	UNCLASSIF	MA	R 73	J PILCI	CKI, H -1220	BLAKE	-	_		-09603-		49 IL	
	of 2 AD A055 339			Annual Artist		alitan					ilitation Richardson R		
												the state	
The second second				genierszeneren. Manageneren Banderen Banderen Konstationer Manageneren Banderen		Â.	ieinnan		120010315	in Antoine Antoine	-		
							Alternational and a second sec						
				-									

FOR FURTHER TRAN

AD A 0553399

-

L

ľ

-

T.

L

I

Ľ

AU NO. DDC FILE COPY FINAL REPORT AIM-4F AND AIM-4G TELEMETRY DEVELOPMENT PROGRAM

March 1973

Prepared for WARNER ROBINS AIR MATERIEL AREA ROBINS AIR FORCE BASE, GEORGIA under Contract F09603-71-A-3749-0006

THE DOCUMENT IS BEST QUALITY FRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT HUMBER OF PAGES WHICH DO NOT REFRODUCE LEGIBLY. This document has been approved for public release and sale; in distribution is unlimited.

JA 20 1978

ARINC RESEARCH CORPORATION

	SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
6		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
U	0A36-ø3-2-122Ø	
The	A. TITLE (and Sublitte)	S. TYPE OF REPORT & PERIOD COVERE
Ca	AIM-4F AND AIM-4G TELEMETRY DEVELOPMENT PROGRAM	(Final rept.)
		6. PERFORMING ORG. REPORT NUMBER 0A36-03-2-1220
(it	AUTHOR(S)	8. CONTRACT OR GRANT NUMBER(S)
(14	John/Pilcicki Howard/Blake	F09603-71-A-3749
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	ARINC Research Corp. 2551 Riva Road	AREA & WORK UNIT NUMBERS
	Annapolis, Maryland 21401	L
	11. CONTROLLING OFFICE NAME AND ADDRESS	12 BEPORT DATE
	WARNER ROBINS AIR MATERIEL AREA ROBINS AIR FORCE BASE, GEORGIA	13. NUMBER OF PAGES
		90 1172 P.)
	14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS! (of this report)
	WARNER ROBINS AIR MATERIEL AREA	UNCLASSIFIED
	ROBINS AIR FORCE BASE, GEORGIA	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCREDULE
	UNCLASSIFIED/UNLIMITED	om Report)
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	om Report)
		om Report)
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	om Report)
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, This final report on the AIM-4F and AIM-4G telecontains a discussion of the development approach as resulting telementry hardware. The signal-condition 	mentry development program s well as a description of th her circuits, which, unlike
	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number 24. ABSTRACT (Continue on reverse side if necessary and identify by block number 24. ABSTRACT (Continue on reverse side if necessary and identify by block number 24. ABSTRACT (Continue on reverse side if necessary and identify by block number 25. This final report on the AIM-4F and AIM-4G tele 26. Contains a discussion of the development approach as 	mentry development program s well as a description of th her circuits, which, unlike unique for each telemetry in-
	 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, il different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, This final report on the AIM-hF and AIM-hG tele contains a discussion of the development approach as resulting telementry hardware. The signal-condition standard commutator and transmitter packages, are us stallation, are discussed in detail. Specifications presented. DD : FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 	mentry development program s well as a description of th her circuits, which, unlike unique for each telemetry in-

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

FINAL REPORT

AIM-4F AND AIM-4G TELEMETRY DEVELOPMENT PROGRAM

March 1973

.

Π

.

[]

[]

-

DDC JUN 20 1978

Prepared for

Warner Robins Air Materiel Area Robins Air Force Base, Georgia

under Contract F09603-71-A-3749-0006

by

John Pilcicki Howard Blake

ARINC Research Corporation a Subsidiary of Aeronautical Radio, Inc. 2551 Riva Road Annapolis, Maryland 21401

Publication 0A36-03-2-1220

This document has been approved for public release and sale; is distribution is unlimited.

Copyright © 1973

ARINC Research Corporation

Prepared under Contract F09603-71-A-3749-0006 which grants to the U.S. Government a license to use any material in this publication for Government purposes.

ABSTRACT

This final report on the AIM-4F and AIM-4G telemetry development program contains a discussion of the development approach as well as a description of the resulting telemetry hardware. The signal-conditioner circuits, which, unlike standard commutator and transmitter packages, are unique for each telemetry installation, are discussed in detail. Specifications and test results are also presented.

10 -

à...

Ľ

-

1

1

(This report supersedes ARINC Research Publication A36-1-1-1172, published in May 1972 under the same title. That document was prepared at the conclusion of the initial effort under Contract F09603-71-A-3749-0006. The revised version presented herein is a result of contract modification 02, dated 27 June 1972, which provided for revision of the AIM-4F and AIM-4G telemetry specification to correct signal-conditioner deficiencies in the telemetry units and the delivery of modified hardware.)

ACCESSION for ville Section N IS B.II Section 00: C 0 1111 STANFT! 1 SI YON YON DISTRIBUTION (A VAL: NBI' ITY CODES BY SPECIAL

CONTENTS

[]

Π

[]

[]

[]

Π

Π

Π

[]

[]

[]

[]

[]

Ľ

1

-

	<u><u> </u></u>	age
ABSTRACT .		iii
CHAPTER ON	NE: INTRODUCTION	1
CHAPTER TW	WO: TECHNICAL APPROACH	3
2.1	General Approach	3
2.2	Hardware Procurement	3
2.3	Hardware Fabrication	3
2.4	Testing	4
CHAPTER TH	HREE: DESCRIPTION OF TELEMETRY EQUIPMENT	5
3.1	Instrumentation Cable	5
3.2	Signal Conditioners.	5
		7
	3.2.1 Voltage-Amplifier Conditioners	9
		9
	3.2.2.1 Antenna Speed (Channel 23G)	9
	3.2.2.2 Gate Pusher Pulse Width (Channel 20F)	9
	3.2.2.3 Coincidence Measurements (Channels 21	
	and 22)	11
	3.2.2.4 Second Detector Video (AIM-4F Chan-	
	nel 23)	14
	3.2.2.5 Clock for Pulse-Measuring Channels	
	(AIM-4F Channels 20 through 23)	19
	3.2.2.6 Scaling and Smoothing Amplifiers	21
	3.2.2.7 Full-Wave Rectifier (AIM-4G Channels	
	22 and 26	22
3.3	Commutator	22
3.4	Transmitters	23
3.5	Battery	24
3.6	Power Splitters	24
3.7	Antennas	24
3.8	Power Switching	25
3.9	Mechanical Design	26
3.10	RFI Considerations	27

v

PRECEDING PAGE BLANK

CONTENTS (continued)

Pa	age
CHAPTER FOUR: TEST RESULTS	29
4.1 Acceptance-Test Results	29
4.1.1 Initial Acceptance Tests (March 1972)	29 29
4.2 Qualification-Test Results	30
CHAPTER FIVE: CONCLUSIONS	31
APPENDIX A: TELEMETRY-UNIT SPECIFICATION	A-1
APPENDIX B: COMMERCIAL EQUIPMENT SPECIFICATION SHEETS	B-1
APPENDIX C: QUALIFICATION TEST PROCEDURE	c-1
APPENDIX D: TEST RESULTS	D-1
APPENDIX E: A3 CARD ACCEPTANCE DATA (February 1973)	E-1

CHAPTER ONE

INTRODUCTION

ARINC Research Corporation received a contract (F09603-71-A-3749-0006) on 12 November 1971 to develop telemetry equipment for the AIM-4F and AIM-4G missiles. A complete telemetry installation consists of instrumentation cabling, signal conditioners, commutator, transmitter, RF cabling, antennas, and battery. The deliverable products under the original contract included complete prototype telemetry installations for each of the two missiles, a spare P-band transmitter (with antennas), and a data package suitable for competitive procurement of the packages. Field engineering support was provided for acceptance and flight tests of the telemetry systems.

Three modifications were made to the original contract:

- Modification 01, dated 27 June 1972, extended the completion date of the contract to 12 July 1972. The purpose of this extension was to provide time for the completion of field engineering services.
- Modification 02, dated 27 June 1972, provided for the revision of the AIM-4F and AIM-4G telemetry specification to correct signal-conditioner deficiencies in the last seven channels of each of the telemetry units, and the delivery of modified hardware built according to the revised specification. Deliverable products under modification 02 include (1) modified hardware, (2) documentation suitable for competitive procurement, (3) one month of field support, and (4) this final report.

The circuit descriptions and specifications presented in this report reflect the changes resulting from contract modification 02.

Modification 03, dated 16 October 1972, extended the hardware delivery schedule set forth in modification 02. This modification was requested because of problems encountered by the subcontractor in meeting the original schedule.

1

CHAPTER TWO

TECHNICAL APPROACH

2.1 GENERAL APPROACH

The hardware provided under this contract consists of (1) antenna sets fabricated in the ARINC Research laboratory; (2) instrumentation and RF cable assemblies fabricated at WRAMA by ARINC Research engineers; and (3) telemetrypackage assemblies, each consisting of signal conditioners, commutator, transmitter, and battery procured from a subcontractor. Documentation consists of complete detailed drawings and specifications for the antennas and cabling, and specifications and specification-control drawings for subassemblies procured from subcontractors. (See Appendix A for telemetry-unit specification.)

2.2 HARDWARE PROCUREMENT

The specification for the subcontract-procured assembly was developed on the basis of the measurement lists supplied by WRAMA. The specification was submitted to six companies for bids, and four of these responded with proposals. The company selected was Vector, an Aydin Company, in Newtown, Pennsylvania. The Vector plant was visited and various Vector customers were interviewed before the final selection was made.

2.3 HARDWARE FABRICATION

Instrumentation-cable assemblies were developed by (1) studying missile drawings and the missile itself to determine the most accessible terminals for the required test points, (2) fabricating a prototype cable in a disassembled missile and reassembling the missile to verify feasibility, and (3) writing a cable-installation procedure to facilitate future telemetrycable installations.

In the design of RF cables, subminiature cables and connectors were used to facilitate installation. Power splitters were designed in the form of stripline devices to match the two 50-ohm antennas to the 50-ohm transmitter output. The prototype power splitters were fabricated from copper-clad fiberglass. Antennas were fabricated by modifying missile stabilizer fins. Material from the fins was machined out to make room for antenna-element installation.

2.4 TESTING

A number of tests of the AIM-4F and AIM-4G telemetry units were performed to assure conformance to all specifications. All subassemblies were first tested individually before final integration tests at WRAMA. Captive-flight tests are planned at Tyndall Air Force Base.

Table 1 is a comprehensive list of the tests performed during the course of this contract.

Test Nomenclature	Location of Test	Description				
Breadboard Tests	Vector Co.	Conditioner circuits were tested for transfer- function accuracy over specified temperature ranges. Commutator and transmitter circuits are standard Vector products that did not require breadboard testing. Data from signal- conditioner tests are contained in Vector Company's engineering notebooks.				
Transmitter Tests	Vector Co.	Performance test of transmitter apart from system. See Appendix D for results.				
Acceptance Tests	Vector Co.	Room-temperature transfer-function test of each channel from signal-conditioner input to commutator output. Data are not recorded.				
Qualification Tests	Vector Co.	Test of AIM-4G conditioner, commutator, transmitter, and battery assembly under en- vironmental stresses called for in paragraph 3.3 of the telemetry specifications (see Appendix C).				
Antenna Tests	ARINC Research	VSWR and nonquantitative pattern checks of antenna design.				
Cable Continuity	WRAMA	Continuity checks of cable installation.				
Telemetry Inte-	WRAMA	System integration tests to verify				
gration Tests	ander over statues in statue	1. Satisfactory telemetry system opera- tion				
		2. No interference of telemetry equip- ment with missile operation				

CHAPTER THREE

DESCRIPTION OF TELEMETRY EQUIPMENT

The block diagram of the complete telemetry system applicable to both the AIM-4F and the AIM-4G is presented in Figure 1. Figure 2 is a photograph of the Vector-built assembly containing signal conditioner, commutator, transmitter, and battery. The following sections present descriptions of the component parts of the telemetry system.

3.1 INSTRUMENTATION CABLE

The AIM-4F and AIM-4G missiles do not have readily accessible test points for in-flight instrumentation. For this reason, the missile cable harnesses must be modified for installation of the telemetry unit. Most telemetry test points are located on chassis connectors, and connecting the instrumentation wire to these test points involves soldering a wire to a connector terminal, where one or more wires may already be attached. The wires thus attached are routed along existing wire bundles into the warhead section, where the telemetry-unit-instrumentation connector is located. Test points located in the aft section of the missile in back of the pressure-sealed bulkhead must be passed through a bulkhead connector that maintains a pressure seal.

3.2 SIGNAL CONDITIONERS

The functions of the signal-conditioner circuits are (1) to convert the signals monitored into a 0- to 5-volt scale, (2) to provide an impedance transformation to minimize test-point loading while minimizing driving impedance to the commutator, and (3) to provide the proper frequency-response characteristics to assure adequate data rate while minimizing the effects of ripple and noise.

Because the first 19 measurement channels of the AIM-4F are identical to those of the AIM-4G and the space available for the telemetry package in the two missiles is the same, basic telemetry units containing only the first 19 channels are interchangeable. Signal conditioners are located on three plug-in-type printed circuit cards, with the first 19 channels located on two cards and the last seven channels mounted on the third card. The third signal-conditioner printed circuit card is therefore the only subassembly that distinguishes an AIM-4F unit from an AIM-4G unit. At the instrumentation connector, inputs for the last seven AIM-4F channels are located on

Figure 2. TELEMETRY ASSEMBLY CONTAINING SIGNAL CONDITIONERS, COMMUTATOR, TRANSMITTER, AND BATTERY

different pins from those for the last seven AIM-4G channels, making it impossible to damage units by installation in the wrong missile.

3.2.1 Voltage-Amplifier Conditioners

Γ

1

times i

1

1

12

Most of the signal-conditioner circuits in the AIM-4F and AIM-4G telemetry units are voltage amplifiers that utilize integrated-circuit operational amplifiers, with input resistance and gain determined primarily by passive-component values. Simplified configurations for the voltageamplifier channels, with equations for gain and input resistance, are summarized in Figure 3. The equations were derived under the assumption that open-loop gain is much greater than closed-loop gain.

On some channels, the measurement list (see specifications in Appendix A) requires the provision for selecting one of two transfer functions for particular flights. This requirement was implemented by making gain resistors a combination of two series resistors, one of which can be shorted with a wire.

22

Channels	Circuit Configuration	Input Resistance	Transfer Function
1, 26G	$ \begin{array}{c} $	RI	$E_0 = -\frac{R2}{R1} E_i$
2, 11, 12, 24F, 25F, 26F	$ \begin{array}{c} $	R3 + R4	$\begin{split} \mathbf{E}_{\mathbf{O}} &= \left(\frac{\mathbf{R4}}{\mathbf{R3} + \mathbf{R4}}\right) \left(1 + \frac{\mathbf{R2}}{\mathbf{R1}}\right) \left(\mathbf{E}_{\mathbf{i}} - \mathbf{V}_{\mathbf{b}}\right) + \left(1 + \frac{\mathbf{R2}}{\mathbf{R1}}\right) \mathbf{V} \\ \text{Normally, } \mathbf{R1} &= \mathbf{R3}, \mathbf{R2} = \mathbf{R4}, \text{ and} \\ \mathbf{E}_{\mathbf{O}} &= \frac{\mathbf{R2}}{\mathbf{R1}} \mathbf{E}_{\mathbf{i}} + \mathbf{V}_{\mathbf{b}} \end{split}$
3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 19, 22G, 24G, 25G, 20G, 21G	$ \begin{array}{c} $	R1 (for E _A) R3 + R4 (for E _B)	$\begin{split} \mathbf{E}_{\mathbf{O}} &= \left(\frac{\mathbf{R4}}{\mathbf{R3} + \mathbf{R4}}\right) \left(1 + \frac{\mathbf{R2}}{\mathbf{R1}}\right) \left(\mathbf{E}_{\mathbf{B}} - \mathbf{V}_{\mathbf{b}}\right) \\ &- \frac{\mathbf{R2}}{\mathbf{R1}} \mathbf{E}_{\mathbf{A}} + \left(1 + \frac{\mathbf{R2}}{\mathbf{R1}}\right) \mathbf{V}_{\mathbf{b}} \\ &\text{Normally, } \mathbf{R1} = \mathbf{R3}, \ \mathbf{R2} = \mathbf{R4}, \ \text{and} \\ &\mathbf{E}_{\mathbf{O}} &= \frac{\mathbf{R2}}{\mathbf{R1}} \left(\mathbf{E}_{\mathbf{B}} - \mathbf{E}_{\mathbf{A}}\right) + \mathbf{V}_{\mathbf{b}} \end{split}$
13	$ \begin{array}{c} $	R1 + <u>R2 R3</u> R2 + R3	$E_{O} = -\frac{R4R1V_{b} + R4R2E_{i}}{R3R1 + R3R2 + R1R2}$
17, 18	$R1$ E_i $R2$	R1 + R2	$E_o = \frac{R2}{R1 + R2} E_i$

Figure 3. INPUT-RESISTANCE AND TRANSFER-FUNCTION FORMULAS FOR VOLTAGE AMPLIFIER CHANNELS

3.2.2 Other Signal Conditioners

Various channels in the AIM-4F and AIM-4G telemetry units require functions other than simple voltage amplification and attenuation. Detailed explanations of these channels are presented in the following subsections.

3.2.2.1 Antenna Speed (Channel 23G)

The conditioner circuit for antenna speed converts the information in the form of pulses from a pip coil into an analog indication of the speed of revolution of the antenna gyro. The pip coil receives impulses from a magnet embedded in the antenna gyro and therefore generates one pulse per revolution. Thus the function of the conditioner is to convert a pulse repetition frequency into a voltage.

The schematic diagram of the antenna-speed signal-conditioner circuit is given in Figure 4. The first stage of the circuit is an amplifier (U6) that squares and clips the incoming pulse, making the circuit insensitive to changes in magnitude and shape of the pulse. The triggering threshold of the amplifier is set by R57 and R58; Rf is a resistor that provides regenerative feedback, decreasing the rise and fall times of the output pulse. Clipping is performed by diodes CR5, CR6, CR7, and CR8, and resistors R24 and R26.

The output of the amplifier is applied to the network consisting of capacitor Cl3, resistor R25, and diodes CR10 and CR11. The time constant of this network is much smaller than the period of the pulse, and thus the leading and trailing edges of the pulse are differentiated. CR10 provides a path to ground for the leading-edge pulse, which is negative; the positive trailing-edge pulse is applied to the second-stage amplifier (U7), which is configured as an integrator (or low-pass filter).

The output of the integrator amplifier is a sawtooth waveform. The average voltage level of this waveform is proportional to the pulse repetition frequency of the incoming pulse. A negative bias voltage is developed by R27 and CR9 and summed into the second-stage amplifier by R28, R29, and R30. This voltage provides a minimum scale reading at some non-zero pulse repetition frequency. The bias voltage is adjustable via potentiometer R30, and thus the minimum scale pulse-repetition frequency or gyro speed can be adjusted.

The third stage of the antenna speed-conditioner circuit (U8) is a twopole low-pass active filter that smooths the sawtooth waveform into the required dc output.

3.2.2.2 Gate Pusher Pulse Width (Channel 20F)

The function of the channel-20 signal conditioner is to develop an analog voltage that is proportional to the width of the gate-pusher pulse.

Figure 5 is a simplified schematic diagram illustrating the operation of the channel-20 conditioner. The required analog voltage is developed as follows (see waveforms in Figure 6):

- The gate-pusher pulse is inverted and clamped to a constant amplitude in ICl. The output of ICl is shown as V in Figure 6.
- Transistor Ql is turned on for the duration of the gate-pusher pulses. Ql turns on Q2, which supplies a constant charging current to capacitor Cl.
- 3. The charging of Cl stops at the termination of the gate-pusher pulse, and the peak value is held across the capacitor until the clock turns on Q3, which completely discharges Cl. The voltage across Cl is illustrated as $V_{\rm C}$ in Figure 6.
- 4. The average value of V_{C} is the desired analog voltage. Smoothing and scaling are accomplished by applying V_{C} to an amplifier-filter stage (see Subsection 3.2.2.6).

3.2.2.3 Coincidence Measurements (Channels 21F and 22F)

The function of the coincidence-measuring signal conditioners is to provide a voltage that is proportional to the relative time positions of reference points (leading or trailing edge of two pulses. Figure 7 is a simplified schematic illustrating the operation of the coincidence-measuring channels.

The required analog voltage is developed as follows:

- The incoming pulse triggers a flip-flop to signify its presence. Inverters and threshold-setting networks are used before the flipflop to determine the particular amplitude and reference point (leading or trailing edge) to be sensed. The output of one of the flip-flops is shown on a time scale in Figure 8.
- Gates 1 and 2 are NAND gates that are driven by the flip-flops to perform the logic required in (a) detecting which pulse came first (this determines which gate provides an output pulse) and (b) providing an output pulse whose width is equal to the time to be measured.
- 3. If gate 1 conducts, a positive current is supplied to Cl through constant-current generator Q2; if gate 2 conducts, a negative current is supplied to Cl through constant-current generator Q3.
- 4. The net charge across Cl is held until the next clock transition, which completely discharges Cl. The clock also resets all flipflops to their original state. (See Subsection 3.2.2.5 for a discussion of the clock circuit.)

Π [[] [] Π [] 1 Π 1 I.

Figure 7. SCHEMATIC DIAGRAM OF PULSE-COINCIDENCE-MEASURING CIRCUITS

Figure 8. OUTPUT WAVEFORMS FOR FF1 AND FF2 OF FIGURE 7

5. The average value of V_{C} is the desired analog voltage. Scaling and smoothing are accomplished by applying V_{C} to an amplifier filter stage.

Figure 9 is a waveform diagram illustrating the operation of the coincidence-measuring circuitry. It shows that the inputs to gate 1 (Q_A and \overline{Q}_B) are the only gate inputs which are at the high (or 1) level simultaneously, and that the period over which both of these inputs are high is the time between the leading edges of the two pulses. The inputs to gate 2 (\overline{Q}_A and Q_B) are never in the high level simultaneously, and thus no output is produced by gate 2.

For the situation in which pulse B occurs before pulse A, the flipflop conditions will produce an output from gate 2 (and not gate 1) that triggers a negative-charging slope at V_C .

3.2.2.4 Second Detector Video (Channel 23F)

The purpose of AIM-4F channel 23 is to detect the presence of a video pulse at the second-detector test point. An indication of the noise (and therefore AGC) level at this point is also given.

The output of channel 23 is one of three discrete voltage levels:

- 1 volt for the absence of a video pulse
- 2.5 volts for the presence of a video pulse in low noise (up to 1.5V p-p)
- 4 volts for the presence of a video pulse in high noise (greater than 1.5V p-p)

The operation of the circuit is described below in two sections:

- (1) The input pulse and noise-detection circuitry
- (2) The output logic used to generate the necessary voltage levels.

Input Circuits

Figure 10 is a schematic diagram of the target video pulse and noisedetection circuitry. The network consisting of CR1, C1, C2, and R3 detects the peak level of the noise present on the target video line. The dc output of this network is amplified in A2, with R5 providing a means for adjusting the output bias level of A2. The output of A2 is applied to the negative input of comparator A1 and to the positive input of comparator A3. Comparator A1 provides an output pulse when a target video pulse on its positive input exceeds the peak noise level by an amount determined by the level present at the negative input. The nominal amount by which the target video pulse must exceed the peak noise is one volt, and R5 provides a means for

adjusting this amount from 0.25 to 1.25 volts to adapt this circuit to the particular noise conditions found in the missile. An output pulse from Al serves as the clock input for flip-flops FF1 and FF2.

Flip-flops FFl and FF2 are D-type flip-flops that transfer the input logic level at the D input to the output upon the application of the clock pulse. The flip-flop is restored to its original state upon the application of a low (0-volt) level at the "clear" input. The clear input is provided by a system clock, which is described in Subsection 3.2.2.5.

The function of comparator A3 is to switch from its low (0-volt) output state to its high (5-volt) output state when the level of the noise exceeds the 1.5-volt level. This distinguishes low noise level from high noise level, and the exact transition level is adjustable via R8.

	FF1		FF2	
Input Condition	Q1	<u></u>	Q2	Q2
Pulse Absence	Low	High	Low	High
Pulse Present in Low Noise	High	Low	Low	High
Pulse Present in High Noise	High	Low	High	Low

On the basis of the comparator functions described above, the flipflop outputs can be summarized as follows:

Note that these flip-flop levels are initiated by the detection of a valid pulse by Al and remain until the clear pulse is applied by the system clock. The system clock is synchronized to the first pulse applied to any of the pulse channels and clears the flip-flops before the next series of pulses is to be measured.

Output Logic Circuitry

The output logic circuitry shown in Figure 11 consists of gates that combine logically the outputs of the flip-flops and produce signals that short-circuit elements of a series resistance network to produce the necessary discrete output-voltage levels. The level chifters shown are required to convert the 0 to 5 volt gate output into the 0 to -12 volt swing necessary to drive the MOSFET switches Ql and Q2. Amplifier Al is configured as a 2-pole active low-pass filter that reduces the output ripple resulting from the cyclical nature of the flip-flop action. The discrete states produced

Figure 11. SCHEMATIC DIAGRAM OF CHANNEL 23 GATES AND OUTPUT CIRCUITS

in the output logic circuitry caused by input conditions are summarized as follows:

Input Condition	Gate 1 Output	Gate 2 Output	Q1	Q2	Eo
Pulse Absence	High	Low	ON	OFF	1V
Pulse Present in Low Noise	Low	High	OFF	ON	2.5V
Pulse Present in High Noise	High	High	OFF	OFF	4V

3.2.2.5 <u>Clock for Pulse-Measuring Channels (AIM-4F Channels 20</u> through 23

To produce the required analog output voltages, the pulse-measuring circuits (channels 20, 21, 22, and 23) in the AIM-4F utilize flip-flops and holding capacitors to maintain the dc output level resulting from a pulse measurement for some period of time shorter than the period of the pulses to be measured. A clock circuit is used to measure the period before resetting the flip-flops and discharging the holding capacitors prior to the next series of pulses to be measured. All pulses to be measured are expected to occur within a few microseconds of each other, and the period of these pulses, which is the missile radar pulse-repetition frequency (prf), is at least 100 times the expected spacing between the different system pulses (the exact radar prf is classified Confidential). The clock is triggered by the first pulse to occur, and it generates a reset pulse after about 80 percent of the pulse period elapses.

An additional feature of the clock circuit is that if the pulse which initiates clock action is not followed by the Missile Range Gate within 5 microseconds, the clock will return to its original state, clearing all flip-flops and discharging all holding capacitors, thus terminating pulse measurements. The purpose of this feature is to reject as invalid inputs all pulses not within a few microseconds of the Missile Range Gate. If an invalid pulse initiates clock action, a short transient will be observed on pulse-measuring circuit outputs, but the dc level will not be affected unless numerous invalid pulses cause repeated output errors.

The clock circuit (Figure 12) consists of an oscillator (U1), a buffer (U2), counters (U3 and U4), and gates (U5, U6, U7, U8, U9, and U10). The oscillator is a free-running square wave generator, and its output frequency is divided by 256 in U3 and U4, which are both configured as 4-bit binary counters. The occurrence of a low logic level at any of the inputs to U9 enables the counter circuits, and the flip-flop clearing signal appears at the output of U8 one-half cycle after the counters are enabled by the output of U9. The counter output from U7 can be disabled after five microseconds by U5 unless the Missile Range Gate input to U5 is triggered to its low logic state by the presence of a Missile Range Gate pulse.

10.00

3.2.2.6 Scaling and Smoothing Amplifiers

The scaling and smoothing amplifiers used in the output of AIM-4F channels 20, 21, 22 and 23 and AIM-4G channel 23 are shown in Figure 13. ICl is a two-pole active filter with a transfer function as follows:

$$\frac{E_{o}}{E_{i}} = \frac{1}{1 + b(RCs) + (RCs)^{2}}$$

where s is the La Place operator and b is the damping ratio.

The IC2 stage is a gain and level-shifting stage with a transfer function as follows:

$$E_{02} = \frac{R3}{R1} E_{01} - \frac{12R3}{R2}$$

à...

The resistors connected to ground on the noninverting inputs of both amplifiers do not affect the transfer functions and are not labeled. These resistors are used to equalize the resistance-to-ground of both the inverting and noninverting inputs, a technique employed to minimize offset errors.

