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PREFACE

This final report Is the result of a two man-month study to define a methodology for

structuring the development of High Orde r Language (IIOL) code generators for

special Missile Systems appl ications. The report Includes an analysis of code genera-

tion techniques In general, the specia l requirements of imbedded Missile Systems

applications , and recommendation of an approach to providing effective compilers

compatible with low—cost retargoting.
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H.
SECTION 1 - iNTROD UCTION

1.1 BACKGROUN D

In recent years there have been two si gn i ficant trends in the DOD community which

tend to alter the requirements for h ighe r—Order Language (HOL) compilers for

digital computers: (1) The increasing use of “imbedded” digital computers In

avionics, test hardware , and other devices , and (2) The recognition of the value

of HOL programming , as opposed to a machine—oriented language (I~lOL), wi th

respect to overall life—cycle costs.

Until fairly recently, the uses of HOL’s were essentially limited to scientific

research using large—scale general-pu rpose computers . For such uses , a com-

piler was both resident in and targeted (i.e . intended to generate code) for the

general —purpose computer. For such an application , a considerable number of

man—hours of labor could be expended in the development of a sIng’e compiler , since

they were not written that frequently. Since the compilers were used in a batc h

mode , compiler size and/or efficiency were sometimes given heavy emphasis.

With the widespread use of small , special purpose flight computers in Imbecided
• applications , the requirements have changed.

Imbedde d computers tend to be too small and specialized to Suppo rt resident IJOL

compilers . Therefo re, the trend has been toward the use of cros s”-compilers

resident on a large, general-purpose computer but targeted to the flight computer.

Since imbcdcied compute r applications are almost always real—time and often time—

critical , special emphasis is given to the gene ration of highly efficient object code .

In this case , compiler efficiency is of lesser impo rtance.

1—1
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Each digital flight compute r or othe r Imbodded computer tends to be highly specialized

with distinctive Internal architecture and a unique instruct ion set. Because of

technological advances , obsolescence is rapid and a given computer may only be used

In a single program. In such a situation , it is wholly Impra ctical to develop a corn—

plote hIOL compiler for each ta rget machine , even if the host computer is unchar ed.

This problem has been compounded by the advent of microprocessors and the recent

- 
- proliferation of HOL’s oriented for missile applications.

A partial solution to this problem is to recognize tha t many of the tasks performed by

a compiler are done at the source syntax level , and are independent of both the host

and target computers (and even the HOL being compiled). It is only the portion

of the compiler which add resses the gene ration of actual machine code that need be

altered. This suggests that it Is possible to structure a compiler In such a war that

this portion , the code generator , is modular and easily nitered to adapt to a diff e rent

target computer.

Unfo rtunately, although the code generator ((‘G) section of a compiler Is generally a

fraction of the total code and requires a much smaller fraction of the total execution

time , It tends to be the least structured and orde rly po rtion. In th i s  respect it reflects

the structure of the target machine to which It must ult imately conform. Also ,

optimization of the object code requ i res Involvement of the (‘G in a machine—d epend ent

WRY.

1.2 STUDY OBJECTIVES

This study represents a preliminary analysis aimed at the de finit ion of a

for structur ing the developmen t of IIOL code generators for missile systems applicat ions.

The purpose of this methodology Is to provide a structured technique for providin g low—

cost , easily —retargetable compilers to support the software development tor small missile

applications .

- 
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Since the missile systems applications of greatest interest involve real—time operation,

special emphasis will be placed upon the generation of efficient optimized code ,

particularly that for arithmetic expressions. The Intent is to define techniques

whereby effective optimization can be perfo rmed without requiring a high degree

of target dependence In the code generator.

The follow ing ground rules were adopted:

• The techniques proposed are to be applicable to existing compilers;

It must not be necessary to develop a new compiler in order to

realize some of the advantages.

• A non-optimizing compiler Is not acceptable.

o Factors to be optimized are:

— Retargeting cost

— Execution time of object code , with emphasis on missile

system applications

— Program life cycle cost (Impacted by both size and time

efficiency)

o Factors which may be sacrificed are:

— Compiler execution time

— Compiler development cost

It should be noted that the factors to be optimized are , to some extent , mutually

exclusive. For example , it is reasonable to suppose that a compiler designed for

lower retargeting cost will requ i re a different organization of the optimization

algorithms, and thus will generate somewhat less efficient code .

1—3
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1.3 SCOPE

The scope of this study is to define a methodology for structuring the development of

High Order Language (HOL) code generators for special missile systems applications.

This is accomplished by an initial analysis of the compilation process, followed by

a discussion of conceptua l enhanceme nts to the process for retargeting which are

relatively obvious from the analysis.

The process of HOL compilation Is analysed in Section 2. The flow from HOL Code to

machine code is discussed including syntax analysis , use of intermediate languages ,

optimization , and code generation.

In Section 3, it is pointed out that for the use of HOL’s In missile system applications ,

it is not necessary to redevelop the HOL compiler for each new missile system. The

use of assembly language outputs and multiple intermediate language s with rega rd to

the problems of code generators and retargeting is a viable and economic alternative.

There are current tools available for both retargeting and rehostlng. The current

practices and some of the tools are discussed in Section 4.

These discussions lead up to a set of conclusions and recommendations pursuant to a

methodology for code generators for missile system applications which are presented

in Section 5.

I
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SECTION 2 - ANALYSIS

2.1 COMPILA TION

The process of compilation is one in which an ITOL source code (consisting of statements

written in the syntax of the BOL) is converted into a machine—oriented object code . in

essence, this process is one of string replacement: the character string representing

the source code is subject ed to a series of transformations , a ccording to a set of replace-

ment rules , until it becomes the output string representing the object code .

In general the direct conversion of a statement or series of statements directl y to

• object code is much too formidable to attempt in a single step. Instead , the problem

is made amenable to solution by breaking It down Into several smaller steps . A typical

sequence is symbolized by Fig. 2— 1. In the Syntax Anal yzer (parser) section each

source language statement is scanned , the operators and identif iers are isolated , and

the statement type is i dentified. incorrectl y formed statements are detected here . The

source statements are reformatted to save space and tagged with various Indicators

giving, for example , the statement type . During the process of parsing, variable and

subroutine names are identified and added to a symbol table. In some compilers , the

statements are reordered to some extent so that all statements of a given t ype can be

compiled together. Parsing is probably the most time—consu ming part of the com-

pilation process. However , it can be made quite orderly. In fact , automated compiler-

compilers exist which can generate a pa rser from the syntax definitions of a language .

If global optimization is to be perfo rmed. It Is done at this level. Typical of this

optimization is the reorganization of the program flow to remove unused or repeated

code, and to eliminate common subexpress ions.

2-1
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• The structure of the source language Is one that Is Intended to be convenient for the

user, but not necessarily for the computer. In part icular, a single source statement

generally calls for many distinct operations to be perfo rmed. Before generating

object code, it is first necessary to Identify these operations and their order. To do

this, it Is common to define an Intermediate Language (IL) in which each separate

operation corresponds to a single IL Instruction. Note that a single IL operation

may (and usually does) require more than one machine instruction . For example,

a floating point multiply may be represented by a single IL instruction , even though

ft cannot be directly perfo rmed by hardware and requires a subroutine call to realize.

The IL “operation” Is chosen to be any sequence of instructions that can conveniently

be isolated as a self—contained , independent sequence. The language chosen for the

IL Is still typically quite abstract . Symbolic addressing is used and little or no

consideration Is given to actual machine characteristics such as word length , number

of registers , etc.

Following translation to the IL , there are several fu rther optimizatlons that can be

• performed at the IL level. For the most part these are local opt imizations.

The next step in compilation is to replace each IL statement by an equivalent sequence

of machine—level instructions. This step is performed by the code generator.

Normally, In this step symbolic addressing is still retained. in a sense , then , the

code generator outputs assembl y language for the target machine. Indeed , in many

compilers , particularly early ones , this was the last step performed-. The assembly

language was then passed to a separate assembler. In most cases , this is no longer

done. The reason is that a separate assembler must repeat many steps , such as

building a symbol table , that have alread y been performed by the parser. In a

compiler , the only “assembly” task to be performed is that of assigning specific

locations to the symbolic parameters . This task is performed by an Editor.

2— 3
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• Between the CG and the Editor, a final phase of global optimization is performed. The

most signification optimization done here is that of register management, assigning

parameters to registers in such a way that repeated access to often—used parameters

can be done efficiently.

• The process of compilation can be thought of as a transformation fro m a higher order of

abstract ion (HOL) to a low order. This is symbolized on an “abstraction continuum ”

in Fig. 2-2. As ind icated, each segment of the compiler servos to reduce the level

• of abstraction , which is finally redu ced to absolute mach ine code by the Relocatable

Linking Loader.

• The portion of the compiler that is of concern for retargeting is any po rtion which

Is machine—dependent . In Fig. 2-2 , this Is primarily the CG (sha ded in the figu re~
but actually can include everything to the left of the IL level. One observation may be

• 
~• 

made herc~ It appea rs that one reasonable approach to reducing the cost of the code

generator Is to reduce its responsibilIty by moving functions either into the Translato r

or the Editor/Assembler.

