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A ABSTRACT

The proposed Dynamic Theory adopts generalizations of the three

classical thermodynamic laws and is shown to produce a unique unifying

effect by displaying that the fundamental principles of Newtonian and

relativistic mechanics, Einstein's General Theory, Maxwell's electro-

I magnetism, tnermodynamics, and quantum effects occur as special cases.

i This not only reduces the number of fundamental assumptions but presents

a new view of the interrelationship of the different branches of physics.

The Dynamic Theory also provides reasons to support the necessity

of extending the imensionality of the world-view to five dimensions;

£ space, time, and mass. It is shown that the fifth dimension produces

seven Maxwell-type equations containing new field quantities giving

L rise to a prediction of anomalous magnetic moments for neutrons and pro-

f tons. The quantization of the five-dimensional world-view predicts the

existence of three spin vectors, (two three-component and one four-

1. component) which require octets as the allowed set of component eigen-
- values for fundamental quantum numbers and gives support to the hope of

tying elementary particles to fundamental principles in a new way.

V Other predictions of the theory ji.clude reduced pressures in an elec-

tromagnetically contained ionized plasma, the possibility of zero radiatiov

pressure boundary conditions for the cosmos, the existence of a general-

I ized entropy principle which includes General Relativity, thermodynamics,

and quantum principles. The Theory also predicts the existence of a

limiting rate of mass conversion which is fundamentally the equivalent of

the limiting velocity and temperature of relativistic and thermodynamic

theories as well as providing the means to predict the self-energy of a

charged particle.
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The objective of this report is to present as cocplete a picture

as possible of the development and current status of the proposed

physical theory, hereafter referred to as the Dynamic Theory. The pre-

sentation will include philosophical foundations, logic development, and

some of the unanswered questions considered. Such a presentation runs

the risk of being lengthy and appearing to lack logical order, particularly

if strict chronological order is used. This risk will be taken in order
to make the presentation as co -lete as possible though chronological order

will not be followed.

During any theorization the philosophy of the theorist plays such an

imiortant role that an attemt to understand the theory is aided by a

I- kwledge of this philosophy. Tirefore this retDort includes not only the

.I') philosophical basis upor. which the theory is based and the mathematical

$( development but also ideas and beliefs which played a part in the various

decisions. Because of the individulistic nature of philosophy this report

will deviate occasionally from a strict third person presentation, risking

a loss of professional appearance, to the clearly personal first oerson.

Though I had often r-sed OWhy?n when confronted with some new assunp-

tion or adopted post,"'ate, the first really puzzling facet of current

physics ! encountered was the Concept of relativistic kinetic energy from

Einstein's Special Theory of Relativity. The puzzling part was that it

Jepended imon the speed of light independent of the ,. ch-nism by wich

this energy might be t-ansferred. T3 better illustrate what puzzled 1M,

consider the transfer of energy between two cnarged particles on collision

courses. if toe r, articles have near-m.iss trajectories then the energv

7
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is prim~arily transferred by the electrical forces betweein techarges

rom the view of retarded potentials, or the concept cf a iciting spee---d

of electromagnetic signal transmission, it is rather easy to accept the

energy transferred being dependent upon tis liiting velocity. Bet sup -

pose the particles are uncharged and the interaction is strictly a gravi-

L tational one. Again the concept of a limiting signal speed would imply

that the energy exchanged between teparticles depend upon this limitin~g

velocity. But is it the san.- as the limiting signal velocity for the

electromagnetic case? Do gravitational waves travel at the sanze speed as

electromagnetic waves?

-'Einstein, in the Special theory of Relativity, adopted the position

thtteconstancy of the speed of light forces a modification of Neatonss

dynaoic law. This modification imlies that all forces iave -these

lisitling velocity, namely, the speed of light. There exists an abond~znce

of theoretical and exraerimental evidence thatl the speed of- light becocmes,

the limiting velocity viienever electromagnetic forces are invndIved- The

point that bolthe-red ne was 16t4e other forces, such as gravitational. should

they also have -;%he sazne liiting velocity? Theugh we have had r-eports of

th-e detecion of gravitati6,onal waves we have i~o experimental cetermination

o-a the speed of a gravitatic1 wa%-ve. -therefore, I object to the iwit

that the rx-dification to Newton's law shouzld be- appDzlied to all forces

without some add-2tional justifIcation.

Let me dezscribe an analogy which may riot hold in the strictest, sense

yet will serve t0-o illustrate -.y point of view. A river, foing, toward

Lthe sea, carries energy with it. The speed with which thiss energy can rve

from 0%n. point to another is the velocity of the- river's current. T.he

Si 9



river reesa -or-_ on a t-cat tied tr. to a vier cr the river. k~-

the boVa t is set adri1-ft. ,S sorce ac-ceierates, the -boat_ Howeve, tih_

raxlsrn velocitr n wIrl- tbe rivr car. accelerate the botis th crrt

vel0 Wcity; thi s the velocity with i'Ptich the erer~v lo thp--e nrer can

tr, his Dnniht of viewu t ssaed O& liot, -5pi-'*h

velocity of & eetrraet ic eemy rmt Lb- the i~pitimy vekocity assciated

with elJ. uctaretic fr-ces. Certainly nature ktVIC rle rut siml~er i c all

forces flawe V'e Save HFiin relclty. -- tswe e-er-

FF v, -- @ _ Vs e nrat oi or c--vtti l I., - nd it OTff-ju.

to feel wnfrtble witth Fisin dificaticm o= _Xztu 's l1aw Justified

I~yoertrrcg etic irjretal , 2f and arezrsftsof. sirict.

velcit -y 'r--d vani~ses as h:c- vejIocit anVm bs h I A1tim v elIt y

ra-ises another cuaest. ~on -- 1- -_- it" ffn e11 ,W1f~aiE-72eCOS

~'~iS.. ter Ein-steinl*s ve.TX4iy Prlc'soicil s rte

vwilth a r el1atiVIt ic v -s s rIcn oe --- s n th e veocity Z and a v=ei4 Cci

inde~x~entforce. -=s this resent -a difrn hilosopr' orT are

both Viewcs %cnaer?-re SoDecitficall, are theea ~r to be

= ~tae as a mass inde-t of velocity toriethler witt a rekcietw eey~

-rc r wtmte crte tmvelocit -...z

velcit i-iy 7-r 'rces wizt!h 'r- torld? CY dr~es itke err

terence )G.CIcr Uwe close?

At this point, ir faced the fir_-st a~O daiict &f i c t --

onsttate ua ;t ~porotbjt I laoulrdnre to chnoe ry 4nifl~ti we

4n -- v cxcal -_% *rdcS df t~s ext-rsee'
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difficult to do. On the other hand, if I did not embrace these pustulates,

I would have to replace them with something which would say essentially

the same thing in all cases where the Special Theory of Relativity has

been found to be very accurate. Not only this but if a new point of view

were adopted then virtually the entire sphere of physics may need to be

reviewed in order to ensure that the new Point of view did not conflict

with currently used theories. This seemed an imposing, if not impossible,

task, particularly since my educational experience was in electrical

engineering rather than physics.

History records the advancements in physics which came from the
A i efforts of people new to the field. Therefore my lack of training in

physics migh~t be turned into an advantage if I sought to determine a philo-A sophical basis unhampered by the directed philosophy that comes from a

study of physics as currently taught. This is in contradistinction with

current practices and procedures of academicism where mastery of current

theories generally preceeds the development of a new one. To deliterately
choose this deviation risks accusations of arrogance and naivete. On the

other hand such a choice seemed the best way of avoiding the danger of

becoming so familiar with current ways of thinking as to make it improbable

of giving due attention to other ways. Whether or not I succeeded in

determining an alternate set of postulates consistant with reality the

search would demand a deeper study of physics than I would likely achieve

otherwise.

- Having decided to look for a new foundation for physics I was faced

with the question of how to begin. I recalled some Ozark hill philosophy

F I overheard as a youngster. A native Ozarkian was giving directions to a

stranger who was trying to find a certain fishing hole. The directions

11E



went something like this: "See yonder road going down that holler?

Well, go down thar 'bout five mile and you'll come to a fork in the road.

Take the right hand fork. Now that's the wrong one but you take it any-

ways. After you've gone a piece you'll co'e to a leg across the road.

Now you know you're on the wrong road. So go back and take the left

hand fork. You can't miss it."

A quick review of physics reveals that there are different branches

with different sets of fundamental laws or postulates. Though it is easy

to see how the distinction between these branches came about it was diffi-

cult for me to believe that nature shared the same divisions. I felt that

all natural phenomena should be explained by a single set of fundamental

laws. This belief is somewhat like a grove of redwood trees or bamboo

forest. Above the ground each tree appears as a distinct plant. Yet we

know that below the ground they may be found to grow from the same root

system. Thus I felt that a more fundamental approach might display the

unity in nature and that prior attempts at unification in the search for a

unified field theory could be likened to attempts to tie the trees together

at the tree top level rather than down at the root level.

Is nature symmetrical in time? Does everything run backward in time

as well as forward? Obviously, not every process in nature will run back-

wards, yet the equations of motion in Newtonian and relativistic mechanics

are time symmetrical. I believe in an asymetrical nature and this belief

played a role in the eventual selection of fundamental laws.

How then did I use this philosophy to determine a set of generalized

laws on which to base an attempt to construct a new approach to physics?

Newtonian mechanics fails to describe events involving high velocities,

12



R relativistic mechanics fails to describe the atom, and gravitational

effects have resisted quantization. If these are viewed as logs and

- the Ozarkian's directions are followed, then we must retrace our steps

v and seek another approach ratner than attempting to chop up the log and

continue to push forward up one of these roads.

The branch of thermodynamics however does not appear to have a log

somewhere along the way. Here the classical thermodynamic laws are very

general, particularly Caratheodory's statement of the second law. Thus
the thermodynamic laws appeared to be the fork in the road where a new -

route might be chosen.

However, in mechanics we talk of equations of motion, field equations,

and geometry while in thermodynamics we speak of equations of state and

I equilibrium. If a generalization of the classical thermodynamic laws is

adopted how might we obtain the equations with which we are familiar with

L in mechanics? More particularly, how could this type of general laws

yield geometry and a variational principle? The second law of thermody-

namics can produce a variational principle through principles such as in-

1 . creasing entropy and minimizing free energy, but can it also produce a

- geometry?

This seemed to be a crucial point. If the laws could not produce

I a geometry then a geometry would have to be assumed thus necessitating

an additional assumption. The belief that a simple fundamental set of

laws should lead to the fundamental principles of the different branches

of physics made the thought of additional assumptions abhorent. The notion

that the adopted laws should specify the type or geometry that must be used

seemed very satisfying. Newton found that the absolute nature of Euclidean

13I -
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geometry brought undesireable features. Einstein, in his General Theory,

displayed the benefits that might be gained by going to a more general

geometry. He showed that physical phenomena might be displayed as ele-

ments determined by certain physical laws. This is essentially the

question here. Can a set of laws, which are generalizations of the

classical thermodynamic laws, determine the metric elements and hence

the geometry?

By appealing to the mathematics of functions of more than one vari-

able we find that a quadratic form becomes involved v:n a maxima or m~nima

is sought. Further, this quadratic form generates a natural geometry for

that function. In thermodynamics the stability conditions provide a simi-

lar quadratic form and therefore the quadratic form which specifies the

stability conditions should form a natural geomeLry for a physical system

governed by laws such as the thermodynamic laws.

Thus the foundations of the theory were established, namely the be-

lief that all physical phenomena should be derivable from a single set of

physical laws which were generalizations of the classical thermodynamic

laws. Such a theory should be capable of describing all the dynamic

events in nature. Therefore it seems appropriate to call it the 'Dynamic

Theory'. Obviously, for such a theory to be tenable it must reproduce,

or be consistant with, the various fundamental postulates and/or laws

currently used in the various branches of physics. Indeed it should do

even .ore. It should also reduce the number of necessary assumptions and

provide an unprecedented unification of physics. Further, there is the

possibility that the theory might produce an experimental verifiable

prediction.

I- -



The first requirement that should be placed upon the Dynamic Theory

is that it reproduce, or be consistent with, current theories. In order

to show that the Dynamic Theory satisfies this requirement section II of

this report states the adopted laws and then shows how appropriate re-

strictions upon the system does yield the fundamental principles for the

various theories.

Though a theory which has the capability of displaying a unification

of physical the'iries might have significant value based solely upon this

i capability, it would become more attractive if it could explain phenomena

for which no explaination exists or make some new prediction which might

lead to an experimental test of the theory. Since restrictions were placed

upon the system in order to show how current theories may be obtained, the

easiest way to see the expanded coverage of the theory is to relax one

or more of the restrictions and consider a more general system. In

section III one of the previously imposed restrictions is relaxed and the

results are worked out for several types of systems.

Section IV briefly discusses a couple of implications which come from
! , section III and, if valid, are of fundamental significance. General con-

clusions are presented in Section V.

A theory, such as the Dynamic Theory, immediately poses several prob-

lems which are not associated with validity or applicability. First, there

is a new point of view to be dealt with. Initially it would appear to be

inconsistent with all past concepts of system energy or relativistic con-

cepts. Yet in the end it is completely consistent with current theories

and sheds an entirely new light upon physical phenomena.

154 1 _ _ _ _ _LA
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Another imposing difficulty with the Dynamic Theory stems from its

generality. The scope of the theory includes all physical phenomena while

in the past half century the vast amount of scientific knowledge that has

been accumulated has demanded specialists. Increasing expansion of man-

kinds knowledge demands further specialization. Such a progression pro-

duces no demand for a generalist. The result is that the greater portion

of this theory will be outside the field of almost every reader.

Closely associated with this problem is another. Throughout science

symbols and words are used to denote concepts and quantities. The limited

number of available symbols and words together with the expanded scope of

scientific knowledge requires duplication. For the specialists this dupli-

cation can be somewhat minimized. However, in the case of a general theory

touching virtually all areas of specialization the problem becomes very

significant, In particular, if a certain symbol or set of words is used

a certain notion or concept may be associated with them by the reader.

This association will likely depend upon the reader's specialty and there-

fore will vary with the reader. Any attempt to choose symbology or word

usage aimed at a particular specialty risks increased confusion for readers

in other field. Therefore the reader is cautioned to keep in mind that

conceptualizations and symbology familiar because of its use in one branch

of physics may now take on an entirely new appearance.

16



II. UNIFYING EFFECT OF THE DYNAMIC THEORY

The Dynamic Theory uses a different viewpoint, or approach, to present

a description of physical phenomena. Therefore the first criterion that

it must meet is that it must not be inconflict with existing theories

in a field of physics where the existing theory gives an adequate and

accurate description. To show that the Dynamic Theory meets this criterion

this section will present the adopted laws and then proceed to show how

the fundamental principles of existing theories may be obtained from

these laws. This is in essence displaying the unifying effect of the

theory.

A. General Laws

In the following development physical concepts are necessary, as

are symbols for these concepts. Because this development will merge

certain thermodynamic conceptualizations into mechanics, a notational

I dilemma must be faced. On the one hand it is desired to preserve the

thermodynamic conceptualization by using familiar symbols from that

theory. On the other hand descriptions of mechanical systems are also

sought. The formulism then looks either like thermodynamics with familiar

thermodynamic quantities replaced by mechanical quantities, or it looks

like mechanics into which thermodynamic quantities intruded. In either
case there is danger of confusion. One could evade the dilemma by choosing

entirely different symbols for the variables of the theory. But then

the whole takes an artificially abstract character. Since the purpose

of this formulation is to bring out the power of the thermodynamic

I [ conceptualization it was decided to use the suggestiveness of the

thermodynamic or mechanical symbols whenever convenient and the reader

- I
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is asked to keep an open mind and not make premature associations with

the symbols used.

1. First Law

The concept of conservation of energy is fundamental to all

L A branches of physics and therefore represents a logical beginning for a

generalized theory. Therefore, in terms of generalized coordinates or

independent variables, the notion of work, or mechanical energy, is

considered litnear forms of the type

d: Fi(ql,. q n, , )dqi; (i 1, 2, n)

where the forces Fi my be functions of the velocities (dqi/dt i)as

-

well as the coordinates qi and the sumation convention is used. The

inclusion of velocities in forces reflects the belief that forces shouldi

depend upon the velocities. This will become clearer when these work

terms are included in the first law.

The line integral Fr dqe thor repr en aelogicats the work done

along the ory he generalized forces.

-,i !A system may acquire energy by other means in addition to

vhthe work terms, such energy acquisition is denoted Q.

The system energy, which represents the energy possessed by
the system, is considered to be

U(q".. qn, ,, ..., n). ,,

dU will be assumed to be a perfect differential. -

\With these concepts then the generalized law of conservation -46

of energy, which is adopted as the first law of the Dynamic Theory, has

the form

118
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5Q 2 dU - ?

= dU - F. dq ; (i = 1, ... , n). (11-1)

Positive dQ is taken as energy added to the system by means

other than through the work terms and F. is taken as the component of

the generalized force acting on the system which caused a displacement dq

In the first law the dimensionality is n+l and is determined

by the system considered. There is no limitation on the quantity or type

of variables that may be used. However, in this presentation and in

practice, it will be beneficial to place restrictions upon the type and

number of allowed work terms. Therefore, a system with only one work

term which is the pdv expansion work of classical thermodynamics will be

called a "thermodynamic" system and the dimensionality will be two. A

system with three or less mechanical fdx work terms will be called a

- . "mechanical" system with the appropriate dimensionality. Obviously, if

there are three mechanical work terms the dimensionality will be four.

A system with a combination of the thermodynamic and mechanical work terms

will be considered later.
A

in an infinitesimal transformation, the first law is equiv-

alent to the statement that the differential

dU = dt- F. dq1

is exact. That is, there exists a function U whose differential is dU;

or the integral fdU is independent of the path of the integration and

depends only on the limits of integration. T'is condition is not shared

by dQ or d. The path dependence of J'&' is another reason that the

generalized forces are assumed to be functions of velocity as well as

19



position. In Newtonian mechanics forces are usually assumed to be

dependent on position only so that the simplicity of path independence may

be used. Though even in Newtonian mechanics certain forces are taken as

velocity dependent. An example is friction forces.

This statement of the generalized first law is consistent

with the first law of thermodynamics in that if there is only one generalized

force, which is taken to be the p-essure, and one generalized coordinate,

the volume, then equation (11-1) becomes

dQ= dU + Pdv

where F = -P with the convention that work of expansion is work done by the

system on its surroundings. Here the system energy, U, is the thermodynamical

internal energy. There should then be no confusion when Carathedor"s

statement of the second law is applied to this thermodynamic system.

However, when considering the application of generalizations of the classical

-0, thermodynamiic laws to mechanical systems scm.e confusion may be expected.

During the initial portion of this development, it is desired to demnstrate

the applicability of the generalized laws to mechanical systems. Therefore,

it ay help to avoid confusion to think of the generalized coordinates

of a mechanical system as the space coordinates of a mass point. Obviously,

there exist systems in nature which may be considered to consist of a

continuous distribution of mass points. Such a system may be thouoht of

as a co-mposite system of an infinite number of subsyster- and therefore

involve an infinite number of "generalized coordinates," or "degrees of

freedom." However, just as in classical mechanics, we may later make

the transistior from mass points to matter in the bulk then the generalized

coordinates, qi, used here may better be termed independent variables.

20



To explore some of the consequences of the exactness of dU

consider a system whose variables are F, 4 and q. The existence of the

state function U, or an equation of state, means that any pair of these

three parameters may be chosen to be the independent variables that

completely specify the system. For example consider U = U(, q), then

d U-) dF + " )r dq,

Bq -

- The requirement that dU be exact irrediately leads to the result

The 'energy capacity" of a system, at the position q with dq = o many

be defined as

'- . -_Q = (_rI ',

q Aq q q

while the "energy capacity" of a system under a corstant force is delint! as

r ;~ q 3~q

2. Second Law

There are processes which satisfy the first law but which are

not observed in nature. Tne purpose of the dynamical second law is to

- incorporate such experimentai facts into the =odel of dvni ics.
The stateent of the second law is made using the axiomatic

statement provided by the Greek mathen-atician Caratheodory, who presented

an axiomatic development of the second law of the r mod ics which ay be

applied to a system of any nuter of variables. The second law may then

be stated as:
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in the neichborhood (however close)

of any equilibritp, state of a syste

of any nurer of dynamic coordinates,

there exists states that cannot

be reached by reversible Q -

conservative (EQ = o) processes.

When the variables are therodynaic variables the Q-conservative

processes are known as adiabatic processes.

A reversible process -,- one that is perfored in such a way

that, at the conclusion of the prccess, bzth the system and the local

suroundings m be restored to their initial states, without pro-ucirg

any change in the rest of the universe.

Consider a system whose inaependent coordinates are a

generalized displacement &enoted q, a generalized velocity q (with
ca" 1 .. -ht _ -se. _tive

a d/dt), and a ger-ealized force F. it can be shown that e c r

curve c-rising all e,,ilbr- states accessible frtr the isitai t,I- 1,r~y be expre-.ssed -by
a = c(4. q) constant

where . re-resents sor as yet undternined Function. Curves correspondino

to other initial states would be represented by different values of the

Reversible (-conservative curves cannot intersect, for if

they did it would be possible, as shown in Figure 1, to proceed Frm an

initial equilibrium state i,_At the point of in + rsection, to to different

final states 4 and fi, having the sam.-e a, a!ong reversible Q-conservative

naths : whc sntalwdb he second l aw.
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N 1o~
a-- i.

F i To see the results of this conclusion consider a system whose coordin-

ates are the generalized velocity q, the generalized displacement q and the

generalized force F. The first law is

3Q = dU - Fdq

where U and F are functions of q and q. Since the (q, q) surface is suu-

divided into a fdmily of non-intersecting Q-conservative curves

GO=, q) constant ;

where the constant can take on various values o, Oa2  ... any point in the

surface may be determined by specifying the value of o along with q so that

U, as well as F, may be regarded as functions of a and q. Then

dU(U duau dandu do + - dq

o )q
i( --'and

,- (L" do + [(U F ] dq ;

Since a and q are independent variables this equation must be true for

all values of do and dq.

Suppose do 0 and dq 0 0. The provision that do = 0 is the provision

for a Q-conservative process in which UQ = 0. Therefore, the coefficient of

dq must vanish. Then, in order for a and q to be independent and for dQ

to be zero when do is zero, the equation for dQ must reduce to

(L-) do,aaq

with

= .
aq a

Defining a function x by

: , X -(T*)q,

then

UQ: do,

25 J__ _ _ _ _ _ _ _ _



where

t ~ q)

Now, in general, (n infinitesimal of the type

Pdx + Qdy + Rdz +

known as a linear differential form, or a Pfaffian expression, when it

involves three or more independent variables, does not admit of an

integrating factor. It is only because of the existence of the axiom that

the differential form for UQ referring to a physical system of any number

of independent coordinates possess an integrating factor.