Figure 13. SCHEMATIC DIAGRAM OF SCALING AND SMOOTHING AMPLIFIERS USED IN AIM-4F PULSE CIRCUITS AND AIM-4G ANTENNA-SPEED CIRCUIT

3.2.2.7 Full-Wave Rectifier (AIM-4G Channels 22 and 26)

Full-wave rectification is achieved in AIM-4G channels 22 and 26 by using two operational amplifiers configured as shown in Figure 14. The first stage performs half-wave rectification, and the second stage sums the input voltage and the output of the first stage to produce the fullwave rectified output.

Figure 14. SCHEMATIC DIAGRAM OF FULL WAVE RECTIFIER FOR AIM-4G CHANNELS 22 AND 26

3.3 COMMUTATOR

The function of the commutator is to sequentially sample each signalconditioner output to produce a single modulation signal. The output waveform of the AIM-4F/G telemetry commutator is shown in Figure 15; the following characteristics of this commutator can be noted:

- Synchronization is provided by a 14-period maximum pulse located in channels 29 and 30.
- The commutator samples a particular channel for 50 percent of the allotted channel time and then returns to a -1.2 volt pedestal for the remaining 50 percent. This is known as a return-to-zero (RZ) format.

A commutator frame contains 30 channels. The commutator rate can be adjusted to 5K, 10K, 20K, or 40K channels per second.

Appendix B contains the vendor specification sheet for the commutator.

Channel Rate, Channels per Second	Frames per Second	Data Response, Hz (Based on 5 Samples per Cycle)
40,000	1,333.3	266.6
20,000	666.6	133.3
10,000	333.3	66.6
5,000	166.6	33.3

Figure 15. COMMUTATOR OUTPUT FORMAT

3.4 TRANSMITTERS

1

à...

The P- and L-band transmitters are both 2-watt solid-state devices in identical housings (see specification sheets, Appendix B). The identical packages make it possible to convert a unit from one frequency band to the other by replacing the transmitter, power splitter, and antenna set. The transmitters both contain FM modulators, making it possible to drive the transmitters directly with the PAM output of the commutator.

The transmitter is mounted directly to the telemetry mounting plate, and high-thermal-conductivity lubricant (such as Dow 340 silicone heatsink compound) is used to provide a thermal bond. Heat sinking is important because the transmitter self-heating (as much as 30 watts may be dissipated in the L-band unit) may cause the housing temperature to exceed the 85°C maximum if an adequate heat sink is not provided. The Vector Company indicated that if transmitter operation in a room-temperature environment without a heat sink resulted in a housing temperature exceeding 85°C, the output power might drop below the specified value but no catastrophic failure would result. It was emphasized, however, that the transmitter should not be operated when not bolted to a heat-dissipating plate.

3.5 BATTERY

The telemetry-unit battery consists of 24 Gulton Type VO.180 nickel cadmium cells (see data sheet in Appendix B), each having a nominal voltage of 1.2 volts. The cells are connected in series, providing a nominal, fully charged voltage of 28.8 volts. The cells are rated for a slow discharge rate of 180 milliampere hours at 25°C.

The theoretical capacity of the battery, at the accelerated discharge rate used in this system, is not given on the battery specification sheet. Battery discharge tests with an L-band unit (the unit drawing the most current) have resulted in operating times of a minimum of 90 seconds before the battery discharges to a 24-volt level.

The data sheet for the nickel cadmium cells (Appendix B) indicates two important precautions:

- The battery should not be allowed to discharge to a voltage level that would lead to probable cell reversal. The cell voltage at which cell reversal can take place is 0.9 volt, and the corresponding battery voltage is 0.9 volt/cell × 24 cells, or 21.6 volts. To provide some margin of safety, the lowest voltage to which the battery should be allowed to drop is approximately 24 volts, the minimum for sustaining satisfactory system operation.
- 2. The battery should be charged at a current not to exceed 15 milliamperes. Battery chargers should thus be constant-current power supplies, which can be designed either by using a transistor as a constant-current source or by using a fixed resistor and a source voltage much higher than the battery voltage.

3.6 POWER SPLITTERS

The power splitter is a device that matches the transmitter output to the two antenna inputs with a minimum of power loss. Power splitters for the prototypes were made by using stripline techniques in the ARINC Research laboratory.

3.7 ANTENNAS

The antennas for the AIM-4F and AIM-4G telemetry system are mounted in two opposite forward stabilizer fins. These are the small dorsal surfaces mounted on the sleeve enclosing the guidance-electronics section. The antennas are fabricated by cutting out a section of the stabilizer and inserting an antenna element made from copper-clad fiberglass. The stabilizer is then built up to its original shape with epoxy and sanded, painted, and tested.

The antenna element is a hybrid J-match design, and VSWR measurements of less than 2:1 are achieved for both the P-band and the L-band designs. A rough antenna pattern was taken in the laboratory, and omnidirectional coverage was verified.

3.8 POWER SWITCHING

Paragraph 3.2 of the specification presented in Appendix A calls for the telemetry unit to transfer from external power to internal power upon the application of a momentary +28 volt signal. This requirement is fulfilled by the circuit shown in Figure 16.

Figure 16. POWER-SWITCHING CIRCUIT

External power is first switched to the telemetry unit by the application of filament voltage to the coil of relay K2. External power is provided through the normally open contacts of K2 by "First Missile Motion" voltage, a +28 volt source.

The transfer from external (First Missile Motion) power to internal (battery) power is accomplished by relay K3, which is energized by the application of "Power Plant Start" voltage. K3 is latched in the energized position by the application of battery voltage through normally open contacts to the coil of K3.

3.9 MECHANICAL DESIGN

The main structural member of the telemetry system provided by Vector Company is an aluminum plate or shelf that accepts the mounting bolts passing through the side of the missile. The mounting holes are the same holes used for the warhead assembly. The transmitter and battery are mounted on the lower side of the plate, and the signal conditioner and commutator printed circuit cards are located in a housing above the plate. Powertransfer relays and telemetry power-supply power transistors are mounted directly on the top surface of the plate under the first signal-conditioner printed circuit card. The two commutator cards are hard-wired into the internal telemetry-unit cable, and the three conditioner cards are plugged into the subminiature connectors. Card guides are used to keep all five printed circuit boards from moving once they are installed in the package. Figure 17 shows the interior of the telemetry unit.

Figure 17. TELEMETRY-UNIT INTERIOR

3.10 RFI CONSIDERATIONS

[]

0

0

Π

[]

0

Π

Both the transmitter and the subassembly containing signal conditioners and commutator are enclosed in nickel-plated housings to minimize susceptibility to RFI. In addition, each signal lead passes through a feedthrough capacitor to enter the signal-conditioner/commutator housing. A singlepoint ground is provided by means of a metallic "mushroom" terminal bolted to the telemetry-unit base plate under the first signal-conditioner card.
CHAPTER FOUR

TEST RESULTS

Formal testing of the signal conditioner, commutator, transmitter, and battery assembly consisted of (1) an acceptance test of the AIM-4F unit to verify performance of each channel at room temperature and (2) a qualification test of the AIM-4G unit to verify performance in the specified environment. The results of these tests are given in the following paragraphs.

4.1 ACCEPTANCE-TEST RESULTS

4.1.1 Initial Acceptance Tests (March 1972)

Acceptance tests on both units involved three-point transfer-function tests, using simulated conditioner inputs and measuring outputs by measuring the commutator output pulse. The outputs were read by means of a Tektronix Type W plug-in unit, which provides a potentiometer-type measurement that permits pulses of 0 to 5 volts to be measured to oscilloscope resolutions of down to 20 millivolts per centimeter.

The results of the acceptance tests on both units indicated that all channels, with the exception of AIM-4F channels 20 through 23, exhibited errors of no more than <u>+1</u> percent of full scale (<u>+50 millivolts</u>). AIM-4F channels 20, 21, 22, and 23 were difficult to measure with a high degree of accuracy during acceptance tests. From oscilloscope measurements of relative pulse positions, it was determined that the transfer functions were accurate to approximately <u>+10</u> percent.

During the acceptance tests, all power- and signal-switching functions of the units were tested and found to be satisfactory; the commutator output was monitored while the transmitter was radiating through a test antenna in close proximity to the telemetry unit, to verify the absence of RFI effects.

4.1.2 Modified A3 Card Acceptance Tests (February 1973)

Three-point transfer-function tests of channels located on the modified A3 card assemblies were performed at the Vector facility. The data, presented in Appendix E, indicate that all channels conformed to the requirements of the revised specification.

PRECEDING PAGE HLANK

4.2 QUALIFICATION-TEST RESULTS

Qualification tests were performed by the Vector Company on the AIM-4G telemetry package. The tests consisted of operating the unit under the environmental conditions specified in paragraph 3.3 of the specification in Appendix A. No failures were observed during the qualification tests. Appendix C contains the Qualification Test Plan. Data recorded during the tests, as well as the test data taken during transmitter acceptance tests, are presented in Appendix D. On the qualification-test data sheets, it will be noted that the recorded output voltages do not necessarily agree with the expected voltages. The reason for this apparent discrepancy is that during environmental tests, channels were stimulated with any convenient level to verify operation only.

CHAPTER FIVE

[]

Ε

Į.

Γ

T

Π

Π

Ē

I

1

8 m.

IIII

1

CONCLUSIONS

Laboratory tests have indicated that the AIM-4F and AIM-4G telemetry units are effective instrumentation packages. The final judgment cannot be made, however, until completion of integration tests at WRAMA and flight tests at Tyndall Air Force Base.

APPENDIX A

TELEMETRY-UNIT SPECIFICATION

	L		REVISIONS		
	SYM.		DESCRIPTION	DATE	APPROVE
			CONTENTS	+	
	Scop	e			
			Documents		
			1 Telemetry Requirements		
			nmental Test Specification		
		Drawin			
		irement			
	3.1	Perfor	mance		
		3.1.1	Transmitter		
			3.1.1.1 Carrier Frequency		
			3.1.1.2 Output Power		
			3.1.1.3 Bandwidth		
·		3.1.2	Transmitter Interchangeability		
		3.1.3	Commutator Requirements		
		3.1.4	Commutator Ripple and Noise		
		3.1.5	Modulation Requirements		
		3.1.6	Signal Conditioners		
	3.2	Power	Requirements		
		3.2.1	Internal Power		
		3.2.2	External Power		
		3.2.3	Power Switching		
			3.2.3.1 Initial Turn-On		
			3.2.3.2 Transfer to Internal Pow	er	
	3.3	Enviro	nmental Requirements		
		3.3.1	Vibration		
		3.3.2	High Temperature		
		3.3.3	Low Temperature		
	*	3.3.4	Temperature Shock		
		3.3.5	Tempearture - Altitude	States of Contracts	
		3.3.6	Shock		
				State State State	
			March March States		
		1			
			in the second second	CONTRACTOR OF THE	
		State -	SEE DRawing NO.		

At here

- Tran

. in

5

0.

MEET

2

T	REVISIONS
SYM.	DESCRIPTION DATE APPROV
3.4	Interface Requirements
	3.4.1 Electrical Interface
	3.4.2 Mechanical Interface
3.5	Operability
	3.5.1 Maintainability
	3.5.2 Useful Life
3.6	Weight
3.7	Component Parts
	Storage
3.9	System Radio Frequency Interference (RFI) Requirements
	ity Assurance Provisions
4.1	Pre-Production Tests
	4.1.1 Environmental Tests
	4.1.1.1 Vibration
	4.1.1.2 High Temperature
	4.1.1.3 Low Temperature 4.1.1.4 Temperature Shock
	4.1.1.5 Temperature - Altitude
	4.1.1.6 Shock
4.2	Acceptance Tests
	4.2.1 Visual Inspection
	4.2.2 Channel Accuracy
	4.2.3 Transmitter Test
	4.2.4 Final Acceptance Test
	4.2.5 Power Switching Test
	4.2.6 RFI Test
	SIZE DRAWING NO.
	Δ Α000223
	SHEET 3 OF
	Jane John John John John John John John John

IJ

1

-

-

-

L

I

1

-

1

I

1

	REVISION	15		
SYM.	DESCRIPTION		DATE	APPROVED

1. SCOPE

This specification contains the technical requirements and quality assurance provisions for telemetry units to be installed in the AIM-4F and AIM-4G missiles. These missiles have the same warhead space available for telemetry equipment, but the AIM-4F is radar guided while the AIM-4G is infrared guided. The telemetry units shall be interchangeable between the two missiles except for plug-in signal conditioner modules to accommodate the measurements peculiar to the particular missile. The telemetry units shall also be capable of operating with either an L-band or a P-band transmitter with no modification required except the replacement of the transmitter and antennas.

	REVISIONS		
SYM.	DESCRIPTION	DATE	APPROVED

2. APPLICABLE DOCUMENTS

The following documents shall apply to this specification to the extent specified herein.

2.1 General Telemetry System Requirements

The performance of all telemetry unit subsystems shall conform to the standards set forth in the Inter-Range Instrumentation Group (IRIG) document 106-71, dated January 1971.

2.2 Environmental Test Specification

Pre-production environmental testing applicable will be accomplished according to the methods in MIL-STD-810B.

2.3 Drawings

Kit and installation drawings for the systems specified herein are ARINC Research Corporation drawing numbers:

D000410 for the AIM-4F and D000411 for the AIM-4G

	REVISIONS		
SYN.	DESCRIPTION	DATE	APPROVED

3. REQUIREMENTS

3.1 Performance

The telemetry units shall consist of signal conditioners, commutator, modulator and transmitter with characteristics as indicated in succeeding paragraphs.

3.1.1 Transmitter Requirements

3.1.1.1 Frequency

The transmitter shall be capable of operating on any of the VHF frequencies given in Paragraph 5.1.2.1 of IRIG 106-71. The stability of the transmitter carrier frequency including variables such as operating time, supply voltage, temperature, acceleration, vibration and shock, will be \pm 101 percent of the assigned carrier frequency. (Reference Paragraph 5.I.2.1.1 of IRIG 106-71).

3.1.1.2 Power

The output RF power shall be 2.0 watts minimum into a 50ohm load impedance with a voltage standing wave ratio (VSWR) of less than 1.5:1.

3.1.1.3 Bandwidth

The bandwidth spurious emission and interference requirements of the transmitter output shall be in accordance with Paragraph 5.1.2.1.1 of IRIG 106-71.

3.1.2 Transmitter Interchangeability

The transmitter unit shall be capable of being converted from VHF (P-band) to UHF (L-band) operation by replacing the transmitter and antennas with no other modifications.

A000223

	REVISIONS		
SYM.	DESCRIPTION	DATE	APPROVED
and the second sec		and the second se	

3.1.3 Commutator Channel Rate

The commutator shall be capable of operating at channel rates of 5K, 10K, 20K and 40K pps, programmable by a jumper wire on the commutator sub-assembly. Stability of the channel rate shall be + 2%.

3.1.4 Commutator Ripple and Noise

Ripple and noise on the commutator output pulse train shall be less than 20 millivolts, peak to peak.

3.1.5 Modulation Requirements

Modulation shall be PAM-FM conforming to IRIG requirements (Reference Paragraph 5.4 of IRIG 106-71).

3.1.6 Signal Conditioners

The signal conditioner module shall be a plug-in assembly separate from the commutator and transmitter assemblies. Measurement lists for the AIM-4F and AIM-4G are given in Tables 1 and 2 (at the back of this specification).

3.2 Power Requirements

à.,

1

1

[]

...

[]

[]

[]

1.

.....

1

Ū

3.2.1 Internal Power

The telemetry unit shall be equipped with an Internal power source capable of sustaining telemetry unit operation, in any specified environmental condition, for a period of not less than thirty (30) seconds.

3.2.2 External Power

The telemetry unit shall also be capable of operating with $+28 \pm 4$ volt dc external power applied. The system shall tolerate ripple of up to 500 millivolts peak to peak and voltage transients up to \pm 50 volts peak and 20 ms duration.

SIZE

DRAWING NO.

A000223

SHEET 7

SYM.

REVISIONS

3.2.3 Power Switching

3.2.3.1 Initial Turn-On

Initial system turn-on, for operation with the external power described in paragraph 3.2.2, shall be accomplished by the application of missile filament power for 50 milliseconds. Filament power is 6 to 11 volts, rms and either 1600 Hz or 4900 Hz. The system shall remain energized until the removal of external power before "transfer to internal" or of internal power after "transfer to internal". Current drawn from the 6 to 11 volts rms source shall be less than 250 milliamperes.

3.2.3.2 Transfer to Internal Power

Transfer from external power (paragraph 3.2.2) operation to internal power (paragraph 3.2.1) operation shall be accomplished by the application of $+28 \pm 4$ volts, dc for 50 milliseconds. In the event that initial turn on is not accomplished by missile filament power as described in paragraph 3.2.3.1, the transfer signal shall be capable of accomplishing initial turn-on for operation on internal power.

3.3 Environmental Requirements

3.3.1 Vibration

The telemetry unit shall be capable of operation during and after exposure to the following vibration levels:

	REVISIONS		
SYM.	DESCRIPTION	DATE	APPROVED
Double Amplitude Displacement or g Level	Frequency Range		
.2"	5 to 10 Hz		
lg	10 to 18 Hz		
.06"	18 to 40 Hz		
5g	40 to 2,000 Hz		

3.3.2 High Temperature

The telemetry unit shall be capable of operation during and after exposure to temperatures up to 85° C.

3.3.3 Low Temperature

The telemetry unit shall be capable of operation during and after exposure to temperatures down to $-20^{\circ}C$ without the aid of external heaters.

3.3.4 Temperature Shock

The telemetry unit shall be capable of operation during and after exposure to the temperature shock described in the diagram below:

SIZE	ORANING	NO.			
A			0022	3	
			SHEET	9	OF

REVISIONS

3.3.5 Temperature - Altitude

The telemetry unit shall be capable of operation during and after exposure to a combination of pressure equivalent to 50,000 feet and a temperature of $-20^{\circ}C$.

3.3.6 Shock

SYM.

The telemetry unit shall be capable of operation during and after the application of a shock of 50 g's $(15 \pm 2 \text{ ms}, \frac{1}{2} \text{ sine})$ wave) along its longitudinal axis.

3.4 Interface Requirements

3.4.1 Electrical Interface

Suitable connectors shall be provided to the signal conditioner and transmitter subassemblies to achieve interface with the missile test points and antennas.

3.4.2 Mechanical Interface

The signal conditioner, commutator, transmitter assembly shall be designed for mounting in the warhead section of the AIM-4F and AIM-4G missiles, a cylindrical space 5.500 inches in diameter and 5.375 inches long. (See ARINC Research Drawing Number D000412.)

3.5 Operability

3.5.1 Maintainability

The mean time to replace a malfunctioned component in the telemetry unit shall not exceed 8 hours.

3.5.2 Useful Life

- (a) Operating life of the telemetry unit, excluding its battery power source, shall be no less than ten hours in any specified environmental condition.
- (b) Operating life in the laboratory environment shall be 1,000 hours minimum, excluding the battery power source.

3.6 Weight

SYM.

The completed telemetry unit (less cables and antenna) shall weigh no more than 5 pounds.

3.7 Component Parts

Military standard parts shall be used wherever possible. However, commercial parts can be used when no military part is available for a particular application provided the use of the part does not violate any other requirement in this specification.

3.8 Subsystem Interchangeability

All like components in the AIM-4F and AIM-4G telemetry units shall be physically interchangeable.

3.9 System Radio Frequency Interference (RFI) Requirements

The telemetry system shall be capable of satisfying all requirements specified herein with the transmitter radiating through 2 unity gain antennas positioned a maximum distance of 6 inches from the telemetry system, in any orientation. The noise appearing in the commutator output resulting from the radiated energy shall not exceed 50 millivolts, peak to peak.

SIZE

DRAWING NO.

12

A000223

SHEET 10

4. QUALITY ASSURANCE PROVISIONS

Pre-production tests shall be performed on a sample of one unit to verify that the completed design conforms to the requirements in Section 3. Acceptance tests shall be performed on each production unit to establish reasonable assurance that the units are capable of operating in accordance with the requirements in Section 3.

4.1 Pre-Production Tests

4.1.1 Environmental Tests

4.1.1.1 Vibration

The system shall be subjected to the vibration tests in accordance with Method 514 of MIL-STD-810B, as follows:

Procedure II Part 2 Curve P (Figure 514-3)

This test calls for the following vabration levels:

Double Amplitude Dis- placement of g Level	Frequency Range
.2"	5 to 10 Hz
lg	10 to 18 Hz
.06"	18 to 40 Hz
5 g	40 to 2,000 Hz

4.1.1.2 High Temperature

The unit will be temperature tested in accordance with MIL-STD-810B, Method 501, Procedure I, with the following exceptions:

- (a) The system will be stabilized at $85 \pm 2^{\circ}C$ for two hours prior to the application of electrical power.
- (b) The unit will be operated at $85 \pm 2^{\circ}C$ for one hour with data on all channel outputs recorded.

DRAWING NO.

1

A000223

SHEET 2

	R	E	٧	1	S	1	0	N	3
DESC	RI	PT	10	N					

4.1.1.3 Low Temperature

The unit will be temperature tested in accordance with MIL-STD-810B, Method 502, Procedure I, with the following additions:

- (a) The temperature in Step 2 shall be -20°C and
- (b) The unit will be operated in accordance with Step 4 at -20° C.

4.1.1.4 Temperature Shocks

The unit will be subjected to temperature shock in accordance with MIL-STD-810B, Method 503, Procedure I, except the temperature profile shall be in accordance with Paragraph 3.1.4.4.

4.1.1.5 Temperature-Altitude

The unit will be placed in a test chamber and allowed to stabilize for two hours at a pressure equivalent to 50,000 feet and a temperature of -20° C. At the conclusion of the stabilization period, the unit will be operated for one hour. Data on all channels will be recorded.

4.1.1.6 Shock

Method 516, Procedure I. The shock table will be calibrated to the following specifications:

Force: 50 g Duration: 15 ± 2 MS Shape: $\frac{1}{2}$ Sine Wave

SYM.

4.2 Acceptance Test

4.2.1 Visual Inspection

Completed subassemblies shall be visually inspected to verify that fabrication has been accomplished in conformance to the best commercial practices.

SIZE

DRAWING NO.

A000223

4.2.2 Channel Accuracy

SYM

Signal conditioner/commutator assemblies shall be tested for conformance to the input vs. output values indicated in Table 1 and 2.

4.2.3 Transmitter Test

The following parameters shall be checked with the transmitter energized with 28 ± 1 volts and connected to a 50 ± 2 ohm dummy load.

- (a) The frequency of the output waveform (unmodified) shall be within <u>+</u> .01 percent of the assigned frequency. (Record this value).
- (b) The frequency of the output waveform (unmodified) shall remain within <u>+</u>.005 percent of the value established in (a). This stability requirement shall be verified by measuring frequency at the conclusion of (f) and comparing the result for the value measured in (a).
- (c) The power output shall be 2.0 watts minimum.
- (d) The current drain shall be 900 milliamperes maximum.
- (e) The shape of the output waveform shall be a sine wave, free of spikes and noise.
- (f) Using a spectrum analyzer, verify the absence of spurious emissions per Paragraph 3.1.1.3.

4.2.4 Final Acceptance Test

Signal conditioner, commutator, transmitter and cable assembly sets shall be tested for conformance to the parameters indicated in Tables 1 and 2. The telemetry unit output shall be measured at the transmitter output with a fifty ± 2 ohm load connected.

SIZE DRAWING NO.

A000223

SHEET 14

	REVISIONS		
SYM.	DESCRIPTION	DATE	APPROVED

4.2.5 Power Switching Test

Power switching shall be tested for conformance to the requirements in paragraph 3.2.

4.2.6 RFI Test

Π

Ľ

Π

Π

Π

Monitor the commutator output to verify performance according to the requirements of paragraph 3.9.

SIZE	DRAWING	NO.			
Α		AO	0022	23	
			SHEET	15	0

SYMDESCRIPTIONAIM-4F AND AIM-4G BASIC (First 19 Channels are communication (For E_0 = 0 - 5 Volts)Channel No. 1 - AGC Transfer FunctionTransfer FunctionInput $E_0 = 0V$ $E_0 =5 E_1$ OV -10VChannel No. 2 - FilamentTransfer FunctionInput OV $For E_0 = 0 - 5$ Volts $E_0 = 0V$ $E_0 = .2 E_1$ OV_{rms} 25 V rms Comments:Double-ended measurement. Both ends of ce	MEASUREMENT non to both m Frequency Response (Hz) 75 Frequency	LIST dissiles) Input	(9	APPROVED Curacy 6 of 11 Scale
(First 19 Channels are communication) (For E ₀ = 0 - 5 Volts) E ₀ = 0V E ₀ = 5V E ₀ =5 E ₁ 0V -10V Channel No. 2 - Filament Transfer Function Input (For E ₀ = 0 - 5 Volts E ₀ = 0V E ₀ = 5V E ₀ = .2 E ₁ 0 V _{rms} 25 V _{rms} Comments: Double-ended measurement. Both ends of ce	Frequency Response (Hz) 75 Frequency	issiles) Input Impedance	(9	6 of 11 Scale
Transfer FunctionInput(For $E_0 = 0 - 5$ Volts) $E_0 = 0V$ $E_0 = 5V$ $E_0 =5 E_1$ OV $-10V$ Channel No. 2 - FilamentTransfer Function(For $E_0 = 0 - 5$ Volts $E_0 = 0V$ $E_0 = 5V$ $E_0 = .2 E_1$ OV_{rms} $25 V_{rms}$ Comments:Double-ended measurement.	Response (Hz) 75 Frequency	Input Impedance	(9	6 of 11 Scale
Channel No. 2 - Filament Channel No. 2 - Filament Transfer Function Input (For E ₀ = 0 - 5 Volts E ₀ = 0V E ₀ = 5V $E_0 = .2 E_1$ 0 V _{rms} 25 V _{rms} Comments: Double-ended measurement. Both ends of ce	Frequency	500K		3
Transfer Function (For $E_0 = 0 - 5$ Volts $E_0 = 0$ V $E_0 = 5$ V $E_0 = .2 E_1$ $0 V_{rms}$ $25 V_{rms}$ Comments: Double-ended measurement. Both ends of ce	Frequency Response			
Comments: Double-ended measurement. Both ends of ce	(Hz)	Input Impedance	Acc (% Ful	uracy 6 of 1 Scale
Double-ended measurement. Both ends of ce	100	l Meg		3
tapped transformer provided. Channel No. 3, Pitch Error, and Channel No		or		
Transfer Function Input (For $E_0 = 0 - 5$ Volts) $E_0 = 0V = 5V$	D		Acc (9	uracy 6 of 11 Scale
O A B' A A	100	5 Meg		3
E _B =72.5V E _B =47.5V				
or or $E_{A} = .05 (E_{A} - E_{B}) + 2.5 E_{A} = 35V E_{A} = 85V$				

Comments:

Scales changed by jumpering two resistors per channel.

E_B≈85V

E_B=35V

SIZE	DRAWING	NO.				
Α		AC	0022	3		
			SHEET	6	OF	

[] [] [] Ū Π []

[]

		RE	VISIONS			
SYM.		DESCRIPT		I	DATE	APPROVED
			UREMENT LIST		ed)	
Channel No. 5, Pitch	Summing, a	nd Channel	No. 6, Yaw S	umming		
Transfer Function (For $E_0 = 0 - 5$ Volt	\mathbf{s}) $\mathbf{E}_{\mathbf{o}} = \mathbf{OV}$	put = 5V	Frequency Response (Hz)	Input Impedance	Acc (% Ful	of Scale)
E _o =.0208 (E _A -E _B) +2.	5 E _A =85V					
Channel No. 7, Flipp		el No. 8, F	lipper 2, Ch	annel No.	9, FI	ipper 3,
and Channel No. 10, Transfer Function (For $E_0 = 0 - 5$ Volt		$E_0 = 5V$	Frequency Response (Hz)	Input Impedance	Acc (% Ful	uracy of 1 Scale)
$E_0 = .0834 (E_A - E_B) + 2.$	5 E _A =62V E _B =92V		100	10 Meg		3
$E_{o} = .0417 (E_{A} - E_{B}) + 2.5$	E _A =47V E _B =107V					
Comments:						
Scales changed by ju per channel.	mpering two	resistors				
Channel No. 11 - K U Transfe r Fun ction (For E _o = 0 - 5 Volt	In	put $E_0 = 5V$	Frequency Response (Hz)	Input Impedance	(%	uracy of 11 Scale)
$E_0 = .05 (E_1 = 295)$	295V	395V	250	1 Meg		3
		SI	ZE ORAWING NO.	0000	277	
		ŀ		40002	223	
					RET P	8 .