2.2 INTERMEDIATE LANGUAGE

The choice of an Intermediate langu age for a compiler Is largely arbitrary, and many such

languages have been used. However, It should not be surprising that the choice of

• htermedtate language can have a profound effect on the compilation efficIency, the

execut ion eff iciency and the organIza tion of the compiler itself. In early compilers , a

common IL was Polish (Lukaslewtcz) notation. This was primarily because Polish

notation is easily der ived fro m ordina ry algebraic notation. Each ope rator In PolIsh

operates on only one or two parameters, and so the notation meets most of the

requirements for an IL. Unfo rtunately, Polish notation Is basIcall y a stack—oriented

language , whereas all real computers are essent ially regIster—o rganized (even though

they may suppo rt certain stack operations) . The refore , a considerable amount of

translation Is required in the code generator to convert Polish Into machine code.

2— 4
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Other forms of IL are the doublet, triplet, and quadruple forms. In these IL ’s, each

• IL Instruction consists of an instructIon operation code, followed by one, two, or

three operands. A typical sequence of doublets may be:

LOD

ADD

STO

MULT P
• SUB

OUT

(In real ity, of course , numeric operation codes would be substituted for the mnemonics shown.)

A single accumulato r is assumed so that each operation is assumed to be upo n the

- 

• 

accumulator and the named operand. Note that this language may, in fact , be ve ry

nearly equivalent to assembly language .

Both Polish notation and the doublet fo rm are best su ited to single—accumulator mnch ine , in

• which all operations must be performed on the data In this accumulator and the result

loft the re. Most modern computers , however , contain mo re than one general—purp ose

register, at least some of which function as accumulators . For th is reason , most compi ler s

now use the triplet or quadruple form. In the quadruple form , the three operands

represent the two parameters ope rated upon , and the source parameters to which the

result is assigned. In the triplet forni , the source parameter is omitted ; the result

is assumed to be left in the location assigned to one of the input ope rands .

In selecting the form for the IL , the architecture of the target machine should be taken

into account. Thus , the doublet form may be very efficient for a single—a ccumulato r

computer , but very poorly suited for one with memory arithmetic (that Is , each memory

location functions as an accumulator) . For the latter , a triplet form would he pre fc~.red.

2-6
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Tailoring the IL to the target machine is both possible and desirable for a resident compiler.

It is neither for a retargetable cross—compIler. This places even more emphasis upon

choosing an IL that is relatively general. It also suggests greater Inefficiency, at least in

compile time, and probably in object execution time as well.

• Having selected an instruction format for the IL , there Is st ill the question of the IL

instruction set. This is a matter of judgement and expe rience. There is no optimum

set, since the ease of translation depends upon the particular problem being solved.

However, the IL Instruction set should offer a reasonable correspondence with both the

operations available in the source language and the target Instruction set. Once again ,

for a multiple—target situation, greater compromise Is likely.

2.3 CODE GENERATIO N

Conceptually, the process of code generation is very straightforward , and can be

carried out by a method of simple string substitution. For example , the IL

quadruple

ADD A , B, C

may be replaced by the assembly language Instructions

LOD A
ADD B
STO C

The code generator must simply replace one string by another , and substitute the

operand identifiers in the proper places , as indicated by the underlines .

A simple , “quick—and—dirty ” code generator can , in fact , be written in just such a

fashion. Since it can be written as a table—driven algorithm , retargeting would be

simply a matter of replacing the tabular data. This approach is actually taken when

rapid development of a new compiler is required. Since the CG is table-driven, it is

relatively easy to devise automated methods for developing the (‘G itself.

I
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The difficulty arises when we also require efficient object code . Cons ider, for example ,
the FORTRAN expression

X= (A~~ B)/C
• which would translate to the IL sequence

ADD A , B , TEMP
DIV TEMP , C , X

Each quadruple may be replaced by a set of three assembly language instructions

LOD op 1
operation op 2

STO op 3

(Here a typIcal set of mnemonics for a single—accumulator machine Is assumed.)

Direct replacement of the two quadruples would then yield:

LOD A
• ADD B

STO TEMP
LOD TEMP
DIV C

• STO X

The two Instructions indicated are superfluous , and would be omitted by a human

programmer. Thus a straightforward code substitution tends to lead to very

Inefficient code .

It has often been said that a good assembly language pro grammer can write more

efficient object code than the best compiler , and this is in general quite true . The re

are a number of subtle ways in which such a programmer can ut i lize coding “tr icks ”

to Improve the efficiency of his code. For example, the optimum method of Imple-

menting a given source statement may be quite different , depending upon the given

• problem and what takes place in neighboring statements . Such subtlety is Impossible

for a simple, subst Itution—oriented CG. It Is the attempt by the compiler develope r

to inject some of this subtlety into the code generation process that results in a com-

plicated , highly machine—dependent (‘G.

2— 8 
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2.4 OPTIMI ZATIO N

From the discussion so far, It appears that the degree of optimization and its Implementation

has a profound effect upon the practicality of achieving the simultaneous goals of low-cost

retargeting and efficient object code. Therefore the techniques available for optimization

are examined next.

2.4.1 Local Optimization

To illustrate some of the techniques for local opt imizat ion, let us consider the FORTRAN

instruction
X =  (A~~~B)/C _ ( D * E ~~~F * G )

Straightforward translation of this statement yields the IL sequence

ADD A , B, TEMP 1
DIV TEMP 1, C , TEMP2
MUL D, E, TEMP 3
MIlL F, G. TEMP4

ADD TEMP 3 , TEMP4 ,

• 
• 

SUB TEMP2 , TE M P5 , X

Converting to object code as befo re would give

LOD A
ADD B

TEMP 1
LOD
DIV C
STO
LO l)
MUL E
STO
LOD F
MIlL G
STO
LOD TEM P 3
ADD
STO TEM P5
LOD TEMP2
SUB TEM P 5

- 

STO 

2-9 , 
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This :s a sequence 18 instructions long. The code can be shortened by notIng that the

indicated STO/LOD pair is superfluous. It is relatively easy to design the CC (or

Editor) to scan for such unnecessary pairs and delete them. Although there are othe r

such pairs , they have different operands and cannot be deleted. However If , following

the deletIon of the fi rst pair , we exchange the operands of all commutative operations (ADD

and MUL) we have

LOD A
ADD B
DIV C
STO
LOD E
MUL D
STO
LOD G
MIlL F
STO TEMP41
LOD TEMP4 J
ADD
STO
LOD
SUB TEMP 5
STO

Now the TE MP4 pair (and the Intermediate variable as well) can be deleted. Finally,

by permitting the unary minus operation (the mnemonic CBS is assumed), the

subtract can also be reversed. The resulting code is

LOD A
ADD B

• DIV C
STO
LOD E
MUL D

• STO TEM P3
LOD
MUL F
ADD TEM P 3
SUB TEMP2
CBS
STO

2-10
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This Is a sequence of 13 steps, a reduction of 28% over the original. An experienced

assembly language programmer would probably have written

LOD D
MUL E
STO TEMP1
LOD F
MUL 0
ADD
STO
LOD A
ADD B
DIV C
SUB TEMP1
STO X

which Is only one Instruction (8%) shorter than the “mach ine coded” version. This result

suggests (but certainly does not prove) a principle that seems to hold for HOL’s.

If local optimization Is applied, mathematical assignment statements tend to compile

very efficiently, and will run little , if any , slower than the same expression coded by

hand. Since the great majority of HOL code for missile system applications is

mathematical, there is reason for a certain optimism that the goal of efficient object

code can be met without complex optimization schemes.

It should be noted that the process is not as simple as has been implied. For example ,

if the term A -+ B is used elsewhere, then it would be Incorrect to delete the STO TEMPI

in the fi rst pass. The LOD TEMP1 , however, can be deleted. It should further be

noted that some of the steps outlined here can be perfo rmed at the IL level. Thus an

optimizing translator would have output the IL sequence

ADD A , B , t
DIV ~~, C ,
MUL D, E ,
MilL G , G ,~~
ADD TEM P 3 ,
SUB TEMP2 , ~~. X

2— 1 1
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where the asterisk ( )  represents the accumulator. The (‘C is still required to reeognhi~e

• the as an Indication to skip the corresponding LOD or STO, and , in the last Instruction ,

to insert a CBS.

Two other forms of local optimizat ion are strength reduction and reduction of common

subexpressions. The fo rmor technique involves the identification of constant subexpross ions

and evaluation of them at compile time. Thus
X =  ( 2 + 3 ) — 4

would be compiled to
LOD 1
STO X .

Note that this requires the compiler to evaluate , as well as compile , arithmetic expressions.

In the case above , the result is obvious. In other cases , pa rticularly those involving loop

Indices, it is much more subtle. Strength reduction Is most effective in this a rea and ,

since missile system applications tend to require loops and indexed variables, Its use

Is highly recommended.

The second techn ique involves scann ing the sou rce code for common expressions. For

example , consider

X (A+B)/ (A -B) - (A-B)/(A+B) .

Translation to IL would yield

ADD A , B,
SUB A , B, TEMP2
DIV TEMP1 , TEMP2 , TEMP3
SUB A , B, TEMP•I
ADD A, il. TEMP 5
DIV TEMP4 , TEMP 5 ,
SUB TEMP 3, TEMP6 , X

2— 12
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By scanning the ope rator and first two operands , we fin d the two operations ADD A , B

and SUB A , B are perfo rmed twice. The second of each can be deleted by replacing its

third operand. Thus

ADD A , B.
SUB A , B, TEMP2
DIV TEMP1, TEMP2, TEMP3
DIV TEMP2 , TEMP1 , TEMP6
ST.IB TEMP3, TEMP6 , X

Note that this process can be extended globally by extending the region of scan. However,

in this case the compiler must verify that A or B (In this case) are not altered between

appearances of the subexpression. Thus the compiler must keep a record of the update

status of each variable. Two subexpressions are common only if none of the variables

within them have been altered.