Two infinitesimally neighboring reversible Q-conservative curves are

shown in Figure 3. One curve is characterized by a constant value of the

function 0A, and the other by a slightly different value + do o,. In

any process represented by a displacement along either of the two Q-conservative

curves dQ 0. When a reversible process connects the two Q-conservative

curves energy dQ ,do is transferred.

CT 0

' ' dQj \,xdo

dQ 0
o0A

q

Figure 3, Two reversible Q-conservative
curves, infinitesimally close, when the
process is represented by a curve connecting
the Q-conservative curves, energy UQ = ydo
is transferred
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The various infinitesimal processes that may be chosen to connect the

two neighboring reversible Q-conservative curves, shown in Figure 3, involve

t the same change of a but take place at different x. In general X is a

function of q and q. However, it is obvious that X may be expressed as a

function of a and q. To find the velocity dependence of x consider two

systems, one and two, such that in the first system there are two independent

coordinates q and q and the Q-conservative curves are specified by different

values of the function a of q and q. When energy dQ is transferred, a

changes by da and dQ = Xda where x is a function of a and g.

The second system has two independent coordinates q, and q and the

Q-conservative curves are specified by different values of the function

of 4 and q. When dQ s transferred, a changes by d and d-Q :d; where x

j is a function of a and .

The two systems are related through the coordinate in that both systems
k _V

make up a composite system in which there are three independent coordinates

- -  q, and and the Q-conservative curves are specified by different values of

the function ac of these independent variables.

Ii ( Since a= a(q,q) and = &( ,q), using the equations for a and G, ac

may be regarded as a function of q, a and a.

For an infinitesimal process between two neighboring Q-conservative sur-

faces specified by a and a + da the energy transferred is dQC X da where

xc is also a function of , a, and a. Then
C

V d ' + --d . (11-3)

Now suppose that in a process there is a transfer of energy dQ
c

between the composite system and an external reservoir with energies ~Q and
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I A~ being transferred, respectively, to the first and second systems, then

I and
2cdac Wo +d +d

or

ddc -d +-dO. (11-4) ~
Ac Ac

Comparing equations (11-3) and (11-4) for do~ then

~oc

Therefore a~ does not depend on q*, but only on a and .That is

ac ac(a~a)-

Again comparing the two expressions for docI

3T do A~do

therefore the two ratios X/x and x/X are also independent of q, q and q.

W-V Thest two ratios depend only on the a's, but each separate x must depend on

the velocity as well (for example, if X depended only on a and on nothing

else, the Q = Ao would equal f(a) do which is an exact differential). In

order for each A to depend on the velocity and at the same for the ratios of'

the X's to depend only on the a's, the X's must have the following structure:

A = (q)f(o), (15

A1-5 J(i (

and .
Ac =6 g(a,a)

28
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ili io (The quantity X cannot contain q, nor can \contain qsince X/Xc and

X,/X c must be functions of the a's only.)

I :- system of any number of independent c.jordinates, the transferred energy

---- A is, from equati

t d q f(a) do,

Since f(a) do is an exact differential, the quantity q/,s(n) is an integrating

" factor for d-Q. It is an extraordinary circumstance that not only does an

i integrating factor exist for the dQof any system, but this integrating factor

=is a function of velocity only and is the same function for all systems

The fact now onsysto te wo independent variables has a Q which always

admits an integrating factor regardless of the axiom is interesting, but its

importance in physics is not established until it is shown that the integrating

factor is a function of velocity only and that it is the same functionfa s

Thfor all systems. yes

3. The Absolute Velocity

The universal character of c( ) makes it possible to define

an absolute velocity. Consider a system of two independent variables q and

q, for which two constant velocity curves and Q-conservative curves are

shown in Figure 4. Suppose there is a constant velocity transfer of energy

Q between the system and an external reservoir at the velocity q, from a

state b, on a Q-conservative curve characterized by the value 01, to another

state c, on another Q-conservative curve specified by a2. Then since

dQ : 4) f(a) do,

29- A



it is seen that

AQ = ¢(q) f f(a) do at constant o.

q constant

a d q = q3 : constant

q|

Figure 4. Two constant velocity energy
transfers, Q at q from b to c and Q3 at q3
from a to d, between the same two conservative
curves 01 and 02

2I

For any constant velocity process between two other points

a to d, at a velocity q between the same Q-conservative curves the energy
02

transferred is = AQ3 : f f(o) do at constant q

Taking the ratio of

Q ~ a function of the velocity at which 'Q is transferred

k same function of velocity at which is transferred, Q3 .q3 saefntoofvlctatwihAQ3 i rnfre

Then the ratio of these two functions is defined by -,

_ 6 L AQ (between ai and a2 atq

,q3 AQ3 (between a, and a-2 atq3
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or

AQ 3 _- ()

by choosirg some appropriate velocity q4 then it follows that the energy

transferred at constant velocity between two given Q-conservative curves

decreases as ( ) decreases, or the smaller the value of Q the lower the

corresponding value of (q) When AQ is zero €(i) is also zero. The

corresponding velocity 4. such that (40) is zero is the "absolute velocity."

Therefore, if a system undergoes a constant velocity process between two

Q-conservative curves without an exchange of energy, the velocity at which

this takes place is called the absolute velocity.

4. The Concept of Entropy

In a system of two independent variaHes, all states accessible

L. from a given initial state by reversible Q-conservtive processes lie on a

o(4, q) curve. The entire (4, q) space may be conceived as being filled by

{ many non-intersecting curves of this kind, each corresponding to a different

value of a. In a reversible non Q-conservative process involving a transfer

of energy dQ, a system in a state represented by a point lying on a surface

a will change until its state point lies on another surface a + do. Then

dQ = Xda,

where I/x, the integrating factor of dQ, is given by

o x = ,C f(a),

and therefore

z. 1 dQ = ,( f(o) da

= f(a) da.
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Since a is an actual function of and q the right-hand member is an

exact differential, which may be denoted by dS; and

4(q)

where S is the mechanical entropy of the system and the process is a rever-

sible one.

The dynamical second law may be used to prove the equivalent of Clausius'

theorem, which is stated here without proof.

Theorem: In any cyclic transformation throughout which the velocity is

defined, the following inequality holds:

d Q 0

where the integral extends over one cycle of the transformation. The equality

holds if the cyclic transformation is reversible. Then for an arbitrary

transformation

B
f dQ < S(B) -S(A;A (q) -

with the equality holding if the transformation is reversible. The proof

of this statement may be seen by letting R and I denote respectively any

reversible and any irreversible path joining A to B, as shown in Figure 5.

RB

AI

Figure 5

.32
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For path R the assertion holds by definition of S. Now consider the cyclic

~transfo,-r.tion made up of I plus the reverse of R. From Clausius' theorem

or Sf s() -S(A).

I R

Another result of the dynamical second law is that the mechanical entropy

~of an isolated 0 ) system never decreases. This can be seen since an

isolated system cannot exchange energy with the external world since 3-0 0

for any transfomation. Then by the previous property of the entropy,

S(S) - S(A) > 0

Swhere the equality holds if the transformation is reversible.

One consequence of the second law is that of all the possible trans-

formations from one state A to another state B the one defined as the change

in the entropy is the one for which the in -grai

B-Ifl
dQ

A

is a maximum. Thus

S(B) - S(A) Z maximmi I = ma ( d-
A

where t is a parameter which indicates position along the path from A to B,

or

S(B) - S(A) = max f 1 d;~A

- if

L3U U(,q,

L. 33



I

where a = dq /dt, then the change in the entropy is given by the integral

B (I dU F dq)d

A

The q and q which maximize AS will be denoted as x and x then, with

U = U (x,

Fi : Fi (x, x)

the x and x are given by the solution of the system of equations

d (ZG BG_ 0
(11-6)

d BG aG-00

where

() [a d dxG = I U_ -Fid a;,d x' =x andxi d-, d e =d-7 z

Thus the dynamical second law provides an answer to the question that is

not contained within the scope of the first law: In what direction does a

process take place? The answer is that a process always takes place in such

a direction as to cause an increase of the mecharical entropy in the universe.

In the case of an isolated system, it is the entropy of the system that tends

to increase. To find out, therefore, the equilibrium state of an isolated one

dimensional system, it is necessary merely to express the entropy as a

function of q and q and to apply the usual rules of calculus to render the

function a maximum. When the system is not isolated there are other entropy
changes to be taken into account.

5. Third Law

The dynamical second law enables the mechanical entropy of a

syster to be defined up t an arbitrary additive constant. The definition

VC
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depends on the existence of a reversible transformation connecting an

arbitrarily chosen reference state 0 to the state under consideration.

Such a reversible transformation always exists if both 0 and A lie on one

sheet of the equation of the state surface. If two different system are

considered the equation of the state surface may consist of several disjoint

sheets. In such cases the kind of reversible path previously n-ntioned

may not exist. Therefore the second law does not uniquely determine the

difference in entropy of two states A and B, if A defines a state of one

system and B the state of another. For this determination a dynamical third

law is needed. The dynamical third law may be stated, "The mechanical

entropy of a system, at the absolute velocity is a universal constant, which

may be taken to be zero." In the case of a purely thermodynamic system the

absolute quantity is the absolute zero temperature, while for a mechanical

system the absolute quantity is the absolute velocity.f
The dynamical third law implies that any energy capacity of a

system must vanish at the absolute velocity. To see this, let R be any

reversible path connecting a state of the system at the absolute velocity

q0 to the state A, whose entropy is to be found. Let CR(q) be the energy

capacity of the system along the path R. Then, by the second law,

q AA
S(A) = .f CR (q) ' - -

But according to the third law,

S(A) +0
q A qo

Hence it follows that

3



C (q) -~0

q qo

in particular, CR may be C. or C.

The statement of the third law above reflects the restriction

to mechanical work terms. A general statement of the third law which is

independent of the n,,ruber or type of variables is "The generalized entropy

of the system, when the integrating factor vanishes, is a universal

constant, which nay be taken to be zero."

B. General Maxwell and Energy Relations

In thermodynamics a discussion of equilibrium and stability

conditions is best done if the enthalpy, Helmholtz's, and Gibb's functions

are defined first. Therefore, the mechanical analoques of these functions

are defined here.

Each branch of physics such as thermodynamics and particle dynaw'cs

has its own list of developed procedures. If both branches can be described

by the same basic dynamic laws then the prccedures developed in thermo*-

dynamics may Drive to be useful in particle dynamics and vice-versa. Once

the mechanical enthalpy, mechanical Helmiholtz's and mechanical Gibbs' functions

are defined it is then easy to write down the resulting mechanical Maxwell

and mechanical energy capacity relations.

To begin the development of the Maxwell relations, the mechanical

entropy was defined as

dS - ,

then, since dQ = dU - Fda,

36 -
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y -dq

Define the mechanica3 ernthnalpy as

HU - Fq,

then

dH 1%4) dS - qdF. (L -8)

[1t therefore

F '(q) and =-q-

EI ~ The mechanical Hleldholtz's function can be defined as

A 6) - S.

and

dK= dU - Sdo

or, with

dK -S.0(4) 4 dq 'i-9

which leads to

(~) = -and (i.) =

Th -echanical Gibb's fnction may be defined as

G Hf -(4 .

then

dG = - (4)S d4 +qdF=,(I-O
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C. Equilibrium and Stability Conditions

The three generalized laws have been formulated and a few results

of these laws have been seen. The next step is to derive the stability

conditions to obtain the quadratic forms necessary for a metric. In the

process of deriving the equilibrium conditions and in turn the stability

conditions other state functions are used. These functions may be defined

briefly here as:

Mechanical enthalpy (H): H = U - Fq

Mechanical Helmholtz function (K): K U - 0(4)S, and

Mechanical Gibbs function (G): 0 ! H -0()S

The derivation of the equilibrium and stability conditions is

identical to the derivation of the thermodynamic equilibrium and stability

conditions with the variables changed-to represent the mechanical variables

q, q, S, and F instead of the thermodynamic variable T, V, S, and P.

1. Equilibrium Conditions

To establish the criteria for equilibrium consider Clausius'

theorem

BB0

A1 I A R 0O

or

I t R z S(B) - S(A).
A

For a Q-conservative system UQ a 0, then

AS> 0,

or

S(B) S(A).
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Therefore the mechanical entropy tends toward a maximum so that spontaneous

changes in a Q-conservative system will always be in the direction of

increasing mechanical entropy.

Now by the first law

AQ = AU - FAq.

Therefore

4AS > All- FAq

which is analogous to the Clausius inequality in thermodynamics.

Now cons 4der a virtual displacement (Li, q) - (U + 6q, q + 6q),

which implies a variation S-S+SS away from equilibrium. The restoration of

equilibrium from the varied state (U + 6U, q + Sq) - (U, q) will then

certainly be a spontaneous process, and by the Clauslus inequality171S) - ('SU - Faq).
Hence, for variations away from equipoise, the general inequality

- FSq - > 0o(1>2)

must hold. The inequality sign is reversed from the sign in Clausius'I~inequality because hypotietical variations 6 away from equilibrium are

considered rather than real changes toward equilibrium.

In a spontaneous process,

4AS > AQrev = AU + work done by the system.

The "work" consists of two parts. One part is the work done by the negative

of the force F. It may be positive or negative but it is inevitable. Only

the rest is free energy, which is available for some useful work. This latter

part may be written as

A =Qrev -AU + FAq.

The maximum of A is
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which is obtained when the process is conducted reversibly.

The least work, SAnrin , required for a displacement from

equilibrium must be exactly equal to the maximum work in the converse

process whereby the system proceeds spontaneously from the "displaced"

state to equilibrium (otherwise a perpetual motion machine may be constructed).

Corresponding to equation (11-13) then,

6Amin = SU - F6q - 5S.

The equilibrium criteria may then be expressed as

6Amin -

In words: At equilibrium the mechanical free energy is a minimum. Any

displacement fronm this state requires work.
2. Stability Conditions

To decide whether or not an equilibrium is stable, the inequality

sign in equation (11-12) must be ensured. The cnditions for stability

may take different forms depending upon which variables are taken as the

independent variables.

To derive the stability conditions when q and S are taken as

the independent variables consider the terms of second order in small

displacemenc. beginning with the general condition

SU- Fsq - 46S > 0.

Choose U = U(q, S), which, because of the identity

dS d u dq

or

idS = dU - Fdq,
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is a natural choice o' the independent variables, and expand 6U in powers

of 6q and SS

6U S + FSq ++ 2 6 S U 6S2) + terms of third order

(11-14)

The inequality (11-12) then shows that in (11-14)

Second order terms + third order terms + 0.> O.

Retaining only the second order terms, the criterion of stability is that a

quadratic differential form be positive definite;

D2UI 6q2 > 2 0.;2
6q2 + 2- q6S + S2 > 0. (11-15)

+2q D qS 3+

If this is to hold true for arbitrary variations in 6q and 6S, the coefficients

must satisfy the following:

32U >0" 2U  32U > u 2U t2
>,; > 0_ U 2  >o.
aq TS =a q4  'aq S'

When and q are considered to be the independent variables a

quadratic form in 64 and sq may be found by using

K U- oS

so that

6K= 6U- 6S - -q S - 6S64
dq d

The terms aSq cannot be neglected because in Clausiuc' inequality, which is

the actual stability condition, the variations are finite, therefore, from

equation (11-12) the following is obtained:

6K + s + do~ (S + SS) Sq - F~q - o6S > 0,

6K + !tS6q + L~ SS6 - F61 > 0.

Expanding is powers of Sq and Sq
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6K F6q- Sq 32K K 6 q2 + 3K 6q64 + 2K6q2 +
2 j ~ 2qa 23q

6S6q=~ 6q'2 (2- - F) 6q~
aq

But

_=F.

Theref ore

z2 K ~
( U- F),

and

=3A d4

ther

~dq qS + 9# (6q) - q q

and the quadratic form in 64 and 6q is

1 ;2K (6 2K.! 1 + L 2K (34)2 32K (64)2 (2 ;2K
(6) +q aqa q6+ (s) -S S qsq 0

or

Since =F thenaq q

32K zaF)
q > 0.

Other quadratic forms may e derived by using different independent

variables however th'ese two quadratic forms will suffice for this development.
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D. Geometry and Field Equations

There is nothing which specifies which of the quadratic forms coming

from the stability conditions should be adopted as the metric. Thus the

choice may be made based upon simplicity and/or applicability. However,

it becomes obvious that if we choose one of the forms using the velocity

as our metric and then obtain equations of motion then the equations of

motion will become third order differential equations since the velocity

is itself first order and the equations of motion are second order

differential equations.

The fact that these equations of motion will become third order

differential equations in time displays a time asymetry which appears to

correspond to nature. However, third order equations are difficult or

impossible to solve.

1. Geometry

To avoid the difficulty of third order equations of -otion,

suppose we adopt the quadratic form of equation (11-15) as the metric for our

system. Thus we are adopting a manifold with coordinates of space-mechanical

entropy.

It now becomes desirable to extend our system beyond the

dimensionality used thus far. Such an extension brings up a question

concerning the integrating factor. With one work term the differential

of the entropy was written as

dS f(a) da.

Then, if for each work tarm the exchange of energy is denoted to be dQi-,

dQi
dS - fi di

=Y° °44



where there is no summation intended for fidai. Since each dSi is a

perfect differential, then the total change in entropy may be written as

i dS i f i dai-

Thus the question becomes whether or not there exists a single integrating

factor @ such that

- dQ. 
aidS = Q = fi do.. (11-16)S i *i 1i

The importance of this question may be seen in terms of the difficulty that

would be created f a universal integrating factor could not be found. For

then each additional work term would require its own integrating factor

determined individually. Happily the proof that a universal integrating

factor exists has already bcen completed (see reference 5 & 9) showing that

an overall integrating factor exists regardless of the number of work terms

considered.

Thus assured that an overall integrating factor exists then

the existence of an overall entropy function is guaranteed so that

dS -dU Fdq

for any i and the quadratic form may be extended to include three spacial

work terms and thus becomes

U 2 (dS)2 + 2 L- (dS) (dqa) + 2 (dqa) > 0; a,B = 1,2, 3.

Adopting this quadratic form as the metric of a general system whose thermo-

dynamic variables are held fixed we may then write this metric as

)2 h  dqi dq3; (i. j: 0, 1, 2, 3) (11-17)
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L-1 where the summ~ation convention is used and

N a2U!
i; h i  i

-- - - =- -qi - - - -
__ __- qJ=- --I

)j

i with qO S/Fo, the scaled mechanical entropy for dimensional correctness.

Thus the stability conditions prea de a metric in the four-

dimensional manifold of space-mechanical entropy. However the existing

relativistic theories are theories in a space-time manifold. Therefore,

if these theories are to be contained within the dynamic theory then the

space-time manifold must be fo:,nd within the dynamic theory.

The arc length 4 in the space-mechanical entropy manifold may

be parameterized by chosing

d - dtE cdt

0

where qo c is the unique velocity appearing in the integrating factor of

the second postulate. The metric may now be written as

c2(dt)2 = h.. dqdqj' (i, 0 = , 1, 2, 3) (11-18)

Now suppose the systers considered are restricted to only

Q-conservative systems. Then the principle of increasing mechanical entropy

may be imposed in the form of the variational principle

( /dqO)2 = 0. "'

In order to use this variational princple equation (II-18) may

be expanded, solved for (dq°) and squared to arrive at the quadratic form

(dq°)2 = ( {c2(dt)2 + 2hom A dt dqa - hcIdqadqs} (If-19)

00
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where

A- h OY  /C2 hYB q Yq ho~q

hhoo00000

with 4Y E dq/dt.

By defining x - ct, x = 1 1, 2, 3 then equation (11-19) may be

S written as

(dq°)2 = (}) g dx1 dx3 ; (i, j = 0, 1, 2, 3) (11-20)

where f h oo. This metric obviously reduces, in *he Euclidean limit of

constant coefficients, to the metric of Minkowski's space-time manifold of

special relativity.

In his General Theory of Relativity, Einstein assumed the space-time

manifold to be Reiemannian. However, this assunpl .on involves the a priori

assumption that the scalar product be invariant. This assumption was later

questioned by Weyl in his generalization of geometry. From the viewpoint

that the adopted postulates should contain the other theories it then becomes

desirable to determine whether or not these postulates specify the geometry

of the (dq°)2 space-time manifold. More particularly do the adopted postulates

lead to a geometry which includes the geometry of current theories? To

arrive at a more general geometry would not be a limitation for it would

certainly include the others.

Recalling equation (11-20) we can define

(dq 0)2 g dx I dx- (d )2 - gij dx dx (11-21)

Now the second postulate guarantees the existence of the function mechanical

entropy and that dq0 be a perfect differential, therefore

dq° = q0 idx i  (11-22)

1
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where qoi  aq°/ax Then the exactness of dq° is stated by

q =0 . (11-23)

fy defining the parillel displacement of a vector to be

df. M v dx (11-24)
is v

and using equations (11-22) and (11-23) it may be seen that the connections

must be symmetrical, or

k :V (11-25)
Sik ki

This result should not be taken to mean that only symmetric connections
need to be considered. Rather it means that given the ;j 's which maximizes

(dqo)2 = then the connections are symmetrical. However, since aFo

variational principle must be used to determine the gij's then both symmetric

and anti-symmetric connections will have to be considered.

In Weyl's generalization of geometry he found it necessary to assume

the symmetry of the connections. He proved a theorem showing that the

symmetry of the connections guaranteed the existence of a local Euclidean

limiting manifold and used this theorem in support of the symmetry assumption.

Here we find that the second law requires that the connections formed by

the solution coefficients must be symmetrical thus guaranteeing, through

Weyl's theorem, the existence of a local Euclidean geometry within the

Dynamic Theory.

Suppose now we consider whether the order of differentiating the change

in entropy makes any difference. This means that we must use symmetric

connections since the actual change in entropy will be determined by the

- - metric coefficients which generates a maximum. Therefore, coisider the

difference
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AdO)2 ^.2ldqo)2 - IO)kzdq j
ax ax ax ax

Sic (q) ~ q~ dx dx3 froin equation (1-22), using equation (11-21)

we find

o 0

q~ i q 6qj.

