f i le  will be given the name of
the new data base.

(c) Define File

This function causes the following display .

ENTER TUE FOLLOWING INFORMATION ABOUT THE FILE.

1. NAME OF PARENT DATA BASE 
_______________

2. NAME OF FILE__________________________

3. FILE DESCRIPTION ________________________________

The parent data base must have been previously defined .
It is the name of the data base containing the f i le.
The f i le  description is a text field to be displayed to
any analyst requesting a description of the file. This
function causes the addition of a record to the File
File corresponding to the parent data base.

111—12



~

(d) Define Element

This function causes the following display.

ENTER THE FOLLOWING INFORMATION ABOUT THE ELEMENT.

1. NM~E OF ELEMENT_____________
2. ELEMENT TYPE__________________
3. ELEMENT UNIT OF MEASUREMENT___________________
4. ELEMENT DESCRIPTION____________________________

The Name of Element field is a character string
element name. The element type field contains an integer
which represents the type of the element (types such as
alphanumeric, real, numeric integer, boolean , etc.).
The element unit of measurement field contains an integer
which represents the unit of measurement (kilometers,
feet, miles, pounds, etc.). The element description
field contains a text description of the element which
may be displayed to the intelligence analysts on request.
The define element function causes a record to be added
to the User MAD Standard Element File.

(e) Define User Element

This function causes the following display.

ENTER THE FOLLOWING INFORMATION TO DEFINE THE USER ELEMENT

1. USER ELEMENT NAME__________

2. USER ELEMENT TYPE_____________

3. USER ELEMENT lIMIT OF MEASUREMENT_____________

4. VALUE CONVERSION ALGORITHM IDENTIFIER__________

5. CORRESPONDING STANDARD ELEMENT NAME______________

The f i rs t  3 input fields have identical input formats as
the first 3 entries of the define element display . The
value conversion algorithm identifier field contains an
integer identif ying the conversion algorithm used to
convert the user element value to a standard element

111—13



value. The corresponding standard element name field
contains the name of the standard element to which this
user element maps. This information will be used to
add a record to the User NAD User Element File.

( f)  Define Subject

This function causes the following display .

ENTER SUBJECT NAME :__________________

The subject input by the DBA is used to add a
record to the subject  f i le .

(g) Delete MAD

This function requires no input .  It will destroy
all of the files comprising the User MAD .

(h ) Delet e Data Base

This funct ion will cause the following d isplay .

ENTER ~HE DATA BASE N AME : 

]

The data base n ame is used as the key in the deletion
of the record in the Data Base File . Also the entire
Fi le File desc ribing all f i les in the d ata base is
deleted .

(i) Delete Fi le

This function will cause the following display .

ENTER THE FOLLOWING INFO RMATION ABOUT THE FILE

1. FILE NAME_______
2. PARENT DATA BAS E NAME___________

111—14

S -— .. -—S- _ _~~~~_~s.-—_..



The f i le name and parent data base name are both char-
acter strings. The parent data base name is used to
locate the File File which describes all f iles contained
in the data base . The f i le name is used to delete the
record describing the chosen fi le from the File File .
All standard Element f i le  cross references and all sub—
ject file cross references are also deleted.

(j) Delete Element

This functIon cau~ses the following display. -~~~ 

ENTER NAME OF ELEMENT:_________________________

The element name will be used to delete the record from
the Standard Elements file. A check will be made to
insure the element is not still contained in any host
file. If any such file is found the DBA is warned and
the element is not deleted .

(k) Delete User Element

This function causes the following display.

ENTER USER ELEMENT NAME:________________________

The user element name is used to select the appropriate
record from the User Element f i le  for deletion. The
record is then deleted from the fi le . No other file is
a f f ec t ed .

(1) Delete Subj ect

This function causes the following display .

ENTER SUBJECT NAME :___________________________

The function will delete the specified subj ect from the
subj ect f i le .  If the subj ect is still cross referenced
to any data f i les then the DBA is given a warning
message and the subject is not deleted .

111—15



-~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Cm) Add Element to File

This function causes the following disp lay.

ENTE R THE FOLLOWING INFO RMATION ABOUT THE ELEMENT.

1. ELEMENT NAME________________________
2. PARENT FI LE NAME__________________

3. PARENT DATA BAS E NAME________________

The three input items will all be character strings .
The parent f i le name and the parent data base name are
used by the processor to locate the record which
describes the parent file . Once this record is located
the processor will delete the input element from the
list of f i le  elements.

(n ) Add Subje ct to File

This funct ion causes the following display.

ENTER THE FOLLOWIN G INFORMATION ABOUT ThE SUBJECT .

1. SUBJECT NAME_____________

2. CONTAINING FILE NAME__________

3. CONTAINING DATA BAS E NAME_________

The funct ion performs an operation identical to the
p rior funct ion except that  a subject is added to the
list of subjects instead of an element to the list of
elements .

(o) Delete Elemen t From File

This funct ion causes the following display .

ENTER THE FOLLOWING INFO RMATION ABOUT ThE ELEMENT.

1. ELEMENT NAME_________

2. PARENT FILE NAME____________

3. PARENT DATA BASE NAME____________

II I— 16

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - --- - 

.

~~~~~~


—--.—-.-——--— ~~~~~~~ - ~~~~~~~~~~ .- - -~~~~~~~~~~~~~~~~~~~~ - - . ------- .--. .~~ _ _ _

The function will locate the record containing the
element by using the parent data base name to locate
the appropriate File File and then use the parent file
name to locate the record within the file. The element
is then deleted from the list of f i le elements.

(p) Delete Subject From File

This function causes the following display .

ENTER THE FOLLOWING INFORMATION ABOUT THE SUBJ ECT

1. SUBJECT NAME______________________________
2. CONTAINING FILE NA34~_____________________
3. CONTAINING DATA BASE NAME________________

As in the previous function , the processor will locate
the record in the proper File File describing the f i le
which contains the subject . The subject will then be
deleted from the fi le ’s subj ect list .

- (q) Display Informat ion

This function causes the following selection menu
to be displayed .

SELECT TYPE OF DISPLAY :

1. DISPLAY ALL DATA BASES IN NAD
2. DISPLAY DATA BASE DESCRIPTION
3. DISPLAY ALL FILE S CONTAINED IN DATA BASE
4. DISPLAY FILE DESCRIPTION
5. DISPLAY ALL ELEMENTS CONTAINED IN A FILE
6. DISPLAY ELEMENT DESCRIPTION
7. DISPLAY ALL SUBJECTS REFERENCED BY A FILE
8. DISPLAY ALL FILES CONTAINING ELEMENT
9. DISPLAY ALL FILES PERTAINING TO SUBJECT
10. DISPLAY ALL USER ELEMENTS
11. DISPLAY USER ELEMENT DESCRIPTION
12. TERMINAT E

ENTER YOUR CHOICE:______________________________

111—17

-..- ~~~~~~--——— ~~~~~ . . -

_ _ _ _ _ _ _ _ _ _ _ _ _

Each of these choices allows the DRA to display
particular information about the User MAD. Given all
of these displays the DBA should be able to determine
the current contents of any portion of the User MAD and
thus should be able to determine the need for any
updates and the validity of any changes made . The
function of each of these displays is explained below:

1: Display all Data Bases in NAD

This display lists all Host Data Bases which have
been defined in the User MAD .

2: Display Data Base Description

This display requests a data base name and then
displays all the information contained in the MAD about
that particular data base . The information will include
the data base name , the associated data base management
system, and a text description of the data base.

3: Display All Files Contained in Data Base

This display requests a data base name from the
user. It uses this name to list all files contained in
the data base as defined in the User NAD .

4: Display File Description

This display requests a file name and the parent
data base name to be used in identifying the file . Once
the file is located the fi le name and the text descrip-
tion of the file will be displayed to the User DBA.

5: Display All Elements Contained in File

This display requests a file name and the parent
data base name to be used in identifying the file . Once
the file is located a list of all elements contained in
the file is displayed to the User DEA .

6: Display Element Description

This display requests an element name . The element
name is used to locate the record in the Standard
Element f i le. The information which is then displayed
to the DBA is the element name , the text description ,
the element type and the element unit of measurement .

111—18

7: Display All Subjects Referenced by a File

This display requests a file name and the parent
data base name. This information is used to locate the
file and then the list of all subjects referenced by
the file is displayed to the User DBA .

• 8: Display All Files Containing Element

This disp lay requests an element name. A list is
then displayed showing all files which contain the
element.

9: Display all Files Pertaining to Subject

This display requests a subject name. It then
displays all files which cover the subject.

10: Display All User Elements

This display lists all user elements contained in
the User NAD .

11: Disp lay User Element Description

This display reques ts a user element name . The
name is used to locate the appropriate record in the
User Element file. The processor then displays the
user element name, the standard element name, the value
conversion algorithm identif ier , the user element type ,
and the user element unit of measurement .

12: Terminate

The terminate function will return from the display
selection menu to the User DBA transaction selection
menu.

b. User Data Description Processor Design

The User Data Description Processor consists of a set of
modules each responding to a par t icular User DBA request. The
level of nesting for most of the modules Is two with the exception
being the display modules which are at level three. The two major
functions performed by the processor are maintenance of a data
base (User NAD) and generation of a set of displays . The display
generation and input interface is performed by use o the Termina l
Transparent Display Language (TTDL). The data base Interface is
performed via a set of predefined subroutines which are yet to
be writ ten. These routines can be wri t ten to interface to any

111—19

_ _ _ _ _ _ _ - -- -~~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~

DBMS which is eventually chosen to meet TIIN requirements. A
description of TTDL may be foun d in the User ’s Manual for SSB
Release III . A description of the DBMS interface subroutine may
be found in Appendix E of this report . A thorough description of
the functions and operations of each of the User Data Description
Processor may be found in the TAP System/Subsystem Specifications
or the TAP Program Documentation.

4. HOST DATA DESCRIPTION PROCESSOR

The Host Data Description Processor guides the Host Data Base
Administrator through the process of describing that portion of his par—
t lcular host data base which will be made available to the network. Any
data fi les or data elements not described through this process will not be
available to TIIN analysts at any of the user nodes. The data description
process is accomplished in an interractive session. The processor prompts
the DBA with a selection menu displaying the types of modifications which
may be made and informational displays which may be flashed . The DBA selects
his choice and the processor then prompts for the appropriate input. Once
the change has been accomplished the selection menu is again flashed and
the process is repeated . This sequence is continued unt i l the DBA has
finished making changes and requests that the session be terminated.

a. Host DBA Capabilities

(1) General Description

In constructing the Host NAD the DBA describes two
distinct characteristics of each host data f i le added to the
network. The f i rs t characteristic is the structure of the
dat a f i le as contained in the host data base . This includes
a desc r iption of eac h o f the elemen ts con tained in the f ile
and the specification of an algorithm for converting the
element ’s standard representation into its equivalent host
representation . The second characteristic described by the
DBA is the s t ructure of the response fi le . Each host data
f i le has associated with it a response fi le s tructure . The
structure is defined in the Host NAD . This defini t ion is
used by the Response Normalizer to generate a response file.
The normalized response f i le is then manipulated by TIIN
modules in operations such as response file merger and user
report generation. For more detailed information concerning
the layout of response files or the workings of the Response
Normalizer see the TIIN Response Normalization, Final
Technical Report.

The description of the data f i le characteristics is
performed before the description of the response file
characteristics. The Host DBA need only follow one rule when
defining a data file : Define the data file before defining
any of its elements. The elements may be defined in any

111—20

_ _ _ _ _ _ _ _ _ _ _ _

- . - ~~~ -~~~~~~~~~~~~~~ - ~~~~~~~~

order. Any elements the DBA chooses not to def ine will not
be available to any TIIN analyst. The same holds true for
host dat a files . Any f i le the DBA chooses not to define
will not be available to any TIIN analyst.

The Response Normal Format must be understood by the
Host DBA before he is able to define the response file
cha racteristics. A detailed discussion of the Response
Norma l Format is found in the TIIN Response Normalization,
Final Technical Report. The basic concept , however, is that
a f i le consists of a collection of records. Each record
consists of a set of hierarchically related segments (i .e . ,
a n—ary tree with each segment represented by a node and
each segment ’s parent segment represented by the node’s
immediate ancestor in the tree) . Each segment consists of
a list of di rectly related elements. The Host DBA must
determine the hierarchical relationship between groups of
elements (segments) in the file. Each segment is then
defined and the parent segment as determined by the hier-
archical relationship is specified~ The member elements of
each segment are then specified . When this process is
completed the response file format has been completely de-
fined . In summation , the rules which must be adhered to
when defining a response f i le are as follows .

o Define the structure of the host data
file before defining the structure of
the response file

o Define the response file before defining
any of its segments

o Define the segment before defining any
of its elements

o Define an element as a host data file
elemen t before defining it as a r esponse
file element.

(2) Specif ic Capabilities

When the DBA activates the User Data Description
Processor he will be flashed the following selection menu.

111—21

SELECT TRANSACTION TYPE:

1. DEFINE NAD 2. DEFINE FILE
3. DEFINE RESPONSE FILE SEGMENT 4. DEF INE ELEMENT
5. DEFINE RESPONSE FILE ELEMENT 6. DELETE NAD
7. DELETE FILE 8. DELETE RESPONSE FILE SEGMENT
9. DELETE ELEMENT 10. DELETE RESPONSE FILE ELEMENT
11. MODIFY ELEMENT 12. DISPLAY FILE
13. DISPLAY RESPONSE FILE 14. DISPLAY ELEMENT
15. DISPLAY RESPONSE FILE SEGMENT 16. TERMINATE SESSION

ENTER YOUR CHOICE___________________

Each of these functions will either allow the DBA to modify
the NAD or else display its current contents. When finished
with his changes the DBA selects the “terminate session”
command to terminate the Host Data Description Processor. A
description of each of the available functions follows.

(a) Define NAD

This function creates a Host NAD and thu s is
normally entered only once per Host Data Base. It
creates the Element File and the RNF Des cr ipto r File
which comprise a Host NAB. The function requires no
DBA Input because no data is entered into either f i le .

(b) Define File

This function adds a new host file to the NAD and
thus makes it part of the scope of information of TIIN .
The following prompt is flashed to the DBA.

ENT ER NAME OF FILE :______________________

The f i le name is used to add a record to the Element
File. The f i le is now defined as a host data f i le and
as a response file. Still to be defined are the data
file elements and the response file structure.

111—22

~

— -

~ -~ . - - - . .~~~~~~~~~ ---- --~~~-

(c) Defi ne Response File Segment

This is t he function used to define the hierarchical
relationship between segments in the response f i le . The
following disp lay is flashed to the DBA .

ENTER THE FOLLOWING INFORMATION ABOUT THE SEGMENT.

1. NAME OF FILE CONTAINING SEGMENT________________
2. SEGMENT ID________________
3. PARENT SEGMENT ID_________________

Note that the pa rent segment identif ier is used to
determine the structure of the hierarchical tree
representing the response file. It is also important
to not e that segment identifiers only uniquely det ermine
the segment type within a single host file. No
corre lation is implied between segments with iden ti cal
iden t i f i e r s In d i f f e r e n t host f i les.

(d) Define Element

This funct ion adds an element definition to the
defi ni t ion of a host data f i le . The following display
requesting input is flashed to the DRA .

ENTER ThE FOLLOWING INFORMATION ABOUT THE ELEMENT.

1. NAME OF FILE CONTAINING ELEMEN T_______________
2. TIIN ELEMENT NAME________________
3. HOST ELEMENT NAMF:________________
4. HOST ELEMENT TYPE

5. HOST ELEMENT 1 N 1 ~ OF MEAS UR EMENT___________
6. SPECIAL CH ARA CTERISTIC WO RD

7. T I I N 1() HOST VAL~ F CONVERSION ALGORITHM ID —

The TIIN elemen t n 3r),- is the standard element name or
the name ~~~ h is st d n d a r d throughout the network . Its
s~~~~ t is g l o b a l th roughout all host data bases available
t h rough 11N. A l l host a t t r i bu t e s (i . e . , element name,
element type , element unit of measu rement) are assumed
to he local to the host file containing the elements.
It is the responsibility of the Host DBA to map his
loca l elements to their standard equivalents. The

111—23

— ________

_______________________ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ . .~~~~~ - - ~~~~~~~~~~~~~~

special characteristic word s t ructure varies from one
data base to another. It defines those characteristics
of an element needed by TIIN to generate a query against
it (e.g., in DIAOLS the fact that an element is a
relational periodic element would be maintained since
tl~ese require special query verbs). The TIIN—to—Host
value conversion identifier specifies the value trans-
lation mechanism to be used in converting the standard
element representation into the host element represen-
tation .

(e) Define Response File Element

This function is used after the response file
segments have been defined to add the proper elements
to each segment. Each time an element is added to a
segment , certain characteristics about the element are
defined . The display below is the promp t to the DBA
to enter these characteristics .

ENTER THE FOLLOWING INFORMATION ABOUT THE ELEME NT .

1. NAME OF FILE CONTAINING ELEMENT___________
2. TIIN ELEMENT NAME________________
3. ID OF SEGMENT CONTAINING ELEMENT_____________
4. TIIN ELEMENT TYPE_________________
5. TIIN ELEMENT UNIT OF MEASUREMENT____________
6. HOST TO TIIN VALUE CONVERSION ALGORITHM ID

-

The TIIN element name , type , and unit of measurement are
used because this is a standardized response format
rather than a response format associated with a par-
ticular host data base . The segment identifier is local
to the host file. When merging two or more response
files the merger algorithm must use standard element
names, rather than segment identifiers , to compare
records since only they are global. The Host—to--TIIN
value translation mechanism used in converting host
values into equivalent standard values.

(f) Delete NAD

This function is used to delete an entire Host NAD
and thus an entire Host Data Base from the realm of
consideration of TIIN. Once the Host NAD has been
deleted the Host Data Base is unavailable to any TIIN
analyst.

111—24

- , . - - -

j