In the case of loops and transfers , the status of a variable at some point may depend upo n

the path taken. For this reason , common subexpresslons are generally scanned only

Within blocks of In—line code . In some cases , this reduces the potential gains from the

optimization.

Note that both strength reduction and removal of common subexpressions are perfo rmed

at the IL syntax level, and need not impact the development of a code generator.

2.4.2 Global Optimization

There are many forms of optimization that must be performed globally ... that is , over

more than one source statement . One example , common subexp ress ion removal , has

already been discussed. Another is the removal of constant expressions from loops . Note

that this is not the same thing as strength reduction. An expression may involve parameters

which are globally variable . However , if these variables are not altered within a loop,

the expressions can be moved outside the loop. Note also that this process Involves rearrang-

ing the source code, rather than simply converting it to efficient obj ect code . This rearrange-

ment is characteristic of global optimization .

2-13
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It should be noted that the optimization techniques ment ioned so far , except the

STO/LOD suppre~~ion , can also be performed manually, by the programmer. This
gives rise to an observation:

Prior to the development of optimizing compilers , the writing of efficient HOL was left

to the programmer, and certain technique were taught to achieve this. These included

avoidance of common subexpressions by the use of intermediate variables , precomputat ion of

constant te rms, removal of constant expressions from loops , etc. Such techniques were

then considered good programming practice . In that sense , the global optimization techniques

mentioned serve to correct the “errors” of the programmer.

On the other hand , the current trend is to encoura ge the programmer to write code in a

straightforwa rd manner, without use of any “tricks” to achieve efficiency. This Is now

left to the compiler. Thus the definition of “good programming practice” has been changed.

There can be little doubt that this is In the long—term best interest of the state of softwa re

development . In keeping with the trend away from machine-level languages and toward

abstract ones , the programmer should not be required to use certain constructs just to

satisfy efficiency constra ints . A program written In a straightfo rward manner is more

easily maintained than one written with coding tricks.

However, there is certainly a limit as to what can be expected of an optimizer. It cannot

be expected to be 1OO”~ efficient. Therefo re it seems axiomatic that an IIOL program

written to be efficient will be more so than one written in sloppy fashion and then machine -

optimized.

In the final analysis , the choice, as usual , involves a tradeoff. What is desired as a

result of this study Is a compiler which can be easily and qu ickly retargeted , which can

generate highly efficient object code, and which does not requ~’e efficiency of coding

by the programmer. These goals are to some extent mutually exclusive . In any such

tradeoff , the cost of retargeting will be given more weight here .
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One final observation can be made . With the one exception of register management,

the global optimization techniques can be performed at the source level and will not impact

the development of the code generator. Since compile—time efficiency is not an issue here ,

and since global optimizations can have significant impact upon object execution time , It

is advisable to make the maximum use of source—level , global optimization. Some enhance-

ments to normal levels of optimization are discussed in Appendix B.

2. 4. 3 Register Management

The exception mentioned above, the global optimization which Is machine—dependent , Is

that of register management. It Is also one that cannot be omitted , since it is one that

can have profound effects upon execution time.

In single—accumulator machines such as were common in the early days of computer

technology, there was no management problem , since there was no choice as to register

storage. This made the compiler’s task fairly straightfo rward. Current missile flight

computers typically have several registe rs , more than one of which may be a general-

purpose accumulator. In addition , there may also be a high—speed cache memory for

frequently—used data.

The assignment of global or tempo rary variables to the various accumulators , registers,

index register and memory tends to be highly machine dependent. Often certain ope rations

can be performed in certain ways , while others cannot. For example , one microprocessor

permits direct increment or decrement of memory, but not add to memory. It also permits

a compare of memory to the accumulato r , while others require the item of memory to be

loaded into a register first.

Overlooking the machine ideosyncracies for a moment , consider the problem of management

of storage Itself. The first question to be asked rega rding any variable is whethe r it should

be stored at all. This touches on the local removal of ~TO/LOD pairs mentioned earlier.

2—15
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A variable need only be stored if It is to be used later than the next operation , or If It

needs to be in a different register for the next one. The process of determining

variable usage is called a Dead Variable Analysis. It has been typically used for

compressing data storage in main memory, but the same approach applies to register

storage as well. It involves the building of a “Set/Used Table” which gives the status

of each variable. After the last usage of a variable, or the last usage before it is reset,

It is dead , and another variable may be stored in its place.

Once the storage history of the variables has been determined , they must be assigned to

storage. For this purpose , the frequency of use must be examined. Variables which

are used often should be sto red in register memory, while those used least often should

be in main memory. The type of usage should also be considered. For example loop

counters are obvious candidates for storage in index registers . In the frequency of

usage analysis , the program should be considered in blocks. It may be usefu l to

provide both register and main memory storage for a variable. For example , it may

have a high frequency of usage within a loop. In such a case it would be convenient to

move the variable to a register before beginning the loop, and move it back to main

memory upon loop exit. Obviously, the compiler must provide for proper update of

memory for all possible exit paths from the loop.

While , as mentioned, the optimum assignment of storage can be highly machine

dependent , it appea rs that the dead variable analysis can at least be partially mechanized in

a regula r, parameterized fashion , i.e. for a machine with ii accumulators , m registers,

k Index registers, etc . There will probably remain a certain amount of register assignment

that must be handled differently for each target machine . One (non-Optimal) way to handle

this Is to assign specifi c registers for certain special tasks (e. g. Index 4 for subroutine offsets ,

index 1 for loops).
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SECTION 3 - ENHANCEMENTS FOR RETARGET IN G

In the situation of interest in this study, It is assumed that It is not necessary to develop

a complete new compiler. Rather, it is assumed that an IIOL compiler exists and

is resident on the host machine, and it can be modified to meet the goal of low—cost

retargeting. Some modifications and enhancements capable of reaching this goal

are discussed In thi s section.

3.1 ASSEMBLER LANGUAGE OUTPUT

Recall that In Fig. 2—2 , all portions of the compiler to the left of the IL level are (or may be)

target machine—dependent. If the code generator outputs to an edito r rather tha n an

assembler, this editor Is target—dependent and the cost of retargetlng the editor must be

considered along with that of the CG. A similar statement holds for the linking loader.

If retargeting of the editor and loader can be removed from consideration , the cost of

retargeting can obviously be cut. This is possible if a stand—alone cross—assembler and

loader can be assumed to be available for each potential target machine. This Is a

reasonable assumption. All manufacturers of commercial computers and micro—processors

offe r cross—assemblers with macro capabilities. Most are written in FORTRAN IV for

portability. There is a charge for these assemblers of about $500 - $2500 , but this Is

small compared to the cost of retargeting the editor. The only case in which a

cross—assembler is not likely to be available is for a bit—slIce , microprogrammed machine

with a custom instru ction set , for which no assembler has been written. This Is an

unlikely occurence. In any case , If a computer with a non—standard Instruction set is

selected , the cost of developing an assembler should really be charged to the ha rdware

development effort , rathe r than to software .

One consideration should be borne In mind. Although cross—assemblers are generally

available for the computers of interest , they arc not uniformly powerful . They tend to

have rather limited macro facilities and limited diagnostics. Since , however , the

input to the assemblers will be machine—generated , this Is not seen as a problem.

3— 1
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3.2 MULTIPLE IL ’S

As mentioned In Soction 2.2 , the typical compiler IL is quite abstract. Although ft does

have one Instruction for each distinct operation , the instruct ions and format do not

correspond to any r~otenttai target machine. The addressing Is symbolic , and no regard

Is given to actual machine considerations such as word length , storage fo rmat , register

available , etc. To do so would Inject machine dependencies into the translator section

of the compiler , which is clearly undesirable. h owever , the degree of abstraction

associated with typical 1l4~s I)laees a greater load on the task of eod~ generation than Is

necessary.

Referring to Fig. 2—2 , suppose that the code generator could be split into two part s , one

of which Is machine—dependent , the other of which is not. Then oniy the second ix rt ion

need be Involved in retargeting. One way of doing this Is to define a second Ii , less

abstrnct than the first , and one mere closely akin to machine language . The’ situation is

symbolized in Fig. 3— 1 .

In effect , this approach Is equivalent to defining a fictitiou s computer , an ‘‘ abstract machin t ”’

which , if mechanized , would di rect lv execute the Instructions of the second I i .  This con-

cept of an abstract machine is ~veIl establishe d In the literatur e ’ ( 1) , ~~ (3~, (.fl . The

ordinary II. of any complier may be’ regn rded as the ’ twe e~r three—addres s machim ’

language for an abat i’net machine, in fact , any langu age , Including the original 1101 , may

be associated with an nb~t nwt mac hint ’ . ‘pending upun the met hod of Impl ement at Ion ,

the tool for conversion fro m the abstract mnchint ’ language to t he’ target langu age’ may be’

reforreil to as an emui ator , lute rp ret e’r or , as In the ~~ ~~~~ ca se , a code gene i~i to r. The

concept of multiple’ ii ~‘s has recently received e’onslde ’tublt ’ at t ent ion in the ’ eie’velopme’nt of

interp retive languages for tI~icrOI)rO ce’8SOrS ( ( 1 , (7) , IS) .