REVISIONS DESCRIPTION

SYM.		DESCRIPT	VISIONS		DATE	APPROVED
Lanan demonstration of the second	AND AIM-40		EASUREMENT	LIST (conti	inued)	
Channel No. 12 - K Regu Transfer Function (For $E_0 = 0 - 5$ Volts)	In	$E_0 = 5V$	Frequency Response (Hz)	Input Impedance	(%	uracy of 1 Scale)
$E_0 = .125 (E_1 - 220)$	220V	260V	250	1 Meg		3
Channel No.13 - C Regula Transfer Function (For $E_0 = 0 - 5$ Volts) $E_0 =125 (E_1 + 120)$	$E_0 = OV$	$E_0 = 5V$		Innut	(% Full	uracy of 1 Scale) 3
Channel No. 14 - Track Transfer Function (For $E_0 = 0 - 5$ Volts) $E_0 = .1668 E_1 + 2.5$	$E_0 = 0V$	+15V	(Hz)	Input	(%	
Comments:						
 Quiescent level is - Jumper channel 14 to to double the sample 	channel rate for	27 at com		ut		
Channel No. 15 - Roll D Transfer Function (For $E_0 = 0 - 5$ Volts)	$\frac{\text{amping}}{\text{E}_{0}} = \text{OV}$	E ₀ = 5V	Frequency Response (Hz)	Input Impedance	Ace (1) Fu	curacy K Of 11 Scale)
$E_0 = .25 (E_A - E_B) + 2.5$	$E_A = 135V$		100	l Meg		3
			•			
855000			ZE DRAWING N	A000	223	3
					HEET 8	OF

à,

REVISIONS SYM. DESCRIPTION DATE AIM-4F AND AIM-4G BASIC MEASUREMENT LIST (Continued) Channel No. 16 - HPS/Sequence Detector Frequency Accuracy Transfer Function Input (% of Response Input (For $E_0 = 0 - 5$ Volts) $E_0 = 0V$ $E_0 = 5V$ (Hz) Impedance Full Scale)

APPROVED

3

Comments:

 $E_0 = E_1$

1

[]

[]

Π

[]

[]

[]

1. Provide 5 volts (5 ma) excitation voltage for the Hydraulic Power Supply (HPS) pressure transducer and the photosensitive device described in 2 (c) below.

5V

250

2. Superimpose transient, event-marker pulses on this measurement channel as follows:

OV

- Upon application of the +28 + 4 volt dc "Power Plant (a) Start" voltage, a +4 volt, minimum pulse with a duration of 200 milliseconds, minimum at the 50% amplitude points shall appear at the output of the signal conditioner.
- (b) Upon removal of the 28 + 4 volt dc "First Motion" voltage a +4 volt, minimum pulse with a duration of 200 milliseconds, minimum at the 50% amplitude points shall appear at the output of the signal conditioner. After removal of the "First Motion Voltage", a resistance of 100 ohms to ground remains at the test point terminal.
- (c) Upon application of a 5 volt, 10 millisecond pulse from the photosensitive device sensing HPS squib activation, generate a +4 volt minimum pulse with a duration of 200 milliseconds minimum at the output of the signal conditioner. The photo-sensitive device is a part of the cable assembly; the five volt excitation voltage is to be provided by the telemetry unit. The source resistance of the photosensitive cell during the application of the pulse is no more than 100 ohms.
- 3. The transient voltages described above are expected to occur prior to the appearance of the steady state pressure reading and thus the 4 volt pulses will remain within full scale limits. In the event one of the transients occurs while a pressure reading is present that pulse can exceed the full scale reading.

DRAWING NO.

A000223

SHEET 19

OF

SIZE

REVISIONS SYM. DESCRIPTION DATE APPROVED AIM-4F AND AIM-4G BASIC MEASUREMENT LIST (Continued) Channel No. 17, Pitch Head Position, and Channel No. 18, Yaw Head Position Frequency Accuracy Transfer Function Input (For $E_0 = 0 - 5$ Volts) $E_0 = 0V E_0 = 5V$ Response Input 10 % (Hz) Impedance Full Scale) $E_{0} = .1 E_{1}$ ov 50V 250 1 Meg 3 Comments: A 50 + .5 Vdc excitation voltage is required for this measurement after launch. The K regulated voltage (channel 12 input) can be used as the source of this voltage provided no more than 7 milliamperes is drawn from this supply. Head position potentiometers provide a resistance to ground of 20K each or 10K for the parallel combination. The excitation voltage shall be applied upon the removal of "First Missile Motion" voltage (28 + 4V). Channel 19 - Rate Gyro Power

Transfer Function (For $E_0 = 0 - 5$ Volts)	$E_0 = OV$	$E_0 = 5V$	Frequency Response (Hz)	Input Impedance	Accuracy (% of Full Scale)
E ₀ = .125 E _i	ov _{rms}	40V _{rms}	250	1 Meg	3

Comments:

Double-ended measurement

ſ	SIZE	DRAWING NO.	-
	A	A000223	-
1		SHEET 20 OF	

	REVISIONS
	SYM. DESCRIPTION DATE APPROV
	AIM-4F AND AIM-4G BASIC MEASUREMENT LIST (Continued)
	YES:
1.	For "Transfer Function" column, $E_0 = signal conditioner$ output voltage; $E_1 = signal conditioner input voltage.$
2.	In "Input" column, V indicates steady dc or slowly varying
	dc voltage level. See "Frequency Response" column for
	required data response.
	SIZE DRAWING NO.
	A A000223
	INDET 26 OF

		REVISIONS		
SYM.	DES	CRIPTION	DATE	APPR
AIM-4F SI	PECIAL MEASU	JREMENT LIST (Revised)		
Channel 20 - Gate Pus	her Pulse	(GPP)		
Test Point:		Ј301-В		
Source Resistance:		190 Ohms		
Nominal Input:		-1.5 volt pulse,		
		1.5 us wide		
Pulse Measurement Thr	reshold:	75 <u>+</u> .1 volt		
Transfer Function:	Input	Output		
I	Pulse Absend	ce 0.5 <u>+</u> .25 volt		
1	.2 us pulse	e l volt		
1	.8 us pulse	e 5 volts		
Frequency Response:		250 Hz		
Input Resistance:		lOK (Minimum)		
Input Capacitance to	Ground:	100 pf (Maximum) (See N	ote 6)	
Accuracy:		<u>+</u> 5%		
Special Requirements		Linear volts/us scale		
		between 1 V and 5 V		
		outputs.		
		•		

A AOOO223 SHEET 22 OF

	REVISIONS	
SYM. DES	CRIPTION	DATE APPROVE
AIM-4F SPECIAL MEAS	UREMENT LIST (Revised)	
	tinued)	
Channel 21 - Pre-Launch: Missile Range Gate (RRG), Re	Range Gate (MRG)/Radar lative Pulse Position	
Post-Launch: MRG/GH	PP Relative Pulse Positio	n
Test Points:	GPP J301-B	
	MRG J501-S	
	RRG J301-C	
Source Resistance:	GPP 190 Ohms	
	MRG 50 Ohms	
	RRG 50 Ohms (See No	te 2)
Nominal Input:	GPP -1.5V, 1.5 us	
	MRG $+4.5V$, 1 us	
	RRG +28V, .5 us	
Pulse Measurement Threshold:	GPP75 <u>+</u> .1V	
	MRG 2.0 + 0.25V	
	$RRG 15 \pm 1V$	
Transfer Function:		
Pre-Launch:	$E_0 = 2.5 (T_2 - T_1) + 2$ (See Note 4)	2.5 volts
Post-Launch:	$E_0 = 2.5 (T_3 - T_1) + 2$ (See Note 4)	2.5 volts
	where:	
	$T_1 = MRG$ leading edge	
	$T_2 = RRG$ leading edge	
	$T_3 = GPP trailing edge$	
	•	
	SIZE DRAWING NO.	
	A A000	223
	the second se	SHEET 23 #

Π

Π

Π

Π

Π

Π

[]

REVISIONS

DATE APPROVED

AIM-4F SPECIAL MEASUREMENT LIST (Revised) (Continued)

Channel 21 - (Continued)

Frequency Response: Input Resistance: Input Capacitance:

Accuracy:

SYM.

Special Notes:

250 Hz 10K minimum (each pulse) GPP - 100 pf (max.) (See Note 6) MRG - 100 pf (max.) (See Note 6) RRG - 400 pf (max.)

+ 5%

 RRG and GPP pulse trains do not occur simultaneously

RRG is capacitor coupled with
 .003 uf as shown below:

	REVISIONS
SYM.	DESCRIPTION DATE APPROVE
AIM-4F SPECIAL ME Channel 22 - MRG/Target Vid	ASUREMENT LIST (Revised) (Continued)
Test Points:	MRG J501-S Tgt Video J501-E
Source Resistance:	MRG 50 Ohms Tgt Video 795 Ohms
Nominal Input:	MRG +4.5V, 1 us Tgt Video +1V, .75 us (Unloaded)
Transfer Function:	$E_0 = 2.5 (T_4 - T_1) + 2.5$ volts (See Note 4)
	where: $T_1 = MRG$ leading edge and
	$T_{\underline{\mu}}$ = Tgt video leading edge
Pulse Measurement Threshold	: MRG 2.0 ± 0.25V Tgt Video .5 ± .1V
Frequency Response:	250 Hz
Input Resistance:	10K minimum (each pulse)
Input Capacitance:	100 pf maximum (each pulse) ` (see Note 6)
	+ 5%

.

.

U.

Π

Π

Ū

Π

Π

[]

Ū

Π

Π,

SIZE	DRAWING	NO.			
A		AOO	0223		
	L			OF	0

	بين المحكمة والمحكر بيهاي بين المحكمة والمحكمة والمحكمة والمحكمة والمحكمة والمحكمة والمحكمة والمحكمة والمحكمة	EVISIONS	1	
SYM.	DESCRI	• • • • • • • • • • • • • • • • • • •	DATE	APPROVED
	(Contir	EMENT LIST (Revised) nued)		
Channel 23 - Target	Video Presence			
Test Point:		J501-E		
Source Resistance:		795 Ohms		
Nominal Input		+1V, .75 us		
Transfer Function:	Ein	Eout		
	Pulse Absence	1.0 Volt		
	Video in	2.5 Volts	(See Notes	Below)
	Low Noise Video in High Noise	4.0 Volts	(See Notes	Below)
Frequency Response:		250 Hz		
Input Resistance:		lOK (minimum)		
Input Capacitance:		100 pf (maximum) (S	ee Note 6)	
Accuracy:		<u>+</u> 5%		
Notes:				
noise. The thr from 0.25 volts point exceeding shall be treate 2. Low noise is de peak to peak wi 3. High noise is d peak to peak wi 4. Transition from 1.5V ± 0.5V.	eshold level is to 1.25 volts. this threshold, d as a valid ing fined as any amp th a bandwidth of efined as any amp th a bandwidth of low noise to his	plitude value from O of 5 \pm 1 MHz. mplitude value from of 5 \pm 1 MHz. Igh noise state is t as 5 volts peak. SIZE DRAWING NO.	g a potent le video te se or nois to 1.0 vo 2 to 8 vol o occur at	iometer est e peak, olts .ts
		A AUO	D223	
				OF

REVISIONS			
SYM.	DESCRIPTION	DATE	APPROVE
AIM-4F SPECI	AL MEASUREMENT LIST (Revised (Continued)	1)	
Channel 24 - Diode Bias			
Test Point:	TP 701		
Source Resistance:	200 Ohms		
Nominal Input:	.5 Volt de		
Transfer Function:	E _o = 5 E _i Volts		
Frequency Response:	250 Hz		
Input Resistance:	lOK minimum		
Accuracy:	<u>+</u> 3%		
5555000 A	A DRAWING NO.	00223 SHEET 2	7 -

Π

Π

U

П П.

Ū

[]

[]

[]

[]

1

[]

1

1

Ļ

REVISIONS				
SYM.	DESCRIPTION	DATE	APPROVED	
AIM-4F SPECIA	AL MEASUREMENT LIST (Revised)			
Charles and	(Continued)			
hannel 25 - RF Channel Se	lect			
est Point:	J741-S			
ource Resistance:	l Meg			
ominal Input:	-60 to -85 Volts, dc			
ransfer Function:	$E_0 = .20 (E_1 + 85) Volt$	8		
requency Response:	30 Hz			
nput Resistance:	10 Megs (minimum)			
ccuracy:	<u>+</u> 3%			
pecial Requirements:	1 Meg source resistance	to be		
	included in transfer fun	ction;		
	accuracy requirement app	lies to		
	internal telemetry unit	circuit	5	
	only. See Note 7.			

,

.

	REVISIONS	
SYM.	DESCRIPTION	DATE APPROVI
AI	M-4F SPECIAL MEASUREMENT LIST (F (Continued)	Revised)
Channel 26 - AFC	Dither	
Test Point:	J741-S	pilitanista atment
Source Resistance	: 1 Meg	
Nominal Input:	2.5 V _{rms} (syst	tem untuned)
	700 mv rms (sy	stem tuned)
Transfer Function	$E_{o} = .5 E_{i} + 2$	2.5 Volts
Frequency Respons	e: 250 Hz	
Input Resistance:	10 Megs	
Accuracy:	<u>+</u> 3%	
Special Requireme	nts: 1. Dither fre	equency is 75 Hz.
	2. Input has level	-90V maximum dc
	feedthrou loading e	oltage division by agh capacitor and effect of channel 25 fer function. See

All Pulse Channels

[]

1

Π

[]

Π

[]

0

[]

[]

0

[]

1

-

For each pulse channel, provide sufficient noise suppression and crosstalk suppression to keep noise and crosstalk to a level less than fifty (50) percent of the pulse threshold level measured at the input point of the first pulse sensing circuit (Comparator).

SIZE

Δ

Note 7.

DRAWING NO.

à,

A000223

SHEET 29 OF

	REVISIONS	REVISIONS			
	SYM. DESCRIPTION	DATE APPROV			
	AIM-4F SPECIAL MEASUREMENT LIST	(Revised)			
lot	es:				
ι.	All pulse width values are referenced to fifty-percent pulse amplitude, unless otherwise stated.				
2.	"Source Resistance" specifies the output resistance of the missile circuitry associated with the test point.				
3.	"Input Resistance" specifies the minimum allowable input resis- tance of the signal conditioner circuitry.				
+.	" $(T_i - T_1)$ " is positive if T_1 occurs before T_i , and negative if T_i occurs before T_1 . T_i is T_2 , T_3 , or T_4 . Units of time difference are in microseconds.				
5.	"Nominal Input" is nominal input voltage to the signal conditioner.				
5.	The total input capacitance on the test point of signal conditioner circuitry of all channels shall not exceed 100 pf.				
7.	Equivalent circuit of Test Point J741-S:				
	$E_{1} \qquad \qquad$				
	C* = Feedthrough capacitor in TM uni				

8. E_o is signal conditioner output voltage. E_i is signal conditioner input voltage, except where otherwise stated.

 	 -

REVISIONS DESCRIPTION

DATE APPROVED

AIM-4G SPECIAL MEASUREMENT LIST (Revised)

Channel 20 - Trigger Loop

Test Points:

[]

0

[]

0

[]

0

[]

SYM

J2610 - E, D

Conditioner to consist of resistor network energized by internal telemetry +28 volts and a differential amplifier. From +28 volts to ground, attach the following series combination: 250K, 50K, 200K, and 100K. Test points indicated above to be connected across the 200K resistor, monitor voltage across the 50K resistor with a differential amplifier. Voltage transfer function of differential amplifier to be 1:1. Frequency response to be 250 Hz. See note 1. Input resistance to be 1 Meg ohm in each leg.

Channel 21 - Roll Damping

Test Point:	P2301 - A, C
Source Resistance;	51K
Transfer Function:	$E_0 = .250 (E_B - E_A) + 2.5 volts$
Input/Output Range:	For $E_0 = 0V$, $E_A = .5V$ $E_B = -9.5V$
	For $E_0 = 5V$, $E_A = -9.5V$ $E_B = .5V$
Frequency Response:	100 Hz
Minimum Input Resistance:	l Meg
Accuracy:	± 3%

Note:

turn-on.

Input voltages EA and EB can have -150V transients during

DRAWING NO

A000223

REVISIONS				
SYM.	DESCRIPTION DATE	APPROVED		
AIM-4G	SPECIAL MEASUREMENT LIST (Revised) (Continued)			
Channel 22 - Antenna (Byro Power			
Test Points:	J2102-12, 14			
Source Resistance:	100 Ohms			
Transfer Function:	$E_{0} = .05 E_{1} (rms)$			
Input/Output Range:	For $E_0 = 0V$, $E_1 = 0 V (rms) @ 400 Hz$			
	For $E_0 = 5V$, $E_1 = 100 V (rms)^{@400 H}$	[z		
Frequency Response:	40 Hz			
Input Resistance:	1 Meg	l Meg		
Accuracy	<u>+</u> 3%	<u>+</u> 3%		
Special Note:	Double-ended measurement; i.e., E	Double-ended measurement; i.e., E ₁ is		
	voltage difference between test point	nt		
	J2102-12 and test point J2102-14.			
Channel 23 - Antenna	Speed			
Test Point:	J301- <u>c</u>			
Source Resistance:	100 Ohms			
Transfer Function:	Classified CONFIDENTIAL	Classified CONFIDENTIAL		
Input Pulse:	3V, 200 us (Sense at 2 <u>+</u> 0.2 volt 1	evel)		
Frequency Response:	10 Hz			
Input Resistance:	50K (minimum)			
Accuracy:	<u>+</u> 3%			
Special Note:	Value and accuracy of E to be inde	pendent		
	of variations in input pulse width.	and		
	pulse amplitude.			

DRAWING NO.

A000223

SIZE

A

2

÷
SYM.	DESCRIPTION	DATE	APPROVED
			AFTROVED
AIM-4G SPECIAL	MEASUREMENT LIST (Revised)		
- water	(Continued)		
Channel 24 - Pitch Damping			
Test Points:	P2301-F, D		
Source Resistance:	51K		
Fransfer Function:	$E_0 = .5 (E_A - E_B) + 2.5 $ volt	8	
Input/Output Limits:	For $E_0 = 0V$, $E_A = V_0 - 2.5V$		
	$E_{B} = V_{0} + 2.5V$		
	For $E_0 = 5V$, $E_A = V_0 + 2.5V$		
	$E_{B} = V_{0} - 2.5V$		
a second a second	where:		
	V _o ¥ -80 volts		
Frequency Response:	100 Hz		
Input Resistance:	l Meg		
Accuracy:	<u>+</u> 3%		
Special Note:	EA is voltage at P2301-F		
	E_B is voltage at P2301-D		

L

[]

0

1

Π

0

Π

Π

Ū

[]

[]

0

[]

1

I,

			REVISIONS		DATE	APPROVED
	SYM.		DESCRIPTION		DATE	APPROVEL
	AI	M-4G SPECI	AL MEASUREMENT LIST (Revised)		
			(Continued)			
Chann	nel 25 - Yaw	Damping				
Cest	Points:		P2301-K, H			
Sourc	e Resistance	:	51K		·	
[ra ns	fer Function	1:	$E_o = .5 (E_A - E_B)$	+2.5 volts		
Input	/Output Limi	ts:	For $E_0 = OV$, $E_A =$	v _o -2.5v		
•			E _B =	V _o +2.5V		
			For $E_0 = 5V$, $E_A =$	V +2.5V		
				v -2.5v		
			where:			
			V _o ¥ -80 volts			
Frequ	ency Respons	se:	100 Hz			
Input	Resistance:		l Meg			
Accur	acy:		<u>+</u> 3%			
Speci	al Note:		E _A is voltage at .	P2301-K		
			E _B is voltage at :	P2301-H		
						1
			SIZE GRAWING	NO.		
			A	A0002	23	
					HEET 3	4 or

SIZE	DRAWING NO.	
A	A000 223	
		16. 16
		100

	REVISIONS	
		ROVE
	AIM-4G SPECIAL MEASUREMENT LIST (Revised)	
ot	ces: (continued)	
3.	All pulse width values are referenced to fifty-percent pulse amplitude, unless otherwise stated.	
•	"Source Resistance" specifies the output resistance of the missile circuitry associated with the test point.	
	"Input Resistance" specifies the minimum allowable input resis- tance of the signal conditioner circuitry.	
5.	"Nominal Input" is nominal input voltage to the signal condition	ner.
·.	E_0 is signal conditioner output voltage. E_1 is signal condition input voltage, except where otherwise stated.	ner
	SIZE DRAWING NO.	
	A A000223	

Ε

E

Ε

E

E

L

-

Ľ

E

-

E

I

1

-

I

1

1

t

APPENDIX B

Π.

[]

I.

Π

-

[.

1

[]

[]

1

1

1

the state

I

1

1

COMMERCIAL EQUIPMENT SPECIFICATION SHEETS

VHF FM TRANSMITTER T-1202 Series

Vector an AYDIN COMPANY

2 Watts Minimum Power
 High Efficiency

- Meets IRIG 106-71
- Minimum Size and Weight
- Willight Olze and Weight

¼ actual size

The Vector T-1202 Series is an all-transistorized, crystal-stabilized, true FM telemetry transmitter capable of transmitting the intelligence from either analog or digital telemetry multiplex systems. The transmitter is designed for extremely reliable operation under the stringent environmental conditions encountered by manned aircraft, guided missiles, satellites, and space vehicles.

The transmitter is contained in a sealed aluminum case. Special circuits in the transmitter provide protection against damage when operating into a shorted or open load; and protection against damage resulting from reversal of the operating power leads. The T-1202 contains a power line regulator assuring uniform performance over the entire input voltage range and compliance to power line conducted susceptibility and interference requirements. B+ and modulation are isolated from chassis ground.

ELECTRICAL SPECIFICATIONS

POWER OUTPUT: 4 watts nominal at 25°C, 2 watts minimum over environment.

OUTPUT IMPEDANCE: 50 ohms.

FREQUENCY RANGE: 215 to 260 MHz.

OUTPUT FREQUENCY STABILITY: IRIG 106-71 (±0.003%, including drift due to environment available on special order.)

CARRIER DEVIATION: ±125 kHz nominal.

TYPE OF MODULATION: True FM.

INPUT IMPEDANCE: 50 ohms to 100 kilohms, shunted by 25 pF maximum. (20 kilohm min std.)

MODULATION SENSITIVITY: 0.5 volt rms (±10%) for 125 kHz deviation.

FREQUENCY RESPONSE: 100 Hz to 125 kHz ± 1.5 dB (dc coupling and response to 1 MHz available).

MODULATION DISTORTION: Less than 2% for 100 kHz deviation at 10 kHz modulating frequency.

LINEARITY: ±1% of best straight line for 125 kHz deviation measured at 10 kHz modulating frequency.

HARMONIC AND SPURIOUS OUTPUTS: In accordance with IRIG-106 71

NOISE: Less than 1 kHz p-p equivalent noise deviation when tested under vibration.

POWER REQUIREMENT: 450 mA maximum over the specified supply voltage and environmental range.

INPUT VOLTAGE: 28 ±4 Vdc.

Vector an AYDIN COMPANY / P.O. Box 328, Newtown, Pa. 18940 Main Offices & Plant: Newtown Industrial Commons, Newtown, Pa.

T-1202 Series

ENVIRONMENTAL SPECIFICATIONS MECHANICAL SPECIFICATIONS

TEMPERATURE: -20° C to $+80^{\circ}$ C (wider SIZE: See outline drawing temperature range available on special order).

HUMIDITY: 90% relative humidity.

WEIGHT: 15 ounces.

ALTITUDE: Sea level to vacuum. Tested to 250,000 feet.

VIBRATION: 0.4 inch double amplitude, 5 to 50 cps; 20 g from 50 cps to 2000 cps in each of three major axes.

SHOCK: 100 g for 11 milliseconds in any plane.

MOUNTING: Clearance holes for four No. 6-32 mounting screws on 2.2 inch by 3.2 inch centers. Available with adaptive mounting plate for interchangeability with prior models.

CONNECTORS: Power connector, Bendix PT1H-8-4P. RF output, TNC 7/16-28THD. Other connectors available.

ACCELERATION: 100 g in any plane.

ORDERING INFORMATION

When ordering specify Vector model number T-1202, part number 27064003, and exact operating frequency in megahertz. For special applications or additional information, contact Vector or the nearest sales representative.

Bulletin No. 27064-3/6-72-3M/Printed in U.S.A.

Vector an AYDIN COMPANY Phone 215-968-4271/TWX 510-667-2320

REPRESENTATIVE

The Vector T-102 Series UHF Transmitters are designed for operation in aerospace environments where size, weight and power efficiency are critical.

These transmitters incorporate the most advanced component technologies. Extensive utilization is made of recently developed integrated circuits to enhance overall unit performance. Sophisticated circuit techniques based on many years of experience in RF circuit design are employed providing exceptional performance specifications. The T-102 series transmitters offer superior modulation characteristics: i.e., frequency response from DC to 1 MHz, deviation sensitivity of ± 750 kHz/volt rms and low harmonic distortion. An output circulator internal to the unit allows operation into any load impedance including short and open circuits. The T-102 contains a power line regulator assuring uniform performance over the entire allowable input voltage range and compliance to power line conducted susceptibility and interference requirements.

The standard T-102 transmitter specifications meet the requirements of the majorit, of telemetry applications. Numerous modification can be accommodated and additional features incorporated to meet specific customer requirements.

ELECTRICAL SPECIFICATIONS

T-102 performance specifications are in accordance with the latest requirements of the telemetry ranges as well as all applicable IRIG standards.

OUTPUT CHARACTERISTICS

RF POWER OUTPUT: 2 watts minimum into 50 ohm load with VSWR up to 1.5:1.

RF LOAD: Stable operation into any load impedance. Output circulator allows continuous operation into open or short circuit.

OUTPUT FREQUENCY: Crystal controlled center frequency for S-band (between 2200-2300 MHz) and for L-band (between 1435-1540 MHz).

HARMONIC AND SPURIOUS OUTPUTS: In accordance with IRIG 106-66.

MODULATION CHARACTERISTICS

MODULATION TYPE: FM (PM available).

INPUT IMPEDANCE: 50 ohms to 100 kilohm.

DEVIATION SENSITIVITY: T-102/S, up to \pm 750 kHz/volt rms. T-102/L, up to \pm 500 kHz/volt rms.

FREQUENCY RESPONSE: DC to 1 MHz ± 1.0 dB.

DEVIATION CAPABILITY: T-102/S, ±900 kHz maximum. T-102/L, ± 500 kHz maximum.

LINEARITY: 1.0% maximum, best straight line for; T-102/S, ±750 kHz deviation; T-102/L, ± 500 kHz deviation.

Vector an AYDIN COMPANY / P.O. Box 328, Newtown, Pa. 18940

Main Offices & Plant: Newtown Industrial Commons, Newtown, Pa.

TOTAL HARMONIC DISTORTION: 1.0% maximum for; T-102/S, ± 500 kHz deviation; T-102/L, ± 330 kHz deviation.

POWER SUPPLY CHARACTERISTICS

INPUT VOLTAGE: 28 ± 4 volts, $(29 \pm 4$ volts with optional reverse polarity protection).

INPUT CURRENT: 1.0 amp maximum.

MECHANICAL SPECIFICATIONS

SIZE: 3.5" x 2.5" x 1.5" excluding connectors.

MOUNTING: 6-32 screw on 4 corners, options available.

WEIGHT: 16 oz. maximum.

QUALITY CONTROL AND PRODUCT ASSURANCE

The Vector T-102 Series transmitter is manufactured under strict Quality Control procedures in accordance with the requirements of MIL-Q-9859A. Additionally, all semiconductors and integrated circuits used in the T-102 are subjected to intensive component preconditioning procedures. Each assembled unit is fully tested to a comprehensive Acceptance Test procedure which includes full performance

Vector has participated in numerous "hi-rel" aerospace programs which have required exhaustive component screening, preconditioning and selection procedures. These "hi-rel" procedures or specific customer generated requirements can be invoked in the manufacture of the T-102 series transmitters if

ORDERING INFORMATION

When ordering specify model number (T-102/S for S-band, T-102/L for L-band) and exact operating frequency in megahertz. For special applications or additional information, contact Vector or the nearest sales representative.

necessary.

