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PREFACE

: This final report is the result of a two man-month study to define a methodology for

! structuring the development of High Order Language (HOL) code generators for
special Missile Systems applications. The report includes an analysis of code genera-
tion techniques in general, the special requirements of imbedded Missile Systems

applications, and recommendation of an approach to providing effective compilers

compatible with low~cost retargeting.
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SECTION 1 - INTRODUC TION

1.1 BACKGROUND

In recent years there have been two significant trends in the DOD community which
tend to alter the requirements for Higher-Order Language (HOL) compilers for
digital computers: (1) The increasing use of "imbedded" digital computers in
avionics, test hardware, and other devices, and (2) The recognition of the value
of HOL programming, as opposed to a machine-oriented language (MOL), with

respect to overall life-cycle costs.

Until fairly recently, the uses of HOL's were essentially limited to scientific
research using large-scale general-purpose computers. For such uses, a com-
piler was both resident in and targeted (i.e. intended to generate code) for the
general -purpose computer. For such an application, a considerable number of
man-hours of labor could be expended in the development of a single compiler, since
they were not written that frequently. Since the compilers were used in a batch

mode, compiler size and/or efficiency were sometimes given heavy emphasis.

With the widespread use of small, special purpose flight computers in imbedded

applications, the requirements have changed.

Imbedded computers tend to be too small and specialized to support resident HOL
compilers. Therefore, the trend has been toward the use of " cross''-compilers

resident on a large, general-purpose computer but targeted to the flight computer.

Since imbedded computer applications are almost always real-time and often time-
critical, special emphasis is given to the generation of highly efficient object code.

In this case, compiler efficiency is of lesser importance.

1-1
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Each digital flight computer or other imbedded computer tends to be highly specialized
with distinctive internal architecture and a unique instruction set. Because of
technological advances, obsolescence is rapid and a given computer may only be used
in a single program. In such a situation, it is wholly impractical to develop a com~
plete HOL compiler for each target machine, even if the host computer is unchar-ed.
This problem has been compounded by the advent of microprocessors and the recent

proliferation of HOL's oriented for missile applications.

A partial solution to this problem is to recognize that many of the tasks performed by
a compiler are done at the source syntax level, and are independent of both the host
and target computers (and even the HOL being compiled). It is only the portion

of the compiler which addresses the generation of actual machine code that need be
altered. This suggests that it is possible to structure a compiler in such a way that
this portion, the code generator, is modular and easily altered to adapt to a different

target computer.

Unfortunately, although the code generator (CG) section of a compiler is generally a
fraction of the total code and requires a much smaller fraction of the total execution
time, it tends to be the least structured and orderly portion. In this respect it reflects
the structure of the target machine to which it must ultimately conform. Also,

optimization of the object code requires involvement of the CG in a machine-dependent

way.
1.2 STUDY OBJECTIVES

This study represents a preliminary analysis aimed at the definition of a methodology
for structuring the development of HOL code generators for missile systems applications.
The purpose of this methodology is to provide a structured technique for providing low-

cost, easily-retargetable compilers to support the software development for small missile

applications.




Since the missile systems applications of greatest interest involve real-time operation,
special emphasis will be placed upon the generation of efficient optimized code,
particularly that for arithmetic expressions. The intent is to define techniques
whereby effective optimization can be performed without requiring a high degree

of target dependence in the code generator.

The following ground rules were adopted:

® The techniques proposed are to be applicable to existing compilers;
it must not be necessary to develop a new compiler in order to
realize some of the advantages.
@ A non-optimizing compiler is not acceptable.
° Factors to be optimized are:
- Retargeting cost
- Execution time of object code, with emphasis on missile
system applications
- Program life cycle cost (impacted by both size and time
efficiency)
° Factors which may be sacrificed are:
- Compiler execution time

- Compiler development cost

It should be noted that the factors to be optimized are, to some extent, mutually
exclusive. For example, it is reasonable to suppose that a compiler designed for

lower retargeting cost will require a different organization of the optimization

algorithms, and thus will generate somewhat less efficient code.




1.3 SCOPE

The scope of this study is to define a methodology for structuring the development of
High Order Language (HOL) code generators for special missile systems applications.
This is accomplished by an initial analysis of the compilation process, followed by

a discussion of conceptual enhancements to the process for retargeting which are

relatively obvious from the analysis.

The process of HOL compilation is analysed in Section 2. The flow from HOL Code to
machine code is discussed including syntax analysis, use of intermediate languages,

optimization, and code generation.

In Section 3, it is pointed out that for the use of HOL's in missile system applications,
it is not necessary to redevelop the HOL compiler for each new missile system. The
use of assembly language outputs and multiple intermediate languages with regard to

the problems of code generators and retargeting is a viable and economic alternative.

There are current tools available for both retargeting and rehosting. The current

practices and some of the tools are discussed in Section 4.

These discussions lead up to a set of conclusions and recommendations pursuant to a
methodology for code generators for missile system applications which are presented

in Section 5.




SECTION 2 - ANALYSIS

v

2.1 (;OMPILATION

The process of compilation is one in which an HOL source code (consisting of statements
written in the syntax of the HOL) is converted into a machine-oriented object code. In
essence, this process is one of string replacement: the character string representing

the source code is subjected to a series of transformations, according to a set of replace~

ment rules, until it becomes the output string representing the object code.

In general the direct conversion of a statement or series of statements directly to
object code is much too formidable to attempt in a single step. Instead, the problem

is made amenable to solution by breaking it down into several smaller steps. A typical
sequence is symbolized by Fig. 2-1. 1In the Syntax Analyzer (parser) section each
source language statement is scanned, the operators and identifiers are isolated, and
the statement type is identified. Incorrectly formed statements are detected here. The
source statements are reformatted to save space and tagged with various indicators
giving, for example, the statement type. During the process of parsing, variable and
subroutine names are identified and added to a symbol table. In some compilers, the
statements are reordered to some extent so that all statements of a given type can be
compiled together. Parsing is probably the most time-consuming part of the com-
pilation process. However, it can be made quite orderly. In fact, automated compiler-

compilers exist which can generate a parser from the syntax definitions of a language.

If global optimization is to be performed, it is done at this level. Typical of this
optimization is the reorganization of the program flow to remove unused or repeated

code, and to eliminate common subexpressions.
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The structure of the source language is one that is intended to be convenient for the
user, but not necessarily for the computer. In particular, a single source statement
generally calls for many distinct operations to be performed. Before generating
object code, it is first necessary to identify these operations and their order. To do
this, it is common to define an Intermediate Language (IL) in which each separate
operation corresponds to a single IL instruction. Note that a single IL operation
may (and usually does) require more than one machine instruction. For example,

a floating point multiply may be represented by a single IL instruction, even though
it cannot be directly performed by hardware and requires a subroutine call to realize.
The IL "operation” is chosen to be any sequence of instructions that can conveniently
be isolated as a self-contained, independent sequence. The language chosen for the
IL is still typically quite abstract. Symbolic addressing is used and little or no
consideration is given to actual machine characteristics such as word length, number

of registers, etc.

Following translation to the IL, there are several further optimizations that can be

performed at the IL level. For the most part these are local optimizations.

The next step in compilation is to replace each IL statement by an equivalent sequence
of machine-level instructions. This step is performed by the code generator.
Normally, in this step symbolic addressing is still retained. In a sense, then, the
code generator outputs assembly language for the target machine. Indeed, in many
compilers, particularly early ones, this was the last step performed. The assembly
language was then passed to a separate assembler. In most cases, this is no longer
done. The reason is that a separate assembler must repeat many steps, such as
building a symbol table, that have already been performed by the parser. Ina
compiler, the only ""assembly" task to be performed is that of assigning specific

locations to the symbolic parameters. This task is performed by an Editor.




Between the CG and the Editor, a final phase of global optimization is performed. The
most signification optimization done here is that of register management, assigning
parameters to registers in such a way that repeated access to often-used parameters

can be done efficiently.

The process of compilation can be thought of as a transformation from a higher order of
abstraction (HOL) to a low order. This is symbolized on an "abstraction continuum"

in Fig. 2-2. As indicated, each segment of the compiler serves to reduce the level

of abstraction, which is finally reduced to absolute machine code by the Relocatable

Linking Loader.