For the purposes of the current study , It is suggested t hat the sei’ond II  take’ the’ t~ rm of

a “Un iversal Assen~b1e’ t4 ’ , language whose Instruct ions art ’ at the’ machine ope ration

I — — ~~~~~~ ~~~ V~~~~f ~~~~~~~~~~~~~~~~~~~~~ -
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level, but do not necessarily correspond to any actua l machine. Such a language , called
“MIMIC” , is actually in use in CSC software development activities . For the selection of

the universal assembler (UA ) language it is necessary to define an “Ideal Machine” , with an

Instruction set that represents a rational set of machine—level Instructions , leading to

efficient “object” code (note tha t all real computers should be, but rarely are , designed

in this manner) . The code generator task then becomes a simple macro substitution of

target machine Instructions for the UA “pseudo —ops ” .

For this approach to result In reasonably efficient object code , the instruction set for

the UA must be care fully selected. For example , the instruction set for the PDP-l 1 ,

like many IL’s , is basically two—address . If the UA were chosen to correspond to a

single—address ideal machine , the resulting code may tend to be inefficient . It Is

difficult to imagine a single UA which provides a good match to all computers . Fortunately,

it is only necessary to generate efficient object code for a special subset: those computers

which are candidates for missile nigh t systems . It is suggested that the instruction sets

of these candidates be examined in orde r to synthesize the UA instruct ions. Within DOD

an effort is unde rwa y to define a standard Instruction set for all future DOD applications.

The instruction set for this “So ftware Compatible Family ” is an obvious choice for the UA.

A lthough the UA , and the first code gene rator which translates to it , is intended to be

machine—independent , there are some cases in which this should not be strictl y en forced.

For example , if the target machIne is a I 6—bit machine , then t he UA sho u ld a lso be, to

avoid extensive data translat Ion requirements. It app ears that such considerat ions can

be treated parametrically, by storing the machine—dependent paramete rs in an easily

altered table. Machine dependence of this parametric type need not be feare d, and is

consistent with a pa rametric approach to optimization.
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SECTION 4 - CURRENT PRACTICE

An example of the current practice In compiler development may serve to suggest some

parallel approaches for the current needs. Such an example is provided by CSC’s

development of the J—3B and J-73 compilers for the Air Force. These compilers were

developed specifically for dedicated avionics applications , and feature:

o HIgh level of optimization

o Heavy use of compiler development tools

o Developed directly from source language syntax specifications

o Well—defined IL and CG interfaces

0 Designed for efficient rehosting and retargeting.

Some tools associated with these compilers and their development are discussed next .

4.1 SYMPL 
-

Systems Programming Language (SYMPL) is a CSC - proprietary programming language

developed using systems programming aspects of FORTRAN and PL/l . It has been in use

for over 13 years in the development of compilers . The production versions of CSC -

developed compilers are often written in SYMPL , which are then compiled into object

code.

4.2  GENESIS

This CSC — proprietary language is a compiler development tool , usefu l for compilers

which can be written In a table—oriented form. Based upon the defining syntax specifica-

tions for the language , GENESIS generates the tables and connecting software which

serve to implement the syntax analyzer section of the compiler. The output of GENESIS

is SYMPL source code.

4— 1
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4.3

For the automated development of J—73, the JOCIT program was developed. This program

Is both a JOVIAL compiler and a compiler—compiler. A complete description of JOCIT

and the requirements for retargeting It are given In Appendix A. Some optimization

enhancements to JOCIT are discussed In Appendix B.

4.4 ACG

The Automated Code Generator (ACG ) is a CSC—proprietary program developed to achieve

rapid retargeting for JOVIAL compilers . The program is designed to aid in the development

of quick—response code generators of a table—oriented nature. The resulting “Quick code”

generators are typically used as Interim generators until more efficient reta rgeting can be

effected.

4.5 AUTOMATED TOOLS

As can be seen from the descriptions just given , the current state of the art involves the

extensive use of automated software tools to develop other softwa re. With the aid of these

tools , It is perfectly feasible to fully develop a compiler from its syntax definition , without

ever working In the assembler language of the host machine. This approach is clearly in

keeping with the recognized advantage s of HOL programming.

4—2
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SECTION 5-CONCLUSION S AND RE COM MENDATIONS

~~ On the basis of the analyses presented in this report , it appears that it is feasible to

modify an existing HOL to provide low—cost retargetlng, without severely degrading

the object—time executIon efficiency. Some specific recommendations have been

Identified and are summarized below. -

5.1 COMPILER ORGANIZA TION

“ The compiler chosen must have an architecture such that there is both a well—defIned

Intermediate language (IL) and a modular code generator (CG) . An IL composed of

triplets or quadruples Is preferred, That portion of the compiler not included In the

CG or Editor must not be ta rget dependent .

5.2 OPTIMIZATIO N

The compiler chosen must have extensive capability to perform global optImization. It

Is suggested that existing capabilities be enhanced to include code straightening, dead

variable analysis , and loop optimizations . The impo rtant area of register management

should be performed in a parametric manner, so that retargeting can be accomplIshe d

by loading a table of machine parameters~

5.3 ASSEMBLY LANGUAGE OUTPUT

The code generator sho uld output a character string consisting of assembl y langua ge

for the target machine Assembly and linking shall be accomplished off-line by sepa rate

software . -

5.4 MULTIPLE IL’S

At least one extra level of IL should be conside red. This should consist of a unive rsal

assembler (UA) langua ge whose instructions represent assembly langu age instructions

for a fictitious , “Ideal machine. ” In the selection of this language , it is suggested that

5—1
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candidate missile system computers , pa rticularly the “Software—Compatible Family” ,

be examined. Machine dependencies such as word length and number of registers

should be pa rametric.

5.5 AUTO MATED TOOLS

- . It is suggested that all automated software tools available such as compiler—compilers be

used. The availability of such tools should be a facto r in the choice of the base HOL

- complier.
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APPENDIX A

JOCIT

A.1 BACKGROUND

The original intent of the JOCIT effort was to develop a complier building tool for the

J73 language. When the J73 contract was awa rded , the language still was not firmly

defined , and after a few weeks of study of the langua ge it was determined that the

development costs were higher tha n originally estimated. Therefo re, in orde r to

produce a more useful product that demonstrated the principal elements of the original

objectives , the project was redIrected towa rds developing a J—3 compiler building tool.

Since the need within the Government for a J—3 capability was sufficiently real and urgent ,

the new project goals were highly practical. The principal objectives of the JOCIT J-3

development were to:

• Reduce the time and cost of implementing and maintaining

JOVIAL J-3 compilers

• Ensure that JOVIAL language sets implemented on diffe rent

computers are consistent

• Enable the rapid inclusion of any new JOVIAL features into

every compiler built with the tool , including those compilers

implemented before the feature was accepted

• Enable the compile rs built with the tool to incorpo rate modern

optimization techniques that overcome many fo rms of poor

programming

Although the redirection to produce a runnIng, debugged , effic ient , and reliable

J—3 compiler necessarily had the effect of diluting some of the goals of the tool ,
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nevertheless, the objectives were largely met. The most objectively measurable

result of the JOCIT effort was the development of a production—grade J—3 compiler

currently In heavy operational use. However, it Is somewhat difficult to assess the

result of the tool development in equally objective terms , because no new retargeting

or rehosting effort has been undertaken. The following paragraphs describe the essential

features of the JOCIT progra m and assess the relative success In meeting the stated goals .

A. 2 DESIGN FEATURE S

The following design elements were inco rporated into JOCIT:

• Target_ma chine— dependent code isolated Into functional modules

o Global optimization techniques to meet the requirements of language

Independence, host—machine independence , and target-machine

Independence

o The GENESIS system used for writing the J-3 language spec ifica-

tion , the resulting tabular form of which is processed by a

language—independent analyzer program

• A prototype compiler to compile the full J-3 language; the prototype

can be used as a model for rebosting the J-3 version or as a basis

for building a J73 JOCIT

• Over 95 percent of the JOCIT code written in an 1IOL (SYMPL);

use of machine code is restricted to host_machine—dependent —

interfaces

A.3 CHARACTERiSTICS OF THE JOC1T .1-3 COMPILER

JOC IT embodies the following three features which , together , realize the goal of

a tool for the generation of standard JOVIAL J—3 compilers :

• JOCIT is a stable , well—debugged , efficient , product ion—quality

J—3 compiler. It realizes the most advanc ed optimization ir. any

A-2
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JOVIAL J-3 compiler to date , and even though the compiler is

large (40—50 K words of HIS—6000 main memory) it is quite fast

and generates extremely informative and useful listings.

• Retargeting of JOCIT is a known , relatively straight fo rward , but

not trivial process. It Is achieved through total replacement or

partial modi fication of certain compiler modules , and the installa-

tion of the JOVIAL library on the new ta rget machine.

• R ehostability of JOCIT is achieved principally by programming the

JOCIT modules in SYMPL. Rehosting Is considerably more corn—

plex than retargeting, but the steps are well understood and meet

the tool requirement by costing only a fraction of a comparable ,

totally new compiler implementation .

These three considerations are addressed in the following subsections .

A.3. 1 USER INTERFACE

The JOCIT J— 3 compiler Is operated in a standard fashion entirely compatible

with other GCOS language processo rs. That is , the command syntax and file

specifications conform to GCOS standard s, and the JOCIT user is requ i red to

learn only the computer options in order to invoke the compiler.

A.3. 2 THE .1-3 LAN GUAGE

JOC IT implements the full J— 3 langua ge, with certain extensions added to satisfy

unique customer requirements (includIng a special source language 1 ‘0 facIlity

to satisfy a user requirement for compat ibility with the nonstanda rd Honeywell

J—3 compiler) . The diagnostic capability is thorough, and extensive use is made

of pa rarneterized diagnostics (fo r example , providing for insertion of identifi er

or reserved word names) .