9-69-3M/Printed in USA

Vector an AYDIN COMPANY Phone 215-968-4271/TWX 510-667-2320

REPRESENTATIVE

All performance specifications will be met under the following conditions:

BASEPLATE TEMPERATURE: -25° to +85°C.

VIBRATION: Sinusoidal at 20g from 20 to 2000 cps in each axis.

SHOCK: 1/2 sine at 50g for 11 milliseconds in each axis,

ACCELERATION: 100g, each axis.

testing at the thermal extremes.

ALTITUDE: Unlimited.

ENVIRONMENTAL

SPECIFICATIONS

CONNECTORS: Modulation and Supply, Bendix PT02H-8-4P; RF output, TNC female.

AIRBORNE COMMUTATOR **CSV-100** Series

- PAM, PDM, RZ, NRZ
- Expandable Channel Capacity
- Solid State Reliability
- Rates to 100,000 Hz
- Fully Potted, Ruggedized, Flight Qualified

Vector CSV-100 series airborne solid state commutators are versatile, rugged units designed to provide an accurate, stable telemetry pulse train in standard IRIG or special formats. Modular design flexibility permits PAM or PDM outputs, RZ or NRZ. The flexible MOSFET design offers a wide variety of channel quantity and rate combinations with or without internal power ground isolation.

Vector commutators may be ordered in standard or special configurations to meet ordnance, missile, or satellite telemetry applications, and special ordnance design techniques permit shock protection up to 43,000 Gs. Small size, light weight, expandable channel capacity, and flight-qualified solid state circuitry make Vector electonic commutators ideal for aerospace telemetry programs.

PAM/PDM SPECIFICATIONS

PAM CHARACTERISTICS

OFFSET: ±5 millivolts maximum (common to all channels).

SCATTER: ±1 millivolt maximum (channel to channel variation).

CROSSTALK: ±0.1% including the case with over-voltage on adjacent channels.

LINEARITY: Less than 0.05% deviation from best straight line.

GAIN: 0.9975 ±0.0025.

OUTPUT FORMAT: Standard-NRZ (100% duty cycle) and RZ (50% duty cycle) formats per telemetry standard IRIG 106-66. In the RZ format a negative pedestal equal to 25% of deviation range for one-half the duration of each channel time slot is provided. The master pulse has an amplitude equal to the full scale signal output and a duration of 1.5 T. (Where T = channel period.) The stability of the pedestal and master pulse levels is ±0.2%.

OUTPUT LIMITING: Provisions are made such that outputs corresponding to channels where overvoltages exist are limited as specified in the table:

Positive Overvoltage	A maximum of 1.0 volt above
	full scale
Negative	Between zero and
Overvoltage	negative pedestal
	level

Vector an AYDIN COMPANY / P.O. Box 328, Newtown, Pa. 18940

Main Offices & Plant: Newtown Industrial Commons, Newtown, Pa.

PDM CHARACTERISTICS

PDM FORMAT: Standard—PDM pulsetrain is in accordance with telemetry standard IRIG 106-66. An internal frame synchronization consisting of a pulse gap equal to two channel periods in duration is provided. Simultaneous PAM and PDM outputs, each brought out on a separate connector pin, can be provided.

PDM PULSE WIDTH: Zero and full scale PDM pulse widths are factory adjusted within the limits of the following table. If required, the zero and full scale pulse width adjustment potentiometers can be made accessible permitting external adjustment within the ranges indicated in the table.

	Channel Rate-PPS			
	112.5	900		
Zero Level (microseconds)	720 ±200	90 ±30		
Full Scale Level (microseconds)	5600 ±400	700 ±50		

OUTPUT RISE AND FALL TIME: Two (2) microseconds maximum, as measured between 5% and 95% points.

PDM LINEARITY: Deviation from best straight line will not exceed $\pm 0.1\%$ of the dynamic range.

PDM PULSE WIDTH STABILITY: \pm 1% maximum of the dynamic range over the temperature range.

PDM JITTER: Less than $\pm 0.1\%$ of the dynamic range.

PDM PULSE AMPLITUDE: Standard PDM output pulse amplitude is $+5 \pm 0.5$ Vdc. If required, an externally accessible potentiometer can be provided permitting external pulse amplitude control between +1.0 and +6.0 Vdc.

OUTPUT LIMITING: Provisions are made such that outputs corresponding to channels where overvoltages exist are limited as specified in the table:

	PDM 112.5 Samples/Second	PDM 900 Samples/Second
Positive Overvoltage	A maximum of 960 microseconds added to full scale	A maximum of 120 microseconds added to full scale
Negative Overvoltage	400 microseconds minimum duration	Minimum 50 microseconds duration

ELECTRICAL SPECIFICATIONS

(All specifications are subject to verification at time of order.)

NUMBER OF CHANNELS: 30, 45, 60 and 90 channels per pole are standard. Any number of channels specified by customer can be provided as an option. Programming, if required, is accomplished by jumper connections on an external connector.

NUMBER OF POLES: Standard–One or two poles.

SAMPLING RATE CHARACTERISTICS

CHANNEL RATE: Standard-IRIG rates of 112.5 and 990 pps. Optional-Any channel rate specified by customer up to 100K pps.

FRAME RATE:

	Channel rate
Frame rate = •	Number of channels/frame/pole

SAMPLING RATE STABILITY: ±2% over the specified temperature range.

Provision for disconnecting the internal clock and advancing with an external clock can be provided.

INPUT CHARACTERISTICS

INPUT SIGNAL VOLTAGE RANGE: Standard-0 to +5Vdc. Optional-Any 5 volt span in the -5Vdc to +5Vdc range.

INPUT IMPEDANCE:

During Sampling	During Non-Sampling	Primary		
Channel On	Channel Off	Power Off		
5 megohms	10 megohms	10 megohms		
minimum	minimum	minimum		

BACKCURRENT: ±0.5 microampere maximum during sampling; ±0.2 microampere maximum during non-sampling over the temperature range.

OVERVOLTAGE: +15 to -15 Vdc with no effect on accuracy of other channels and no permanent damage.

OUTPUT CHARACTERISTICS

OUTPUT IMPEDANCE: Standard – 1000 ohms maximum for PAM and PDM outputs. Lower output impedances optional.

SHORT CIRCUIT PROTECTION: No permanent damage will result when the PAM or PDM output is shorted to ground.

POWER REQUIREMENTS

VOLTAGE: +28 ±3Vdc

DRAIN: Fifty (50) milliamperes typical. Exact drain depends on number of channels and options specified.

REVERSE VOLTAGE PROTECTION: No permanent damage will result when the polarity of the input power is reversed.

POWER LINE NOISE: Maximum noise in duced across a 1.0 ohm resistor in series with the input power line will be 30 millivolts peak.

GROUND CONNECTIONS: Signal ground and 28 volt power return are common unless otherwise specified. Chassis ground is fsolated and brought out on a separate connector pin.

AUXILIARY SYNC PULSE: A pulse from an internal high impedance source is generated each frame and is brought out through a connector pin for synchronizing external bench test and/or auxiliary equipment.

ENVIRONMENTAL SPECIFICATIONS

TEMPERATURE: Operating: -25° C to +85°C. Storage: -60° C to +125°C. All units tested to actual operating temperature range specified by customer. Optional operating: -55° C to +110°C.

TEMPERATURE SHOCK: No restrictions.

RELATIVE HUMIDITY: To 95% relative humidity.

ALTITUDE: Unlimited.

SHOCK: 100 G's for 11 ±1 millisecond duration, any axis.

VIBRATION: 10 to 2000 Hz at 25 G's peak, any axis.

ACCELERATION: 100 G's steady state, any axis.

RADIO INTERFERENCE: MIL 1-26600.

STORAGE LIFE: 5 years.

MECHANICAL SPECIFICATIONS

MOUNTING: Per outline drawing.

SIZE: Per outline drawing. Note that the depth varies according to number of channels and output formats specified.

WEIGHT: From 9.0 to 18.0 ounces depending on number of channels and output formats specified.

CONNECTORS: Hermetically sealed, 25-pin, Cannon series DBH connectors with screwlock provisions are used on units with up to 60 channels total. For units with greater than 60 channels, Cannon, double density, 52-pin series 2DB connectors are used. Units with hermetically sealed, 50-pin series DDH connectors can be provided as an option with a resulting increase of 0.438 inch in dimension L and a 0.374 inch increase in dimension W.

ORDERING INFORMATION

Any CSV-100 series commutator/multicoder can be ordered using the following ordering format. For example, a 45-channel, 1-pole, 100% duty cycle (no pedestal) PAM commutator with a frame rate of 20 frames per second (channel rate = 900 pulses per second) is specified CSV-100-45-1-900-PAM-NRZ.

Any unit with non-standard number of channels, number of poles, or channel rate can be ordered using the same format with specific numbers filled-in. When other special requirements, such as, isolated signal ground and power return, externally accessible PDM adjustments, special packaging, etc. exist, they should be indicated in narrative form.

Bulletin 37200 / 7-69-3M / Printed in U.S.A.

Vector an AYDIN COMPANY Phone 215-968-4271/TWX 510-667-2320 REPRESENTATIVE

Bulletin VO124

SC BUTTON CELL NICKEL CADMIUM BATTERIES

Types VO.180SC, VO.250SC & VO.500SC

1

1

Ľ

1

T

-

1

Gulton

The new SC button cells from Gulton are unique...they do not require restriction or expansion constraint. The mechanically stronger cases and covers also eliminate the need for supporting structures when the cells are assembled into batteries. The cells are stacked in heat activated plastic tubing for insulation. This improved construction results in smaller, lighter weight button cell batteries.

(Continued on reverse side)

BATTERY TYPE	PART NO.	CATALOG NO.	NOMINAL VOLTAGE	"L" DIMENSION (inches) ±.015	APPROX. WEIGHT (ounces)
VO.180SC 180 MAH Capacity Dia. 1.062±.010	C11452-2 C11452-3 C11452-4 C11452-5 C11452-6 C11452-7 C11452-8 C11452-9 C11452-10	2VO.180SC 3VO.180SC 4VO.180SC 5VO.180SC 6VO.180SC 7VO.180SC 8VO.180SC 9VO.180SC 10VO.180SC	2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0	.659 .951 1.243 1.535 1.827 2.119 2.411 2.703 2.995	.90 1.36 1.82 2.27 2.73 3.18 3.64 4.10 4.55
VO . 250SC 250 MAH Capacity Dia . 1 . 430 ± . 010	C11459-2 C11459-3 C11459-4 C11459-5 C11459-6 C11459-7 C11459-8 C11459-9 C11459-10	2VO.250SC 3VO.250SC 4VO.250SC 5VO.250SC 6VO.250SC 7VO.250SC 8VO.250SC 9VO.250SC 10VO.250SC	2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0	.485 .690 .895 1.100 1.305 1.510 1.715 1.920 2.125	1.34 2.17 2.68 3.35 4.02 4.69 5.36 6.03 6.74
VØ.500SC 500 MAH Capacity Dia. 1.430±.010	C11620-2 C11620-3 C11620-4 C11620-5 C11620-6 C11620-7 C11620-8 C11620-9 C11620-10	2VO.500SC 3VO.500SC 4VO.500SC 5VO.500SC 6VO.500SC 7VO.500SC 8VO.500SC 9VO.500SC 10VO.500SC	2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0	.835 1.215 1.595 2.355 2.735 3.115 3.495 3.875	1.83 2.76 3.68 4.60 5.52 6.45 7.37 8.29 9.22

TYPICAL SC BUTTON CELL BATTERY SPECIFICATIONS

(Available in any desired voltage on request)

SC CELL SPECIFICATIONS

ELECTRICAL	VO.180SC	VO.250SC	VO.500SC
Capacity (1 Hour rate):	180 mah	250 mah	500 mah
*ChargingCurrent (1 _c):	9-18 ma	12-25 ma	25-40 ma
Trickle Charge Rate:	4-6 ma	5-8 ma	7-12 ma
Cell Voltage During Charge:	1.4∨	1.4V	1.4V
Maximum Peak Discharge Current:	3A	5A	7.5A
MECHANICAL			
Diameter:	.982	1.360	1.360
Thickness:	.287	.200	.374
Weight:	.40 ounce	.59 ounce	1.02 ounce

Cells will withstand I_{ϕ} for periods n excess of 90 days. If cell is to e maintained at full charge the rickle charge rate can be used ndefinitely.

Full charge requires 20 his. at lo max.

DESIGNATION. Individual button cells are designated by the letters VO followed by a figure indicating the ampere-hour capacity at the discharge rate. Every cell has a nominal voltage at h_{-2} volts. Gulton VO series button cell batteries are designated by the cell number and prefixed by the number of cells within the battery. Thus 3VO.500 is a battery that contains three VO cells, model VO.500, and is a 3.6 volt 3 cells x 1.2 volt battery whose capacity is 300 milliampere hours. These new units are designated as above, but with the addition of the letters "SC", e.g., 3VO.500SC.

Battery Division

Gulton Industries Inc.

Metuchen, New Jersey 08840 Phone: 201-548-2800 • TWX-710-998-0592

Printed in U.S.A. by GULTON INDUSTRIES, INC.

APPENDIX C

QUALIFICATION TEST PROCEDURE

Π												
							V					
1	NEXT ASSI	PPLICAT	USED	ON	LTR		DESC	REVIS	SIONS		DATE	APPROVED
Π		1										
Π												
0												
Π												
Π												
					L				- 52			
Π	1.0		SCOP	È								
1					ure details Equipment.	the qua	lity test	ing for th	e ARINC	FMT-	667	
Π												
11												
Π												
I	9 8 7		COM	IT NO.	2892	3/16/73	0	Ve		an AY		MPANY
7 12049	6 5 4		CKC ME EE		EWhite	3 7/2+/-	QUA	LITY TES				IT-667
NG 40-107	3 2 1		PR	DJ ENG		<u> </u>	SIZE	CODE IDENT	NO. 2		610	000530
BRUNING	SHT REV	SHT	REV				C-3				SHEET	1 OF 41
algering services of	ECRM E 005											

2.0	APPLICABLE DOCUMEN	TS		
2.1	MILITARY	· · · · · · · · · · · · · · · · · · ·		
	a. MIL-STD-810B			
2.2	STANDARDS			
	a. IRIG 106-71			
	b. Vector Quality Assura	ance and Reliability Manua	l (QARM)	
	c. Vector Comcheck 845	Manual M-1750.		
3.0	TEST EQUIPMENT			
3.1	CALIBRATION			
	All mechanical and electr	rical inspection and test eq	uipment shall be	
	operating satisfactorily a	nd be within the calibration	n due date spec-	
	ified on each piece of equi	ipment.		
3.2	EQUIPMENT LIST			
	The equipment listed here	ein or its equivalent is req	uired to perform	
	this test.	• •		
ITEM	NOMENCLATURE	MANUFACTURER	MODEL NO.	
Α	Fluke Diff. VM	Fluke	883A	
В	Electronic Counter	Hewlett/Packard	5245-L	
С	AC/DC Digital VM	Dana	5400	
D	Audio Oscillator	Hewlett/Packard	200CD	
E	Oscilloscope	Tektronix	545, A, B	
F	Osc. Plug-in Unit	Tektronix	53/54C, CA	
G	PAM/PDM Comcheck	Vector	845	
н	Power Supply	E. D. C	VS-11-N	
I	Power Supply	Power Design	5015-S	
J	Power Supply	Fluke	407 .	
к	Power Supply	Hewlett/Packard	710B	
L	Test Transformer	A. D. C.	224-2M	
М	Radio Receiver	D. E. I.	TR711	
	50 ohm RF Load	Bird .		
N		Hewlett /Packard		Т
N O	RF Coupler	ه کاروی کردی بر این اور با این اور این کارو این		
	SIZE CO	DE IDENT NO. DRAWING NO).	

4.0	VISUAL/MECHANICAL
4.1	VISUAL
4.1.1	Examine the system for accuracy, location, and adequacy of the following
	information:
	a. Part Name c. Model Number
	b. Manufacturer d. Serial Number
4.1.2	The system shall be inspected for the following:
	a. Case and/or pins shall be undamaged.
	b. Case and connector pins shall be free of potting splashes.
	c. Identification (lettering) shall be distinct and completely filled.
	d. Exterior surfaces shall not be scratched, cracked, or chipped.
	e. Cover mounting plates shall be inspected to verify package seal.
	f. Mounting screws shall not be burred, bent, or otherwise damaged.
4.1.3	Product identification shall be in accordance with specifications per
	contract.
4.2	MECHANICAL
4.2.1	Dimensions
	The system shall be measured for conformance to the appropriate outline
	drawings. After visual/mechanical is completed, fill out Section 1.
	(Product Examination) as required by the Data Sheet.
5.0	GENERAL REQUIREMENTS
5.1	TEST CONDITIONS
5.1.1	Unless otherwise specified, all tests shall be performed under the following
	conditions:
	a. Temperature: room ambient
	b. Humidity: room ambientc. Pressure: room ambient
	 c. Pressure: room ambient d. Power supply voltage: 28 ±0.1 Vdc
	e. Warm-up time: 15 minutes
	c, warm-up chile, 10 millaces
	SIZE CODE IDENT NO. DRAWING NO.
	A 1 10000
	A 13923 61000530

Π

Γ.

Ŀ

1

-

1975

1

.

1

-

-

I

1

Test Sequence 5.1.2 a. Production ATP (Pre-Environmental ATP) b. High Temperature Test c. Low Temperature Test d. Temperature Shock Test e. Post-Environmental ATP (same as a) f. Pre-Environmental Functional Test g. Vibration h. Post-Environmental Functional Test NOT E: If span between any two tests exceeds eight hours, a pre-environmental functional test must be performed. Shock i. Post-Environmental Functional Test j. k. Temperature (Altitude Test) 1. Post-Environmental Functional Test m. Post-Environmental ATP - Generate all test data to be shipped with unit n. Visual 6.0 TEST PROCEDURE Meets ARINC paragraph 4.2.2. 6.1 PRELIMINARY For ease in testing, the paragraphs should be performed in the sequence 6.1.1 given, but this should not preclude other sequencing in order to effect more efficient usage of personnel or equipment. Record all the serial numbers of the components as required by the 6.1.2 Data Sheets. Connect the system in the test configuration as shown in Figure 1. Refer 6.1.3 to the connector pin assignment list (drawing 80002066) for the individual circuit requirements. Measurements will be made using the Comcheck potentiometric method. CODE IDENT NO. DRAWING NO. REV SIZE 13923 Α 61000530

SHEET 4

OF

FORM NO 110 E.005-2

.005-2

SCALE

▲ C-6

6.1.4	Individual J1 contact numbers are rel	ferenced to the same number
	stud on the test cable terminal board,	, and all connections for test-
	ing are to be made on these studs unl	ess otherwise noted or directed.
6.1.5	Remove transmitter input plug P-1 and	nd insert a lead with a pin ter-
	mination to suit into J1-B. Connect t	the other end of this lead to the
	Comcheck unit and oscilloscope with	counter as required.
6.2	WARM-UP	
6.2.1	All equipment must be on and have a	minimum warm-up of 1/2 hour
	or as much longer as required to ach	ieve thermal stability of the test
	voltage sources and equipment used.	If particular equipment has a
	manufacturers recommended stabiliz	ation period to meet their stated
	accuracy, the manufacturers recomm	nendations are to be followed.
6.2.2	Set the following switches on the simil	ulation control unit to the positions
	listed (Ref. Figure 3).	
•	S-1 SIGNAL POWER	OFF
	S-2 SIGNAL POLARITY	NEG.
	S-3 Dc REF. POWER	OFF
	S-4 DC REF POLARITY	NEG.
	S-5 Dc SIGNAL MODE	S. E.
•	S-6 Ac REF. MODE	BIAS
	S-7 Ac SIGNAL MODE	S. E.
	Set all variable voltage level controls	s on the test voltage sources to
	0 volts (Ref. Figure 1).	
6.2.3	Turn on the 28 Vdc system supply and	d adjust it to 28 V ±0.1 Vdc output
	with the system operating. 28 V is a	pplied to J1-87 and ground to J1-12,
	31, 32, 33, 37, 38, and 39.	
6.2.4	Turn on the dc battery simulation sou	arce and adjust it to 32 V ± 0.1 VGc
	output. This level is the unloaded ou	tput setting at this time.
6.2.5	Turn on the filament simulation oscil	lator and adjust to 25 V rms output
	at 1600 Hz with the system operating	Monitor P1-A transmitter plug
	with a voltmeter, 28 Vdc must be ind	icated before proceeding with testing.
	SIZE CODE IDENT NO	DRAWING NO.
	A 13923	61000530
		1
	SCALE	SHEET 3 OF
FORM NO 110 8.005	- 0-	·

Y

.

REV

Π

1

Π

[]

Ū

[]

Ľ

[]

Π

[]

1.

11

-

1

1

6.3 INDIVIDUAL CHANNEL TESTS

6.3.1 Channel 1 AGC

6.3.1.1 Procedure

a. Select channel 1 on the Comcheck unit. Apply the DC TEST (+)
J1-52 and the (-) to J1-31 GND. Use an E. D. C box for the signal.
b. Display the commutator segment on the Tektronix 545 using the oscilloscope trace enhancement and delay potentiometer functions.
c. Turn S-1 on.

d. Set signal supply to 0 Vdc. The Comcheck should indicate 0 V ± 0.15 Vdc .

e. Set signal supply to 5 Vdc. The Comcheck should indicate 2.5 V ± 0.15 Vdc.

f. Set signal supply to 10 Vdc. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

6.3.2 Channel 2 Track Error

6.3.2.1 Procedure

a. Select channel 2 on the Comcheck unit. Apply AC TEST Hi

to J1-53 and Lo to J1-31 GND.

b. Set the oscilloscope as in 6.3.1.1 b.

c. .Set simulation switches as follows:

S-1	OFF
S-2	NEG.
S-3	ON
S-4	NEG.
S-5	S. E.
S-6	BIAS
S-7	S.E.

d. Set the bias supply to 50 Vdc.

e. Set the signal oscillator to 0 V. The Comcheck should indicate

0 V =0.15 Vdc.

		CODE IDENT NO	DRAWING NO. 61000	0530	REV
	SCALE			SHEET 6	OF
FORM NO 110 E 005-2		▲ c-	8		

6.3.2.1 Procedure (continued)

> f. Set the oscillator to 30 V p-p @ 180Hz. The Comcheck should indicate 2.5 V ±0.15 Vdc.

g. Set the oscillator to 60 V p-p. The Comcheck should indicate 5.0 V ±0.15 Vdc.

h. Record the readings of e, f, and g on the Data Sheet.

Channels 3 and 4. Pitch and Yaw Error 6.3.3

6.3.3.1 Procedure

1

[]

[]

[]

1

a. Select channel 3 on the Comcheck unit. Apply the DC TEST (+) to J1-54 and (-) to J1-55. Use the Fluke Power Supply or equivalent supply for the signal.

. b. Set the oscilloscope as in 6.3.1.1 b.

c. Set the simulation switches as follows:

S-1	ON
S- 2	POS
S- 3	ON
S-4	POS
S-5	BAL.
S-6	BIAS
S-7	S.E.

d. Set the bias supply to 60 Vdc.

e. Set the signal supply to 25 Vdc. The Comcheck should indicate 0 V

±0.15 Vdc.

f. Turn S-1 off.

g. Turn S-1 on, place S-2 in the NEG position. The Comcheck should indicate 5.0 V to ±0.15 Vdc.

h. Record the readings of c, f, and g on the Data Sheet.

i. Apply the DC TEST (+) to J1-56 and the (-) to J1-57.

j. Select channel 4 on the Comcheck unit.

k. Repeat c, e, f, g, and h as above for channel 4.

SCALE			SHEET 7 0	F
A	13923			
SIZE	CODE IDENT NO.	DRAWING NO.		RE

6.3.4	Channels 5 and 6. Pitch and Yaw Summing				
6.3.4.1	Procedure				
	a. Select channel 5 on the Comcheck unit. Apply the DC TEST (+)				
	to J1-58 and (-) to J1-59.				
	b. Set the oscilloscope as in 6.3.1.1 b.				
	c. Set the simulator switches as in 6.3.3.1 c, for channels 3 and 4.				
	d. Set the bias supply to 145 Vdc.				
	e. Set the signal supply to 120 Vdc. The Comcheck should indicate				
	0 V ±0.15 Vdc.				
	f. Turn S-1 off. The Comcheck should indicate 2.5 V ±0.15 Vdc.				
	g. Turn S-1 on, place S-2 in the NEG position. The Comcheck should				
	indicate 5.0 V ±0.15 Vdc.				
	h. Record the readings of e, f, and g on the Data Sheet.				
	i. Apply the DC TEST (+) to J1-60 and the (-) to J1-61.				
•	j. Select channel 6 on the Comcheck unit.				
	k. Repeat c, e, f, g, and h as above, for channel.6.				
6.3.5	Channels 7, 8, 9, and 10. Flipper 1, 2, 3, and 4.				
6.3.5.1	Procedure				
	a. Select channel 7 on the Comcheck unit. Apply the DC TEST (+)				
•	to J1-62 and (-) to J1-63.				
	b. Set the oscilloscope as in 6.3.3.1 b.				
	c. Set simulator switches as in 6.3.3.1 c.				
•	d. Set the bias supply to 77 Vdc.				
	e. Set the signal supply to 30 Vdc. The Comcheck should indicate				
	0 V ±0.15 Vdc.				
	f. Turn S-1 off. The Comcheck should indicate 2.5 V ±0.15 Vdc.				
	g. Turn S-1 on, place S-2 in the NEG position. The Comcheck should				
	indicate 5.0 V ±0.15 Vdc.				
	h. Record the readings of e, f, and g on the Data Sheet.				
	i. Apply the DC TEST (+) to $J1-64$ and the (-) to $J1-65$.				
	SIZE CODE IDENT NO. DRAWING NO. REV				
	A 13923 61000530				

FORM NO. 110 8.005-2

A C-10

6.3.5.1 Procedure (continued) Select channel 8 on the Comcheck unit. 1-Repeat c, e, f, g, and h as above, for channel 8. k. Apply the DC TEST (+) to J1-66 and the (-) to J1-67. 1. m. Select channel 9 on the Comcheck. Repeat c, e, f, g, and h above for channel 9. n. Apply the DC TEST (+) to J1-68 and the (-) to J1-69. 0. p. Select channel 10 on the Comcheck. q. Repeat c, e, f, g, and h as above, for channel 10. 6.3.6 Channel 11. "K" Unregulated 6.3.6.1 Procedure a. Select channel 11 on the Comcheck. Apply the DC TEST (+) to J1-70 and the (-) to J1-31 GND. b. Set the oscilloscope as in 6.3.3.1 b. c. Set the simulator switches as follows: ON S-1 S-2 POS S-3 OFF S-4 POS S.E. S-5 S-6 BIAS S-7 S.E. d. Set the signal supply to 295 Vdc. The Comcheck should indicate 0 V ±0.15 Vdc. e. Set the signal supply to 345 Vdc. The Comcheck should indicate 2.5 V ±0.15 Vdc. f. Set the signal supply to 395 Vdc. Read 5.0 V ±0.15 Vdc on the Comcheck. g. Record the readings of d, e, and f on the Data Sheet.

CODE IDENT NO. DRAWING NO. REV SIZE 13923 Α 61000530 SCALE OF SHEET 0 ▲ C-11

FORM NO 110 8.005-2

11

ę.,

age local.

Q

ě.

ani Iter

in an

i.,

ikan.

à...

÷.

à...