~~~~~~
--

~~~~~~~
-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~

—. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(g) Delete File

This fu nction causes a host file to be deleted from
the Host NAD and thus from the realm of knowledge of
TUN. The function requests only the file name from the
DBA.

(h) Delete Response File Segment

This function deletes a single segment descriptor
from the response file descriptor. Before this operation
may be performed all response file elements must be
deleted from the segment.

(i) Delete Element

This function deletes a single element from the host
data file description . The element nay no longer be
queried from this host file.

(j) Delete Response File Element

This function is used to delete an element
description from the response file description. Once
this is performed the element will no longer be returned
from this host file.

(k) Modify Element

This function allows the DBA to modify the descrip—
tion of a Host element without first deleting it from
the NAD and then redefining it.

(1) Display File

This function Is used to display the list of element
descriptions contained in the description of a host data
file. The DBA is asked to input the file name of
interest.

(m) Display Resonse File

This function displays the set of segment descriptors
which are currently defined for a particular response
file descriptor. The analyst may use this display to
determine the current hierarchical organization of the
response file. The only input required by the function
is the response file name .

111—25

~ --. --.-~~~~~~~~~-~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~~~~ _ _

(n) Display Element

This function requires that the DBA specify the
host element name and the parent file name. The
processor then displays all information contained in
the NAD about the element .

(o) Display Response File Segment

The function displays all elements defined as part
of a segment. The DBA must input the file name and the
segment identifier. This function when combined with
the “Display Response File” function presents a complete
picture of the structure of the response file to the
DBA.

(p) Terminate Session

The function is used to terminate the interactive
session with the Host Data Description Processor.

b. Host Data Description Processor Design

The Host Data Description Processor consists of a set of
modules , each performing a particular function as defined in the
DBA function selection menu. The processor performs the Host NAD
update functions by means of a set of predefined subroutines which
can be written to interface with any DBMS chosen for use by TIIN.
A description of these routines may be found in Appendix E of this
report. The processor performs its display function by means of
TTDL calls. These are described in the User’s Manual for SSB
Release III. A detailed description of the processors modules
may be found in both the System/Subsystem Specifications for TAP
and the Program Documentation for TAP .

5. FUTURE DEVELOPMENT

a. Interactive Capability

The Analyst Aids Processor, the User Data Description
Processor and the Host Data Description Processor are all inter-
active processors driven primarily by user menu selection. This
works well for an inexperienced user who needs a list of choices
to perform his functions but as his experience level increases the
continual redisplay of a menu becomes tedious. These interactive
processors should adapt to this situation and only display lists
of choices when requested. They should also provide to the
experienced user the capability to enter a whole string of
parameters at once instead of requiring him to wait for the prompt
for each. The philosophy is to only provide the level of support

111—26

.-——-.--. ~~~~~~~~~~~~~~~~ - ‘r -fl -S—-.-. . , . ~~~~~~~~

required by the analyst. This allows the experienced analyst to
proceed through the process almost as quickly as he can enter
data while providing the Inexperienced user with as much support
as required .

b. Automatic Verification of User DBA Updates

Each time the User DBA defines a new host data base , data
f ile , or data element as being available at his node he is assum-
ing it is already defined within the appropriate Host NAD. The
User Data Description Processor should verify the validity of
that assumption before allowing the change in the User NAD to be
completed . This would require the processor to have the capabil—
ity of communicating with all nodes containing a host NAD.

c. Automatic Notif icat ion of Host NAD Updates

A mechanism for the timely dissemination of Host NAD update
information to each affected User NAB should be developed . Sev-
eral known alternatives presently exist for implementing this
improvement. One alternative is for each host to periodically
broadcast to all User NADs standard descriptions of any updates
which have occurred since the last broadcast. Those User NADs
which are affected by the change may then be updated . Another
al ternative Is that instead of broadcasting the changes , only the
fact that a change has occurred is made known. All User NADs
which may be affected by the change may then request all infor-
mation about the update. A third alternative is that all changes
to Host NADs be logged and periodically the User NADs request
copies of the logs for the Host NADs which affect them.

111—27

- —~~~~~~~~~~~~~~~~
-
~~-- -~ - ~=-~~_-*~ . -

SECTION IV

QUERY LANGUAGE PROCESSOR

1. INTRODUCTION

The Query Language Processor (QLP) Is the TTIN/TAP module respons—
ible for translating the Transparency Examples Language (TEL) into the Data
Request Intermediate Format (DRIF). TEL is the TIIN user query language.
DRIF is the internal query format before host file selection or user element
name t ranslat ion have taken p lace. This section describes both the TEL and
the DRIF query formats before describing the QLP.

2. TRANSPARENCY EXAMPLES LANGUAGE

The Transparency Examples Language (TEL) is an example of a
simple user query language. TEL is used by the Intelligence analyst to
submit queries to TIIN. It has been designed to provide access to the
currently designed features of TIIN as well as to provide a base that may
be readily added to. As features such as mul t i f i le queries and user speci-
fication of partial query merging operations ar e developed the TEL language
can be expanded to inc lude them . It is currently aimed at querying the
DIAOLS system. It should be noted by the reader that TEL is a sample
query language only. It has been designed to demonstrate the feasibility
of a common query language. It has been used in TAP to verify the logic of
the Query Language Processor. In a real—tim e TIIN system any other suit-
able query language or combination of languages could be used.

a. Language Syntax

The syntax description of TEL appears in Figure TV—i. Each
TFL query consists of up to four different selection phrases.
The host selection phrase and the file selection phrase are
or~tional to any query and both may be omitted . These two
phrases select the host computer and the specific file to which
the query is directed . If either phrase has not been included
w i t hin the query the TIIN system will select the appropriate
~oat or file at which to direct this query . The record selection
phrase is required and allows the user to specify the record

~-elect ion cri teria to be used in selecting qualifying target
records . The output selection phrase is also required . It
~pecifies which fields within each record are to be displayed
.u output .

(1) File Select ~.on Phrase

A f i le selection p hrase is necessary If a host f i l e is
not uniquely determined by the element names used in the
analyst query. A file selection phrase consists of the word

IV- 1

- - - - - — - --- -~ -~ -~~~ . —.- ~~

<query> tHOST <host—name) ;)
J E ILES < f i l e — l i s t > ;)
RETR I EV E <ael ect—ex p r’ ;
SHOW <el em ent—l is t> ;
IRESP ONS E S < max—r e sponse— siz e>) ;

<host—name> s t rin g

‘file—lis t> < f i l e name> I. ‘file— h a t>)

<fi le—na me> : : — st r i n g

<element—lis t ’ ‘elem ent—name> ~, <el ement—list >)

<element —name> : <s td— el—i d> I <h ost—e l— id> I <uaer~el—id

<st d — e l — i d > :: string

<h ost —el — id ’ /a t r t ng /

.ueer—el— id> @strin g (~

<max—respon se—size> :: number

<aelect—exp r> ::• <snd—expr > b R <select—expr >)

cand—expr> <with-expr > (ANI~ ‘and — expr> I

<vith—expr> ‘not—expr ’ (WITH <with—expr >)

<not—expr> : : (NOTI <paren— expr >

< paren—expr> (.s~hect—exp r>) -cr iter ia ’

<crit eria , :: <expr> ‘relat ional—np > <expr>
(<I~ cation’ <geog rap bic—op> <geographic>

<expr :~ (<quantifier>) <element— name>
(< element_ value >

<element—va lue ’ :: strlng ’ I number

<quantifier> :: EVflY I SOME NO

< relational—op > :— LT LE EQ 1 CE CT I NE CONTAINS

<g.ograph ic—Op > : : IN SID E I OUTSIDE I ALONC

‘location> ‘la titude— el—i d> < longi tude—el — id>

< lati tude—el— id> : ‘element—name >

‘longitude—el- id ’ <element—name >

<geo graphic > :: <circl e> I <route> I <polygon >

<circle > CIRCLE (radius . < coordinates >)

<route > ROI TE (Count , rad ius . ‘coordinate~lis t>)

<polygon > POLYCON (count . <coordinate—list >)

‘coor dinate—l is t> :: <coordinates > F , < coordinate—list >)

< coord inates > ::• latitude longitude

Figure IV—l. Syntax Description of TAP Coimnon Query
Language

IV-2

“FILES” followed by one or more file names separated by
commas and terminated by a semicolon. For exa mple :

FILES B103 , TACK78;

The f i l e selection phrase af f e c~ts al l queries ente red
by the analyst until the next file selection phrase is
entered .

To de—select the files the analyst may enter the word
“ALL” in place of a list of file names in a file selection
phrase, as follows :

FILES ALL ;

File de—selection has the effect of allowing fil e
selection to be imp l i c i t ly det ermined by the TITN system
based on the element names which appear in queries. This
effect applies to all queries entered subsequent to the
file de—selection phrase until the next file selection phrase
is entered.

(2) Host Selection Phrase

For the prototype TIIN the analyst is rest r icted to one
host DBMS. The analyst may exp l ic i tly select which host is
to be queried by entering the host selection phrase consist-
ing of the word “HOST” followed by the host name and terinin—
ated by a semicolon . For example:

HOST DIAOLS ;

The host selection phrase a f f e c t s a l l queries entered
by the analyst until the next host selection phrase is
entered . The host selection phrase is necessary if the
analyst di rect ly uses host element names in the query instead
of TIIN network standard element names. Also , the host
selection phrase is necessary if the host is not uniquel y
determined by the element names used in the analyst query .

To de—select the host the analyst may enter the word
“ALL” in place of a host name in a host selection phrase , as
follows :

HOST ALL;

Host de—selection has the effect of allowing host sel-
ection to he implicitly determined by the TIIN system based
on the element names which appear in queries. This effect

IV-3

applies to all queries entered subsequent to the host de—
selection phrase until the next host selection phrase is
entered .

(3) Record Selection Phrase

The record selection phrase begins with the keyword
RETRIEVE and is followed by a complex boolean combination
of element criteria. The element criteria may be combined
using parentheses , the boolean operators NOT , AND , OR , and
the special operator WITH which is a special version of the
AND operator including implicit relationships due to the
hierarchical dependencies between host data elements. In
a boolean expression the precedence of the operators from
highest to lowest is NOT, WITH, AND , OR.

Element criteria may be an arithmetic comparison, a
text scan , or a geographic inclusion test. A basic arithme-
tic comparison consists of an element name , an arithmetic
comparison (EQ , NE , LT , GE, CT) and a constant. A basic
text scan consists of an element name, or substring operator
(CONTAINS) , and a constant . A geographic inclusion test
consists of an element pair specifying a latitude element
and a longitude element , a geographic operator (IN SIDE , OUT-
SIDE , ALONG) , and a geographic region specifier (CIRCLE ,
ROUTE, POLYGON) with its associated parameters.

(a) Element Names

The analyst has the option of using element names
from the user frame of reference, the network frame
of reference, or the host frame of reference. The
syntax for network standard element names is as follows:

o First character must be alphabetic
(A through Z)

o Subsequent characters must be alphabetic
(A through Z) numeric (0 through 9),
or dash (—)

o The element name must not coincide with
any reserved word in the TIIN query
language

o The maximum number of characters is
255.

EXAMPLES: MISSION—DATE, A000l

IV-4

—~ ~~~~~~~~~~~~~~~~ —----~~~~~~~~~ — ~~~~~ -~~~~~~~~~ - --- -- - --~~~~~~~~~~~~ - ----- -~~~~~~~~~~~

The syntax for host element names is identical to
that required by the specific host , with only one
addi t ional rule. Specifically, a sl ash (I) must appear
immedia te ly befo r e and a f t er the character string
which denotes the host name. The slashes serve only to
delimit the host element name and are not part of the
element name when the query is presented to the host
DBMS . A double—slash may be used to represent a
single slash embedded in a host element name.

EXAMPLES: /MTSSION.DATE / , /0001/, /S/,/360/

The syntax for user element names Is unrestricted ,
with an at—sign (@) appearing immediately before and
after the character string which denotes the user ele-
ment name. The at—si gns serve only as delimiters and
are not part of the user element name itself. A double
at— sign may be used to represent a single at—si gn
embedded in a user element name.

These naming conventions app ly primarily in the
context of a query entered via the TAP common query
language.

(b) Element Values

The types of constants , numeric and character
st r ings , may appea r In qu er ies en te red via the TAP
common query language. The syntax for a character string
is as follows.

o The maximum number of character is
255.

o The st ring must conforn to the restric-
tions which appl y at the host

o A quote mark (‘) must appear immedi-
ately befo r e and a f t er the cha racte r
string . The quote marks serve onl y to
delimit the string and are replaced at
the host by the appropriate punctuation .
Double quote marks may also be used
to represent a single quote mark em-
bedded in the character string.

EXAMPLES : ‘US ’
‘12/17/79’
‘DIDN ”T’

IV—5

The syntax for a numeric constant is as follows :

o The maximum number of characters is
255.

o The initial character must be numeric
(0 through 9)

o The numeric constant is delimited by a
blank or other special character

o The string must conform to the reatric—
tions for character strings or numeric
constants which apply at the host.

EXAMPLES: 500.3
12/17/79
18:01

(4) Output Selection Phrase

The output selection phra8e consists of the keyword
SHOW followed by a list of element names to be displayed .
Each element name selects one filed from each of the output
records to be displayed . The names may be either TIIN
standard names , user names or host names as specified in
the element name section above. Only one output selection
phrase per query is allowed. If SHOW ALL; is specified ,
all fields will be displayed .

(5) Response Size Phrase

This optional phrase consists of the keyword RESPONSES
followed by a number . The phrase specifies the maximum
number of query responses which the user wants returned to
his site.

b. Sample Queries

Suppose a user wishes to query the “COUNTRIES” f i le for the
capitols and populations of all countries having an Armed Forces
strength of greater than 50, 000 men and located within a circle
of 2000 miles from Saigon. The query would look like the follow-
ing:

FILES COUNTRIES ;

RETRIEVE MILITARY-STRENG TH CT 50000
AND COUNTRY—LOCATION INSIDE CIRCLE (2000, 1000N
1070000E);

SHOW CAPITOL , POPULATION;

IV-6

_ _ _ _ _ _ _ _ _ _ _ _ _ _

-
~

— --
~~

_ -
~

_ _

~

_ - _ _

~~

- - _ _ _ ----—-- -
_

~~

-—---