A.3. 3 COMPI I~ER LISTINGS

The JOCIT compiler provides a comprehensive set of compiler listings . These

listings include interspersed Phase I diagnostics; a consistent diagnosti c format

A-S
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for all phases; an extensive object program assembly language—format list ing

ident ical to GMA P, a complete “set—used” listing for all program constructs

(define names , status constants, program var iables, labels, procedures, etc.);

and a program environment listing.

A.3. 4 OBJECT PROGRAM EFFICIEN CY

The JOCIT program expe nds much effo rt to obtain object program efficiency.

This has been achieved through two means: global , target—machine-independent

opt im izat ion , and a code generation scheme that optimizes register usage and

performs considerable special case analyses. Global optimization includes:

• Elimination of redundant common expressions computatIons

• Redistribution of loop—constant code

• Reduction of formal loop operator strength

• Improvement of comp ile—time constant ari thmetic ~nd subexpress—

Ions (e. g. , elimination of multiplications by 1)

• Recognition of dead code

• Evaluation of compile—time constant predicates

(e.g., AA l $ . . . I F A A $ )

All computationa l memory is embodied in the optImizer—code generator file (IL)

Interface , while local optimizat ions are perfo rmed by the code generator to pro-

duce the optimum sequence for each recognizable case. The combination of

global and local optimization , which attempts to minimize generated code space , is

successfully realized in the .IOCLT J—3 compile r. F\irther Improvements that

would have a high payoff In production programs are:

• Regional index register dedication

• Loop control variable 1LCV~ inde x register dedication

• Improved strength reduction , including test replacement and dead

LCV elimination
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• Dead variable analysis

• Code straightening

Of the 60 percent improvement in generated code over the previous HIS .1-3 com-

pller, 10 to 15 percent Is attributable to global optimization , while the balance is

derived from the local code generation algorithms. Even though there is room

for improvement , the level and quality of the realized optimization are the

notable achievements of the JOCIT J—3 model.

A.3.5 COMPILER EFFICIENCY

Considering its optimizing capabilities , the JOCIT J— 3 compiler is comparatively

fast. However, the compiler’s instantaneous main memory requirements are

quite hIgh; 40K words is the minimum partition plus the size required for the

compiled program’s symbol table. The compiler already is heavily segmented

into separate overlay loads. Only a radical redesign could reduce the core

requirements , and only at the cost of severely reduced compiler speeds. The

large size of the compile r is due to the following reasons (listed in descending

order of Impact) : -

• Complexity — The JOCIT J-3 compiler was designed for maximum

user ut ility. It performs an enormous number of complicated

tasks in order to produce pinpoint diagnostics , to perfo rm global

flow analysis/optImIzatiOn , to pack tables optimally, and to pro-

vide a sophisticated and useful COMPOOL facility. The augmented

J—3 language it compiles is huge , and the code generator achieves

Its goals through complex algorithms that require a considerable

number of source code lines to effect. It is doubtful that the num—

ber of lines of code in the compiler itself could be materially

reduced without seriously compromising user convenience and

object code performan ce.