6.3.7 Channel 12. "K" Regulated

6.3.7.1 Procedure

a. Select channel 12 on the Comcheck unit. Apply the DC TEST (+)

to J1-74 and the (-) to J1-31 GND.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches to the pattern of 6.3.6.1 c.

d. Set the signal supply to 220 Vdc. The Comcheck should indicate 0 V ± 0.15 Vdc.

e. Set the signal supply to 240 Vdc. The Comcheck should indicate $2.5 V \pm 0.15 Vdc$.

f. Set the signal supply to 260 Vdc. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

Channel 13. "C" Regulated

6.3.8.1 Procedure

6.3.8

a. Select channel 13 on the Comcheck unit. Apply the DC TEST (+)

to J1-70 and the (-) to J1-31 GND.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

S-1	ON
S-2	NEG
S-3	OFF
S-4	POS
S-5	S. E.
S-6	BIAS
S-7	S. E.

d. Set the signal supply to 120 Vdc. The Comcheck should indicate 0 V ± 0.15 Vdc.

e. Set the signal supply to 140 Vdc. The Comcheck should indicate

2.5 V ±0.15 Vdc.

Α	13923	6100	00530	
 SCALE			SHEET 10 OF	
 	A C-1			-

FORM NO 110 E.005-2

Procedure (continued) 6.3.8.1

f. Set the signal supply to 160 Vdc. The Comcheck should indicate

5.0 V ±0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

6.3.9 Channel 14

a. Filament

b. Power Transfer Function

Procedure 6.3.9.1

a. Select channel 14 on the Comcheck unit.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Apply a momentary connection between J1-87 and J1-86. The monitor of paragraph 6.2.5 must show the 32 V level of the battery simulation supply, indicating power transfer.

d. Monitor J1-82 and J1-83 with the signal DVM in the ac mode.

e. Set the filament simulation oscillator to 0 V ac output. The dc monitor of c above must remain at its steady state reading. observed in c.

f. With the filament oscillator at 0 V output. The Comcheck should indicate 0 V ±0.15 Vdc.

g. Set the filament oscillator to 12.5 V rms. The Comcheck should indicate 2.5 V ±0.15 Vdc.

h. Set the filament oscillator to 25 V rms. The Comcheck should indicate 5.0 V ±0.15 Vdc.

i. Record the transfer verification of c and the readings of f, g, and h on the Data Sheet.

j. Momentarily open the battery simulation 32 V supply (+) lead. The monitor of c shall show the system 28 V level, indicating transfer off the battery supply.

k. Filament oscillator must remain at the 25 V rms of h for continuing tests.

	CODE IDENT NO. 13923	DRAWING NO.	61000530	REV
SCALE			SHEET 11 C	F
 	▲ C-1	3		

FORM NO. 110 E.005-2

1

1

1

Channel 15. Roll Damping 6.3.10

Procedure 6.3.10.1

a. Select channel 15 on the Comcheck unit. Apply the DC TEST (+)

to J1-84 and the (-) to J1-85.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

S-1	ON
S-2	POS.
S-3	ON
S-4	POS.
S-5	BAL.
S-6	BIAS
S-7	S. E.

d. Set the bias supply to 140 Vdc.

e. Set the signal supply to 10 Vdc. The Comcheck should indicate 0 V ±0.15 Vdc.

f. Turn S-1 off. The Comcheck should indicate 2, 5 V ±0.15 Vdc.

g. Turn S-1 on, place S-2 in the NEG. position. The Comcheck should indicate 5.0 V ±0.15 Vdc.

h. Record the readings of e, f, and g on the Data Sheet.

6.3.11

HPS PRESSURE Channel 16 PWR. PLANT START PULSE Channel 16(1) FIRST MOTION PULSE Channel 16(2)

HPS SQUIB EVENTS Channel 16(3)

6.11.1 Procedure

> a. Select channel 16 on the Comcheck unit. Apply the DC TEST (+) to J1-88 and the (-) to J1-31 GND. Use an EDC box for the signal.

b. Set the oscilloscope as in 6.3.3.1 b.

FORM NO 110 E 005 2

6.3.11.1 Procedure (continued)

c. Set the simulator switches as follows:

S-1	ON
S-2	POS
S-3	OFF
S-4	POS
S- 5	S. E.
S-6	BIAS
S-7	S. E.

d. Set the signal supply to 0 Vdc. The Comcheck should indicate $0 V \pm 0.15$ Vdc.

e. Set the signal supply to 2.5 Vdc. The Comcheck should indicate $2.5 \text{ V} \pm 0.15 \text{ Vdc}$.

f. Set the signal supply to 5.0 Vdc. The Comcheck should indicate 5.0 ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

h. Set the signal supply to 2.5 Vdc.

i. Apply a momentary connection between J1-87 and J1-86. The monitor of paragraph 6, 2, 5 must show the 32 V level of the battery simulation supply, indicating power transfer.

j. Apply a (+)28 V p pulse of approximately 100 milliseconds to J1-86.
Observe a positive going pip on the oscilloscope display of channel 16.
k. Momentarily interrupt the (+) 28 Vdc lead to J1-87. Observe a positive going pip on the oscilloscope display of channel 16.

1. Apply a (+)5 V p pulse to J1-89. Observe a positive going pip on the oscilloscope display of channel 16.

m. Record the pip verification of j, k, and I on the Data Sheet.
n. Momentarily interrupt the +32 Vdc battery simulation supply and observe that the system returns to +28 Vdc of the system source.

		CODE IDENT N	NO.	6100	0530			REV
•	SCALE				SHEET	13	OF	

FORM NO 110 E.005 2

1

[]

[]

Π

Π

[]

0

Π

6.3.12 Channels 17 and 18

Procedure 6.3.12.1

a. Select channel 17 on the Comcheck unit. Apply the DC TEST (+)

to J1-90 and the (-) to J1-31 GND. Use the Fluke supply for the signal.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Simulator switch positions are to remain as in 6.3.11.1 c for channel 16.

d. Set the signal supply to 0 Vdc. The Comcheck should indicate 0 V ±0.15 Vdc.

e. Set the signal supply to 25 Vdc. The Comcheck should indicate 2.5 V ±0.15 Vdc.

f. Set the signal supply to 50 Vdc. The Comcheck should indicate 5.0 V ±0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

h. Apply the DC TEST (+) to J1-91 and the (-) to J1-31 GND.

i. Select channel 18 on the Comcheck unit.

j. Repeat c, d, e, f, and g as above, for channel 18.

6.3.13 Channel 19. Rate Gyro Power

Procedure 6.3.13.1

a. Select channel 19 on the Comcheck unit. Apply the ac test hi to

J1-92 and lo to J1-93.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

S-1	OFF
S-2	POS
S-3	OFF
S-1	POS
S-5	S. E.
S-6	GND.
S-7	BAL

	A	CODE IDENT NO. 13923	610005:30	REV
•	SCALE		SHEET 11 0	F

FORM NO 110 E.005 2

6.3.13.1	Procedure	(continued)	
----------	-----------	-------------	--

d. Set the signal oscillator to 0 V output. The Comcheck should indicate 0 V ± 0.15 Vdc.

e. Set the signal oscillator to 20 V rms at 400 Hz. The Comcheck should indicate 2.5 V ±0.15 Vdc.

f. Set the signal oscillator to 40 V rms at 400 Hz. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

6.3.14 Channels 20 and 21. "X" and "Y" Vibration

6.3.14.1 Procedure

[]

Π

1

1

a. Select channel 20 on the Comcheck unit. Apply the DC TEST (+) to

. J1-1 and the (-) to J1-31 GND. Use an EDC box for the signal.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

S-1	ON
8-2	POS
S-3	OFF
S-4	POS
S-5	S. E.
S-6	GND
S-7	BAL

d. Set the signal supply to 0 Vdc. The Comcheck should indicate
0 ±0.15 Vdc.

e. Set the signal supply to 2.5 Vdc. The Comcheck should indicate 2.5 V ± 0.15 Vdc.

f. Set the signal supply to 5.0 Vdc. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

h. Apply the DC TEST (+) to J1-2 and the (-) to J1-31 GND.

i. Select channel 21 on the Comcheck.

j. Set the signal supply to 0 Vdc. The Comcheck should indicate

6.3.14.1 Procedure (continued)

0 V ±0.15 Vde.

k. Set the signal supply to 2,5 Vdc. The Comcheck should indicate
2,5 ±0.15 Vdc.

1. Set the signal supply to 5.0 Vdc. The Comcheck should indicate 5.0 ± 0.15 Vdc.

m. Record the readings of j, k, and l on the Data Sheet.

6.3.15 Channel 22. Antenna Gyro Power

6.3.15.1 Procedure

a. Select channel 22 on the Comcheck unit. Apply the ac test hi to

J1-3 and the lo to J1-4.

b. Set the oscilloscope as in 6, 3, 3, 1 b.

c. Set the simulator switches as follows:

S-1	OFF
S-2	POS
S-3	OFF
S-4	POS
S-5	S. E.
S-6	GND
S-7	BAL

d. Set the signal oscillator to 0 V output. The Comcheck should indicate 0 V ± 0.15 Vdc.

e. Set the signal oscillator to 25 V rms at 400 Hz. The Comcheck should indicate 2.5 V ±0.15 Vdc.

f. Set the signal oscillator to 50 V rms at 400 Hz. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on the Data Sheet.

		A	13923		6100	00330		
--	--	---	-------	--	------	-------	--	--

FORM NO 110 E.005 2

6.3.16 Channel 23. Antenna Speed

6.3.16.1 Procedure

a. Select channel 23 on the Comcheck unit. Apply a pulse generator to J1-5 and its return to J1-31 GND. Set this generator to produce a double pulse - positive going first and then negative going - to simulate one cycle of ac.

b. Set the oscilloscope as in 6.3.3.1 b. Monitor the source pulse on one channel of the oscilloscope, the commutator segment on the other. Use alternate display.

c. Set the signal pulse amplitude to +3 V p and - 3 V p to simulate 1 Hz ac 6 V p-p squarewave with a 1.0 millisecond period.

d. For input-output conditions, refer to the classified supplement of ARINC Research Specification A000223.

6.3.17 Channels 24 and 25. Pitch and Yaw Damping

. .

6.3.17.1 Procedure

a. Select channel 24 on the Comcheck unit. Apply the DC TEST (+)

to J1-6 and the (-) to J1-7. Use EDC box for the signal.

.....

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

8-1	ON
S-2	POS
S-3	OFF
S-4	POS
S-5	BAL
S-6	GND
S-7	BAL

SCALE	SCALE		SHEET 17	
A	13923	61	000530	
SIZE	CODE IDENT NO.	DRAWING NO.		RE

0

Ū

1

IJ

[]

-

-
6.3.17.1 Procedure (continued)

d. Set the bias supply to 0 Vdc.

e. Set the signal supply to 5 Vdc. The Comcheck should indicate
0 V ±0.15 Vdc.

f. Open S-1. The Comcheck should indicate 2.5 V ±0.15 Vdc.

g. Close S-1. Place S-2 in the NEG position. The Comcheck should indicate 5.0 V ±0.15 Vdc.

h. Record the readings of e, f, and g on the Data Sheet.

i. Select channel 25 on the Comcheck unit. Apply the DC TEST (+) to J1-8 and the (-) to J1-9

j. Repeat c, e, f, g, and h as above, for channel 25.

6.3.18 Channel 26. Carrier Signal

6.3.18.1 Procedure

a. Select channel 26 on the Comcheck unit. Apply the AC TEST Hi output to J1-10 and the Lo to J1-31 GND.

b. Set the oscilloscope as in 6.3.3.1 b.

c. Set the simulator switches as follows:

S-1	OFF
S- 2	POS
S-3	OFF
S-4	POS
S-5	BAL
S- 6	GND
S-7	S. E.

d. Set the signal oscillator to 0 V output. The Comcheck should indicate 0 V ± 0.15 Vdc.

e. Set the signal oscillator to 1 V rms at 1600 Hz. The Comcheck should indicate $2.5 \text{ V} \pm 0.15 \text{ Vdc}$.

f. Set the signal oscillator to 2 V rms at 1600 Hz. The Comcheck should indicate 5.0 V ± 0.15 Vdc.

g. Record the readings of d, e, and f on Data Sheet.

		CODE IDENT NO. 13923		00530	REV
·	SCALE			SHEET 15 OF	
FORM NO. 110 8.005-2		▲ C-2	0		

6.3.19 A1-K1 and K2 Check

Procedure

6.3.19.1

a. Apply a momentary connection between J1-87 and J1-88. The monitor of paragraph 6.2.5 must show the 32 V level of the battery simulation supply, indicating power transfer.

b. Turn off the 28 V system supply. K1 and K2 are now de-energized. Check for the following conditions:

J1-29 to J1-74 reads continuity with approximately
 kilohms impedance.

2. J1-30 to J1-31 GND reads zero ohms (continuity).

3. J1-34 to J1-90 reads zero ohms (continuity).

4. J1-35 to J1-91 reads zero ohms (continuity).

c. Turn on the 28 V system supply. All the above circuits should read open circuit.

d. Record the verification of b and c above on the Data Sheet.

e. Momentarily interrupt the 32 V battery simulation source. The monitor of 6.2.5 should indicate 28 Vde indicating system return to the system 28 V power source.

6.3.20 5 V Services Check

6.3.20.1 Procedure

a. Measure the voltage at J1-43, 44, and 45 referenced to J1-31 GND using the digital voltmeter. Record the readings on the Data Sheet.

- 6.4 RF LINK TEST
- 6.4.1 Preliminary

6.4.1.1 Connect the system in the configuration of Figure 2.

6.4.1.2 Procedure

a. Perform the tests of paragraph 6.0 as required to satisy ARINC paragraph 4.2.4.

SCALE			SHEET 19 C	F
A	13923	6100	0530	
SIZE	CODE IDENT NO.	DRAWING NO.		REV

FORM NO 110 E.005-2

Π

ENVIRONMENTAL TESTS 7.0

7.1 PRELIMINARY

- Connect the system in the configuration of Figure 6, using the P-1 7.1.1 test cable of Figure 5 which is to conform to the input signal loading of Table II.
- 7.1.2 Turn on the 28 V power supply and set the output to 28 V ±0.15 Vdc. Turn on the radio receiver and tune in the transmitter. Sync the Tektronix oscilloscope to the pulse train on the receiver video output connector. Make a trial recording of 2 to 3 minutes duration on CEC recorder, play it back monitoring the output on the oscilloscope. If the playback is normal, proceed with the testing. A summary of the tests is given in Table III.

PROCEDURE 7.2

Apply the following specified environments and methods as documented in attachment I, subcontract U6627 of ARINC. .

Vibration (ARINC 4.1.1.1) 7.2.1

The system shall be subjected to the vibration tests in accordance with method 514 of MIL-STD-810B, as follows:

Procedure II

Part 2

Curve P (Figure 514-3)

This test calls for the following vibration levels:

Double Amplitude Displacement or g Level

0.2" 1g 0.06" 5 g

Frequency Range 5 to 10 cps 10 to 18 cps 18 to 40 cps . 40 to 2,000 cps

	CODE IDENT NO. 13923	6100053	80	
SCALE		 SH	EET 20	OF

FORM NO 110 E.005-2

7.2.2	High Temperature (ARINC 4.1.1.2)
	The unit shall be temperature tested in accordance with MIL-STD-810B,
	method 501, Procedure I, with the following exceptions:
	a. The system shall be stabilized at 85 ±2°C for two hours prior to
	the application of electrical power.
	b. The unit shall be operated at 85 ±2°C for one hour with data on all
	channel outputs recorded.
7.2.3	Low Temperature (ARINC 4.1.1.3)
	The unit shall be temperature tested in accordance with MIL-STD-810B,
	method 502, Procedure I, with the following additions:
	a. The temperature in step 2 shall be -20°C and
	b. The unit shall be operated in accordance with step 4 at -20°C.
7.2.4	Temperature Shocks (ARINC 4.1.1.4)
	The unit shall be subjected to temperature shock in accordance with
	MIL-STD-810B, method 503, Procedure I, except the temperature
	profile shall be in accordance with paragraph 3.3.4 of attachment 1,
	subcontract U6627 quoted below:
	3.3.4 Temperature Shock
	The telemetry unit shall be capable of operation during and after
	exposure to the temperature shock described in the diagram below:
	2 Hours +85°C (Transition times +25°C +25°C
	2 Hours -20°C
7.2.5	Temperature Altitude (ARINC 4.1.1.5)
	The unit shall be placed in a test chamber and allowed to stabilize for
	two hours at a pressure equivalent to 50,000 feet and a temperature of
	-20°C. At the conclusion of the stabilization period, the unit shall be
	operated for one hour. Data on all channels shall be recorded.
	· · · · · · · · · · · · · · · · · · ·

Y

SCALE			SHEET 21	OF
Α	13923	61	000530	
SIZE	CODE IDENT NO.	DRAWING NO.		RE

Π

Π

[]

Π

Ø

Π

[]

Π

 \square

7.2.6 Shock (ARINC 4.1.1.6)

The unit shall be shock tested in accordance with MIL-STD-810B, method 516, Procedure I. The shock table shall be calibrated to the following specifications: Force: 50 gDuration: $15 \pm 2 \text{ MS}$

Shape: 1/2 Sine Wave

7.3

After completion of all environmental tests, perform the test of paragraph 6.3, generating the test data to be shipped with the unit.

	139	DRAWING NO.	610	00530			REV
SCALE				SHEET	22	OF	

TA	D	T	L	1
IU	D	L	Ľ	-

J-1 FUNCTION ASSIGNMENTS

Y

CONTACT	FUNCTION	<u>c</u>	HANNEL
1	X Vibration		20
2	Y Vibration		21
3	Ant. Gyro Power		22 (+)
4	Ant. Gyro Power	400 Hz	22 (-)
5	Ant. Speed	AIM-4G	23
6	Pitch Damping (+)	Only	24 (+)
7	Pitch Damping (-)		24 (-)
8	Yaw Damping (+)		25 (+)
9.	Yaw Damping (-)		25 (-)
10 .	Carrier Signal	1600 Hz	26
. 11	N.C.	•	
12	Shield Gnd.		
13	N.C.	and starting the	
14	Second Detector Video	Pulses etc.	23
15	(Ch. 24) (0 to $+1V$) = (0 to $5V$)	DC	24
16	RF Channel Select	AIM-4F	25
17	Dither Voltage	Only >	26
18	N.C.		21 &
19	Radar Range Gate	Pulses	22
20	Missile Range Gate	Pulses	
21	Gate Pusher Pulse	Pulses	20
22	N.C.		
23	N.C.		
24	N. C.		
25	N.C.		
26	N. C.		•
		•	
	SIZE CODE IDENT NO. DRAW	ING NO.	I
	1 1 1 2 2 2 2 2		•
	A 13923	610003	530
	SCALE	S	SHEET 23 OF
NO. 110 E.005-2	▲ C-25		

REV

FORM NO. 110 E.005-2

Π

Π

0

[]

Π

Π

E

[]

[]

.[]

Π

[]

12

L

T

TABLE 1 - contd.

J-1 FUNCTION ASSIGNMENTS

V

C	ONTACT	FUNCTION	CHANNEL	1
	27	N. C.		1
	28	N. C.		
	29	50 Vdc (115 Vac) output		1
	30	Sig. Gnd. Monitor		1
	31	Pwr. Gnd. (Isolated)	•	
	32	Pwr. Gnd. (Isolated)		1
	33	Pwr. Gnd. (Isolated)		
	34	Ch. 17 Monitor		
	35	Ch. 18 Monitor		
	36	N.C.		
	37	DC Ground		
	38	DC Ground		1
	39	DC Ground		C
	40	Frame Sync.		1
	41	N. C.		1
	42	N.C.		
	43	5V Spare		
	44	5V to Transducer		
	45	5V to Photocell		1
	46	N.C.		
	47	N.C.		
	48	N.C.		
	49	N.C.		
	50	N.C.		
	51	N. C.		

		 4			
SCALE		 SHEET	24	OF	

FORM NO. 110 E.005-2

TABLE 1 - contd.

J-1 FUNCTION ASSIGNMENTS

FUNCTION CHANNEL CONTACT 1 52 A.G.C. 0 to -10Vde 2 53 Track Error -30V P to +30V. P 54 Pitch Error Hi 3 (+) 55 Pitch Error Lo 3 (-) Yaw Error Hi 4 (+) 56 4 (-) Yaw Error Lo 57 Pitch Sum Hi 5 (+) 58 5 (-) Pitch Sum Lo 59 6 (+) Yaw Sum Hi 60 Yaw Sum Lo 6 (-) 61 7 (+) 62 Flipper 1 (+) 7 (-) 63 Flipper 1 (-) 8 (+) 64 Flipper 2 (+) 8 (-) 65 Flipper 2 (-) 9 (+) 66 Flipper 3 (+) 9 (-) 67 Flipper 3 (-) 10 (+) 68 Flipper 4 (+) 10 (-) Flipper 4 69 (-) 13 70 C Reg. 71 N.C. 11 72 K Unreg. N.C. 73 12 74 K Reg. 75 N.C. N.C. 76 N.C. 77 CODE IDENT NO. DRAWING NO. SIZE REV 13923 A 61000530 SCALE SHEET 25 OF

▲ C-27

0

FORM NO 110 E 005 2

1.

TABLE 1 - contd.

CHANNEL

V

J-1 FUNCTION ASSIGNMENT

FUNCTION

N.C.

- -

.

- -CONTACT

78

.

•	79	N.C.		
	80	N.C.		
	81	N.C.		
	82	Filament 1	1600 Hz	14 Hi
	83	Filament 2	Power must be always on	14 Lo
	84	Roll Damping (+)		15 (+)
	85	Roll Damping (-)		15 (-)
Xfer	86	Pwr. Plant Start	28V + Pulse will initiate pwr. xfer.	16 Pulse
28V	87	First Motion	28V Pwr Input	16 Pulse
	88	Pressure Transducer	Length and the second	16 DC
	89	H.P.S. Squib Signal		16 Pulse
	90	Pitch Head Position		17
	91	Yaw Head Position		18
	92	Rate Gyro Pwr. 🖷 Ø		19 Hi ·
	93	Rate Gyro Pwr. 0 Ø	400 Hz	19 Lo
	94	N.C.		
	95	N.C.		
	96	N. C.		
	97	N.C.		
	98	N.C.		
	99	N.C.		
	100	N. Ç.		

TABLE II

ENVIRONMENTAL SIMULATION

Y

CHANNEL NO.	SIGNAL ON J-1 AlM-4G	NOTES
1	GND. 52	All numbers are
2	GND, 53	J-1 numbers
3	GND, 55, 54 open	
4	GND, 57, 56 open	
5	GND, 59, 58 open	
6	GND, 61, 60 open	
7	GND, 63, 62 open	
8	GND, 65, 64 open	
9	GND, 67, 66 open	
10	GND, 69, 68 open	
11	GND. 70	
12	GND, 72	
13	GND. 74	
14	GND. 83, limit resistor on 82	
15	GND. 85, 84 open	
16	GND. 88, 86-87-89 open	
17	GND. 90	
18	GND. 91	
19	GND. 92 and 93	
20	GND. 1	
21	GND. 2	
22	GND. 3 and 4	
23	GND. 5	
24	GND. 7, 6 open	
25	GND. 9, 8 open	
26	GND, 10	
	28 V on 87	
	GND, on 12 30	
집 가슴 집 것이 많다.	31 37	
	32 38	
	33 39	
	25 V 1600 Hz on \$2 and \$3	
	Center tap to GND. or	
	(+)6 Vdc to 82, (-)6 Vdc to 31.	

4

TABLE III

TESTING SEQUENCE

Commutation Rate = 10 k pps Signals all programmed in low gain configuration.

	SCALE	SHEET 28 OF
	A	13923 610005:0
2.9	POST-ENVIRONMENTAL	CODE IDENT NO. DRAWING NO. REV
2.8		temperature for 2 hours soak non-operaing, 1 hour operation with data on all channels recorded.
2.7	PRE-ENVIRONMENT FUN	
2.6	POST-ENVIRONMENTAL I	FUNCTIONAL TEST <u>NOTE</u> : Retest requirement - if span between any two tests is less than 8 hours, the following pre- environmental functional may be waived.
2.5	SHOCK	810B, Method 516, Procedure I 50g, 15 ± 2 mS, 1/2 sine wave pulse
2.4	PRE-ENVIRONMENTAL F	
2.3	POST-ENVIRONMENTAL 1	NOTE: Retest requirement - if span between any two tests is less than 8 hours, the following pre- environmental functional may be waived.
2.2	VIBRATION	810B, Procedure II, Part 2, Curve P (5g 20 min.)
2.1	PRE-ENVIRONMENTAL F	UNCTIONAL TEST
2.0	OUTSIDE SERVICES	
1.5	POST ENVIRONMENTAL	ATP (same as 1.1)
1.4	TEMPERATURE SHOCK	Ambient operation, raise to $+85^{\circ}$ C with rise time of 10 ±2 minutes, 2 hours operating at 85° C, lower to -20° C with falling time of 10 ±2 minutes, 2 hours operating at -20° C, return to ambient with rise time of 10 ±2 minutes, operational check until stabilization.
1.3	LOW TEMPERATURE	-20°C 2 hour soak, non-operating, 1 hour operating with data on all channels recorded.
1,2	HIGH TEMPERATURE	+85°C 2 hour soak, non-operating, 1 hour operating with data on all channels recorded.
1.1	PRE-ENVIRONMENTAL	ATP (same as production ATP)

TABLE III

TESTING SEQUENCE (continued)

- RETURN TO VECTOR 3.0
- POST-ENVIRONMENTAL ATP Generate all test data to be shipped with unit. 3.1

3

- VISUAL/MECHANICAL 3.2
- 3.3 PACKING

Π

Γ

Γ

Ε

Ε,

L

Γ

Γ

I

Π

I

SIZE CODE IDENT NO. DRAWING NO. A 13923 61000530	•	SCALE			SHEET	29	OF	
SIZE CODE IDENT NO. DRAWING NO.								
		SIZE	CODE IDENT NO.	DRAWING NO.				RE

TEST DATA SHEETS

8.0

QUALIFICATION TEST PROCEDURE

for

FMT-667 TELEMETRY EQUIPMENT

Customer	ARINC
Spec. No.	¥6627
Vector P/N	22380000-501
Customer P	/N
Serial No.	
Date 2	3 March 1972

MANUFACTURED BY

Vector an AYDIN COMPANY Newtown, Pa.

Test Technician	
Date	
Customer	
Date	
DOD	
Date	

		CODE IDENT N	D. DRAWING NO.	61000330	*	R
······································	SCALE			SHE	ET 36	OF

•	0. <u>FMT-667</u> 0.		DATE	
		AIM - 4F/4G DAT/	ASHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	0 Vde	0 V		±0.15
1	-5 Vdc	2.5 V		±0.15
	-10 Vde	5.0 V		±0.15
	0 V	0 V		±0.15
2	30 V p-p	2.5 V		±0.15
	60 V p-p	5.0 V		±0.15
	+25 Vde	0 V		±0.15
3	0 V	2,5 V		±0,15
	-25 Vde	5.0 V		+0.15
	+25 Vdc	0 V		±0.15
4	0 V	2.5 V		+0.15
	-25 Vdc	5.0 V		+0.15
	+120 Vdc	0 V		±0.15
5	ov	2.5 V		±0.15
	-120 Vde	5.0 V		±0.15
	+120 Vde	0 V		±0.15
6	0 V	2,5 V		±0.15
	-120 Vde	5.0 V		±0.15
	+30 Vde	0 V		±0.15
7	0 V	2.5 V		±0,15
	-30 Vdc	5.0 V		±0,15
	+30 Vdc	0 V		±0,15
8	0 V	2.5 V		±0.15
	-30 Vdc	5.0 V		±0,15
		· · · ·		
		A 1392		1000530
		SCALE		SHEET 37 OF

/TM (Vdc)
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
). 15
Verify
+0.15
+0.15
+0.15
10.15
10.15
•0.15

	O. <u>FMT-667</u>		TESTED BY	
		AIM - 4F/4G DATA	SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
16(1)	+28 V pulse	+ pulse		Verify
16(2)	28 V interrupt	+ pulse		Verify
16(3)	+5 V pulse	+ pulse		Verify
	0 V	0 V		±0.15
17	+25 Vdc	2.5 V		±0.15
	+50 Vdc	5.0 V		±0.15
	0 V	0 V		±0.15
18	+25 Vdc	2.5 V		±0.15
	+50 Vdc	5.0 V		±0.15
	0 V	0 V		±0.15
19	20 V rms	2.5 V		±0.15
	40 V rms	5.0 V		±0.15
A1-K1	28 V off	Relays closed		Verify
and K2	28 V on	Relays closed		Verify
5 V	- N/A	J1-43, 44, 45 = 5 V		Verify
	0 V	0 V		±0.15
20	+2.5 Vdc	2.5 V		±0.15
•	+5.0 Vdc	5.0 V		±0,15
	0 V	0 V		±0.15
21	+2.5 Vdc	2.5 V		±0.15
	+5.0 Vdc	5.0 V		±0.15
	0 V	0 V		±0.15
22	25 V rms	2.5 V		±0.15
	50 V rms	5.0 V		±0.15
		SIZE CODE IDENT N	DRAWING NO.	
		A 13923		31000530

)FMT-667		TESTED BY DATE	
	• •	AIM - 4F/4G DAT.	A SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
		0 V		±0.15
23	•	2.5 V		±0.15
		5.0 V		±0.15
	+5 Vde	0 V		±0.15
24	0 V	2.5 V		±0.15
	-5 Vdc	5.0 V		±0.15
	+5 Vde	0 V		±0.15
25	o v	2.5 V		±0.15
	-5 Vdc	5.0 V		±0.15
	0 V	0 V		±0.15
26	1 V rms	2.5 V		±0.15
	2 V rms	5.0 V		±0.15

*The data deleted from this block, when combined with certain data from other sources, could be developed into classified information.

