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E ]- The proposed Dynamic Theory adopts generalizations of the three
' classical thermodynamic laws and is shown to prcduce a unique unifying
I; effect hy displaying that the fundamental principles of Newtonian and
¥

) relativistic mechanics, Einstein's General Theory, Maxwell's electro-

d l. magnetism, thermodynamics, and quantum effects occur as special cases.
This not only reduces the number of fundamental assumptions but presents
lﬁ a new view of the interrelationship of the different branches of physics.
]: The Dynamic Theory also provides reasons to support the necessity
' of extending the uimensionality of the worid-view to five dimensions;
3; space, time, and mass. It is shown that the fifth dimension produces
- seven Maxwell-type equations containing new field quantities giving
i3 rise to a prediction of anomalous magnetic moments for neutrons and pro-
‘ i’ tons. The quantization of the five-dimensional world-view predicts the
%% P existence of three spin vectors, (two three-component and one four-
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I. INTRODUCTICK

The objective of this report is to present as compliete a picture
as possible of the development and current status of the proposed
physical theory, hereafter referred to as the Dynemic Theory. The pre-
sentation will include philosophical foundations, logic development, and
some of *he unanswered guestions considered. Such a presentation runs
the risk of being lengthy and appearing to lack logica: order, particularly
if strict chronolcgical order is used. This risk will be taken in order
to make the presentation as corplete as possible thoush cnronological order
will not be foilowed.

During any theorizaticn the philosophy of the theorist plays such an
irportant roie that an attempt to understand the theory is aided by a
kncwledge of this philosophy. Therefore this report includes not oniy the
philosophical basis upor which the theory is based and the mathematical

developzent but also ideas and beliefs which played a part in the various
decisions. Because of the individuaiistic nature of philosophy this report
will deviate occasionally from 2 strict third nerson precentation, risking
2 Toss of professional appearance, te the clearly personal first person.

Though I had often zsked "¥hy?" when confronted with soze new assuD-
tion or adopted postilate, the first really puzzling facet of current
physics I encounterad was the concert of relativistic kinetic eneroy from v
Einstein's Speciai Theory of Relativity. The puzzling part was that it
Jdepended upon the spe2d of light incependent of the mechanism by which .-
this 2nergy might be transferred. 7o better illustrate what puzzled =2, -
consider the transfer of energy between two cnarged particles on collisien -

~g

courses. If the narticles have near-miss trajectories then the energy '

-
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is primarily transferred by the electrical forces between the chargss.
rro= the view of retarded potentizis, or the concept ci a liziting spead
of electrozagnetic signal trzasmission, it is rather easy to accept the
enercy transferred being depandaent upon this iimiting velocity. But sun-
pose the particies are uncharged and the interaction is strictly 2 gravi-
tational one. Again the concept of 2 limiting signal spesd would i=piy
that the energy exchanged between the particles cepend upon this limiting
velocity. But is it the sam2 as the 1imiting sicnal velocity for the
electromagnetic case? Do gravitational waves travel at the sace spesd as
electromagnetic waves?

Einstein, in the Special Theory of Relativity, adopted the position

that the constancy of the spesed of light forces @ z—odification of Newtcn'®s

dynanic law. Tnis oodiTication i=plies that ail forces have the se=e
limiting velocity, narely, the spead of light. There exists an abundance

ot theoretical and exgericental evidsnce that the spsed of iicht becomes
the 1i=iting velocity vhenever electrozagnetic forces zre invalved. The

int that bothered oo was the other forces, such as gravitational, shouid

thay also have the sa=2 1iciting velocity? Thouth we have had reports of

of the spzed of a2 gravitatic : wave. Therafors, 1 object io the viewsoint

- ~a

that the modiTication to Newton's law shouid be applied to ail Torcss
without soze additional justification.

Let == dsscribe an 2nalogy which =3y not hold in the strictest sense
yet wiil serve to iliustrate gy point of view. A river, Tiowing toward

the sea, carries ensrgy with it. The spsad with which this ensrgy can move

-ty

froz one point to another is the velocity of the river's current. The
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difficult to do. On the other hand, if I did not embrace these pustulates,
I would have tc replace them with something which would say essentially
the same thing in all cases where the Special Theory of Relativity has

been found to be very accurate, Not only this but if a new point of view
were adopted then virtually the entire sphere of physics may need to be
reviewed in order to ensure that the new raint of view did not conflict
with currently used theories. This seemed an imposing, if not impossible,
task, particularly since my educational experience was in electrical
engineering rather than physics.

History records the advancements in physics which came from the
efforts of people new to the field. Therefore my lack of training in
physics migit be turned into an advantage if I sought to determine a philo-
sophical basis unhampered by the directed philosophy that comes from a
study of physics as currently taught. This is in contradistinction with
current practices and procedures of academicism where mastery of current
theories generally preceeds ihe development of a new one. To deliterately
choose this deviation risks accusations of arrogance and naivete. On the

other hand such a choice seemed the best way of avoiding the danger of

becoming so familiar with current ways of thinking as to make it improbable
of giving due attention to other ways. Yhether or not I succeeded in
determining an alternate set of postulates consistant with reality the
search would demand a deeper study of physics than I would 1ikely achieve
otherwise.