Then

2(dqo)2r 0 0)2+0

(qo 00 qqodxdx +x 2n x + 2q kt
k ilk jiz + qik

3ax

Therfruhsifeec utb

A 3qO2 = jkt dqioq )i2j q.~ 1 xd'

k.~ ii dx k k

a2(dqO)2 00  0 0 0
Eqojl I ji r oj. i+q +q q .]x

'kI l-i l
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Now ajr

0 o r r0o r + 0  ik
r Fl ik3  kl ik r

=~k r O rlkaxx

=q r k+ qk
ax

Simi 1 arl
q o r 6 + k~

r it Ax

Similarly 0 ar~k~ +r~6~

q rk 6 k; i kr ;
i~tk z ~ 1 & 1-6

ax ax
Therdffrenc aewitna

0 0 ir Y0 + rr 4, 46'
q~ q q r kjit-

Then defininu thenvco urauea

r r'

r iaLnR r r 

so thatr
A~~dq')'-+ {qjq rdx r jkdx

0 00
Howeer, ecal tha q iq j



or the difference will vanish if

R.. -R.
j 1.2k ijlk

Now since

(dqo)2 -q0.. q0. dx1 dx3 9 dx' dx'
391I differentiation will result in

ji(do 0)2 = d(q C q 0 j dx I dx'J) =d(g.. dx' dx3)

or

dq 0 i q; dx' dxj + q0. dq0. dx' dx2- 40 qo d(dx' x)

=dig.dx1 dxj + g..d(dxi dxJ)

which can be written' as

dk6 q no d~ djJ + qo i dx& q0  dx~ dx1  q0o a di'dx d
U r dxr

- ag x 01 x + d~. d(ci dxJ).
13 -1J

But

Therefore

d)o +. =x do--

or

- agij(11-28;

gr i.6 ggi JS

J1~ ijS S

Now interchange JiU to sij to get
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then interchange -- to isi so that

- (11-29)

Addf euiations (i11-781 0ar (flt)70' ani ssfl=rar ezztimm I::7-;)

- - -- -+

or

Sx r

and

N. Om by using the symnetrcs of C-Z i ' b vnta

and thererore

I hisi neectarv 1 and -sfcient cnd-M 4 ztl! We iffezre s th t i al

cnttroy twhnce mavyb transtere- from an mina: ucint to all paints of tie

=space in the rarner that is imdee-oen or pu ath.-

The distinoumishno features of ?.iS MIFI== e-tr is the inrsianzem

winether th Pd~l space is a- ~cRiu n sae conse Unh vector ad .

Row si nce
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the

Ik
then r dx' Ak og

ii 1i's 9rk a x dx

or since
6jJ A A A

g 6(S 1 and = . r.
ax j 13.5 j,

then

Ajj A)kd4

11 _r dxI dx

A A

dx C

and

dZ r. dx6 Z

Now consider the change in the scalar product ~ . Then

ds, n^') d&. ' + ei dn'

Ar " .5A + ,Ajr dx Ar

dx ~ .~rdx n

d( i i) M~ dxi n ~i-jid A A

1~l n. r d.

Thus the geometry of the (dqO) manifold is Riesmannian.

The next question is what is the geometry of the (da) 2 space? Equation

(11-21) shows that we may write (do)2 f(dq0)2, which is reminiscent of Weyl's



generalized geometry. Further we have

U *gtj 8 f gtj.

Then in the sigma space an arbitrary vector & would have a length I given

by the self-scalar product

= II c H gi* j  " f & Cl i * f 2 (11-31)

where k is the length of the vector in the entropy space.

If we differentiate equation (11-31) we have

2£ d f2 _dx' + 2f k d A.
ax"

However in the entropy space the length of the vector ' is unchanged under

parallel displacement so that

d--fdxi  I k dxt 1. (11-32)
ax ax

Comparing equation (11-32) with the definition of the parallel displace-

I ainfment of a vector, equation (11-24), we find that 1 E 2----plays a role
ax

similar to that of the connections r in the definition of parallel displace-

ment of a vector. Therefore we shall define the change in the length of a

vector under displacement to be

d • (i dxi) Z. (11-33)

This Is the same definition Weyl made in his generalization of geometry

however, there is a difference in the way it was obtained. Weyl chose this

definition in analogy with the connections r and the definition then led the

second more general metric. 'n this theory the fundamental laws lead us to

two metrics and equation (11-32) for the change in the length of a vector
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under displacement. Thus within the Dynamic Theory equation (11-32) is a

derived equation and equation (11-33) only renames the logrithmic derivative.

Using equation (11-33) we may obtain, in general,

d"2 2Z2 ( dx) = d(g j
EiJ d dxk gi ki.

};:gijlk 9j ' ,k {  x  ' gij rk A iC dxk

Renaming the various symmation indices, rearranging terms, and using the

length of a vector, we obtain

[gijlk g. rik + gik rk l dx k = 2gij ij d

Since this must hold for arbitrary choice of i and dxk, we conclude that

2g- ij + g9, r11 + gi r k =0.(gijk -kgj ik i k

This is the same system of linear equations for the connections rjk as

equation (11-27) only the inhomogeneous term g has now to be replaced by2gij

: gijlk ¢k" Therefore the same linear algebra as before leads 
to

Sri .k  Z (11-34); -jk : - {jk} + 9 g j9kA + g9k ¢-g k ](I-4

where I is the usual Christoffel symbol of the second kind.

Now, since the entropy space is Riemannian, then in the entropy space

we have

-Pi - k -jk}

and the length z of a vector is unchanged under parallel displacement. However,

= the same displacement law in the sigma space, with metric g.., leads to the

relation
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dA + d j d _f ij 91

:±2 xk

I

Thus ±L 'nf plays the role of k in equation (11-33). It foilows then that
2- a ~kk

the ordinary connections I constructed from gij are equal to the more

general connections rjk constructed according to equation (11-34) from gij

and k 2 kaxk

rik rk (11-36) -

as can also be seen by direct computation from equation (11-33) and

gij (11-37)gij f ij"

We may interpret the change of metric from g.. to gij by equation (11-37)

as a change of scale for the length at every point of the Riemannian manifold-

by the variable gauge factor f. This transformation is called a gauge

transformation, and k is called a gauge vector field.

The generalized geometry thus separates the problem of measurement of

angles from that of measurement of length. For instance, the angle between

the two vectors n and n at a given point of the space is measured by the
, ~ratio...

F. Tli gij n j

j-~j jnj [gij 0i~)(gij ni1nJ)]

This ratio does not change under the gauge transformation (11-37). The

gauge transformation is therefore an angle-preserving, or conformal, change

of metric. On the other hand, the length of vectors will change under
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(11-37) according to (11-31). Thus the metric tensor gij determines angles,

while one needs also the gauge vector to measure length.

Considering the sigma space, which is characterized by the tensor fieldKi~i ij and gauge vector The same argument as before shows that we may

replace the geometric quantities by use of a scalar field f as follows:

f 1 + inf ri ^i
gij gi k2 k k rjk (II-38)

ax

without changing the intrinsic geometric properties of vector fields. That

is, in the new metric, vectors will have the same law of affine transplantation

and the angle between different vectors at the same point of the manifold

will be preserved, but the local lengths of a vector will be changc," according to
--4

22 f j2.

Thus the general Weyl geometry, of the sigma space, admits also a conformal

gauge transformation.

2. Field Equations

Then with the foregoing it is apparent that the sigma manifold

must have the more general Weyl geometry and given the vector field k in

equation (11-38) we can follow Weyl's interpretations and study the tensor field

F iij - ¢jli (11-39)

Weyl showed that from a study of this tensor field we are led to the variational

principle

1-[R + y A = 0 (11-40)

where i - i and Fij Fij.
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From this variational principle Weyl showed that Einstein's

General Relativistic Theory and Maxwell's Electromagnetism may be obtained.

The only remaining question here is whether the vector field k' which

gives rise to the non-vanishing tensor field Fij, is required by the three

fundamental laws aaopted by the Dynamic Theory or must be assumed to exist

as Weyl did.

If we recall the statement of the first law

dQ =dU -F dqaa

we find that even for an isolated system there exists the vector field Fa

Indeed, in section II-C-1 it was shown that this vector field is inevitable.

Further recall that the geometry given by the stability conditions is based

upon the second partial derivatives of the system's energy function, U,

and does not include the forces F . It seems only logical to suspect that

there exists a link between the vector field 6i and the forces Fa. especially

since the work terms are path dependent and the non-vanishing of the curl

components of is equivalent to the statement that the potential function

is path dependent.

The connection between the potential vector field and the

forces F comes from Maxwell's electromagnetic theory where the forces F.

are the Lorentz forces made up of the components i. However, we shall not

show the connection here since any text on Weyl's theory, or electromagnetism,

displays the connection. We shall, howe%,er, present it during the development

of the more gL-tral five-dimensional system. For the present though, if we

adopt Weyl's interpretation plus taking the forces F. to be the forces

resulting from the %i we then may see that the Dynamic Theory leads us, through
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Weyl's unified theory, to Einstein's General Relativistic and Maxwell's

Electromagnetic theories and further, as special cases, the Special

Relativistic Theory and Newtonian mechanics

V5
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E. MECHANICAL SYSTEMS NEAR EQUILIBRIUM

We have shown how, for Pn isolated system subjected to only three

spacial forces, the Dynamic Theory includes Einstein's relativistic and

Maxwell's electromagnetic theories. However the approach has been ab-

stract and does not readily display the effect of the new point of view

upon the classical physical concepts. It then seems beneficial to pause

in the development and take a different look at what the Dynamic Theory

says about mechanics.

1. Classical Mechanics

Classical mechanics describes the motion of a system, which

could be a particle, for which the energy of the system is a constant.

The equations of motion may be obtained using Hamilton's principle.

These equations of motion yield trajectories resulting from the action

of forces; they may also be obtained from the principle of least action.

When the action integral is treated as a variational problem with variable

end points the method of Lagrangian multipliers yields the same equations

as does Hamilton's principle. However, if the variational problem is

transformed to a new space in which the new variational problem has fixed

end points, then the metric for this space is displayed, and the equa-

tions of motion are goedesics in this space.

In classical mechanics the principle of least action as formu-

lated by Lagrange has the integral form

2P

PI
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In curvilinear coordinates the integral assumes the form

P2 d _ t(P 2 ) dxa dxa  xa  dx TA = $ mgaB . dx0 = I mga dt

Pl t(pl)

where a,a =1, 2, 3,

or defining

e dxadx
B

T aa d-t-(t-

the integral becomes

t(P2)

A I 2Tdt.
t(p l )

Then the principle of least action may be stated as:

Of all curves C' passing through P1 and P in the neighborhood of the

trajectory C, which are traversed at a rate such that, for each C',

for every value of t, T + V = F, that one for which the action in-

tegral A is stationary is the trajectory of the particle.

The transformation of variables may be carried (ut to display the

metric

(dt)2 = h dxadx (11-42)

where

h 2m(e -V)g

Here different particles in the same field and with different energies

e would appear to have different geometries which has been previously0

taken to be impossible and therefore precluded the geometrization of dy-

namics (see page 6 of reference 1). However, in view of Weyl's generaliza-

tion of geometry, treating the variational problem in the principle of

least action as transformed to a new space in which the variational problem
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has fixed end points, in effect, is a transfon.iation into a space with

Weyl geometry where the gauge function is 2m(eo-v)gaa. Thus changing

the energies co does not change the geometry since it will still be a

Weyl space.

Suppose now that the concepts of classical mechanics is compared

with the concepts from the point of view of the Dynamic Theory. The

energy OT the system in classical mechanics is a constant of the motion

and therefore the change in kinetic energy is the negative of the change

in potential energy, which may be written as

dH = dT + dV = 0

However, for classically, conservative forces dH is a perfect differential.

Therefore for this system with only one work term the force is a function

of position enly.

This suggests the associatior of the classical energy of the system,

H, with the system energy, U, which is also a perfect differential. Now

if the system is isolated, or Q-conservative, then

0= = dU - Fdq.

But if dU = dH = 0 then F must be zero. This points out an important dif-

ference between classical physics and the Dynamic Theory. A classically

conservative system is one for which the systems energy is a constant of

the motion. However the Q-conservative system, within the Dynamic Theory,

is one for which ZQ = 0. Thus a Q-conservative system which is also con-

servative in the classical sense must have no forces F which may depend

upon velocity as well as position but may have forces which arise from

U _ F and must be functions of positions only.aq
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2. Relativistic Mechanics

Suppose we now turn our attention to the mechanics of special

relativity. In the special theory of relativity Einstein sought to put

Newtonian mechanics into a form which would leave the speed of light

invariant. The resulting dynamics exhibits the notion of a unique

velocity in a similar sense to the previously defined absolute velocity.

I The modification required the motion to be such that

2 (mq*6A + F6q) dt = 0,

tl/C 2

where F is a force which is a function of position only.

The factor! -1 /c2 displays the qualities required of the

integrating factor 4(q). Therefore consider a modification of Hamilton's

principle in terms of the system energy U, the force F and the integrating

factor €. The modified statement then would be that the motion be such

that t2
26U Ff ( + q dt= 0.

tl

It can be seen that if I(q) = 1 then F must be a function only of q and

classical mechanics results. It will be shown that if (q) = 1 -

relativistic mechanics is obtained.

= Now for an isentropic system

dS = dU F dq,

or B dU F

j U= f Fdq.
A € A '
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This would be the classical work-energy theorem if 1 1. For any €

dU Fd 4

If the system energy U is taken to be the kinetic energy and

defined as

UE~-mq(!1-43)

then

or Newton:s second law.

This tends to indicate that a modification of Hamilton's principle

would apply to a system for which dS = 0. This modification would be to

assume that for an isentropic system the motion is given by the principle:

If a particle is at the point P1 at the time tI and at the

point P2 at the time t2 then the motion of the particle

takes place in such a way that

t2  t2
6 + F dt 6 f L dt 0,

t(i) 6(;) t,

where q = q(t) is the generalized coor-nilate of the particle

along the trajectory and q + 6q is the coordinate along a

varied path beginning at P1 at the time tI and ending at P2

at time t 2 .

The hypothesis of the fundamental lemma of calculus of variations

is that L be a real continuous function, therefore, the mixed second

partial derivatives of . must be equal, or

2L B B2L

6d



Now

so that

3L1U and CL 1 U + +Fl.

Then

' 2 L _1 2 2 i~+AL CIF

This requires that

9 U ( + F) 1-4

-- However, dS is a perfect differential so that

a~ as

Since

- or

In order that- dS and dL both be perfect. differentials at- the s&i=e

tire then

The-efore
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= .... . . .. . -- ... . .. - ... .. ... "-- .. . . . . . ... .. . -.. . . .

, 1

and

dL = p dq + F(q) dq.

The equations of motion would be

0 q , (11-49)

or

t - 'L _ F(q).

If m - constant then p = mq/ and

dL= .dq + F(q) dq

while

dS = g d - F(q) dq.

Then fc dS= 0

S-- T(') + V(q); L T(q ) - V(q)

where

F(q) -. aq

How then may 4( ) be determined? The precedence set by thermodynamics

is to determine 4(i) experimentally. Experiments with a charged particle in

a magnetic field, such as a mass spectrometer', show that

() / - /c2  . (T1-50)

In special relativity this factor comes from the metric of Minkowski's

space-time manifold. The Dynamic Theory give3 us the same factor for

systems which are very near an equilibrium state since for such a system

the coefficients of the metric become constants, which are the second

partial derivatives of the system energy function evaluated at the equili-

brium state. Therefore The Oynimic Theory produces Einstein's Special
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Theory of Relativity for an isolated system very near an equilibrium

state.

Notice that the integrating factor in equation (I!-46) satisfies

the renuirements for the integrating factor with c as the absolute

velocity.

If this integrating factor is substituted into the equations of

motion the resulting equations are

d mg F
zT [ ] = q) '

then

dL m~d + F(q) dq,

mqd q

L(q,q) - L(qo,qo) = f + f F(q) dq
qo 1- 0 2 /c 2  qo

=mc2  1 - 2/c2  Iq- V(q) + V(qo)

If L(qo,q O ) : L(O,) 0 0, then

L(1,q) = mc21 1 - c - V(q) . (II-51)

With the exception of the additive term mcL this is the form of the

relativistic Lagrangian when m is interpreted as the rest mass, and

since additive constants in the Lagrangian do not affect the equations

of motion, this Lagrangian yields equations of motion consistent with

the special theory of relativity.
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The first integral of the equations of motion may be written as

Ft[L -*[L. - 4pj 0,

therefore

L - 4~p constant.

Then define this constant ef the motion, which may be called a "Hamiltonian",

by

!I =-p - L (11-52)

Since the Lagrangian is given by

L = pd4 -~ )

I the H-amiltonian becomes

H 4 p - fpdq + V(q) =f~dp + V(q).

Then the Hamiltonian equations of motion may be written as

F~q) (11-53)

For the particular Lagrangian

L = ic2 (1 1 -4/ ]2 V(q)

the Hamiltonian is

H ~~~ -gm 14Tc]+V

=mc
2  1) l + V(q)

-*2 2

or

H c in2 (y-1) + V(q) (11-54)
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where

Then defining E(q) - E0  mc2(y - 1) implies that

E2 = EO2 + (pc)2. (I!-55)

In the special theory of relativity the Hamiltonian, which is inter-

preted as the energy of the system when m is the rest mass and c is the

speed of light, has the same form as equation (11-54). However, in the

Dynamic Theory the Hamiltonian is not the energy of the system since it is

the system energy U and is here given by U = q since -was taken to

be zero.

Thus inter-relationship between mechanical concepts of classical

mechanics, relativistic mechanics, and the Dynamic Theory may be displayed.

This approach does not show the rigorous development which could have been

achieved by beginning with the metric, restricting the system to be very

near an equilibrium state in order to obtain ccnstant coefficients then

applying the principle of increasing mechanical entropy. Such a procedure

only duplicates Einstein's development of the special theory from Minkowskis

space-time continuum and is also presented in a generalized version later

in this report. Therefore the rigorous development will not be attempted

here.

Suppose we now return to the question of whether the force is really

a function of position only or is also a function of velocity as taken to

be the case in the introduction. To view this consider the differential

expression of the first law

d dU - Fdq
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3| -q=q 2/c2

I but U = *2 and F 4F(q) = 1- I 2 F(q) so that

dQ = m~d- 42/c2 F(q) dq

I If the first law is taken to be the "real" expression of conservation
IA

of energy, as is the case in the Dynamic Theory, then the "real force",

j F, displays the velocity dependence believed to be the case. On the other

hand the mass appearing in the first law is the "rest" mass and does not

depend upon the velocity. However the first law is a path dependent

function and as such may not be integrated until the path is known there-

II fore its utility is limited.

The second law provides a path independent function whose differential

is given by

dS dU - dq

I2, /d 42/c22

I or, since U = = l -, F(q), and ) = 1 - ,c@

dS 2 -F(q) dq.
4 - 2/

In this differential we see the appearance of the relativistic, or

"effective," mass and an "effective" force which is a function of position

only. Thus it is obvious that we cannot interchangeably use the concept

of rest mass and velocity dependent forces as compared to relativistic mass

and velocity independent forces. This is*.because, in the Dynamic Theory,

I there are two differential expressions which may not be used interchangeably

si,:ce one is the result of the first fundamental law and is not an exact

'I differential while the other comes as the result of the second fundamental I
[ law and is exact. -
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3. Non-isolated System

Thus far we have consistently required the system to be isolated.

Obviously there is a large number of physical phenomena for which this

restriction may not be used, even as an approximation. Therefore, relax-

ation of this restriction should provide description of a large and Impor-

tant class of systems.

One of the benefits of the Dynamic Theory is the capability of

using procedures currently used in one branch of physics In another where

prior to the unification displayed here would have been thought impossible.

A system to which this procedure should produce significant results Is a

non-equilibrium thermodynamic system. Thermodynamicstells us that we

must minimize the free energy, but the ability to use this as a variational

principle to obtain equations of motion is a procedure which the Dynamic

Theory now makes possible for this thermodynamic system.

This research has not yet considered non-isolated systems though some

discussion'of this class of systems is contained in reference (9) they re-

main a possible subject for future research.
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F. QUANTUM EFFECTS

Before displaying the quantum effects of the Dynamic Theory it

seems important to briefly discuss my philosophy with regard to current

quantum theory. I view with awe the strength of the quantum theoretical

structure which has swept aside virtually every attack upon it. Indeed

its successes have mounted so rapidly and stand so firmly that to express

disagreement is taken as sacreligious. Yet I can not subscribe to all

the teachings of current quantum physics. However, my scepticism concerns

only the implication that Heisenberg's uncertainty principle applies to

all physical phenomena.

On the other hand I cannot embrace Einstein's celebrated quote "God

does not play with dice" completely either. Rather I would like to modify

St this quote to read "God does not play with dice all the time." For I feel

that quantum effects depends upon the constraints placed upon a given system.

This is dkin to the vibrating string which is anchored at both ends and

vibrates, ideally, in certain allowed modes or the string which vibrates at

one end with the other end free.

How then can the limits of applicability of the uncertainty principle

be obtained if indeed there are any limits to be placed upon it? Suppose

we consider the Poisson brackets which are fundamental in classical mechanics

and form the link between classical physics and quantum physics through the

correspondence principle.

The classical Poisson brackets represent the Euler equations resulting

from a variational problem minimizing a functional subject to a constraint.

Therefore consider the definition, in tensor formalism,
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g] af-w 39 a
ax aPi api ax

where the canonical momenta Piis defined in the classical fashion.

Let f =x' and g H where H is the Hamiltonian, then

fx, 21 axi ap a. Vx

3H +H ax3 dt
ap. ap.

since the equations of motion yields

dxaH and-f &a
api x

Therefore

tx, H~ ( 11-56)

if x3 is independent of the pi's so that

ax3

aPi

Consider

[p*, HI - ax
ax ap4  ap x

- a~ .~ 6..dp.

ap.
if p. is independent of the x 's so that -4=o.

ax1

Thus if the pi'1s and the x1 s are independent then equations (11-56) and

(II-57)are the Poisson bracket equations of motion.
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k Now consider the fundamental Poisson brackets,
[x , x] rp~ p.]; and lxi, p*]

First
[x,~ x a~ ax, ax3

x3 ax, 0pkax
kE k k

M-ax a- ax

ik 5 0jk

which is

[x 1  x~]=a
api ap.

or [xJ1~ o if (1) the x ' s are independent of the pi's or (2) if

axj= ax1

api ^pj

The next fundamental bracket is

[I p] 3 ap~i ;Pj ;pai P~

P apk axk

or [pi pzI o if (1) the pi's are independent of the x1gs or (2) if

axi ax1

The third bracket is

Ai ax i ap. ax apj
Ex Pjj k-----T 3a ak ax

ik ajk -~ak

ak

3 apk ax~
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then

[xip.] = 6i.

if the pi's and xi's are independent.