.

	CODE IDENT NO. 13923	1000530	REV
 SCALE		SHEET 40	OF

	NO		TESTED BY DATE	·
	· · ·	AIM - 4F CH. 20	- 26 DATA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	No pulse	0 V		±0. 25
20	1.2 µsec p	2.5 V		±0.25
	1.8 µsec p	5.0 V		±0,25
Pre	RRG lags 1 µsee	0 V		±0, 25
21	Coincidence	2.5 V		±0. 25
Launch	RRG leads 1 µs.	5.0 V		±0, 25
Post	GPP lage 1 µsec	0 V		±0,25
21	Coincidence	2.5 V		±0.25
Launch	GPP leads 1 µs.	5.0 V		. ±0.25
	TV lags 1 µsec	0 V		±0.25
22	Coincidence	2.5 V		±0. 25
	TV leads 1 µ s.	5.0 V		±0,25
	Level under 0.5V	0.5 V		±0.25
23	1 V level	1.0 V		±0.25
	10 V level	4.5 V		±0. 25
······································	0 V	0 V		±0.15
24	+0.5 V	2.5 V		±0,15
	+1.0 V	5.0 V		±0.15
	+60 Vdc	0 V		±0.15
25	+75 Vdc	2.5 V		±0.15
	+90 Vde	5.0 V		±0.15
	0 V	0 V		40.15
26	5 V p-p	2.5 V		±0.15
	10 V p-p	5.0 V	•	±0.15
		SIZE CODE IDENT	NO. DRAWING NO.	
		A 1392		1000530
		SCALE		SHEET 11 OF

APPENDIX D TEST RESULTS

0

E

Π

Π

-

I.

Π

[]

Π

0

Π

[]

0

[]

1

1

1

8.0

Π

[]

0

[]

[]

[]

Π

0

[]

[]

[]

T

TEST DATA SHIFETS

QUALIFICATION TEST PROCEDURE

for

17

FMT-667 TELEMETRY EQUIPMENT

. .

Customer	ARINC
Spec. No.	Y6627
Vector P/N	223-0000-501
Customer P	/X X'.
Serial No.	1.02
Date 2	3 March 1972

MANUFACTURED BY

() Vooler an AYDIN COMPANY Newtown, Pa.

Test Technician E.F. White START Date MAR. 24, 1972 Customer ARINC COMPLETE Date MARCH 30,1972 ENGR. - Wand Hand March 31, 1972

i.

MODEL N	O. FMT-667		TESTED BY E.F.	White
SERIAL N	0. 102		DATE MA	R. 24, 1972
PRE-E	NVIRONME	AIM - 4F/4GI	DATA SHEET	
HANNEL	INPUT	OUT/TM-DC	OUT/READ	TGL/TM (Vdc)
	0 Vde	0 V	+ . 023	±0.15
1	-5 Vde	2.5 V	+2.522	±0.15
	-10 Vde	5.0 V	+ 5.016	±0.15
	0 5	0 V	01	±0.1 5
2	30 Ур-р	2.5 V PP	+ 2. SOOVPP	±0.15
	60 V p-p	5.0 V PP	+5.000 YPP	±0.15
	+25 Vde	0 V	+ .021	±0.15
3	0 V	2.5 V	+ 2.510	±0,15
	-25 Vdc	5.0 V	+ 4.995	±0.15 ·
•	+25 Vdc	0 V	002	±0.15
4	0 V	2.5 V	+ 2.484	±0.15
	-25 Vdc	5.0 V	+ 4.967	+0.15
	+120 Vde	0 V	\$.008	±0.15
5	o v	2.5 V	+ 2.506	±0.15
		5.0 V	+ 5.000	±0.15
	+120 Vde	0 V	+.009	±0.15
6	0 5	2.5 V	+ 2.505	±0.15
•	-120 Vdc	5.0 V	+ 4.996	±0.15
	+30 Vdc	0 V	028	±0.15
7	ov	2.5 V	+ 2.491	±0.15
	-30 Vdc	5.0 V	+ 5.007	±0,15
	+30 Vdc	0 V	018	20.15
8	0 V	2, 5 V	+ 2.542	±0.15
	-20 Vez	5.0 V	+ 5.093	±0,15
		SIZE CODE IL A 139	ENT NO. DRAWING NO.	Tax.
•				10005;30

	0. FMT-667 0. 102		TESTED BY <u>E.F.</u> DATE	White 1AA, 24, 1972
Re. Envio	convental.	AIM - 4F/4G DA	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	+30 Vdc	0 V	021	±0.15
9	o v	2,5 V	+2.508	±0.15
	-30 Vdc	5,0 V	+ 5.045	±0.15
	+30 Vdc	0 V	001	±0.15
10	0 V	2.5 V	+2.521	±0.15
	-30 Vdc	5.0 V	+ 5.039	±0.15
	+295 Vdc	0 V	+.021	±0.15
11	+345 Vde	2.5 V	+2.526	±0.15
	+395 Vde	5.0 V	+ 5.030	±0.15
•	+220 Vdc	0 V	+.005	±0.15
12	+240 Vdc	2.5 V	+2.506	±0.15
	+260 Vdc	5.0 V	+ 5.007	±0.15
	-120 Vdc	. o v	+ .065	±0.15
13	-140 Vdc	2.5 V	+ 2.553	±0.15
	-160 Vdc	5.0 V	+ 5.03.8	±0.15
	o v ·	0 V	+ .021	±0.15
. 14	12.5 V rms	2.5 V	+ 2.529	±0.15
	25 V rms	5.0 V	+ 5.031	0.15
14C	Jump S6 to S7	Power Transfer	E.F.W	Verify
	+10 Vdc	0 V	+.014	±0.15
15	0 5	2.5 V	+2.451	±0.15
	-10 Vde	5.0 V	+ 4.995	20.15
	0 5	0 V	+ .015	±0.15
16	+2.5 Vde	2.5 V	+ 2.506	±0.15
·	+5.0 Vde	5.0 V	+ 4.994	±0.15
		SIZE CODE ILL. A. 1393	T NO.] DLAWING NO.	• 1

MODEL N	O FMT-667		TESTED BY EF	white
SERIAL N	0. 102		DATE MA	8, 24, 1972
e. Envi	connectal	AIM - 4F/4G DA	LA SHEET	
IANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
16(1)	+28 V pulse	+ pulse	EFW	Verify
16(2)	28 V interrupt	+ pulse	EFW	Verify
16(3)	+5 V pulse	+ pulse	EFW	Verify
	ov	0 V	+.019	±0.15
17	+25 Vdc	2.5 V	+ 2.513	±0.15
	+50 Vdc	5.0 V	+ 5.005	±0.1 5
	.0 V	0 V	+.017	±0.15
18	+25 Vdc	2.5 V	+ 2.508	±0.15
	+50 Vdc	5.0 V	+ 4.997	±0.15
	ov	0 V	+ .015	±0.15
19	20 V rms	2.5 V	+ 2.548	±0.15
	40 V rms	5.0 V	+ 5.081	±0.15
A1-K1	28 V off	Relays closed	EFW	Verify
and K2	28 V on	Relays closed	EFW	Verify
5 V	· N/A	J1-43, 44, 45 = 5 V	EFW	Verify
	0 V	0 V	+.011	±0.15
20	+2.5 Vdc	2.5 V	+ 2.502	±0.15
	+5.0 Vdc	5.0 V	+ 4.989	±0.1 5
	0 V	0 V	+.013	±0.15
21	+2.5 Vdc	2.5 V	+ 2.503	±0.1 5
	+5.0 Vdc	- 5,0 V	+ 4.989	±0,15
	0 V	0 V	+ . 024	±0.15
22	25 V rms.	2.5 V	+2.514	±0,15
	- 50 V rms	5.0 V	+ 5.001	±0,15

-D-6

SHEET IN OF

SCALE

100 12 140 1101 60.2

MODEL NO. FMT-667 SERIAL NO. 102

0

[]

former &

1

1

TESTED BY	E.F. white	
DATE ·	MAR. 24, 1922	

HANNEL	INPUT	LAIM - 4F/4G DA	OUT/READ	TOL/TM (Vdc)
		0 V	+.004	±0.15
23		2.5 V	+ 2.486	±0.15
		5.0 V	+ 4.963	±0.15
	+5 Vde	0 V	+.018	±0.15
24	o v	2.5 V	+2.505	±0.15
19630 I	-5 Vdc	5.0 V	+ 4.990	±0.15
	+5 Vdc	0 V	+ .013	±0.15
25	o v	2.5 V	+ 2.502	±0.15
	-5 Vde	5.0.V	+ 4.986	±0.15
	0 V	0 V	+.018	±0.15
26	1 V rms	2.5 V	+2.507.	±0.15
	2 V rms	5.0 V	+ 4.992	±0.15

*The data deleted from this block, when combined with certain data from other sources, could be developed into classified information.

۰.

<i>I</i> .	13023	•			
ri	10520	1	6100953	0	

V

MODELN	O		TESTED BY E.F.	white
SERIAL N	0. 102			AR. 24, 1972
Durina	- 20°	AIM - 4F/4G D	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vde)
	0 Vdc	0 V ·	+.021	±0.15 /
1	-5 Vde	2.5 V		±0.15 N/A
	-10 Vdc	5.0 V		±0.15
	0 5	0 V		±0.15
2	30 У р-р	2.5 V	+ 2.519	±0.15
	60 V p-p	5.0 V		±0.15
	+25 Vde	0 V		±0.1 5
3	0 V	2.5 V	+2.6.32	±0,15
	-25 Vde	5.0 V		±0.15 -
	+25 Vde	0 V		±0.15
4	0 V	2.5 V	+2.753.	±0.15
	-25 Vde	5.0 V		±0.15
	+120 Vde	0 V		±0.15 ·
.5	0 V	2.5 V	+ 2.558	±0.15
	120 Vde	5.0 V		±0.1 5
	+120 Vde	0 V		±0.15
6	0 5	2.5 V	+ 2.504	±0.15
	-120 Vdc	5.0 V		±0.15
	+30 Vdc	. 0 V	•	±0.15
7	o v	2.5 V	+2.605	±0.15
	-30 Vdc	5.0 V		±0.15
	+30 Vde	0 V .		±0.15
8	0 5	2.5 V	+2.605	±0.15 1/A
:	-20 Vee	5,0 V		+0.15

SIZE	CODE ILENT NO.	D. Milia NO.			1
A	13923		61000530	•	
SCALE	D-8		SILLET	·· 07	-

DATE MOR. 24, 1 DATE MOR. 24, 1 DOSCIPC - 202 Sock AIM - 4F/4G DATA SHEET CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM (Vd 9 0 V 2.5 V + 2.5 S 9 40.15 9 0 V 2.5 V + 2.5 S 9 40.15 10 0 V 2.5 V + 2.6 O3 40.15 10 0 V 2.5 V + 2.6 O3 40.15 10 0 V 2.5 V + 2.6 O3 40.15 11 +305 Vdc 0 V 40.15 40.15 11 +345 Vdc 2.5 V N.A 40.15 11 +345 Vdc 2.5 V N.A 40.15 12 +220 Vdc 0 V 40.15 40.15 12 +240 Vdc 2.5 V N.A. 40.15 13 -140 Vdc 2.5 V N.A. 40.15 13 -140 Vdc 2.5 V N.A. 40.15 13 -140 Vdc 5.0 V 40.15 40.15 14 12.5 V rms <th>MODEL NO</th> <th>. FMT-667</th> <th></th> <th>TESTED BY E.E</th> <th>white</th>	MODEL NO	. FMT-667		TESTED BY E.E	white
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				DATE	Inc. 24, 1972
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM (Vd 9 0 V 2.5 V $+ 2.559$ 40.15 9 0 V 2.5 V $+ 2.559$ 40.15 10 0 V 2.5 V $+ 2.559$ 40.15 10 0 V 2.5 V $+ 2.603$ 40.15 11 $+345 Vde$ $2.5 V$ $N.A$ 40.15 11 $+345 Vde$ $2.5 V$ $N.A$ 40.15 12 $+20 Vde$ $0 V$ 40.15 40.15 12 $+240 Vde$ $2.5 V$ $N.A$ 40.15 12 $+240 Vde$ $2.5 V$ $N.A$ 40.15 13 $-140 Vde$ $2.5 V$ $N.A$ 40.15 13 $-140 Vde$ $5.0 V$ 40.17	varing -	202 Soat	AIM - 4F/4G DA	TA SHEET	
9 0 V $2.5 V$ $+ 2.559$ 40.15 $-30 Vde$ $5.0 V$ 40.15 $+30 Vde$ 0 V $2.5 V$ $+ 2.603$ 40.15 10 $0 V$ $2.5 V$ $+ 2.603$ 40.15 $-30 Vde$ $5.0 V$ 40.15 40.15 $-30 Vde$ $5.0 V$ 40.15 $-30 Vde$ $5.0 V$ 40.15 $+295 Vde$ $0 V$ 40.15 $+295 Vde$ $0 V$ 40.15 $+395 Vde$ $5.0 V$ 40.15 $+395 Vde$ $5.0 V$ 40.15 $+220 Vde$ $0 V$ 40.15 $+260 Vde$ $5.0 V$ 40.15 $-120 Vde$ $0 V$ $V.A.A.$ 40.15 13 $-140 Vde$ $2.5 V$ $N.A.$ 40.15 14				OUT/READ	TOL/TM (Vdc)
9 0 V $2.5 V$ $+ 2.5 S 9$ 40.15 $-30 Vdc$ $5.0 V$ 40.15 40.15 10 0 V $2.5 V$ $+ 2.403$ 40.15 10 $0 V$ $2.5 V$ $+ 2.403$ 40.15 $-30 Vdc$ $5.0 V$ 40.15 40.15 $-30 Vdc$ $5.0 V$ 40.15 $-30 Vdc$ $5.0 V$ 40.15 $+295 Vdc$ $0 V$ 40.15 $+295 Vdc$ $5.0 V$ 40.15 $+20 Vdc$ $0 V$ 80.15 $+220 Vdc$ $0 V$ 80.15 $+220 Vdc$ $0 V$ 80.15 $+220 Vdc$ $0 V$ 80.15 $+260 Vdc$ $5.0 V$ 40.15 $-120 Vdc$ $0 V$ $N. A.$ 40.15 13 $-140 Vdc$ $2.5 V$ $N. A.$ 40.15 14 $12.5 V rms$ $2.5 V$ $V. A.$ 40.15 14 $12.5 V rms$ $2.5 V$ 0.15		+30 Vdc	0 V		±0.15 /
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9		2.5 V	+ 2.559	10.15 N/A
10 $0 V$ $2, 5 V$ $+ 2.603$ ± 0.15 $-30 Vdc$ $5.0 V$ 40.15 $+295 Vdc$ $0 V$ 40.15 11 $\pm 345 Vdc$ $2.5 V$ $N. A$ $\pm 395 Vdc$ $5.0 V$ 40.15 $\pm 395 Vdc$ $5.0 V$ 40.15 $\pm 220 Vdc$ $0 V$ 40.15 $\pm 260 Vdc$ $5.0 V$ 40.15 $\pm 120 Vdc$ $0 V$ 40.15 $-120 Vdc$ $0 V$ 40.15 $-120 Vdc$ $5.0 V$ 40.15 $-160 Vdc$ $5.0 V$ 40.15 $-160 Vdc$ $5.0 V$ $2.5 V$ $23 V rms$ $5.0 V$ 0.15 14 $12.5 V rms$ $2.5 V$ 0.15 $14C$ $Jump 64 to 87$ $Power Transfer$ $E F W$ $Verifv$ 15 $0 V$ $2.5 V$ $+ 1.945$ 40.15 15 $0 V$ $2.5 V$ $+ 2.019$ 40.15 $0 V$ $0 V$ $+ .019$ 40.15		-30 Vdc	5,0 V		±0.15
-30 Vdc 5.0 V ± 0.15 11 ± 295 Vdc 0 V ± 0.15 11 ± 345 Vdc 2.5 V N. A ± 0.15 11 ± 345 Vdc 2.5 V N. A ± 0.15 ± 395 Vdc 5.0 V ± 0.15 ± 0.15 ± 230 Vdc 0 V ± 0.15 ± 0.15 12 ± 240 Vdc 2.5 V N. A ± 0.15 12 ± 240 Vdc 2.5 V N. A ± 0.15 12 ± 240 Vdc 2.5 V N. A ± 0.15 13 -140 Vdc 2.5 V N. A ± 0.15 13 -140 Vdc 2.5 V N. A ± 0.15 14 12.5 V rms 2.5 V $2.5 V$ ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 140 $5.0 V$ <td></td> <td>+30 Vdc</td> <td>0 V</td> <td></td> <td>±0.15</td>		+30 Vdc	0 V		±0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	0 V	2, 5 V	+2.603	±0.15
11 $+345$ Vde 2.5 V N. A 40.15 $+395$ Vde 5.0 V 40.15 $+395$ Vde 0 V 40.15 $+220$ Vde 0 V 40.15 12 $+240$ Vde 2.5 V N. A. 40.15 12 $+240$ Vde 2.5 V N. A. 40.15 $+260$ Vde 5.0 V 40.15 40.15 $+260$ Vde 5.0 V 40.15 40.15 -120 Vde 0 V 40.15 40.15 -120 Vde 0 V 40.15 40.15 13 -140 Vde 2.5 V $N.$ A. 40.15 -160 Vde 5.0 V 40.15 40.15 14 12.5 V rms 2.5 V 40.15 14 12.5 V rms 5.0 V 40.15 14 12.5 V rms 5.0 V 40.15 14 12.5 V rms 5.0 V 40.15 15 0 V 2.5 V $+1.9445$ 40.15 15 0 V 2.5 V $+.01$		-30 Vdc	5.0 V		±0.15
4395 Vdc 5.0 V 40.15 12 420 Vdc 0 V 40.15 12 4240 Vdc 2.5 V $N. \text{ A}.$ 40.15 12 4260 Vdc 5.0 V 40.15 4260 Vdc 5.0 V 40.15 13 -120 Vdc 0 V 40.15 13 -140 Vdc 2.5 V $N. \text{ A}.$ 40.15 13 -140 Vdc 2.5 V $N. \text{ A}.$ 40.15 14 12.5 V rms 2.5 V 40.15 40.15 14 12.5 V rms 2.5 V 2.5 V 0.15 14 12.5 V rms 5.0 V 0.15 0.15 $14C$ $3ump \text{ 6d to } 87$ $Power \text{ Transfer}$ $\mathcal{E} \text{ F} \text{ W}$ $Verify$ 15 0 V 2.5 V $+1.9445$ 40.15 15 0 V 2.5 V $+0.19$ 40.15 10 Vdc 5.0 V $+0.19$ 40.15		+295 Vdc	0 V	·	±0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11		2.5 V	N.A	±0.15
12 $+240 \text{ Vdc}$ 2.5 V N.A. ± 0.15 $+260 \text{ Vdc}$ 5.0 V ± 0.15 13 -120 Vdc 0 V ± 0.15 13 -140 Vdc 2.5 V N.A. ± 0.15 13 -140 Vdc 2.5 V N.A. ± 0.15 -140 Vdc 2.5 V N.A. ± 0.15 -160 Vdc 5.0 V ± 0.15 ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 14C $3ump 56 \text{ to } 87$ $power \text{ Transfer}$ $\notin F. \omega$ $Verify$ 15 0 V 2.5 V ± 1.9445 ± 0.15 15 0 V 2.5 V ± 1.9445 ± 0.15 15 0 V 0 V $\pm .019$ ± 0.15	· · ·	+395 Vdc	5.0 V		±0.15
$+260 \text{ Vdc}$ 5.0 V ± 0.15 -120 Vdc 0 V 40.15 13 -140 Vdc 2.5 V $N \cdot A.$ -140 Vdc 2.5 V $N \cdot A.$ -160 Vdc 5.0 V 40.15 -160 Vdc 5.0 V 40.15 0 V 0 V 40.15 14 12.5 V rms 2.5 V 25 V rms 5.0 V 40.15 25 V rms 5.0 V 20.15 14 12.5 V rms 2.5 V 0.15 14 12.5 V rms 5.0 V 0.15 140 Vdc 0 V 40.15 40.15 15 0 V 2.5 V 40.15 15 0 V 2.5 V 40.15 15 0 V 2.5 V 40.15 0 V 0 V 40.15 40.15		+220 Vdc	0 V		±0.15
4260 Vde 5.0 V 40.15 13 -120 Vde 0 V $N.A.$ 40.15 13 -140 Vde 2.5 V $N.A.$ 40.15 -160 Vde 5.0 V 40.15 -160 Vde 5.0 V 40.15 14 $12.5 \text{ V} \text{ rms}$ 2.5 V $25 \text{ V} \text{ rms}$ 2.5 V 20.15 $25 \text{ V} \text{ rms}$ 5.0 V 0.15 $14C$ Jump 56 to \$7Power Transfer $\mathbb{E} \text{ F} \cdot \mathcal{W}$ $14C$ Jump 56 to \$7Power Transfer $\mathbb{E} \text{ F} \cdot \mathcal{W}$ 15 0 V 2.5 V 40.15 10 Vde 5.0 V 40.15 40.15 40.15 40.15	12	+240 Vdc	2.5 V	N.A.	· ±0, 15
13 -140 Vde 2.5 V N.A. ± 0.15 $-160 Vde$ $5.0 V$ ± 0.15 0 V 0 V $+ . 017$ ± 0.15 14 12.5 V rms 2.5 V $+ . 017$ ± 0.15 14 12.5 V rms 2.5 V -0.15 ± 0.15 14 12.5 V rms 2.5 V -0.15 ± 0.15 14 12.5 V rms 2.5 V -0.15 ± 0.15 15 0 V $2.5 V$ -0.15 ± 0.15 16 Jump 56 to \$7 Power Transfer $E F_{-} UU$ Verify 15 $0 V$ $2.5 V$ $+ 1.9445$ ± 0.15 15 $0 V$ $2.5 V$ $+ 1.9445$ ± 0.15 $0 V$ $0 V$ $+ .019$ ± 0.15		+260 Vdc	5.0 V		±0,15
13 -140 Vie 2.3 V 40.15 -160 Vie 5.0 V $+$. 017 ± 0.15 14 12.5 V rms 2.3 V ± 0.17 ± 0.15 14 12.5 V rms 2.3 V ± 0.17 ± 0.15 14 12.5 V rms 2.5 V ± 0.15 ± 0.15 14 12.5 V rms 5.0 V 0.15 ± 0.15 14C Jump 56 to \$7 Power Transfer $E F \cup U$ Verify 15 0 V 2.5 V ± 1.945 ± 0.15 15 0 V 2.5 V ± 1.945 ± 0.15 15 0 V 2.5 V ± 1.945 ± 0.15 10 Vde 0 V $\pm .019$ ± 0.15		-120 Vdc	0 V		40.15
-160 Vdc 5.0 V 40.15 0 V 0 V $+ 017$ 40.15 14 12.5 V rms 2.5 V 20.15 25 V rms 5.0 V 0.15 $14C$ Jump 56 to \$7 Power Transfer $\mathbb{E} \text{ F} \text{ W}$ Verify $14C$ Jump 56 to \$7 Power Transfer $\mathbb{E} \text{ F} \text{ W}$ Verify 15 0 V 2.5 V $+ 1.945$ 40.15 15 0 V 2.5 V $+ 1.945$ 40.15 10 Vdc 5.0 V $+ 0.19$ 40.15	13	-140 Vdc	2,5 V	N.A.	±0.15
$0 V$ $0 V$ $+ .017$ ± 0.15 1412.5 V rms2.5 V ± 0.15 25 V rms5.0 V 0.15 14CJump 56 to 87Power Transfer $\overline{EF.W}$ 14CJump 56 to 87Power Transfer $\overline{EF.W}$ 15 $0 V$ ± 1.945 ± 0.15 15 $0 V$ $2.5 V$ ± 1.945 15 $0 V$ $2.5 V$ ± 1.945 15 $0 V$ $0 V$ ± 0.15 16 Vdc $5.0 V$ ± 0.19 17 ± 0.15 ± 0.15 18 $0 V$ $0 V$ 19 ± 0.15		-160 Vdc	5.0 V	surface and the set of the second	±0.15
25 V rms 5.0 V 0.15 14C Jump 56 to \$7 Power Transfer $\mathbb{E} \mathbb{F} \cdot \mathbb{W}$ Verify +10 Vde 0 V ±0.15 ±0.15 15 0 V 2.5 V + 1.945 ±0.15 -10 Vde 5.0 V ±0.15 ±0.15 0 V 0 V ±0.15 ±0.15		0 1	1	+.017	±0,15
25 V rms 5.0 V 0.15 14C Jump 56 to 87 Power Transfer $\overline{EF.W}$ Verify 14C Jump 56 to 87 Power Transfer $\overline{EF.W}$ Verify 15 0 V 2.5 V ± 1.945 ± 0.15 15 0 V 2.5 V ± 1.945 ± 0.15 10 Vde 5.0 V ± 0.1945 ± 0.15 0 V 0 V $\pm .019$ ± 0.13	14	12.5 V rms	2.5 V	· · · · ·	20.15
14C Jump 56 to 87 Power Transfer $E F . \omega$ Verify +10 Vdc 0 V ±0.15 15 0 V 2.5 V + 1.945 ±0.15 -10 Vdc 5.0 V ±0.15 ±0.15 0 V 0 V ±0.15 ±0.15					0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14C	and the second s	Power Transfer	EFW	Verify
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+10 Vde	0 V		±0.15
0 V 0 V + .019 ±0.13	15	0 V	2.5 V	+ 1.945	+0.15
		-10 Vde	5. 0 V		20.15
10.15		0 5	0 V	+.019	#0.13 /
16 12.3 40 2.3 4	16	42. 5 Vde	2. 5 V		20.15 ALA
5.0 Vde 5.0 V ±0.15		5.0 Vde	5.0 V	1	±0.15

A 13923

	80. FMT-667 80. 102		TESTED BY E.F.	white
) . o . inc	-20% 500	AIM - 4F/4G DAT	A SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vde)
16(1)	+28 V pulse	+ pulse	N/A	Verify
16(2)	28 V interrupt	+ pulse	N/A	Verify
16(3)	+5 V pulse	+ pulse	NA	Verify
	ov	0 V	+.018	±0.15
17	+25 Vde	2.5 V		±0.15 V/H
	+50 Vde	5.0 V		±0.15
	ov	0 V	+.015	40.15
18	+25 Vdc	2.5 V		±0.15
	+50 Vde	5.0 V		±0.15
	0 V	0 V	+.014	±0.15
19	20 V rms	2.5 V		±0.15
	40 V rms	5.0 V		±0.15 N/H
A1-K1	28 V off	Relays closed	N/A	Verify
and K2	2S V on	Relays closed	NI4	Verify
5 V	• N/A	J1-43, 44, 45 = 5 V	EFW	Verify
	0 V	0 V	+.017	±0.15 /
20	+2, 5 Vdc	2,5 V		±0.15 N/A
	+5.0 Vdc	5.0 V		±0,15
	ov	0 V	1 217	±0,15
21	+2.5 Vdc	2,5 V	4.017	±0,15
	- 5. 0 Vdc	5, 0 V		#0,15
	0.5	0 V	+.023	±0.15
22	25 V rms	2.5 V	+.025	±0.15 1/1
	50 V rms	5.0 V		±0.15 N/A.
		CIZE LOSSE LESS	10100000000	
		SIZE CODE ICLAT		1
		A 1392	5 0	1000500
		1211E II)-10	STELL CE

•			7	
	ю. <u>FMT-667</u> ю. <u>102</u>		TESTED BY E.F. DATE :	white 12, 24,1972
During	-zoe Sool	AIM - 4F/4G D.	ATA SHEET	۱
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
23	85.35 22.00	0 V 2.5 V 5.0 V	NA	±0.15 ±0.15 N/A ±0.15
24	+5 Vde 0 V -5 Vde	0 V 2.5 V 5.0 V	+ 3.729	+0.15 +0.15 +0.15
25	+5 Vdc 0 V -5 Vdc	0 V 2.5 V 5.0 V	+ 3.729	±0.15 ±0.15 ±0.15
26	0 V 1 V rms 2 V rms	0 V 2.5 V 5.0 V	+.017	±0.15 ±0.15 ±0.15

*The data deleted from this block, when combined with certain data from other sources, could be developed into classified information. .. .

