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20. ABSTRACT

t~- This document describes a class of protection errors found
in current computer operating systems. It is intended primarily
for per sons responsible for improving ‘bhe~ security aspects of
existing ~~perating system ~~wa.r~~,(here called protection7 evaluators) and secondarily for designers and students of ,
operating systems. The pur pose is to help ‘protection evaluators
find such errors in current systems , and to help designers and
iinpleinenters avoid them in futur e systems, by analyzing them and
suggesting methodical approaches for finding them .

— —
~~~~~ The term ’protection evaluation1 

here denotes a search for
errors based only on static information about a target operating
system , primarily program listings but possibly other system
documentation as wel l .  The5eJstatic rnethod s,discussed - )in this
report ~äre intended to com~Téiiin t dynauiT~T methods such as
testing, auditing , and penetration attempts. ~Ti

This ~~i~ort deals with a class of errors initially
identified empirically. The class formed itself around a group
of protection errors (within a larger collection) having the
common characteristic of involving operation s or accesses
occurring in the wrong order or at the wrong times relative to

~~~~~~~ hence the name serialization for this class ~n— it-e t
i - is.. ~broadest sense , it includes a large proportion of all programming

errors—— those having to do with improper ordering or scheduling
of W operations5 In a narrower sense it includes only those
error s resu l t ing  from improper o r d e r i n g  of accesses to objects
accessible by po ten t ia l ly  concur ren t  o p e r a t i o n s .  ~~~

A general  t rea tment  of the subjec t  is fa r  beyond the scope
of th is  s tudy .  However , it was f e l t  tha t  c e r t a i n  type s of e r ro r s
f i t t i n g  the broader definition but not the narrower one should be
included , s ince an u n d e r s t a n d i n g  of the fo rmer  is h e lp f u l  to an
understanding of the latter. The result is neither a full
analysis of the subject of the ordering of operations in
programming system s nor only a discussion of process
synchronization. Rather , it is an attempt to give perspective to
several closely—related subclasse s of problem s in this area .

U N C L A S S I F I E D
SECURITY CL A$$IP1C A l lOw OF THIS PAQI(WR.n Dot. Int. ,.d)
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This document describes a class of protection errors found In current computer
operating systems. It is intended (1) for persons responsible for Improving the security
aspects of existing operating system software and (2) for designers and students of
operating systems. The purpose is to help protection evaluators find such errors in
current systems and to help des.gners and implementers avoid them In future systems , by
analysis and methodical approach.

This report deals with a class of errors, initially identified empirically, that formed
itself around a group of protection errors (within a larger collection) having the common
characteristic of involving operations or accesses occurring In the wrong order or at the
wrong times; hence the name “serialization. In its broadest sense, it includes a large
proportion of all programming errors which may have improper order or scheduling, and,
in a narrower sense includes only those errors resulting from Improper ordering of
accesses to objects accessible by potentially concurrent operations.

This study is neither a full analysis of the subject of the ordering of operations nor
only a discussion of process synchronszation, but rather an attempt to give perspective to
several closely-r.4&ed subclasses of pro~iIamis in this area.
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1. INTRODUCTION

This document is one in a series of related reports, each describing a class of
protection errors found in current computer operating systems. These reports are
intended primarily for persons responsible for improving the security aspects of existing
operating system software (here called prot.ctson vo4uAtora) and secondarily for
designers and students of operating systems. The purpose is to help protection
evaluators find such errors in current systems, and to help designers and implementers
avoid them in future systems, by ‘inalyzing them and suggesting methodical approaches for
finding them.

These studies were suggested by the pattern-directed” methodology for protection
evaluation proposed in (Carlstedt 75), intended to assist individuals such as system
programmers (who may be nonexperts in the field of operating system protection but
possess a good working knowledge of particular target systems) to effectively carry out
enhancement tasks, i.e., to find protection errors. This is important because of the
well-known vulnerability of current operating systems to operating and security losses
due to protection errors, and the scarcity or unavailability of methods and expertise to
reduce such losses.

Experience has shown that searches for errors are conducted most effectively by
focusing on distinct well-defined types, one at a time, rather than by attempting to find
errors of many different types all at once. Following this approach, the Protection
Analysis Project at ISI has been engaged in studies of a series of error types. Earlier
reports dealt with the integrity of parameters passed by reference [Bisbey 75), residual
data In allocation and deallocation activities [Hollingworth 76), and enforcement of validity
conditions (Carlstedt 76). A fourth report described an experimental technique for
determ in ing data dependencies within and across procedure boundaries (Bisbey 76).

The term prot ctSo.s veLw2tSos’i here denotes a search for errors based only on
static information about a target operating system, primarily program listings but possibly
other system documentation as well. The static methods discussed In these reports are
intended to complement dynamic methods such as testing, auditing, and penetration
attempts.

Protection evaluation is still primarily a manual and informal task. A few tools and
techniques for formalizing or automating the task hay, been proposed, but as yet none of
these can be applied with a high degree of power or generalIty. This is especially true
for the class of error s discussed In this report.

Like others in the series, this report deals with a cu ss of errors initially identified
empirically. The class formed itself around a group of protection errors (within a larger
collection) having the common char acterist ic of involving operations or accesses occurring
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in the wrong order or at the wrong times relative to others; hence the name ser i4lization
for this class. In its broadest sense, it includes a large proportion of all programming
errors --those having to do with improper ordering or scheduling of “operations”. In a
narrower sense it includes only those errors resulting from improper ordering of accesses
to objects accessible by potentially concurrent operations.

A general treatment of the subject is far beyond the scope of this study. However,
it was felt that certain types of errors fitting the broader definition but not the narrower
one should be Included, since an understanding of the former is helpful to an
understanding of the latter (and since we wished to cover several interesting and
apparently closely-related instances included in our collection). The result is neither a full
analysis of the subject of the ordering of Operations in programming systems, which would
encompass the whole field of control specifications and mechanisms, nor only a discussion
of process synchronization. Rather, it is an attempt to give perspective to several
closely—related subclasses of problems in this area.

The report is organized as follows. Section 2 introduces the subject of serialization
informally via several examples of errors taken from current operating systems, and
indicates the general nature and importance of serialization errors. Section 3 introduces
concepts and terminology common to the descriptions of the serialization problems in the
following sections.

The next four sections describe four major classes of serialization concerns. These
are closely related in that many serialization errors can be regarded as falling into more
than one class. Also, the concern described in Section 4 is stated at a level of abstraction
above those of the following three. Section 4 suggests the form of specification errors in
general and ordering specifications in particular, and describes the most basic serialization
concern of all, namely that operations occur during the occasions for which they are
specified. Section 5 discusses interoperation communication, and the associated
serialization concern of insuring the proper use of communication channels. Section 6
describes a class of serialization concerns commonly known as “mutual exclusion,” from the
point of view of preserving object integrity. Through most of this section, operations can
be regarded as “atomic”; the primary concern is that of insuring that operations on objects
occur only when such operations are “proper”. Section 7 describes a somewhat different
aspect of mutual exclusion concerns, that of the noninterference of nonatomic operations
on each other, It identifies major types of critical access sequences and their mutual
compatibilities.

Finally, Section 8 discusses some of the difficulties of detecting serialization errors
-n current large-scale operating systems.

L _  
j





.-

~~~~

-- -

~~~~

- . .- - -

was distributed throughout several sections of code. Under a certa in unlikely
combination of conditions, removal of the request just serviced could be inadvertently
skipped, causing that same request to be processed again.

7. Two operating system tasks were regarded as mutually independent: A, concerned
with address space and virtual storage allocation, and B, concerned with (physical)
primary storage allocation. Both could be called into play and allowed to proceed
concurrently when a process referenced for the first time any procedure not currently
within that process’s address space nor residing in primary storage. Under certain
circumstances, storage space for the newly-referenced procedure could be allocated
from space currently allocated either to the given process or to other processes,
depending only on the relative real speeds of A and B, i.e., depending on which was
dispatched first.