Thus it can be seen that if the coordinates and canonical momenta

are independent then the classical Poisson brackets are given by

[xi , x j ] = 

[pi,pj! = 0 (II-58)

[i,pjl = aij

Indeed this is the condition used in developing the Lagrange and Poisson

brackets. However, the tensor formulism may be used to investigate the

requirements placed upon the metric coefficients for this condition of

independence of momenta and coordinates to hold.

i P For this conditionConsider [x ,pi] if the condition F s tion
" i  j _. xi 3 Pk

[x x x

ii a- 2k 13 a-ax
[x'j] = i Pk x  i Pk x

X1

or

Therefore if then x1 commutes with D.. What conditions .mustaxJ  Bxl

the g j's in the metr;c for the space satisfy in order to achieve this

condition?
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The canonical momenta are given by

Pi = mgix

where in general the gijs are functions of the xi' s. Hence the condi-

tion required for the momenta to be independent of the coordinates is

that t;- g.js be constants. For this condition o be met it is necessary

and sufficient for the Riemann curvature tensor formed from the gij's to

be identically zero. This requires that the Gaussian and Einstein curva-

tures to be zero also since the Riemann tensor is

__- a x 6
R +

Ry6= I+

while the Einstein curvature is

R = gIVR9 = g vR

and the Gaussian curvature is

= K= - R.

The vanishing of the cuevature is necessary and sufficient for the

existence of a transformation to a coordinate system where the metric

coefficients are constants and therefore guarantees that the canonical

transformation in classical mechanics can be made. Then the conditions for

= Ti-
Z [x, Dj] = 6i

is the vanishing of the space curvature.

The equation Rij =Pgij is Einstein's gravitational equation at points

where matter is present. Therefore, when the Riemann curvature tensor

vanishes the rectilinear geodesics of the manifolds corresponds to tne tra-

jectories of particles in the absence of a gravitational field. Consequently,
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if the manifold with the quadratic form

(d6)2 g2 dxidxj

is to account for non-rectilinear trajectories, the Riemann curvature

tensor must not vanish. Then the pi and the xi will not be independent

and the fundamental Poisson brackets cannot be written as given by

equation (11-58).

In particular, the existence of a function p in Rij = gij such

that is oossible and in that event [x±,p] = o. Now the

quantum Poisson brackets are required, through the correspondence principle,

to correspond to the classical Poisson brackets. Obviously in the event

of a curved space it is possible that the xi's and pi's cmuute thus re-

moving support for the applicability of Heisenberg uncertainty principle.

This, of course, cannot be taken as proof that the uncertainity principle

is applicable only in Euclidean spaces since the correspondence principle

is a correspondence only. However it does represent a possible limit of

applicability which we shall see again from a different point of view.

I. 1927 F. London derived quantum principles from. Weyl's geometry.

However, the results of his work ,ade it difficult to dWfine length as a

real number and because of this Weyl later inter-reted the matheatical

fornulism of his unified thec'- a. r-rnected with transplanting a state

vector of a quantum-theoretical system.

Suppose that we consider an isolated, or Q-conservative, systei so

that dQ = o. Then because of the second law dq > o which is the principle

of increasing -echanical entropy. Then certainly (dq0 ) = >o and also,

since

(dq°) 2 f A
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then

f(d )2  .

However if f < o then (do) < o since it is the product wiich must reain

greater than, or equal to, zero. In this case

do0  ,I-p /-(do) .

But d(d,) Ok (dG)

and 5 d(do) = dx k

- which iies that the elenent of arc (do) is Oven by

(da) = (do) 0 e dxk

where (do) 0 is some initial value o" the elemzInt of arc.

?cw suppose an equilibri'n, or reversible, state is desired so that

dq o. Thus the desired condition is a null trajectory of t2e (dq°)

.-anifold. T hen,' f f o the desired condition is also a null trajectory

of the (dc 2 m- nifold. This in.lies that

Id(do) =o

(d) = (d,)O

so that

e =
which is satisfied only if

J_. k = 2zin

where n is an integer. This is the ouantum condition London introduced.

To illustrate how this condition arises frorm the dynamic arproacn

suppose a description of a hydrogen atom is desired. A hydrogen ato-

is in a stable condition ane-, if isolated, satisfie the conditions
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The imaginary al presented the difficulty, in London's work, of

defining length as a real number. In the dynamic approach real distance,

or length, may be defined, and properly should be, in the (dq°) manifold.

Recalling that the definition of the potentials is

Ok " k±

it may easily be seen that if f < o then *k becomes imaginary as does the

length of arc in the (do)2 manifold since the length of arc is given by

o a V(da)

However the arc length in the (dqO)2 manifold is real since dq° > o by the

second law.

It should be noted that the conditions for quantization are not restricted

to UQ a o, dq0 a o, and f < o as used here. Any set of conditions which

results in the final element of arc (do) being equal to the initial element

of arc (do)O results in quantum conditions. It is particularly significant

to note that the quantization involves only forces which may be described in

terms of the "distance curvature" and does not involve forces describable by

a vector curvature. Thus interpretinn the gauge potentials *k to be electro-

magnetic potentials provides quantum effects for electromagnetic forces.

While interpreting the forces describable by the vector curvature to be

gravitational removes the possibility of achieving quantum effects involving

gravitational forces alone.

Here, again, is a distinction between curved and Euclidean manifolds.

Though here it appears slightly different.' The Dytiamic THeory requires a

quantization. However this quantization depends upon the existence of a

gauge function and appropriate restrictive conditions. Thus a curved space

may be exhibit quantum effects but only if the curvature is accompanied by
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a gauge function, or a distance curvature.

Thus the Dynamic Theory, through London's quantization, not only

supports the contention that "God does not play with dice all the time"

but, further, may supply the answers to two questions concerning quantum

physics. The first qpestion is, "What is waving in the wave function?"

London showed that the wave function is directly related to the element

of the arc length in the sigma manifold. Therefore the "waving" is the

tendency of this elemenL of arc length to increase and decrease around

a closed path. Using the calculus of complex variables the quantum number

becomes the order, or multiplicity, of the zero of (do).

The second question is how gravitational effects may be quantized?

Here the answer becomes, "It can not." If we assume the validity of

Einstein's General Theory of Relativity, which is included within the

scope of the Dynamic Theory, in equating gravitational effects with the

curvatdre of the space-time manifold, then gravitational effects alone

may not be quantized. However, electromagnetic effects within a gravi-

tational field may still be quancized. However, the quantization will be

affected by the vector curvature.

j. 82
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G. SUMMARY

When this investigation was initiated it was concluded that

Einstein's postulate of the constancy of the velocity of light could not

be adopted since it was felt that experimental evidence in electromag-

netism alone did not justify applying it as a limiting velocity to all

types of forces. However, we find that this is required by the Dynamic

Theory which approaches physical phenomena from a different way. The

new viewpoint indeed supports Einstein's every contention including his

uneasiness concerning quantization and it does it in such a way that it

seems only the early successes of his theories kept Einstein himself from

coming to the same realization.

This is of course speculation but it was Einstein who returned to

very fundamental concepts in order to establish a basis for his relativity

theory. He was also known to be aware of the tremendous strength of

classical thermodynamics since he wrote, "A theory is the more impressive

the greater the simplicity of its premises are, the more different kinds

of things it relates, and the more extended is its area of applicability.

Therefore the deep impression that classical thermodynamics made upon me.

It is the only physical theory of universal content concerning which I

am convinced that, within the framework of applicability of its basic

concepts, it will never be overthrown-" Thus it seems only the fact

that Caratheoaory's statement of the second law, which is the key to the

development of the Dynamic Theor , did not make its appearance before the

relativist;, theory had achieved such stupendous successes kept Einstein

from eventually investigating its possible extended application.
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The key points in the develcpment of the Dynamic Theory seem to be;

the recognition of the generality of the thermodynamic laws and their

independence upon the number or type of variables considered and the

recognition that the quadratic forms associated with the stability con-

ditions form natural metrics leading to a geometrical description of the

dynamics of the system independent of the variables used in the description.

There are numerous conclusions and implications that could be reiterated

here, however, only a few of the seemingly more significant ones will be

discussed. The first one is the existence of an integrating factor for

any system describable by the first law, particularly that this integrating

factor is independent of the type of force considered. It is this fact

which ultimately leads to a unique limiting velocity for all forces. How-

ever, in speaking of the absolute velocity, for mechanical systems, care

must be taken to point out that, as far as the three laws are concerned, it

does not represent an absolute barrier. Rather the laws only state that,

for a mechanical system with only three work terms representing the workIdone by three spacial forces the absolute velocity represents an upper and

lower limit. Thus solutions with velocities greater than the speed of

light are also allowed. However, so long as the system is subjected to only

these three forces then its velocity may never cross this ba--ier. This

absolute barrier effect may be expected to change if another force term

representing an additional dimension is found mecessary.

The reduction in the number of fundamertal laws or postulates is

significant. This together with the unifying effect of the threK laws

promises to simplify the study of physical phenomena by founding the entire

[realm of physics upon a common set of conceptualizations.
84
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Perhaps the best way to summarize the unifying effect of the

Dynamic Theory is to consider a vin diagram which depicts not only the

overall realm of applicability of the theory but indicates also the

effects of different restrictions.
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ClasicalDyna-mic Theory

r Thermodynamics

1E Q-Conservative

(RQ=O)_________ __

General Theory

Quantum Effects
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III FIVE-DIMENSIONAL SYSTEMS

During the preceeding development displaying the unifying effect

of the Dynamic Theory there did not appear anything which approached a

description of nuclear effects. Of corse quantum theorists may response

that the nuclear effects lie within the realm of quantum theory. This,

however, does not seem to be a strong argument since current nuclear

theory appears to depend upon a number of ad hoc postulates.

If it is supposed that nuclear theory cannot be extracted from some

aspect of the preceeding four-dimensional world view then how might the

Dynamic Theory produce a foundation for nuclear theory? At this point

there appears to be no obvious way. There.ore let us proceed on a dif-

ferent tack.

Thus far we have constantly adhered to the policy of dividing systems

into two types; thermodynamic systems with only a work term of the pdv

type and mechanical systems with three mechanical, or spacial, work terms.

i- Now the generality of the adopted laws places no restrictions upon the

F- number or type of variables used. Particularly there is no restriction

coming from the laws themselves which says we cannot use four work terms,

one the thermodynamic pdv term and three mechanical Fdq terms. Obviously

pdv itself is just another Fdq type term with the pressure as the general-

ized force and the volume as the generalized displacement.

The rub comes in attempting to vis'alize a world description in five

dimensions. Many arguments may be envisioned which tend to imply only a

four-dimensional manifold is needed. The kinetic theory of gases relates

the pressure to the average velocities of the particles contained. Doesn't

• - that -imply that thermodynamics ultimately rests upon a four-dimensional
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manifold? Recall that the system in the kinetic theory is basically in

equilibrium.

Statistical thermodynamists may claim that thermodynamics is basically

statistical in nature and is fundamentally tied to order and disorder and

hence to the four-dimensional world of quantum theory. But remember that

the overall system, to which the statistical approach is applicable, is a

composite system made up of many subsystems each in an equilibrium state.

Still there seems to be no substantial suport for a five-dimensional

world from the point of view of current theories. This is to be expected

though in view of the difficulties experienced in the transition from the

classical three-dimensional world to the four-dimensional space-time of

Einstein's theories. Obviously had the extension of the universe been

restricted on a priori grounds to ti "ee-dimensional Euclidean space,

Einstein's theory would have been rejected on first principles. On the

other hand as soon as we recognize that the fundamental continuum of the

universe and its geometry cannot be posted a priori and can only be dis-

closed to us from place to place by experiment and measurement, a vast

number of possibilities are thrown open. Among these the four-dimensional

space-time of relativity, with its varying degrees of non-Euclideanism,

has found a place. So also may the five-dimensional view of the Dynamic

Theory be found witnin the possibilities. Ultimate judgmert upon its

necessity, or applicability, should rest upon a comparison of the theonry's

predictions with reality.
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A. SYSTEMS NEAR AN EQUILIBRIUM STATE

The metric coefficients are made up of the second partial derivatives

of the system energy function and therefore if the system remains near an

equilibrium state then the value of these derivatives evaluated at the

equilibrium state may be used as a first approximation for the metric co-

efficients. In this case the geometry will be Euclidean and from the

preceeding four-dimensional development the Euclidean manifold produced

by applying the Q-conservative restriction was Minkowski's space-time con-

tinuum of special relativity.

Therefore suppose we begin an investigation of the five-dimensional

world by staying very near an equilibrium state so as to simplify the

description to a five-dimensional generalization of Minkowski's space-time

manifold.

1. Equations of Motion.

Suppese that we consider soTe sort of system requiring four work

terms and for the momen-. not concern ourselves as to exactly what this

system might be. Thus for our system we will have thermodynamic ats well as

mechanical variables and the first law becomes
ECL

--- Q = dU + Pdv - F dqa 1, 2, 3.
Where the Q, U, v and F are considered as specific quantities. That is

, -a

these quantities are related to a unit of mass such as is customary in

therTdvnanics.I The specific volume is the reciprocal of the mass density, y, then

using the mass density instead of the specific volume the first law becoTs,

Sd- = dU -(P/y 2)dy- F dqa; a = 1, 2, 3.

EmThis law now requires that the system's specific energy U be a function of
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five independent variables so that

U U (S, q1, q2 , q3, y).

Thus the first law requires a five-dimensonal manifold of specific en-

tropy, space, and mass density for a general system. Since the system

under consideration needs both thermodynamic and mechanical variables we

can no longer refer to the entropy as mechanical or thermodynamic however,

the limiting case where the mass is held fixed must produce the mechanical

entropy.

The procedure established by the Dynamic Theory is to take the sta-

bility condition quadratic form as the metric for a stable system. Thus

the coefficients of the metric become the second partial derivatives of

'he energy function. In order to simplify the metric suppose for the

present that we restrict our system to be very near an equilibrium state

so that we may consider the second partial derivatives to be constants.

This is in essence considering a local Euclidean manifold which the symmetry

of the gpometric connectiops guarantees that we may do.

Since the metric coefficients are constants a transformation may be

found such that the cross terms are zero. Then in this coordinate system

the m-etric becomes

c2(dt)2  (dq°)2 + dqdq + (dq4)2; 1 1, 2, 3. (1II-1)

when

q S _q o and Q" _
t a0

If we again consider the restriction 30 0 so that we are talking

of a Q-conservative system for which the principle of inrreasing entropy

holds, then we have the variational principle given by[ =7 O. (111-2)
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Solving equations (ITI-1) for dqo and squaring we get

.1 (dqo)' = c2(dt)2 - dqd'd - (dq4)2  (111-3)

or

(oo)2 =c 2 _ ga d (a do a. 1, 2. 3, 4

TVtr

The entropy manifold given by equation (111-3) is a five-dimensional

Minkowski-type manifold with coordinates of space-time-mass. We may there-

fore follow the procedure Minkawski and Einstein used in the Special Theory

of Relativity.

I First, to avoid confusion, let us rename the coordinates as

X0=ct; x1 aq1, x2 aq2 1 X3 =q3 and X4 q4.

ii I Then define the five-dimensional velocity vector as

ui=dxi ;i 0, 1, 2, 3, 4
dqu

and define the five-dimensional acceleration vector as

Ik
I =i:su d-x i dx dxk

6q' dO 2 k' dq 0 dqo

Now the specific entropy is the arc lengtlb and the variational princi-

pie is based upon the entropy. Therefore if we multiply the specific

entropy by the mass density -we have the entropy density. The variational

problem beco~mes

6 f y2dqO)2 =6 f y/a =0. (T11-4)

The Euler equations for this problem are

'i k
Y u

iij
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or

a u jja 1.u'u 1-T + vd a-.Uj x u

-13 '3 -13

Using the fact that g it I the Euler equations becore

ax

where the F~ are force densities.

Obviousl3 if we hold the mass density fixed, u" 0, then the volume

integral of this equation becomes the force-ruass-acceleration relationship

of special relativity.
- 0

Nows i f1  C2 a dt = -u u ; a 1, 2, 3, 4,

then

Fi O.fd
6q dq

-her v2 =u~ 123, 4.
IC- - Vdq

Then
Y dxc 1A_

F~='c.v ti 7c2 2 dt

-c
2  t ~ 6t-

i~ere 8 v/c with v the four-diuirensional speed.

The force density equation may now be witnas

1 dx.
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'c.nsider

dxc 1 dxa y..d(.Y) +dt "
but St a, St

but = v so that the force density eqy'ations may now be written asSt

OdxaQ a0 U 1 dx I
U0 -q- - I - - d:

We ay define = as the effective mass density or "Rela-

tivistic' mass density then

_ dxe ao0 v 4v

-v -c z 6- Y  d-]-C2

By defining Fa - c2 * (Fa) so that

0F- - x a V
- it 2 " rk7]- ,"i-i' IM-6)

We see that this force density becomes Einstein's special relativistic force

density when vu 0, or for constant 'rest oass.m  Thus the eq-utions of

motion, equation (111-6) reduce to Einstein's special relativistic equations

of motions when =0-.

2. Energy Equation

Now for our system the restriction that

I" - p - a 1, 2, 3
dQ =0= dU- - 4 ry-Fd il.T_ a

requires that

dU - dy + F dxa; a l, 2, 3

or if -- is considered as another generalized force density then

dU= F dxc; a = 1,2, 3, 4.
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Thus by integratina the expression for thm syste's specific ernergy
chage e h,,i arrive at the Einste-in e en oatio if whodi 0-

Therefore we shall perfomm t ne t-cration using tke force densities givep

by equation (1!11--b) to get the systm's energy, or

U- ~ F~ dx ~ If

But c252 = ar.i.a:~ ,1.....difoo

zo

Mci -e n upon ua andi not upnx7% or -j, therefore

- =C

or

Ithe interal ereyc~ is considered as t~ -r stem's energy wben

s-.. L c i a I velocities u--; a 1, 2, 3 are taken as zero te~n the interi

eergy &ens-Ity given kby

CA

'It the eeiiru o tion where u:4 is also zero thke internal erer!ow

density isten

- vC constant.
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24 V
By taking the constant of integration to be zero this internal energy

density then corresponds to Einstein's "rest energy" where here the 'rest

energy' is in terms of a four-dimensional "at rest" state.

I If we make the usual type approximation of allowing s2 << 1 then the

-V system's energy density is approximately given by

U ~~ 1 c yv ({)2

-- where here u -L is used. This displays the classical limit systemao

energy density for a Q-conservative system very near equilibrium.

.5I,
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B. SYSTEMS WITH NON-EUCLIDEAN MANIFOLD

Suppose now we relax the assumption that the system is very near an

equilibrium point so that the second partial derivatives are no longer

constants but are functions. This is essentially the same transition as

Einstein made going from his special to general theory, however, the logic

of the transition is much simplier here. The only change in the logic

appears in the relaxation of the assumption of nearness. There is, of

course, a drastic increase in mathematical difficulty since the metric

components are no longer constants.

1. General Variational Principle

We shall consider a system, which may be a charged plasma, that

must be described by both thermodynamic and mechanical variables. When

written in terms of the mass density the first law for this system may be

written as
= "7 d Fadq- ; = 1, 2,Fdq

where the tilda denotes specific quantities.

Following the prescribed procedures of the Dynamic Theory we shall

take the stability condition quadratic form as the metric for our system.

Thus the metric coefficients will be given by the second partial derivatives

-3 U2
h. 2q--T;i, j = 0, l 2, 3,

where q4 Bs_- The metric may then be written asa 0 •

c2 dt) 2 = h00 (dq) 2 + 2 hoa dqodqa + h B dqadqs

where a,S = 1, 2, 3, 4.
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Imposing the restriction that the system be Q-conservative, dQ = 0,

results in the principle of increasing entropy so that

.5s v' V = 0.

Thus in terms of the specific entropy the variational principle may be

written as

6 ydqO 6 f y / = 0.

Solving the metric given by equation (111-4) and squaring yields the

expression
(dq°)2 = {c2 (dt)2 + 2 hoa ['1 dt dqa- ha dqadqB}; a, 1 1, 2, 3, 4

00

with

[] h00  h° h (h°°)z
00 00 00

This metric in a five-dimensional manifold of space-time-mass may be re-

written as

(dqo)2 ( (do)2

00
where

(dq) 2  qij dxidxJ; i, j = 0, 1, 2. 3, 4

(do)2  qij dx dx; i, j 0, 1, 2, 3, 4

with x°  ct; xi  q1; x2  q2; x3  q3; x4 - y/ao" Thus we may write

(dq°)2 = qij dxidxJ = ( (do)2  gij dx dx (111-7)

Having established the metrics in equation (111-7) in the manner

prescribed by the Dynamic Theory the geometry must be Weyl geometry and

defining the potential five-vector as

A nf1/27al- (1I1I1-8)

i- 7ax
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and the field tensor as

Fij -: i,j - j,i(I -9

then we may follow Weyl's procedure in his unified field theory to

arrive at the variational principle

6 [R + IA FjFi j -, - 12 tii)) V- dxs = 0 (111-10)

1 1
where Fij z (X  Fij and i 7 i•

Varying the metric coefficients gij in the variational principle

(III-10) will yield field equations of the Dynamic Theory which are ex-

tensions of Einstein's General Theory of Relativity.

2. Gauge Function Field Equations

In order to isolate the field equations resulting from a gauge

function from the ,eld equation- produced by a vector curvature let us

consider a Local Edclidean manifold for (do) 2.

Now the field tensor given by equation (111-9) has 25 components. We

would like to determine the field equations for these components. The

quickest, though not the only, way is to consider the five dimensions to

be0 bex ° = i c t; xa xa; a = 1, 2, 3, 4.

The field tensor is then defined to be

o i E i E2  i E3  i V0

-iE 1  0 B3  -B2  V1

Fij -i E2  -B3  0 Bi  V2

-i E3  B 2 -B 1) V3

1-i V -V -V -V 3 /
0,. 2 3
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Using Bianchi's identities

FF. a Fki
-- 2-+ + k= 0

ax ax axi - 0

and the various combinations of the indices 0, 1, 2, 3, 4 we obtain the

L field equations
I1

B 0 x + l a-. 0

Vx V +a 0= ~ V +I !V-+ a *0
0oay 0 c at oy

The definition of the 5-vector current density
_ a Fi-a =- J (III-12)

ii

yields the equations

-1 aa_ 4nJ
v + a 4vp x T - - + a

Yc at 0oay C
(111-13)

'- '+ 1 - -o _ - r

c at c 4

Equations (III-11) and (111-13) form a set of seven Maxwell-type

equations which obviously reduce to Maxwell's four equat., - if the mass

density is held fixed.

The wave equations for the new field quantities may be derived using

standard assumptions.

( v) + 1 aVo a4 1 aV oat _c a -~ c _TF UT c tg-

while

V 1- aVa - y 1 t V-

therefore
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V2 1 2o 4_ 4 J -

For the vector field we hawz:-_v o  (47
f (-f . ) + ,a -  

_)

and

Vx (Vx V) + V2 IT+ I V 0= f
c at o 4

therefore V2 'T I 32V L7-- ao  (L2:E.