Having decided to look for a new foundation for physics I was faced
with the question of how to begin. I recalled some Ozark hill philosophy
I overheard as a youngster. A native Ozarkian was giving directions to a
stranger who was trying to find a certain fishing hole. The directions

N

: ;§§§§%§§%§§é§%§,
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i went something 1ike this: "See yonder road going down that holler?
Well, go down thar 'bout five mile and you'll come to a fork in the road.
Take the right hand fork. Now that's the wrong one but you take it any-
ways. After you've gone a piece you'll come to a lcg across the road.
Now you know you're on the wrong road. So go back and take the left
hand fork. You can't miss it."

A quick review of physics reveals that there are different branches
with different sets of fundamental laws or postulates. Though it is easy
to see how the distinction between these branches came about it was diffi-
cult for me to believe that nature shared the same divisions. I felt that
all natural phenomena should be explained by a single set of fundamental
laws. This belief is somewhat 1ike a grove of radwood trees or bamboo
forest. Above the ground each tree appears as a distinct plant. Yet we
know that below the ground they may be found to grow from the same root

system. Thus I felt that a more fundamental approach might display the

unity in nature and that prior attempts at unification in the search for a

unified field theory could be likened to attempts to tie the trees together
at the tree top level rather than down at the root level.

Is nature symmetrical in time? Does everything run backward in time
as well as forward? Obviously, not every process in nature will run back-
wards, yet the equations of motion in Newtonian and relativistic mechanics -
are time symmetrical. I believe in an asymetrical nature and this belief ‘%
played a role in the eventual selection of fundamental laws.

How then did I use this philosophy to determine a set of generalized
laws on which to base an attempt to construct a new approach to physics?

Newtonian mechanics fails to describe events involving high velocities, -
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relativistic mechanics fails to describe the atom, and gravitational
effects have resisted quantization. If these are viewed as logs and
the Ozarkian's directions are followed, then we must retrace our steps
and seek another approach ratner than attempting to chop up the log and
continue to push forward up one of these roads.

The branch of thermodynamics however does not appear to have a log
somewhere along the way. Here the classical thermodynamic laws are very
general, particularly Caratheodory's statement of the second law. Thus
the thermodynamic laws appeared to be the fork in the road where a new
route might be chosen,

However, in mechanics we talk of equations of motion, field equations,
and geometry while in thermodynamics we speak of equations of state and
equilibrium, If a generalization of the classical thermodynamic laws is
adopted how might we obtain the equations with which we are familiar with
in mechanics? More particularly, how could this type of general laws
yield geometry and a variational principle? The second law of thermody-
namics can produce a variational principle through principles such as in-
creasing entropy and minimizing free energy, but can it also produce a
geometry?

This seemed to be a crucial point. If the laws could not produce
a geometry then a geometry would have to be assumed thus necessitating
an additional assumption. The belief that a simple fundamental set of

laws should lead to the fundamental principles of the different branches
of physics made the thought of additional assumpticns abhorent. The notion
that the adopted laws should specify the type oi geometry that must be used

seemed very satisfying. Newton found that the absolute nature of Euclidean

13
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geometry brought undesireable features. Einstein, in his General Theory,
displayed the benefits that might be gained by going to a more general
geometry. He showed that physical phenomena might be displayed as ele-
ments determined by certain physical laws. This is essentially the
question here. Can a set of laws, which are generalizations of the
classical thermodyramic laws, determine the metric elements and hence
the geometry?

By appealing to the mathematics of functions of more than one vari-

is sought. Further, this quadratic form generates a natural geometry for

that function. In thermodynamics the stabiiity conditions provide a simi-

lar quadratic form and therefore the quadratic form which specifies the
stability conditions should form a natural geomeiry for a physical system
governed by laws such as the thermodynamic Taws.

Thus the foundations of the theory were established, namely the be-
1ief that all physical phenomena should be derivable from a single set of
physical laws which were generalizations of the classical thermodynamic
Taws. Such a theory should be capable of describing all the dynamic
events ir nature. Therefore it seems appropriate to call it the 'Dynamic
Theory'. Obviously, for such a theorv to be tenable it must reproduce,
or be consistant with, the various fundamental postulates and/or laws
currently used in the various branches of physics. Indeed it should do
even nore. It should also reduce the number of necessary assumptions and
provide an unprecedented unification of physics. Further, there is the
possibility that the thoory might produce an experimental verifiable

prediction.
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The first requirement that should be placed upon the Dynamic Theory

is that it reproduce, or be consistent with, current theories. In order
to show that the Dynamic Theory satisfies this requirement section II of
this report states the adopted laws and then <hows how appropriate re-
strictions upon the system does yield the fundamental principles for the
various theories.