The portion of the compiler that is of concem for retargeting is any portion which

is machine-dependent. In Fig. 2-2, this is primarily the CG (shaded in the figure)
but actually can include everything to the left of the IL level. One observation may be
made here. It appears that one reasonable approach to reducing the cost of the code
generator is to reduce its responsibility by moving functions either into the Translator

or the Editor/Assembler.
2.2 INTERMEDIATE LANGUAGE

The choice of an intermediate language for a compiler is largely arbitrary, and many such
languages have been used. However, it should not be surprising that the choice of
intermediate language can have a profound effect on the compilation efficiency, the
execution efficiency and the organization of the compiler itself. In early compilers, a
common IL was Polish (Lukasiewicz) notation. This was primarily because Polish
notation is easily derived from ordinary algebraic notation. Each operator in Polish
operates on only one or two parameters, and so the notation meets most of the
requirements for an IL. Unfortunately, Polish notation is basically a stack-oriented
language, whereas all real computers are essentially register-organized (even though
they may support certain stack operations). Therefore, a considerable amount of

translation is required in the code generator to convert Polish into machine code.
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Other forms of IL are the doublet, triplet, and quadruple forms. In these IL's, each
IL instruction consists of an instruction operation code, followed by one, two, or

three operands. A typical sequence of doublets may be:

LOD X
ADD
STO Z
MULT P
SUB é
ouT

(In reality, of course, numeric operation codes would be substituted for the mnemonics shown.)

A single accumulator is assumed so that each operation {s assumed to be upon the
accumulator and the named operand. Note that this language may, in fact, be very

nearly equivalent to assembly language.

Both Polish notation and the doublet form are best suited to single-accumulator machine, in
which all operations must be performed on the data in this accumulator and the result

left there. Most modern computers, however, contain more than one general-purpose
register, at least some of which function as accumulators. For this reason, most compilers
now use the triplet or quadruple form. In the quadruple form, the three operands
represent the two parameters operated upon, and the source parameters to which the

result is assigned. In the triplet form, the source parameter is omitted; the result

is assumed to be left in the location assigned to one of the input operands.

In selecting the form for the IL, the architecture of the target machine should be taken
into account. Thus, the doublet form may be very efficient for a single-accumulator
computer, but very poorly suited for one with memory arithmetic (that is, ecach memory

location functions as an accumulator). For the latter, a triplet form would be preferrved.




Tailoring the IL to the target machine is both possible and desirable for a resident compiler.
It is neither for a retargetable cross-compiler. This places even more emphasis upon
choosing an IL that is relatively general. It also suggests greater inefficiency, at least in

compile time, and probably in object execution time as well.

Having selected an instruction format for the IL, there is still the question of the IL
instruction set. This is a matter of judgement and experience. There is no optimum
set, since the ease of translation depends upon the particular problem being solved.
However, the IL instruction set should offer a reasonable correspondence with both the
operations available in the source language and the target instruction set. Once again,

for a multiple-target situation, greater compromise is likely.
2.3 CODE GENERATION

Conceptually, the process of code generation is very straightforward, and can be

carried out by a method of simple string substitution. For example, the IL
quadruple

ADD 4, B, C
may be replaced by the assembly language instructions

LOD

ADD
STO

101w 15>

The code generator must simply replace one string by another, and substitute the

operand identifiers in the proper places, as indicated by the underlines.

A simple, "quick-and-dirty"' code generator can, in fact, be written in just such a
fashion. Since it can be written as a table-driven algorithm, retargeting would be
simply a matter of replacing the tabular data. This approach is actually taken when
rapid development of a new compiler is required. Since the CG is table~driven, it is

relatively easy to devise automated methods for developing the CG itself.
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The difficulty arises when we also require efficient object code. Consider, for example,
the FORTRAN expression
X= (A+B/C ,
which would translate to the IL sequence
ADD A, B, TEMP
DIV TEMP, C, X .
Each quadruple may be replaced by a set of three assembly language instructions

LOD op 1
operation op 2
STO op 3

(Here a typical set of mnemonics for a single-accumulator machine is assumed.)

Direct replacement of the two quadruples would then yield:

LOD A
ADD B

STO TEMP]
LOD TEMP
DIV C

STO X

The two instructions indicated are superfluous, and would be omitted by a human
programmer. Thus a straightforward code substitution tends to lead to very

inefficient code.

It has often been said that a good assembly language programmer can write more
efficient object code than the best compiler, and this is in general quite true. There
are a number of subtle ways in which such a programmer can utilize coding "tricks"
to improve the efficiency of his code. For example, the optimum method of imple-
menting a given source statement may be quite different, depending upon the given
problem and what takes place in neighboring statements. Such subtlety is impossible
for a simple, subst itution-oriented CG. It is the attempt by the compiler developer
to inject some of this subtlety into the code generation process that results in a com-

plicated, highly machine~dependent CG.
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2.4 OPTIMIZATION

From the discussion so far, it appears that the degree of optimization and its implementation

has a profound effect upon the practicality of achieving the simultaneous goals of low-cost

e e

retargeting and efficient object code. Therefore the techniques available for optimization

are examined next.

2.4.1 Local Optimization

To illustrate some of the techniques for local optimization, let us consider the FORTRAN

instruction
X= (A+B/C-(D*E+F*Q)

Straightforward translation of this statement yields the IL sequence

ADD A, B, TEMP1

DIV TEMP1, C, TEMP2

MUL D, E, TEMP3

MUL F, G. TEMP4

ADD TEMP3, TEMP4, TEMPS5
SUB TEMP2, TEMPS5, X

Converting to object code as before would give

LOD A
ADD B
STO TEMP1
LOD TEMP1

DIV C
STO TEMP2
LOD D
MUL E
STO TEMP3
LOD F
MUL G

STO TEMP4
LOD TEMP3
ADD TEMP4
STO TEMPS
LOD TEMP2
SUB TEMPS
STO X

2-9




This ¢s a sequence 18 instructions long. The code can be shortened by noting that the
indicated STO/LOD pair is superfluous. It is relatively easy to design the CG (or

Editor) to scan for such unnecessary pairs and delete them. Although there are other

such pairs, they have different operands and cannot be deleted. However if, following

the deletion of the first pair, we exchange the operands of all commutative operations (ADD
and MUL) we have

LOD A
ADD B
DIV C
STO TEMP2
LOD E
MUL D
STO TEMP3
LOD G
MUL F

STO TEMP4
LOD TEMP4
ADD TEMP3
STO TEMPS
LOD TEMP2
SUB TEMPS5
STO X

Now the TEMP4 pair (and the intermediate variable as well) can be deleted. Finally,
by permitting the unary minus operation (the mnemonic CHS is assumed), the

subtract can also be reversed. The resulting code is

LOD A
ADD B
DIV C
STO TEMP2
LOD E
MUL D
STO TEMP3
LOD G
MUL F

ADD TEMP3
SUB TEMP2
CHS

STO X




e

This is a sequence of 13 steps, a reduction of 28% over the original. An experienced

assembly language programmer would probably have written

LOD D
MUL E
STO TEMP1
LOD F
MUL G

ADD TEMP1
STO TEMP1

LOD A
ADD B
DIV C
SUB TEMP1
STO X

which is only one instruction (8%) shorter than the "machine coded" version. This result
suggests (but certainly does not prove) a principle that seems to hold for HOL's.

If local optimization is applied, mathematical assignment statements tend to compile
very efficiently, and will run little, if any, slower than the same expression coded by
hand. Since the great majority of HOL code for missile system applications is
mathematical, there is reason for a certain optimism that the goal of efficient object

code can be met without complex optimization schemes.

It should be noted that the process is not as simple as has been implied. For example,
if the term A + B is used elsewhere, then it would be incorrect to delete the STO TEMP1
in the first pass. The LOD TEMP1, however, can be deleted. It should further be
noted that some of the steps outlined here can be performed at the IL level. Thus an

optimizing translator would have output the IL sequence

ADD &y By *
DIV *, C, TEMP2
MUL D, E, TEMP3

MUL G, G, *
ADD +, TEMP3, *
SUB TEMP2, *, X

2-11




where the asterisk (*) represents the accumulator. The CG is still required to recognize

the * as an indication to skip the corresponding L.OD or STO, and, in the last instruction,
to insert a CHS.

Two other forms of local optimization are strength reduction and reduction ef common
subexpressions. The former technique involves the identification of constant subexpressions
and evaluation of them at compile time. Thus

X= 2+3) -4
would be compiled to

LOD 1
STO X.

Note that this requires the compiler to evaluate, as well as compile, arithmetic expressions.
In the case above, the result is obvious. In other cases, particularly those involving loop
indices, it is much more subtle. Strength reductfon {s most effective in this area and,

since missile system applications tend to require loops and indexed variables, its use

is highly recommended.

The second technique involves scanning the source code for common expressions. For
example, consider |

X - (A+B)/(A-B) - (A-B)/(A+B) .
Translation to 1L would yield

ADD A, B, TEMP1

SUB A, B, TEMP2

DIV TEMP1, TEMP2, TEMP3
SUB A, B, TEMP4

ADD A, B. TEMPS

DIV TEMP4, TEMPS, TEMPG
SUB TEMP3, TEMPG, X




By scanning the operator and first two operands, we find the two operations ADD A, B
and SUB A, B are performed twice. The second of each can be deleted by replacing its

third operand. Thus

ADD A, B. TEMP1
SUB A, B, TEMP2 |
DIV TEMP1, TEMP2, TEMP3 |
DIV TEMP2, TEMP1, TEMP6 :
SUB  TEMP3, TEMP6, X

Note that this process can be extended globally by extending the region of scan. However,
in this case the compiler must verify that A or B (in this case) are not altered between
appearances of the subexpression. Thus the compiler must keep a record of the update

status of each variable. Two subexpressions are common only if none of the variables

within them have been altered.