~~~~

-

~~ 

_ - ._-

~~~

- _

~

--—

~~~~

-_— _ __ -- .-- - -—-

~

_ - - -

Another poss ib i l i ty  is that  we wish to interrogate host “Al”
to determine which records in the “CITIES” file are not within
3000 miles of Moscow nor within 3000 miles of Washington . We wish
to list all fields of each record meeting these qualifications.

HOST Al;

FILE CITIES;

RETRIEVE NOT (CITY—LOCATION INSIDE CIRCLE (3000 , 560000N
380000E) OR CITY-LOCATION INSIDE CIRCLE (3000 , 390000N
770000w)) ;

SHOW ALL ;

In this example the record selection phrase could be rewrit-
ten as:

RETRIEVE CITY—LOCATION OUTSIDE CIRCLE (3000 , 560000N 380000E)
AND CITY—LOCATION OUTSIDE CIRCLE (3000 , 390000N 770000W);

3. DATA REQUEST INTERMEDIATE FORMAT

a. Functional Design

The DRIF (Data Request Intermediate Format) is the data
st ru ctu re used fo r passi ng qu er ies f r om the QLP (Qu ery Language
Processor) to the User QIP (Query Intermediate Processor). A
single DRIF is produced by the QLP for each analyst query .

The DRIF is designed to be general and capable of handling a
superset of all features appearing in typical intelligence query
languages. To allow this, the DRIF design is open—ended and can
easily assimilate  add i t ions .  The verbs and operators in DRIF are
system operators , allowing the addition of new operators without
any changes to the DRIF structure.

(1) DRIF Structure

The DRIF consists of two kinds of information. General
information about the query , such as user identifier , query
identif ier , and other fixed informa t ion are stored in the
fixed portion of DRIF. The query itself is stored in reverse
Polish notation in the conditional table in the variable
l ength por t ion of DRIF .

IV-7 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


(2) Data Sources

The information contained in the DRIF is derived from
two sources : the user/analyst and the TIIN system. System
provided information includes the user node name, the origi—
nating terminal identifier, and the time the query originated.
Analyst—provided information includes data selection criteria ,
a list of data names for which data values are wanted , and
the maximum number of responses wanted .

In order to account for all queries, the TIIN system
will assign a unique identification to each query. The
identification will consist of the user node at which the
query originated , the user ID, and the time the query was
originated.

The analyst may also provide information to locate the
data. The analyst is permitted to specify a host data base
and , optionally , the name of a file located at the data
base. When the name of the data base is not specified the
TIIN system will try to satisfy the query from all the data
bases on the network. When the data base name is specified
and the file name is not , the TIIN system will try to satisfy
the query from the data located at the specified data base.

(3) Language Independence

The structure of the DRIF is independent of the language
in which the query was originally stated. The syntax of the
original language is translated into the DRIF syntax , and all
functional names are translated into standard TIIN function
codes at the time the DRIF is generated. Consequently, in
order to interpret a DRIF, TIIN does not need to know any-
thing about the source language of the query .

(4) Data Base Dependence

The only parts of the DRIF not in the standard TIIN
system frame of reference are the element names and element
values. The module generating the DRIF is familiar with the
query language it is translating, but is not familiar with
the elements , since data elements are not part of the
language. Different users in the system may use the same
query language but different sets of elements and different
names for the same elements. The QNF Generator , the module
that transforms the DRIF into the QNF , has access to element
name and value translation tables in the NAD (Network Access
Directory) and therefore is the logical module to translate
names and values from the user to the TIIN standard frame of
reference.

IV—8

The element names appearing in the DRIF can he divided
into three categories : user names, TITN standard names, and
host names. User names are names that are known at the
local node and that can be translated into TIIN standard
names by using translation tables in the NAD . Host names
are names local to the host DBMS and therefore not subject
to the translation process. When an analyst specifies any
host names in his query , he is required to also specify the
host data base.

b. DRIF Layout

The DRIF can be divided into two sections: the header and
the conditional table. The header contains information which
TIIN uses to process the user ’s data request. The conditiclnal
tab le contains the TIIN translation of the user ’s data request.

(1) Header

The structure of the DRIF and QNF is shc in Figure
IV—2. It should be noted that some of the it~ -, in the
header are only determined once the DRIF has been translated
into QNF by the User QIP. The following is a description
of the header items. The only item in this list which is
generated directly by the QLP is the maximum number of
responses.

Word 0 USER NODE ID is the network identification of the
node from which the query originated .

Word 1 ORIGINATING USER IDENTIFIER is the TIIN identifi-
cation of the user/analyst who initiated the data
request. This ID is unique within a node.

Words TIME QUERY ORIGINATED is the date and time that the
2—3 DRIF for the data request was constructed . Words

0—3 together constitute a unique identifier for
the user request (DRIF).

Word 4 QNF IDENTIFIER is used to differentiate between
the different QNP ’s orig ina t i n g f r om t he same DRIF.

Words FLAG WORDS are s ta tus words used to indicate the
5—6 operational status of the message headed by this

block.

Word 7 ORIGINATING TERMINAL IDENTIFIER is the TIIN ident-
ification of the terminal which initiated con-
struction of the data request .

IV- 9

____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _
_

- -~~~~~~~~~~~~~
-
~~~~ _



WORD _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 USER NODE IDENTIFIER

3. ORIGINATING USER IDENTIFIER

2 TIME QUERY ORIGINATED

3

4 QNF IDENTIFIER

5 FLAG WORDS

6 
____________________________________________________________

7 ORIGINATING TERMINAL IDENTIFIER

8 SECURITY CLASSIFI CATION

9 MAX NUMBER OF RESPONSES

10 HOST DATA BASE IDENTIFIER

11 FORMAT CODE

12 COUNT OF RETURNEES (=R)

13 RETU RNEES (1 WORD EACH)

CONDITIONAL TABLE LENGTH
13+R (BYTE COUNT)

14+R CONDITIONAL TABLE ENTRY 1

CONDITIONAL

: 
TABLE

CONDITIONAL TABLE ENTRY H

Figure IV—2. Layout of DRIF and QNI

IV—lO

L _________—.

~~~~~~~~

-- -

~

-.—

~~

—.

~

—---

~

_

~~~~~

------

~

----

~~

--



—- _-— -----
~~~~~

—

Word 8 SECURITY CLASSIFICATION is a one—word code indi-
cating the classification of the user/analyst
originating the data request.

Word 9 MAX NUMBER OF RESPONSES is the maximum number of
records the user/analyst wants to retrieve.

Word 10 HOST DATA BASE IDENTIFIER is the network identif i-
cation of the host DBMS which will process the
user/analyst query. A blank value in this field in
the DRIF received from the user language processor
(TAP) will be replaced with a valid host identifi-
cation by the host selector module.

Word 11 FORMAT CODE is the TITN identification for the user
specified response format.

Word 12 COUNT OF RETURNEES is the number of users to re-
ceive responses.

WORDS RETURNEES is a list of TIIN one word user identi—
l3—(l2+R) fiers of users , other than the orIginal user , who

are to receive responses.

(2) Conditional Table

The entries in the conditional table are variable length
and have been entered in the order of Reverse Polish Notation
by the ALP. Each entry includes a byte count , a type code
and either a string of bytes or a keyword identifier depending
upon the entry (See Figure TV-3).

(a) Entry Byte Count -

This is a one byte count of the number of bytes
comprising this entry. The count includes this byte.
The minimum entry byte count is three.

(b) Entry Type

This is a one byte code which specifies the type of
the entry. The current list of type codes is:

I Verb
2 Operator

-

- 3 User Element Name
4 Standard Element Name
5 Host Element Name
6 = User Elemen t Value
7 St~~:dard Element Value

-I’. - 11

_ _ _ ~~~

‘kEN— s preeeion : : — < isulti— db-query
compl ete—QNF— ident i f ier mu l t i— db—query

‘~~~1ti— db— qu ery > : : — sin~le— db—q uery>
<si ng le—d b—quer ~o (mul t i—d b—query >
response—operator>

< .in$le—db—query phra se—li st>
<ph ras e—li s t> < file—list’

‘file—list> f ile—specification
file— specif ication < file—list >

tesponse—op.rator> : :— MERGE JOIN DIFI <EREN cE

‘phrase—lis t> : : — <verb—phra8e >
<phrase _ list> <verb —phrase>

<verb— phrase> : :— s elect—ph ras e>
<pri nt—phrase >

‘se lect—phrase > : :— <select—expr> SELECT

‘selec t—expr> <criteria>
<selec t—ex pr> <unary—log ical’
<eelect—expr > <select—expr> <b inary _ log ical >

(cri teria> <geograp hic—expr>
re lational—expr>

cgeogr sph ic—exp> : :— expression> <geographic> <geograph ic—op>

(geographic> ::— <c ircle>
<route>
<pol ygon>

geographic-op> : INSIDE OUTSIDE

<circle> ::— radius <coord> CIRCLE

<route> coord—count half—w idth <node—list > ROUTE

< polygon> :— coord—count (node—list > POLYGON

<c oord— liet> :: <coord’
(coord’ < coord _ li st >

<coord> :— latitude longitude

rel stional— expr> :— (expression> expreseion> <relat ional_op>

<exp r eseion> element—na xe
eløaent—vslue
el~,eent-naae (quantifier>

-crelational—o p> : : — GE CT LE Li I EQ I NE I HAS HASNOT

<quantifier> :— ALt NO

<binary—logical > :— AND OR WITH

unary—l ogical :: NOT

< print—ph rase > eleeient— list> PRINT

elaxent— list> element—name
ele,u,ent—nsme (ele ment_ list>

Figure IV—3. Syntax Descrip tion of the Reverse Polish
Notation (RPN) Used in the Conditional Table
of the QNF .

IV—l2

_ _ ~~ .--- - .

7 = St anda rd Element Value
8 Host Element Va lue
9 = File Name
10 = Response Operator
11 = Complete QNF Identifier
12 = Host Name
13 = Maximum Number of Target Record s to be Returned

(d) String

This field normally contains a variable length
character string representing a name or value . The only
two exceptions to this rule are when the entry type
equals one or zero. If the entry type equals zero
the entry is a verb and the string field contains a
single byte integer verb code (0 = SELECT , 1 = PRINT).
If the entry type is one the entry is an operator and
the integer c~’de representing it is found in Figure IV—4.

1 Verbs

In the TIIN prototype the verb code different-
iates between the select statement and the print
statement with only one select and one print code
per query . In later stages of development the
verb codes may include data manipulation verbs ,
different kinds of retrieval and output verbs , as
well as mixed sequences of verb phrases.

a SELECT (Verb Code: 1)

SELECT is a verb associated with the re-
verse Polish expression which qualifies the
records to be extracted from the data base.
The operators associated with the SELECT verb
are described below .

b PRINT (Verb Code: 2)

The expression associated with PRINT
specifies the elements to be extracted from
the data base as a result of this query . Ir.
the TIIN prototype , the expression associated
with PRINT is a list of element naries, and
cannot contain any operators.

IV—l3

L . . . ~~

Operator/Functions TIIN Number of
Standard
Code Operands

Logical

AND 1 2
OR 2 2

NOT 3 1
WITH 4 2

Relational

CT (greater then) 10 2
CE (greater than or equal) 11 2

LT (less than) 12 2
LE (less than or equal) 13 2
EQ (equal) 14 2
HAS 15 2
HASNOT 16 2

INSIDE 17 2
OUTSIDE 18 2

19 2

Geographic

CIRCLE 20 3

ROUTE 21 variable (mm . 6)

POLYGON 22 variable (mm . 7)

Quantifiers

ALL 30 1
NO 31 1

Response

MERGE 40 2

JOIN 41 2

DIFFERENCE 42 2

Figure IV—4 . Standard Operator Codes in DRIF

IV— 14

~

-- ~~~~~~~~~~~~~ ~~~-. -.- ~~~~~~~~~~-- ~~~~~..