8. Parameters for a user-callabl e supervisor pr~cadure S were passed by reference.
The supervisor procedure first validated the parameters and then used them to
determine the specific action to be taken. Immediately before calling this procedure, a
user process could issue a request to an input process for a designated file to be road
into a location that included one or more of the parameters for S. Thus the user
could arrange to have the values of the parameters changed after they were validated
but before they were used.

9. A reentrant system directory update procedure failed to lock a directory while
modifying a file descriptor in that directory. When called by two or more processes
concurrently, one modification could interfere with another, resulting in an Invalid
descriptor.

As is often true of examples purporting to illustrate errors of a given class , some of
the errors illustrated by the above examples could also be used as examples for other
types, and could have been avoided by means other than proper serialization. For
example, (1) could have been prevented by a more consistent naming/addressing scheme,
(4) and (6) by more centralized management of flags and queues, respectively, and (7) by a
different storage allocation policy. Example (8) represents the type of error discussed in
(Bisbey 75), which could also be prevented by requiring the passin g of parameters by
valu, only.

How do such errors qualify as protection errors9 Not all of them appear sufficiently
“critical ” . However , any error in an operating system that can cause invalid data and
thereby invalid operations that access that data is potentially a protection error. The
concern for protection has been the primary reason for the Increased concern for
correctness in current operating system design, and for defining data , procedure , and
process hierarchi es such that elements at any given level cannot be adversel y affected by
proces ses at higher or outer levels [Graham 68, Neumann 77, Pope k 75, Schroeder 75). A
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malicious user will look for errors of any type whatsoever, knowing that their usefulness
depends on the criticality of the data and procedures affected (Cerlstedt 76].

Serialization can be viewed from various perspectives or at various levels of
abstraction. The followi ng aspects are distinguished:

es Po licy, consisting of specifications about purposes or effects.

as Mechanism, consisting of procedures to enforce policy.

as Invocation, consisting of specifications for instances for the appl icat ion of
mechanisms.

Correspondingly, serialization errors can manifest themselves in the following ways :

as Inadequate or inconsistent policy.

as Inadequate or Incorrect mechanisms.

as Missing, Improper, or Inappropriate invocation specifications.

As a part of both programming and protection, serialization is concerned with
• insuring that operations occur when and only when they are appropriate, meaningful,

intended, helpful, legal, valid, proper, effective , etc. As an area of protection, It is
concerned primarily with constraintive aspects of programming and programming systems,
namely with avoiding or preserving (rather than achieving) certain conditions at certain
points or over certain intervals of time, and with disallowing operations that would violate
such conditions, or when the conditions required for those operations do not hold. (The
term “condition” is used loosely here.)

Unlike the prohibitive mechanisms of access control, which might preserve conditions
by disallowing access to the variables involved (e.g., write-protecting them), or which
might terminate processes or force them Into different control paths when condition
violations would otherwise occur, serialization is inhibitive, causi ng processes to be
delayed until the conditIons for their continuation are satisfied, under the assumption that
the conditions will be changed by operations of other processes. An access control
constraint is of the form “coperation> only if <condition>”; In a serialization constraint the
“only If” becomes “only when” or “not until,” the assumption being that conditions will
eventually change to allow the operation to occur.

As stated in the IntroductIon, the serialization concern involves the ordering of
operations relat ive to one another. SerIalizatIon errors are errors In ordering 

• • •-• - • -
~~
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specificatIons, either at the policy or mechanism level. The only reason for ordering any
pair of operations relative to each other is that conditions affected by one might affect the
appropriateness or result of the other, i.e., that the two operations are data-related.
Thus , serialization is concerned with two kinds of relationships among operations: data
f low and control f low. Roughly speaking, the p’’oose of serialization is to maintain the
appropriateness of the latter with respect to the former.

The importance of serialization as an area of protection in operating systems is
easily underestimated, because even where the potential for serious serialization errors
exists, they may actually manifest themselves only rarely during system operation, or not
be recognized as such when they do occur. Thus (from the standpoint of maintaining
system integrity) serialization errors may seem to be less of a problem than some other
types.

The reason that few actually occur (at least accidentally!) is that such occurrences
usually require an improbable combination of conditions, for example the accessing of the
same data element by two processes within a very small time interval. The reason they
are often not recognized as such when they do occur is that their effects are often
attributable to other causes, such as hardware unreliability or obscure functional errors In
operating system code. Their effects may not even be noticed until much later, for
example not until system shutdown when unprocessed messages may be noticed.

Serialization may be difficult to understand and serialization errors hard to find, but
for these very reasons this is an attractive area for purposes of intentional exploitation
by malicious users, a primary concern of protection evaluators.

3. CONCb PTS AND TbRMIN O WCY

This section introduces some of the basic concepts of programming systems, in
terms of which the serialization concerns of the next four sections can be more easily
described.

Serialization concerns are best described and understood in terms of the dynamics
of operations and events. Errors, however, are expected to be detected by analyzing
static specifications for operators and objects. In what follows, these static and dynamic
entities are carefully distinguished.

The starting observation Is that an operation, the primary object of serialization, is
the result of a three-way attachment: proc asing system to operator to objects.

An underlying proc ss&ng system interprets and executes specifications expressed in
its language S, or S-sp.ciflco.zions, In basic units called instructions, to produce
corresponding units of activity called ctdons. The processing system consists of two

I 
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majo r type s of resources: processors and units of storage; nothing is assumed here about
the Individual unit capacity or total capacity of euther (in particular, about the absolute or
relative speeds of processors). Actions are not necessarily as primitive as those of the
physical processors of most current systems; an underlyIng processinçj system might
include high level virtual processors such as those provided in the kernel of an operating
system. However, certain actions mentioned below arid in Section 5 are assumed to be
effectively instantaneous.

An operator is a unit of action specification consisting of a set of instructions related
by control-type S-specifications that specify the potential orders in which the instructions
are to be interpreted.

An operation is the interpretation of an operator by the processing system, and the
carrying out of the specified actions, which occur as a single sequence in time. The
operation is said to be based on its operator. ~~ terms “operator ” and “operation” are
intended to suggest nothing about unit size; operators can range from very long
specifications to single instructions, and operations can range from time-consuming
processes to brief actions.

One of the most important actions specified by an operator is the invocation of

another operator for execution. The instruction for this is an invoker. An invocation
results in the initiation of another operation to be performed, based on the invoked
operator. An obvious example of an invoker is the “call” statement in an actual
programming system. However, only the operation-initiation semantics of invokers are of
interest here; nothing is assumed about the immediacy with which initiated operations are
actually performed, or about initiating operations being delayed while initiated ones are
performed. Invocations are assumed to be instantaneous.

An object is a value-containing entity describable and denotable by name in S. It
may be simple or composed of other objects. Examples in actual programming systems are
simple and structured program variables, files , records, and data bases. In general, objects
are related to other objects via the directed relations “contains as component or member”
and “possesses as value”, In an extended sense the concept also includes primitive data
objects denoted as literal constants (e.g., characters, numerals, “true”/”false”h however, we
restrict objects here to “container-like” entities whose identities are distinct from their
values.

A collection of objects related in some given way is an environment. In the
following sections the terms “environment” and “object ” are usually interchangeable.
Collectively, all the values and comp onents of an environment (and the components’ values,
etc.) are its stats. A condition Is a class of states of a given environment E described by
a predicate C(E]. In what follows, “the condition C[EJ” means “the condition described by
C[E]”; “the state S of E (or E itself) satisfies C(EF means “S Is In ctEr~ “condition

(event) C(Ej occurs” means “the state of £ enters ~~~
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Two objects x and y are covariont if they occur together In a relational
expressing an intended invariant condition, where a relational is a primitive term such as
xcy or x—2sy. A related group is an equivalence class of objects under the transitive

extension of the relation “x and y are covariant ”.