In the case of loops and transfers, the status of a variable at some point may depend upon
the path taken. For this reason, common subexpressions are generally scanned only

within blocks of in-line code. In some cases, this reduces the potential gains from the

optimization.

Note that both strength reduction and removal of common subexpressions are performed

at the IL syntax level, and need not impact the development of a code generator.

2.4.2 Global Optimization

There are many forms of optimization that must be performed globally ... that is, over

more than one source statement. One example, common subexpression removal, has

already been discussed. Another is the removal of constant expressions from loops. Note

that this is not the same thing as strength reduction. An expression may involve parameters
which are globally variable. However, if these variables are not altered within a loop,

the expressions can be moved outside the loop. Note also that this process involves rearrang-
ing the source code, rather than simply converting it to efficient object code. This rearrange-

ment is characteristic of global optimization.
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It should be noted that the optimization techniques mentioned so far, except the

STO/LOD suppression, can also be performed manually, by the programmer. This

gives rise to an observation:

Prior to the development of optimizing compilers, the writing of efficient HOL was left

to the programmer, and certain technique were taught to achieve this. These included
avoidance of common subexpressions by the use of intermediatc variables, precomputation of
constant terms, removal of constant expressions from loops, etc. Such techniques were
then considered good programming practice. In that sense, the global optimization techniques

mentioned serve to correct the "errors" of the programmer.

On the other hand, the current trend is to encourage the programmer to write code in a
straightforward manner, without use of any "tricks' to achieve efficiency. This is now
left to the compiler. Thus the definition of '"good programming practice’ has been changed.
There can be little doubt that this is in the long-term best interest of the state of software
development. In keeping with the trend away from machine-level languages and toward
abstract ones, the programmer should not be required to use certain constructs just to
satisfy efficiency constraints. A program written in a straightforward manner is more

easily maintained than one written with coding tricks.

However, there is certainly a limit as to what can be expected of an optimizer. It cannot
be expected to be 100% efficient. Therefore it seems axiomatic that an HOL program

written to be efficient will be more so than one written in sloppy fashion and then machine-

optimized.

In the final analysis, the choice, as usual, involves a tradeoff. What is desired as a
result of this study is a compiler which can be easily and quickly retargeted, which can
generate highly efficient object code, and which does not require efficiency of coding
by the programmer. These goals are to some extent mutually exclusive. In any such

tradeoff, the cost of retargeting will be given more weight here.
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One final observation can be made. With the one exception of register management,

the global optimization techniques can be performed at the source level and will not impact
the development of the code generator. Since compile-time efficiency is not an issue here,
and since global optimizations can have significant impact upon object execution time, it

is advisable to make the maximum use of source-level, global optimization. Some enhance-

ments to normal levels of optimization are discussed in Appendix B.

2.4.3 Register Management

The exception mentioned above, the global optimization which is machine-dependent, is
that of register management. It is also one that cannot be omitted, since it is one that

can have profound effects upon execution time.

In single-accumulator machines such as were common in the early days of computer

technology, there was no management problem, since there was no choice as to register

storage. This made the compiler's task fairly straightforward. Current missile flight
computers typically have several registers, more than one of which may be a general-
purpose accumulator. In addition, there may also be a high-speed cache memory for

frequently-used data.

The assignment of global or temporary variables to the various accumulators, registers,
index register and memory tends to be highly machine dependent. Often certain operations
can be performed in certain ways, while others cannot. For example, one microprocessor
permits direct increment or decrement of memory, but not add to memory. It also permits

a compare of memory to the accumulator, while others require the item of memory to be

loaded into a register first.

Overlooking the machine ideosyncracies for a moment, consider the problem of management
of storage itself. The first question to be asked regarding any variable is whether it should

be stored at all. This touches on the local removal of STO/LOD pairs mentioned earlier.
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A variable need only be stored if it is to be used later than the next operation, or if it
needs to be in a different register for the next one. The process of determining
variable usage is called a Dead Variable Analysis. It has been typically used for
compressing data storage in main memory, but the same approach applies to register
storage as well. It involves the building of a ""Set/Used Table" which gives the status
of each variable. After the last usage of a variable, or the last usage before it is reset,

it is dead, and another variable may be stored in its place.

Once the storage history of the variables has been determined, they must be assigned to
storage. For this purpose, the frequency of use must be examined. Variables which
are used often should be stored in register memory, while those used least often should
be in main memory. The type of usage should also be considered For example loop
counters are obvious candidates for storage in index registers. In the frequency of
usage analysis, the program should be considered in blocks. It may be useful to
provide both register and main memory storage for a variable. For example, it may
have a high frequency of usage within a loop. In such a case it would be convenient to
move the variable to a register before beginning the loop, and move it back to main
memory upon loop exit. Obviously, the compiler must provide for proper update of

memory for all possible exit paths from the loop.

While, as mentioned, the optimum assignment of storage can be highly machine

dependent, it appears that the dead variable analysis can at least be partially mechanized in
a regular, parameterized fashion, i.e. for a machine with n accumulators, m registers,

k index registers, etc. There will probably remain a certain amount of register assignment
that must be handled differently for each target machine. One (non-Optimal) way to handle

this is to assign specific registers for certain special tasks (e.g. index 4 for subroutine offsets,

index 1 for loops).




SECTION 3 - ENHANCEMENTS FOR RETARGETING

In the situation of interest in this study, it is assumed that it is not necessary to develop
a complete new compiler. Rather, it is assumed that an HOL compiler exists and
is resident on the host machine, and it can be modified to meet the goal of low-cost

retargeting. Some modifications and enhancements capable of reaching this goal

are discussed in this section. |

3.1 ASSEMBLER LANGUAGE OUTPUT

Recall that in Fig. 2-2, all portions of the compiler to the left of the IL level are (or may be)
target machine-dependent. If the code generator outputs to an editor rather than an
assembler, this editor is target-dependent and the cost of retargeting the editor must be

considered along with that of the CG. A similar statement holds for the linking loader.

If retargeting of the editor and loader can be removed from consideration, the cost of
retargeting can obviously be cut. This is possible if a stand-alone cross~assembler and
loader can be assumed to be available for each potential target machine. This is a
reasonable assumption. All manufacturers of commercial computers and micro-processors
offer cross-assemblers with macro capabilities. Most are written in FORTRAN 1V for
portability. There is a charge for these assemblers of about $500 - $2500, but this is
small compared to the cost of retargeting the editor. The only case in which a
cross-assembler is not likely to be available is for a bit-slice, microprogrammed machine

with a custom instruction set, for which no assembler has been written. This is an

unlikely occurence. In any case, if a computer with a non-standard instruction set is
selected, the cost of developing an assembler should really be charged to the hardware

development effort, rather than to software. J

One consideration should be borne in mind. Although cross-assemblers are generally
available for the computers of interest, they are not uniformly powerful. They tend to
have rather limited macro facilities and limited diagnostics. Since, however, the

input to the assemblers will be machine-generated, this is not scen as a problem.

Er——




3.2 MULTIPLE IL'S

As mentioned In Section 2.2, the typical compiler IL is quite abstract. Although it does
have one instruction for ecach distinct operatfon, the instructions and format do not
correspond to any potential target machine, The addressing is symbolic, and no regard
s given to actual machine considerations such as word length, storage format, register
available, ote. To do so would inject machine dependencies into the translator section
of the compiler, which is clearly undesirable. However, the degree of abstraction
associated with typical 11.'s places a greater load on the task of code generation than is

necessary.

Reforring to Fig. 2-2, suppose that the code generator could be split into two parts, one
of which is machine-dependent, the other of which s not. Then only the second portion
noed be involved {n rvetargeting. One way of doing this is to define a second 11, less
abstract than the fivst, and one more closely akin to machine language. The situation is

symbolized in Fig. 3-1.

In effect, this approach is equivalent to defining a fictitious computer, an "abstract machine"
which, if mechanizod, would directly execute the instructions of the second 11, This con-
copt of an abstract machine {s well established in the literature (1), (2), (M, (. The
ordinary I1, of any compiler may be regarded as the two-or three-address machine

language for an abstract machine. In fact, any language, including the oviginal HOL, may

be associated with an abstract machine. Depending upon the method of implomentation,

the tool for conversion from the abstract machine language to the tavget language may be
reforred to as an emulator, interpreter or, as in the current case, code pgonerator. The
concept of multiple 11.'s has rocently received considerable attention in the development of

interprotive languages for microprocessors (6), (7), (8.