.

. .

•

5.0 V

2 V rms

. . . -

SIZE | Level Level 1.0. | Duraning 10. 1.1.1 13923 C100,520 11 I CHEET C.**1F in GF

MODEL NO. FMT-667		TESTED BY E F. White		
SERIAL NO. 102		DATE: MAR. 25, 1972		
+85° (Sock	AIM - 4F/4G DA	•	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
1	0 Vdc	0 V	+.018	±0.15 //
	-5 Vdc	2.5 V		±0.15
	-10 Vdc	5.0 V		±0.15
2	0 V	• 0 V .		±0,1 5
	30 V p-p	2.5 V	+ 2.512	±0.15
	60 V p-p	5.0 V	Y # 3	±0.15
3,	+25 Vdc	0 V .		±0,15
	ov	2,5 V	+2.628	±0,15
	-25 Vde	5.0 V		±0.15
4	+25 Vdc	0 V		±0,15
	o v	2.5 V	+ 2.746	±0.15
	-25 Vdc	5.0 V		±0,15
5	+120 Vdc	. 0 V .		±0.15
	ov	2.5 V	+2.554	±0.15
		5.0 V		±0.15
6	+120 Vdc	o V		±0.1 5
	. 0 V	2.5 V	+ 2.499	±0.1 5
	-120 Vdc	5.0 V	i	±0.15
7	+30 Vdc	0. V		±0.15
	. 0 V	2.5 V	+2.599	±0.15
	-30 Vdc	5.0 V	· · ·	±0.15
• 8	+30 Vdc	• • • •	· · · · · · · · · · · · · · · · · · ·	±0,15
	ov	2.5 V	+ 2.600	±0.15 NA.
	-30 Vdc	5.0 V		±0.15
			· •	
		SIZE CODE IDEN	T NO. DRAWING NO.	REV
		A 1392		000530
		SCALE	D-12	SHEET 37 OF
). <u>FMT-667</u>). <u>IOZ</u>		TESTED BY <u>E.E.</u> DATE <u>Mar</u>	uhite. 25, 1972
---------	------------------------------------	----------------	--	--------------------
+ 85°	Soak	AIM - 4F/4G DA	TA SHEET	`
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	+30 Vdc	0 V	0 = 00	±0.15
9	0 V	2.5 V	+ 2.599	±0.15
	-30 Vdc	5.0 V		±0.15
	+30 Vdc	0 V	1	±0.15
10	0 V	2.5 V	+ 2.599	±0.15
	-30 Vdc 5.0 V	±0.15		
	+295 Vdc	0 V .	1	±0.15
11	+345 Vdc	2.5 V	N/A	±0.15
	+395 Vdc	5.0 V		±0.15
·	+220 Vdc	0 V		±0,15
12	+240 Vdc	2.5 V	N/A	±0,15
	+260 Vdc	5.0 V		±0.15
	-120 Vdc	0 V		±0.15
13	-140 Vdc	2.5 V	N/A	±0.15 NA
	-160 Vdc	5.0 V		±0.15
	0 V	0 V	+.016	±0.15
14	12.5 V rms	2.5 V		±0.15 N/H
	25 V rms	5.0 V		0.15
14C	Jump 86 to 87	Power Transfer	E.F.W	Verify
	+10 Vdc	0 V		±0.15
15	0 V	. 2.5 V	+1.891	±0.15
	-10 Vde	5.0 V		#0.15
	0 V	0 V	+ .018	±0.15 N/1
16	+2. 5 Vdc	2.5 V		±0.15 //
	+5.0 Vde	5.0 V		±0.15
		SIZE CODE IDEI	NT NO. DRAWING NO.	
	teranta.	A 139	23	61000530

MODEL N	0. FMT-667		TESTED BY E.F	. white
	0. 102		DATE MAG	2. 25, 1972
+ 85°	Soak	AIM - 4F/4G DAT	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
16(1)	+28 V pulse	+ pulse	N/A	Verify
16(2)	28 V interrupt	+ pulse	N/A	Verify
16(3)	+5 V pulse	+ pulse	NIA	Verify
	0 V	· 0 V	+.015	±0.15 //
17	+25 Vdc	2.5 V		±0.15 N/A
	+50 Vdc	5.0 V		±0.15
	. o V	0 V	+.015	±0;15
18	+25 Vdc	2.5 V		±0.15
	+50 Vdc	5.0 V		±0.15
	0 V	0 V	+.009	±0.15
19	20 V rms	2.5 V		. ±0.15 A/A
•	40 V rms	5.0 V		±0.15
A1-K1	28 V off	Relays closed	N/A	Verify :
and K2	28 V on	Relays closed	N/A	Verify
5 V	• N/A	J1-43, 44, 45 = 5 V	E.F.W.	Verify
: · · ·	.:0 V	0 V	+.012	±0.15
20	+2.5 Vdc	2.5 V		±0.15 N/A
	+5.0 Vdc	5.0 V		±0.15
	ov	0 V	+.013	±0.15
21	+2.5 Vdc	2.5 V		±0.15
	+5.0 Vdc	5.0 V		±0.15
	o v	0 V	+.016	±0.15
22	25 V rms.	2.5 V		±0.15 NA.
• .	. 50 V rms	5.0 V		±0.15
			and the second second	
		SIZE CODE IDENT		REV
	aixanase .	A 1392	.3 6	1000530

MODEL NO.	FMT-667		TESTED BY E.F.	white	
SERIAL NO.	_102		DATE MA	r. 25, 1972	
+85 2	inak .	AIM - 4F/4G DA	TA SHEET	• · · · · · · · · · · · · · · · · · · ·	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)	
		0 V	N/A	±0.15	1.
23	•	2.5 V		±0.15 N/	4
		5.0 V	· · · · · · · · · · · · · · · · ·	±0.15	-
	+5 Vdc	0 V	•	±0.15	1
24	o v	2.5 V	+ 3.730	±0.15	
	-5 Vdc	5.0 V		±0.15	
	+5 Vdc	0 V		±0.15	
25	ov	2.5 V	+ 3.730	±0.15	
	-5 Vdc	5.0 V		±0.15	
	o v	0 V .	+.016	±0.15	1
26	1 V rms	2.5 V		±0.15 N	A
	2 V rms	5.0 V		±0.15	
*The data de could be de	leted from this b veloped into clas	block, when combin sified informatio	ed with certain data fr n.	om other sources,	•
· ·		· · · _	· · · · · · · · · · · · · · · · · · ·		
			· · · ·		
	•				
				· · · · · ·	
			····		
		SIZE CODE IDEN	T NO. DRAWING NO.		R

	D. <u>FMT-667</u> D. <u>102</u>		TESTED BY E.F.	
Temp	Shock -2	AIM - 4F/4G DA	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL./TM (Vdc)
23	*	0 V 2.5 V 5.0 V	N/A	±0.15 ±0.15 N/A ±0.15
24	+5 Vdc 0 V -5 Vdc	0 V 2.5 V 5.0 V	+ 3.729	±0.15 ±0.15 ±0.15
25	+5 Vdc 0 V -5 Vdc	0 V 2.5 V 5.0 V	+ 3.729	#0.15 #0.15 #0.15
26	0 V 1 V rms 2 V rms	0 V 2.5 V 5.0 V	+ .018	± 0.15 ± 0.15 ± 0.15
*The data d could be d	deleted from this developed into cla	block, when combin assified informatic	ed with certain data fr n.	rom other sources,

SIZE	CODE IDENT NO.	DRAWING NO.			REV
Α	13923		61009530	÷	·
SCALE	D-1	6	SHEET	40 OF	-

MODEL N	O FMT-667		TESTED BY E.F	white
SERIAL N	0. 102		DATE MAR	25, 1972
	and a second		•	
Emp SI	rack - 203	AIM - 4F/4G D.	ATA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	0 Vdc	0 V	+.022	±0.15
1	-5 Vdc	2.5 V		±0.15 N/
	-10 Vdc	5.0 V	· · · · · · · · · · · · · · · · · · ·	±0.15
	0 V	• 0 V .		±0.1 5
2	30 V p-p	2.5 V	+2.523	±0.15
	60 V p-p	5.0 V		±0.15
	+25 Vdc	0 V .		±0.15
3.	0 V	2,5 V	+2.639	±0,15
	-25 Vde	5.0 V	147 11 11 11 11 11 11 11 11 11 11 11 11 11	±0.15
	+25 Vdc	0 V		±0,15
4	0 V	2.5 V	+2.758	±0.15
	-25 Vde	5.0 V	the second at the second	±0,15
	+120 Vdc	. 0 V		±0.15
5	0 V	2.5 V	+ 2.562	±0.15
		5.0 V		+0.15
	+120 Vdc	0 V		±0.15
6	. 0 V	2.5 V	+ 2.507	±0.15
	-120 Vdc	5.0 V		40.15
	+30 Vde	0 V		±0.15
7	0 V	. 2.5 V	+ 2.608	±0.15
	-30 Vde	5.0 V		±0.15
	+30 \'dc	0 V		±0.15
. 8	ov	2.5 V	+2.607	±0.15 N
	-30 Vdc	5.0 V		±0.15
		SIZE CODE IDEN		
		A 139	23	1000530

-1-

Π. ..

MODEL N	O FMT-667		TESTED BY E.E.	white
	0. 102			n 25, 1972
	-		•	,
-	Shart -2	o AIM - 4F/4G DA	TA SHEET	
HANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	+30 Vdc	0 V		+0.15 //
9	ov	2.5 V	+2.601	±0.15 N/h
	-30 Vdc	5.0 V		±0.15 /H
	+30 Vdc	• 0 V		±0.15
10	ov	2.5 V	+ 2.603	±0.15
	-30 Vdc	5.0 V		±0.15
	+295 Vdc	0 V ·		±0.15
11	+345 Vdc	2.5 V	N/A	±0.15
•	+395 Vdc	5.0 V		±0.15
	+220 Vde	0 V		±0.15
12	+240 Vdc	2.5 V	N/A ·	±0.15
	+260 Vde	5.0 V	1	±0.15
	-120 Vdc	. 0 V		±0.15
13	-140 Vdc	2.5 V	N/A	±0.15
	-160 Vde	5.0 V	1	±0.15
	0 V	0 V	+.017	±0.15
14	12. 5. V rms	2.5 V		±0.15
	25 V rms	5.0 V		0.15
14C	Jump 86 to 87	Power Transfer	E.F.W.	Verify
	+10 Vdc	0 V	1	±0.15
15	0 V	2.5 V	+ 1.942	±0.15 . N/H
	-10 Vdc	5.0 V		±0.15
	0 V	0 V	+.019	±0.15
16	+2.5 Vde	2.5 V		±0.15 N/H .
	+5.0 Vdc	5.0 V	1.,	±0.15
		SIZE CODE IDEN		. REV
		A 1392	23	51000530

MODEL N	O. FMT-667		TESTED BY E.E.	white
	0. 102		TESTED BY E.F.	. 25. 1972
				,
Temp	Shock - 2	AIM - 4F/4G DAT	A SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
16(1)	+28 V pulse	+ pulse	N/A	Verify
16(2)	28 V interrupt	+ pulse	N/A	Verify
16(3)	+5 V pulse	+ pulse	NIA	Verify
	0 V	• 0 V	+.018	±0.15 //
17	+25 Vdc	2.5 V		±0.15 N
	+50 Vdc	5.0 V		±0.15
	, o v	0 V ·	+.015	±0:15
18	+25 Vdc	2.5 V		±0.15
•	+50 Vdc	5.0 V		±0.15
	ov	0 V .	+.014	±0.15
19	20 V rms	2.5 V		. ±0.15
*	40 V rms	5.0 V		±0.15
A1-K1	28 V off	Relays closed	N/A	Verify
and K2	28 V on	Relays closed	'NA	Verify
5 V	• N/A	J1-43, 44, 45 = 5 V	E.F.W.	Verify
:	. o V	0 V	+.017	±0.15
20	+2.5 Vdc	2.5 V	•	±0.15 ±0.15
	+5.0 Vdc	5.0 V		±0.15
	0 V	0 V	+.017	±0.15
21	+2.5 Vdc	2.5 V		±0.15
	+5.0 Vdc	· 5.0 V		±0.15
	0 V	0 V	+.023	±0.15
22	25 V rms	2.5 V		±0.15
	50 V rms	5.0 V		±0.15
		SIZE CODE IDENT		
	۰.	A 1392	.3 61	1000530
		SCALE	D-19	SHEET 39 OF

NODEL NO. FMT-667 TESTED BY E.C. White SERIAL NO. /02 DATE Hac 30, 1972 DATE DATE Hac DATE NOUT/READ TOL/TM (Vde) 1 -5 Vde 2.5 V 40.15 2 30 V p-p 2.5 V 40.15 425 Vde 0 V 40.15 40 V 2.5 V + 2.769 40.15 -120 Vde 0 V 4120 Vde	MODELN	O ENT-667		TESTED BY E.F.	ultite
Ferre Shock $+85^{\circ}$ AIM - 4F/4G DATA SHEET CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM (Vde) 1 -5 Vde 2.5 V ± 0.15 ± 0.15 1 -5 Vde 2.5 V ± 0.15 40.15 2 30 V p-p 2.5 V ± 0.15 40.15 2 30 V p-p 2.5 V $\pm 2.5 33$ ± 0.15 4 0 V 2.5 V $\pm 2.5 33$ ± 0.15 4 0 V 2.5 V $\pm 2.5 33$ ± 0.15 4 0 V 2.5 V $\pm 2.5 33$ ± 0.15 4 0 V 2.5 V $\pm 2.5 49$ ± 0.15 4 0 V 2.5 V $\pm 2.7 49$ ± 0.15 4 0 V 2.5 V $\pm 2.7 49$ ± 0.15 4 0 V 2.5 V $\pm 2.7 49$ ± 0.15 4 0 V 2.5 V $\pm 2.7 49$ ± 0.15 5 0 V 2.5 V $\pm 2.7 49$ ± 0.15 <			and a start of		
CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM (Vde) 0 Vde 0 V $\# \cdot 0.46$ $\# 0.15$ $\# 0.15$ 1 -5 Vde 2.5 V $\# 0.46$ $\# 0.15$ 2 30 V p-p 2.5 V $\# 2.5$ S3 $\# 0.15$ 2 30 V p-p 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ G8 $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.576$ $\# 0.15$ 5 0 V 2.5 V $\# 2.576$ $\# 0.15$ 6 0 V	SERIAL N	0		DATE. ITAL	<u></u>
CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM (Vde) 0 Vde 0 V $\# \cdot 0.46$ $\# 0.15$ $\# 0.15$ 1 -5 Vde 2.5 V $\# 0.46$ $\# 0.15$ 2 30 V p-p 2.5 V $\# 2.5$ S3 $\# 0.15$ 2 30 V p-p 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ S3 $\# 0.15$ 4 0 V 2.5 V $\# 2.5$ G8 $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.768$ $\# 0.15$ 4 0 V 2.5 V $\# 2.576$ $\# 0.15$ 5 0 V 2.5 V $\# 2.576$ $\# 0.15$ 6 0 V	emp	Shock +8	S'C AIM - 4F/4G D.	TA SHEET	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					TOL/TM (Vde)
-10 Vde 5.0 V ± 0.15 0 V 0 V ± 0.15 2 30 V p-p 2.5 V $\pm 2.5 33$ ± 0.15 60 V p-p 5.0 V ± 0.15 ± 0.15 $\pm 25 Vde$ 0 V $\pm 2.5 33$ ± 0.15 $\pm 25 Vde$ 0 V ± 0.15 ± 0.15 $\pm 25 Vde$ 0 V $\pm 2.5 V$ ± 2.649 ± 0.15 $\pm 25 Vde$ 0 V ± 2.763 ± 0.15 $\pm 25 Vde$ 0 V ± 2.763 ± 0.15 $\pm 25 Vde$ 0 V ± 2.763 ± 0.15 $\pm 25 Vde$ 0 V ± 2.763 ± 0.15 $\pm 25 Vde$ 0 V ± 2.763 ± 0.15 $\pm 25 Vde$ 0 V ± 2.7763 ± 0.15 $\pm 120 Vde$ 0 V ± 2.576 ± 0.15 $\pm 120 Vde$ 0 V ± 2.576 ± 0.15 $\pm 120 Vde$ 0 V ± 2.574 ± 0.15 $\pm 120 Vde$ 0 V ± 2.574 ± 0.15 <td></td> <td>0 Vdc</td> <td>0 V</td> <td>+.046</td> <td>±0.15 /</td>		0 Vdc	0 V	+.046	±0.15 /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-5 Vde	2,5 V		±0.15 N//
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-10 Vde	5.0 V		±0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 V	0 V		±0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	30 V p-p	2,5 V	+2.533	±0.15
$+25 \text{ Vde}$ 0 V ± 0.15 $3.$ 0 V 2.5 V ± 2.649 ± 0.15 -25 Vde 5.0 V ± 0.15 ± 0.15 4 0 V 2.5 V ± 2.769 ± 0.15 4 0 V 2.5 V ± 2.769 ± 0.15 -25 Vde 5.0 V ± 2.769 ± 0.15 -25 Vde 5.0 V ± 2.769 ± 0.15 -25 Vde 5.0 V ± 2.769 ± 0.15 5 0 V 2.5 V ± 2.769 ± 0.15 5 0 V 2.5 V ± 2.769 ± 0.15 5 0 V 2.5 V ± 2.576 ± 0.15 -120 Vde 5.0 V ± 2.521 ± 0.15 430 Vde 0 V ± 2.522 ± 0.15 7 0 V 2.5 V ± 2.622 ± 0.15 7 0 V 2.5 V ± 2.622 ± 0.15 8 0 V 2.5 V		60 V p-p	5.0 V		±0.15
-25 Vde 5.0 V ± 0.15 425 Vde 0 V ± 0.15 $40,15$ ± 0.15 $40,15$ ± 0.15 -25 Vde 5.0 V ± 0.15 -25 Vde 5.0 V ± 0.15 -25 Vde 5.0 V ± 0.15 $+120 \text{ Vde}$ 0 V ± 0.15 $5 0 \text{ V}$ 2.5 V ± 2.576 ± 0.15 -120 Vde 5.0 V ± 0.15 ± 0.15 $6 0 \text{ V}$ 2.5 V ± 2.576 ± 0.15 $6 0 \text{ V}$ 2.5 V ± 2.576 ± 0.15 $7 0 \text{ V}$ 2.5 V $\pm 2.5 \text{ Z}$ ± 0.15 $7 0 \text{ V}$ 2.5 V $\pm 2.5 \text{ Z}$ ± 0.15 -30 Vde 5.0 V ± 0.15 ± 0.15 430 Vde 0 V ± 0.15 ± 0.15 $8 0 \text{ V}$ 2.5 V $\pm 2.6 \text{ Z}$ ± 0.15			0 V		±0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.	ov	2,5 V	+2.649	±0,15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	-25 Vde	5.0 V		±0.15
-25 Vdc 5.0 V ± 0.15 +120 Vdc 0 V ± 0.15 5 0 V $2.5 V$ ± 2.576 5 0 V $2.5 V$ ± 2.576 5 0 V $2.5 V$ ± 2.576 $-120 Vdc$ $5.0 V$ ± 0.15 $+120 Vdc$ 0 V ± 0.15 $-120 Vdc$ $0 V$ ± 0.15 $-120 Vdc$ $5.0 V$ ± 0.15 7 $0 V$ $2.5 V$ $\pm 2.5 Z^2$ 40.15 ± 0.15 ± 0.15 $-30 Vdc$ $5.0 V$ ± 0.15 $430 Vdc$ $0 V$ ± 0.15 8 $0 V$ $2.5 V$ $\pm 2.6 Z^2$ ± 0.15		+25 Vde	0 V		±0,15
$+120 \text{ Vde}$ 0 V ± 0.15 5 0 V 2.5 V ± 2.576 ± 0.15 -120 Vde 5.0 V ± 0.15 ± 0.15 6 0 V ± 0.15 ± 0.15 6 0 V ± 0.15 ± 0.15 -120 Vde 0 V $\pm 2.5 \text{ Z}$ ± 0.15 -120 Vde 5.0 V $\pm 2.5 \text{ Z}$ ± 0.15 -120 Vde 5.0 V $\pm 2.5 \text{ Z}$ ± 0.15 7 0 V 2.5 V $\pm 2.5 \text{ Z}$ ± 0.15 7 0 V 2.5 V $\pm 2.5 \text{ Z}$ ± 0.15 8 0 V 2.5 V $\pm 2.6 \text{ ZZ}$ ± 0.15 8 0 V 2.5 V $\pm 2.6 \text{ ZZ}$ ± 0.15	4	o v	2.5 V	+2.768	±0.15
5 $0 V$ $2.5 V$ $+2.576$ ± 0.15 $-120 Vdc$ $5.0 V$ ± 0.15 $4120 Vdc$ $0 V$ ± 0.15 6 $0 V$ $2.5 V$ $+2.576$ ± 0.15 6 $0 V$ $2.5 V$ $+2.576$ ± 0.15 6 $0 V$ $2.5 V$ $+2.576$ ± 0.15 6 $0 V$ $2.5 V$ $+2.521$ ± 0.15 7 $0 V$ $2.5 V$ $+2.622$ ± 0.15 7 $0 V$ $2.5 V$ $+2.622$ ± 0.15 8 $0 V$ $2.5 V$ $+2.622$ ± 0.15		-25 Vdc	5.0 V		±0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+120 Vde	. 0 V		±0.15
4120 Vdc 0 V ± 0.15 6 0 V 2.5 V ± 2.5 Z1 ± 0.15 -120 Vdc 5.0 V ± 0.15 ± 0.15 $+30$ Vdc 0 V ± 2.5 Z1 ± 0.15 7 0 V 2.5 V ± 2.5 Z2 ± 0.15 7 0 V 2.5 V ± 2.5 Z2 ± 0.15 -30 Vdc 5.0 V ± 2.5 Z2 ± 0.15 -30 Vdc 0 V ± 0.15 ± 0.15 8 0 V 2.5 V ± 2.6 Z2 ± 0.15	5	ov	2.5 V	+2.576	±0.15
6 0 V $2.5 V$ $+2.5 21$ ± 0.15 $-120 Vdc$ $5.0 V$ ± 0.15 $+30 Vdc$ 0 V $\pm 2.5 V$ $\pm 2.5 Z$ 7 0 V $2.5 V$ $\pm 2.5 Z$ ± 0.15 7 0 V $2.5 V$ $\pm 2.5 Z$ ± 0.15 7 0 V $2.5 V$ $\pm 2.5 Z$ ± 0.15 $-30 Vdc$ $5.0 V$ $\pm 2.5 Z$ ± 0.15 8 0 V $2.5 V$ $\pm 2.6 ZZ$ ± 0.15 8 0 V $2.5 V$ $\pm 2.6 ZZ$ ± 0.15			5.0 V		±0.15
-120 Vdc 5.0 V ± 0.15 -120 Vdc 0 V ± 0.15 $+30$ Vdc 0 V ± 2.5 V ± 2.5 Z -30 Vdc 5.0 V ± 2.5 Z ± 0.15 $+30$ Vdc 0 V ± 2.5 Z ± 0.15 $+30$ Vdc 0 V ± 2.5 Z ± 0.15 8 0 V 2.5 V $+2.6$ ZZ ± 0.15 40.15 ± 0.15 ± 0.15 40.15 ± 0.15 40.15 ± 0.15 10.15 ± 0.15		+120 Vdc	0 V		±0.15
$+30 \text{ Vdc}$ 0 V ± 0.15 7 0 V 2.5 V ± 2.622 ± 0.15 -30 Vdc 5.0 V ± 0.15 ± 0.15 $+30 \text{ Vdc}$ 0 V ± 0.15 ± 0.15 8 0 V 2.5 V ± 2.622 ± 0.15 8 0 V 2.5 V ± 2.622 ± 0.15	6.	. 0 V	2.5 V	+2,521	±0.15
7 $0 V$ $2.5 V$ $+2.622$ ± 0.15 $-30 Vdc$ $5.0 V$ ± 0.15 $+30 Vdc$ $0 V$ ± 0.15 8 $0 V$ $2.5 V$ $+2.622$ ± 0.15 40.15 ± 0.15 ± 0.15		-120 Vdc	5.0 V		±0.15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+30 Vdc	0 V		±0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	ov	2.5 V	+2.622	±0.15
8 OV 2.5V +2.622 ±0.15		-30 Vdc	5.0 V		±0.15
	1.4.1.1.1.	+30 Vdc	0 V		±0.15
-30 Vdc 5.0 V ±0.15	8	ov	2.5 V	+2.622	±0.15
· · · · · · · · · · · · · · · · · · ·		-30 Vdc	5.0 V		±0.15 1/17
SIZE CODE IDENT NO. DRAWING NO.					REV
A 13923 61000330			A 139	23 61	000530

MODEL N	O. FMT-667		TESTED BY E.F.	white
	0. 102		DATE MAR.	30 1972
			•	1
Tom	St. K is	5 CAIM - 4F/4G DA	TA SHEET	•
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	+30 Vdc	0 V		±0.15 //
9	ov	2.5 V	+ 2.621	±0.15 N/4
	-30 Vdc	5.0 V		±0.15
	+30 Vdc	0 V		±0.15
10	ov	2.5 V	+2.622	±0.15
10	-30 Vde	5.0 V		±0.15
	+295 Vdc	0 V		±0.15
11	+345 Vdc	2.5 V	N/A	±0.15
	+395 Vdc	5.0 V	1 1	±0.15
	+220 Vdc	0 V		±0.15
12	+240 Vdc	2.5 V	N/A	±0.15
	+260 Vdc	5.0 V	1 1/1 .	±0.15
	-120 Vdc	0 V	· · · ·	±0.15
13	-140 Vdc	2.5 V	N/A	±0.15
15	-140 Vdc	5.0 V		±0.15
	0 V .	0 V		±0.15 /
		2.5 V	+ 1.067	±0.15 A/A
14	12.5 V rms	5.0 V		0.15 N/A
14C	25 V rms Jump 86 to 87	Power Transfer	EFW	Verify
140	+10 Vdc	0 V		+0.15 /
15	0 V	2.5 V	+1.914	±0.15 N/H
15	-10 Vdc	5.0 V		±0.15
	0 V	0 V	+.037	±0.15
16	+2.5 Vdc	2, 5 V	17.051	±0.15 N/A
10	+2.0 Vdc	5.0 V		±0.15
	1 -0.0 100	<u> </u>		
		SIZE CODE IDEN	T NO. DRAWING NO.	
		1.1.000		
		A 1392		\$1000530
• •		SCALE	D-21	SHEET 38 OF

MODEL N	NO FMT-667		TESTED BY E.C	= white
SERIAL N	102_102	· · ·	DATE My	nr. 30, 1972
Temps	Shock +8	Se AIM - 4F/4G DAT	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vde)
16(1)	+28 V pulse	+ pulse	N/A	Verify
16(2)	28 V interrupt	+ pulse	NIA	Verify
16(3)	+5 V pulse	+ pulse	NIA	Verify
	0 V	· o V	+.041	±0.15
17	+25 Vdc	2.5 V		±0.15 ///
	+50 Vdc	5.0 V		±0.15
	0 V	o v`	+.040	±0;15 /
18	+25 Vdc	2.5 V		±0.15
•	+50 Vdc	5.0 V		±0.15
•	0 V	0 V .	+.035	±0.15
19	20 V rms	2.5 V		±0.15
	40 V rms	5.0 V		±0.15
A1-K1	28 V off	Relays closed	N/A	Verify
and K2	28 V on	Relays closed	N/A	Verify
5 V	- N/A	J1-43, 44, 45 = 5 V	É.F.W	Verify
: .	. 0 V	0 V	+.032	±0.15 /
20	+2.5 Vdc	2.5 V	•	±0.15 N/A
•	+5.0 Vdc	5.0 V		±0.15
	0 V	0 V	+.033	±0.15
21	+2.5 Vdc	2.5 V		±0.15
	+5.0 Vdc	5.0 V		±0.15
	0 V	0 V	+.043.	±0.15
22	25 V rms	2.5 V		±0.15 // / H.
	50 V rms	5.0 V		±0.15
		•		
		SIZE CODE IDENT	NO. DRAWING NO.	REV
		A 1392	3	61000530
• .				
	-	SCALE	D-22	SHEET no OF

			7	
MODEL NO	D. FMT-667		TESTED BY E.F	white
SERIAL NO	0. 102		DATE MAG	.30,1972
		•		
Temp S	hack +85	• AIM - 4F/4G DA	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
		0 V		±0.15 1/
23	•	2.5 V	N/A	±0.15 N/A
		5.0 V	· · · · · · · · · · · · · · · · · · ·	±0.15
	+5 Vdc	0 V		±0.15 /
24	ov	2.5 V	+ 3.754	±0.15
	-5 Vdc	5.0 V		±0.15
	+5 Vdc	0 V		±0.15
25	0 V	2.5 V	+ 3.753	±0.15
	-5 Vde	5.0 V		±0.15
	ov	0 V	+.048	±0.15
26	1 V rms	2.5 V		±0.15 N/A.
	2 V rms	5.0 V	×	±0.15

*The data deleted from this block, when combined with certain data from other sources, could be developed into classified information.