Every operation has an environment of objects that it accesses , as described in
Section 5 below. This ~s determined by the processing system as fol lows: The instructions

• (including invokers) in an operator contain identifiers that denote objects in the formal
environment of that operator. Whenever the operator is executed its identifiers are
bound to actual objects, which they then denote, and which then constitute the
environment of the operation being performed. Thus the same operator may be applied to
the same or different environments for different operations.

The binding of identifiers is achieved via contexts. A context is an S—specification

for a one-to-one mapping from identifiers of an operator into actual objects. A variety of
contexts may exist, some of which may be perma nently associated with the operators
whose Identifiers they bind and others of which may be associated with particular
invocations. An invocation context is explicit or implicit in every invoker. Thus an Invoker
has the form

DO A[E,m),

where A designates an operator, E an environment, and m a context. (The context of
an invoker existing in operator A •nd designating operator B maps all the
to-be-invocation-bound identifiers of B into identifiers of A. Since the actual invocation
occurs only during an operation based on A, its IdentIfiers are necessarily already bound
to actual objects; thus the given identifiers of B are also ultimately bound to actual
objects.)

The expression A(E,m] defines an applicator , which instantiates to a specific
operation based on the operator A for a particular state of the environment E. In what
follows, the possibility of binding the same operator to the same environment in different
ways is ignored, and applicators are denoted in the form A[E]~ The word “application ” is
used in place of “operation” when a particular applicator is assumed.

In view of the definition of “object ” above, to state that the identifiers of an
operator are bound to actual objects when it is executed is actually an oversimplification,
since some of them may be bound to literal constants. In the following sections,
particularly in Sections 6 and 7, applicators are distinguished only by operator and actual
environment. To account for the possibility of (input) identifiers in an operator being
bound to literal constants , two applicators are regarded as identical only li the Identifiers
of their operator are bound to the same literal constants as well as to the same actual
objects. Under this view, ADD( 1,x] is a different applicator from ADD(2,x3.



4 ORDERING SPECIFICATIONS AND OPERATION OCCASIONS

ProgrammIng errors can be thought of as incompatibilities of S-specIfications with
more authoritative, abstract, and possibly less formal po licy or reference specIf icatIons. It
follows that to describe serialization errors in a given class S of systems, It Is necessary
to describe the relevant classes of both S- and reference specifications. Since
serialization is concerned with the ordering of events of certain types , these will be
event -orderi ng specifications.

An event ordering is a partial time-ordering on a set of events. Two kinds of
orderi ngs are of Interest:

ss PotentiaL orderi ngs of events that may occur in the future.

as Actual orderings of events that have occurred in the past.

The effect of the activities of a processing system is to manifest a particular actual
ordering from the class of potential orderi ngs described by the set of S-specifications
being interpreted (together with an initial state). The following are examples of the typos
of events involved in ordering specifications:

cc Primitive read or write accesses.

cc Beginnings and ends of nonprimltive use and modificat ion accesses.

cc Beginnings and ends of use and modification Intervals (sequences of primitive
and nonprimitive use and modificatIon accesses ).

cc Beginnings and ends of operations (more generally).

cc State changes that result in given conditions being entered or l.ft.

cc Interpretations of S-specifications the mselves , i.s., event s implicitly desi gnated
as “now”.

The various typ es of accesses mentioned above are defined In SectIon 5 followIng.

The vari .ty of potentially meaningful S-interpretable orde ring specifications is
virtually unlimited. In general , an orderi ng specificat ion must specify two thi ngs:

(

_ _ _
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1. An effect, which is a class or set of events to be achieved (in a progressive
specification) and/or prevented (in a constraintive one).

2. An occasion, which Is an Interval during which the effect Is to be achieved or
prevented.

An occasion predicate is a predicate Occ(l) on a set I of intervals, each of which is
bounded by one (for an infinite interval) or two (for a finite interval ) events of on. of the
types listed above. As with conditions , one speaks most prop erly only of occas ions
“holding”; to say an occasion “occurs ” means it begins to hold. The roles of effect and
occasion may sometimes be indistinguishable , as in a simple specification of a form such as
“.1 before .2” .

In a progressive ordering specification or p-spec, the effect component specifies an
application (or a set of applications from which a choice is to be made on the basis of
lower-level considerations); hence such a specification has the general form

DURING 0cc 00 AppI

where Océ is an occasion predicate and AppI is an expression involving conditions and
applicators. This form includes simple invokers of the form DO A(E3, where a particular
applicator Is specified and where the occasion Is ImplIcitly specified as “(after) now”.
However, it is helpful to think of all p-specs as though they included explicit occasion
predicates.

An occasion for a given application is a set of conditions under which some goal
arises toward which progress can be achieved by performing that application while those
conditions hold. As suggested by the above form, the same occasion might indicate a
disjunction or conjunction of applications. For example, the completion of a data base
update might indicate a number of different summarizing operations.

One of the most general expressions of serialization policy is the following:

Every applicat ion must be performed erdy during an occasion f or I t.

This can be qualified in two ways. First, the problem of insuring that the occasion
for an operation does not end until the operation has been performed is discussed In
Section 7 under “Noninterference,” and can be ignored here. Second, only one application
of the type Indicated by an occurring occasion should normall y be performed during that
occasion. These qualificatIons yIeld the following pol

icy:t
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Al. Every application must be perfo rmed oily when the occasion f or It has occurred ,
and then only once.

The primary probl em in enforcing this policy is recognition of the occasions
designated in p-specs. Not all p-specs occur in the forms most familiar to programmers,
such as sequentially-interpreted unconditional and conditional function and procedure
invocations. In particular, they may occur in “nonsequential” programming, as independent
p-specs whose occasion predicates require virtually continuous evaluation by the
processing system or by special operations created for such purposes. A variety of
mechanisms are used to facilitate m d  signal such recogn ition , including special recogn izers
for suboccasions or events of various types, and the representation of occurrences of
suboccaslons via “event flags,” logical-valued objects whose values are set to “true” when
such suboccasions are recognized.

The recognition of an occasion may result in the direct Invocation of the Indicated
applicator, or it may be represented by an “occasion signal,” indicating the requirement for
an invocation at some later time (before the occasion ends). A sequence of occasions of a
given type (i.e., described by the same predicate) constitutes a conceptual “occasion
channel”. Such a channel may be physically embodied as an environment (usually a queue)
of objects representing pending invocations. When an occasion of a given typ e can occur
at a frequency greater than the rate at which indicated applications can be performed by
the processing system, the elements of such an occasion channel must be buffered.
Concerns specIfic to the management of occasion channels are similar to those of
communication channels, discussed in Section 5 following.

5. INTEROPERATION COMMUNICATION

A large class of serialization concerns is associated with intentional communication
among operations. These include those traditionally referred to as “producer-consumer”
problems (Dijkst ra 71] and “reader-writer” problems (Courtois 71).