V -_ +. = _ +O (x
=51 c 4 C a tay 0 Z)

ii aV
But 4%p-a-i so that

0ay
1 ~2Vo a_ a Vo

V 2 L -14 - a V4wp - a 00 2 t2 C -t- 0ay o at

andVx- T = 4 - a -so that
c C 0 Dy

1 azV 4-n j + ao L4 7+ 2 - aV

CT - - 2 c 0 By c at o 7

Now since the wave equations for the usual vector and scalar po-

tentials are
1 a2  __"0

v "- 1-' at-""

=C at2 -4p

We may differentiate these with respect to the mass density and substitute

them into our wave equations and get

V2 1l2 ic 2 41T 4+ a 22V 0- 2VO -"T -at 0' cE2 - t 0ao27

(111-14)

V2 V a a2V =Lj, +a -tzE V
c2t =3t- 4c a0 T 2 at 0  y]
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where Vo  Vo + ao y and V-a ;A

3. Interpretation of the Current Densities

For our system the conservation of charge becomes

aJ.Bi
- 0; i =0 , l2, 3, 4

ax

so that

+ + a(III-)
at 0y

Thus we see that defining the current densities by equations (111-12)

leads us to consider the new component of current density J4 which alters

the conservation uf charge equation, (111-15).

Since equation (111-12) defining the current densities involves an

interpretation linking these equations to reality there seems to be no a

priori reason for this defining relationship. Defining the current density

in this manner introduces also the necessity of interpreting the new term

2, which in turn requires changing our concept of conservation of charge

to that of equation (111-15). While the extension to five dimensions may

well require changing our concept of conservation of charge, just as the

step from three to four dimensions required a change in the conservation of

mass, it should be possible to appeal to experimentation to determine this

requirement.

Suppose we look at the defining relations

@aF..
0 (111-15)

then equation (III-ll) becomes
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V E a V_°  - a

o 10 c at o ay

+0 .
(111-17)

c at

So that we may define the charge density as

p 0 a 0  (111-18)

and the current density as

aoc a - II- g
- (y

Substituting equations (111-18) and (TII-19) into the remaining equation

(111-17) we obtain

+ ap =0 (111-20)

which is the classical conservation of charge equation.

Thus if we use the defining equation (111-12) we are faced with

interpreting the new term ,1 which has its origin in the thermodynamic

variables our system. While if we choose the defining relations (111-16),

(111-18), and (111-19) we may keep our concept of conservation of charge

but this requires us, by equations (111-18) and (111-19), to consider

currcnt densities to have their origin in the thermodynamics of our system.

4. Additional Developments of the Five-dimensional field.

a. Energy-Momentum Tensor

If we follow the approach of relativistic electro-dynamics

we may define the tensor {T} in terms of the field tensor {F} according to

T~~jk it (k-,k [F + jkFst Fst].
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Recall that the 5-dimensional field tensor is given by

0 iE1  E. iE3  i'V

-iE1  83 -B2  V1

{F- -iE2  -B B BV

-iE3  BI820V
0 11 ~

-iV -V -V -V

Using the field tensor to calculate the comnponents of the energy-

momentum tensor we find that the components are given by:

T Ce- x B) + V V; a -1, 2, 3ofta 0oa

To = [E2 +B2 +V2 +V2)

T ff x T)-E2  a 1, 2, 3
4a W1 [Oa a

and = + BB - ~- aS [E2 + B2 4 V0
2 -V]

where a. 1, 2, j

The field energy density may be defined -by

8-,t ff N.+ V.- V + V 02

and the electrical Poynting vector may be defined by

cE (x.

Now the electrical Poynting vector represents the outward flow of

the electromagnetic field energy through a surface. Thus if we take the

tctal iector, whose components are T0  to be the total flow of energy
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the,. the vector, with comnents, VoVa , must be the outward flow of

energy duc to changes of the mass density within the surface. Therefore

let us designate the mass energy vector as

so that the total energy vector is

whose components are
C ~ + Vo ] I,.crl T

a [(r a 0a 'oa

The Dynamic stress tensor may be defined as the three-dimensional

tensor whose elements are

TD  1

The Maxwell stress tensor is defined in electro dynamics as the three-

dimensional tensor with elements
1 1 B2

l~r 'r r {EE Btr- a [ 2 + Vii

a S

Thus. in terms of the Maxwell stress tensor, the Dynamic stress tensor

may be written as

TD  - 1s - " - g s[ V2 
-Vo)

"

Then in terms of the aboe defined quantities

c
r_.-

T-'} Vw + (g x ']

i(r •- T X[ +(x ..V2 + 3.2 -E 2 -V 2]
-97 C
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It {1 V 2 r

tr{*ijj ii 0P

x [B2+ V2+ 2 + 2 E + B2  
V2 V2)

1i 0
= T1-{B2 B 2 ] + 2 T 22

B +(E 2+2 E2 -210

b.~~~V Foc Dest Vecto

b.Tohe frdensity vector abedfnditrmofheivgnc

of the energy-mo.mentum tensor. Therefore suppose we calculate the 5-d

MA ~ divergence of the tensor {.T., or

3Tk -a [F_F + F .F]
k jxT tJ9k T 'jk .

Because of the anti-synuaitry of Fik the fi rst teni may be wri tten as

F F
k 717 kL

;x ax

By interchanging the indices k and 9.

BF. ak 1 t aFF.
F F,= ( +

x k A . k I Fzk0ax Ox ax

Using the Bianchi identity

aF. 3F aF
+ 0

3x ax ax3

The terms contained within the parenthesis may be written as

3F. l Fk la(F kF~

z - x 4 i__ _ax axj ax
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Substituting this back into the exoression for the divernaenee the

last term will be cancelled because t. k, .6, and t are durmTy indices.

Then the divergence bect'nes

FFk

-'.FX -_X

By interchanging the indices k and t on the right-hand side we obtain

:;Tk 1F
LA= 1- F.,(12)

The Dyna-mic Force D1-ensity S-vector m~ay now be defined as

K Div. ITI

-'Therefore the corponents of K are given by

Kj 'jkL
3x

But the 5-vector current density is gven -by

kz -4z

.)-us the ccrmonents of the 5-vectcr 'force density become

I ~~~K.: = F~~J)=!JF

Now, since =(c,~ .,te

I ~K' _
0 C

Ifo an

y.06



to the four components of the Lorent: force density should Vo = V = o.

With the interpretacion that the four force density components with

subscript 1 through 4 are the force density vectors which appear in tha

first law as F then the force density vector provides the connection

between the first law and the geometry of the sigma manifold discussed in

section II-D-2. Thus the existence of the vec- r field i is also de-

manded by the Dynamic Theory and need not exist as a separate assumption.

C. Equation of Energy Flow

Consider the zeroth component of the Dynamic force density

5-vector.
aTok aT aT aTo 4

K V ax0  axa 3X4

Then
'as

_E a (T V)~
-[J.E EV+ I .c J4Vo 57 CT c -a 47r x4

or

1'I. a~ as 1 a(PV
cJ 4 VO1  c at ax

0 at a - ay
,axa a

,earranging the terms

div~+~--E*J-0 a a(f.V)div S + ay J4Vo +

while separating out the electrical Poynting vector leads to

i ~ ~~div E + _[:_.-_JVo _ div Sm +  a
dE at 40 m T~* ay

This then is the 5-dimensional energy flow equation.
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Momentum Conservation

The expression for the conservation of momentum may be obtained

from the space portion of the force density 5-vector,
K _ k o + a + a' a = 1, 2, 3.

ax K- ax ax x
aT

But D is the 3-d divergence of the Dynamic stress tensor {TD} thereforeax0

l= S + div {TD } + ao V.of+ (V x

If we consider a volume in which all the material is contained and

outside of which the field vanishes, then integrating over this volume yields

Sv + 1 a _ a a[V 1 + (V x B)]}dv = fv div{TD}dv

The integral of T gives the total force (i.e; the time derivative of the

mechanical momentum T less the vector iv ).

Now define the vector

S--t a0  -2

Then define

fv " d -

so that

d (T + fvdiv{TD}dv
dt "

Using the divergence theorem the volume integral may be converted

to a surface integral so that

d + = s{T D } • da
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If the field vanishes outside of V, it must do so also on the boundary

surface s, hence

d

Therefore it is not the mechanical momentum p but the quantity p +

which is conserved. Therefore we must interpret g as the momentum of the

field and
- I a [V-E+ (V x ) + } ldt

g 7 3 V_ =$

as the momentum of the field.

e. Gauge Field Pressure

The Dynamic stress tensor is given by

T{E + B B - E2+ B2 + V V2]Tit=  a {EE a BB a Va " a 0

1 83 2
= - . [E2 + B2 - V2 ] - V .

Now separate the 3-d Dynamic stress tensor into a traceless and an

isotropic tensor.

{ETD _ E + B ' - V .[E2 B2+V2 V2]}
aa 1Tr ai a5 a6'f0

{EE + BB - VV [E2- + B2 + _ V2]aS a aS 8n CL

[E E +B B -V V S[E2+ B2-V2]-(l!)(-L)6 oE+23V-2
41- a a - (.-)a ~ - 3 -0 5[ 2 B2 3 2- 2

~t +t

aa aa

where

t - EJE +BB 5 -VV 5  (+ )[E2 + B2 V2 ]}
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and U
1-"( ) 6 [E2 + B2 + 3V2 V2

Noo[ow tr{tel = (.)[E2 + B2 - V2 - (E2 + B2 - V2)) 0

while

t{T =-( )[E2 + B2 + 3V2 - V2]r .8

Consider the definition

ta t- ( 6 [E2 + B2 + 3V2 -V 2

Then

t =- (I-)[E2 + B2 + 3V - V2 ]

and

, 0 0

0

The isotropic part of the stress tersor is usually called the "pressure".

Therefore define

3p t

in accordance with customary notation, so that

p = - 7) + + 3V2 - V2 .

With the exception of the factor of 3 this reduces to the "radiation

oressure" -or an electromagnetic field when V = Vo = o

Note tat this pressure may be zero since it is the sum and difference

of squares, or p o when

V2  E2 + B2 + 3V2

This may prove to be an important point when considering boundary con-

ditions in cosmology or elementary particles.,
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C. QUANTIZATION IN FIVE-DIMENSIONS

The preceeding development provides a tremendous wealth of mathemati-

cal abstractions. However, there seems within it no readily apparent

method of interpreting the new fields. if there appears to be no physical

entity which may be associated with the new field quantities then the develop-

ment will have gone for naught. On the other hand wit! the notion of nuclear

fields in mind it seems that if the new field quantities are included in a

quantized picture '.hen perhaps the relation to nuclear fields may be made.

In the following the requirement for quantization is provided by ap-

propriate restrictions upon a system whose description is taken from the

Dynamic Theory. However the use of the five-dimensional Dirac equation

has not yet been shown to result from the Dynamic Theory. Schrodinger's

quantum mechanics may be obtained using London's work, but I am not aware

of a procedure to arrive logically at Dirac's equation even though I feel

that the method exists. As it now stands the use of the generalized Dirac

equation must be accepted as an independent fundamental assumption.

1. Quantization

The system under consideration now is a five-dimensional system

with arc element

(dqO)2 = f (da)2

Now since our system is a Q-conservative, UQ = 0, system the principle of

increasing entropy requires that (dqo)2 > 0 so that f (do)2 > 0. Introducing

the quantitization conditions results in

f dx= 2win; j = 0, 1, 2, 3, 4

where Cj -n. and x0  ct; xi q1; x2  q2 ; x3  q3 ; x4  Y a_0 - _q@1
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If we restrict ourselves to a (da)2 space which is the local

Euclidean space then (du)2 is the five-dimensional Minkowski-type manifold

and using London's work we would produce a five-dimensional quantum dynamical

system.

2. Five-Dimensional Hamiltonian

We previously showed that the principle of increasing entropy

resulted in

as the variational principle for a local Euclidean manifold. Since multi-

plication by a constant does not change the problem we may take our vari-

ational problem to be

6 y c2 i(dqO)2 = 0

dx3  t
Defining the velocity vector as u3  - and the momentum as pjdq°  au-

Y gj , where we have used the fact that qu = 1 then we may form

the contravariant momentum as

pj gjk jk
pk =g k 9  Y gke

so that

pjpj (y gjkuj) (gjk Y gk u') = y2 6j gjk

= Y (Y gik u j u k) (111-22)

= y2C2

since yc2 = y gj ujuk Equation (111-22) is the five-dimensional "momen-

tum-energy" eqJation.
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We may now follow London's procedure to obtain our wave function

for the five-dimensional system. However a quicker way to investigate

the effect of the Dynamic Theory upon quantum mechanics would seem to be

that of adopting Dirac's equation in a five-dimensional form and following

a development analogous to standard four-dimensional relativistic quantum

mechanics. With this in mind then we shall adopt the form

h i(a, + + a -a--) -8 (III-23)

to be the five-dimensional specific Hamiltonian operator. In equation (111-2,)

the a's and 8 do not involve derivatives and must be Hermitian in order

that h be Hermitian.

By taking the four partial derivatives in equation (111-23) as the

4-vector momentum operator we may write

h = - (- p + B). (111-24)

3. Five-Dimensional Dirac Equation

If we take p0  > h > and require that the a's and 8 are

chosen such that solutions of this equation are also solutions of equation

(111-24) we find the restrictions imposed upon the choice of the a's and

a to be:

(.p-)2 p 2

B2 l (111-25)

Sa8 + 8ci 0

where natural units, c = 1, are used.

A set of 4 x 4 matrices satisfying the requirements of equation

(111-25) is

= (0); (0 .j) j = 1, 2, 3; a C02) (111-26)
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where I is the 2 x 2 identity matrix and the a's are the 2 x 2 Pauli

spin matrices.

Then the five-dimensional Dirac equation may be taken to be

i (x) = (i a - v - a (x) (111-27)

where the V is a four-dimensional operator. By defining

" 0 ; yu=_ (u= l, 2, 3, 4 ) (111-28)

then equation (111-27) may be written as

(i a-y3 + 1) Y (x) = 0 (111-29)

By virtue of the properties of the a's and B plus the fact that

(1 for j = k =0

9 1l for j =k =k, 2, 3, 4

0 for j # k

the anticommutator of the y-matrices must satisfy

{yj, yi} 2qj

In standard representation the y-matrices are given by

0 (10 0 -=12; = O 0SY ( ), u 1 2, 3; yl C 2

4. "Lorentz" Covariance

Under a five-dimensional Lorentz transformation
X~k

Xj L' k

we shall suppose each component of the wave function '. (x) transforms.

into a linear combination of all four components;

T (x) LT V (x-) = S T (x) (111-30)
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where S is a Dirac spinor satisfying

S y = L3 k yk. (111-31)

By using an infinitesimal Lorentz transformation given by

- k g3  k + dee3k

where eJk are a set of 16 numbers, then S(e) may be shown to be given by
k6

S() = exp (T f do) (111-32)
* 0

where the matrix T is given by

T j k
4 ejk

Equations (111-30), (111-31) and (111-32) suffice to guarantee the

Lorentz covariance of the five-dimensional Dirac equation.

5. "Free Particle" Sr'utions

If we look for solutions of equation (111-30) which are also

eigen-functions of the operator p= i 3 then we may write the wave function as

S(x = w (p) e (111-33)
Z, . By substituting equation (111-33) into equation (111-30) we find that

w (p) must satisfy

(pjyJ + 1) w (p) = 0 . (111-34)

Using the standard representation of the y-matrices equation (111-34)

may be written

PO + 1 ip 4 -p3 -p1 + ip 2 w

-ip 4  po+l -p -ip 2  p3  w2

= 0 (111-35)

pa p-ip P0 + 1 -ip4

P+PiP2  -P3  +ip4  -Po+ W4
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4

where it is important to remember that p, p, p3 and p represents minus

the resncctive components of i.This set of four, linear, homogeneous,

algebraic equations has a nontrivial solution only if the determinant of

the square matrix on the left hand side vanishes. This determinant is

Teiighups( )1te equation (111-33)i6)slto o te Drceuto
00

Substituting equation (111-37) into equation (111-31-) the solitions are

found to be:

for p0  +C

f 3 2~l P

p1+ I -P

u1 (p)=N C +T u2 (p) N C 1 (111-38)
1 2i

ipi I
C +1

for p0. -

ip

- i p4

-p3
C + T
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where N is a constant.

Following standard quantum mechanical procedure we shall adopt the

probability current density to be

j(x) =  (x) yk 7 (x)

with the requirements:

(1) Bk i = 0

k
(2) j k transforms as a contravariant vector, and

(3) j must be real.

We can determine the normalizing constant N by using the fact that

3
m f Y dx

V

then calculating the expectation value of the -mass. Thus

< m > = ' m 7 d3x
v

where t represents the transposed complex conjugate. Then using any of

the solutions given by equations (111-38) or (111-39) the expectation value

becomes

2N2neV4 m > - )

so that
1 + \ / 2

N = (111-40)

Thus the "free particle" solutions of the five-dirnensional Dirac

equation are given by equations (111-38) and (111-39) with the constant

R= having the value given by equation (111-40).

6. Spin

In the three-dimensional space the angular momentum is given the

vector, L, as the cross product of the coordinates and momenta. We shall
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then define the angular 4-momentun t1o be the four-dimensional cross productI

T ijk' jILwhere x1 is t6he mass density an~d

0 if any two indices are alikeI- 1 for even oermnutation to align indices in
-1 for odd permutation to align indices in

ascending order.

Then the comutator of the components of the angul ar 4-momentum with

the specific Hamiltonian are not zsruj, for instance

[L 3 2 h] iYOY1p2 -iy~y
2p1 + iAy 4pl iYO Yip' + -Y yy 2 p 4

Now suppose there exists a 4-spin vector Wsuch that the sum of the

angular 4-momentum and the 4-spin vector com~mutes with the specific

Hamiltonian, then if we define a new 3-spin vector to be U, given by the

cmoonent ans u, i V 4 iYy2, n 3  iY'r3. and take the usual

spin vector, s, given by s, ~ iy Y , sY - Yy1  and s~=~ y~ 2  h

components of the 4-spi- vector may be shown to be

S s - u -U
2 2 3

S = S3, + u1 + U,.

S s s + S'

in analogy with standard relativistic quantum mechanics the eigen-

valves of the 4-spin components can b-e shown to be ±/.It may also

showP that the set of observables T. h. and 'S - 17, where is the 4-momentum

and S is the 4 -spin, for.. a co-inlete set of corem:t-ing aobservables.



7. Dirac Equation with Fields

In analogy with relativistic quantum mechanics we take the 5-

dimensional Dirac equation to be

IW-0a; ),~ + 11 v 0 (111-41)

where Ojis 5-vector potential.

By operating on the left with J(i'O. - Y.y 3 
- H and separating yy k

~ Iinto sysiinetric and anti symmetric parts as

i k 1 ~i k- + Y .* 1 k1  g; k + cj k (1-

then equation (111-41) becomes

[(ja. - O.)ia, 3 -1 + (-a. a + 6 i6; -0. (111-43!
3 - k' jk k i3.~k)