Though a theory which has the capability of displaying a unification
of physical thesries might have significant value based solely upon this
capability, it would become more attractive if it could explain phenomena
for which no explaination exists or make some new prediction which might
lead to an experimental test of the theory. Since restrictions were placed
upon the system in order to show how current theories may be obtained, the
easiest way to see the expanded coverage of the theory is to relax one
or more of the restrictions and consider a more general system. In
section III one of the previously imposed restrictions is relaxed and the
results are worked out vor several types of systems.

Section IV briefly discusses a couple of implications which come from
section III and, if valid, are of fundamental significance. General con-
clusions are presented in Section V.

A theory, such as the Dynamic Theory, immediately poses several prot-
lems which are not associated with validity or applicability. First, there
is a new point of view to be dealt with. Initially it would appear to be
inconsistent with all past concepts of system energy or relativistic con-
cepts. Yet in the end it is completely consistent with current theories

and sheds an entirely new 1ight upon physical phenomena.

[ ——




Another imposing difficulty with the Dynamic Theory stems from its

generality. The scope of the theory includes all physical phenomena while
in the past half century the vast amount of scientific knowledge that has
been accumulated has demanded specialists. Increasing expansion of man-
kinds knowledge demands further specialization. Such a progression pro-
duces no demand for a generalist. The result is that the greater portion
of this theory will be outside the field of almost every reader,

Closely associated with this problem is another. Throughout science
symbols and words are used to denote concepts and quantities. The limited
number of available symbols and words together with the expanded scope of
scientific knowledge requires duplication. For the specialists this dupli-
cation can be somewhat minimized. However, in the case of a general theory
touching virtually all areas of specialization the problem becomes very
significant, In particular, if a certain symbol or set of words is used
a certain notion or concept may be associated with them by the reader.

This association will 1ikely depend upon the reader's specialty and there-
fore will vary with the reader. Any attempt to choose symbology or word
usage aimed at a particular specialty risks increased confusion for readers
in other field. Therefore the reader is cautioned to keep in mind that
conceptuaiizations and symbology familiar because of its use in one branch

of physics may now take on an entirely new appearance.
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II. UNIFYING EFFECT OF THE DYNAMIC THEORY
The Dynamic Theory uses a different viewpoint, or approach, to present

a description of physical phenomena. Therefore the first criterion that

it must meet is that it must not be inconflict with existing theories

in a field of physics where the existing theory gives an adequate and
accurate description. To show that the Dynamic Theory meets this criterion
this section will present the adopted laws and then proceed to show how
the fundamental principles of existing theories may be obtained from

these laws. This is in essence displaying the unifying effect of the
theory.

A. General Laws
In the following development physical concepts are necessary, as

are symbols for these concepts. Because this development will merge
certain thermodynamic conceptualizations into mechanics, a notational
dilemma must be faced. On the one hand it is desired to preserve the
thermodynamic conceptualization by using familiar symbols from that
theory. On the other hand descriptions of mechanical systems are also
sought. The formulism then looks either 1ike thermodynamics with familiar
thermodynamic quantities replaced by mechanical quantities, or it looks
1ike mechanics into which thermodynamic quantities intruded. In either
case there is danger of confusion. One could evade the dilemma by choosing
entirely different symbols for the variables of the theory. But then

the whole takes an artificially abstract character. Since the purpose

of this formulation is to bring out the power of the thermodynamic
conceptualization it was decided to use the suggestiveness of the

thermedynamic or mechanical symbols whenever convenient and the reader
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is asked tc keep an open mind and not make premature associations with
the symbols used.
1. First Law
The concept of conservation of energy is fundamental to all
branches of physics and therefore represents a logical beginning for a
generalized theory. Therefore, in terms of generalized coordinates or
independent variables, the notion of work, or mechanical energy, is

considered linear forms of the type

-d—w = Fi(qlv LI | qna QI, LI an)dqj; (i = 1’ 2’ e n)

where the forces Fi may be functions of the velocities (dqi/dt = ai) as
well as the coordinates qi and the summation convention is used. The
inclusion of velocities in forces reflects the belief that forces should
depend upon the velocities. This will become clearer when these work
terms are included in the first law.

The Tine integral Je Fi dqi then represents the work done
along the path C by the generalized forces.

A system may acquire energy by other means in addition to
the work terms, such energy acquisition is denoted dQ.

The system energy, which represents the energy possessed by
the system, is considered to be

u(ql’ et qn’ él’ g 4 én)°

du will be assumed to be a perfect differential.
With these concepts then the generalized law of conservation
of energy, which is adopted as the first law of the Dynamic Theory, has

the form

18
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du - dw

=%
~S
n

di - F; dg's (i =1, ..., n) (11-1)

Positive dQ is taken as energy added to the system by means
other than through the work terms and Fi is taken as the component of
the generalized force acting on the system which caused a displacement dqi.