A—5 

~~~~-~~~~~~~- —-.-—~-~~~-—- 
- 

‘

—-—- 

-



- _ _ _ _ _ _ _ _ _ _ _

-

• Compiler Architecture — The compiler uses a ml nimum number of

phases and Intermediate files and requires a large symbol table to

be resident throughout the compilation process. It Is conceivable

that by partitioning the compiler into mo re functional phases (a

multipass code generator is a possibility) the maximum phase size

could be reduced; but , as pointed out earlier, compiler speed

would be reduced and add itional program complex ity (more inter-

mediate files , for example) would result.

• Use of HOL — Because of the JOCIT J—3 compiler is written in SYMPL

and compiled by a small compiler which incorporates only a modest

number of local optimizing algorithms , the JOCIT compiler con-

tains more lines of object code than would be the case if it had been

written in assembly code or compiled by a sophisticated , optimiz-

ing SYMPL compiler. A more compact compiler also could be

achieved by rewriting the JOCIT compiler using J-3, thereby

obtaining the benefits of the compiler’s own optimization. How-

ever, the J—3 language is much less suited to compiler implemen-

tation than Is SYMPL and carries excess baggage (e.g., fixed

point arithmetic , lengthy prologues and epilogues) that is costly

and unnecessary. Optimizations could be added to the SVMPL

compiler to reduce object code without unduly compromising

rehostability or retargetability of either SYMPL or JOVIAL.

A .3 . 6 DEBUGGING (USER)

The inclusion of the MONITOR statement and ENCODE/I)EC0E)E provide consid-

erable debu~~ing convenience for the user. In pa rticular , the avai labi l i ty  of the

compiler command option to suppress compilation of all MONiTOR statements

allows the user the convenience of retaining his MONiTOR statements in the

source program without paying the compilation - and resulting object

pro gram - price.
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A.3 . 7 DEBUGGING (CO MPILER MAINTENANCE ) -

The JOCIT model includes a wide range of built—in compiler debugging features,

mostly In the form of formatted table and file dumps that can be selected m di-

vidually during mainte nance—mode execution of the compiler. The debugging rou-

tines themselves occupy symbo l table space and are over ’.vrttten by symbol table

entries during production—mode compilation. Thus , the production mode com-

piler is not enlarged since the maintenance debugging routines are not ordinarily

present; however, full debugging capability is available in the compiler by excr-

cising an option.

A .3. 8 RELIABILITY

The reported error rate on the production JOCIT J —3 compiler is compar a tively

low. The errors tend to be distributed throughout the compiler modules , and It is

rare for the compiler to fail completely. Not surprisingly, the most vulnerable

phase of the compiler is the optimizer since very large programs wIth complex

flow can cause the optimizer to abort . However , In keeping with the diagnostic

approach of the design , these failures are (almost without exception) self—

detected anomalIes. Most optimizer failure s relate to unnecessarily complex

space management functions which are subject to unpredictable , subtly-

compounded erro rs . The fo rthcoming JOC’IT improvements project , which

provides for considerable optimization enhancement , wi ll include simplified

restructuring of the optimizer data base and space manage r to stren gthen this j
area considerably.

A .4  RETAR GETING

In order to achieve retargeting of the present JO(’IT model , the fo1lowi~ g steps

are required:

1. Develop library for target machinc.

2. Adjust compiler code for target machine sensitivity.

3. Write new direct code processor.
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4. WrIte new code generator.

5. Modify the editor phase to produce object code listing In new

target—machine format.

6. Add new object module formatter.

7. Provide for translation of host—machine constant formats to

target—machine formats.

These steps are discussed In detail In the following paragraphs .

A.4. 1 LIBRARY INSTALLA TION

The J—3 libra ry consists mainly of I/O and ENCODE/DECODE routines , string

routines , and MONITOR routines. Retargeting requires rewriting these routines

for each new target . Except for the MONITOR routines written in SYMPL , these

routines are written in assembly code that is not directly transfe rable to a new

target machine. Installation of the libra ry Is not a simple task since even the

MONITOR routines must be rewritten (unles s, of course, a SYMPL compiler

exists for the new target machine).

A.4.2 ADJUSTMEN T FOR TARGET-MACHI NE SENSITIVITY

Many routines with in the compiler are a ffected by various characterist ics of the

target machine. These are partly pa rameterized through use of a target-machine

descriptor block. However, this parameterization is not yet complete. Typical

parameters of interest are:

• Target word size

• • Target byte size (bits per byte)

• Target bytes per word

• Maximum and minimum integer values

• Maximum and minimum floating values

• Medium packIng access field descriptions

• Addressing units per word

1 ’
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• Character set internal representation

• Target numeric—value representations

The following routines withIn the compiler presently must be adjusted as described

below:

ALOCTR Object Program Data Allocator - Describe medium

packing and type characteristics.

XREF Cross—Reference Lister — Tailor target-dependent

listing.

CCP Compiler Cont rol Program , i . e., control card

scanner - Recognize multiple target option.

JXEC Compi ler Executive or “cradle” — Sequence the com-

piler as necessary for diffe rent target—dependent phases

(o. g., the code generator).

COMO8T Target Parameter Data Block — Modi fy target—machine

parameters.

PCON Constant Posting Routine — Modify as necessary to reflect

different internal fo rms for target.

JINIT Initialization of Compiler — Post target—spec ific intr in sic

functions , if any (fo r example , the correct library routine

entry point name for the string routines, 1 ‘0 routines ,

etc.).

JP F1 Pass 1 Analysis Pragmatic 1~unctIons — Convert source

form constants to target form.

PF 1I’Rl Preset Processing Subroutine of Pass I Pragmatic Func-

tions — Prepare preset constants In targe t format.

OPT2A Pass 2 Optimizer Constant Arithm eti c Routine — Modify

constant arithmetic to mnnipulate target form values.

A -9 
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Moat of these modifications are individually trivial; however, the number of dif-

ferent routines to be examined and modified makes the composite task moder-

ately complex.

A.4. 3 NEW DIRECT CODE PROCESSOR

The direct code processor must be rewritten for each new target—machine assem-

bly language fo rmat . This processor is a functionally separate module which

must be replaced In the link— edit of the firs t analysis phase. This necessitates

target—machine sensitivity in JXEC to load the proper phase, and requires the

maintenance of a unique analysis Phase 1 for each target supported (all but the

direct code processor within the phase have the same code for each target machine).

A.4 .4 NEW CODE GENERATOR

The major modification for retargeting is the writing of a new code generator.

If the level of local optimization and the effective realization of the global opti—

mizations performed by the optimizer are to be sustained , a substantial effo rt is

required.

The basic architecture of the current ITIS—6000 code generator may be retained

(which considerably reduces the design effo rt) , and much of the machine—

Independent code (e.g. , the triad tabl e builder) need not be rewritten. Still ,

this must be considered a major task. There will be one code generator for each

target machine; JXE C will select the appropriate code generator phase.

A.4. 5 EDITOR PHASE MODIFICATION

The editor phase must be modified (there wifl be a unique editor for each sup—

- 
- ported target) to generate the proper assembly—like object code listing. The

preset —constant processing also must be modified to align values in a manner

consistent with the target machine characteristics.
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A.4. 6 OBJECT MODUL E FORMATTER

An object module formatter (actually a pa rt of the editor phase) must be written

for each target. The scope of th is task is a function of both the complexity of the

object module format requirements and the reliability and clarity of the system

documentation that describes it. This can range from relatively stra ightforward

to extremely arduous.

A.4. 7 TRANSLATION TO TARGET CONSTANT FORMAT

This process has been identified in preceding paragraphs . The problem is to con-

vert from the compiler’s internal constant representation to the target machine

format. This requirement affects several compiler modules . For example , when

the optimizer performs compile time comparisons between character constants ,

correct inequalities may be computed only when using the target representation,

since its collating sequence may not be the same as the host character representation.

A.5 SUMMARY

JOCIT Is best described as , first , a competent and serviceable J-3 compiler for the

HIS—6000 GCOS machines and , second , a J—3 compiler-building tool. The advantages

of JOCIT are:

o Compiler efficiency

• Object code efficiency

• Good diagnostics

• Excellent debugging facilities (both for the user and maintenance

- . team)

o Moderately convenient retargeting

• Usc of quick bootstrapping SYMPL compiler tailo red to JOCIT

needs

H A—li
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The disadvantages are the:

• Size of the compiler

- • Changes necessary to make retargeting even less costly

I • Changes necessary to make rehosting less costly (a moderately —

complex task)

• Reliance on a separate SYMPL compiler that does not take advantage

of the JOCIT compiler’s own optimization power and requires separate

(although rare) maintenance.
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APPENDIX B

COMPILER OPTIMIZATION ENHANCEMENTS

This appendix summarizes enhancements to the optimizations presently performed which

have been proposed for the JOCIT J-3 compiler. It serves to illustrate the general

techniques for extended global optimization.

The optimization scheme now employed is a Level—I LNRA (Linear Nested R egion

Analyzer) scheme implemented as a two—pass process. Pass 1 (known as OPT1)

performs all flow analys is and builds tables defining set and used information for each

procedure and loop. Pass 2 (known as OPT2) performs the actual transformations to

the code to realize the principal optimizat ions of common expression elimination ,

constant arithmetic , code redistribution, and operator strength reduction. The

optimizer phases operate on the IL file generated by the analysis phases of the corn-

piler , all transformations are expressed In the IL , and the output is also in the form of

an IL file which is subsequently processed by the code generator phase (COGEN) . This

design permits selectable optimization. If the optimization phases are by—p assed as

they are when the NOPT option is selected, the IL generated by the front end is passed

directly to the code generator. In thi s mode , only those local optimizations perforire d

by COGEN are effected , and no global optimization is performed at all.

The enhancements discussed in this appendix assume a solution entirely within the

framework of the LNRA design . The sum of these improvements will be to raise

the level of generated code significantly. It is expected that for any target machine

the resultant code will occupy less space and execute in less time. Furthermore,

the proposed enhancements do not violate the present target-machine-Independent

design, and thus the tool concept is not compromised in any way.
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B. 1 coDE STRAIGHTENIN G

In the LNR A method used in JOCIT, program flow is determined in a single fo rward

scan of the program (performed by Optimizer Pass 1, or OPT1). It is the assumption

In this approach that a loop Is formed whenever a label is reached via a backward

branch. Furthermore, loop optinil zation Is suppressed whenever it is observed that

a forward branch enters a loop; i.e., redistribution and strength reduction are not

attempted on multiple—entry loops (because of the complexity of placing the redistributed

and strength—reduced initialization computat ions in each of the loop’s entry blocks).

These assumptions are entirely valid on well—structured or hl stralghtu programs.