Separating 0-kinto symietric and anti symmetric parts as

~~~~~ 3 0jk=.(o kj) + 0 (o6

and defining the field tensor as

F. ..
jk5-. O

then, equation (111-43) becomes

[(3 .(i k -Xi iF~~~ 0 (111-44)

Now since

0 j

0-2is 3  2is2  n,

_ k 3.- '2

-X 2vs-s a -2is- n

-2is 2  2is' 0n
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where eJ!' n3 for j= 2, 3, and

0jk E, EB 2

El 0 V,

olus recallino the seven M.axwell-type equations

C ~

- -a.0v~=~- 0  ay c 1c4 2-, (11-

C st c

Then equiatior (111-44) may be written as

(i - k k +2)*s j in *V] 0 (111-46)

and thus beco&res the Dirac eaua-&-cn wih fild , ,V., and V

Suppose we consider a syst-eu wit-nout an electric charge so that

p =J=0, then by equation (111-45) .e still. have

* =-a 0 -~-and x W- -=-a 0  ~ (1-7

and therefore ther, will still be a magnetic mment.

This then sets up an arcw'~ent which may p~rovide an interpretation of

the new fikld qt,-ntities. Supp~ose that aT: electron, because of its small

ar'munt of irass when mopared tt a proton or neutron, dcoes not involve

selific~ent ress density change to warrant using the fifth di1.-nsion. Then
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the magnetic moment of the electron should be given accurately by the

relativistic Dirac equation.

But suppose that nucleons (i.e., protons and neutrons) have sufficient

mass density change to warrant using the fifth dimension provided by the

dynamic theory. Then the nucleons involve the new field components and we

should expect a different value for the magnetic moment of a proton. For

the neutron, which has no electric charge we find a magnetic moment due

to these new field components.

Now if we assume that the difference between the observed values of

the magnetic moments of the proton and the neutron and the predicted values

of relativistic quantum theory are due to the strong interaction, or nuclear

forces, then we must connect the new field quantities with the nuclear field

quantities.

8. Allowed Fundamental Spin States

In the 5-dimensional quantization of the space-time-mass manifold

three spin vectors appear. One of these is the familiar 3 component spin

vector of relativistic quantum mechanics. The second of the three is a
new 3 component spin vector while the remaining is a 4 component spin vector.

Using the theorem:

If a satisfies a2 = 2 where a is a number then the eigenvalues

of a are _ a.

Then it is not difficult to show that the component eigenvalues are,

± + ; u = 2 ; S2 = 3/4 ; = 1, 2, 3 ; j = 1, 2, 3, 4 .

If, in analogy with the eigenvalues for the total angular momentum, we write

S 2  3/4 S (S + 1)

Then the possible eigenvalues become
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S± ;u ± ;S. ,-3/2." 3
However, the following relations restrict the number of possible

combinations of these eigenvalues:

S, = -u -u1 1 2 3

2 = 2 1 3
S3 .6 + Ul + u2
53 3~ 1 + 2

S +6 'S +
4 1 2 3

The question asked now is, how many combinations of the above eigen..

values are allowed?

For S, = ;

1 => , u >u -
1 2 3

Z = , u xi -=>uIo = , = is impossible
2 2 3

S U => u 3

For S3 = ;

= u 3 =u :

Is U1 U3 2 i63 : , u1 = - -- u3 = -

23 = - , u3 = -- u2
63 = - , u1 = -I is impossible

12

For S 3 :

3 =  ' u = > u2 =-

6 u I -9

• 5~~3  U - I : ->U 2 =

~~. " : - ,u = - is impossible

3 1



12
2 is

-~ 2 3>

For S, -3 2 yoe obninis possible ;

2 3

For S = 3/2 only one combination is possible;
2

42 ; u2  u 3

For S -3/2 only one combination is possible.

4 '2; U -2 ; U2 .-

For S4 = -3/2 only one combination is possible;

4 2--; 6 =-2 ; 62

1 2 '3 2

Now because S4 is a combination of the first terms of each of the

components S, 2 and 53not all of the above listed 16 combinations are
1'S2 S

possible.

I ~For S the following combinations of (4S1.4,~ iuu 2

are possible.

(1) ( ~ ; -, -3 ) for S1 , S3

(2) for S12 3 2

- ~ (3) ( -~-;, )for S 1 2  3

(4) (- ,1---2; 3- -2- )I for S S2 S3  12
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The remaining combinations are:

(7) ( , -;- ) for S S -3/2; S S
2 3 1 2

(8) ( 6 ;-,,) for S = S =-3/2; S=S =

1 3 2 4

Thus tnere is an octet of possible combinations. There are also some

obvious symmetries in these combinations. An aid in seeing these symmetriesI is the vector defined as ~fwhere

, _ u 3); t2  u -u3; t3  U2 + U

Then for each of the eight combinations above we find (t1, t29 t3)

given by

(1) => T (0, 0, 0) (5) => T= (1, 0, -1)

(2) =>T. (0, 0, 0) (6) => = (-l, 0,1)

(3) => T (0, 1 , 1) (7) => =(0, -1, -1)

(4) => T (I, 1,0) (8) => T (-l1, -1 ,0).

Thus the eight combinations correspond to four distinct vectors

which carry a + sign. Or

T (0, 0, 0)~ f2  (0, 1, 1); f3 = 1 ,0):f 4 =(1, 0, -1)

For + T we have:

t1 => (T;iT 0-2 ( - , ,- )

t 2=>2 ,
2 >Tu N, ( , -,, A)

t => (7T;-) = i ( Al-, ; -- )
3

4=>(T;U) (- , A-; -42 ,

1243
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For - we have:

-t > 5;U~) = ( 21 - i. 4 ; -k, - .2- 12)

-t3=> (T;ii) = (- . 42 . -; - .2 .2 -)

t4= > (T;ii) = (- . k, --; 2 . )

Now by defining the vectors:

We may write

I > (T;ii) = (C; ) -t > (T;0i (E; U

t3 --(T;iD (4f; -C) -t3 => (-6;T) =(4E; --C)
t4+ => (Tu = (F -W) -t4  U

The octet is then made up of the combinations:

The appearance of octets for basic quantum numbers is reminiscent

~ of elementary particle theory. Thus the Dynamic Theory seems to give

promise to the hope of tying elementary particle to fundamental principles

in a new way.
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D. MASS CONSERVATIVE HYDRODYNAMICAL SYSTEMS

The equation of motion for the fifth dimension, miis density, appears

as a generalization of the principle of the conservation of mass. Further

in classical hydrodynamic systems five equations in five unknowns are used.

It seems logical then to expect the five equations of motion appearing in

the five-dimensional dynamic theory to be generalizations of the classical

equations. An added incentive to investigate the possibility this general-

ization is gained when electromagnetically contained ionized plasmas with

mass conversion is considered. For if the five equations are generalizations

of the classical hydrodn~amic equations, then the use cf the five-dimensional

fields allowing mass conversion should provide an entirely new viewpoint of

a controlled fusion reactor.

Since it is suspected that the five equations of motion resulting from

the application of the principle of increasing entropy to a thermo-mechani-

cal system are generalizations of the classical equations, it then becomes

necessary to show that this is indeed the case. This seems possible by

restricting the system so that it corresponds to the usual system considered.

First, from the dynamic approach, the manifold required for a descrip-

tion of the system is the five dimensional manifold of space, time, and

mass density. Within this manifold the continuity equation no longer holds

for the general system. We can, however, restrict our system by first re-

quiring that the system remain on a hypersurface within the 5 - d manifold.

For a system so restricted, any of the five dimensions may be considered as

functions of the other four. In particular, since by custom in hydrody-

namics the mass density is considered to be a function of space and time, we

may consider the mass density to be the variable chosen to be function of

the others or 16
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A

Y = yjXO, x1, x2 , x
3)

so that

dy = dx4.

ax

Such a system will be constrained to be on a hypersurface embedded

within the 5-d manifold of space, time, and mass density as shown and upon

this hypersurface will be described in a four dimensional manifold of

space and time.

1. Surface Geometry

Y

x

: N

t

If we further restrict our system by requiring that the total deriva-

tive of the mass density to be zero or

dy : 0 = d xa.,. dxc'

then

gd.o=~~ 2)v + d
0= O t+x v, + ~- v +x- V3

at ax1 a3x'z

or
ay + grad • = 0 12t



which is the usual continuity equation. Thus by restricting the system

to this particular hypersurface we have constrained the system to obey

the continuity equation as does a usual hydrodynamical system.

The importance of this restriction is that, not only does this re-

striction place our system within the space-time manifold where we may

compare the resulting four equations of motion with the equations of motion

in relativistic theories but, since the seven gauge field equations must

hold in the five-dimensional manifold they must also hold on the hyper-

surface. This allows the new field quantities to be expressed as functions

of the E, T fields and the partial derivatives of the mass densities.

Further, it appears that the additional B field equations may be used to

determine a dependence of the E and F fields upon the mass density and/or

its changes.

Then by comparing the equations of motion obtained here for the system

restricted to the mass conservation hypersurface with the relativistic

Navier-Stokes equations it should be possible to identify the viscous co-

efficients with the field quantities and perhaps see how the viscosity

depends upon these fields as I feel it does.

Since we have restricted the system to a hypersurface here the mass

density is a function of space and time, then the surface is defined by

five equations of the type

= xi uO, ui, u2 , u3) (111-48)

Further, since x4  y/ao and x
4 = x4 (xO, xI, x2, x3), then equation

(111-48) become

x= u; x= u; x2 = u2 ; x3 =u 3  (111-49)

*1
.
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and x4 = f(u°, u1, U2, u3).

Since u°, ul, u2 and u3 are independent variables, the locus definedlby equation (111-48) is four-dimensional, and these equations give the

coordinates xi of a point on the hypersurface when u°, u1, u2 and u3 are

assigned particular values. This point of view leads one to consider the

surface as a four-dimensional manifold S embedded in a five-dimensional

-enveloping space. We can also study surfaces without reference to the

surrounding space, and consider parameters u°, ul, u2 and u3 as coordinates

of points in the surface.

If we assign to u° in (111-48) some fixed value u° = U00 we obtain a

three-dimensional manifold
=i

xi = x(u 0, u1 . u2 . u3) (i = 0), 1. 2, 3, 4)
0

which is a three-dimensional manifold lying on the hypersurface S defined
by equations (111-48). By assigning fixed values for any three of the four

hypersurface variables we obtain a net of curves, on the hypersurface,

which may be called coordinate curves.

Obviously the parametric representation of a hypersurface in the form

of (111-48) is not unique, and there are infinitely many curvilinear co-

ordinate systems which can be used to locate points on a given hypersurface

S. Thus, if one introduces a transformation

uO= uO(u, I', U2, -U3)

U1= ul(U, U1, -U2, -U-)
(III-56)

u= u2(U, , i, U )

a = u3(ii, jj, jj, jj)u u

where the u'(u, U2 u, u- 3) are of class C1 and are such that the Jacobian
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S= (u°, u1 " u2 " u3) does not vanish in some region of the variables

D(U0, U1, U U3)

i, then one can insert the values from (111-50) in (111-48) and obtain

a different set of parametric equations.

x, fi(u° - , u  113 (i-51)

defining the hypersurface S. Equation (111-50) can be looked upon as

representing a transformation of coordinates in ene hypersurface.

a. First Fundamental Quadratic Form

The properties of hypersurfaces that can be described with-

out reference to the space in which the hypersurface is embedded are termed

"intrinsic" properties, A study of intrinsic properties is made to depend

on a certain quadratic differential form describing the metric character

of the hypersurface. We proceed to derive this quadratic form for our

restricted system.

It will be convenient to adopt certain conventions concerning t'hc

meaning of the indices to be used. We will be dealing with two distinct

sets of variables: those referring to the 5-dimensional space in which the

hypersurface is embedded (these are five in number) and with four coordinates

uo, u1, u2 and u3 referring to the four dimensional manifold S. In order

not to confuse these sets of variables we shall use Latin letters for the

indices referring to the space variables and Greek letters for the hyper-

surface variables. Thus Latin indices will ass~ie values 0, 1, 2, 3, 4 and

Greek indices will have the range of values 0, 1, 2, 3. A transformation T

of space coordinates from one system X to another X will be written as

T x xi( - , - I - 2, -X- 3 -j4);

1301
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a transformation of Gaussian hypersurface coordinates, such as described

by equations (111-50) will be denotect by

u= Ua-U0 -U-1, -U, -d).

A repeated Greek index in any term denotes the summnation from 0 to 3; a

= repeated Latin index represents the sum from 0 to 4. Unless a stateent

to the contrary is made, we shall suppose that all functions appearing in

the discussion are of class C2 in the regions of their definitions.

Consider the hypersurface S defined by

x 1X(UO. U1. U2, U3), (111-52)

wnere the x1 are coordinates covering the 5-dimensional space in which

the hypersurface S is embedded, and a curve C on S defined by

u= U'(T), T, :jT <' (111-5311

where t1~e u s are the uaussian coordi'iates coverinq S. Viewed fromn the

surrounding space, the curve defined by (111-53) is a curve in a five-

dimensional manifold, which we shall assume, for the present, is Riemannian

entropy manifold of the Dynamic Theory ,and its element of arc is given

by the formula

(dqc)2 =g,, dx' dx3  f(I-54)

Fronm (111-52) we have

dxi =ax duct (111-551)
3u a

where, as is clear from (111-53)

u'~dh Substituting from (111-54) and (11-55), we get
ux -du' du'~
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=A dua du8

w~here

Ar .g i x (111-56)
A 0 Zu au

The expression for (dQ0), namely

(dqO)2 - A du" dus (111-57)

is the square of thne linear element of C lying on the hypersurface S,I and the ri.ght hand mrember of (111-57) can be called the First Fundamental

quadratic form of the hypersurface. The length of arc of the curie is

given by _ _ _

q 2 q0 1  f y A u dT,

where daand q0 is the specific entropy. The total change in the

entropy along the curve C would then be

2
Y(q02  q01~) y ~' yA Uu id- (111-58)

Consider a transformation of sur-Face coordinates

u ucl-U0, U-11 P) (11-59

witha no-vaishig Jcobin JIt follows from (111-60) that

2aa
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If we set

A.=A Bu ;u

-YO ~ a$ u 3

we see that the set of quantities A represents a symmetric covariant

tensor of rank two with respect to the admissabie transfor~ratians (111-59)

of hypersurface coordinates. The fact that the A are components of a

tensor is also .vident from (111-57), since (dq°)2 is an invariant and the

quantities A are symietric. The tensor A is called the covariant metric

- tensor of the hypersurface.

Since the form (111-57) is positive definite: the determinant

A= IAJ >0

and we can define the recip-3cal tensor AaB by the formula AB A =6Y

The properties of surfaces concerning the study of the first funda-

mental quadratic form

(qoY) 2 
=A 8 du du?

constitute a body of what is known as the "intrinsic geometry of surfaces."

They take no account of the distinguishing characteristics of surfaces as

they might appear to an observer located in the surrounding space. Two

F surfaces, a cylinder and a cone, for example, appear to be entirely different

r when viewed from the enveloping space, and yet their intrinsic geometries

are completely indistinguishable since the metric properties of cylinders

and cones can be described by the identical expressions for square of the

element of arc. If a coordinate system exists on each of the two surfaces

such that the linear elements on them are characterized by the same metric

coefficients AB, the surfaces are called "isometric."
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Thus if our description of the restricted system is done only in

terms of the intrinsic Seonp-try of the hypersurface we-may lose sight of

features which may characterize our system when viewed from the enveloping

space. Therefore, in order to characterize the shape of the surface we

must develop a viem which involves the enveloping space.

b. Second Fundamenta'l Quadat.c Form

,' , that orovides a characterization of the s~aoe of the

surface as it appears froni the enveloping space is the normal line to the

surface. The behavior cf the normal iine as its foot is displaced along

the surface depends on the shepe of the surface, and it occurred to Gauss

to describe certain properties of surfaces with the aid of a quadratic form

that depends in a fundamental way on the behavior of the normal line. Before

we introduce this new quadratic form let us recall the definition (111-56),

ax Bx.A j ax' B_ .i 0 = 0, 1, 2, 3,4 (i, = 0. 1, 2, 3).
a - gi au au "( -55)

We note that the foregoing formulas depend on both the Latin and Greek

indices, and we recall that the Latin indices run from 0 to 4 and refer to

the surrounding space, whereas the Greek indices assume values 0, 1, 2,

and 3 and are associated with the embedded hypersurface. Furthermore, thes

dx' and g.i's are tensors with respect to the transformations induced on

the space variables xi, whereas such quantities de? and A= are tensors with

respect to the transformation of Gaussian surface coordinates ua. Equation
3X;

(111-56) is a curious one since it contains partial derivatives,

depending on both Latin and Greek indices. Since both A s and g.- in?X ,

(111-56) are tensors, this fornula suggests that - can be regaided[ 134



either as a contravariant space vector or as a covariant surface vector.

Let us investigate this set of quantities more closely.

Let us take a small displacement on the hypersurface S, specified by

the surface vector dua. The same displacement, as is clear from (111-55),

is described by the space vector with components

dxI = - du". (111-60)
aum

The left-hand member of this expression is independent of the Greek indices,

and hence it is invariant relative to a change of the surface coordinates

ua. Since dua is an arbitrary surface vector, we conclude that

ax (111-61)

aua

is a covariant surface vector. On the other hand, if we change the space

coordinates, the du", being a surface vector, is invariant relative to this

change, so the (111-61) must be a contravariant space vector. Hence we can

write (111-61) as

xi a = x- (111-62)

au,

where the indices properly describe the tensor character of this set of

quantities.

Let X and F be a pair of surface vectors drawn from some point P of S.

0

1,
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Then using (111-62) they can be represented in the form

a c
Ai =x1 Aa Bi = xi B .  (111-63)

The 5-d vector product, defined by

Nk + kij AiB. (111-64)

is the vector normal to the tangent plane determined by the vectors T

and B, and the unit vector iT perpendicular to the tangent plane, so

oriented that A, B, and -n form a right handed system, is

_, kij A. B.
n - (111-65)

SI-aIAB I

We call the vector iT the unit normal vector to the nypersurface S

at P. Clearly, n is a function of coordinates (u° , u1, U2, U3), and, as

the point P (uO, u1, u2, u3) is displaced to a new position P(u° + du°,I u1 + du1, u2 + du2, u3 + du3), the vector n undergoes a change

dn 2- - dua (111-66)

aua

- whereas the position vector r is changed by the amount

dF =!- dua.

Let us form the scalar product

an 3r-dn • dr -- - dua du. (111-67)
aua au

If we define

b 1 2n- a + ar n ar

so that (-11-67) reads

di• d= -b du" dua (111-68)
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the left-hand member of (111-68), being the scalar product of two vectors

in a Riemannian space by being in the entropy manifold, is an invariant;

moreover, from symmetry with respect to a and 3, it is clear that the

coefficients of dua du0 in the right hand member of (111-68) define a co-

variant tensor of rank two. The quadratic form, called the second funda-

mental quadratic form of the hypersurface,

B b dua du8  (111-69)

will be shown to play an essential part in the study of hypersurfaces when

they are viewed from the surrounding space, just as the first fundamental

quadratic form A dF dF, or

A =A dua du8

did in the study of intrinsic properties of a hypersurface.
We can rewrite the formula (111-65) in terms of the components x i

of the base vectors a . We denote the contravariant components of r{ by

ni and observe that its covariant components n. are given by

£. i k AJ BK
n= - (111-70)

A Bsin a

nd

A B sin 0 A (I-71)

* Substituting in (111-70) from (111-63) and (111-71), we get

(ni x xk)Aa B = 0

i ca ijk x

and, since this relation is valid for all surface vectors, we conclude

t ha t j (1 1 1- 7 2 )

Multiplying (111-72) through by c and noting that c = 2, we get

the desired result

N '3
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ni ikxJxkB (111-73) J-

It is clear from the structure '..s formula that n. is a space
1

vector which does not depend on the .oice of surface coordinates. This

fact is also obvious from purely ometric considerations.

C. Tensor Derivatives

We wish to reduce the second fundamental quadratic form (111-69)

analytically by the operation of tensor differentiation of tensor fields

which are functions of both surface and space coordinates. To do this we

shall first present the concept of tensor differentiation introduced by

A. J. McConnell (').

Let us consider a curve C lying on a given hypersurface S and a vector

Ai defined along C. If T is a parameter along C, we can compute the in-

trinsic derivative of Ai, namely,

a i dA i A {Ik Aj dx k

+ d A ) k (111-74)
&r dt + A

g

In formula (III-74 the Christoffel symbolsA{' k } refer to the space co-

ordinates xi and are formed from the metric coefficients g.. This is

indicated by the prefix g on the symbol. On the other hand, if we consider

a surface vector A defined along the same curve C, we can form the in-

trinsic derivative with respect to the surface variables, namely,

a+dAa a A du (111-75)
7T- 7 a rr

In this expression the Christoffel symbols { y}are formed from the metric
acoefficients a associated with the Gaussian hypersurface coordinates ua. -

(')A. J. McConnell, Absolute Differential Calculus, Chapter XIV - XVI
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and

3A dA
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d k dxrj duj'
lj{.,Ak-4 and

and (I11-78) becomes

SdT itT -d T i du, A4 a . 1-79)

Since this is invariant for an arbitrary choic± of paralle" fields A. and

Ba, the auotient lanw of cuarartees that the exnressicr in the brackets of

(111-79) is a t11ensor cl the same charactor -s T .We call this tensor the

intrinsic tensor derivat,ve 01fT witir resvect to the carameter T, and write

IsT aT xk duy
~~T1  ddxa ' (11180

7 t + 1 ~ T80

Ifthe field Ti is defined over the entire hypersurface S, we can argue4 that, since
ST' a s - duy'

is a tensor field and I~ s an arb~t-ra,'y surface vector (for C is arbitrary),

the expression in the bracket is a tensor 0f the type Ti We write

T T + 7'x - (111-81)

and call T' the tensor derivatv o 1 wtrepct to U'.
atya

The extension of this definition t%-o more complicated tensors is obvious

from the structure of (ITH-81). Thus the tensor derivati.ve of T~ witrh

respect to u' is givenb



- - - - 82)

Z-I-

_ + {} Tj xk -} T T i  (III-82),-aa3y uY  ik aa y ay 6Y aB - { a6'
~'' au' g aa a

If the surface coordinates at any point P or S are geodesic, and

the space coordinates are orthogonal cartesian, we see that at that point

the tensor derivatives reduce to the ordinary derivatives. This leads us

to conclude that the operations of tensor differentiations of products and

sums follow the usual rules and that the tensor derivatives of gij,

A8 , £ijk' F. and their associated tensors vanish. Accordingly, they

behave as constants in the tensor differentiation.

The apparatus developed in the preceeding section permits us to obtain

easily and in the most general form an important set of formulas due to

Gauss. We will also deduce with its aid the second fundamental quadiatic

form of a surface already encountered.

We begin by calculating the tensor derivative of the tensor x

representing the components of the surface base vectors a We have

i Xi  _~ X + { ik} k xx i (111-83)B uC~uB  G a - } xJ
aa auaua g k a aa

from which we deduce that

a 8,a (111-84)

Since the tensor derivative of a., vanishes, we obtain, upon differentiating

the relation

A a: gij xix (111-85)

gi j gijxi i 1 0.
j =0. (111-86)
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Interchanging ,y cyclically leads to two formulas:

i  xj + i x = 0, (111-87)gij 0," y Vi B ~

J gjy i j 0 ,

g ij xy + xi x = (111-88)

If we add (111-87) and (ii-88), subtract (111-86), and take into

account the symmetry relation (111-84), we obtain

xi  xj -- (111-89)gij a's y "

This is the orthogonality relation which states that xi  is a space

CL

vector normal to the surface, and hence it is directed along the unit

normal ni . Consequently, there exists a set of functions baS such that

x b ni  (111-90)

VE The quantities b are the components of a symmetric surface tensor, and

the differential quadratic form

-ba dua du0  (111-91)

is the desired second fundamental form.

Now since ni ni = 6i, and ni  gij nJ then

as ij a ns
x s i  k te

but since ni =2 ijk xx then

1 i  j kb T 'ijk xa,x (111-92)

We now have, in equations (111-56) and (111-92), the formulas necessary

to determine the first and second fundamental quadratic forms for our

system constrained to a four-dimensional hypersurface. Since our objective
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is to show that by appropriately constraining our system we arrive at

the Navier-Stokes equations. Let us determine the first fundamental qua-

dratic form.

First recall that our system was restricted so that x' x+(0  x1

x2, x3), or the mass density is a function of space and time, then we have

the relations

x = uo

x1 = u
-* (111-93)

X2 = U2

X= f(XO, X1, X2, X3) =f(UO, U1, U2, U3)

Since equations (111-56) are

axi 3x xi i
Aaa au, a a 0

Ina siKlar ~+''+(f fashion we may determine the remaining coefficients so

that

90 A2 04 f A~4 Ao+2 041g4ff 90Ag~2+4ff A13 0f+4

g 1 2g0'f+''ff g11+2g1'+fl+g'+'(,f1)2  g 12 +2g1'f+''ff g +2g1'f+

902+2g0 f2+'+'f~f2  912+2g1'+f2+g'+4flf 2  g22+2g2'+f2+g9'+(f2 )2  g 23 +2g2'f3+g'+4f 2f3

13 14 3 4413 g3 2f94 3 93
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Obviously from this determination we may write the metric coefficients

of the first fundamental quadratic form as the sum of two tensors, or

A = gag + h8 ; a,g = 0. 1, 2, 3 (111-95)

when the h are functions of -he partial derivatives of the mass density

with respect to space and time in addition to space and time from the 9i4

where i 0, 1, 2, 3, 4.

I Though we may use equations (111-92) to determine the metric coefficients