For the purposes of tho current study, it {s suggested that the second 11, take the form of

a "Universal Assombler', language whose instructions are at the machine operation

i
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level, but do not necessarily correspond to any actual machine. Such a language, called

"MIMIC", is actually in use in CSC software development activities. For the selection of
the universal assembler (UA) language it is necessary to define an '"Ideal Machine", with an
instruction set that represents a rational set of machine-level instructions, leading to
efficient ""object" code (note that all real computers should be, but rarely are, designed

in this manner). The code generator task then becomes a simple macro substitution of

target machine instructions for the UA "pseudo-ops"'.

For this approach to result in reasonably efficient object code, the instruction set for

the UA must be carefully selected. For example, the instruction set for the PDP-11,

like many IL's, is basically two-address. If the UA were chosen to correspond to a
single-address ideal machine, the resulting code may tend to be inefficient. It is

difficult to imagine a single UA which provides a good match to all computers. Fortunately,
it is only necessary to generate efficient object code for a special subset: those computers
which are candidates for missile flight systems. It is suggested that the instruction sets

of these candidates be examined in order to synthesize the UA instructions. Within DOD

an effort is underway to define a standard instruction set for all future DOD applications.

The instruction set for this ''Software Compatible Family" is an obvious choice for the UA.

Although the UA, and the first code generator which translates to it, is intended to be
machine~independent, there are some cases in which this should not be strictly enforced.
For example, if the target machine is a 16-bit machine, then the UA should also be, to
avoid extensive data translation requirements. It appears that such considerations can
be treated parametrically, by storing the machine-dependent parameters in an easily

altered table. Machine dependence of this parametric type need not be feared, and is

consistent with a parametric approach to optimization.

—



SECTION 4 - CURRENT PRACTICE

An example of the current practice in compiler development may serve to suggest some
parallel approaches for the current needs. Such an example is provided by CSC's
development of the J-3B and J-73 compilers for the Air Force. These compilers were
developed specifically for dedicated avionics applications, and feature:

o High level of optimization

o Heavy use of compiler development tools

o Developed directly from source language syntax specifications

o Well-defined IL and CG interfaces

o Designed for efficient rehosting and retargeting.

Some tools associated with these compilers and their development are discussed next.
4.1 SYMPL

Systems Programming Language (SYMPL) is a CSC - proprietary programming language
developed using systems programming aspects of FORTRAN and PL/1. It has been in use
for over 13 years in the development of compilers. The production versions of CSC -
developed compilers are often written in SYMPL, which are then compiled into object

code.
4.2 GENESIS

This CSC - proprietary language is a compiler development tool, useful for compilers
which can be written in a table-oriented form. Based upon the defining syntax specifica-
tions for the language, GENESIS generates the tables and connecting software which

serve to implement the syntax analyzer section of the compiler. The output of GENESIS

is SYMPL source code.




4.3 JOCIT

For the automated development of J-73, the JOCIT program was developed. This program
is both a JOVIAL compiler and a compiler-compiler. A complete description of JOCIT
and the requirements for retargeting it are given in Appendix A. Some optimization

enhancements to JOCIT are discussed in Appendix B.
4.4 ACG

The Automated Code Generator (ACG) is a CSC-proprietary program developed to achieve
rapid retargeting for JOVIAL compilers. The program is designed to aid in the development
of quick-response code generators of a table-oriented nature. The resulting "Quick code"

generators are typically used as interim generators until more efficient retargeting can be

effected.
4.5 AUTOMATED TOOLS

As can be seen from the descriptions just given, the current state of the art involves the
extensive use of automated software tools to develop other software. With the aid of these
tools, it is perfectly feasible to fully develop a compiler from its syntax definition, without
ever working in the assembler language of the host machine. This approach is clearly in

keeping with the recognized advantages of HOL programming.
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SECTION 5 - CONCLUSIONS AND RECOM MENDATIONS

~—7” On the basis of the analyses presented in this report, it appears that it is feasible to

modify an existing HOL to provide low-cost retargeting, without severely degrading
the object-time execution efficiency. Some specific recommendations have been

identified and are summarized below. A i
5.1 COMPILER ORGANIZATION

\ The compiler chosen must have an architecture such that there is both a well-defined
intermediate language (IL) and a modular code generator (CG): An IL composed of
triplets or quadruples is preferred, That portion of the compiler not included in the

CG or Editor must not be target dependent.
5.2 OPTIMIZATION

The compiler chosen must have extensive capability to perform global optimization. It
is suggested that existing capabilities be enhanced to include code straightening, dead
variable analysis, and loop optimizations. The important area of register management
should be performed in a parametric manner, so that retargeting can be accomplished

by loading a table of machine parameters,
5.3 ASSEMBLY LANGUAGE OUTPUT

" The code generator should output a character string consisting of assembly language

for the target machine; Assembly and linking shall be accomplished off-line by separate

software,
5.4 MULTIPLE IL'S

At least one extra level of 1L should be considered. This should consist of a universal

assembler (UA) language whose instructions represent assembly language instructions

for a fictitious, "ideal machine." In the selection of this language, it is suggested that




candidate missile system computers, particularly the '"Software-Compatible Family",

be examined. Machine dependencies such as word length and number of registers

— o f'j- TR

should be parametric.
5.5 AUTOMATED TOOLS

It is suggested that all automated software tools available such as compiler-compilers be

used. The availability of such tools should be a factor in the choice of the base HOL

compiler. :




APPENDIX A

JOCIT

A.1 BACKGROUND

The original intent of the JOCIT effort was to develop a compiler building tool for the
J73 language. When the J73 contract was awarded, the language still was not firmly
defined, and after a few weeks of study of the language it was determined that the
development costs were higher than originally estimated. Therefore, in order to 1
produce a more useful product that demonstrated the principal elements of the original
objectives, the project was redirected towards developing a J-3 compiler building tool.
Since the need within the Government for a J-3 capability was sufficiently real and urgent,
the new project goals were highly practical. The principal objectives of the JOCIT J-3

development were to:

e Reduce the time and cost of implementing and maintaining

JOVIAL J-3 compilers

e Ensure that JOVIAL language sets implemented on different

computers are consistent

e Enable the rapid inclusion of any new JOVIAL features into
every compiler built with the tool, including those compilers

implemented before the feature was accepted

e Enable the compilers built with the tool to incorporate modern
optimization techniques that overcome many forms of poor

programming

Although the redirection to produce a running, debugged, efficient, and reliable

J=3 compiler necessarily had the effect of diluting some of the goals of the tool,
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nevertheless, the objectives were largely met. The most objectively measurable

result of the JOCIT effort was the development of a production-grade J-3 compiler

currently in heavy operational use. However, it is somewhat difficult to assess the

result of the tool development in equally objective terms, because no new retargeting

or rehosting effort has been undertaken. The following paragraphs describe the essential

features of the JOCIT program and assess the relative success in meeting the stated goals.

A.2 DESIGN FEATURES

The following design elements were incorporated into JOCIT:

e Target-machine-dependent code isolated into functional modules

o Global optimization techniques to meet the requirements of language
independence, host-machine independence, and target-machine
independence

o The GENESIS system used for writing the J-3 language specifica-
tion, the resulting tabular form of which is processed by a
language-independent analyzer program

e A prototype compiler to compile the full J-3 language; the prototype
can be used as a model for rehosting the J-3 version or as a basis
for building a J73 JOCIT

e Over 95 percent of the JOCIT code written in an HOL (SYMPL);

use of machine code is restricted to host-machine-dependent

interfaces

A.3 CHARACTERISTICS OF THE JOCIT J-3 COMPILER

JOCIT embodies the following three features which, together, realize the goal of

a tool for the generation of standard JOVIAL J-3 compilers:

e JOCIT is a stable, well-debugged, efficient, production-quality

J-3 compiler. It realizes the most advanced optimization irn any
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JOVIAL J-3 compiler to date, and even though the compiler is
large (40-50K words of HIS-6000 main memory), it is quite fast

and generates extremely informative and useful listings.

e Retargeting of JOCIT is a known, relatively straightforward, but
not trivial process. It is achieved through total replacement or
partial modification of certain compiler modules, and the installa-

tion of the JOVIAL library on the new target machine.

e Rehostability of JOCIT is achieved principally by programming the
JOCIT modules in SYMPL. Rehosting is considerably more com-
plex than retargeting, but the steps are well understood and meet
the tool requirement by costing only a fraction of a comparable,

totally new compiler implementation.
These three considerations are addressed in the following subsections.
A.3.1 USER INTERFACE

The JOCIT J-3 compiler is operated in a standard fashion entirely compatible
with other GCOS language processors. That is, the command syntax and file
specifications conform to GCOS standards, and the JOCIT user is required to

leam only the computer options in order to invoke the compiler.
A.3.2 THE J-3 LANGUAGE