2 Operators Used with the SELECT Verb

The operators defined for the TIIN prototype ,
and their associated TIIN standard operator codes
are shown in Figure IV—4. These codes are used in
the DRIF.

a Logical Operators

The logical operators , AND , OR and WITH
must each have two operands. The logical
operator NOT must have one operand. All oper-
ands associated with logical operators must
generate boolean values when evaluated . An
operand of a logical operator must therefore
be an expression formed from either another
logical operator , a relational operator , a
geographic operator , or any other operator re—
suiting in a boolean value.

The AND and WITH operators have the same
meaning unless a hierarchy of record segments
is involved . In a hierarchy where several
subordinate segments have the same parent
segment, the AND operator indicates the criter-
ia may be satisfied in different subordinate
segments under the common parent , whereas the
WITH operator indicates the criteria must be
satisfied in the same subordinate segment.

b Relational Operators

Seven relational operators (GT, GE, LT,
LE , EQ, NE, HAS , HASNOT) can be specified in
the QNF . Each relationa l operator must have
two operands. If one operand is an element
name and the other one is a value or an ex-
pression , the element name must be specified
as the first operand (i.e., S CT A would be
converted to A LT 5). The first six operands
specify the standard six relationships. The
operator HAS is used to select element values
which include the specified partial value.
HASNOT sel ect s those values which do not
include the specified partial value.

c CI R CLE

Opernads : Radius , latitude , longitude

IV—15

The CIRCLE operator tests whether the
unit described in the current record in the
data base is inside or outside of a specified
circle , and returns a boolean result. The
operator must always have three operands. The
first operand specifies the radius of the
circle in nautical miles. The second and
third argumen ts specif y the la t i tude and
longitude of the center of the circle. The
latitude and longitude are specified in the
following format : DDDMMSSg , where DDD are
degrees, MM are minutes , SS are seconds, and
g specifies E, W, N or S. All units inside
the circle will be retained , unless the func-
tion is qualified by a NOT operator in order
to retain all units outside the circle.

d ROUT E

Operands: Number of nodes , half—width ,
latitude longitude

The ROUTE operator tests whether a given
location is within a specified route. A route
is defined by specifying the half—width dis-
tance and the coordinates of each node def in—
ing the route. The ROUTE operator contains
six operand s for the simplest route consists
of two nodes, and another two operands for
each additional node within the route. The
first operand indicates the number of points
in the specified route. This number must be
greater or equal to two . The second operand
contains a number of equal to the half—width
of the route, in nautical miles. The remain-
ing operands are pairs of numbers, the first
number of each pair specifying the latitude ,
and the second number specifying the longitude
of a node. The number of such pairs must be
equal to the number of nodes specified in the
first operand . All units inside the route
will be retained , unless the function is
qualified by a NOT operator in order to re—
tam all units outside the route.

a POLYGON

Operands: Number of nodes, latitude ,
longitude . .

IV— 16

~~~~~~~~ -- - -~~~ . —t -~~~~!



r

The POLYGON op erator tests whether a
given set of coordinates specifies a point
inside or outside a polygon . The polygon is
defined by providing a list of at least three
coordinate points. The points must be listed
consecutively clockwise or counterclockwise.
The Polygon operator requires at least seven
operands. The first operand specifies the
total number of nodes comprising the polygon ,
at least three. The remaining operands are
pairs of latitudes and longitudes specifying
the nodes. The number of latitude and longi-
tude pairs must equal the number of nodes
specifi ed in the f i r s t  operand . All units in-
side the polygon will be retained , unless the
function is qualified by a NOT operator in
order to retain all units outside the polygon.

f Quantifiers

Quantifiers are a general class of
operators app lied to repeating elements. When
referring to a repeating element name in a
query, an analyst actually refers to all the
values for that element in one record . Quanti-
fiers allow a user to refer to specific
value(s) within a record , such as FIRST, LAST ,
NO , ALL. The initial set of TTIN standard
ope rato r s allows only AlL and NO.

£ Re spo nse Operato r s

Response operators are binary functions
specifying the rules for combining multiple
responses to a query .

Currently , three such operators are
proposed , MERC, JOIN , and DIFFERENCE , corres-
ponding roughl y to the OR , AND, and AND NOT
logical operators , respectively.

The MERGE operator operates on identical
parallel queries and merges identically for-
matted files into a single file, deleting
duplicate entries.

The JOIN operator matches records from
the two input files on a one—to—one basis ,
forming composite records. The records are
matched by comparing the values of a specified

IV—17



set of elements appearing in both files. Re-
cords lacking a match in the other file are
discarded.

The DIFFERENCE operator matches records
from two files in the same manner as the JOIN
operator. Only records existing in the first
f ile , but having no corresponding matches in
the second file , are kept.

4. QLP CAPABILITIES

The QLP performs two basic functions. Its primary duty is to
translate a TEL query into DRIF. This operation basically involves the map-
ping of TEL operators and TEL verbs into their DRIF equivalents, label ing
operand type as either User, TIIN Standard or Host, and rearranging the
order of the query so as to achieve reverse Polish ordering. The second
function performed is that of aiding the analyst in entering the query . This
capability is currently limited in its sophistication but may be enhanced In
the future. These two basic functions have divided the QLP into two funct-
ional modules. That which interfaces with the analyst and aids him in
query submission is called the Interface Module. That which translates the
query from TEL into DRIF is called the Translator Module.

a. Interface Module

Initially the Interface Module will be limited in its capa—
bilities. These functions will be immediately implemented.

o Display the basic query submission format
to the analyst including the usage of each
of the basic phrases. This will not be a
display of the entire syntax of TEL.

o Accept a TEL query from the user and activate
the translator module to perform TEL to DRIF
Translation .

o Terminate an analyst ’s query session at his
conmland.

The f i r s t  two funct ions may be repeated as many times as the
analyst requests while the third viii terminate a session. The
improvements to the Interface Module which are perceived at the
present inc lude :

o Query Storage Capability — Allows the
analyst to save his query in a file so
that he may later retrieve it.

IV—18

t ..- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-


o Query Retrieval Capability — This allows
the analyst to retrieve any query saved as
a result of a save operation and submit it
to the system. Note that the query will
be translated each time it is submi tted
because the source is saved , not the DRIF
representation.

o Query Deletion Capability — This allows an
analyst to delete any query from the save
file.

o Edit Capability — This allows the analyst to
modify existing queries instead of having to
reenter the query every time a change is
needed.

o Syntax Description of Query Language — This
feature would be an expansion of the immediately
implemented display function . It would describe
in more detail the query language syntax and ,
in particular , provide a detailed description
of each of the retrieva l phrase operators .

Additior.al analyst aid functions may be added as the need
for them arises, The Interface nodule -is structured so as to
easily accommodate the addition of these functions.

b. Translator Module

The Translator Module is responsible for receiving a query
from the Interface Module, translating it into its DRIF repre-
sentation, flagging any errors it finds and , if no fatal errors
are found, passing the DRIF onto the Host QIP. As was the case
with the Interface Module, the Translator Module has been designed
with flexibility in mind , especially in the area of future
additions and modification . Some of the key points in the design
include ;

o Table Driven Algorithms — This allows for the
simple addition or deletion of keywords of the
language which will be classified as to type
(i.e., verb , operator , quantifier , geographic,
etc.) and added to the keyword table. This key-
word table is the driving force behind the trans-
lator.

IV— 19

-~~~~~— -~~

~1
o Top-Down Modularized Design — This will allow for

operators to easily be implemented. Once they
are added to the keyword table, a module will
be written to correctly parse that particular
operator. The interface to call the new module
will already be in existence. This idea applies
in reverse for deletion of an operator. In this
case the module to parse that particular operator
will be deleted along with the entry in the key-
word table.

o Operator Precedence Grammar Within Retrieval
Phrase — The set of TEL operators have been
assigned precedence values which are specified
in the keyword table entry for each operator.
This allows the use of simple existing expression
parsing techniques. As an operator is added to
the language it will be assigned an appropriate
precedence value and entered into the keyword
table. The module for handling the precedence
relationships will already be in existence.

o Diagnostics — The translator will provide
diagnostics to the user which will aid him in
correcting his query . Initially these diagnostics
will be limited since the major objective of this
task is a functioning translator. The interface
is there, however, for providing a much more
complete set of diagnostics in the future.

In summary, the primary design goal has been a functioning
translator for the TIIN system. This goal has been met. Also
the hooks for easy expansion should be present. It is felt that
as time passes the TEL language will be modified . For this
reason the translator has been designed to be easily modified .

5. QLP DESIGN

a. Interface Module

The Interface Module is very simple in design. It will use
TTDL for the terminal interface. As an analysts activites the
system the User Interface Module will call TTDL to display a
select menu. This menu will allow the analyst to choose from the
following sets of commands.

o DISPLAY QUERY FORMAT

o ENTER QUERY

o TERMINATE SESSION

IV-20

_ _ _ —— -—.-.
~~

- -S-- - -~~~~t~~ • -~~ -- --- - -
~~~~~~



Once the user has made a selection, TTDL will pass the Se—
lection numberto the User Interface Module. This number will be
used to select the appropriate submodule which will handle the
request. New functions may be easily added by adding an entry to
ti.. selec tion menu and adding the submodule to perform the function .

b. Translator Module

The proper functioning of the Translator Module is necessary
to get the prototype TIIN system up and running. The module will
primarily be driven by the keyword table. Each dedicated symbol
and keyword is contained in this table so that the authenticity
of any given symbol as a keyword may be quickly checked. A table
entry contains the DRIF representation of the symbol making trans-
lation a matter of table look up. A type code identifying the
class of symbol is also contained in each entry. This makes it
simple to select the proper submodule to handle each type of key-
word. Also, since the operators have been grouped according to
type, fewer modules are needed to handle them. One module will
handle multiple operators of any given type. When new operators
are added to the language, they will often be of an existing
type. In this case all that is necessary for their inclusion in
the language is an entry to the keyword table. If the operator
is of a new type in addition to its inclusion in the keyword table,
a new module will have to be added to handle this new type.

The remaining three data structures used to control transla—
tion are the operator stack, the operand stack and the legal next
symbol word. The operator stack is used in conjunction with the
operator precedence value in the keyword table to determine the
proper location in the DRIF polish for each operator. As each
new operator is scanned from the TEL query, its precedence is
compared with the precedence of the operator at the top of the
stack. If the precedence of the newly scanned operator is less
than or equal to that of the stack operator the stack operator is
popped , checked for correctness of operands and added to the DRIF.
The routine to check for correctness is determined by the class
code obtained from the keyword table. The new operator will be
repeated until the new operator ’s precedence is greater than that
of the top of the stack. At this time it would be pushed Onto
the stack and processing will continue with another scan of the
query text.

When the operator was popped from the stack and before it was
added to the DRIF , a check was made to see if it was operating on
legal operands. This check is made by popping the appropriate
number of operands from the operand stack and checking their type.
If this is a relational operator the type of value is marked by
noting the type of the associated name. Finally a resultant
boolean operand is pushed onto the operand stack and operator
processing is continued .

IV—2~.



The final data structure used by the Translator is the legal
next symbol word . This is a single 16—bit word with each bit
representing a class of symbols. Upon entry each symbol handling
module will check this word to see if it has the appropriate class
bit set. If it does, processing continues. If it doesn ’t, this
is an illegal class of symbol for this particular location in the
query and an error is flagged to the analyst . Just before the
symbol handling routine returns to the main line parser it will
set the appropriate bits in the legal next symbol word . These
will be used by the next symbol handling routine to determine
whether its set of symbols is legal.

(1) Keyword Table Data Structure

The keyword table, shown in Figure TV—S . is the main
driving data structure behind the translation module. It
contains the information necessary to identify whether or not
any particular string is a keyword. If the string is a key-
word its DRIF representation is contained in the table thus
making the translation process table driven. Also , each
TEL operator is assigned a precedence value which will be
used in parsing an expression. If the precedence value is
0, the keyword is not an operator. Finally, the table
assigns an index value to each keyword . This index will
be used to select a semantic routine to handle the keyword .
The most significant hexadecimal digit of the index repre—
sents the class of keywords which have been assigned as
follows:

DIGIT CLASS KEYWORDS

1 Spec ials (,),;,EOF
2 Unary Logical Operators NOT
3 Binary Logical Operators AND,OR ,WITH
4 Binary Geographic Comparisons ALONG ,INSIDE ,OUTSIDE
5 Binary Relational Comparisons LT,LE ,EQ,GE ,GT,NE ,CONTAINS
6 Geographic Area Delimiters CIRCLE, ROUTE , POLYGON
7 Quantifiers EVERY , NO, SOME
8 Phrase Identifiers FILE,HOST,RETRIEVE ,SHOW

The second digit of the index identifies the specific
keyword within this class. As may be seen from the keyword
table there is plenty of room for expansion of the number of
classes as well as the addition of new keywords within any
of the existing classes.

The current memory requirements for the table are 308
bytes for 28 entries. Each new entry will add 11 bytes to
the table length. Since the table is sorted alphabetically

IV— 22



--—---~ -~ ~~ .--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z Uz
‘U
‘U

‘U U
P ‘U

TEL KEYWORD

) 0 11
; 0 12 18

ALONG 18 40 48
AND 1 30 30
CIRCLE 20 60 00
CONTAINS 16 50 48
EOF 0 13 00
EQ 14 51 48
EVERY 30 70 00
FILE 0 80 00
CE 11 52 48
GT 10 53 48
HOST 0 81 00
I N S I D E  18 41 48
LE 13 54 48
LT 12 55 4 8
NE 16 56 48
NC) 31 71
NOT 3 2~ 40
OR 2 31 28
OUTSIDE 19 42 48
POLYGON 22 61 00
RE SP ONS E 0 84 00
RETRIEVE 1 32 20
ROUTE 21 62
S}!OW 2 83 00
SOME 0 72
WI TH 4 32 28

(

Y

8 bytes 1 by te each

NOTE: All character strings are lci t j...~tifie..i with trailing
blanks in a 8 byte field and all numbers are in hexa—
decima] notation .