In the first law the dimensionality is n+l and is determined
by the system considered. There is no limitation on the quantity or type
of variables that may be used. However, in this presentation and in
practice, it will be beneficial to place restrictions upon the type and
number of allowed work terms. Therefore, a system with only one work
term which is the pdv expansion work of classical thermodynamics will be
called a "thermodynamic"” system and the dimensionality wili be two. A
system with three or less mechanical fdx work terms will be called a
“mechanical” system with the appropriate dimensionality. Obviously, if
there are three mechanical work terms the dimensionality will be four.
A system with a combination of the thermodynamic and mechanical work terms
will be considered later.

In an infinitesimal transformation, the first law is equiv-
alent to the statement that the differential

gt = @ * F, dg’

is exact. That is, there exists a fuaction U whose differential is dl;
or the integral jdU is independent of the path of the integration and
depends only on the limits of intearation. This condition is not shared

by dQ or d'. The path dependence of jdW is ancther reason that the

generalized forces are assumed to be functions of velocity as well as

ot P gl Dol M 000000 000 10y s b
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position. In Newtenian mechanics forces are usually assumed to be

dependent on position only so that the simplicity of path independence may
be used. Though even in Newtonian mechanics certain forces are taken as
velocity dependent. An exampie is friction forces.
This statement of the generalized first law is consistent

with the first law of thermodynamics in that if there is only one generalized
force, which is taken to be the p-essure, and one generalized coordinate,

the volume, then equation (1I-1) becomes

dQ = du + Pgv

where F = -P with the convention that work of expansion is work done by the
system on its surroundings. Here the system energy, U, is the thermodynamical
intermnal energy. There should then be nc confusion when Carathedory's
statement of the second law is applied to this thermodynamic systea.

However, when considering the application of generalizations of the classical
thermodynamic laws to mechanical systems scme confusion may be expected.
During the initial portion of this development, it is desired to demonstrate
the applicability of the generalized laws to mechanical systems. Therefore,
it may help to avoid confusion to think of the generalized ccordinates

of a mechanical system as the space coordinates of a mass point. Obviously,
there exist systems in nature which may be considered to consist of 2
continuous distribution of mass points. Such a system may be thought of

as a composite system of an infinite number of subsystems and therefore
involve an infinite number of "generalized coordinates,” or “degrees of
freedom.”™ However, just as in :lassical mechanics, we may later make

the transistior from mass points to matter in the bulk then the generalized

coordinates, qi, used here may better be termed independent variables.
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-- To explore some of thé consequences of the exactness of du

consider a system whose variables are 7, G and q. The existence of the

< state function U, or an equation of state, means that any pair of these

three parameters may be chosen to be the independent variables that
= ;_ completely specify the system. For example consider U = U(F, q), then
i; a= (&) oF + (30 da,
- The requiresent that dU be exact immediately leads to the result
g - 2 1G] = F 1
N &= q ~'3%q 2 q
%Ez— - The “energy capacity” of a system at the positiion g with dy = o many
§ be defined as

~ [é ) - E:’E
8q 3Qg

?

Bl
||
[

£

while the “energy cepacity” of a systes under a corstant force is defined as
C; = ( - ( - F D,
£ q
2. Second Law
- There are processes which satisTy the Tirst law but which are
g not observed in nature. The purpose of the dynamical second law is to
- incorporzte such experimental facts into the model of dyni=ics.
- The statoment of the second iaw is made using the axicmatic i
statement provided by the Greek mathematician Caratheodory, who presented
- an axiozatic development of the second law of thermodynamics which may be
applied %o a system of any number of variables. The second law =3y then
be stated as:
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% To see the results of this conclusion consider a system whose coordin- ;
. ates are the generalized velocity i, the generalized displacement q and the ;
g generalized force F. The first law is |

, QO = du - Fdg A

E. where U and F are functions of é and q. Since the (é, q) surface is suvo- ;f

; divided into a family of non-intersecting Q-conservative curves ?f

“ o(&, q) = constant %g

2 where the constant can take on various values Oys Tys ovn BNY point in the ?é

surface may be determined by specifying the value of o along with q so that f§

ga U, as well as F, may be regarded as functions of o and q. Then §§

i i

; du = (3 do+ (3 do

i and

- q@ = (3, do+ [(30), - Flda

é Since ¢ and q are independent variables this equation must be true for \ $§

all values of do and dq. f §

Suppose do = 0 and dq # 0. The provision that do = 0 is the provision ;? g

for a Q-conservative process in which dQ = 0. Therefore, the coefficient of ,3 ?

dq must vanish. Then, in order for o and q to be independent and for dQ g %

.. to be zero when do is zero, the equation for dQ must reduce to : ;g

- @ = (&), o,

a with \ ;

| ‘gg o F. f 5

e

Defining a function A by
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A = Mo, q)

Now, in general, an infinitesimal of the type

Pdx + Qdy + Rdz + ... ,
known as a linear differential form, or a Pfaffian expression, when it
involves three or wore independent variables, does not admit of an
integrating factor. It is only because of the existence of the axiom that
the differential form for dQ referring to a physical system of any number
of independent coordinates possess an integrating factor.