for the second fundamental quadratic form, it is not necessary for the

current prescntation.

The hypersurface which is embedded in the five-dimensional space is

a four-dimensional curvilinear space-time manifold. Thus the relativistic

hydrodynamical equt3tions are applicable here so long as the metric co-

efficients are determined as coefficients of the hypersurface quadratic

form.

The complete energy-momentum tensor for a fluid in a flat Riemannian

space-time manifold is given by
(1 )

=i ' Tag=y +cP 'noG _ - (111-96)

where du, s is the arc length. Then based upon this energy-momentum
,TS

tensor the flow of a fluid under the effect of its own internal pressure

force is given by setting the divergence of (111-96) equal to zero, or

=0. (111-97)

If we reduce equations (111-96) to the non-relativisitic limit the

use of (111-97) gives us

g6 T , ya ; a,,6 1, 2, 3 (111-98)

(1) R. Adler, M. Bazin, and M. Schiffer; Introduction to General Relativity,
H pg 337, McGraw-Hill, 2nd, 1975
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- where TC' =pgg is the three dimensional stress tensor of an ideal fluid.

! If inequation (111-96) we use the fact that the metric coefficients

l for the hypersurface may be written as the sum of f!II-95) then we have

____ -_ _ - ha s)  (III-99)

i where it must be remembered that the :Bare also dependent upon this same

,- sum. In the non-relativistic limit the effects of this sum of metric tensors

- appears as a sum in the stress tensor

I

Recall that the g refer to the three-dimensional space viewed from

Sthe five-dimensional manifold. The hes, however, contain the information

about the surface embedded in the five-dimensional space. If we then

( associate the tensor

=+cta 2 --- Ph-h (III-lO1)

with the viscous stresses this is sayiat teathe viscous stresses depend

i----- s. upon the geometrical character of the hypersurface.

ap n the limit of small displacements we write the strain velocity

;-- --; tensor as
e - ag -v, +  v ,8 12 (111-102)

then the first order coefficients of viscosity are related to 
the strain

t ivelocity tensor and viscous stresses according to

assoc ate th tenso

t (vh+n  (111-103)

N (V6,n +  n, )

If we then use (III-101) in ( say-103) we find that the relationship between

pnthe ge ometric character of the hypersurface and the viscous coefficients

' is given by

1 ' ) (110145

~8 2 czALM-



_h - (11-104)-P 2 (v6,n + Vn, 6)  I I-04

Equations (111-104) then expresses the functional dependence of the

viscous coefficients upon the strain velocities, pressure, mass density

and their derivatives.

2. Relativistic Hydrodynamics

By viewing classical hydrodynamics to be given by the embedding

of a four-dimensional hypersurface within a five-dimensional manifold, the

association (111-104) between the geometrical properties of the hypersurfaze

and the viscous coefficients could be tentatively made. We may now go back

and develop this relationship more completely.

The hypersurface, which becomes embedded in the five-dimensional mani-

fold by the restriction that xb : x4(xO, x1, x2, x3), is a four-dimensional

relativistic manifold. Thus for the surface we may use the relativistic

energy momentum tensor, which is

T1V u -u r + I_. (&u _ gPV) (111-105)

weeup dxu n
where u d and u, v = 0, 1, 2, 3. The divergence of (111-105) yields

the flow equations for a fluid under the effects of its own internal pressure.

However, from the viewpoint of the Dynamic Theory.., the surface metric

coefficients may be written in terms of the metric coefficients of the

first four space coordinates as given by equations (111-95) and (111-96), or

A = + h ; , = 0, 1, 2, 3. (111-96)

Thus the square of the arc length for the entropy manifold may be written as

(dqO)2 A dxa dxB g dxa dx$ + h dxa dx8

a dxa
or, if u - then -"

a dq
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I =A u u u ug u u
as0 as a

then on the hypersurface the energy momentum tensor would become

Tao Y ua0+ P(uauO -Aao)(I-1)

or

Ta Y + ET -' - ha 0  (111-107)

Since the surface coordinates, xa, are the same as the first four

coordinates of the surrounding space then the velocities ua are the same

whether considered as surface or space vectors. The difference between

the surface view and a four-dimensional space view appears in the metric

coefficients. Thus while the square of the arc element on the surface is

unity the square of the arc element in the surrounding space is not, or

I A au

but ~ a

gasUu =1 -h asu u

3. Classical Hydrodynamics

Suppose we consider g a to be a flat space then because of (111-107)

we may wri te
-aO aS ?(111-108)

TaB y uu + - u - ;a)- ha

If we then for.n the space divergence

00 a
fl 1 + i-u+ c2

this may be written as

+ ([Yjv _V)i I 3 h 0)~ +1 V- (P V=V(hE ~at CT (P) Ey~ P 0
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where h-0 has comonents h°= ; e : 1, 2, 3.

Therefore

- ay (v-) - lW .( -}+ l a(Ph °0 ) +.. (pW.)j
2'Y+ v -,V (P V)+ '7t~

so that if hv is a four-vector with cor-ponents ho v - h", then

.y * (. v-- -v P - " + (I!-109)
at " "P , c c F- V"

The remaining components of the divergence are given by

TM l Y u + Pha P

1V c C C3 c "

v a vs P Y Phas

-= - +)-

which may be rearranged to read

a v v + -v-)

c 3t C

1 P pL) + (PT -)1 ,, (-1)

_,~ I - v " c t "

If we look at the non-relativistic limit then by neglecting the terrs

P(v/c) we get

y + jj_-((h Gv-"+ ( P[10)t
at cz C at

The multiplicative factor on the rigiht hapd side suggests that

:4Y V . ( ) -= , ( H

which is the assumtion we choose to place our systen on a particular surface

which corresponds to a classical system where conservation of rass is

assumed. Therefore, on a curve specified by
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on thE surface we must then have

Fa + MV.+] ~~iLa(p h + a(h1
*~a ax ~ at ax~

or

y aa 3P .L+ 1 a(PhOao) + a (Ph")
a c at~

(111-112)

1p+j a(Phao (Phaa), a 1, 2, 3.
aa c at

Thus if we write

where T" Pga + Ph"O =-P(;" - h"O). (111-114)

The term 1 P~) has been neglected in (111-114).
r at

If we now associate the geometrical properties of the surface con-

tamned within the ha with the coefficients of viscosity, we find that

t"O = PhO = a01iv (111-115)
V911

or
aa = v

ha (v +v ). (111-116)

For a fluid which is homogeneous and isotropic the number of inde-

pendentt coefficients of viscosity reduces to two and

trnPh V ,gu + 2 e u (111-117)

Then,fo~v, =g nv

Ph = ta=o + 2p (111-118) -

and'4
Tao g aa aa + 2p a (111-119)
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The equations of motion (111-113) then becomes

Any

so that

-Y a 0 n ,nv + (N + ) ,a (111-121)

which is Navier's equations of fluid motion for a fluid subject to its

internal pressure P.

In terms of the geometrical properties of the surface equations (111-121)

become

y aa 9 (PgOV + Ph$V)I

9a 9- p 6 V + p V h (111-122)

=-(l gov h Pv + ,a

Stokes introduced the hypothesis that the mean pressure in a viscous

fluid is given by P = - 1. T as ju st a s for fluids at rest. This

assumption puts restrictions upon the surface since

Ph as=t as CL +Pg a

theref ore

P9ga h~ a g tas =~d ;a P

or

P ̂a$h g asta = -3P +3P 0

Thus we have Pgdh 0 and g' tCI0OWe
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then

" g + 2u 0

or

(3A + 2p) 0

so that

3X + 2P = 0. (111-123)

Equations (111-121) and (111-123) combine to yield the set of Navier-

Stokes hydrodynamical equations for a fluid under internal pressure,

a v (111-124)

Thus we have shown that by restricting our system to a surface where

mass conservation holds and associating the viscous coefficients with the

surface geometry by equations (111-115) and (111-116) the equations of

motion for a homogeneous, isotropic fluid subject to Stokes hypothesis

become the Navier-Stokes equations. Therefore the equations of motion are

indeed generalizations of the classical and relativistic hydrodynamical

equations.

We may further consider what restrictions Stokes' hypothesis places

upon the geometry of the surface, and ultimately upon the partial deria-

tives of the mass density, by considering the requirement Pg' h = 0.

T If P 0 then

ga c =0.

For our three-dimensional flat space this becomes

h 11 + h22 + h33 0.

Which says that the trace of the three-dimensional matrix h is zero.
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Since ha ' for a 1 , 2, 3, is given by

- .9

ha 2 ag4 fa + 944 af)

1 B

Hwhere f - 1 ,then

Sic a 1 i v

If our system is very near an equilibrium so that gij is a flat space then
A

4 0 and g is a constant which may be taken as unity and

h = a

requires that is

+ + =0.(111-125)

Obviously this restriction says that under Stokes hypothesis the mass
i density may possess no gradient.

Since the objective was to show that the equations of motion in the

five-dimensional manifold were generalizations of the Navier-Stokes, con-'
tinuity, and constituent equations, then the preceeding fulfills this

objective. Not only have we been able to show that appropriate restrictions

upon our system leads us to the classical description of hydrodynamical

systems but we also find that, from the Dynamic Theory approach, the viscous

stresses must be related to the geometrical character of a four-dimensional

hypersurface embedded in a five dimensional manifold. This relation is not

only remarkable but promises to have tremendous significance.
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To envision the significance of the notion that viscous effects

are related to geometrical properties of a surface consider the fact that

the coefficients of elasticity in the generalized Hooke's law of linear

elasticity would carry the same appearance as the coeffirienLs of viscosity.

Thus when using the first fundamental quadratic form for the hypersurface

the geometrical character of the hypersurface describing an elastic solid

would appear identical with the geometrical character of a viscous fluid.

_ This is the same situation as the fact that the metrical character of two-

dimensional surface coordinates of a cone are indistinguishable from the

two-dimensional character of a cylinder when the first fundamental quadratic

form is used. Yet when the second fundamental form determined by tii!-92)

the metrical difference between a cone and a cylinder embedded in a three-

dimensional space is readily dispiayed. Thei the use of the second fun-

damental quadratic form in the Dynamic Theory can be expected to disclose

that the surface describing elastic solids is metrically different from

viscous fluids. Transitions from fluids to elastic solids then become

transitions from a surface with a certain metrical character to another

surface with a different cnaracter.

g3:
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E. ELECTRODYNAMICS

One of the incentives for seeking to determine whether the five equa-

tions of motion were generalizations of the classical hydrodynamic equations

was the possibility of shedding new light upon fusion plasmas. Now before

mass conversion is accomplished the plasma must reach certain conditions.

The attainment of these conditions envolve electromagnetic fields not en-

countered in usual circumstances on earth. If the Dynamic Theory is to be

believed then perhaps it may provide new insight into the attainment of the

appropriate conditions before mass conversion begins.

The following development still assumes conservation of mass in order

to see the geometry of the hypersurface for a system under the influence

of electromagnetic fields.

1. Mass Conservative Electrodynamics

Suppose we now describe the behavior of charged matter under tf!

influence of an electromagnetic field from the viewpoint of the Dynamic

Theory. From this viewpoint the conservation of mass has the effect of

restricting our system to a four-dimensional hypersurface which is embedded

in the five-dimensional manifold of space, time, and mass density.

Since we desire to consider the effects of an electromagnetic field

we must consider a gauge function. When a gauge function exists the square

of the arc length in the entropy space is related to the square of the arc

length in the sigma space by

f! 
(dqO~)2 

" 
(flo

(dqO = g.. dxl dx3  ij dxl dx ( )(da)2 (111-126)

00 00
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When the system is restricted to a hypersurface by the relation

= x (x , x 2, x 3) then the entropy surface may be written as

22

(dqO) a dua du0  (111-127)

where

ax I ax3  i -
ac gii a u - gij a x B. (111-128)

Likewise for the sigma surface
(dc) 2 = ' dua dua (T1i-129)

where

a =ij.x x (111-130)
13gi a V

Thus we have

1 
T

i a6 = (h-o) a"(lll-13l)

00 ~i3

The principle of increasing entropy requires that the equations of

motion be geodesics in the entropy space but they will appear as equatiors

involving Forces in the sigma space. We desire to expose these forces and

therefore should work in the sigma space. Our objective then is to de-

termine the effect of embedding a four-dimensional surface given by

x4 = X4 (x0, x1, x2, x3) in the sigma space and thus obtain a sigma surface

describing a system subjected to the classical conservation of mass restriction.

I: "Having previously determined the metric coefficients for the entropy

space by equations (T11-94) and (111-95) ve may write the coefficients for

the sigma surface as

a h 0 a hoo [g h ]. (111-132)
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However by considering the effects of the electromagnetic field

as a force we must first consider the space field tensor:

0 El E2  E3  V0

1 -E1  0 B -B V
3 21

F. -E2  -B3  0 BI  V2  (111-133)

S -E3  B -B( 0 V)

2 V -V3

-Vo -V -V2  -V 0

If we restrict ourselves to the classical field quantities and

and for the moment assume that the field quantities V0 and V are zero,

then we obtain only the effects of the hypersurface viewpoint. This as-

sumption seems reasonable considering the possible interpretation of the

new field quantities in terms of nuclear effects. Under this assumption

our field tensor becomes

0 E E E3  0

..E1 0 B -B2  0

Fij = -E2  -B3  0 B1  0 (111-134)

-E3  B2 -B1  0 0

o o 0 0 0

We can now use this space field tensor to determine the appearance

of the fields when viewed from the surface. The surface field tensor will

be given by

F F.. xI xi (111-135)
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But since x = for i, a 0, 1, 2, 3 and x = f, the surface field

tensor of a purely electromagnetic space field tensor is only the 4-d

portion of the space field tensor since Fi4 =0 for i = , 1,2, 3, 4.

Thus when we use the relativistic energy-momentum tensor for the

surface we have
TFU [F F ^ + " F a (111-136)

which is the relativistic energy-momentum tensor for matter under the

influence of electromagnetic fields. But since a = + h then

(111-136) becomes

T" = yuu + - P [F ' + (g + hpv) F F (111-137)

or

T" T rel + Tgeo (111-138)

where

V 1 V 1 F' IZi
TV u u+ 11 FaV + ^1v FaO F 1 (111-139)Trel u u E7-

is the four-dimensional space relativistic energy momentum tensor and ,

T T 1 h F Fa F (111-140)

A is the portion of the energy-momentum tensor which contains the geometrical

properties of the hypersurface. i

From equation (111-138) we can say that the Dynamic Theory has the

appearance of adding a term to the relativistic energy-momentum tensor.

This term contains the geometrical character of the surface and represents

the difference between the appearance of the energy-momentum tensor when

viewed from the surrounding space as compared to the view from the hypersurface.

If we take the divergence of the energy-momentum tensor (111-138) we

have
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V V= TP
IV Trel Iv Tge v (111-141)

The additional force terms from the surface geometry are given by

(T.)(hv Fa8 FaB)iv : F". (111-142)

But if we define

F F -16T (111-143)

as the electromagnetic energy density, where

1 (E2 + B2)

then the gometric energy-momentum tensor becomes

T v -4-, h"vt (111-144)

geo C2

and the additional forces are givwn by

c4 (h= c vh)Iv -  
(111-145)

We may also look at the radiation pressure predicted by the Dynamic

Theory to see how the surface restriction affects the relativistic pre-

diction of radiation pressure.

The relativistic radiation pressure is taken as one third of the

three-dimensional Maxwell stress tensor which is the space portion of the

energy-momentum tensor, or

TM 1TM = (E + B Bj (111-146)
aS a (Es a 6-B

where a, S = 1, 2, 3.

To get the equivalent stress tensor for the Dynamic radiation pressure

we must add the space portion of (111-l43) so that the total stress tensor

becomes
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T -1(E E +B B~ -4h (111-147)
c0 4-a a a aB a$ a

41r a0 a0 aO

We can then obtain the negative of the trace by

-{TI ( T~ E2 + B2) 3E- (h1  + h12 + h33

g- ~(h 1 + h12 + h13 i (111-148)

T The radiation pressure is then given by

P 3I+ ~ + h22 + 1h331- (111-149)

The first term in (111-149) is the classical radiation pressure in

electrodynamics. The remaining three terms give the difference between

the pressure predicted by the Dynamic Theory and the classical prediction.

To determine what this difference is let us restrict our system to again

be very near equilibrium so that the g(1 0 for a 0, 1, 2, 3 andg4

constant. Thus we have a flat space. For th~is space the

from (111-94) while g4= -1. Thus

11 + 22+133 a( ) 2 (aYl 0 ~) * 1110

00

By ~ ~ ~ ~ ~ ~ ~ ~ ~~ te susttuin (pre5)iso(su14rtheresrebcoe

However, since the classical pressure is given by Pc 4thn hepsur
predicted by the Dynamic Theory becomes

P (Ic (I -y +82 f2) + ( + (dly)~ (1-151)
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We see then that the Dynamic Theory predicts a decrease in the

radiation pressure as a result of viewing the system to be restricted to

a four-dimensiohal hypersurface embedded in a five-dimensional space.

The amount of this decrease in pressure depends upon the gradient of the

mass density and the constant a0. Once the constant a is determined then

the deviation in predicted pressures can be specified.

But how may a be determined? From the five-dimensional point of

2C

view the constant a is a universal constant which is involved in the maxi-

mum rate at which mass may be converted into energy. This may be seen from

the integrating factor for the five-dimensional system, which is

v2  
(111-152)

0

in a local Euclidean manifold. Then just as relativistic theory limits

velocities to c so the Dynamic Theory limits the velocity and the mass

conversion rate . This limitation comes from the third law which states

that the entropy of the system is zero when the integrating factor is zero.

Thus we see that in a five-dimensional world the maximum mass conversion

rate depends upon the velocity, for the integrating factor goes to zero

- - when
2 "2

or

v (111-153)

Therefore, aoc specifies the maximum rate of mass conversion.
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The concept of a limiting rate of mass conversion predicted by the

Dynamic Theory is as fundamental as the speed of light which is the limiting

Srate of displacement. S~ch a concept seems intuitively pleasing yet as far

as is known first appears as a requirement of the Dynamic Theory.
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F. FIELD EQUATIONS

Einstein's General Theory of Relativity made possible various models

of the universe through solutions of his field equations. These solutions

gave the metric coefficients according to the various models considered.

Using Weyl's interpretations the Dynamic Theory leads to a fve-dimensional

set of field equations. These equations are generalizations of Einstein's

field equations and, together with their -oundary conditions will be pre-

sented here.

1. Non-linear Field Equations

The seven Maxwell equations may be used to determine the gauge

function for the five-dimensional manifold for an isolated system. The

remaining metric coefficients may be determined by Einstein-tpe field

equatiens. Therefore let us assue that th gauge function is sirply a

constant so that the following my concentrate upon the reaining coefficients.

We shall suppose that the metric coefficients are determined by the

gravitating effects of mass as is done in Einstein's Theory and, further,

if our system is infini t ely far from gravitating rntter then it will be in

an eQuilibriui state. Therefore the boundary conditions to be imposed is

that the system satisfy the conditions of euilibrimr when far removed fr

gravitating matter. in equilibri the second partial derivatives will t be

constants evaluated at this equilibrium state. Therefore the liiting

n-tric will be one with constant coefficients._ ce~f~~en~. ---nstis ilrm to tr

conditions used in the Schwarzchild solution to Einstein's equations.

Thus our limitinc metric will be

c2 dt 2 - 2 4.
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The field enuations in a vacuum are

R. =j 0

or

____a _ ax z

- ~ ~jgj(111-154)

where i, j=0, 1,2, 3, 4

Sitting c I and taking the trajectory to be a straight line far

from gravitating matter. 'Note: This involves an assumption concerning

- the nature of how the mass density is a.7 ected and should be considered

in detail later.) This leads us to assume the limiting form of the metric

to be

(dqo)2  (dt) 2  (dr)2  r2 (do)2  r rsino (d4 ) -q-)

We may further set 40 1 in the same sense as c 1 for further

L simplification. Therefore let us adopt the fotm.

2 r2(o) 2i.2 )2

(dqo)2  fI(F,y)(dt)2 -f 2 (1,Y) (dr) 2 
-r(d) r r 1sin (d )

-f3(F,-Y) (dr)2. (111-155)

Here the cross-product terms have been reje--te-d due to arguments of

static, spherical symmetry and simplicity.

Suppose for the purpose of finding the functions f,, f2, and f3 we

Pfollow Schwarzchild's example by setting

f, e' f2  e ; ev (111-156)1

Substituting these into the metric of (111-155) the metric becomes

o2 2 2 )2 2S 2 ) 2)2

(dq') -e (dr) -r (do) - r sino(d ) evkldy) + el'(dt) IIlW
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Thus the metric coefficients are given by

AA A ;

g 9009119229339~44 e r sin 0

and the contravariant tensor g~ is given by the matrix

e-1 0 0 0 0

0 0e 0 0

0ij 0 2

00 'rs 1 nTe

0 0 0 0 -e-V
-A

The Christoffel symbols {!.) may now be constructed and since gij 0

when i j we have:

The non-zero Christoffel symbols are then:

0~1 T (Tr) {04}

001 1 2X

{141 = -reX

14 22 e~~n 4)=- v (X

I2
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2 1 r 33I-3 13 cos

{4 } I G*-V) 4k. 1 a (-v)

4 1 av(4 v

The equations for 1I,v, and X are then obtained by inserting the

Christoffel symbols into equation (111-154) and setting R 0. This

procedure yields five equations:

__ laal ax a 1a 2 l~
2--r iarZ WWarar Dr a.r)~-- ~~)~

(111-158)
D2 x l 2 1 al 3X _ 0X a ~ v

(9U (1 all~ 1V 1 -1 =) 0 (21-1)

1ax av 1a

sin~fe'[1 (1 )'(~. ..- -] -lii= 0(111-15)

;2Xl 1 3) 2~ .Y)~) a
+1, ~ + 10x aa+1(l)

e- ( + ( + 0 (111-160)
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Equation (111-161) is a repetition of equation (111-160). Therefore

there are only four equations on the three functions X, V, and v to con-

sider. This situation is similar to the one in Schwarzchild's solution.

It is relatively easy to show that these equations reduce to Einstein's

equations of Schwarzchild.

Here the solution to these equations are not obtained. However ob-

taining the solution will provide a model of the universe in which mass

conversion, or creation, plays a free role as an independent coordinate.

This picture of the universe should produce an interesting and perhaps i

enlightening view of Blackholes. Particularly since Blackholes involve

tremendous mass densities and mass density changes.

2. Linearization of Field Equations

The set of differential equations for the functions U, v, and X

given in the preceeding section are non-linear equations which may prove

difficult to solve. Linearizations of these equations may provide approxi-I- mate solutions which could prove useful.
The procedure to linearize the equations is identical to the process

of linearizating the general relativistic field equations. However here

the equations involve five-dimensions and we therefore obtain 15 partial

differential equations. _2

If we restrict our system to be sufficiently near an equilibrium state

so that the metric tensor differs only slightly from the flat-space metric

for the equilibrium state then we may write the metric tensor as the flat-

space tensor, nij, given by

166
Fj:



0 1 0)- 0 0 (1oo1o

0 0 0 -1 0

0 0 0 0 0

Where the five-dimensional Minkowski coordinates ict, x, A, z,
a0

are used for simplicity, plus a pertubation term eil so that

gij nij + C4j ;ijj 0 1, 2, 3, 4 .(11-164)

--A then only the first-order terms in the parameter e are to be considered

as significant in all equalions.

By following the same procedures as in the relativistic case the

linearized partial differential equations for the fifteen distinct per-

tubation terms Yij may be found to be

2 4 4 q i i__2 Z gg E [ ] 0. (111-165)

The only difference between equations (111-165) and the linearized

relativistic equations is the increased dimensionality which results in
summing over the five coordinates and allowing the indices to range over

five dimensions instead of the four used in the general relativistic

approach. H

__ I
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IV. IMPLICATIONS OF THE DYNAMIC THEORY

Though a nuiber of im)licaticns of the Dynamic Theory could be singled

out for discussion here only two have been. The choice was made primarily

to -iisplay the capability of the theory. The first implication, the existence

of a limiting rate of mass conversion, was picked because it represents,

as far as is known, a prediction which is originated by the Dynamic Theory.

On the other hand the self energy of a charged particle is discussed in order

to show the capability of the theory to shed new light upon previously

considered concepts and/or phenomena.

A. LIMITING MASS CONVERSION RATE

As far as is known the prediction of the existence of a limiting

rate of mass corversion is original. Hcwever, the manner in which it appears

within the theory is identical with the manner in which the limiting, or

absolute, velocity appears, namely; as the result cf applying the third law.

Further, this coincides with the classical apoearance of the absolute zero

temperature as a limiting value. Thus from the Dynamic Theory's point of

view the concept of a limiting rate of mass conversion is just as fundamental

as the concept of a limiting temperature or velocity.

On the other hand the existence of a lim 4ting rate of mass conversion

seems intuitively pleasing. For if we accept the notion that something

cannot travel with infinite velocity it seems only reasonable to believe

that mass may not be converted instantaneously.

The third law establishes a limiting value of the time rate of

change of one of the coordinates, o;r variables, by the integrating factor