Figure IV—5. Keyword Table

IV—23

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -..—.
~~~~~~~~-—-


by TEL keyword , additions to the table will be made by
merging the current table with a list of sorted additions.
Deletions will be made by deleting the table entry and com-
pressing the keyword table. The DRIF Equivalent field , the
index value, and the precedence value must be assigned to
any new additions by someone knowledgeable in the language
TEL as well as in DRIF.

(2) Operator Stack Data Structure

The Operator Stack is shown in Figure IV—6. Each entry
consists of a single pointer to the appropriate entry in
the keyword table. This means that several entries in the
operator stack may point to a single entry in the keyword
table. The three pointers associated with the stack are
the current entry pointer and the two pointers delimiting
the stack boundaries. The operator stack will be used to
remember operators which have already been scanned from the
TEL query but have not yet been added to the DRIF. One
hundred bytes or 50 entries should be more than enough for
the operator stack.

(3) Operand Stack Data Structure

The Operand Stack contains all those operands not yet
matched with their respective operators. Each tine an oper-
ator is popped from the operator stack the appropriate
number of operands are popped from the operand stack and a
resultant operand is pushed back on. All resultant operands
will be of type boolean and are denoted by a 0 entry in the
stack. All other operands on the stack are represented by
a pointer to their location in the DRIF. Thus, each entry
in the operand stack consists of 2 bytes. A reasonable

Ii
size for this stack is 50 entries or 100 bytes. The operand
stack is shown in Figure IV—7.

IV—24

. 4 —i —4 -4 C~~ ~~ -~ c—a -~ ~~ ~~.—. C-I ~~~ ~~~ ... 4 Cl ...4 C-I C-I C~~ Cl C’,.4 .-4 .-4 ,~~ C~~ ~3 .F~ C-I C~ -.~ ~O (0 -~ (0 I-. (~

“~ ZS • S S U 00 H
‘U ~-4 0 0 ‘U Ho •..~ (‘~ >-• ‘U H Z
‘-I ~~ H H .. .-J ~ ‘-I H0 ~~ 0 A~ ~) 0 JJ 0 ~ 4 1‘U z z ‘-. -

~~ Z O O A. ~~ A. 0
C C ~~~~~ ~ 0 Z

I-I

I
(~ -~ ..~ ~-4 0 ‘- ‘UZ U H V) a—. ~~ H ~~0 0 ~ Z H H —~ H ~~ 0 Z

H~~~~~~~~~~~1

— I V—25

_ _ __ — _ _ _ _ __ _ __ _ _ _ _

-
~~~~~ ~

--———y-—-

H H 1-’
Z Z Z

_____ _ _L

~~~~~~~~~~~~~~~~~~~~~~

z (0 -< Cl N. (0 (0
~~

C-. 111 Cl

H -

‘U

0 ‘U ‘U
t.. 0 ~.. -~ ‘U
— ~~ (0 Z
X 0 0 Z
0 -

‘U H
C’I ,-I ~ ‘U .0 Z Z ~~ C’1 .-4 UI -~ ~-. ‘0 -~ N.

—I ~~ A.

_ _

(

I/

/

I U
1..,

U

H
w
II

U
U

(A I

0
Cl

‘U ~~~I
_
~~ ‘~~~ -~~~

0

~~~~

- 

I

IV—26

_______ 
I



APPENDIX A

DEVELOPMENT BACKGROUND

1. TOSS BACKGROUND

Over the past four years, Terminal Oriented Support System (TOSS)
concepts and implementation methodologies have undergone research and
development by INCO , INC., of McLean, Virginia, for the Rome Air Development
Center (RADC). The objective is to provide intelligence analysts with
transparent access to computer files, remote data bases and other analysts
world—wide through a computer—based communications network. TOSS development
has proceeded along lines which seek to extend the concepts of transparency
and distributed processing to all relevant aspects of the intelligence ADP
environment.

The approach taken by INCO in implementing these concepts has
been to build upon existing technology , such as that used in the NMIC
Modernization project. Briefly , TOSS is a multifaceted information
management and handling system which aids in integrating distributed intel-
ligence resources in a cohesive, world—wide network. It is a hardware!
software system employing minicomputers as stand—alone , terminal—oriented
processors connected to local host computers to form nodes, which are in
turn interconnected by communication links to form a widespread network.
The principal components of TOSS include TOSS Exchange Center (TEC) providing
network communications control for bulk data and conversational message
traffic; Terminal Independent Support System (TISS) providing the capability
for on—line analyst interaction through transparency of communication
protocols; TOSS Information Management System (TIMS), a data management
system providing on—line capabilities for network file access and devel-
opment and query of hierarchical files; and finally, the Terminal Transparent
Display Language (TTDL) facilitating the development of applications programs
and stressing the concepts of terminal transparency .

2. TIIN DEVELOPMENT

The TIIN development effort seeks to extend the transparency and
distributed processing concepts of TOSS to include query language transpar-
ency and data base transparency. TIIN will be based on the hardware/software
environment of TOSS with its access to a widespread network of data base
management systems with different query language, different technologies for
file structure, different conventions for encoding data.

The eventual aim of the TIIN is to allow the user/analyst to con-
verse with the network without regard for file structure and h.st dependent
considerations. The user should feel as though he is accessing information
available to him at this local node when , in f a c t , he is accessing remote
data bases , perhaps world—wide.

A-i

L .



The TIIN development follows an integrated , step—by—step
approach consisting of successive development stages. Each of the stages
of TIIN development provides a discrete advance in user capabilities.
Advances in system capability require corresponding technological advances.
The development of a technology base for TIIN is planned to be systematic
and cumulative; most technological features are applicable to all TIIN
development stages and are enhanced at each level.

The user capabilities added at each TIIN development stage are
described below :

a. Transparent Access to a Local Data Base

The analyst may obtain a description of entry to and use of
a l~~a1 minicomputer data base without specific knowledge of the
data base management system.

b. Transparent Access to Distributed Homogeneous DBMS

Local and remote data bases having the same data management
system appear as a single data base from the viewpoint of analyst
accessibility. Capabilities such as stored queries and din—
tributed standing queries are to be integrated into the network.

c. Transparent Access to Distributed Heterogeneous DBMS

Data base resources available to the analyst are extended
to include data bases accessed by data management systems other
than a single (common) DBMS, but which are still within the
minicomputer ne~work.

d. Integration of Host Computer and Foreign Networks

The network available to the analyst is extended to include
data bases in host systems and foreign networks which are con-
nected to the minicomputer network via its nodes. The concept
of a network user is extended to include analysts not connected
to one of the host systems.

e. Integration of Work Stations Having Intelligent Terminals

Network capabilities are fully integrated with specially
designed features and capabilities afforded by an intelligent
terminal implemented as an analyst work station in the intel-
ligence community .

3. GUIDING CONCEPTS

The development of the Transparent Integrated Intelligence
Network has proceeded in accord with several major principles. They include
transparency , data base integration , data sharing , and distributed processing .
Each of these ideas will be dealt with in this subsection .

A-

I

_ _ _ _ _ _ _ _ _ _ _  ....~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



a. Transparency

This concept imp lies that detailed system knowledge is not
required by the user to access and operate network elements. In a
transparent environment , analysts can access information from
unfamiliar data bases using procedures with which they are familiar.
Query translation, data translation, and reconciliation are provided
by special software modules, relieving analysts and network elements
from requirements for mutual familiarity .

The notion of transparency , as applied to an information
processing system , refers to those system characteristics which allow
a user to ignore, indeed be unaware of , complexities and diversities
which are not relevant to his purpose. For example, problem oriented
languages such as COBOL and FORTRAN make machine language transparent
to their users.

The concept of transparency as used in the TIIN effort
is best communicated in terms of levels of transparency .

(1) No Transparency

Without transparency the analyst mus t use separate
terminals independently connected to each external system.
He must use the precise system access procedures as well
as that query language associated with the data base he
is accessing (the native language of the data base).

(2) Communications Transparency

At this level, the analyst would be able to retrieve
data from external systems at his own analyst station,
that is, communications and line protocols would be made
transparent to the analyst, as well as logon procedures
to the external systems. The analyst would still be
required to use the data base access procedures (query
languages) of the various external systems in order to
retrieve data.

(3) Query Language Transparency

A t this level, the analyst is able to retrieve data
from diverse data bases and data files using a single
query procedure from his own terminal. He does not have
to know the query language on the particular external data
bane . There are , however , demands made on the analyst’s
v- im*’ and knowledge inasmuch as he must be aware of the

~1’.L .r .1~ n . ~tr u it u r e and conventions for data bases being
-I



(4) Pa t a  Base Transparency

At this level, dispersion of data resources among the
various fi les and separate data bases is transparent to the
analyst. Data is retrieved using one data access procedure
from the analyst ’s terminal; computer software is used to
separate the single query into separate queries to be directed
at various data bases and files containing the requested infor-
mation. In addition , the disparity among similar data element
names and coded data field values is resolved .

b. Integrated Data Base

The intelligence community shares data requirements. The
accuracy and ccmpleteness of an intelligence analysis presupposes that
all relevant data be available to the analyst.

The concept of an integrated DBMS is concerned with providing
all users with access to all data bases on a network. The concept
presupposes the existence of a common data access language which is
implemented system—wide . Integration may be achieved in many different
ways: merge all data bases, provide a commo n DBMS with distributed
data bases, or provide query language transparency and data base
transparency for existing systems.

c. Delegated Production

The concept of delegated production seeks to minimize data
maintenance costs by designating specific sites with non—overlapping
responsibilities for data collection . A natural corrolary of
designating specialized data production centers is that analysts tm1~~t
be able to access and cross correlate the data from the non—overlapping
data bases. The volume of data updates and the size of the data bases
involved make it non-cost—effective to maintain copies of the data bases
at the data analysis sites separated from the data collection sites.

d. Distributed Processing

The concept of distributed processing seeks to allocate compu’-~ r
resources on a network basis so that response time and overall network
utilization are optimized . Balanced availability of computer resources
permits the community ’s computational requirements to be satisfied even
when some processors become temporarily unavailable to the network.

4. THE ANALYST

There are two distinct categories into which user analysts 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~-~~~~ 



~~~~~~~~~~~~~~~~

-—-.—- -—.-—— - -

may be classified. The first comprises those who have a non—computer back-
ground (perhaps in area studies , languages , the liberal arts) who use a
technician to interact with the system. The other class of user analysts has
greater knowledge of ADP and can be expected to exploit the system to a
greater degree than the first group. This latter group includes data
specialists, file sponsors, and data base administrators.

Though both groups may benefit from the development of trans-
patency oriented processing , it is probably the non—computer oriented
analysts who may benefit most from increased user—orientation of data access.
To enhance productivity and to utilize the analyst ’s problem—oriented train-
ing, the analyst cannot be unduly concerned with the mechanics of data
retrieval or with the arbitrary differences between query languages, f ile
structures , and dat a cod es on a dist r ib uted netwo rk of di verse intelligence
resou rces .

a. Analyst ’s Task

The intelligence analyst is responsible for assessing
information related to critical and complex situations which
have far—ranging political and military significance both
nationally and internationally. The analyst frequently must
work under considerable time pressure. To support his analysis
and judgemental capabilities , a large volume of diverse informa-
tion exists in multiple and uncoordinated sources. Analysts
have traditionally developed highly personalized and often
very sophisticated manual techniques for accessing information
based on experience and knowledge of sources. While the analyst
may resort to rather sophisticated “shoe.-box” techniques for
storage of retrieved data , the main concern is not data storage
or retrieval , but analysis.

The analyst ’s basic mission is to monitor and interpret
intelligence information and report it in a timely and effective
manner for further assessment at decision—making levels. In
f u l f i l l i n g  this mission , he performs the following activities.

o Monitor ing messages , indicators , and events

o Establishing and maintaining data files

o Seeking information from other analysts and
data files

o Preparing finished intelligence reports

o Joint assessment of current intelligence
situations

o Verifying and enhancing information through
- cross—correlation.

A— 5



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _  
_ _

These activities are conducted within the context of three
functional levels related to the urgency of the situation at hand . For
the indications and warning (I&W) analyst these are:

o Watch Function — monitoring indicators and
assessing current events

o Current Intelligence — actively tracking significant
events and crisis situations

o In—depth Analysis — developing background information
and analyzing information with long—term implications.

These fu n c ti o ns ar e keyed to the operatio n of comman d
centers and the formulation of precise military decisions based on the
best possible intelligence information.  Within this context, the

— analyst’s objectives are timely and accurate assessment and subsequent
reporting of comp lete intelligence data. To accomplish these basic ,
but d i f f icu l t , objectives the analyst has very real requirements which
can be met through data processing support.

b. Data Analysis Requirements

There is a strong and continuing need for automated support
to provide the analyst with ready access to data . A large measure
of automatic data processing support is being developed using facil-
ities already in place. However , these facilities are geographically
dispersed and reside on independent hardware and software systems.

A major need is on—line access to data bases which are not
part of the analyst ’s immediate system . To be useful to the
analyst, ADP support must make minimal demand on him to learn
access techniques. The ideal ADP support should unburden the
analyst from an already substantial data processing workload .
This requires the implementation of interactive , integrated
networking concepts with sufficient translating and routing
software to permit the analyst to access external systems in
his own familiar terms. The provision of simplified , real-
time access to remote data bases would greatly aid the analyst
in cross—correlation , data assessment and reporting functions .

The volume and variety of intelligence data , and the
ways in which It may be stored and handled in the intelligence community
are great. Merely to monitor the vast array of information provided
by sensors and other data collection devices within the analyst’s
area of specialization can be an immense job ; the cross—corre latiofl
of data is staggering . Requirements for automatic data processing
support clearly exist both with regard to the acquisition of data
and its later manipulation for analytic purposes.

A-6 

-
~~~~~~~~~~~~— - -~~~~~~~~-~~~~~~~~-~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Data processing needs are critical to the nature of the indications
and warning analyst ’s mission, functions , and activities. Automation can
support not only the monitoring activities in which the analyst is frequently
engaged , but will greatly assist the analyst ’s performance in crisis
situations.

Analyst data needs amenable to the application of ADP technology
generally focus on the access and manipulation of data . Both access and
manipulation have several facets. Access requirements are broad and specific :
the analyst has a great interest in a wide variety of sources and indicators ,
as well as specific information requirements. Since the analyst desires to
keep abreast of developing situations, single elements of intelligence are
sometimes critical ; timeliness, validity, and reliability are also very
important. The data manipulation needs of the analyst focus on the require-
ment to rapidly process and format large volumes of diverse information . By
way of illustration , some access and manipulation needs are: immediate
updating of key indicators, corroboration of hypotheses with initial
intelligence multi—source cross—correlation support , program generation for
formatting unfamiliar data packages, real—time requests for specific
information , and queries to experts outside of the analyst ’s field of
specialization.