JOCIT implements the full J-3 language, with certain extensions added to satisfy
unique customer requirements (including a special source language 1/0 facility
to satisfy a user requirement for compatibility with the nonstandard Honeywell
J-3 compiler). The diagnostic capability is thorough, and extensive use is made
of parameterized diagnostics (for example, providing for insertion of identifier

or reserved word names).
A.3.3 COMPILER LISTINGS

The JOCIT compiler provides a comprehensive set of compiler listings. These

listings include interspersed Phase [ diagnostics; a consistent diagnostic format
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for all phases; an extensive object program assembly language-format listing

{dentical to GMAP, a complete ""set-used" listing for all program constructs
(define names, status constants, program variables, labels, procedures, etc.);

and a program environment listing.
A.3.4 OBJECT PROGRAM EFFICIENCY

The JOCIT program expends much effort to obtain object program efficiency.
This has been achieved through two means: global, target~machine~independent |
optimization, and a code generation scheme that optimizes register usage and |

performs considerable special case analyses. Global optimization includes:
e Elimination of redundant common expressions computations
e Redistribution of loop-constant code

e Reduction of formal loop operator strength

e Improvement of compile-time constant arithmetic and subexpress-

ions (e.g., elimination of multiplications by 1)

e Recognition of dead code

e Evaluation of compile-time constant predicates

(e.g., AA - 18...IF AAY)

All computational memory is embodied in the optimizer-code generator file (IL)
interface, while local optimizations are performed by the code generator to pro-
duce the optimum sequence for each recognizable case. The combination of

global and local optimization, which attempts to minimize generated code space, is
successfully realized in the JOCIT J-3 compiler. Further improvements that ;

would have a high payoff in production programs are:
e Regional index register dedication
e Loop control variable (LCV) index register dedication

e Improved strength reduction, including test replacement and dead

LCV elimination




e Dead variable analysis
e Code straightening

Of the 60 percent improvement in generated code over the previous HIS J-3 com-
piler, 10 to 15 percent is attributable to global optimization, while the balance is
derived from the local code generation algorithms. Even though there is room
for improvement, the level and quality of the realized optimization are the

notable achievements of the JOCIT J-3 model.

A.3.5 COMPILER EFFICIENCY

Considering its optimizing capabilities, the JOCIT J-3 compiler is comparatively
1 fast. However, the compiler's instantaneous main memory requirements are
i quite high; 40K words is the minimum partition plus the size required for the

compiled program's symbol table. The compiler already is heavily segmented

into separate overlay loads. Only a radical redesign could reduce the core
requirements, and only at the cost of severely reduced compiler speeds. The

large size of the compiler is due to the following reasons (listed in descending

order of impact):

o Complexity ~ The JOCIT J-3 compiler was designed for maximum
user utility. It performs an enormous number of complicated
tasks in order to produce pinpoint diagnostics, to perform global
flow analysis/optimization, to pack tables optimally, and to pro-
vide a sophisticated and useful COMPOOL facility. The augmented

J-3 language it compiles is huge, and the code generator achieves
its goals through complex algorithms that require a considerable 3
number of source code lines to effect. It is doubtful that the num-
ber of lines of code in the compiler itself could be materially

reduced without seriously compromising user convenience and

object code performance.




e Compiler Architecture - The compiler uses a mi nimum number of

phases and intermediate files and requires a large symbol table to
be resident throughout the compilation process. It is conceivable
that by partitioning the compiler into more functional phases (a
multipass code generator is a possibility) the maximum phase size
could be reduced; but, as pointed out earlier, compiler speed
would be reduced and additional program complexity (more inter-

mediate files, for example) would result.

e Use of HOL - Because of the JOCIT J-3 compiler is written in SYMPL
and compiled by a small compiler which incorporates only a modest
number of local optimizing algorithms, the JOCIT compiler con-
tains more lines of object code than would be the case if it had been
written in assembly code or compiled by a sophisticated, optimiz-
ing SYMPL compiler. A more compact compiler also could be
achieved by rewriting the JOCIT compiler using J-3, thereby
obtaining the benefits of the compiler's own optimization. How-
ever, the J-3 language is much less suited to compiler implemen-
tation than is SYMPL and carries excess baggage (e.g., fixed
point arithmetic, lengthy prologues and epilogues) that is costly
and unnecessary. Optimizations could be added to the SYMPL
compiler to reduce object code without unduly compromising

rehostability or retargetability of either SYMPL or JOVIAL.

A.3.6 DEBUGGING (USER)

The inclusion of the MONITOR statement and ENCODE/DECODE provide consid-

erable debugging convenience for the user. In particular, the availability of the

compiler command option to suppress compilation of all MONITOR statements
; allows the user the convenience of retaining his MONITOR statements in the
source program without paying the compilation - and resulting object

program - price.




A.3.7 DEBUGGING (COMPILER MAINTENANCE) -

The JOCIT model includes a wide range of built-in compiler debugging features,
mostly in the form of formatted table and file dumps that can be selected indi-
vidually during maintenance~mode execution of the compiler. The debugging rou-
tines themselves occupy symbol table space and are overwritten by symbol table
entries during production-mode compilation. Thus, the production mode com-
piler is not enlarged since the maintenance debugging routines are not ordinarily
present; however, full debugging capability is available in the compiler by exer-

cising an option.
A.3.8 RELIABILITY

The reported error rate on the production JOCIT J-3 compiler is comparatively
low. The errors tend to be distributed throughout the compiler modules, and it is
rare for the compiler to fail completely. Not surprisingly, the most vulnerable
phase of the compiler is the optimizer since very large programs with complex
flow can cause the optimizer to abort. However, in keeping with the diagnostic
approach of the design, these failures are (almost without exception) self-
detected anomalies. Most optimizer failures relate to unnecessarily complex
space management functions which are subject to unpredictable, subtly-
compounded errors. The forthcoming JOCIT improvements project, which
provides for considerable optimization enhancement, will include simplified
restructuring of the optimizer data base and space manager to strengthen this

area considerably.

A.4 RETARGETING

In order to achieve retargeting of the present JOCIT model, the following steps

are required:

1.  Develop library for target machine.

2. Adjust compiler code for target machine sensitivity.

3. Write new direct code processor.
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4. Write new code generator.

5. Modify the editor phase to produce object code listing in new

target-machine format.
6. Add new object module formatter.

7. Provide for translation of host-machine constant formats to

target-machine formats.
These steps are discussed in detail in the following paragraphs.
A.4.1 LIBRARY INSTALLATION

The J-3 library consists mainly of 1/0 and ENCODE/DECODE routines, string
routines, and MONITOR routines. Retargeting requires rewriting these routines
for each new target. Except for the MONITOR routines written in SYMPL, these
routines are written in assembly code that is not directly transferable to a new
target machine. Installation of the library is not a simple task since even the
MONITOR routines must be rewritten (unless, of course, a SYMPL compiler

exists for the new target machine).
A.4.2 ADJUSTMENT FOR TARGET-MACHINE SENSITIVITY

Many routines within the compiler are affected by various characteristics of the
target machine. These are partly parameterized through use of a target-machine
descriptor block. However, this parameterization is not yet complete. Typical

parameters of interest are:

Target word size

Target byte size (bits per byte)
Target bytes per word

Maximum and minimum integer values

Maximum and minimum floating values

Medium packing access field descriptions

Addressing units per word

|



e Character set internal representation

o Target numeric~value representations

The following routines within the compiler presently must be adjusted as described

below:

ALOCTR

XREF

CCP

JXEC

COMOS8T

PCON

JINIT

JPI1

PF1PR1

OPT2A

Object Program Data Allocator - Describe medium

packing and type characteristics.

Cross-Reference Lister - Tailor target-dependent

listing.

Compiler Control Program, {.e., control card

scanner - Recognize multiple target option.

Compi ler Executive or "cradle" - Sequence the com-
piler as necessary for different target~dependent phases

(e.g., the code generator).

Target Parameter Data Block - Modify target-machine

parameters.

Constant Posting Routine ~ Modify as necessary to reflect

different internal forms for target.

Initialization of Compiler - Post target-specific intrinsic
functions, if any (for example, the correct library routine
entry point name for the string routines, 1/0 routines,

etc.).

Pass 1 Analysis Pragmatic Functions - Convert source

form constants to target form.

Preset Processing Subroutine of Pass 1 Pragmatic Func-

tions - Prepare preset constants in tavget format.

Pass 2 Optimizer Constant Arithmetic Routine - Modify

constant arithmetic to manipulate target form values.




Most of these modifications are individually trivial; however, the number of dif-
ferent routines to be examined and modified makes the composite task moder-

ately complex.
A.4.3 NEW DIRECT CODE PROCESSOR

The direct code processor must be rewritten for each new target-machine assem-
bly language format. This processor is a functionally separate module which
must be replaced in the link- edit of the first analysis phase. This necessitates
target-machine sensitivity in JXEC to load the proper phase, and requires the
maintenance of a unique analysis Phase 1 for each target supported (all but the

direct code processor within the phase have the same code for each target machine).
A.4.4 NEW CODE GENERATOR

The major modification for retargeting is the writing of a new code generator.
If the level of local optimization and the effective realization of the global opti-

mizations performed by the optimizer are to be sustained, a substantial effort is

required.