. . .

0.00

SCALE		D-23				SHEET	-10	OF	
A	139	23		•	61000	530			
SIZE	CODE IDEN	IT NO.	DRAWING	NO.					KEV

				2
MODELN	O. FMT-667	·	TESTED BY E.F	. White .
SERIAL N	0. 102		DATE MAR	. 30, 1972
Part En	viconments	AIM - 4F/4G D.4	TA SHEET	L
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	0 Vide	0 V .	+.046	±0.15
1	-5 Vdc	2.5 V	+.2.546	±0.15
	-10 Vdc	5.0 V	+5.043	±0.15
	0 5	0 V	OV	±0.15
2 .	30 У р-р	2.5 V	+ 2.500VPP	±0.15
	60 V p-p	5.0 V	+ 5.000 VPP	±0.15
	+25 Vdc	0 V	+.034	±0.15
3	0 V.	2.5 V	+ 2.522	±0,15
	-25 Vde	5.0 V	+5.003	±0.15 ·
	+25 Vdc	0 V	+.007	±0.15
. 4	0 V	2, 5 V	+ 2.493	±0.15
	-25 Vdc	5.0 V	+ 4.975	+0.15
	+120 Vdc	0 V .	+:022	±0.15
5	ov	2.5 V	+2.517	±0.15
•		5.0 V	+ 5.008	±0,15
• .*	+120 Vdc	0 V	+.025	±0.15
6	0 5	2.5 V	+ 2.518	±0.15
•••	-120 Vdc	5.0 V	+ 5.006	±0.15
	+30 Vdc	0 V	044	±0.15
7	ov	2.5 V	+2.507	±0.15
	-30 Vdc	5.0 V	+ 5.054	±0.13
	+30 Vdc	0 V .	046	±0.15
8	0.	2.5 V	+2.545	±0,15
	+20 Vez	5.0 V	+ 5.131	+0,15

MODEL NO. FMT-667 SERIAL NO. 102

Ð

E

TESTED BY_	E.F. White	
DATE	MAR. 30, 197	2
· ·		

Pet EUVICONMENTALAIM - 4F/4G DATA SHEET

	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
	+30 Vdc	0 V	059	±0.15
9	ov	2.5 V	+2.520	±0.15
	-30 Vdc	5.0 V	+5.090.	±0.15
	+30 Vdc	· 0 V	015	±0.15
10	0 V	2.5 V .	+2.545	±0.15
	-30 Vdc	5.0 V	+ 5.102	±0.15
	+295 Vdc	0 V ·	+. 027	±0.15
11	+345 Vdc	2.5 V .	+2.527	±0.15
	+395 Vdc	5.0 V	+ 5.023	±0.15
	+220 Vdc	0 V	+ .024	±0.15
12	+240 Vdc	2.5 V	+2.523	±0.15
	+260 Vdc	5.0 V	+5.027	±0.15
	-120 Vdc.	. o v .	+.084	±0.15
13	-140 Vdc .	2.5 V	+2.568	±0.15
· · · · · · · · · · · · · · · · · · ·		5.0 V	+ 5.051	±0.15
	0 V ·	0 V	+.030	±0.15
14	12.5 V rms	2.5 V	+2.534	±0.15
	25 V rms	5.0 V	+5.040	0.15
14C	Jump SG to S7	Power Transfer	E.F.W .	Verify
	+10 Vdc	o v	+ :011 .	±0.15
15	0 V .	. 2.5 V	+ 2.460	±0.15
	-10 Vdc	5.0 V	+ 4.980	±0.15
	ov	• • v	+.009	±0.15
- 16	+2. 5 Vdc	2.5 V	+2.503	±0.15
	+5.0 Vdc	5.0 V	+ 4.985	±0.15

MODEL N	O. FMT-667		TESTED BY E.F.	white
SERIAL NO. DL				R. 30, 1972
			· ·	
at En.	uronment	AIM - 4F/4G DAT	A SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
16(1)	+28 V pulse	+ pulse	E.F.W	Verify
16(2)	28 V interrupt	+ pulse	E.E.U	Verify
16(3)	+5 V pulse	+ pulse	E.E.W	Verify
	0 V	· 0 V	+.028	±0.1 5
17	+25 Vdc	2.5 V	+ 2,521	±0.15
	+50 Vdc	5.0 V	+5.012	±0.15
	. 0 V	0 V`	+.025	±0,15
18	+25 Vdc	2.5 V	+ 2.516	±0.15
•	+50 Vdc	5.0 V	+5:000	±0.15
•	0 V .	0 V	+.025	±0.1 5
19	20 V rms	2.5 V	+2.546	. ±0.15
•	40 V rms	5.0 V	+ 5.063	±0.15
A1-K1	28 V off	Relays closed	E.F.W	Verify '
and K2	28 V on	Relays closed	E.FW	Verify
5 V	- N/A	J1-43, 44, 45 = 5 V	E.F.W	Verify
	.:0 V.	0 V	+ .009	±0.15
20	+2. 5 Vde	2.5 V	+ 2.498	±0.1 5
1000	+5.0 Vde	5.0 V	+ 4.982	±0,15
	οv	. 0. V	+.010	±0.1 5
21	+2.5 Vdc	2.5 V	+ 2.499	±0.15
	+5.0 Vdc	. 5.0 V	+ 4.984	±0.1 5
	0 V	0 V.	+.034	±0.1 5
22	25 V rms	2, 5 V	+ 2.518	±0.1 5
•	50 V rms	5.0 V	+ 5.002	±0.15

•	SCALE	l2	3	SHEET	29 OF	
	A	13923		61000330	•	
	SIZE	CODE IDENT NO.	DRAWING NO.	, ,		EEV]

А

	D FMT-667 D しつこ	· · ·	TESTED BY EF DATE MAR	white
Bet Env	connental	AIM - 4F/4G DA	TA SHEET	
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
23	*	0 V 2.5 V 5.0 V	+ .004 + 2.486 + 4.963	±0.15 ±0.15 ±0.15
24	+5 Vdc 0 V -5 Vdc	0 V 2.5 V 5.0 V	+, 029 +2.5.14 +4.998	±0.15 ±0.15 ±0.15
25	.+5 Vdc 0 V -5 Vdc	0 V 2.5 V 5.0 V	+.021 +2.507 +4.989	±0.15 ±0.15 ±0.15
26	0 V 1 V rms 2 V rms	0 V 2.5 V 5.0 V	+. 052 +2.508 +5.005	±0.15 ±0.15 ±0.15

*The data deleted from this block, when combined with certain data from other sources, could be developed into classified information.

-

•	SCALE	r	-27	SHEET	10 OE	
1	Α	1392	3	61000530		• •
and the second sec	SIZE	COCE IDENT	NO. DRAWING NO.			REV

Para. 9.0 Data Sheets

ACCEPTANCE TEST RESULTS

lo

UHF TELEMETRY TRANSMITTER /202_ MODEL #T-105 (1) (2)

MANUFACTURED BY

Vector an AYDIN COMPANY Newtown, Pa.

	Pin Connections
Pin	Function
A or 1	+282
B or 2	mOOIN
C or 3	GND
Dor 4	GND
E or 5	
For 6	

DATA SHEET PAGE 1 of 5 SIZE CODE IDENT NO. DIDAWING NO. A 13923 SCALE SCALE SHEET 13 OF 11 CAL D-28

V Ser # 196Date 2/16/7 = 10Tested By μm Test Equipt. Calib. _____ (Stamp Acc.) 3.1 4.0 Visual/Mechanical (Stamp Acc.) Weight 12 . Ow (Limit /6 Oz.) 6.0 TEST RESULTS Modulation Characteristics 6.1 6.1.1 **Deviation Sensitivity** Vrms/ 28-0 kHz Deviation 6.1.1.3 Limit: / Vrms ±10%/ 28.3 kHz Deviation 6.1.2 Modulation Freq. Response Mod. Freq. IIz Response dB Mod. Freq. Hz Response dB -. / 10 6 100K -1 0 100 300K 0 1K 500K 0 10K 700K 0 50K **1**M 300 KHZ LIMIT: ± 1.0 dB FROM D-CHz TO 6.1.3 MODULATION DISTORTION Mod. Freq. Hz Distortion 7 1.1 100 1.1 1K 1.2 10K 100K LIMIT: 2-0 Gper = 100 kHz DEVIATION ٠. SIZE CODE IDENT NO. | DRAWING NO. 13923 A 62003015 SCALE SHEET 11 OF 10.13/0.5.1 9/07 1 D-29

1.

1

Π

Π

1

1

1

-

1

2

Π

 \square

 \square

1

1

I

		Ser # 196 Date $2/16/72$ Tested By $91/2$	_
6.1.4	Modulation Input Impedance		
	>20 Kohms Limit:	26 K ohms Min.	1
6.1.5	Incidental FM		
	± 0.140 kHz Limit: \pm	kHz	
6.2	Input Characteristics		
6.2.1	Reverse Polarity Z No Damage		1
6.2.2	Over Voltage Z No Damage		Ì
6.2.3	Input Current		1
	Input Vdc Input Current (Amp	<u>s.</u>)	-
	Lo_24 430		1
	Nominal 23 43 c	_	.
•	High_ 32 ¥30	_	
	Limit: 450 Amps. Max.		
6.3	OUTPUT CHARACTERISITCS		
6.3.1	Output Power		
	Input Vdc Output Power Watts	<u>1</u>	
	Lo_24]-75		1
	Nominal 28 3.75		
	High 32 3-75		
	Limit: 2-0 Watts Min.		
6.3.2	Output Frequency		
	Input Vde Frequency kllz	% From Assigned	1
	Lo 24 201.9	.0008	1
	Nominal 28 240 2019	.0008	;
	High 32 2019		
	Limit: <u>+ .005</u> from Ass	igned	i
	SIZE CODE IDENT NO.	DEAMARS NO.	1
	A 13923	62003015	
	ECALL	SHEET 15 CF	

		•	Da	te 2/16/72 sted By S/n	· · · ·
6.3.3 \$	purious Output Freq. MHz	Spur I	evel (dB) >70 a	N. OVER TEN	r RANGE
	All others >70 di Limit:	B Below Carrier dB Below Carri	er (Table 1)		
6.3.4	Load VSWR Open and short	N/A circuit load	o Damage	. \	
6.4	TEMPERATURE				
Temp °C	Input (Vdc)	Input I (Amps)	Output Power	Output Freq.	% From Ass
Lo -20°C Hi C	Lo <u>24</u> Nom. <u>28</u> <u>32</u> Lo <u>29</u> Nom <u>28</u> Hi <u>32</u>	390 390 390 440 440 440	<u>3.15</u> <u>3.15</u> <u>3.15</u> <u>3.75</u> <u>3.75</u> <u>3.75</u>	206.8 206.8 206.8 194.6 194.6 194.6	. 6028 . 6028 . 0028 . 0028 . 6020 . 6020
Limit:		Amps Max. 2.0 Watts Min. 6.003 G from Assi	gned		
				۰,	
		A 139		03015	
		SCALE		SHEE	110 OF 11

Π

		GEFORE	DURING	AFTER
	RF Power (Watts)	3-75	3.75	3-75
	RF Freq (kHz)	201.7	201.8	201.8
	Input Current (Amps)	.430	430	430
•	Incidental FM (kHz)	10-140	< +. SKHZ	50.140 .
.0	PREPARATION FOR 1	DELIVERY		
	Audit Inspectio	n (?)	Stamp acceptance	

.

• • •

SIZE	CODE ISTAT NO.	DRAVANG NO.	1
A	13923	62003015	
11	100.00		t
SCALE			SHLET IN OF

Para. 9.0 Data Sheets

[]

Ð

0

[] >

Π

0

[]

[]

[]

ACCEPTANCE TEST RESULTS

of

:

V

UHF TELEMETRY TRANSMITTER

MODEL #T-102 (3) (L)

CUSTOMER ARIAIC
SPEC. NO. 71022
SALES ORDER 2892
OUTLINE DWG. NO. FLOCE 367
SERIAL NO. 288
FREQUENCY 1492.5 MHz
DATE 2/16/72

MANUFACTURED BY

D REATEWED AND APPROVED BY DATA SHEET PAGE 1 of 5 [] COLD IDENT NO. | C.C.MARG NO. SILE 62003015 13923 A E 1 ISULLT 13 07 CALL 17 4) D-33 10 .1 300 01 5/67 1

		·		Ser # 288 (0
				Date 2/16/72
		(B) (Stan	indepent	
3.1	Test Equipt. Calib.	(oran	ap Acc.)	
4.0	Visual/Mechanical		ap Acc.)	
•	Weight 14	Oz. (Limit_	16_0z.)	
6.0	TEST RESULTS			
6.1	Modulation Character	ristics		
6.1.1	Deviation Sensitivity			
6.1.1.3	Vrms	1 85.0 ki	z Deviation	
	Limit: /	Vrms ±10%/ 85	0 kHz Deviation	
6.1.2	Modulation Freq. Re	sponse		
		•		
	Mod. Freq. Hz	Response dB	Mod. Freq. Hz	Response dB
	10		100K	
	100		300K	+/
	1K	0	500K	
·	10K	0	700K	
	50К LIMIT: ± 1 с		1M - Hz TO	Scok Hz
				<u> </u>
6.1.3	MODULATION DISTO			
	Mod. Freq. Hz	Distortion C		
	100 .			
	1K	.70		
	10K	.50		
	100K	.80		
	LIMIT: 1. C	per = 3 (kHz DEVIATI	ON
	•			
				54
		SIZE CODE IDEN	NO. DRAWING NO.	
		A 1392	3 62003015	
		SCALE		CHEET 11 OF 1.
	9/07	D-8		

		Ser # 258 Date $2/16/72$ Tested By 5 m	
Π	6.1.4	Modulation Input Impedance Kohms Limit:CK ohms Min.	
	6.1.5	Incidental FM ± 6.24 kHz Limit: ± 5 kHz	
11	6.2	Input Characteristics	1
11	6.2.1	Reverse Polarity Z No Damage	1
	6.2.2	Over Voltage 🖸 No Damage	
	6.2.3	Input Current	1
		Input VdcInput Current (Amps.)Lo $\frac{14}{850}$ Nominal28High 32 550 Limit: 1.0 Amps. Max.	ala da antiga da antiga da secondaria de la constatuista de la
-	6.3	OUTPUT CHARACTERISITCS	1
11	6.3.1	Output Power	1
		Input VdcOutput Power WattsLo $-\frac{14}{4}$ $\frac{4.9}{4.9}$ Nominal28 $\frac{4.9}{4.9}$ High 32 $\frac{4.9}{4.9}$ Limit: 2.0 Watts Min.	
11	6.3.2	Output Frequency	
		Input VdeFrequency kHz $\%$ From AssignedLo $\cancel{14}$ $\cancel{493.7}$ \cdots Nominal28 $\cancel{493.7}$ \cdots High $\cancel{32}$ $\cancel{493.7}$ \cdots	
No.		Limit: $\pm Co / C from Assigned "$	
Π		SIZE CODE IDENT NO. DIVANING NO. A 13923 62003015	
1			
1	10 21 3/3-5-1	1.5	

[]

	Ser # 288 Date $2/16/72$ Tested By $5/p$
6.3.3 Spurious Output	
Freq. Milz	Spur Level (dB)
:	11 - 57 75-02 - 2015
	>TO db OVER TEMP RANGE
All others >70 dB Bo	dB Below Carrier (Table 1)
Limit: <u>67.7</u>	aB Below Carrier (Table 1)
6.3.4 Load VSWR	:
Open and short cire	cuit load 🗹 No Damage
6.4 TEMPERATURE	
Temp °C_ Input (Vdc) In	uput I (Amps) Output Power Output Freq. % From Assign
Lo Lo <u>L</u> Y	
-20 °C Nom. 28	<u>\$00</u> <u>5.1</u> <u>514.1</u> <u>.00093</u> 800 <u>3.9</u> <u>514.1</u> <u>.00093</u>
32	800 3.9 514.1 . cecg3
III Lo 24	870 3-7 47a.1 .ce13
TP5 °C Nom 28.	840 3.9 470.1 .cel3
Hi_32	840 3.9 470.1 .cel3
Limit: Input I 10 Am	ps Max.
Output Power 2.0	
Output Freq. 7.00	
	I I I I I I I I I I I I I I I I I I I
	SIZE CODE IDENT NO. DIVAVING NO.
	A 13923 62003015
3	CALE SHEET IN OF THE
F64.01 378-5-1 9/67	∠\ D-36

VIBRATION

RF Power (Watts)	SEFCRE 4.9	DURING 4.9	A F TEN 4.9	
RF Freq (kllz)	493.7	493-6	493.6	
Input Current (Amps)	\$50	850	\$50	
Incidental FM (kHz)	10.24	<=1.dxHz	10.24	

.-

ş

7.0 PREPARATION FOR DELIVERY

Audit Inspection (3). Stamp acceptance

d. 5

Ţ

[]

[]

Π

Γ

T

Ω

1

Π

Π

I

II

[]

IJ

Para. 9.0 Dala Sheets

ACCEPTANCE TEST RESULTS

lo

UHF TELEMETRY TRANSMITTER 1202 MODEL T-HE (C) (D)

MANUFACTURED BY

Vestor an AYDIN COMPANY

Newtown, Pa.

	Pin Connections
Pin	Function
A or 1	オンダン
B or 2	MODIN
C or 3	GND
Dor 4	6110
E or 5	
For 6	

13923

... D -38

SIZE

А

DATA SHEET PAGE 1 of 5

SHELT 10 CZ 13

1. 1 210 5.1 \$101

	· · · · · · · · · · · · · · · · · · ·			Ser # 195 Date 2/16/72
		(₃)		. Tested By JAC
3.1	Test Equipt. Calib.	(Stam	pAcc.)	
1.0	Visual/Mechanical	()(Stam)	p Acc.)	
	Weight 12	Oin (Limit_	14 Oz.)	
6.0	TEST RESULTS			
6.1	Modulation Characte	ristics		
6.1.1	Deviation Sensitivity			
6.1.1.3		s/ 28.0 kH		
	Limit: /	Vrms ±10%/	7.3 kHz Deviation	
6.1.2	Modulation Freq. Re	sponse		
	Mod. Freg. Hz	Response dB	Mod. Freg. Hz	Response dB
	10	0	100K	3
·	100	0	300K	3
	1К	0	500K	
•	10K	0	700K	
	50K	4	1M	
	LIMIT: ± 1.0	dB FROM 0	c_Hz TO	Joo Hz
6.1.3	MODULATION DISTO	ORTION		
	Mod. Freq. Hz	Distortion C		· · · · ·
•	100 .	1.4	· · · ·	
	1K	1.4		
	1 0K	1.4		
	100K	1.5		
	LIMIT: 2	0 % per = 10	o kliz DEVIATIO	DN .
	•			
	· · · · · · · · · · · · · · · · · · ·			
				•
		SIZE COLE REAT	1.0. C.W.ANG 1.0.	
		A 1392	3 62003015	
		BO/LC		WILET 11 U.

Ser # 195 Date 2/16/12. Tested By . Modulation Input Impedance 6.1.4 Limit: 20 Kohms Min. 720 Kohms Incidental FM 6.1.5 ± 0.140 kHz Limit: ±_____ kIIz 6.2 Input Characteristics Reverse Polarity 🛛 No Damage 6.2.1 Over Voltage INO Damage 6.2.2 Input Current 6.2.3 Input Current (Amps.) Input Vdc Lo 24 410 410 Nominal 28 +10 High J2 Limit: 450 Amps. Max. 6.3 ' OUTPUT CHARACTERISITCS 6.3.1 Output Power Output Power Watts Input Vde 3.5 Lo LY 3.5 Nominal 28 High 32 3.5 Limit: 2.0 Watts Min. 6.3.2 Output Frequency Frequency kHz % From Assigned Input Vde Lo___24 902-3 . 6 ... 8 . cres Nominal 25 23/ 902.3 High 32 902.3 . ecc8 Limit: #_____ from Assigned SIZE | CODE IDENT NO. | DIMANING ICO. 13923 62003015 A

2. D-40 ---

EALT 15 CF

SCALL

		Ser # 195 Date $2/12/22$ Tested By $52/12$
6.3.3	Spurious Output	
	Freq. Milz Spur Le	vel (dB)
		>70 de over TEMP RANGE
	•••••••	
	All others >70 dB Below Carrier	
	Limit: 68.4 dB Below Carrie	r (Table 1)
6.3.4	Load VSWR M/A Open and short circuit load \square No	- Damage
6.4	TEMPERATURE	
Temp °C	Input (Vdc) Input I (Amps)	Output Power Output Freq. & From Assign
Lo	Lo 24 370	2.95 902.6 .0012
-20 .0	Nom. 28 370	2-95 902.6 - 60.12
	32 370	2.95 902.6 .0012
Hi	Lo 29 410	3:3 892.1 .032
+1-	C Nom 28. 410	3-3 892.1 .0032
	Hi 32 ×10	3.3 892.1 .0032
Limi	t: Input 1 450 Amps Max.	
	Output Power L.O Watts Min.	
	Output Freq. 7.005 % from Assig	ned

[]

.

0

I

Π

0

Π

0

[]

-

..

VIBRATION

RF Power (Watts)	BEFORE	DURING 3-5	AFTER	
RF Freq (kHz)	902.3	902.2	902.2	
Input Current (Amps)	410	410	410	
Incidental FM (kllz)	= 0.140	c=.5xH2	16-140	

7.0

6.5

Audit Inspection

Stamp acceptance

**

APPENDIX E

L

[]

[]

I

0

D

[]

[]

0

[]

Π

I

Π

[

1

Ð

I

I

A3 CARD ACCEPTANCE DATA (February 1973)

	NO. <u>FNIT-667</u> NO.		TESTED BY DATE <u>Feb 1, L</u>	
		AIM - 4G DA		
CHANNEL	INPUT	OUT/TM-DC	OUT/READ	TOL/TM (Vdc)
20	A & B Open B shorted (pm 13) A & B shorted A shorted	2.34V 2.8V 3.5V 4.67	2.290 2.695 3.420 4.544	±0.15V ±0.15 ±0.15 ±0.15
21	$E_{A} = 0.5V E_{B} = -9.5V$ $E_{A}^{A} = E_{B} = -4.5V$ $E_{A}^{A} = -9.5V E_{B} = 0.5V$	0 V 2.5V 5.0V	0,008 2.506 4.998	±0.15 ±0.15 ±0.15
22	0 V 50Vrms	0 V 2.5V	0.004	±0.15 ±0.15
	100 Vrms	5.0V	5.015	±0. 15
23	*	0 V 2.5V 5.0V	0,025 2,425 4,960	±0.15 ±0.15 ±0.15
	$ E_{A} = Vo - 2.5V $ $ E_{-} = Vo + 2.5V $	0 V	D. 111	±0.15
24	$E_{B} = Vo + 2.5V$ $E_{B} = E_{B} = Vo$ $E_{A} = Vo + 2.5V$ $E_{B} = Vo - 2.5V$	2.5V 5.0V	2.536 4.943	±0.15 ±0.15
	$E_{A} = Vo - 2.5V$ $E_{D} = Vo + 2.5V$	0 V	0,110	±0.15
25	$E_{B} = VO + 2.5V$ $E_{A} = E_{B} = VO$ $E_{A} = VO + 2.5V$ $E_{B} = VO - 2.5V$	2.5V 5.0V	2.521 4.923	±0.15 ±0.15
	0 V	0 V	+ 0.009	±0.15
26	1 Vrms	2.5V	2.471	±0.15
	2 Vrms	5.0V	4.972	±0.15
	deleted from this block developed into classifi		with certain data from	a other sources,
	SII A	1		REV
	SC	ALE		SHEET OF

MODEI NO. FMT-667 TESTED BY SERIAL NO. DATE Feb 1. 2 1973 AIM - 4F CH. 20 - 26 DATA SHEET CHANNEL INPUT OUT/TM-DC OUT/READ TOL/TM(Vdc) 0.55 No pulse 1V ±0.25 2.10 20 1.21 sec p 2V±0.25 5.00 1.8. sec p 5.0V ±0.25 -0.2 RRG leads 1 usec 0 V Pre ±0.25 2.40 21 Coincidence 2.5V ±0.25 5.00 5. 0V RRG lags lusec ±0.25 Launch -0.2 ±0.25 GPP leads 1 µ sec Post 0 V ±0.25 2.65 21 Coincidence 2.5V ±0.25 Launch GPP lags 1 µ s. 5.0V 5.10 TV leads 1 u sec 0 V - 0.05 ±0.25 2.60 22 Coincidence 2.5V ±0.25 500 TV lags 1 µ s. 5.0V ±0.25 1.0 **Pulse** Absence 1.0V ±0.25 2.5 23 Video in Low Noise 2.5V ±0.25 4.0V 4.0 ±0.25 Video in High Noise 0.00 0 V 0 V ±0.25 2.55 +0.5V 24 ±0.15 2.5V +1.0V 5.00 ±0.15 5. OV -0.05 0 V ±0.15 -85 Vdc 2.50 -72.5 Vdc 2.5V ±0.15 25 -60 Vdc 5.0V 4.90 ±0.15 2.50 (de) ±0.15 - 0V 2. 5Vdc 2.70 (P.P) ±0.10 26 5Vp-p 2:5Vp-p 5.30 (p.P) ±0.15 10Vp-p 5-0Vp-p ... REV CODE ICENT NO. DRAWING NO. SIZE 13923 Α SHEET OF SCALE À 1054 NO 110 E.005 2

[]

[]

[]

I

1

1

I

1

U

[]

MODEI NO. FMT-667 TESTED BY DATE Feb 1, 2, 1973 SERIAL NO. AIM - 4F CH. 20 - 26 DATA SHEET OUT/READ INPUT OUT/TM-DC CHANNEL TOL/TM(Vdc) 0.55 No pulse 1V ±0.25 2.10 20 1.21 sec p 2V±0.25 5.00 5.0V ±0.25 1.8. sec p -0.2 RRG leads 1 usec 0 V ±0.25 Pre 2.40 Coincidence 2.5V 21 ±0.25 5.00 Launch RRG lags lusec 5.0V ±0.25 -0.2 ±0.25 Post GPP leads 1 µ sec 0 V ±0.25 2.5V 2.65 21 Coincidence ±0.25 GPP lags 1 µ s. 5.0V Launch 5.10 0 V - 0.05 ±0.25 TV leads 1 µ sec 2.60 ±0.25 22 Coincidence 2. 5V TV lags 1 µ s. 5. OV ±0.25 5.00 Pulse Absence 1.0V 1.0 ±0.25 2.5 2.5V ±0.25 23 Video in Low Noise ±0.25 Video in High Noise 4. 0V 4.0 0,00 0 V 0 V ±0.25 • 24 +0.5V 2.5V 2.55 ±0.15 ±0.15 +1.0V 5. 0V 5.00 -0.05 ±0.15 -85 Vdc 0 V 2.50 ±0.15 -72.5 Vdc 2.5V 25 ±0.15 -60 Vdc 5.0V 4.90 2.50 (de) - OV 2.5Vdc ±0.15 2.70 (P.P) ±0.10 26 5Vp-p 2:5Vp-p ±0.15 5.30 (p.P) 10Vp-p 5-0Vp-p REV CODE IDENT NO. DRAWING NO. SIZE 13923 A SHEET OF SCALE FORM NO 110 E.005 2

1