A-7

~~~~~~ .. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - —- . .~~ .



APPENDIX B

DESCRIPTION OF THE TIIN SYSTEM

1. INTRODUCTION

The purpose of this appendix is to provide a concise description
of the function of the components of the Transparent Integrated Intelligence
Network (TIIN) . For development purposes the components are grouped into
five subsystems to be specified and developed in the following order :

TIIN/TILF data description and directory management
TIIN/QIP host selection and host query generation
TIIN/RN report normalization and report formatting
TIIN/TAP analyst aids processor and query normalization
TIIN/QDNC query distribution and network interface .

These subsystems and their components are shown in Figure B—l.
This figure viii. be referenced throughout this appendix . The figure
illustrates the distinction between user—dependent components and host—
dependent components. It is assumed that host dependent components exist
only at the host node, and user—dependent components exist only at the user
node , since this ainim.tzes the number of copies of the host dependent
components in the network. One alternative is to place all components at
the user node , which would reduce bottlenecks at the host node as a tradeoff
for duplicating all host—dependent components at every user node .

Brief ly , the key to understanding the TIIN system is the concept
of normalization , which refers to the use of internal standard s to serve
in the absence of standards between the interconnected host computers .
Three areas of normalization can be considered to be the province of the
TIIN system specifically, query normalization , report normalization , and
data structure normalization. Other areas of normalization, such as host
access protocols , packet format, and terminal interface , are the province
of the network software/hardware system . It is assumed that TIIN wi l l
operate on the PDP—ll/45 under RSX—I1D, using the software componen ts of
the Standard Software Base (SSB) and the Terminal Transparent Display
Language (TTDL). The network interface will be based on %JICS Common Format
(WFC) or its successor.

Normalization allows the user to have many of the advantages of
standardization without causing the hosts to entail the disadvantages of
standardization . Through normalization the enormous range of differences
between the host systems becomes transparent to the user.

B—l



a. Data Structure Normalization

The TIIN internal convention for data structure presupposes
that the host data base consists of a collection of interrelated
hierarchical files. A record in a hierarchical file consists of
a collection of hierarchical dependent segment , each segment
consisting of a fixed number of variable length single valued
fiel~ts. Each segment except the root segment has a single parent
segment, and each segment type may occur a variable number of
times in its dependency relation with its parent segment. There
is one root segment per record , and all segments in the record are
either directly or transitively dependent on the root segment.

The normalized data structure is stored in the Network
Access Directory (NAD) by the Data Base Administrator (DBA) . The
MAD contains all the data descriptions needed by the TIIN
components. The hierarchical relation between segments is
represented by indicating the identifier of the parent segment
for each segment.

b. Query Normalization

The TIIN internal convention for queries , called Query
Normal Format (QNF), is essentially reverse Polish notation with
all names and values explicitly represented and flagged to indicate
whether they are in the user , network, or host frame of reference.
At the user node the QNF is called Data Request Intermediate
Forma t (QT~) to denote the internal representation used for
performing algebraic transformations to convert the query into
the host query language . The QTF and the associated transformatlcns
are substantially different for each host.

c. Report Normalization

The TIIN internal convention for reports , called Response
Normal Format (aNT), consists of a file descriptor followed by a
sequence of records . The response file is completely self—
descriptive and is thus comp letely independent of the files
described in the MAD. The RNF version of the report is suitable
for further processing : it may be formatted as a user report,
or input to an applications program , or stored as a file in the
ana lyst data base.

2. TERMINAL ACCESS PRO CEDtJRES ( TAP)

Components of the TAP subsystem appear in the upper middle and
left section of Figure ~—l. The subsystem includes the Analyst Aids
Processor , and the Query Language Processor.

B—2



r

The TAP subsystem is designed to provide a convenient and
natural user interface method . The functions of TAP are 1) to describe
network data resources to a user/analyst, 2) to support the user in the
construction of legal queries , and 3) to allow for rapid, interactive
dialogue with the network.

a. Query Language Processor

The Query Language Processor will provide the analyst the
capability of expressing a query via a simple formal language.
The module will check the syntactic correctness of the query
and will, produce the normalized version (DRIF) of the query for
the Query Intermediate Processor (QIP) at the user node.

b. Analyst Aids Processor

The descriptive information which is maintained in the
Network Access Directory for use by TIIN components is also
useful to the analyst in identifying the precise data requirements.
The Analyst Aids Processor displays the contents of the NAD in
a user—oriented format.

MAD information is displayed by subject category with prose
descriptions of files related to subjects the analyst selects,
prose descriptions of data elements belonging to selected files,
and properties and a t t r ibutes  of selected elements .

3. TRANSPARENT INTELLIGENCE LANGUAGE FACILITY (TILF)

The components of the TILF subsystem appear in the upper part  of
Figure 3—1. This subsystem is devoted to describ ing the contents of host
data bases and keeping these descriptions up—to—date for  real—tim e access
from any node in the network. The subsystem includes the User Data
Description Processor , the Host Data Description Processor , and the Network
Access Directory .

a. Network Access Di rec tory  (MAD )

The Ne twork Access Directory (SAD ) is the repository for all
information required by the TIIN system about the contents of
network data bases. Individual versions of the MAD will be
created and maintained at each network node , and either all or
part of each local NAD must be able to be easily transmitted to
other network nodes on request. This feature will enable each
node to periodically gather and consolidate information from its
own and other NADs , consolidate the information, and use it to
locate data throughout the network.

8—3

_ _ _ _ _  . .~~~~ . . .



The largest segment of a local WAD will be a file, each
entry of which, contains descriptive information about a local
data element , a network standard element (which may or may not
have a correspond ing local element) , or a local—us age name f or a
network data element . Other locally—maintained MAD files will
contain descriptive subject and routing information for the parent
files and parent data bases of local elements and legal values or
ranges of values for local elements.

Data Element entries mus t be accessible via two modes of
user access. Normally , specific data elements will be “found”
when an analys t expresses an interest in a particular subject;  —

however , from frequent use of the network system, the analyst
may choose to refer by name to elements, thus bypassing perusal
of subj ect categories. The information about a data element
includes:

o Normalized name

o Element type (string or numeric)

o Length and format information

o Identifier of parent file

o Identifier of parent data base

o Value trans lation algorithm or table.

b. User Data Description Processor

The User Data Description Processor is one of the User
modules in the TIIN . Unlike the Query Language Processor and
the Analyst Aids Processor , this processor is password protected .
It is intended for use only by the User Data Base Administrator
(DEA) , not by TIIN analysts.

The User Data Description Processor creates and updates the
User MAD. Its function is to provide a mean s for the User OBA
to define that portion of the network data which is available to
the local analysts.

c. Host Data Description Processor

The Host Data Description Processor is one of the Host TIIN
modules . The Host Data Description Processor is privileged and
password protected . It is intended to be used by a Host DBA only.

B-4



- 

The Host Data Description Processor creates and updates the
Host MAD. Its function is to provide a means for the Host DBA to
describe to the network those files and those elements which are
potentially accessible to all User nodes. In addition, it
provides a means for the Host DBA to perform updates whenever
necessary and to display information contained in the MAD .

Both the User Data Description Processor and the Host Data
Description Processor run in the interactive mode with their
respective DBA. Neither DBA is required to know the exact
structure of the MAD . Rather, what is important is that they
understand the structure of the data bases which they are
defining.

4. QUERY INTERMEDIATE PROCESSOR (QIP)

The QIP subsystem appears in the center of Figure 6—1. This
subsystem deals with host selection, element name translation , and query
translation. The user-dependent portion of QIP (User QIP) is called the
Translation and Data Base Selection module. The host dependent portion of
QIP (Host QIP) is called the Host Query Language Generator.

The functions of the User QIP are 1) selection of host data
bases and files containing the elements requested by the user, as indicated
in the DRIF, and 2) translation of element names and values from the user
to the normal TIIN frame of reference.

The host QIP translates the user query from the TIlS normal
format (QNF) into the host DBMS query language.

The sequence of actions through which the query will be processed
includes :

o Identification of those files which contain the
requested data elements

o Substitution of network—standard element names for
synonymous user element names

o Creation of equivalent versions of a query for
addressing d i f fe ren t  files which may contain
similar data

o Creation of sequences of queries when several files
must be searched in sequence to retrieve data, or
when several different search verbs are necessary
to process all the search criteria

C’
D J



o Reconciliation of distinctive functions in the
QNF not provided for in the host language

o Translation of net~.ork standard elemen t names into
elemen t names in the host frame— of—reference

o Generation of the host version of the user query .

5. QUERY DISTRIBUTION EI~~CUTIVE /NE TWORK CO~~fUN ICATION S INTERFACE
(QDNC)

The QDNC subsystem appears in the middle of Figure B—i. This
subsystem deals with 1) routing of queries to data resources , both local
and external , 2) tracking and logging of incoming and outgoing network
communications, and 3) the initiation of transmission of data from local
to external nodes.

a. Query Distribution Executive

This module tracks and routes queries and responses . For
incoming queries , it makes an entry in the incoming query queue
with status of “awaiting processing.” The Distribution
Executive poiis the outgoing query queue for entries with
“response received” status . Upon finding one, the Distribution
Executive notifies the report and display function passing the
message sequence number of the response file.

b. Network Cosmunications Interface

The Network Communications Interface initiates transmission
of data from the local node to any other network node and receives
data into the local node from other netowrk nodes . The data which
will pass through the Interface will consist of:

o Queries being distributed to other network
nodes for processing

o Incoming responses from distributed queries

o Queries coming into the node from other
network nodes

o Outgoin g responses to queries from other nodes

o Bulletins from one network to all, other nodes
to announce that a MAD update has taken place
at the originating node

3—6



— - - ~~~~~~ --~~-—- ~— ---- - -— ----- -~~---~~~~~~~~~~~ - ----~~-~~~~~~~~~~~~~~ ------- ~ ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~

o A request from one network node to a second
node for transmission of the second node’s
MAD segment

o A MAD segment transmitted from one network
node to another.

Incoming and outgoing messages are blocked and routed using
the communications modules of TISS. An outgoing “mes sage” (any
data transmissions between network nodes),  is converted to a
WCF (WICS Common Format) header block including the message
sequence number (MSN) , user identification, node identifier ,
message type (query , query response, NAD bulletin , etc.) Outgoing
message t r a f f i c  is handled by polling two queues: the outgoing
query queue ( for  queries to be sent) , and the incoming query queue
(for responses to be sent) . Incoming message t r a f f i c  is also
handled , with mos t message types being passed immediately to
other network elements for  processing .

6. RESPONSE NORMALIZATION (RN )

The RN subsystem appears in the bottom portion of Figure B— i .
The Response Normalizer , in conjunction with the Response Normal Format
(RNF) , is designed to provide a cap ability for  output  standardization in
the overall TIIN design. In general , the task of the RN is to provide the
capability for converting data to a standard format after it has been
retrieved from a host DBMS . Since data which is returned in response to
a single query may be from separate files , it is likely to exhibit different
characteristics with regard to coding conventions . The RN normalizes
responses , vonverting them to a standard format  which enables collation
and reconciliation of conflicts and duplications . The RN also facilitates
storage of data in the analyst ’s private f i le  where it would be available
for further processing (such as refining the original request , sorting ,
statistical analysis, graphic display , etc.).

B— 7



~ .-‘~~~~ . ~~~ -~--~~~ .-

L,~,J 
~~~~~~~~~~! ~~~ _ _ _ __ _

~
_ _ _ _ _ _ _ j

I I 4’
I V

—
I _. I.’

I I I

L~J
H

~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~:1

B—8

APPENDIX C

GLOSSARY

COINS — The Community On—line Intelligence Network Subsystem provides batch
oriented access to intelligence data bases at NSA , DIA , CIA and NMIC.

DBDL — The Data Base Description Language is a TILF—supported language
used to describe the contents and structure of network data bases.

DBMS — A Data Base Management System manages and accesses a data base and
provides responses to queries received from users.

DIAOLS — The Defense Intelligence Agency On—Line System is a host DBMS
on the COINS network.

DRIF — Data Request Intermediate Format is a data structure used to pass
queries from a user (e.g., TAP) to QIP at the user node. The DRIF
is query language independent.

Host (DBMS) — In this report , a host always refers to a data base and its
associated DBMS accessible via a communications network.

Host NAD — A part of the NAD containing information used by the Host
QIP at the host node to translate network standard format (QNF)
queries into a host query language.

Host Node — In this report a host node is a network node which provides
access to one or more data bases of an integrated intelligence net—
work. The TIIN software at a host node will receive a QNF version
of a user query and will perform operations on it to make it accept-
able to the host data base management system . The DBMS provides a
response to the query , which is sent to the TIIN software at the
host node for normalization , preparatory to returning the query
result to the user node on the net-pork.

Host QIP — The Query Intermediate Procesr or at the host node validates
a query given the restrictions imposed by the host query language
and data base , and translates the query into the host query language.

Host RN — Those modules of the RN subsystem dealin; with DBMS response
processing at the host node . The function of the Host RN is to
normalize DBMS responses into a TIIN standard response format, RNF.

NAD — The Network Access Directory is a distributed data base containing
information about intelligence data bases in the network. Informa-
tion contained in the NAD allows for element name translation , value
translation , and host selection during TIIN processing.

C—i

1?S—FR—3—D (F) PADCUNCLASS IF I ED

A D A
D~!53B7 _______________________________________ __________________________ __

Ii
END

DA TE
_____ _______________________ ___________ _____ flL•EO

9 7 9
DC

I

1

26

10
~r’5 HO~

d d 2 0L 14-0 —
L: ~~ —

‘
~11Iuh25 HQ11’~~~

-
~

NATIONAL BUREAU OF STAN~~RDS
~ C~OCOPY RESOLUTION TE$T CK* 1

V V~~~~ V~~~~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~

NDC — The Network Data Catalog provides a cross index by subject of the
files in the NAD.

Network — A network is a complex consisting of two or more interconnected
computers. V

NMIC — National Military Intelligence Center, Arlington, Virginia. V

Node — A data processing site with its own conununications interface to an
extended , integrated network. In this report it is assumed that a
node will have a PDP—ll with TOSS software, including TIIN with a
Network Access Directory.

QDNC — The Query Distribution and Network Communications subsystem is a
proposed TIIN subsystem concerned with the distribution of a query
into the extended network and the tracking of queries distributed and
responses received. It interfaces with the TOSS communications
handler (TISS) which handles all message traffic to and from a node.

QIP — The Query Intermediate Processor is the collection of TIIN modules
which transform a user data request into a standard query language
and data base independent format for transmission to host nodes, and
subsequently into a format compatible with a host node’s data base
management system.

QNP — Query Normal Format is a compact data structure used to transfer
queries from the user node to the host node.

QTF — The Query Tree Format is a data structure used by the host QIP at
the host node, to allow easy validation and restructuring of the
query. V

RADC— Rome Air Development Center, Griffiss Air Force Base, Rome, New York.

RN — Response Normalization is a proposed TIIN subsystem which will re—
ceive the response to a user query from the host DBMS, convert it into
TIIN standard format (RNF) for transmission to the user node, merge
all standardized responses resulting from a single user request (DRIF)
and present the user with a finished report.

RNF — The Response Normal Format is a TIIN standard data structure, used
to transmit a query response over a network.

RADC — Rome Air Development Center, Griffiss Air Force Base, Rome, Wew York.