Roughly speaking, communication by one operation with another occurs In the form
of one or more o~cesses to objects in the intersection of the environments of the two
operations. Accesses are of two types:

cc A use access L~w,x] by an operation w to an object x obtains part or all of
the state of x without changing it.

cc A niodificatSon access ti4w,x] assigns ore or more other objects as values or
components of x, thus In general changing its state. 

~~~~~~~~~~~~~~~~ -~~~~-- ~~~~~~ --
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In what follows, use and modification accesses to a given x by various operations
such as v and w are denoted by 1(v) or P4w). use and modification accesses by a
given operation to a given object are denoted simply by U and M

Accesses by a given operation occur both directly, via read (use) and write
(modification) instructions in its operator; and Indirectly, via subsidiary (invoked)
operations. Read and write actions involve only primitive objects; they also occur
instantaneously, i.e., they are events. A nonprimitive direct 1(w,x] (P4w,x]) may also
occur, In the form of a sequence of read (write) accesses to various components of x. An
indirect U(w,x] (P4w,x]) is ce~ried out via a subsidiary w’ of w, where w’ In turn
either reads (writes) x directly or uses (modifies) x indirectly.

In the broadest sense, operations v and w communicate with each other if there
exists to some object x, the communication object, a sequence of accesses l4v]...14w]
or M[wJ..1(v). with no intervening modifications to x in either case. However, such
accesses may be unintended , in which case they represent cases of isiterfer.nee , discussed
in Section 7 below. Actual commwiscation means the intended variety.

L(w,x] (M(w,x]) is a receive (send) access if either of the followIng apply:

5* It is the initial L(w,x) (final M(w,x)) by w.

cc There exists at least one Intervening P4v,x] (L(v,x)) by some operation other
than w, i.e., relative to the last previous 1(w,x) (next subsequent P4w,x]).

Serialization is concerned only with communication accesses, not with uses and
modifications of objects in private environments of operations. The same object x may
be employed as a communication obj.ct during parts of en operation w and as an object
private to w during other parts.

An object x is an Input to an operat ion w if it is used by w before beIng
modified by It (if modified at all); It is an output of w If it is modified by w. The Input
and output environments of an operation may be disjoint, may partially overlap, or may
coincide.

Communication concerns are often Identified with occasion concerns, where the
occasion for an operation w is mistakenly thought of as represented entirely by Its
inputs. However, an occasion for w need not be a condition on the environment of w,
i.e., Z can be disjoint from E In the p-spec DURING C(Z) DO A(E). An example Is an
operation intended to Issue a notice on each occasion of a certain data base condition,
where the notice does not include the values of the data base objects themselves. In
principle, not all of the inputs to an operation need even have the same states when the
occasion for it Is recognized or when It Is created , as they do later when first used by it. 

-~~- - —~~~~~ - - - - - .-~~~~~~~~~~~~~~~ --
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Itt other words, the fact that its occasion occurs does not imply that all of its initial inputs
need be “ready”. The only policy that must be enforced in this regard Is that while an
operation Is using its “occasion inputs” (i.e., those actually involved in the occasion
predicate of the p-spec that indicated that operation) they must not be allowed to be
modified so as to nullify its occasion. This is more suitably regarded as a policy of
noninterference, which is discussed in Section 7 below.

The same object may be utilized as a communi cation object by different sets of
operations for totally unrelated purposes (although this practice occurs less and less as
computer storage becomes less expensive). A channel is a communication object
associated with a specific purpose or role. The essential serialization concern of
interop eration communication Is th at of coordinating accesses to communication objects as
channels or elements of channels.

In general, a channel alternates between two access phases:

cc A modif ication ph ase, during which Its state is subject to change and cannot be
guaranteed to be stable , consistent , or otherwise usable.

cc A use phase, duri ng which the opposite is true.

The following policy must therefore be enforced:

R2. The modific ation and use ph ases of a channel must be recognized or def ined , and
all modifications and uses of it must be conf ined to its modif ication and use phases,
respectively.

Three conceptually distinct types of channels are employed In interoperation
communication:

1. A simpl. channel is a communication object through which are communicated
state changes primarily regarded as changes in value rather than In membership,
and which is accessed by senders and receivers “in place”.

2. A message is similar to a simple channel except that instead of remaining
stationary in the joint environments of its sender and receiver , It is moved from
the environment of its sender end into the envIronment of Its receiver. This is
done either directly or vIa a message channel ((3) below), and is carried out as a
result of put and get instructions (or instructions with the same effect)by its
sender and receiver , respectively. These indicate explicitly the end of its
modification phas. and the beginning of its use phas., the two phases possibly
being separated by an in-channel phase.
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3. A message channel is an expandi ng and contracting environment Into which
• messages are “put” and from which they may be “gotten ”. As a channel , the

state changes communicated are regarded as changes In membership rather than
in value. (It is actually a metachannel.)

Both simple channels and mess age channels exist In actual systems in many forms ,
suc h as actual parameters and parameter lists , shared files , request queues, Interrupt
stacks, and input/output buffers.

Similar to a message channel is a resource p oo4, a set of available resources of the
same type , allocated to and deallocated from operations. A resource pool Is similar to a
message channel in that allocation and deallocation actions explicitly distinguish in use and
availabl, phases for individual resource units. Objects serving as messages are placed
in resource poois to indicate the ends of their use phases, and are obtained from resource
pools to indicate the beginnings of their modification phases, via instructions similar to
“put” and “get” . Policy analogous to R2 applies to resource pools as well.

Aspects of the management of simple channels, message channels, and resource
pools by an underlying system, other than disti nguishi ng their phases and synchronizing
their participants, are beyond the scope of this report. These include the problem of
insuring that operations access communication objects only when they are included as
participants in the current channel roles of those objects; enforcing implicit or explicit

• 
- sender-receiver designations; and scheduling sending/receiving, production/consumption,

or allocation actions both fairly and in such a way as to avoid deadlock, when those of
more than one operation have been delayed due to lack of processing or storage
resources. A general mechanism for such management , called a “monitor ,” Is described In
[Hoar. 74).

6. OIf J b CT I NTKCIIIT Y

This section describes a class of serialization concerns associated with protecting
objects from “untimely” operations, where the criterion used to determine whether an
operation should be performed is Its propriety with respect to its effect on objects It
accesses, as well as its compatibility with operations currently accessing those objects. In
Section 7 the discussion of compatibility is continued, but from the point of view of the
integrity of the accessing operations themselves. The concerns described In these two
sections are commonly known as “mutual exclusion” [Dljkstra 71, HornIng 73). The
necessity for mutual exclusion under certain conditions Is widely recognized, but the basic
reasons have rarely been analyzed.

Associated with any object, related group , or environment x is Its Integr ity
condition ~ x). the class of states regarded as ever possibly v~id for it, implied by the

t 
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real-world objects or phenomena It is intended to represent, or by the types of
operations expected to access it. (Integrity conditions are also called “consistency
conditions ,” usuall y in connection with data bases. The former term applies better when
single objects as well as related groups are of concern.) If C(x] does not hold, x Is in an
invalid state (meaning inherently invalid , rather than simply faili ng to meet the validity
conditions of particular operators ). An operation w that modifies x is proper with
respect to the integrity of x if and only if the state resulting from w is contained in
C(x), assuming no other operations participate in modifying x during w.

Since the propriety of an peration in general depends on its inputs, it is more
meaningful to speak of the propriety of an application of an applicator A[x] , where A is
an operator and x is the total input and output environment to which it Is applied. More
precisely, propriety is a boolean function Propr(S(x] ,A(x)] , where S(x] is the state of x
when A[x] is applied. Thus one can speak of tJ~e propriety of an environment x for an
application of AI:x) as well as the converse. For a given applicator A[x] there is a class
of states CA(x] (which need not be a subset of C(x]) for which Prop r[ S,A] is true. In
terms of the dynamics of x , i.e., the sequence of states resulting from operatIons on it, for
given applicator A(x3, the state of x may from time to time enter CA(x] and then be
proper for A[x) (Figure 1). A(x) is “totally improper”, “totally prop er”, or “ partially
proper” depending on whether CA(x) Is null, a superset of C(x), or neither. Prevention
of totall y improper applications is an acces s control concern ; A(x] Is here assumed to be
at least partially prop er for x .

Note the difference between propriety and other properties of an application
and/or the state of its environment. First, A(x) can be proper even when the state of x
is either Inherently invalid, or invalid for A(x] in particular. In either case it could still
perform correctly, or else produce spurious output that happened to satisfy a given
integrity condition. For the description of object integrity concerns to make sense,
however, we must assume the Integrity of operations and therefore the validity of Inputs.
(A[x] can also be proper for states of x for which it is not appropriate , i.e., even when
there is no occasion for such an application. The converse is of course false , since to
achieve an invalid state is never a programming goal so there can be no occasion for It.)

Propriety policy is summarized by the following:

R3. An application must 6. performed only when Its environment Is proper for it.

In many cases only a given set of applicators (AEx]) needs to be considered that
can be applied to a given environment x . In such cases the state space of x is
partitioned into phases by the members at the powerset of (CA[x)} , such that for each
phas. only the operators of a unique subs et of (A[x]) are proper. R3 is more easily
enforced by keeping track of phases than states, particularly if the phas. resulting from
•ach application of some member of (A[x] ) is only phase-dependent rather than 

- —~ - — --~~- -------V- —
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- Possible states of XIntegrity condition
for X

Propriety sta tes
for AEX]

Fi gure 1. Integrity and propriety states

state—dependent. In this case, “state” is replaced by “phase” in P.3, and the dynamics of
x is modeled by a phase transition table , as illustrated in Table 1. (Cli] need not be

covered by UNION(CA(x]), i.e., a prop er operation can in princIple result in a state In
which no appli cators In a given set (A(x)} are proper . Avoidi ng such states is a
scheduling or programming problem.)

Enforcement of P.3 can be carried out by the underlying processing system on the
basis of “path expressions” supplied to it [Campbell 74, Habermann 75, Chow 76).
Sequences of applications intended to be performed as a unit, called transactors, are also
covered by P.3. In Table 1, for example , the only proper phase in which to start the
transaction A2-A3-A4 is phase 6. Any operation , sequence of operations, or sequence of
accesses within en operation, which must be completed as a unit for reasons of either
object or operation integrity, is called a critical operation or seque nce. Policy to insure
that critical operations complete without Interference is discussed below and In SectIon 7
following.

-~~~~~~ - V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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TABLE 1
Sample Propriety Phase Transitions

APPLICATOR
Propriety

Phase Al A2 A3 A4 AS—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
P1 2 Improper 3 2 4
P2 1 6 6 2 8
P3 4 7 Improper 1 3
P4 Improper 5 4 Improper 2
P5 6 Improper 8 Improper Improper
PS Improper 2 1 5 Improper
P7 Improper 3 Improper Improper 3
P8 Improper Improper 7 Improper Improper

Consider now all applications involving x, not just those that modIfy it. An
application that does not modify x Is of course totally proper for it. In general, riot all of
the applications that may be proper for x in a given phase may be performed
concurrently, for reasons of either object Or operation integrity to be identified in the
remainder of thIs section and in the next. Two applications based on the same or different
applicators are totally compatible, totally Incompatible, or partia lly compatible with
respect to their access to x, depending on whether they may always be performed
concurrently, may never be performed concurrently, or may be performed concurrently
except for certain critical accesses and sequences of accesses , respect ively. The following
policy must be enforced:

R4. Of the applications that may be proper for an environment in a given state or
phase, only thos. that are totally or partia lly compatible may be allowed to proceed.

Because concurrent incompatible applications are likely to (though may not

V 

- necessarily ) result in an invalid state, selection of one or more proper initiated compatible
applications that access x effectively constitutes a transition Into a compatibilIty subphase
of x. This is an allocation of x to that set of compatible applications.

As an example of transitions among compatibility subphases , consider (appl ications
consisting of) single use and modification accesses to an object x. Assume a single
propriety phase In which either access is prop er, i.e., assume that a valid sta te will be
assigned by any modification access. As noted In Section 5, use and modification accesses
are inherently incompatible. The object x must undergo a transition to a compatibilit y
subpha se by being allocated to either use or modification accesses exclusively (Figure 2).
Further, th. result of concurrent modifications ii (roughly speaking) unpredictable , so that
modification accesses are incompatible with themselves. Thus when x is in the 

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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modify -only subpha se it can be allocated only to a single modification access, puttIng it In
a subph.s. for which no other accesses are proper.

Figure 2. Use and modification phase transitions

The previous paragraph would apply in the same way if use and modification
accesses were replaced by read and write accesses, where the latter were assumed to be
noninstantaneous. Virtual instantaneity and nonsimultaneity of read and write accesses is
provided by the underlying processi ng system by enforcing phase transitions similar to
those just described. This Is sometimes called preventing “race conditions”; the principle
of no concurrent or simultaneous writes Is called “certainty ” (Gilbert 72, Dijkstra 68].
Under these assumptions, serialization policy for prevention of concurrent single use and
modification accesses is covered by the communication policies stated in Section 5 above,
and policy for preventing concurrent modification accesses Is covered by policy stated in
Section 7 below.

In summary, the primary problem of object integrity Is to delay operations within
given environments until the occurrences of proper states or phases for them, and to
select compatible operations for performance from among those proper for a given phase.
The unit of s rialization is regarded here as the complete operation. Not all object
integrity concerns can be so characterized, however. In some cases the unit of
serialization is a critical access or sequence of accesses to a particular object within an
operation. The noninterference concerns described in Section 7 Involve such crItical
access sequences. Accesses and access sequences of the typ es described below are also
critical , but more from the standpoint of object rather than op.ration Integrity. For this
reason they are discussed here rather than in Section 7.

A single nonprimitive modification access t4w,x] is critical it x Is a related group.
Without knowledge of the states to be assigned to the var ious components of x , once such
a modification has begun, i. ., once the first write access has occurred to one of the