Two infinitesimally neighboring reversible Q-conservative curves are
shown in Figure 3. One curve is characterized by a constant value of the .
function Ops and the other by a slightly different value op ¥ do = oge In
any process represented by a displacement along either of the two Q-conservative |
curves dQ = 0. When a reversible process connects the two Q-conservative

curves energy dQ = Ado is transferred. .

§
’

dQ =0

Figure 3, Two reversible Q-conservative
curves, infinitesimally close, when the
process is represented by a curve connecting
the Q-conservative curves, energy dQ = ydo
is transferred




The various infinitesimal processes that may be choser to connect the
two neighboring reversible Q-conservative curves, shown in Figure 3, involve
the same change of o but take place at different A. In general A is a
function of & and q. However, it is obvious that ) may be expressed as a
function of o and &. To find the veiocity dependence of A consider two
systems, one and two, such that in the first system there are two independent
coordinates é and q and the Q-conservative curves are specified by different
values of the function o of é and q. When energy dQ is transferred, o
changes by do and dQ = Ado where X is a function of ¢ and g.

The second system has two independent coordinates é, and q and the

Qs

Q-conservative curves are specified by different values of the function

>

of § and q. When dQ is transferred, o changes by do and dQ = iAdo where
is a function of o and q.

The two systems are related through the coordinate q in that both systems
make up a composite system in which there are three independent coordinates
4, 3, and q and the Q-conservative curves are specified by different values of
the function o_ of these independent variables.

c
Since o = o(a,q) and & = 5(4,9), using the equations for o and o, o,
may be regarded as a function of q, o and g.

For an infinitesimal process between two neighboring Q-conservative sur-
faces specified by o, and o, t doc, the energy transferred is HOC = xcdoc where

A, is also a function of §, o, and s. Then

%, ., 3o oG
do = —% dq + —< do + —= dé. (11-3)
c aa o) 30
Now suppose that in a process there is a transfer of energy EOC

between the composite system and an external reservoir with energies dQ and

27




dQ being transferred, respectively, to the first and second systems, then

o, = dq + @
and
AC doC = xdo + Ado,
or
A Ay
do. = —=— do + — do. (11-4)
c Xc >‘C

Comparing equations (II-3) and (1I-4) for do then

90
—£=0

c
3¢
Therefore ¢ does not depend on 6, but only on ¢ and 5. That is

o, = oc(o,a).

Again comparing the two expressions for doC

3%— = =< and 3§— = g;;l s
c c ¢
therefore the two ratios k/xc and i/xc are also independent of &, q and q.
These two ratios depend only on the o's, but each separate A must depend on
the velocity as well (for example, if A depended oniy on ¢ and on nothing

else, the dQ = Ado would equal f(o) do which is an exact differential). In

order for each X te depend on the velocity and at the same for the ratios of

.
AP

the A's to depend only on the ¢'s, the A's must have the following structure:

#(a) (o),

A
(11-5)

#(q) F(5),

1)

A
and

A = ¢(q) g(os o).

28
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(The quantity A cannot contain g, nor can \ contain q, since A/Ac and

L
It

i/kc must be functions of the o's only.)

Referring now only to the first system as representative of any

system of any number of independent c.ordinates, the transferred energy

is, from equations (II-5),

Q = 4(q) (o) do, |

R R T R T P I O T TN TRV

Since f(o) do is an exact differential, the quantity 1/¢(q) is an integrating
factor for dQ. It is an extraordinary circumstance that not only does an

integrating factor exist for the dQ of any system, but this integrating factor 3

is a function of velocity only and is the same function for all systems.

The fact that a system of two independent variables has a dQ which always

B
H
i
i
!
H

i

H
H
H

admits an integrating factor regardless of the axiom is interesting, but its

| '
e s ol e

importance in physics is not established until it is shown that the integrating

factor is a function of velocity only and that it is the same function

st s Lt b i

for all systems. :

3. The Absolute Velocity

it s o) et s

The universal character of ¢(§) makes it possible to define

P—

an absolute velocity. Consider a system of two independent variables q and

é, for which two constant velocity curves and Q-conservative curves are Ca

el e Bt oot s,

shown in Figure 4. Suppose there is a constant velocity transfer of energy

il

Q between the system and an external reservoir at the velocity q, from a

state b, on a Q-conservative curve characterized by the value o,, to another y

3

A o

state ¢, on another Q-conservative curve specified by o,. Then since

P
.
- ¥

i

dQ = ¢(q) (o) do,

LT Y
"
)

!
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it is seen that
%,

= 6(q) r f(o) do at constant a.