RN — The Response Normal Format is a TIIN standard data structure, used
to transmit a query response over a network.

RPM — The Reverse Polish Notation is a representation technique in which
operand expressions occur in a linear sequence limnediately before
the associated operator.

C—2

SSB — The Standard Software Base is a collective phrase encompassing TOSS—
related and other software which provides a baseline for Air Force
network applications.

TAP — The Terminal Access Procedures is a TIIN subsystem which allows a
user to make a data request and to gain information about data base
content and structure. TAP includes a language translator to produce
the DRIF version of the user query to interface with the user QIP.

TEC — TOSS Exchange Center provides network communications control for
buld data and conversational message traffic.

TEL — The Transparency Examples Language is a hypothetical query language
used to illustrate transparency features relative to a host query
language.

TIIN — Transparent Integrated Intelligence Network.

TILE — TIPS Interrogation Language.

TILF — The Transparent Intelligence Language Facility is a TIIN subsystem
concerned with creation and maintenance of the Network Access
Directory (NAD).

TIPS — Technical Information Processing System , a DBMS at NSA.

TOSS — The Terminal Oriented Support System is a multi—faceted information
management and handling system which aids in integrating distributed
intelligence resources in a cohesive, worldwide network. It is a
hardware/software system employing minicomputers as stand—alone,
terminal—oriented processors connected to local host computers to
form nodes , which are in turn interconnected by communication links
to form a widespread network. Components of TOSS include TEC, TIMS ,
TISS , TTDL.

TTDL — Temrinal Transparent Display Language is a transparent terminal
handling subsystem of TOSS.

User MAD — A part of the MAD containing information used by the User QIP
at the user node to translate user element names and values into
TIIN standard element names and values.

User Node — The user node is a network node which provides terminal support
through which an analyst initiates a query. A user node may have an
associated DBMS. The TIIN software at the user node is where the
user query is initially processed for distribution to host nodes.

C-3

_ _ _ _ _ ~~- ~~~

User QIP — The Query Intermed iate Processor at the user node consists of
a single module, the QNF Generator. The functions of the User QIP
include element name translation, data value translation, and host
selection.

User RN — Those modules of the RN subsystem dealing with DBMS response
processing at the user node. The function of the User RN is to
merge all standardized responses resulting from a single user request
(DRIF) and to generate a report in a format requested by the user.

WICS — Worldwide Intelligence Communications System.

WCF — WICS Common Format.

I

f C-4

APPENDIX D

IMPLEMENTATION LANGUAGE

1. PROGRAMMING LANGUAGE CHOICE

In order to support the development of the Analyst Aids Processor
V the User Data Description Processor , the Host Data Description Processor ,

and the Query Language Processor under the TAP contract , a development
language must be chosen . The language should be high level to speed the
development process and should be capable of running on the PDP—ll/45. Our
choice to meet these criteria is the “C” language. It was written at
Bell Telephone Laboratories to run under the UNIX Operating System on the
PDP—il/45. A version which will run under the RSX—ll Operating System
has been released by Yourdon , Inc. This version is useable in our appli-
cation.

2. SELECTION CRITERIA

The choice of “C” was based primarily on language surveys done by
two other groups at INCO. The first was done as part of the IDHSC—II
project and is available as Project Memo 1094/16. It included evaluations
of PASCAL, ULP , BLISS—il, FORTRAN IV , ALGOL, SIMPL—T, PL/l and SP/k as
veil as the C language. In this survey C met the standards for all evalu-
ation criteria except for RSX—li compatibility. This defficiency should
be eliminated with the release of the Yourdon Compiler. The second language
survey was performed under the IDPN contract and it is documented in
Technical Memo 1095/07 . £he languages mentioned in this survey include “C”,
PASCAL, FORTRAN IV , COBOL, RATFOR, BLISS—li, PL/l , SINPL-T, MODULA and
several assembly language macro packages. The choice of “C” as a develop-
ment tool is based on the evaluation of the Bell Laboratories “C” compiler
which runs under UNIX. The language differences between this version of
“C” and the RSX—ll compatible Yourdan version is minimal. The selection
criteria includes the following points.

o The language has been implemented on a PDP—1l mini-
computer and is available under RSX—ll

o The code produced by the compiler is efficient both
in terms of core requirements and speed of execution.

o The language allows access to the hardware
reqisters

o The language has a good set of control structures
thu s facilitating structured programming techniques

o The language supports character string operations

o The language allows the programmer control over
data structures

D—l

-—

—

~~~~~~~

o The output of the “C” compiler allows for modular—
ization of a system. Any system may be broken
into separately compilable modules.

o Minimal run time support is needed for programs
cod ed in “C”

o Conditional compilation is available

o “C” programs will run on the PDP—ll under UNIX . Thus
there will be no need to rewrite all the software
if programs are moved from an RSX—ll environment to
a UNIX environment .

o “C” has been implemented on the Honeywell 6000, the
IBM 360, the IBM 370, and the PDP—lO computer systems.
This allows portability of software to other machines
as well as other operating systems.

3. PLAN OF ATTACK

The “C” Language has been selected as the language in which to
implement TIIN designs. A big advantage of this choice is the portability
of programs written in “C” from the RSX—ll environment to the UNIX Operating
System environment. Given the time frame of the TAP contract, however, it
was necessary to perform our coding in a language already availabe. This
temporary implementation language is RATFOR. It provides both the advant-
ages of structured programming and the availability of all the system
support software written for FORTRAN. The second feature exists becuase
the RATFOR language is essentially an extension of FORTRAN implemented
by means of a RATFOR “preprocessor” which converts RATFOR source code to
FORTRAN source code. A primary example of support software valuable to TIIN
is the Terminal Transparent Display Language (TTDL). FORTRAN interfaces
to TTDL already exist and may be used in RATFOR programs. Another
advantage of our current use of RATFOR is its similarity to the “C”
Language.

a. Compatibility with C

The RATFOR language bears a high resemblance t~ the C lang-
uage. Both support IF, ELSE, FOR, WHILE and block structure
constructs along with the basic arithmetic, relational and
logical operators. See Figure D—l. The resemblance between C
and RATFOR is more appearance than reality. In an experiment a
program written in C was hand—converted to RATFOR. Over 80% of
the lines of code had to be revised. This incompatibility factor
occurred even though the C programmer had avoided intrinsic C
features such as the PL/I data structures and pointer processing.
Much of the incompatibility resulted from the difference in
comment conventions, array subscripting, and auto—increment oper—

D-2 

V V 
~~~~~~~~~~~~


Features in RATFOR Extension Features in both C and RATFOR
f*c()m~flent*/ IF (cond) stint
negation operators (t ., t —) ELSE stint
DEFINE (AND ,&) FOR (initial; cond ; iterate) stint
DEFINE (OR , I) WHILE (cond) stint
array [expr] 0.. .N—l right—to—left $ (and$) for block structure
DO; and END; for block structure arithmetic operators (+,_ ,* /)

relational operators (< ,> , —

logical operators (&,I)

/ RATFOR
(Rational

C FORTRAN)

\

Features in C, not in RATFOR Extended Features in RATFOR not in C
auto—increment (++) #coinment
auto—decrement (——) array (expr) 1. . .N left—to—right
EXTERNAL declaration BLOCK DATA
compact I/O routines COMMON declaration
parameters—by-value DATA
reentrant code only FORMAT driven I/O
recursive calls READ
full Pt/I data structures WRITE
pointer operators (_> ,*,+,_) parameters—by—reference
sub—arrays and sub—structure non—reentrant code
subroutine (args); non—recursive calls
special operators (%,A << , >,etc.) negation operators (-~,- —)

logical operators (&&,f I, ? , :) ** exponentiation operator
assignment operators (“ ,‘.+,—&,etc.) one “— “ per stint
DO atmt WHILE (cond); CALL sub (arga)
SWITCH ... CASE ... DO var— , m i t , terms stint
string (“) vs. character (‘) distinction

Figure D—l. Summary of Difference between C and RATFOR

D—3

ators. For example, RATFOR loops run from 1 to N while C loops
run from 0 to N—l, so even though the FOR construct is identical
between C and RATFOR , all the FOR statements had to be revised.

b. RATFOR Extended

The RATFOR preprocessor has been extended to process C—style
comments and C—style array subscripts. The purpose of these
extensions fe to provide a vehicle for writing and debugging
C—style programs. With these extensions it is practical to
write programs which are over 80% compatible with C, i.e., less
than 20% of the lines of the code will require modification to
use a C compiler.

Figure D—2 illustrates the differences between programming
in RATFOR versus RATFOR Extended. Note that RATFOR—style sub-
scripts use parentheses, run from 1 to N, and assumes arrays
are stored column—major (first subscript varies fastest),
whereas C—style subscripts use brackets, run from 0 to N—i , and
assume arrays are stored row—major (last subscript varies fastest).

D-4

I—

1. i) 1M~. (,~~~~~)
d, ~j~~~~~~~~~ (’~ J,4)
3• ~~JthIU~.’tI~4~ t~~A iP LE
4~ ~~~~~~~~~~
~ , ~~~~~~ A (V ~U, t..J)
b, j * 1A ~~~~~~~~~~~9 . ~~~T A ~ ~~~~~~~~ I•i~~’~~, ~~~~~~ U.4F

S Mt~$4~~ ~1t J1L1L~.I~ b~J A(I. JJ ‘ I

Lu’. p,j~ (l.a, £‘s’~IP A S 1 +1)
11. ~~iJ~ (J’i; J~~s~~J ; a ’j + l J
U. A(i ,J) $

~~l .JJ • ~~J)
tO . ~~#4~J

Figure D—2a . Programming Example Written in RATFOR

Lu ~~~~‘Ju~ lu’I~~~$* MI~~ t
Tt~.~~W~~(4 J

J M 1 A O / 4 *~~2 2 /

CU~4 IL ~1~Jt
1 , 1.1
t.• ~~~“i~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

LL ’IT j J~Jt

U. ~~~~~~ L~~L. . f l . LJ.Lt ..4f l iaUTU 2I~C1’I~~
U.

•
I,~. 24~~t~4 J.J~~luurll ~~

~~~‘D
i~~. 

2 3~ 3u~~ 
j a~~+~

1, . t~U EU ?3v~~~
19. 2 4 & V ~2 CU~v 1 piiJ~
Lw .

Figure D-2b. Equ4valent FORTRAN Code Produced from Above
(Figwx~e D—~a) by Preprocessor .

D-5

V_ -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1, ~~~~~~~~~~~~~~g. ut~~1’~’t L~’.j ,~,)
3 . ~~~hj ’ V~~1UtJ U td~~~ t * # ~Mr’L~z l
4 . ~j J~5. I’~TE I.~t’4 r % ( N J ]
C’ , I~~T~~~t’ £ L~4 JJ LNI3
I , j A T ~ t~ /~JJ~~~~ 2#
~~ I ) 4 7 A  ~ /~II*1, ~~~~~ r~~*) ,  ~ L *4 /
~, /*  ~~~ 1r~I T J M L J ~Zt~) ~iU A ( J J  LU $ L~~1 •/

1~~. J~ ~~~~~~~ j~~~1( j  L•L~~1)1’. PU’~ ~J$~~J J.~~J ,  J’J•l)
A U I  Ui) • I.) ] (Li + 0 LII ~U” . ~~~~~~~

Figure D—2c . C—style Programming Example Wr itten in RATFOR
Extended .

1. )u QU 1i~~~~~X 4 M~~Lt

I~~~. 
L V V

~ tL~~~~~~M L 1~~~ • 4 )

4 . J A T M o / 4 * ~~~~~/
J .

L J~4T I’ 4JC.
L I ?

c , ~~~~~~~~~ it (, 1 .~~L .Lt . 1 J )t,JI.J ~~~~~~~~
_ j V ~~~1 1 1j ~’

1’.
~ W ’5 ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

1’ .
I’~, ~~~~~~~~~~~ J zJ.p~
U .  ,‘i~~’) ~~~~~~~~~~~

3 V ~~~ , cJ lL’ I L,r
UC . ~~~~~~ L$ L + L
1/ . ~a oro  ~~~~~~~~~~~

1~~. d ! ’~~a J~~T L ’ ,.t

~igura D—2d . Equivalent FORTRAN Cotle Produced !rom Above.
Figure D—2t ) by Preprocessor .

~~~T:_t 
~V :V T~_i

~~~~~~~~ V



APPENDIX E

DBMS INTERFAC E

1. REQUIREMENT

The TIIN system in general has a requirement for most of the
functions provided by a general Data Base Management System (DBMS).
Services such as internal file maintenance, sorting and merging records ,
generating reports, etc., are all required by some module of TIIN. TIIN/
TAP , in particular, has a need for a set of data management services to
be used in the construction and maintenance of those files which compose
both the Host and User NADs. These files all are hierarchically structured .
Data elements are grouped into segments and segments are interrelated as
nodes within an n—ary tree. The root node of the tree corresponds to a
level 1 segment. Each successive level in the tree represents an additional
level of segment nesting and thus an additional level of hierarchy in the
file. The first element in the level 2 segment is the record key. The
first element in any other segment is the key to location of that particular
segment. Elements are never repeated within a segment.

2. DEVELOPMENT STRATEGY

The TAP effort requires the use of a system for construction and
maintenance of a series of files. As of now, no particular DBMS has been
chosen to meet the requirements of TIIN. The strategy, therefore , has been
to define a set of general services for the location of and update of
hierarchical files. These services have been used in coding the Analyst

V Aids Processor, the User Data Descr iption Processor , and the Host Data
Description Processor. These services may then be coded as subroutine calls
tCV any selected data base management system. The services used are all
concerned with reading and writing records from hierarchical files. Other
services such as report generation and file sorting and searching have
not been required by any of the TAP modules.

3. SUBROUTINE DEFINITIONS

Each of the routines described below is used in at least one of
the TAP processors. The routines are all designed to manipulate hierarchi-
cal files. The detailed description of the TIIN format for all hierarchical
files may be found in the TIIN/RN Final Technical Report published in
December 1977. Below is a description of the function of each of the
currently—defined file operators. All character arguments used are left
lustified with trailing blanks in their respective fields.

E—l

_ _ _ _ _ _  V - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _

a. Open File

This routine is used to open a file for access. The
user program specif ies whether It is requesting read only
access or read/write access. Before a file may be accessed
by a program it must be opened. The routine is invoked as
follows :

CALL OPEN (f ile name, f ile access , status)

file name: six character name of file to be opened

file access: 0 — read access request
1 — read/write access request

status: an integer value returned by the routine

O — successful operation (f ile opened)
3 — f ile unavailable
5 — file not found

b. Close File

This routine is used to close a file. The close operation
is performed when the user program no longer requires access
to it. The routine is invoked as follows:

CALL CLOSE (f ile name , status)

file name: six character name of file to be closed

status: an integer value returned by the routine indicating
the result of the routine’s operation
0 — successful operation (f ile closed)
1 — file not opened

c. Create File

This routine is used to add a new file to the data base.
It checks to see if the file already exists and if it does nol- ,
the file is created. The routine is invoked as follows :

CALL CREATE (f ile name, f ile structure, status)

file name: six character name of f ile to be created

E-2

V V

~ 

_V ~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



file structure : address of a table defining the structure
of the file. The table consists of a
count of the number of entries in the
table and the entries. Each entry con-
sists of a pair of integer values, both
in the range of 0 to 255. The first value
is the segment identifier and the second
value is the identifier of the parent
segment. Thus, if N is the number of
different segments in the file, the
file structure table will contain 2N + 1
integer values.

status: an integer value returned by the routine specify-
ing the result of the operation.
0 — successful operation (file created)
4 — file already exists
12 — illegal structure table
13 — no room for file

d. Delete File

This routine is called to delete a file from the data
base. The routine is invoked as follows:

CALL DELETE (file name, status)

file name: six character name of file to be deleted

status: an integer status value returned by the routine
0 — successful operation (file deleted)
5 — file not found

e. Select Record

This routine is used to locate a record in a file, given
the record key. Once the record is located, it becomes the
current record for this file and the routine returns to the
user program. The routine is invoked as follows:

CALL SELREC (f ile name, key, status)

file name: six character name of file in which record
will be found

key: the value of the first element in the file’s level
0 segment. It is used by SELREC to identify the
particular record requested. The key value should
be unique within the file.