~~~~~~ —
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components, it must be assumed that x is in a temporarily invalid state and will remain so
until and only until (assuming operation propriety and integrity) Mfw,x) has ended. If in
the interim some other operation attempts to modify any portion of x, such a modification
must be assumed inconsistent with M(w,x] and must therefore be delayed at least until
P4w,x) has completed.

Actually, the primitive write accesses of nonprimitive modification accesses to x by
different operations can be interleaved so as to preserve the validity of x, but this
requires advance knowledge of the order in which each of the operations will access the
components of x (Eswaran 76]. t or example, each of the write accesses of w can be
immediately followed, component for component, by those of some other comp osite
modification access that completely masks w but leaves x valid. Assuming no such
advance knowledge, the following policy Is implied:

R5. While a nonpri mitive modif ication of a related group is in progress, all other
modifications of any of I ts objects must be pr evented.

A use-modification sequence consists of a U(w,x) followed some time later by a
M(w,x] with the condition Six] — f(S(x)), where $ is the state obtained by U, S’ is

the state assigned by M, and f denotes a function computed by w. Such a U-M
sequence is a critical sequential updat. if x is a sequentio.L update object , meaning that no
two such sequences may be based on the same “state-interval” of x, i.e., their U’s may
not occur during the same interval in which the state of x remains unchanged. The
modification phase of x can be regarded as beginning the moment the U access has
completed (putting x in a “virtually” unstable, unreadable state for the remainder of the
U-M sequence). Examples of sequential update objects in actual systems are those

containing counts, for example, of available units of resources of various types.

Another way of characterizing a sequential update object is to say that it is one for
which the total effect of any ~wo updates must be the same as though they were
performed entirely sequentially. Except for updates U(w]-M(w) and U(v]-.M(v] in which

f is identical, or in which f[v) is the inverse of ffw) with respect to x, the effect of
U(w}44w] followed by U(v]-M(v] is different from the effect of U(v]-M(v] followed
by L4:w)-t4w]. The sequential update concern assumes that one of the updates has been
selected or is already in progress, and is based on the recognition that sequential updates
are incompatible in the sense defined above. It is summarized as follows:

R6. When a sequential update Is in progress, all other sequential updates of that obj ect
must be prevented.