going to zero. Then for a system near equilibrium, so that a flat space

may be considered, the integrating factor goes to zero when
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R-1-
_2 -2

1 (IV-l)

dx1 2  dx2 ,2 dx3,2
where j dy/dt and v2  (a--) + (- -) + (--) Thus the limiting rate

of mass conversion depends upon the velocity since, from equation (IV-l)

v
1 - c--1 2 . (IV-2)

Therefore the maximum rate of mass conversion occurs when v 0 and then

it may be seen that the limiting rate of mass conversion is given by Ymax = aoc.

The limiting rate is specified for a particle which is setting still, or

for v = 0. However, on the other hand if v : c then there can be no mass

conversion. This might be better seen from another view. A system, which

[1 we might consider as a particle, fines itself limited in how fast its mass

may change (to be concise we should say "mass density") by the relativistic

appearing equation (IV-2). On the other hand the speed of light, c,

represents a limiting velocity and the arguments of special relativity

may be reproduced here to show that, for a particle beginning with a velocity

less than c, no massive particle may be accelerated to the speed of light.

Pere we find the further conclusion that a particle may not be created and

have a velocity equal to c upon creation.

Notice that in the argument above we hedged a little when comparing

the argument to an argument based upon Einstein's special theory. The

reason for this comes from an important difference between the theories.

Einstein's theory is restricted to the four-dimensional world of space-time.

Thus it seems reasonable to conclude that if something cannot be accelerated

up to the speed of light then nothing can exist at a velocity greater than

the speed of light. This logic, however, contains the pitfall of inductive

reasoning. The trap appears, not so much in the logic of the Special Theory,
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as in the limitations imposed by the nature of Einstein's postulates. By

this 1 mean that by adopting Einstein's postulates we are limited to a

four-dimensional world and must rule out solutions with velocities greater

than the speed of light.

I', on the other hand, we look at the Dynamic Theory we find that

the theory is not restricted to any number of independent variables, or

dimensionality. Further, we find that the limiting effect of the third law

does not exclude solutions with velocities greater than the speed of light

but, in the four-dimensional case, rather rules out solutions with velocities

A which cross the absolute velocity. This means that within the Dynamic Theory

solutions may exist for particles with velocity jreater than the speed of

A- light.

The next question might well be, if velocities greater than the

speed of light are allowed, how might they be obtained? Obviously, the

allowance of these velocities as solutions does not necessarily mean that

they can be obtained. Here we find the generality of the Dynamic Theory

coming into the picture. It allows a fifth dimension. Equations (IV-l)

and (IV-2) were written for a system restricted to remain very near

equilibrium so that a flat, or Euclidean, space may be used. Suppose we

remove this restriction so that we must consider a curved space. However,

suppose that we relax this restriction in a very particular fashion. Let

us suppose that the only non-constant metric element is g44" Then equation

(IV-l), which is the conditions for the vanishing of the integrating factor,

may be written,

V2  i44 i
1 -0 (IV-3)
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where g44 may depend upon position and mass density. Then solving for the

velocity which drives the integrating factor to zero we find

; vo  a +c 944 (IV-4)

0

Now suppose we define the speed of light to be the velocity for which the

integrating factor goes to zero. This definition is consistant with Einstein's

definition of light waves traveling along a null trajectory in the four-

dimensional space-time manifold. However, in the five-dimensional manifold

of the Dynamic Theory this speed of light depends upon the rate of mass

conversion and the metric element 4

Obviously, if 8 is negative then the limiting velocity, v0 , exceedsif 44

the absolute zero velocity c, which now may be defined as the limiting

velocity in the absence of mass conversion. Thus the attainment of solutions

with velocities which are greater than c depends upon the possibility that

the metric element g be less than zero.

44
B. SELF ENERGY OF A CHARGED PARTICLE

In classical electromagnetic theory the self energy of a charged

particle is discussed but its value has not been established. This is

because the expression for the self energy is a function of the radius

associated with the physical extent of the carge distribution. Thus the

radius of the charged particle must be known before the value of the self

energy can be determined.

I' Currently the self energy of a charged particle is equated with the

energy associated with its inertial mass by

Then the radius associated with this energy is taken as the "radius" of the

nrt1
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particle. There is no intention that this radius be the physical radius

of the particle though it compares favorably with experimental values.

The question arises here of whether or not the Dynamic Theory, with

the five-dimensional viewpoint, can theoretically predict the self energy

and/or the radius of the physical extent of the mass or charge distribution

of the particle.

One of the beneficial aspects of the generalization of physical theory

as done in the Dynamic Theory is the possibility of using conceptualizations

and procedures developed in one branch of physics in another branch. This

aspect of the theory appears applicable here. The self energy of a charged

particle is the notion that a certain amount of energy be associated with

the existence of the particle and its charge. This notion may be associated

with the notion of free energy used in thermodynamics for if the self energy

of the charged particle is its free energy then it represents the energy

which nay be 'freed' upon converting the particle into energy. Conversely

With the conceptualization of free energy the second law provides

the condition for a stable equilibrium state. Namely that a charged particle

in an equilibrium state must exist at a minimum of its free energy. Thus

if the self energy, or free energy, of a charged particle is sought then

minimizing its free energy will yield the desired result.

Before applying the principle of minimum free energy to a charged

particle in a five-dimensional space, suppose that the principle is applied

in a four-dimensional manifold first. This procedure will hopefully provide

some validity to the method oy !Tay poir~t out some difficulty with it.

The free energy was defined, in analogy with the thermodynamic case,

as
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where a depends upon the applicable work terms which here will be taken as

the three spacial dimensions so that a = 1, 2, 3. The first law is given

by

dQ = dU - FdxO (IV-6)

while the second law yields

OS dU Fadxa (IV-7)

for a quasi-static, reversible process. Therefore the differential change

in the system energy is

dU = dS + F dxa. (1.1-8)

Differentiati..g equation (IV-5) gives the differential change in the

free energy as

dG = dU - d, - Sd- F dx- xadF. (IV-9)

Substituting (IV-8) into (IV-9) yields

dG = - Sdo - xadFa. (IV-lO)

The force in equation (IV-lO) is considered to be the Lorentz force

F q (E+ (Wx B)]

so that equation (IV-lO) becomes

dG = - Sdo - xad {q(T + (v x -)) 1. (IV-il)

If we wish to consider the change in free energy with respect to a

change in the charge at a constant velocity we find that since 6 is a

function of velocity only then do = 0. The specification of constant

velocity stems from the desire to obtain the self energy of a charged

particle therefore the particle should hP considered as sitting still so

173



- -

that it will have no kinetic energy. The differential change of free

energy for a stationary particle is then

dG = - Sd - xad {q [" (- x

= -Sd - xa {dq [E + (v x B)]+ qd [V + (Bx }

-so that for 6 = constant

a[E + ( xB)] )

) - xa [F+ ( x q)]' (IV-12)
aq

But E + (v x B) is independent of the charge q and therefore

(2G - v F+( (IV-13)

If the charge is not in motion then

( =- x- E (IV-14)
aEQ

since v = 0. Further, if the field E is due to the charged particle then

radial symmetry yields

-er (-15)

for points external to the negative charge distribution. Substituting

(IV-15) into (IV-14) results in

G re = •(V-16)

Thus we may integrate over the charge q at the radius R to get

i a G = -e
e

f dG= " dq4i-oR 'od
GO 0

so that the free energy is given by
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Here the use of the (-e) in the limits of integrition corresponds to the

notion of free energy as the energy required bring the charge to the radius

R.

Thus the free energy given by equation (IV-17), and hence the adopted

method, differs from the classical expression for the self energy of a

charged particle by the constant G. only. From equation (IV-17) it may be

seen that the value for the free energy depends upon the physical radius

R by an inverse relation. This functioncl relationship obviously will Pot

yield a finite value of R which will minimize the free energy. Therefore

we are no better off than we were by using the classical theory.

The question of interest though is whether or not the five-dimensional

viewpoint will shed a new light en the self energy. By the preceding develop-

Le int arrivinq at an expression consistent with the classical self energy of

a charged particle a measure of validity has been obtained for using the

method.

Suppose now we apply the preceeding procedure from a five-dimensional

point of view. In a five-dimensional system the forces are given by

J.F + x )]+ V 1=, 2, 3

cia c CLq[ .+ (IV-1])

% - F =Thus ]

xc dF =xad{q + (v x + - "

+ x4 d{q[v - v * (IV-i9)
0

=x dart: ( x -Bl+ X,
OL C
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+ x qdE + (v xB)] +x 4 dq[V0

czd[ - _

+x cd[ 0 - C

m Then for a stationary particle and charge so tl.;at V =0,

(IV-20)

-4 a~q--

Again suppose that the electric field is due to a spherically symetric

charge distribution so that

- eF

which is independent of q. Thus eciuation (IV-20) becomies

zo 4icer - 0 c ;q I21
0

a0 A

It is not obvious whether J.. V and V1 are independent ofqaor not

when the seven Maxwell equations are first consid-red. However, with

the tentative intermretation that these quantities are related with nuclear

forces we can su-uose that they are independent of the charg~e ciand

e
A =Er -x (IV-22)

0

where is the m~ass density of he a0e Integ-ratinQ enuation (WV-231
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GO -O YV
I dG fa -4 "1 dq- I Lv ! dq
Go  o 0 0 a0

or
.e2  Vo  - V (IV

G - T - - -/ ydq (IV-24)

sinco V0 was assumed to be independent of q.

The charge q is external to the charged particle and therefore should

be independent of the mass density so that the free energy becomies

'i - 2  eYVo
G • o- + + Go  (IV-25)

i1{ OR ao 0

For a charged particle the mass density will depend upon the physical

extent of the particle and hence upon R. The field quantity Vo is supposed

to be related to nuclear field properties and may also depend upon R. Thus

there should be a finite radius of physical extent R which will minimize

the free energy given by equation (IV-25).

If the functional dependence of V. and y upon the radius R wore known

then a minimum of the free energy would be given by dotermining the radius

R for which

AG) 0 .2+ o (YVo). (IV-26)

Before equation (IV-26) may be used to find the radius Re which minimizes

the free energy, an appeal to the seven Maxwell equations and/or a model of

the particle must be made so that the dependence of the product yVo upon

R can be determined,

Suppose a simple model of the particle is made in order to further

investigate the existence of a finite radius Ro which will minimize the free

energy. If a uniform mass distribution in a spherical shape is considered

then
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and equation (IV-25) becomes

e2 +3emV 0
4Cc0 = e G. (IV-27)

0

If it is also supposed that V has a (1/R) dependence then

Differentiating equation (IV.-28) with rezpect to R yields

0 4-rc 4 4-a V(IV-29)

forthsmdl

e 1mk0  +

00 0 0

eaa mck e

ioo - (f thi model.

%in 4e R ea 1+G

Sle- 3m k ea

00 0
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Though the self energy given by equation (IV-30) is based upon an

unvarified model it does represent a demonstration that the Dynamic Theory

can produce a predicted value of self energy for a charged particle. It

remains then to determine a realistic model of the particle or another

method of determining the functional dependence of yV0 upon the radius R

plus determining the value of the universal constant a Once this has
0

been done then the self energy, or free energy, may be specified.

NI

i
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V. CONCLUSIONS

The generality of the fundamental laws adopted by the Dynamic Theory

makes it possible to arrive at a great number of conclusions. However,

only a few will be selected for discussion here.

The first question which provided the motivation to seek a new theoretical

approach to physics concerned the uniqueness of the velocity of light as

a limiting velocity for all natural forces. The answer is provided by the

axiomatic development of the second law. This development produced ar

integrating factor for the differential statement of the first law. A

characteristic velocity was shown to exist in the definition of the absolute

velocity. That absolute velocity is given by a constant velocity process

at which the integrating factor is zero. The important point in the

development which provides the answer to the uniqueness of the velocity is

the proof that the integrating factor is independent of the nature of the

force. Therefore, if the absolute velocity is independent of the force

it must be applicable to all forces and hence unique.

Since by definition the absolute velocity is a constant in one reference

frame, it must also be a constant in any other reference frame moving with

a constant velocity relative to the first. Thus the absolute velocity must

be unique and a constant in all reference frames moving with constant

relative velocities. The experimental and theoretical evidence of electro-

magnetism requires that this absolute velocity be the sanie value in all

these reference frames. This requirement leads to the principle of Lorentz

covariance. Then all the laws of nature must be Lorentz covariant whether

electromagnetic, gravitational, or nuclear since the absolut- velocity is

unique and independent of the force.
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We find that the appearance of the integrating factor also clarifies

the relationship between the velocity dependent relativistic mass and

velocity dependent forces. In Einstein's Special Theory of Relativity we

find it necessary to consider a velocity dependent relativistic mass and a

velocity independent force. However, in the Dynamic Theory there appears

two differential expressions which become important for any system description.

The first differential expression is the first law itself, which, in

simplified form is

dQ = m4 d - ' 1 - z/cZ F(q) dq.

The other is the expression for the differential change in mechanical entropy

j or

dS : q d(c - F(q) dq.

The integral of dQ depends upon the path and therefore is of little

Iutility in determining the actual process, or path, taken by the system.
On the other hand the entropy is independent of the path. This characteristic

ff together with the principle of increasing entropy for an isolated system

- establishes the variational principle for determining the path. Since the

objective of dynamics is to find the path taken then it becomes obvious

- that the differential expression for the entropy change plays a dominate role

I and it is in this expression that we find Einstein's velocity dependent

relativistic mass and a velocity independent force. However, from the

Dynamic Theory's point of view the first law describes "reality" and here

we find velocity dependent forces and mass which is independent of the

- velocity.
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Thus we find that the Dynamic Theory requires that the kinetic energy,

which comes from the energy expression, to be the classical kinetic energy,

or ( ) mq2, while from the entropy expression comes a function, -mc
2 v'i ,

which may be called the "kinetic entropy." In this manner the Dynamic Theory

clarifies the mental controversy which motivated 7t. For from this view

point kinetic energy does not depend upon the value of the limiting velocity;

kinetic entropy does. The two are distinct concepts, however, the distinction

can not be seen from a relativistic point of view.

Though the philosophy which formed the basis for the development of the

Dynamic Theory made it necessary to set aside the fundamental postulates

of Einstein's relativistic theories and Newtonian laws and begin to establish

a new theoretical basis, we find that the Dynamic Theory requires the same

conclusions as special cases. Therefore the viewpoint of the Dynamic Theory,

which appeared incompatible with current theories, not only supports current

theories but lends them additional strength from its more general approach.

The concept of a limiting velocity takes on a new, mo.e fundamental, character

as the mechanical counterpart to thermodynamic's absolute zero temperature.

Yet because of the different point of view this limiting velocity does not

have the absolute character attributed to it in relativistic theory for we

find that its value depends upon the dimensionality of the system.

When the metric provided by the stability conditions is considered

we find that the Dynamic Theory, through the second law, specifies the

geometry which must be considered. This removes the necessity of assuming

a particular geometric character and, for an isolated system specifies the

type of geometry which can satisfy the principle of increasing entropy.

Using Weyl's interpretations from his unified field theory we find that the

Dynamic Theory answeres some questionb which Weyl's theory leaves unanswered

- or introduces.
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h- First recall that Weyl assumed the existence of a quadratic and linear

differential form. The Dynamic Theory produces two quadratic, plus a linear,

differential forms for isolated systems and it is the interplay of these

three forms which provide the answers. Weyl's theory raised a question

concerning integrability and Einstein produced an argument which indicated
that Weyl's theory would not produce the sharp spectral lines we see from

atoms changing states. Weyl only had one quadratic form. The Dynamic Theory

has two; one an entropy manifold, which yields an integrable arc length of

entropy. the other manifold is related to it by the gauge function. Thus

the second law requires that the entropy manifold have an integrable arc

length though the other may not and in that event the gauge function be

Vhaves like an integrating factor.

4 An additional feature of the interrelation of the three differential

forms lies in its ability to shed new light upon the existence of both

positive and negative electromagnetic charges. Weyl's theory, as well as

Maxwell's leaves this question unanswered. Weyl defined the potentials

which are the coefficients of the linear differential form; as

1 aznf

k = k

where f is the gauge function. Thouah the gauge function relates Weyl's

"distance measures" 2 and k by

k= f Z2,

IWeyl did not take the potentials to be logrithmic derivatives of a radical

function. As a result he pointed out that one way of accounting for the

difference between positive and negative electricity would be to introduce

a radical some where.
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The Dynamic Theory requires that the entropy manifold be related

to the sigma manifold by

(dqo)2 f(da) 2.

Here the principle of inseasing entropy provides the variational principle

hence there is added significance in considering the differential change

in entropy or

dq° =f do.

Thus the only mathematically consistent difinition for is

1 lanf

ax

thereby accounting for the existence of both positive and negative electro-

magnetic potentials.

The recognition of the existence of the radical together with factJ0
that the second law deman s a real function for the entropy since dq0 > 0

for an isolated system provides the capability to remove London's difficulty

with imaginary distances in his quantization of Weyl's theory. This coupled

with the logical demand, by the Dynamic Theory, for the conditions resulting

in quantization demonstrate the power of the theory to unify tha whole of

physical theory under the umbrella of a single set of generalized laws.

The real power 6f-the theory begins to make its appearance wher some

of the restrictions are relaxed. This is demonstrated here by considering

a thermodynamic work term in the first law together with three mechanical

work terms. For it is here that forces with the appearance of nuclear

forces appears. These forces come from the action of new field quantities

appearing as thefifth-dimensional components of the gauge field. Though

these field components first appear in an interrelatio:ship with the

classical electromagnetic fields it is the quantization which provides
J7U
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the connection of the field quantities with nuclear properties. The

connection shows up first in the prediction of anomalous magnetic moments

but gains additional support from the appearance of three spin vectors

which become necessary to complete a set of conmnuing obser'ables.

Thus the Dynamic Theory offers the hope of including nuclear theory

and elementary particle theory within the same unified structure. Two

{ aspects from this approach seem particularly significant in their support

of thi:. contention. One is the appearance of octets as the number of

allowed combinations of fundamental eigen-values for the components of the

three spin vectors. The other is the necessity for one of the vectors

to be a four-dimensional spin vector instead of being a three-dimensional

one. Could this not be the additional freeaom necessary to include the

newly discovered eleme.,tary particles within the same theoretical frame

work as the others?

When hydrodynamical systems are considered the theory offers new views

of several different physical phenomena. First, there is the comparison

between viscous coefficients and the elastic coefficients of elastic solids.

These coefficients mathematically appear the same. The Dynamic Theory

offers a geometrical interpretation of these coefficients relating them

to the geometry of a four-dimensional hypersurface embedded by mass

conservation into the five-dimensional manifold. This allows two qeoretrical

descriptions of these phenomena. From one geometrical approach two surfaces

may appear the same while from the other they are distinct. Thus it seems

possible to establish a geometrical distinction between the viscous and

elastic coefficients.

Another phenomenon which appears under a new light in the Dynamic

Theory is the electromagnetic containment of an ionized plasma. This should
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prove to be of considerable benefit when applied to a fusion reactor.

For here the theory gives a geometric view of a hyper-surface imbedded

into a five-dimensional space until sucn time as mass conversion begins

to take place when the system description becomes one given by the five

equations of motion in the full five-dimensional space.

It is here that the concept of limiting rate of mass conversion becomes

prominent. This limiting rate stands as a fundamental concept with the

same character as the speed of light in relativistic theories and within

this theory where mass conservation applies.

For cosmological modeling the Dynamic Theory offers the possibility of

zero radiatiun pressure boundary conditions. Further, the theory may

oTtc- new insights on black holes. Black holes are considered to have

tremendous mass densities and seem to be appropriate for the application of

the theory. Further justification of the theory's applicability to black

holes comes from the recent appearance in the literature of the need to

talk of a generalized second law. This generalization appears as a particular

combination of the thermodynamic entropy and an area of a black hole.

To quote Wald,(O) "The generalized second law is a truely remarkable

law in that it involves three rather distinct fields of physics: thermo-

dynamics, general relativity, and quantum theory. Is it merely a strange

coincidence that this new law appears to be ture, or is there som deep,

fundamental sianificance behind it which we do not yet fully appreciate?

At the present, I do not feel that we can answer this question." The

Dynamic Theory offers an answer for it shows that there is no coincidence

(!)Wald, R., 1977, Particle Creation near Black Holes, Scientific American
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in finding a second law involving these three theories to be seen to hold.

Indeed that is just what is predicts. The unification of the different
physical theories by the adoption of the three generalized laws points

out the fundamental significance of a generalized second law.

It thus seems appropriate to offer three further quotes: "The

ultimate aim of many theoretical physicists is, first, to define more

precisely the range of validity of the currently known laws of physics and,

then, to find the new laws of physics that govern the phenomena outside this

range. The discovery of such new laws is generally accompanied by a major

breakthrough in our understanding of nature." (R. Wald 1977) "If we wish

to find in rational mechanics an A Priori foundation for the princiDles of

thermodynamics, we must seek mechanical definitions of temperature and

entropy." (J. W. Gibbs) "A theory is the more impressive the greater

the simplicity of its premises are, the more different kinds of things it

relates, and the more extended is its area of applicability. Therefore,

the deep impression that class;cal thermodynaiics made upon me. it is
the only physical theory of universal content concerning which I ar; convinced

that, within tne frame work of applicability of its basic concepts, it will

never be over thrown." (A. Einstein, 1949). So tne Dynamic Theory, as a

new view of space, tire and matter, appears to me.
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