%

p ¢ g = constant

= constant

[+1}
(=9
Sy e
n
Nelk)

Figure 4. Two constant velocity energy |,
transfers, Q at g from b to ¢ and Q, at q
from a to d, between the same two conservat1ve

curves o, and o, H

-,

For any constant velocity process between two other points

a to d, at a velocity é3 between the same Q-conservative curves the energy
o)
- L4 - 2 .
transferred is aQ(q,) = AQ, = ¢(ay) f  f(o) do at constant q
%
Taking the ratio of

_s(gq) _ a function of the velocity at which AQ,1s transferred
same function of velocity at which aG; is transferred

8Q, o{q;) ~
Then the ratio of these two functions is defined by

and ¢, at a

o(&) 4Q (between o, ) )
¢§q2$ " 8Q, (between o, and o, at q,)

s . W o o,
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or

8Q; .
8Q = [;(5;)-] ¢(q),

by choosirg some appropriate velocity 63 then it follows that the energy
transferred at constant velocity between two given Q-conservative curves
decreases as ¢(q) decreases, or the smaller the value of Q the lower the
corresponding value of 6(q). When AQ is zero ¢(q) is also zero. The
corresponding velocity éo such that ¢(é0) is zero is the "absolute velocity."
Therefore, if a system undergoes a constant velocity process between two
Q-conservative curves without an exchange of energy, the velocity at which
this takes place is called the absolute velocity.
4. The Concept of Entropy

In a system of two independent variatles, all states accessible
from a given initial state by reversible Q-conservctive processes lie on a
o(q, q) curve. The entire (q, q) space may be conceived as being filled by
many non-intersecting curves of this kind, each corresponding to a different
value of o. In a reversible non Q-conservative process involving a transfer
of energy dQ, a system in a state represented by a point lying on a surface
o will change until its state point 1ies on another surface ¢ + do. Then

dQ = ado,
where 1/x, the integrating factor of dQ, is given by
r = 6(q) (o),

and therefore

dQ = ¢(q) (o) do

dQ _
a%)- = f(o) do.

or

31
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Since o is an actual function of q and q the right-hand member is an

exact differential, which may be denoted by dS; and

ds = 9,

¢(q)
where S is the mechanical entropy of the system and the process is a rever-
sible one.
The dynamical second law may be used to prove the equivalent of Clausius'
theorem, which is stated here without proof.
Theorem: 1In any cyclic transformation throughout which the velocity is

defined, the following inequality holds:

dQ
e

<0,

where the integral extends over one cycle of the transformation. The equality
holds if the cyclic transformation is reversible. Then for an arbitrary
transformation

B at .
;9L < 5(8) - s(A),

A ¢(a)
with the equality holding if the transformation is reversible. The proof

of this statement may be seen by letting R and I denote respectively any

reversible and any irreversible path joining A to B, as shown in Figure 5.

Figure 5




For path R the assertion holds by definition of S. Now consider the cyclic

transformation made up of I plus the reverse of R. From Clausius' theorem

sdg . Q

13 130
;990 ) - s(a).
19 r¢

Another result of the dynamical second law is that the mechanical entropy
of an isolated (dQ = 0) system never decreases. This can be seen since an
isolated system cannot exchange energy with the external world since dQ = 0
for any transformation. Then by the previous property of the entropy,

S(8) - s(A) >0

where the equality holds if the transformation is reversible.

One consequence of the second law is that of all the possible trans-
formations from one state A to another state B the one defined as the change

in the entropy is the one for which the in*.grai

]
"
Ty
-o!g|

is a maximum. Thus

S(B) - S{A) = maximum I = max

or
8
= 1du _Fdgy, .
MM-SM)—mxing ¢&Mu
u-= u('fsq:éa g%)
33
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where é‘ = dq]/dt, then the change in the entropy is given by the integral

B
=, (LU _Fdg
- ’ (c dr ¢ dt)dT'

The é and g vwhich maximize AS will be denoted as X and x then, with

u=4u (x, ;)
F.= Fi (x, x)
& =¢ (x)

the x and X are given by the solution of the system of equations

x (11-6)
-g’:(i%) %0 :
¢ X X

where

Thus the dynamical second law provides an answer to the question that is

not contained within the scope of the first law: In what direction does a
process take place? The answer is that a process always takes place in such

a direction as to cause an increase of the mecharical entropy in the universe.
In the case of an isolated system, it is the entropy of the system that tends
to increase. To find out, therefore, the equilibrium state of an isolated one
dimensional system, it is necessary merely to express the entropy as a
function of g and q and to apply the usual ru'es of calculus to render the

function a maximum. When the system is not isolated there are other entropy

changes to be taken into account. ,%
5. Third Law T

The cdynamiczl second law enables the mechanical entropy of a b

system ic be defined up to an arbitrary additive constant. The definition '§
34 i
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depends on the existence of a reversible transformation connecting an
arbitrarily chosen reference stcte 0 to the state under consideration.