As a matter of fact, all modIfications to the object being updated must be prevented
during a sequential update , but for the sake of their own effectiveness , not for the sake of

_________ - — -~~~~ -~~ - V



the effectiveness of the updating operation nor for the sske of the Integrity of the object
being updated. This problem is discussed in Section 7.

7. OP?R 1TION INTXCRITY

In the descriptions of the serialization concerns in Sections 4 and 5, and in the f irst
half of Section 6, operations are regarded as atomic. An atomic operation is one whose
environment is not or cannot be accessed by a’~y other operation while the given
Operation is being performed, rid which, once started, is not or need not be delayed in
favor of any other operation. Actions of the underlying processing system are examples
of (primitive) operations which are atomic. A system in which all operations are atomic is
modeled by the “U-process-M” paradigm, where all use accesses occur together at the
beginning and all modification accesses occur together at the end of an operation. In such
a system or model, serialization is concerned only with the ordering of complete
operations relative to one another; whether or not operations can exist concurrently is
irrelevant.

When used properly, atomization is a powerful and efficient method of enforcing
noninterference policies [Lomet 77]. A common but overly-coarse atomization technique is
to inhibit all interrupts during the performance of Operations regarded as critical.

In the last half of Section 6, and in this entire section, serialization concerns are
described that arise from possibilities for effects of nonatomic concurrent operations on
one another. Such possibilities exist in all systems capable of performing, in shared
environments, more than one operation at a time, either because of the availability of more
than one physical processor or because a processor can be interrupted during one
operation and switched to another, temporarily suspending the first (effecting virtual
multiprocessing).

To describe these concerns, operations must be regarded in more detail, in terms of
the sequences of accesses they make to individual objects or related groups during their
performances. Serialization then becomes an ordering of accesses and sequences of
access, rather than of operations themselves.

Noninterference concerns relating more directly to object integrity w re described
in the latter part of the previous section. In this section they are described om the point
of view of operation integrity. Obviously, the two t ypes of concerns are closely related:
roughly speaking, the integrity of an operation1 In the sense that the states of its outputs
bear intended relations with the states of its inputs, depends on the initial and maintained
integrity of those input objects. Conversely, the integrity of an object depends on the
integrity of operations modifying it. However, the notion of operation integrity can be
generalized and sharpened by defining it in terms of various types of access sequences an
operation might contaIn, rather than only In terms of its use accesses to Its inputs.

- d
—4



~

21

Like communication, interference by one operation with another occurs in the form
of accesses by th. former to objects in the environment of the latter. One kind of
interference can be read directly from the definition of communication in Section 5:
operation v interferes with operation w if there exists to some object x a sequence of
accesses P4v3...U(w], with no intervening modifications to x, where such a sequence is
unintended. The characteristic common to all instances of interference is that v performs
a modification access to the environment of w, so as to affect the states of outputs of w.
(Just as every modification access is assumed to have an effect on the object accessed,
the state of every input to an Operation is assumed to have an effect on the subsequent
state of some Output of that c~eration.) However, not all cases of interference are
characterized by the M(v]...U(w] sequence. Furthermore, not every instance in which one
operation modifies the environment of another is a case of either communication or
interference. 

-

Interfere nce occurs when and only when some object or related group x, accessed
as either input or output by an operation w, is modified by another operation during a
crIt ical ~nterval when such modifications, for one of a number of possible reasons, are
not intended. Such an interval includes a critical sequence of direct or indirect accesses
by w to x. The usual concern for operation Integrity, implying protection of its input
environment only, is extended here to require possible protection of Its Output
environment as well. However, other components of operation Integrity, namely operator
correctness and input valèdity, are assumed as before.

Sn the following paragraphs, five types of critical access sequences to an object or
related group x by an operation w are identified. -

1. Composite use U — u...u. This Is a sequence of use accesses to components Of x,
intended as a single access in the sense that its purpose is to obtain the state of x
as it existed at some moment just prior to the beginning of the sequence. Clearly, all
modifications of x must be prevented during some interval covering this sequence, at
least all composite modifications of x (see below). (Primitive write accesses to
components of x already read as a part of U can be permitted; however, policy
covering such interleaving of composite accesses Is beyond the scope of this report.
For a discussion of possibilities for such interleaving, see [Eswaran 76].)

2. Steady state tue U...U. This is a sequence of primitive or composite use accesses
to x as a whole, where the intention is that throughout the sequence x satisfies a
“critical condition,” which is either an absolute condition C[x], or a relative condition
C[x,S’] describing a class of states of x relative to the state S’ at the beginning of

the sequence. During such a sequence all modifications to x must be prevented (at
least those that would cause C(x] not to hold). In practice, the requirement is almost
always that the state Stx] remain unchanged throughout the interval, i.e., that S — S’.
Under this assumption, policy governing steady state use sequences is th. same as
that gover ning composite use accesses (1), and the two can be treated as one concern.

a
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3. Composite modif ication N — m...m. This Is a sequence of modification accesses to
components of x, intended as a single access in the sense that Its purpose Is ~o assign
a particular state to x. Obviously, for this to be effective, all modifications to x by
other operations must be prevented during some interval covering this sequence--at
least to components that have already been written as a part of this composIte access.
Since modifications to components not yet written as a part of this composite access
would themselves not be effective the summary policy is that all other modifications
must be prevented.

The difference between this roncern and that expressed by R6 In Section 6 is that
there the concern is merely for preserving object integrity, whether the modification
itself is effective or is masked by a concurrent one, while here the concern is that the
modification itself be effective. Under the assumption that possible interleaving is not
to be considered (and only under this assumption), identical policy governs both; they
are not distinguished in the rest of this report.

4. Sole-source modif ication M...M. This is a sequence of primitive or composite
modification accesses to x as a whole, where the intent is simply that w is the only
operation to modify x during some interval covering this sequence. This concern for
separating modification accesses from one another complements the communication
concerns described in Section 5, those of separating use from modification accesses.
Since the requirement for the integrity of a sole-source modification Is the same as for
the integrity of a composite modification, the two can be treated as the same concern.

5. Coherent modification-use N-U. This is a sequence consisting of a Mtw,x)
followed at some point by a U(w,x], with the intent that the state of x does not
change in the interim. Every instance In which an operation uses a shared object
temporarily for communication with itself Is an example of such a sequence Although
in most cases the private environment should be utilized for such purposes, coherent
M-U sequences to shared objects are sometimes employed, such as in update-verify

sequences on shared data bases.

The apparent converse of (5) is the sequential update of the form U-N discussed in
Section 6 previous. The sequential update is viewed as critical from the point of view
of object integrity rather than operation integrity, since its Intention per se is always
fulfilled regardless of intermediate modifications by other operations.

The critical interval for each of the types of critical accesses or access sequences
identified above, i.e., the interval during which extraneous modifications are intended to be
prevented, does not always coincide with the interval bounded by the first and last read
or write actions of the sequence. For example, in the case of a sole —source modificat ion
M...M, the critical interval might begIn some time before the first N and end some time

after the last one, depending on how x is intended to be employed. A critical Interval Is
a perIod of time during which x is allocated to a critical sequence or sequences of a 

-



23

given type. In other words, a critIcal Interval corresponds to (but does not necessarily
coincide with) a phase of the object accessed. The beginning and end of a critical interval
cannot in general be determined by the underlyIng processing system, but must be
indicated by the accessing operations. This information is then used by the processing
system to determine phase transitions.