- ~~~~~~~~~~~~~~~~~~~~~~~~



status — indicates the result of the operation. Possible
values are:
O - successful operation (record found)
1 — file not opened
6 — record key not found

f. Select Next Record

This routine is used to select the record immediately
following the current record in the file. The selected record
then becomes the new current record. If no record has yet been
selected from the file, the first record will be selected.
If the current record is the last record in the f ile, an end—
of—f ile indicator is returned in the status word. The method
of invoking the routine is as follows:

CALL SELNXR (f ile name, status)

file name: name of file (6 characters) from which next
record is to be selected

status: indicates result of operation. Possible returns
are:
O — successful operation (next record found)
1 — file not opened
9 — end of f ile

g. Select Segment

This routine is used to locate a segment within the current
record of the specified file. The key used in locating the
segment is the value of the first element. Once located,
the segment becomes the current segment with the given segment
identifier. The routine is invoked as follows:

CALL SELSEG (file name, segment ID, key, status)

file name: six character name of file used to identify
the proper current record (if several files
are open, several current exists — one for each
open file)

segment ID: the segment ID of the particular segment type
which will be searched (note: besides segment
ID , the current of each ancestor segment
determines the group of segments to be
searched)

V V _



key: the value of the first element in the segment type
specified used to select the proper segment. The key
should be unique within this group of segments with
the specified ID.

status: the status value returned by the routine indicates
the result of the operation.
O — successful operation (segment found)
1 — file not opened
7 — segment key not found
8 — segment ID not in file

h. Select Next Segment

This routine is used to select the next segment with the
specified ID. Note that when selecting the next segment, not
only must it have a parent segment with the same ID as that of
the current segment’s parent segment, but it must actually have
the identical parent segment. The routine is invoked as follows:

CALL SELNXS (file name, segment ID, status)

file name—name of file (six characters) from which segment
is to be selected.

segment ID — the segment ID of the segment type to be
searched

status — the value returned indicating the result of the
operation .
0 — successful operation (next segment found)
1 — file not opened

10 — end of segments

I. Insert Record

Insert a record into the specif ied file in front of the
current record for the file. The routine is invoked as follows:

CALL INSREC (f ile name, status)

file name — six character name of file which will have
record inserted

status — indicates result of operation.
O — successful operation (record inserted)
2 — file not opened for write
14 — no room in file for record

E—5



-~~ ~~~~~

j. Delete Record

Delete the current record from the specified file. The
routine is invoked as foll ows:

CALL DELETR (f ile name, status)

file name — six character name of file to have a record
deleted

status — indicates result of operation
0 — record deleted
2 — file not opened for write
9 — end of file,

k. Insert Segment

This routine inserts a segment after the current occurrence
of that segment. The routine is invoked as follows:

CALL IMSSEG (file name, segment id, buffer size, buffer
address , status)

file name — the name of the file containing the record
into which the segment will be added

segment ID — the identifier of the segment to be inserted.
Segment will be inserted after current occur-
rence of segment.

buffer address — address of buffer containing segment to be
inserted.

buffer size — number of bytes in segment

status — indicates result of operation
0 — successful operation (segment inserted)
2 — file not opened

11 — ill egal segment ID
15 — no room in record for segment

1. Delete Segment

This routine deletes the current occurrence of the specified
segment. The method of invoking the routine is as follows :

CALL DELET S (file name , segment ID , status)

f i le  name — six character name of file to have segment
deleted .

E-6



V ~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_~~ V~~V_ _ _

segment ID — identifier of the segment whose current occur-
rence is to be deleted

status — indicates result of operation
O — successful operation (segmen t deleted)
2 — f i l e  not open for write
11 — illegal segment ID

in. Read Segment

This routine causes a segment to be transferred into a
specified user program buffer. The operation causes the current
occurrence of the specified segment to be transferred . The
routine is invoked as follows:

CALL READSC (f ile name, segment ID, buffer size, buffer
address, status)

file name — six character name of file containing segment
to be input into the program buffer.

segment ID — identifies segment whose current occurrence
is to be transferred into the program buffer.

buffer size — size of buffer in bytes

buffer address — address of program buffer to receive seg-
ment

status — indicates result of operation
0 — successful operation (segment read into buffer)
1 — file not opened
11 — illegal segment ED
16 — output buffer too small for segment

E—7

-~ 
VV 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~~~~~~~ V •~~~~~~~V~

V
VV ~~~~~~

APPENDIX F

BIBLI OCRAPHY

1. DATA BASES

Aschim, Frode , “Data Base Networks — An Overview,” Management
Informatics, Vol. 3, No., 1976.

Bleier, Robert E., “Treating Hierarchical Data Structures in the SDC
Time—Shared Data Management System (TDMS),” 1967 ACM National
Meeting, pp. 41—49.

Booth , Grayce M., Honeywell Information Systems, Phoenix, Arizona,
“The Use of Distributed Data Bases in Information Networks,”
First International Conference on Comjuter Communication:
Impacts and Implications, October 24—26, 1972.

Boyce, R.F., Chamberlin, D.D., King III , W.F., and Hammer, M.M.,
“Specifying Queries as Relational Expressions: SQUARE,” IBM
Technical Report U 1291 , October 1973.

Chamberlin, D.D. and Boyce, R.F., “SEQUEL: A Structured English
Query Language,” Proc. 1974 ACM SIGFIDET Workshop, Ann Arbor ,
Michigan, (April 1974), pp. 249—264.

Chandra A.M., “Some Considerations in the Design of Homogeneous
Distribution Data Bases,” IBM Thomas J. Watson Research Center,
Yorktown Heights, New York.

CODASYL Development Committee, “An Information Algebra,” Communications
of the ACM, Vol. 4, (April 1962), pp. 190—204.

CODASYL Data Base Conversion Task Group , Final Report, Information
Processing, Vol. 2, No. 1, January 1977.

CODASYL Systems Committee, “Feature Analysis of Generalized Data
Base Management Systems,” New York , May 1971.

CODASYL Data Base Task Group Report, ACM April 1971.

Codd, E.P., “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, Vol. 13, No. 6, (June 1970),
pp. 377—387.

Codd, E.F., “Seven Steps to Rendezvous with the Casual User,” IFIT TC—2
Working Conference on Data Base Management Systems, Cargese,
Corsica, 1—5 April 1974.

F—i

—4L - ~~~~~~~~~~~~~~~~~~ V~~~~~~ _~~~ - ~__ _ _- - - ~~~~~~~~ V V •~

Computing Surveys, ACM, Vol. 8, No. 1, March 1976.

Date, C.J. “An Architecture for High—Level Language Data Base
Extensions,” 1976 SIGMOD Conference.

Date, C.J., and Hopewell, P., “File Definition and Logical Data
Independence,” Proceedings of the 1971 ACM SIGFIDET Workshop.

Defense Intelligence Agency Regulation 65, Intelligence Information
Systems, Defense Intelligence Data Standards System (IDSS).

Earley , Jay “Toward an Understanding of Data Structures,” Comm. of the
ACM Vol. 14, No. 10. October 1971.

Fredericksen, D.H., “Describing Data in a General Purpose Computer
Network,” IBM Research Report RC 4122, November 1972.

Fry, J.P. “Distributed Data Bases: A Summary of Research,” The
University of Michigan, Data Translation Project Working Paper,
DE 801, August 1975.

Fry, J.P., Smith, D.P., and Taylor, R.W., “An Approach to Stored
Data Definition and Trnaslation,” Proc. ACM SIGFIDET Workshop
on Data Definition and Access, Denver, Cob ., (1972), pp. 13—55.

Fry, J.P., “Stored Data Definition and Translation Approach to the
Data Portability Problem,” Data Translation Project Report,
University of Michigan , Ann Arbor , Mich., February 1974.

Ghosh, S.P., and Senko, M.E., “String Path Search Procedures for Data
Base Systems,” IBM Journal of Research and Development, Vol. 18,
No. 5, (September 1974), pp. 408—422.

Jervis, B., Parker , J., “An Approach for a Working Relational Data
System,” Department of Computer Sceince, University of British
Columbia , Vancouver , Canada.

Logicon, Inc., “ADAPT I Uniform Data Language (TJDL) A Preliminary
Specification,” (July 1976) San Diego, California.

Logicon, Inc., Final Report - Study of the Multi-Language Problem in
V COINS: Vol. 1. — Recommended Solutions, Vol. 2. — COINS DBMS

Feature Analysis, Vol. 3. — Functional Specification. (May 1975)
San Diego, California.

Lum, V.Y., Shu, N.C., Housel, B.C., “Data Translation, Part I: A
General Methodology for Data Conversion and Restructuring,” V

IBM (San Jose), JF 1525 (#23112), July 1975.

F-2

L V V V~~~~~~~~~~ V~~~~ ~~~~~~ V~~~~~~~~V~~~~~~ V V ~~~~~~~~~ V V - V J

— V
- - - ~~~~~~ ~~~~~~~~~~~~~~~~~~ V V —

Marcus, Richard S., “A Translating Computer Interface for a Network
of Heterogeneous Interactive Information Retrieval Systems,”
MIT, Electronic Systems Laboratory, 1972.

Merten , A.G., and Fry, J.P., “A Data Description Language Approach
to File Translation,” ACM Proc. SIGMOD Workshop on Data Descrip-
tion, Access and Control, Ann Arbor, Michigan, (1974), pp. 191—205.

Plagman, C.K., and Altshuler , G.P., “A Data Dictionary/Directory System
Within the Context of an Integrated Corporate Data Base,”
AFIPS, 1972 , FJCC.

Rosenthal, R., “A Review of Network Access Techniques with a Case
Study : The Network Access Machine,” National Bureau of Standards
Technical Note 917, July 1976.

Schneider , L.S., “A Relational View of the DIAM ,” Proceedings 1976
ACM SICMOD International Conference on Management of Data,
Washington, D.C., (June 1976), pp. 75-90.

Senko, M.E., Altman, E.B., Astrahan, M.M., and Fehder, P.L., “Data
Structures and Accessing in Data—Base Systems,” IBM Systems
Journal, Vol. 12, No. 1, (1973), pp. 30—93.

Shoshani, An , “Data Sharing in Computer Networks,” 1972 Wescon Tech.
Papers, System Development Corp.

Shoshani, An , and Spiegler, I., “The Integration of Data Management
Systems on a Computer Network,” American Institute of Aero—
natuics and Astronautics, Computer Network Systems Conference,
Huntsville, Alabama, April 1973.

Shoshani, An , and Brandon, K., “The Implementation of a Logical Data
Base Converter,” October 1975, System Development Corporation,
TM—5590/000/OO.

Shu, N.C., Housel, B.C., and Lum, V.Y., “Data Translation, Part III.
CONVERT: A High Level Translation Definition Language for
Data Conversion.” IBM Res. Rep. U 1515, February 1975.

Smith, Diane P., “An Approach to Data Description and Conversion,”
RhD dissertation, University of Pennsylvania, Philadephia, 1911.

Taylor , R.W. “Generalized Data Base Management System Data Structures
and their Mapping to Physical Storage,” PhD dissertation, Univer—
sity of Michigan, Ann Arbor, 1971, University Microfilms 72—
15014.

F-3

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2. INCO PUBLICATIONS

Development Planning Factors for a Transparent Inte~g~~ted Intelligence
Network, INCO, INC., 1974.

Russek, Marianne, Distributed Data Base Information Systems Technology,
INCO , INC., McLean, Virginia, 1974.

The Transparent Intelligence Language Facility, Final Technical Report,
INCO, INC., McLean, Virginia, June 1976.

Transparent Integrated Intelligence Network guery Intermediate Processor,
INCO, INC., McLean, Virginia, January 1977, RADC—TR—77—39 ,
AD—A037 947/9WC.

TIIN Terminal Access Procedures Final Technical Report, INCO, INC.,
McLean, Virginia, January 1978.

3. LANGUAGE MANUALS

DIAOLS ADP User ’s Guide for On—Line and Remote/Local Batch Operations,
DIA, Washington, D.C., 1974.

On—Line System Support Center (OSSC) User’s Guide to DIAOLS/COINS,
(to be published).

SEAWATCH External User’s Manual, NOSIC, 1974.

TIPS Interrogation Language (TILE) Training Manual for NSA TIPS and
COINS Users, NSA, 1972.

TOSS Information Management System (TIMS) On—Line User ’s Manual,

July 1975, INCO, INC., McLean, Virginia.

F—4

MISS/ON
of

Rome Air Development Center

RAX $a1 and casducts rmazch, •xp loratory and adv*nad
development p rograme in *~~~~d, control, and oo J ’~CatiCnS

(C3) activitime, and in tha C3 areu of inf ormation sciancac
and int.lligenc.. The principal t.~~ ical niasica arena
are o~~—”i1cations, .l.cercsagmatic guidance and control,
surveillance of ground and aen’ospac cbj acts, int Zl1gi~oe
data collacticn and handling, Inf ormation sgat tE~~VOlC’9y, ~~ V

V
V icno.pheri c p ropagati on, solid t t aciiiioas, ~~~~~~~~

p hysics and .Z.ctror&tc reliability, aaiata. thabllity and
.xiag.tLbility. ~~

4

(*)

V
V

~ ~~~-
V~~/ ‘-V .