Such a reversible transformation always exists if both 0 and A 1lie on one
sheet of the equation of the state surface. If two different systems are
considered the equation of the state surface may consist of several disjoint
sheets. In such cases the kind of reversible path previously mentioned

may not exist. Therefore the second law does not uniqueiy determine the
difference in entropy of two states A and B, if A defines a state of one
system and B the state of another. For this determination a dynamical third
law is nesded. The dynamical third law may be stated, "The mechanical
entropy of a syster at the absolute velocity is a universal constant, which
may be taken to be zero." In the case of a purely thermodynamic system the
absolute quantity is the absolute zero temperature, whilae for a mechanical
system the absolute quantity is the absolute velocity.

The dynamical third law implies that any energy capacity of a
system must vanish at the absolute velocity. To see this, let R be any
reversible path connecting a state of the system at the absolute velocity
&0 to the state A, whose entropy is to be found. Llet CR(&) be the energy

capacity of the system along the path R. Then, by the second law,

q
A .‘ d.
¢
But according to the third law,
S{(A) >0
9% * %
Hence it follows that
35




Calg) » 0
qQ- QQ .
In particular, CR may be CG or CF'

The statement of the third law above reflects the restriction
to mechanical work terms. A general statement of the third law which is
independent of the number or type of variables is "The generalized entropy
of the system, when the integrating factor vanishes, is a universal
constant, which may be taken to be zero.”

B. General! Maxwell and Energy Relations

In thermodynamics a discussion of equilibrium and stability
conditions is best done if the enthalpy, Helmnoltz's, ancd &ibb's functions
are defined first. Therefore, the mechanical analogues of these functions
are defined here.

Each branch of physics such as thermodynamics and particlie dynamics
has its own list of developed procedures. If both branches can be described
by the same basic dynamic laws then the prccedures developed in thermo-
dynamics may prove to be useful in particle dynamics and vice-versa. Once
the mechanical enthalpy, mechanical Helmholtz's and mechanical Gibbs' Tunctions
are defined it is then easy to write down the resulting mechanical Maxwell
and mechanical energy capacity relations.

To begin the develgpment of the Maxwell relations, the mechanical

entropy was defined as

then, since dQ = dU - Fda,

36
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therefore

di F
= -d .
B=F -5
dll = (q) dS + Fdq. (i1-7)
Define the mechanicai enthalpy as
H=z U - Fq,
di = ¢{g) dS - qdF, {(i1-8)
3H - i 138 _
(5z)p = #(a) and Gl = e

and

or, with

which leads to

then

The mechanical Helzholitz's functicn can be defined as

[{1]

ﬁ=dﬁ-%§lﬁé-ﬁ@é&

Y- - é_é; r
¥ (Q) - dé.
dk = -S¢'(q) dg - Fdg, (i1-9)
3K - Qait - :aﬁ - ':.\‘-
(EE-Q = - 83*(q) and (aq)é sialF.

The mechanical Gibb's function may be definad as

[T

6 = # - $(q)S,

d6 = - ¢'(q)S dq +qdF, (11-10)
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C. Equilibrium and Stability Conditions

The threc generalized laws have been formulated and a few results
of these laws have been seen. The next step is to derive the stability
conditions to obtain the quadratic forms necessary for a metric. In the
process of deriving the equilibrium conditions and in turn the stability
‘coﬁd1£10ns other state functions are used. These functions may be defined
briefly herc as: \

Mechanical enthalpy (H): H = U - Fq

u- ¢(q)8, and
#(q)s
The derivation of the equilibrium and stability conditions is

11}

Mechanical Helmholtz function (K): K
Mechanical Gibbs function (G): G = H

identical to the derivation of the thermodynamic equilibrium and stability
conditions with the variables changed-to represent the mechanical variables
q, 9, S, and F instead of the thermodynamic variable T, V, S, and P.
1. Equilibrium Conditions
To establish the criteria for equilibrium consider Clausius'

theorem

or

For a Q-conservative system dQ = 0, then
AS> 0,
or |

s(8) > S(A).
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Therefore the mechanical entropy tends toward a maximum so that spontaneous

changes in a Q-conservative system will always be in the direction of
increasing mechanical entropy.
Now by the first law
AQ = al - Faq.
Therefore
$4S > All - FAq ) :
which is analogous to the Clausius inequality in thermodynamics.
Now consider a virtual displacement (U, q) ~ (U + &q, q + 8q),
which implies a variation $+$+8S away from equilibrium. The restoration of
equilibrium from the varied state (U + §U, q + 8q) = (U, q) will then '
certainly be a spontaneous process, and by the Clausius inequality
¢(~68) > - (sU - Fsq).
Hence, for variations away from equionoise, the general inequality
sU - Fsq -~ 488 > 0 (11-12) :

must hold. The inequality sign is reversed from the sign in Clausius'

inequality because hypotiaetical variations & away from equilibrium are

considered rather than real changes toward equiiibrium.