The basic architecture of the current HIS-6000 code generator may be retained
(which considerably reduces the design effort), and much of the machine-
independent code (e.g., the triad table builder) need not be rewritten. Still,

this must be considered a major task. There will be one code generator for each

target machine; JXEC will select the appropriate code generator phase.
A.4.5 EDITOR PHASE MODIFICATION

The editor phase must be modified (there will be a unique editor for each sup-
ported target) to generate the proper assembly-like object code listing. The
preset -constant processing also must be modified to align values in a manner

consistent with the target machine characteristics.
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A.4.6 OBJECT MODULE FORMATTER

An object module formatter (actually a part of the editor phase) must be written
for each target. The scope of this task is a function of both the complexity of the
object module format requirements and the reliability and clarity of the system
documentation that describes it. This can range from relatively straightforward

to extremely arduous.
A.4.7 TRANSLATION TO TARGET CONSTANT FORMAT

This process has been identified in preceding paragraphs. The problem is to con-
vert from the compiler's internal constant representation to the target machine
format. This requirement affects several compiler modules. For example, when
the optimizer performs compile time comparisons between character constants,
correct inequalities may be computed only when using the target representation,

since its collating sequence may not be the same as the host character representation.

A.5 SUMMARY

JOCIT is best described as, first, a competent and serviceable J-3 compiler for the
HIS-6000 GCOS machines and, second, a J-3 compiler-building tool. The advantages
of JOCIT are:

e Compiler efficiency
e Object code efficiency
o Good diagnostics

e Excellent debugging facilities (both for the user and maintenance

team)
o Moderately convenient retargeting

@ Use of quick bootstrapping SYMPL compiler tailored to JOCIT

needs




The disadvantages are the: '

e Size of the compiler

e Changes necessary to make retargeting even less costly

! o Changes necessary to make rehosting less costly (a moderately -
complex task)
e Reliance on a separate SYMPL compiler that does not take advantage
of the JOCIT compiler's own optimization power and requires separate

(although rare) maintenance.
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APPENDIX B

COMPILER OPTIMIZATION ENHANCEMENTS

This appendix summarizes enhancements to the optimizations presently performed which
have been proposed for the JOCIT J-3 compiler. It serves to illustrate the general
techniques for extended global optimization.

The optimization scheme now employed is a Level-I LNRA (Linear Nested Region
Analyzer) scheme implemented as a two~pass process. Pass 1 (known as OPT1)
performs all flow analysis and builds tables defining set and used information for each
procedure and loop. Pass 2 (known as OPT2) performs the actual transformations to
the code to realize the principal optimizations of common expression elimination,
constant arithmetic, code redistribution, and operator strength reduction. The
optimizer phases operate on the IL file generated by the analysis phases of the com-
piler; all transformations are expressed in the IL, and the output is also in the form of
an 1L file which is subsequently processed by the code generator phase (COGEN). This
design permits selectable optimization. If the optimization phases are by-passed as
they are when the NOPT option is selected, the IL generated by the front end is passed
directly to the code generator. In this mode, only those local optimizations performe d

by COGEN are effected, and no global optimization is performed at all.

The enhancements discussed in this appendix assume a solution entirely within the
framework of the LNRA design. The sum of these improvements will be to raise
the level of generated code significantly. It is expected that for any target machine
the resultant code will occupy less space and execute in less time. Furthermore,

the proposed enhancements do not violate the present target-machine-independent

design, and thus the tool concept is not compromised in any way.




B.1 CODE STRAIGHTENING

In the LNRA method used in JOCIT, program flow is determined in a single forward
scan of the program (performed by Optimizer Pass 1, or OPT1). It is the assumption
in this approach that a loop is formed whenever a label is reached via a backward
branch. Furthermore, loop optimi zation is suppressed whenever it is observed that

a forward branch enters a loop; i.e., redistribution and strength reduction are not

attempted on multiple-entry loops (because of the complexity of placing the redistributed

and strength-reduced initialization computations in each of the loop's entry blocks).
These assumptions are entirely valid on well-structured or ''straight'’ programs.
However, they cause the optimizer to miss some cases when the code is not straight.

A small program segment demonstrates this point.

The original order of the segment consists of the following five blocks and their
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interconnecting flow paths:
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The optimizer sees 2-3-4 as constituting a loop formed by the backward branch

from 4 to 2. However, the forward branch from 1 to 3 defeats the potential loop
optimization as described above. Earnest, et al. (10) have proposed an algorithm
that may be applied to place the blocks of a program in the straightest possible order.

Its application of the preceding example produces an ordering as follows:
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This reordered segment is now a single entry loop (3-4-2), and redistribution and
strength reduction algorithms may be applied to Blocks 3 and 4. Block 2, which is

conditional, is excluded. The straightening, then, can be seen to have improved

the optimization pctential.

The code straightening algorithm of Earnest, et al., discovers all program loops
in addition to straightening the order. As a result, the code straightener may

be used to replace OPT1. Instead of reading the I, the straightener will
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read an extended Global Names List (GNL) file, which will be called the Flow '
Graph File (FGF). This file will contain each program label, branch, start

PROC and end PROC delimiters, PROC call, index switch label list and |
index switch call. This information is sufficient to identify the basic blocks

and interconnecting edges. This representation will then be reordered by the

straightener, and the resulting straight order may be represented by an ordered
table of ""hatchecks' which identify the blocks of the IL to be read in order by
OPT2. The FGF will be enhanced further to contain entries for each redefined
variable--LHS of assignments, actual value output parameters, and name

parameters--such that all redefined variable lists currently produced by OPT1

may be produced by the straightener. Since the FGF is considerably smaller
than the IL, it is anticipated that the straightener will be significantly faster
than the present OPT1. '

B.2 DEAD VARIABLE ANALYSIS

A program variable is said to be dead between its last reference and a subsequent

definition. For example, in the program sequence

| (N A
QR FM$
) S

the variable | is dead between the assignment to QQ and redefinition of I in the
last line. Recognition of dead variables raises two optimization possibilities

which should be examined for cost-effective implementation: (1) store suppression

and (2) reuse of dead variable space.
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In the above example, the original store into "I'"'" may be suppressed if it is
possible to retain "I" in some register between definitions. Following from
this, it is seen that retaining "I'"" in a register means that no storage is
required, and the allocated space for "I'' may be reused during the program
segment where "I" is ""dead" by another program variable or compiler-

generated temporary.

Dead variable analysis may be conveniently performed by OPT2 after an entire
region has been processed. An extension to the definition of a dead variable
may include that program segment between a last use and a program exit

(or PROC RETURN). However, this may only be for those variables whose
first reference in any PROC is a redefinition rather than a reference, i.e.,
those whose values do not survive from one invocation of the PROC to the next.
Since JOVIAL does not permit the programmer to distinguish explicitly between
these types of variables, this will be the compiler's task. The analysis pro-

cedure is not simple, as the following two procedures demonstrate:

PROC A

ENTER

X need not be materialized X must be materialized
at PROC exit at PROC exit
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In PROC A there is a path (1-4-3) on which "X" is used before it is set, while

in PROC B there is no path to the use of "X in 3 which does not first redefine

"x" .

The objectives of dead variable analysis are:

To suppress unnecessary stores

To recognize possibilities of allocated space~-sharing between

programmer variables and compiler-generated temporaries

To eliminate unnecessary storage allocation for variables held

in registers

To help the code generator retain variables in registers

B.3 LOOP OPTIMIZATIONS

In addition to redistribution and strength reduction optimizations currently per-

formed, loop code can be improved in the following areas:

LJ

Delaying of stores

Index register dedication of loop control variables (including

strength reduction-generated ones)
Register dedication of redistributed and common values

Strength reduction test replacement and dead loop control variable

elimination
Strength reduction of addition

Loop collapse

Extension of strength reduction to non-FOR loops

These techniques are discussed in the following subsections.




B.3.1 DELAYING STORES

Often with loop code, a variable is repetitively assigned. All but the store
immediately preceding loop exit are redundant, and dedicating the variable
to a register within the loop and delaying the store into the variable until

after loop termination can improve loop performance. For example, in the

following program:

YY$0$) - 0§
FORI =1,1,99$
IF XX($I$) GR YY($0$)$
YY($0$) = XXFI$)$

if "YY" is dense-packed, the redundant stores within the loop may be quite costly.