However, they cause the optimizer to miss some cases when the code is not straight.

A small program segment demonstrates this point.

The original order of the segment consists of the following five blocks and their

Interconnecting flow paths:

1

2

3

4

5
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The optimizer sees 2—3—4 as constituting a loop formed by the backwa rd branch

from 4 to 2. However, the forward branch from 1 to 3 defeats the potential loop

optimization as described above. Earnest , et al. (10) have proposed an algorithm

that may be applied to place the blocks of a program In the straightest possible order.

Its application of the preceding example produces an ordering as follows:

1

3

4

2

5

This reordered segment is now a single entry loop (3—4—2 ) , and redistribution and

strength reduction algorithms may be applied to Blocks 3 and 4. Block 2, which Is

conditional , is excluded. The stra ightening, then , can be seen to have improved

the optimization pctential .

The code straightening algorithm of Earnest , et al. , discovers all program loops

in addition to straightening the order. As a result , the code straightener may

be used to replace OPT 1. Instead of reading the IL , the straightener will

B-3
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read an extended Global Names List (GNL) file, which will be called the Flow
Graph File (FGF). This file will contain each program label , branch , start

PROC and end PROC delimiters , PROC call , index switch label list and

index switch call . This information is sufficient to identify the basic blocks

and interconnecting edges. This representation will then be reordered by the

straightener, and the resulting straight order may be represented by an ordered

table of “hatchecks” which identify the blocks of the IL to be read iii order by

OPT2. The FGF will be enhanced further to contain entries for each redefined

variable——LHS of assignments , actual value output parameters , and name

parameters——such that all redefined variable lists currently produced by OPT1

may be produced by the straightener. Since the FGF is considerably smaller

than the IL , It is anticipated that the straightener will be significantly faster

than the present OP Ti.

B.2 DEAD VARIABLE ANALYSIS

A program variable is said to be dead between its last refe rence and a subsequent

definition. For example, in the program sequence

I

QQ

I . . .
the variable I is dead between the assignment to QQ and redefinition of!  in the

last line . Recognition of dead variables raises two optimization possibilities

which should be examined for cost—effective implementation: (1) store suppression

and (2) reuse of dead variable space.
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In the above example, the original store into “I” may be suppressed if it Is

possible to retain “I” in some register between definitions. Following from

this, it is seen that retaining “I” in a register means that no storage is

required, and the allocated space for “I” may be reused during the program

segment where “1” is “dead” by another program variable or compiler-

generated temporary.

Dead variable analysis may be conveniently performed by OPT2 after an entire

region has been processed. An extension to the definition of a dead variable

may include that program segment between a last use and a program exit

(or PROC RETURN). However, this may only be for those variables whose

first reference in any PROC is a redefinition rather than a refe rence , I .e. ,

those whose values do not survive from one invocation of the PROC to the next.

Since JOVIA L does not permit the programmer to distin guish explicitly between

these types of variables , thi s will be the compiler’s task. The analysis pro —

cedure is not simple, as the following two procedures demonstrate:

PROC ’ B

ENTER ENTER

1 1

2 X 2 X

3 . . . X  3 . . . X

4 4

X need not be materialized X must be rnatc ri alize (l
at PROC exit at PflO(’ exit

B-S



r— ~~~~
t

In PROC A there Is a path (1—4—3) on which “X” is used before it is set, wh ile

in PROC B there is no path to the use of “X” in 3 which does not fi rst redefine

“C’s.

The objectives of dead variable analysis are: -

• To suppress unnecessary stores

• To recognize possibilities of allocated space——sharing betwec~i

programmer variables and compiler-generated temporaries

• To eliminate unnecessary storage allocation for variables held

in registers

• To help the code generator retain variables in registers

B.3 LOOP OPT IMIZATIONS

In addition to redistribution and strength reduction optimizations currently per-

formed, loop code can be improved in the following areas:

o Delaying of sto res

• Index register dedication of loop control variables (including

strength reduction—generated ones)

o Register dedication of redistributed and common values

o Strength reduction test replacement and dead ioop control variable

elimination

• Strength reduction of addition

o Loop collapse

• Extension of strength reduction to non-FOR loops

These techniques are discussed In the following subsections.
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B.3. l DELAYING STORES

Often with loop code , a va riable is repetitively assigned. All but the store

immediately preceding loop exit are redundant , and dedicating the variable

to a register within the loop and delaying the store into the variable until

after loop termination can Improve loop perfo rmance. For example , in the

following program:

YY($0$) = 0$

FOR I = 1,i,99$

IF XX($I$) GR YY($0$)$

YY($0$) =

if “YY” is dense—packed , the redundant stores within the loop may be quite costly.

The optimizer may recognize the case and transform the pro gra m as follows:

temp = 0 $
FOR I = 1,1,99$

IF XX($I$) Gil tenip$

temp =

YY~$0$) temp$

Thus , In the example , if “temp” is dedicated to a register , both code space and

execution time are reduced.

B. 3.2 INDEX REGISTER-DEDICATI ON OF LOOP VARIABLES

Allocation of loop control variables to index registers eliminates loads and

stores within the body of the loop, thus compressing the loop and speeding It

up as well. This optimization should be applied both to programmer loop

variables and to optimizer—generated loop vari ables arising from strength

reduction . Such dedication may be expressed by means of accenting the

B-7 
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R EPL IL operator to indicate that the LHS (the ioop variable Initialization and

increment code, for example) is a candidate for loop dedication. The ENDL

operator would signal the code generator to free such loop-dedicate d variables.

B. 3.3 REGISTER-DEDICATION OF REDISTRIBUTED VA LUES

The optimizer moves all redistributed values into the loop entry block. This

redistribution is indicated by the VALD operator. The optimizer will mark

such redistributed values to make the code generator aware of the motion and

to Identify the loop from which the values were removed; this will enable the

code generator intelligently to select which are the best candidates for register

dedication. Even on limited register machines , such as the FHS—6000 series ,

this can be useful as in the case of a table search , for example:

FOR 1= 0,1, 999$

IF XX($I$) EQ PATTERN $

- I XX( $I $ ) = 0 $

In this case , PATTERN may be profitably assigned to an accumulato r before

the loop (especially helpful if XX is full-word addressable), and the interior

of the loop Is made smaller and faster. At the current level of optimization ,

XX($I$) is loaded and compared with PATTERN , whereas (assuming XX is

Mi-word addressable) PATTERN may be loaded outside the loop, and only

the comparison code is required inside . This same optimization may be

perfo rmed for values found common and therefore computed outside the loop.

B.4 STR ENGTH R EDUCTION TEST REPLACEMENT AN D DE A D LOOP
CONTROL VARIABLE ELIMIN A TION

During the process of strength reduction , it may be the case that all uses of

a loop control variable will have been reduced , such that the loop control

variable may be conside red dead. In such a case , all references within the

body of the loop will have been replaced by generated loop contro l variables ,

-; 
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and the code to In itialize, step, and test the original variable is all that remains.

Strength reduction test replacement means to replace the test of the original loop

control variable with a derived test on a generated loop control variable. This

can be seen from the following simple example

FOIl - 0, 1, 9$
)oq$l~3$) 0 $

which when reduced in strength by the optimizer effectively becomes:

temp - 0 $
F O R I = 0 , l , 9$

BEGIN “I”

XX($temp$) 0 $
temp temp.L3$

END “V ’

If the test against I were replaced by a test against temp, the program could be

written:

- 

- 
FOil temp 0,3, 27$

FOU l 0 , 1$

XX($temp$) 0 $

Thus , the use of I is entirely dead , all refe rences are eliminated , and the foI!o~v in g

simpl if ied nn d Im proved program emerges:

FOR temp 0 ,3,27$

XX ($temp$) 0 $

B.4. 1 STR ENGTh IIEI )UCTI ON OF AI)D !TION

The current strength reduction algorithm include s onl y the reduction of multi-

plication and (‘xponcntiatlofl. The reduction of addition (which i’i’c1ut ~~~~ to
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another addition) is sensible when it leads to further reduction possibilities.

For example, the following program,

- 
- F O R I = 0 , l , 99$

BEGIN “I”

FOR J = 0, 1, 99$

AA ($I , J $) 0 $
END “I”

in the current JOCIT model reduces only the implicit multiply of J; the subscript

expression a~ J) is linearized to (I+d1 *J), where d1 Is the first dimension of AA.

Assuming that AA Is 100 by 100 (d 1 Is then 100) the equivalent code after strength

reduction is:

FOR I = 0,1,99$
- 

- 
BEGIN “I”

t 1 = 0 $ “REDUCTION OF l00~J WHICH is INITIALLY 0”

FOR J = 0,1, 99$

BEGIN “J”

AA($ l t 1
$) 0 $

t i 
= t

i 
.s10 0$

END “J ”

END “I”

An Improvement to this would result from the reduction of the 1st 1 in the inner

loop. A straight fo t~~ard reductIon would give:
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FOR 1= O, I ,99$

BEGIN “I”

-
~~

t 2 
= 1$ “FROM REDUCTION OF I~t WIHCH IS

INITIALLY I”

F O R J = 0,1,99$

BEGIN “J”

AA ($t 2
$) = 0 $

t 1 
= t

1 
-*-100$

t
2 

t
2 

4100$

END “J”

END “I”

This reduction as shown is actually a degradation of the original pro gra m unless

the dead loop control analysis is applied along with test replacement. The result

is a significant improvement as the following equivalent pro gram shows.

FOR I 0, 1, 99$

BEGIN “I”

FOR t 2 
— 1,100 , 9900 1$

AA ($t 2
$) 0 $

NOTE: The expression 9900s1 Is loop constant over the inner loop, and thus

is properly redistributed.

B.4.2 LOOP COLLA PSE

If the preceding example were rewritten with the subscripts reversed ,

FOR ! 0, 1,99$

BEGIN “I”

FOU J 0,l ,99$

AA($J ,l$) 0 $  “J , I instead of I ,.1”

END ‘‘I’’

- 
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- j the effective reduction looks like the followlng

t 3 
= 99$

FOR t 1 
= 0, 100 , 9900$

BEGIN

FOR t
2 

= t
1

, 1,t
3
$

AA ($t 2
$) = 0 $

t 3
= t

3
-ii00$

END

A close analysis of the above reduction reveals that the inner loop control

variable (the generated one, ~ 2~ 
steps consecutively from 0 to 9999; thus , the

inner loop may be collapsed into the outer loop leaving a single loop as follows:

FOR t 4 
= 0 ,1,9999$

AA~$t 4$) = 0$

This continuous stepping function may be recognized by observing that the

difference between the terminal value of one iteration and the init ial value of

the next is precisely the step value of the Inner loop control. For example ,

the terminal value of the ~ 2 
on the first iteration is 99 (t 3) i and the Initial

value of the second iteration is 100 (steppe d value of t ~); the diffe rence , 1,

is the step value for t 2.

- 
- 

A comparison of the various levels of optimization discussed as applied to the

* 
simple example discussed above shows the progressive improvements . The

examples shown use the IIIS—6000 instruction set.
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Optimization

Total: 14/Inner loop 8 (m ci. multiply)

STZ I
Li STZ
L2 LK Q J

MPY 100, DL
- 

- ADQ I
STZ AA ,QL
AOS
LDA
CMP A 100 , DL

L2
H 

AOS I
LDA I

100 , DL
TM! Li

Optimization — Level 1: Current JOCIT Optimizer

Total: 15/Inner loop: 8 (no multiply)

STZ I
Li STZ

STZ ti ti J~ 100 - 0
L2 LDQ I

ADQ ti I J4100
— STZ AA ,QL

LDQ 100 , DL
ASQ ti
AOS
CMPA 100 , DL
TM! L2
AOS I
LDA I
CMPA 100,DL

* TM! Li
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Optimization — Level 2: Reduction of Addit ion , Test Replacement,
Dead Loop Variable Elimination

Total: 15/Inner Loop: 6

STZ I
Li LKQ I

STQ t 2 
t 2 = I

ADQ 9901, DL
STQ t

3 