The mutual compatibilities of the four major types of critical access sequences
identified in Sections 5-7, with respect to a common object x, are summarized In Table 2.
U sequenc. denotes either a composite use or a steady-state use sequence; M sequence
denotes either a composite m’~dification or a sole-source modification sequence;
U-M sequence denotes a sequential update; and M-U sequenc, denotes a coherent
modification-use sequence. Each entry in Table 2 has one of two values:

Y: the access sequence of that row (by an operation v) may proceed totally or
partially (see note) concurrently with the access sequence of that column (by an
operation w), to which x has already been allocated.

N: the access sequence of that row may not begin until the access sequence of
that column , to which x has already been allocated , has ended.

TABLE 2
Access Sequence Compat Ibilities

U 11 U-li Il-U
eeq. seq. seq. seq.

_ ___ .__..__ .____.._ .. ._ . .__.__ ...__ .__..__._•e•.____

U aeq. V N y(’) y(2)

M eeq. N N N N
U-fl seq. y(3) N N y(’)
Il-U .eq. N N N N

(1) The U s.e*nc. must end before ths N s~~seq~isnc. of the U-N eqjsnc begins.

(2) The U a.~anc. must not begin smtil the N s~ seçasnc. of the N-U s.~ isnce has ended.

(3) The U sitsiqusnc~ of the U-N s.elsnc. must not begin imlil the U s~~ienc. has endid.

(4) Th. U e~sequ.nce of the U-N soeasnc. mast not begin iiWil the N e~as~isnos of the N-U
s.qusnoe has sndsd the N ii ~.e~asno. of the U-N s.qjsnoe Imast not begin ~mtii the U
ehsseanoe of the N-U siq~snco has Indsd.

-
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Seria’ization policy for avoiding concurrent mutually IncompatIble access sequences
or subsequences is expressed In the following statement (which includes the policy
expressed in R5 and R6 of the previous section):

Ri. When a critical eeeess sequence or subsequence Is Sn prog ress, only other sequences
or subsequences of compatible types may be allowed to proceed concurrentLy v’Sth St.

The access sequence compatibility concern may be rephrased in terms of
compatibility phases and subphar -s of a shared object. Seven such phases and subphases
are defined by the relations represented by the above matrix:

1. U phase (not allocated to any particular operation).

2. N phase allocated to a particular operation but not as a subphase of a U-N
or N-U phase.

3. N subphase as the first subphase of a N-U phase allocated to a particular
operation.

4. U subphase onl y as the second subphase of a N-U phase allocated to a
particular operation.

5. U subphase both as the second subphase of a N-U phase allocated to one
operation w and as the first subphase of a (i-N phase allocated to another
operation v.

6. U subphase only as the first subphase of a U-N phase allocated to a
particular operation.

7. U subphase as the second subphase of a U-N phase allocated to a particular
operation.

The transitions among these phases , corresponding to allocations and deallocatlons,
are shown in Figure 3. P7 is r.stated.ln t*rms of .obj.ct pbases .as iollowst ..

Re. Critical access phase end subph es, trortalU ons for a shared object must be limited

f 

to those shown in Figure 3.

Note that phases and subpha ses 2,3,4,6, and 7 must be allocated to a single
- ; I operation , while subphase 5 may be shared by two operat ions. Phase 1 Is the only one

that can be shared among more than two operations.
S
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Figure 3. Compatibility phase transitions

The phases and phase allocations /trensitions identified here apply only to objects as
a whole. As noted, other phases and transitions would be derived if possibilities for
access interleaving were exploited by recognizing component accessing orders. A
somewhat similar scheme, but one which allows allocating both hierarchically-structured
objects and their components to compatible access sequences , is presented in (Gray 75],
where, however, only two basic phases or modes are provided: “share, allowi ng use but
no modification , and exc lusi v•, allowi ng both use and modification by a particular
operation.

Just as the operation typ es Involved in determinations of mutual compatibilit y can
transcend operator boundaries in the form of transoperators (as noted In Section 6
previous ), so also the Individual accesses of critical access sequences can be distributed
among a number of operators , i.e., critical intervals may also transcend operation
boundaries. For example , the U In a U-N sequence may occur in one operation , and the

‘-~ corresponding U in a later one. Operations containi ng such accesses must be scheduled
or programmed to occur in th. proper order.

L 
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8. DETECTING SRRIIJ I J Z/ I TION ERRORS

Serialization errors have earned a reputation for being the most difficult type to
detect. This is true both for errors in specifications themselves, as well as for their
effects during system operation (as noted in Section 2). This section discusses problems
associated with attempts to detect serialization specification errors in large
current-generation operating systems, and to devise effective search strategies and
methods.

Unfortunately, methods for detecting serialization errors of the types described in
this report, which are complete in the sense that they apply to all errors of these types in
entire systems, and which are effective in the sense that economical and reliable
techniques and tools exist to carry them out, do not exist at the present time. A number
of research efforts have been and are being devoted to identifying possibilities for such
tools, but none have so far resulted in proposals of more than limited feasibility. Most of
the persons involved in such research would probably agree that their work has been of
value more for the insights it has achieved than for the immediate practicality of any tools
or techniques it has suggested , as far as current large operating systems are concerned.
Its most common shortcoming in the latter respect is that such research is typically based
on formal models in which various complex aspects of actual operating systems are
abstracted, for example those of name-object scope and binding. Problems of mapping
between formal models and actual systems are usually not confronted to the extent that
tools or techniques embodying these insights can be readily built or employed.

For example, Alexander (Alexander 74] shows how to prove that only allowable
sequences of state transitions can occur in a program, by comparing the state graph of the
program with a prototype state graph of the class of allowable sequences. The method is
extended to a system of processes by including process-local state identifiers as state
information within a single system state graph. However, no ge~neraI procedure to produce
state graphs for an actual system is given; without such a procedure the method Is
practical only when a few manually-identifiable variables and states are involved.

Howard (Howard 76) shows how Hoare’s f orma l methods for program verification can
be applied to prove the correctness of the management of queues (message channels) by
monitors, with various types of signalling operators defined and compared. These methods
would apply only in operating systems where such monitors are used.

Keller (Keller 76) uses an induction principle,TM defined in terms of an abstract
conceptual model and applied to a formal model of parallel programs, to show how certa in
properties of such programs can be proved, including that of mutual exclusion. However,
the technique is demonstrated only for very simple examples; the problem of choosing
invariant conditions for actual implementations is not confronted.

I.
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Lipton tlipton 75] defines a technique called “reduction,” by which the simpler
analysis of sets of noninterruptible program units can be substituted for the more difficult
analysis of interruptible ones. However, the method is applied only to prove that sample
communicating operations, based on operators specified in a given “parallel programming
language,” cannot deadlock (although it appears applicable to the verification of other
serialization properties as well).

Owicki and Gries [Owicki 76) show how Hoare’s methods can be applied to prove
various properties of parallel programs, including mutual exclusion. Again, the assumption
is that (a) the target sysk n contains identifiable synchronization mechanisms
corresponding to two types of statements in a given parallel programming language, one
for initiating parallel operations (RESOURCE r: COBEGIN...COEND) and one for synchronizing
on shared objects (WITH r WHEN b DO s) and of course that (b) the proper Invariants
(integrity conditions) for shared objects can be determined. It may well be that neither of
these assumptions holds for an actual system.

A strategy for detecting serialization errors must be based on the policy or policies
violated by such errors. Policies R2-R8 in Sections 5-8 have the following aspects In
common:

cc Objects potentially accessible by two or more concurrent operations.

ss Phases or classes of states of such objects , during which accesses of only
certain typ es are prop er and also mutually compatible.

As usual , the word “object ” is used in Its extended sense to include envIronments.
In the above , access sequences and operations are included in the meaning of “access”.
From now on, unless otherwise stated, this word will be used in the static sense, to mean
“access specification ”; an access interval is then a control path segment (see below) In
which one or more accesses to a given object occur. Use and modification accesses are
represented in target system programs by appearances of variables in expressi ons,
assignment statements, and parameter lists.