The optimizer may recognize the case and transform the program as follows:

temp =0 $
FORI =1,1,998
IF XX($I$) GR temp$
temp = XX@I$)$
YY($0$) - temp$

Thus, in the example, if "'temp" is dedicated to a register, both code space and

execution time are reduced.
B. 3.2 INDEX REGISTER-DEDICATION OF LOOP VARIABLES

Allocation of loop control variables to index registers eliminates loads and
stores within the body of the loop, thus compressing the loop and speeding it
up as well. This optimization should be applied both to programmer loop

variables and to optimizer-generated loop variables arising from strength

reduction. Such dedication may be expressed by means of accenting the




REPL IL operator to indicate that the LHS (the loop variable initialization and
increment code, for example) is a candidate for loop dedication. The ENDL

operator would signal the code generator to free such loop-dedicated variables.
B.3.3 REGISTER-DEDICATION OF REDISTRIBUTED VALUES

The optimizer moves all redistributed values into the loop entry block. This
redistribution is indicated by the VALD operator. The optimizer will mark
such redistributed values to make the code generator aware of the motion and
to identify the loop from which the values were removed; this will enable the
code generator intelligently to select which are the best candidates for register
dedication. Even on limited register machines, such as the HIS-6000 series,

this can be useful as in the case of a table search, for example:

FOR I = 0,1,999%
IF XX($I$) EQ PATTERNS
XX@$1$) =08

In this case, PATTERN may be profitably assigned to an accumulator before
the loop (especially helpful if XX is full-word addressable), and the interior
of the loop is made smaller and faster. At the current level of optimization,
XX($19) is loaded and compared with PATTERN, whereas (assuming XX is
full-word addressable) PATTERN may be loaded outside the loop, and only
the comparison code is required inside. This same optimization may be
performed for values found common and therefore computed outside the loop.

B.4 STRENGTH REDUCTION TEST REPLACEMENT AND DEAD LOOP
CONTROL VARIABLE ELIMINATION

During the process of strength reduction, it may be the case that all uses of
a loop control variable will have been reduced, such that the loop control

variable may be considered dead. In such a case, all references within the

body of the loop will have been replaced by generated loop control variables,




and the code to initialize, step, and test the original variable is all that remains.

Strength reduction test replacement means to replace the test of the original loop
control variable with a derived test on a generated loop control variable. This

can be seen from the following simple example

FOR I - 0,1, 9%
XX($1+3$) - 0 §

which when reduced in strength by the optimizer effectively becomes:

temp - 0§
FORT = 0,1,9%
BEGIN "I"

XX ($temp$) - 0 $
temp = temp 3$
END "I"

If the test against T were replaced by a test against temp, the program could be

written:

FOR temp - 0,3, 27$
FOR1 - 0,1$
XX($temp$) 0§

Thus, the use of I is entirely dead, all references are eliminated, and the following

simplified and improved program emerges:

FOR temp - 0,3,27$
XX($temp$) 0%

B.4.1 STRENGTH REDUCTION OF ADDITION

The current strength reduction algorithm includes only the reduction of multi-

plication and exponentiation. The reduction of addition (which reduces to




another addition) is sensible when it leads to further reduction possibilities.

For example, the following program,

FORI - 0,1,99%
BEGIN "T"
FORJ - 0,1,99%
AA($LI$) - 0$
END "I"

in the current JOCIT model reduces only the implicit multiply of J; the subscript
expression (I, J) is linearized to (I+d] *J), where d] is the first dimension of AA.
Assuming that AA is 100 by 100 (d1 is then 100) the equivalent code after strength

reduction is:

FOR I - 0,1,998
BEGIN "I"

tl =0 $ "REDUCTION OF 100*J WHICH IS INITIALLY 0"

FOR J = 0,1,99$
BEGIN "J"
AA($l't1$) 08
t, =t +100%
END "J"
END "I"

An improvement to this would result from the reduction of the I+ t1 in the inner

loop. A straightforward reduction would give:




FORI - 0,1,99$
BEGIN "I
t,=08$

] t _=1$ "FROM REDUCTION OF I+t WHICH IS
INITIALLY I

FOR J - 0,1,99$
BEGIN "J"
AAGLS$) - 0
t. =t +100$

1 1

t,=t, +1003

END |lJ|'
END T

This reduction as shown is actually a degradation of the original program unless
the dead loop control analysis is applied along with test replacement. The result

is a significant improvement as the following equivalent program shows.

FORI - 0,1,99$
BEGIN "I"

FOR t2 1,100, 9900:1$

AASES - 08

‘ NOTE: The expression 99001 is loop constant over the inner loop, and thus

| is properly redistributed.
B.4.2 LOOP COLLAPSE

If the preceding example were rewritten with the subscripts reversed,
| FOR1 0,1,99
BEGIN "1"
FOR J 0,1,99%
AABI,I$) 09 "J,1 instead of 1,J"
END "I"

i | . B-11
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the effective reduction looks like the following:

t3 = 99§
FOR l:1 = 0,100, 99008
BEGIN "tl"
FOR t2 = tl,l,t3$
AA($t2$) =0$
t3 = t3+100$

trg N
END t1

A close analysis of the above reduction reveals that the inner loop control
variable (the generated one, t 2) steps consecutively from 0 to 9999; thus, the

inner loop may be collapsed into the outer loop leaving a single loop as follows:

FOR t4 =0,1,9999%

AA($t 4$) = 0$
This continuous stepping function may be recognized by observing that the
difference between the terminal value of one iteration and the initial value of
the next is precisely the step value of the inner loop control. For example,
the terminal value of the t 2 on the first iteration is 99 (t 3), and the initial
value of the second iteration is 100 (stepped value of t l); the difference, 1,

is the step value for t

2
A comparison of the various levels of optimization discussed as applied to the

simple example discussed above shows the progressive improvements. The

examples shown use the HIS-6000 instruction set.
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Optimization

Ll
L2

Optimization - Level 1: Current JOCIT Optimizer

Total: 14/Inner loop: 8 (incl. multiply)

STZ
STZ
LKQ
MPY
ADQ
STZ
AOS
LDA
CMPA
T™I
AOS
LDA
CMPA
TMI

I

J

J

100, DL
I
AA,QL
J

J

100, DL
L2

I

I

100, DL
L1

L1

L2

Total: 15/Inner loop: 8 (no multiply)

STZ
STZ
STZ
LDQ
ADQ
STZ
LDQ
ASQ
AOS
CMPA
TMI
AOS
LDA
CMPA
TMI

I

Jd

t1

I

t1
AA,QL
100, DL
t1

100, DL
L2

100, DL
L1
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) Optimization - Level 2: Reduction of Addition, Test Replacement,

Dead Loop Variable Elimination

11

L2

Optimization - Level 3: Level 2 -

STZ
LKQ
STQ

ADQ
STQ

LDQ

STZ
ADQ
STQ

CMPQ

TMI
AOS
LDA
CMPA
™I

Total: 15/Inner Loop: 6

I
I
t

AA,QL AA($t 2$) 0$
100DL

t2 tz t2'100

100, DL
L1

Register Dedication

11

L2

LXL1
EAX2
EAA
STA
STZ
EAX2
CMPX2
TMI
EAX1
CMPX1
TMI

Total: 11/Inner Loop: 4

0, DL 1=0

0,X1 tg - 1

9901, X1

tg tg 99011
AA,X2 AASLS) 0%
100, X2 to  ty:100
t3 test to vs. tg
L2

1,X1 I-1+1

10, DU

L1

Optimization - Level 4: Level 3 ' lLoop Collapse

L1

EAX1
STZ
EAX1
CMPX1
TMI

Total: 5/Inner Loop: 4

0,DU
AA,X1
1, X1
9999, DU
1.1




B.4.3 EXTENSION OF STRENGTH REDUCTION TO NON-FOR LOOPS

In the current JOCIT optimizer, strength reduction is applied only to formal
(i.e., FOR) loops. Strength reduction may, however, be generalized to include

! the reduction of functions of any variable satisfying the following conditions:

o The variable is iteratively redefined once only with the
scope of some loop; i.e., the variable ('I" for example)

is defined by I = I+k or I = I-k

o The variable is nowhere else redefined within the loop

o The redefinition expression (k in the above example) is

constant over the same loop in which the variable is iteratively

redefined

The recognition of such variables, functions of which are candidates for reduction,
will be the responsibility of OPT2 which will employ a double scan program loops
identified by OPT1. |

| B.5 PARALLEL PATH OPTIMIZATIONS

The IF...THEN...ELSE and CASE constructions in HOLs produce parallel paths

in the resulting program flow graph. Certain optimization possibilities arise
because of this form of flow which are not addressed in the present JOCIT optimizer.