t
3~~

99O1!l

L2 LDQ t
2

STZ AA QL AA($ t 2$) 0$
ADQ 100DL
STQ t 2 

t 2 t 2~l00

• CMPQ t 3
TM I L
AOS
LDA I
CMPA 100 , DL
TMI LI

Optimization — Level 3: Level 2 • Register Dedication

Total: 11/Inner Loop: 4

LX~ 1 0, I)L 1 = 0
Li EAX2 0,X1 t2

EAA 9901, X1
STA t3 t3 9901 1

L2 STZ AA , X2 AA($ t2$) 0$
EAX2 I00 , X2 t 2 - t 2 ;l00
CM P X2 t 3 test t2 vs. t.~

1.2
1, Xl I
10 , I)U

TMI 1.1

Optimization — l evel - 1: Level 3 Loop (‘ollapse

Total: 5/inne r 1 ‘oop: 4

EAX1 0,DU
Li STZ AA , X1

EAXI l , X1
(‘MPX l 9999, flU
TM I 1,1

B—14
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B.4. 3 EXTENSION OF STR ENGT H REDUCTION TO NON-FOR LOOPS

In the current JOC IT opt imizer, strength reduction is applied only to formal

(i.e., FOR ) loops. Strength reduction may , however, be generalized to include

the reduction of functions of any variable satisfying the following conditions:

o The variable is iteratively redefined once only with the

scope of some loop; i .e.,  the variable C’I” for example)

Is defined by I = I ~k or I 1—k

o The variable is nowhere else redefined within the loop

o The redefinition expression (k in the above example) is 
- 

-

constant over the same loop In which the variabl e is iteratively

redefined

The recognition of such variables , functions of which are candidates for reduction ,

will be the responsibility of OPT2 which will employ a double scan program loops

identified by OPT1.

B.5 PARA LLEL PATH OPT Il ~HZ AT 1ONS

The IF. . . THEN. . . ELSE and CASE constructions in HOLs produce parallel paths

in the resulting program flow graph. Certain optimization possibilities arise

because of this form of flow which are not addressed in the present JOCIT optimizer.

The optimizat ions cons idered in the following sections are:

o Im proved fo rwa rd flow analys is

o Load promotion/store delay

o Common name recognition

B-i 5
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B. 6 IMPROVED FORWARD FLO W ANALYSIS

In the current JOCIT optimizer , all forward branches are treated as conditional

insofar as their effect on the state of the search set is concerned. For example,

in the following program segment:
1 a + b

2 a

3 a + b

4

the assignment to “a” in Block 2 prevents “a u-b” in Block 3 from being recog

nized as common with that in Block I although they compute the same value.

The analysis can be improved in OPT2 by restoring search set value numbers

at block entrances whose immediate textual predecessor block exits by an

unconditional branch.

B. 6.1 LOA D PROMOTION/ STORE DELAY

In any multipath graph, code space can be saved by preloading common values

and by delaying common stores as the following simple case demonstrates:

IFE1TI-! BOOL$

AA($I - J$ ) = KK~5$

O R I F 1 $

AA($I~J $) KK~5~1$

B-l G
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In the current JOC IT compiler, if neither I ~J nor KK*5 appear before the IFEITH ,

the code (shown for the IflS— 6000) will be:

LDA
Li

LDQ I
ADQ J
EAXO 0,QL

- LDQ KK
* 

MPY 5,DL
STQ AA , X0

L2
Li LDQ I

ADQ J
0 ,QL

LDQ KK
MPY 5, DL

H I ADQ i ,DL
STQ AA , X0

L2

Total 16

Applying the diamond optimizations , the code would be:

LDQ I
ADQ J PRECOMPUTE 1-~-J

EAXO 0,QL SAVE IN X0
LDQ KK
MPY 5 , DL

SAVE IN Q
BOOL

TNZ L2 TRUE CA SE NOW NULL:
Li ADQ i,DL FALSE CASE:

COMPUTE KK~ 5 - 1

L2 STQ AA ,X0 DELAYED STORE OF
AA($I J$)

Total 9 Reduction 44%
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B.? NAME COMMON A LITY

The current J OCIT optimizer employs the value—folding technique to implement

common expression recognition. This excludes recognition of certain cases in

which expressions are computed on parallel paths which are formally common

but which may compute different values. The following program example

demonstrates:

IFEITH BOOL$

PP(XX +YY)$

ORIF 1$ BEGIN

XX=XX-~i$ PP(XX-’-YY)$

END

• • • )c~c+yy. .

In this example, the expression XX--YY after the IFEITH/ORIF construction

is formally common with the XX-YY computed on each path of the diamond;

however, since it computes diffe rent values——XX is redefined on the ORIF

path— —the optimizer will not recognize the common case. This problem may

be solved within the present value-folding design by the following technique:

• At the terminus of parallel paths , all live names and expressions

are permuted for formal name matching. This Involves examining

the value synonym list and substituting the diffe rent name synonyms

unt il the list is exhausted or a match occurs on both paths. In

practice , synonym lists for values are quite short , so that this

process is not prohibitively slow.

o Common names and expressions so recognized are then assigned to

temps on the parallel paths . (e.g. , )~~~YY is assigned to TI on

both paths in the above example). The same temp is used as a

surrogate name for the common expression. This is to give the

-
- 
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expression, on both paths , a common residence which the code genera-

tor may subsequently assign to a register In order to achieve the

desired optimal effect.

• Common names and expressions thus recognized are now posted to

the search set in the usual manner , and the temp is also posted as

a synonym for the posted value. Thus, subsequent occurrences of

the expression are found common through the conventional folding

technique . Dead variable analysis may delete the assignments to

the temps on the parallel paths . The optimization is realized by

the code generator when it is called to compute the value common

subsequent to the parallel network; the temp (which may have been

register— dedicated on each path) is chosen as the optimal source of

the value.

In the exampl e given above , the value XX -~YY is stored In a temp . the same

temp, on each path in order for it to be passed as a value pa rameter in the

calls to PP. Thus , references to XX YY after the diamond may be replaced

by references to the temp.

B. 8 USE OF COMPOOL BY THE OPTIMIZER

B. 8.1 REDEFINE D VARIABLE LISTS FOR COMI’OOL DE FINED PR OCEDURE

Optimization may be enhanced through extension of the COMPOOL concept.

The greatest potent ial payoff is in re fining the spoil analysis at (‘OMPOOl~-

defined procedure calls. Another usefu l application is in the use of branch

frequency Information to improve certain loop optimizat ions.

In the present JOCIT optimizer , calls to local procedures invoke a spoiling

process In which only those variables global to the called procedure and also

to the point of call arc assumed to be redefined by the call. This process

B-19
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is mechan ized in OPT1 which constructs a list of global var iables redefined by

the procedure. The list also includes other procedures called , so that cascaded

effects are accommodated. For calls to externally—defined or COMPOOL-

defined procedures, the optimizer makes the assumption that all external and

common data are spoiled by the call. This is clearly a safe but overly conser-

vative assumption.

An improvement may be experienced by appending redefined variable list Informa-

tion to the COMPOOL entry for each procedure during COMPOOL assembly. This

requires one or both of two other changes to the COMPOOL process. The first

requires the progra mmer to specify in the COMPOOL declaration for the pro-

cedure those global variables assigned and those external procedures called.

The second approach requires that the COMPOOL source for procedures include

the entire procedure body. In this case , OPT1 would be called as part of the

COMPOOL assembly, and its constructed RVL would be output with the procedure

entry in the COMPOOL .

B.8. 2 BRANCH FREQUENCY DA TA

As part of the integrated app roach to the LCF design , execution measurement

data may be subjected to postmo rtem reduction and the branch frequency data

entered into the program COMPOOL. The branch points would be identified by

statement number. Thus, subsequent compilations of the program would pro-

vide for access to the branch frequency data in that program’s COMPOOL by

the optimizer for the purposes of replacing branch frequency assumptions by

actual operational experience. A limitation inherent in this approach is that

source progra m modifications to the measured program are prohibited between

any measured execution and a subsequent recompilation. This guarantees that

the statement numbe r data is consistent between the COMPOOL and the sub—

sequent compilation.

B-20
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MISCELLANEOUS OPTIMIZAT ION ENHANCEMENTS

B.9.1 VALUE USAGE CONTEXT

The opt imizer will set bits in each VALU entry in the IL to Indicate the con-

texts in which the value is used. These bits may distinguish between computa-

tional usage and subscript usage, for example, and will aid the code generator

in register allocation for values. For example , a value having only subscript

uses may be profitably allocated to an index register. The current JOCIT code

generator already makes use of this information , so the setting of these bits

yields a low—cost object code efficiency improvement.

B.9. 2 UNREFERENCED PROCEDURE DELETION

It frequently happens that as a program ages, certain procedures are no longer

referenced , and the programmer falls to remove them. This is an easy case

for the compiler to recognize , and the un refe renced procedure need not be

compiled.

SINGLE-REFERENCE PROCEDURE OPTIMIZATION

A procedure with only one reference may perhaps be more efficientl y compiled

as an open routine with actual parameters substituted for fo rmal pa rameters .

This substitution may be performed by OPT2 (or perhaps the stra ightener~ by

collecting the actual parameter IL code and substituting it for the corresponding

~ormal parameter IL code, and by eliminating the procedure prologue and

epilogue .

B.9.4 REFINED REGION DEFINITION

That segment of the progra m optimized by the JOCIT compiler in a singl e unit

is known as a region. Currently It is the case that a region break occurs when

the optimizer exhausts working storage for the region. When thi s happens , the

B—2 1
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IL is flushed, and working space Is recovered for the next region. In the pro-

duction compiler, working space is sufficient to permit the optimization of

several hundred source lines per region.

It is suggested that the region end definition be refined to prevent the termination

of a region withi n a loop that might otherwise be contained. This can be accom-

plished by the straightener, which will record for each loop entry In the loop list

the number of IL entries associated with the loop body. OPT2 may then estimate

the working storage requi rements - based on the IL count for the loop - whenever

a loop top is seen and terminate the region before the loop in the event that

working space is insufficient. This will permit the optimization of a loop, or

next of loops , within a single region , which the termination of a region in mid—

loop prevents (e. g., after such a region end , no strength reduction or redistribu-

tion may occur) .

B.9. 5 REASSOCIA TION , DISTRIBUTION , AND CONSTANT COLLECTION

Subscript expressions, linearized by the analys is phase, may be more com-

pletely optimized if the rules of reassociatlon , multiply distribution , and

constant reordering are applied. These rules , to be implemented in OPT2 ,

are summarized as follows (“K” stands for any constant , and “&“ stands for

any associative operator*):

Reassociation

1. The expression (A & K1) & K2 is changed to A & K3,

* where K3 ~ K1 & K 2

- 
- I 2. The expression (A & K) & B is changed to (A & B) & K

3. The expression (A & K1) & (B & K2) is change d to (A & B) & N3,

where K3~~K1 &K2

4 -

Add and multiply are the only associative ope rators of Interest in this discussion.
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Distr ibut ion of Mult iply

4. The expressIon (A K]) ‘ K~ is changed to (A ~ K2) K 3,

where K3~~ K2~~ K1

Constan t Reordering
* 5. The expression ~< & A) Is canonically reordered to (A & 

K)

The effect of these can be seen on the followIng two—dimensional array refer—

enco ~~~ $l ‘I ,J l $), where )~( is a b —by— b array. The linearized subscript

Is (1 -1) (J ‘2) 10. The successive application of the above rules to the triads

as seen left—to— right is shown:

(141) becomes ~1’1) by Rule 5.

~J-~2)tlO becomes (J~ lO)~ 2O by Rule 4.

Ø4l)~(J~lO)~2O) becomes (I- (,PlO))i21 by Rule 3.

One of the pr imary effects of these rules is that any constant offset is floated

to the right where It is removed by the code generato r and placed In the address

field as an address offset.

I.-
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