To enforce these policies , an operating system must provide for the following:

1. Distinction of (concurrently) sharab le from nonsharab le objects.

2. Classification of sharable objects on the basis of the different types of accesses
to them.

3. Recognition of types of access phases for various types of objects (objects
having the same types of accesses will have the same types of access phases).
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4. Means of establishing or recognizing the transitions among access phases.

5. Means of recognizing candidate accesses (in the dynamic sense ), and allowi ng to
proceed only those that are proper and compatible for given phases. proceed.

Serialization errors can occur in the design or implementation of any of these
provisions. The rest of this section comments briefly and In general terms on possible

F approaches to the detection problem.

At least three approaches can be taken. One is to analyze the target system
macroscopically and informally for the adequacy of each of the above provisions. How are
sharable objects distinguished? In what ways can objects become known to and hence
shared by operations! What types of accesses to shared objects exist, and how are these
distinguished for protection purposes in general and serialization purposes in particular?
Are objects themselves classified by the types of accesses allowed? What types of access
phases are defined for the various types of objects? How are the beginnings and ends of
the various phases determined or recognized? How are accesses or attempted accesses
monitored so as to allow only those that are proper and compatible? On each of these
questions is superimposed the following test: “Are the definitions and distinctions
adequate; are any possibdities overlooked or not anticipated in the design?” Careful
analysis of this type can certainly lead to the discovery of serialization errors. The
problem with this approach is that no actual algorithm is suggested for deciding when
serialization errors do or do not exist.

A more methodical strategy is one which starts by attempting to determine potential
concurrencies, and given these, attempts to determine whether any of them (e.g., taken
pairwise) represent access conflicts. To describe this strategy it is necessary first to
define the term pote ntial concurrency. The execution by the processing system along a
control path from instruction to instruction within and among operators, is denoted by
the generic term proce w, a control path can be regarded as consisti ng of a set of control
points comprising the locus of a potential process. At any instant, an actual process
occupies a particular control point and all control path segments containing it. Control
segments of various types (e.g., a segment beginning with an entry point of a procedure
and ending with a return point of that procedure) define potential subprocesass of
corresponding types. Two control segments, i.e., possibly overlapping segments of the
same or different control paths, represent potential concurrencies if processes can occupy
them both during the same interval of time.

It is not necessary, of course, to Identify all potential concurrencies, but only those
representing possible conflicts. The problem is to be able to answer the questio n,

“Given an access interval to some object, or two or more access interva ls to
the same object, can more than one process occupy it or them

I 

simultaneously?”
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To Identify potential conflicts the following kinds of information are necessary:

1. The control points at which processes can originate.

2. The conditions under which they can originate.

3. The conditions governing their movements along control paths.

4. The ways in which those conditions can arise.

These kinds of information can be obtained from program text and associated
documentation. The first two kinds come from specifications for externally invocable
operators, namely user-callable and command procedures, and operators that receive
control as a result of “asynchronous” events, for example interrupt handlers and Pt_ / i  “on”
routines.

The third kind comes from control constructs found in target programs. These are
of threó typ es:

cc Invocation , br anchi ng, and Iteration statements (e.g., “call”, “if-then ” and “do ”)
that specify initiation of processes and subpr ocesses at designated control
points.

cc Process synchr onization statements (e.g., “wait” ) and implicit delay specifications
that determine the relative rates of processes along control paths.

cc Process and su bprocess termination statements (e.g., “exit” and “return”).

The fourth kind of Information comes from specifications for data objects involved in
the descriptions of the conditions referred to in (2) and (3), together with program
statements (e.g., “assignment” statements ) in which the values of those objects are
modified.

To determine potential concurrencies, however, it is necessary not Only to obtain
the above types of information , but to actually determine whether and when the conditions
Involved in (2) and (3) can actually be achieved. Questions of “when” must be answered in
terms of potential process occupancies in various control segments--just the type of
problem being attempted to be solved in the first place.

The potential concurrency problem can also be characterized as that of determining
classes of states achievable by a sys tem in which various local state transitions take place
whenever prerequisite conditions occur. A tool that suggests Itself for problems of th is

- I
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type is the Petri net. (Peterson 77] Control path segments can be represented in Petri
nets as places, processes occupying them as tokens , and control points at which processes
are synchronized as transitions. However, no general and effective method exists for
representing object states and conditions in a Petri net; it cannot currently be
recommended as an immediately practical tool.

A third strategy is to take a conservative view by assuming that all access
sequences to sharable objects are critical and represent potentially conflicting
concurrencies, unless these are clearly made impossible either by explicit invocations of
serialization mechanisms or by o~’~er serializing program logic. The steps to be taken in
this approach are the following:

1. Identify access intervals to sharab le objects.

2. For each such access interval determine whether adequate serialization
specifications exist to insure that the accesses specified will always be
consistent with propriety and compatibility phases of the objects accessed.

The first step may proceed either by first identifying actual access intervals in the
target system programs and eliminating those that involve only accesses to obviously
nonsharable objects, or by first identifying all specifications for sharable objects
themselves (e.g., from data declarations) and then all access intervals to those objects.
The problem of finding all accesses to given objects is made difficult in current operating
systems by possibilities for dynamic bindings and address calculations and by the use of
pointers. Apparently the most straightforward method is simply to examine access
intervals directly.

The conservative approach turns out to be too conservative, however. One finds
that a great many of the access intervals examined are not serialized in any explicit or
obvious manner, and that one must resort to deeper analysis of the type indicated with
the second strategy above, to determine whether explicit serialization is needed, or
whether program logic, possibly distributed over a number of procedures, proscribes all
possible access conflicts. For example, analysis might show that process concurrencies In
one or more access intervals to a given object are In fact impossible because of conditions
governing the movement of processes toward or around such Intervals. Or, explicit
invocations of serialization mechanisms (e.g., locking of objects, or access via monitors )
may occur only in connection with modification accesses , but may result in all attempted
use accesses being automatically suspended during periods of modification, without any
associated explicit serialization at all.

Where critical intervals are identified which have been explicitly serialized by
sp ecifications for invocations to serialization mechanisms provided by the underlying
system , these specifications must be determined to be correct (not to mention the

I
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mechanisms themselves). In cases where critical intervals to th. sam objects should be
mutually serialized , errors can occur because of improper object designations, e.g.,
designations that actually translate to different objects, or that refer to different
structural levels of the same object, or to different levels of abstraction.

In some cases it may be difficult with any of the above strategies to distinguish
potential sharable objects in the first place. An object is concurrently sharable if it exists
during the lifetimes of two or more concurrent processes or subprocesses, and if it can be
designated by more than one such process or subprocess. Operating systems provide
many ways for objects to be bou :d into the name or address spaces of processes, or for
processes to explicitly obtain the names or descriptions of objects, or pointers to them.

Finally, in general it can be very difficult to identify sequences of accesses intended
to be completed as a unit, the individual accesses of which may be distributed over a
number of procedures, or even intended to be executed as a part of more than one
process.

Many of the difficulties of detecting serialization errors could be alleviated if
operati ng systems implementation languages provided, and required the use of, more
constrained constructs to name objects and control the bindi ngs of names to objects; to
specify the beginnings and ends of access sequences of various typ es; and, in general, to
specify relative orderings among events , making it easier to answer questions Of the form

“Can event ci occur before event e2?”

A general method for detecti ng serialization errors is equivalent to a general method for
answering such questions.

In view of the lack of a complete and effective strategy and the shortage of toots,
any search for serialization errors in a large operating system that is intended to be
exhaustive, would require an immense effort and would most likely result In the detection
of only a fraction of the existing errors. Nevertheless, in many situations in which security
has a high value, the expected payoff might be sufficient to make worthwhile a limited
search , one that concentrates on the most critical areas of the target system.

(
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