The optimizations considered in the following sections are:

o Improved forward flow analysis
o Load promotion/store delay

o Common name recognition
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B.6 IMPROVED FORWARD FLOW ANALYSIS

In the current JOCIT optimizer, all forward branches are treated as conditional

insofar as their effect on the state of the search set is concerned. For example,

a+b

in the following program segment:

o a
e a+b
L

the assignment to "a" in Block 2 prevents "a+b'" in Block 3 from being recog-
nized as common with that in Block 1 although they compute the same value.
The analysis can be improved in OPT2 by restoring search set value numbers
at block entrances whose immediate textual predecessor block exits by an

unconditional branch.
B.6.1 LOAD PROMOTION/STORE DELAY

In any multipath graph, code space can be saved by preloading common values

and by delaying common stores as the following simple case demonstrates:

IFEITH BOOL$
AA$11J%) = KK*5$
ORIF 1 §
AA($1+J9%) - KK*5:1$
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In the current JOCIT compiler, if neither I+J nor KK*5 appear before the IFEITH,
the code (shown for the HIS~6000) will be:

LDA BOOL
TZE Ll
LDQ I
ADQ J
EAXO 0,QL
LDQ KK
MPY 5,DL
STQ AA,XO
TRA L2

L1 LDQ 1
ADQ J
EAXO 0,QL
LDQ KK
MPY 5,DL
ADQ 1,DL
STQ AA, X0

L2 sty

Total 16

Applying the diamond optimizations, the code would be:

LDQ 1
ADQ J PRECOMPUTE 1+J
EAXO 0,QL SAVE IN X0
LDQ KK
MPY 5,DL PRECOMPUTE KK*5
SAVE IN Q
LDA BOOL
TNZ L2 TRUE CASE NOW NULL:
Ll ADQ 1,DL FALSE CASE:
COMPUTE KK*5'1
L2 STQ AA,XO0 DELAYED STORE OF
AA@1'J$)
Total 9 Reduction - 44%
B-17
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B.7 NAME COMMONALITY

The current JOCIT optimizer employs the value~-folding technique to implement
common expression recognition. This excludes recognition of certain cases in
which expressions are computed on parallel paths which are formally common
but which may compute different values. The following program example
demonstrates:

IFEITH BOOLS$

PP(XX+YY)$
ORIF 1§ BEGIN
XX=XX+1$ PP(XX+-YY)$
END
oo e XX+YY...

In this example, the expression XX-YY after the IFEITH/ORIF construction
is formally common with the XX-YY computed on each path of the diamond;
however, since it computes different values--XX is redefined on the ORIF
path--the optimizer will not recognize the common case. This problem may

be solved within the present value-folding design by the following technique:

o At the terminus of parallel paths, all live names and expressions
are permuted for formal name matching. Thie involves examining
the value synonym list and substituting the different name synonyms
until the list is exhausted or a match occurs on both paths. In
practice, synonym lists for values are quite short, so that this

process is not prohibitively slow.

o Common names and expressions so recognized are then assigned to
temps on the parallel paths. (e.g., XX 'YY is assigned to T1 on

both paths in the above example). The same temp is used as a

surrogate name for the common expression. This is to give the

Gen as 2
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expression, on both paths, a common residence which the code genera-
tor may subsequently assign to a register in order to achieve the

desired optimal effect.

e Common names and expressions thus recognized are now posted to
the search set in the usual manner, and the temp is also posted as
a synonym for the posted value. Thus, subsequent occurrences of
the expression are found common through the conventional folding
technique. Dead variable analysis may delete the assignments to
the temps on the parallel paths. The optimization is realized by
the code generator when it is called to compute the value common
subsequent to the parallel network; the temp (which may have been
register-dedicated on each path) is chosen as the optimal source of

the value.

In the example given above, the value XX:YY is stored in a temp, the same
temp, on each path in order for it to be passed as a value parameter in the
calls to PP. Thus, references to XX:YY after the diamond may be replaced

by references to the temp.

B.8 USE OF COMPOOL BY THE OPTIMIZER

B.8.1 REDEFINED VARIABLE LISTS FOR COMPOOL DEFINED PROCEDURE

Optimization may be enhanced through extension of the COMPOOL concept.
The greatest potential payoff is in refining the spoil analysis at COMPOOL -
defined procedure calls. Another useful application is in the use of branch

frequency information to improve certain loop optimizations.

In the present JOCIT optimizer, calls to local procedures invoke a spoiling
process in which only those variables global to the called procedure and also

to the point of call are assumed to be redefined by the call. This process
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is mechanized in OPT1 which constructs a list of global variables redefined by
the procedure. The list also includes other procedures called, so that cascaded
effects are accommodated. For calls to externally-defined or COMPOOL-
defined procedures, the optimizer makes the assumption that all external and
common data are spoiled by the call. This is clearly a safe but overly conser-

vative assumption.

An improvement may be experienced by appending redefined variable list informa-
tion to the COMPOOL entry for each procedure during COMPOOL assembly. This
requires one or both of two other changes to the COMPOOL process. The first
requires the programmer to specify in the COMPOOL declaration for the pro-
cedure those global variables assigned and those external procedures called.

The second approach requires that the COMPOOL source for procedures include
the entire procedure body. In this case, OPT1 would be called as part of the
COMPOOL assembly, and its constructed RVL would be output with the procedure
entry in the COMPOOL.

B.8.2 BRANCH FREQUENCY DATA

As part of the integrated approach to the LCF design, execution measurement
data may be subjected to postmortem reduction and the branch frequency data
entered into the program COMPOOL. The branch points would be identified by
statement number. Thus, subsequent compilations of the program would pro-
vide for access to the branch frequency data in that program's COMPOOL by
the optimizer for the purposes of replacing branch frequency assumptions by
actual operational experience. A limitation inherent in this approach is that
source program modifications to the measured program are prohibited between
any measured execution and a subsequent recompilation. This guarantees that

the statement number data is consistent between the COMPOOL and the sub-

sequent compilation.
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B.9 MISCELLANEOUS OPTIMIZATION ENHANCEMENTS

B.9.1 VALUE USAGE CONTEXT

The optimizer will set bits in each VALU entry in the IL to indicate the con-
texts in which the value is used. These bits may distinguish between computa-
tional usage and subscript usage, for example, and will aid the code generator
in register allocation for values. For example, a value having only subscript
uses may be profitably allocated to an index register. The current JOCIT code
generator already makes use of this information, so the setting of these bits

yields a low-cost object code efficiency improvement.
B.9.2 UNREFERENCED PROCEDURE DELETION

It frequently happens that as a program ages, certain procedures are no longer
referenced, and the programmer fails to remove them. This is an easy case
for the compiler to recognize, and the unreferenced procedure need not be

compiled.
B.9.3 SINGLE-REFERENCE PROCEDURE OPTIMIZATION

A procedure with only one reference may perhaps be more efficiently compiled
as an open routine with actual parameters substituted for formal parameters.
This substitution may be performed by OPT2 (or perhaps the straightener) by
collecting the actual parameter IL code and substituting it for the corresponding
formal parameter IL code, and by eliminating the procedure prologue and

epilogue.
B.9.4 REFINED REGION DEFINITION

That segment of the program optimized by the JOCIT compiler in a single unit
is known as a region. Currently it is the case that a region break occurs when

the optimizer exhausts working storage for the region. When this happens, the
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IL is flushed, and working space is recovered for the next region. In the pro-
duction compiler, working space is sufficient to permit the optimization of

several hundred source lines per region.

It is suggested that the region end definition be refined to prevent the termination
of a region within a loop that might otherwise be contained. This can be accom-
plished by the straightener, which will record for each loop entry in the loop list
the number of IL entries associated with the loop body. OPT2 may then estimate
the working storage requirements - based on the IL count for the loop ~ whenever
a loop top is seen and terminate the region before the loop in the event that
working space is insufficient. This will permit the optimization of a loop, or
next of loops, within a single region, which the termination of a region in mid-
loop prevents (e.g., after such a region end, no strength reduction or redistribu-

tion may occur).

B.9.5 REASSOCIATION, DISTRIBUTION, AND CONSTANT COLLECTION

Subscript expressions, linearized by the analysis phase, may be more com-
pletely optimized if the rules of reassociation, multiply distribution, and

constant reordering are applied. These rules, to be implemented in OPT2,
are summarized as follows ("K' stands for any constant, and "&'" stands for

any associative operator*):
Reassociation

1. The expression (A & Kl) & Kq is changed to A & Kg,
where K3 = Kl & K2

2. The expression (A & K) & B is changed to (A & B) & K

3. The expression (A & K;) & (B & Ky) is changed to (A & B) & 1(3.
where K3 - Ky & K2

*Add and multiply are the only associative operators of interest in this discussion.

B-22




Distribution of Multiply

4, The expression (A + K;) * Koy is changed to (A * Kg) ' Kg,

Constant Reordering

5. The expression (K & A) is canonically reordered to (A & K)

The effect of these can be seen on the following two-dimensional array refer-
ence XX ($1:1,J:1$), where XX is a 10-by-10 array. The linearized subscript
is (1+1) + (J:2)*10. The successive application of the above rules to the triads

as seen left-to-right is shown:
(1+1) becomes (1+1) by Rule 5.
(J+2)*10 becomes (J*10):20 by Rule 4.
1+1)+(J*10) :20) becomes (I+(J*10))+21 by Rule 3.

One of the primary effects of these rules is that any constant offset is floated

to the right where it is removed by the code generator and placed in the address

field as an address offset.
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