In a spontaneous process, i

$48 > AQ, ., = AU + work done by the system. ,

rev
The "work" consists of two parts. One part is the work done by the negative
of the force F. It may be positive or negative but it is inevitable. Oniy
the rest is free energy, which is available for some useful work. This latter
part may be written as

A= aQpq, - AU+ Faq. ;

The maximum of A is
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Amax = ¢AS - AU + Faq. (11-13)

which is obtained when the process is conducted raversibly.

The least work, 8A_. , required for a displacement from

min
equilibrium must be exactly equal to the maximum work in the converse
process whereby the system proceeds spontaneously from the "displaced"
state to equilibrium (otherwise a perpetual motion machine may be constructed).

Corresponding to equation (II-13) then,

GAmin = 6u - qu - ¢.;S.

The equilibrium criteria may then be expressed as

SAnin > 0.
In words: At equilibrium the mechanical free energy is a minimum. Any
displacement from this state requires work.
2. Stability Conditions

To decide whether or not an equilibrium is stable, the inequality
sign in equation (II-12) must be ensured. The cunditions for stability
may take different forms depending upon which variables are taken as the

independent variables.

To derive the stability conditions when q and S are taken as
the independent variables consider the terms of second order in small
displacemenc. beginning with the general condition

sU - Féq - ¢8S > 0.

Choose U = U(q, S), which, because of the identity

= du _F
ds 3 3 dq
or
$dS = dU - Fdqg,
41




is a natural choice of the independent variables, and expand sU in powers

of 8q and &S

sU = 468 + F6q+l(%i;_ 542

32U
5 + 2 =

32U 2 .
3658 5Q8S + 5T 6S2) + terms of third order ...

(11-14)
The inequality (I1I-12) then shows that in (1I1-14)
Second order terms + third crder terms + ...> 0.
Retaining only the second order terms, the criterion of stability is that a

quadratic differential form be positive definite; g

2cu 24 2 -
52 8q2 + 2 aqas §q8S + ‘3'3763 > 0. (11-15)

If this is to hold true for arbitrary variations in 6q and &S, the coefficients

must satisfy the following:

32U _,. ¥ . 22U 22U % 32 — .
392 05 357 > 05 32 2q? ‘“an > 0. ;

When q and q are considered to be the independent variables a

quadratic form in &q and §q may be found by using

K=U- ¢S

so that ,

= d 3 .JQ .
6K—6U-¢6$-Eg-36q & §
The terms §S6q cannot be neglected because in Clausiuc' inequality, which is 'y
the actual stability condition, the variations are finite, therefore, from

equation (II-12) the following is obtained:

5K+¢ss+%¢6(s+ss) sq - Féq - #6S > 0,

a—‘i’ﬁscq + S8 6589 - Fo3 > 0.

q

. o
Expanding is powers of 8q and éq i

EOTTRTTRY
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Therefore

and

thern

132K (g2 4 83K (oo, 1
5 552'(GQ) 3935 59¢Q + >
or

32K 2
552'(5Q) -

Since (-—0 = F then

d s 92
(3%0 5369 = - (398 +

bd 1 2 4 K _]_32’( 2
+2-éa'z-5q aqaq Gqsq Zﬁz'&] + ...

a—r

6g2 iy (——— - F) 6qéq

-~

2—-—:——
£y (s8) 5854 8089 ,

L
Q
2%

and the quadratic form in 8q and &q is

2 [ 2 .
5 (522 - G (6002 - Gobs (582 gqﬁ 505§ > 0,

(%’é:, 2 %%q) (63)2 > 0.

3q°q
%K _ (2,
32 - 3¢’ > 0.

Other quadratic forms may he derived by using different independent

variables however thase two quadratic forms will suffice for this development.
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D. Geometry and Field Equations

There is nothing which specifies which of the quadratic forms coming ‘ !
from the stability conditions should be adopted as the metric. Thus the
choice may be made based upon simplicity and/or applicability. However,
it becomes obvious that if we choose one of the forms using the velocity
as our metric and then obtain equations of motion then the equations of
motion will become third order differential equations since the velocity
is itself first order and the equations of motion are second order
differential equations.

The fact that these equations of motion will become third order
differential equations in time displays a time asymetry which appears to
correspond to nature. However, third order equations are difficult or
impossible to solve.

1. Geometry

To avoid the difficulty of third order equations of -motion,
suppose we adopt the quadratic form of equation (II-15) as the metric for our
system. Thus we are adopting a manifold with coordinates of space-mechanical

entropy.

It now becomes desirable to extend our system beyond the

dimensionality used thus far. Such an extension brings up a question

concerning the integrating factor. With one work term the differential
of the entropy was written as
ds = %? = f(o) do.
Then, if for each work tz2rm the exchange of energy is denoted to be Hbi,
@

24 |
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where there is no summation intended for fid°i‘ Since each dS_i is a
perfect differential, then the total change in entropy may be written as
dq.
g —
i

dS=13:dS; =3¢ —
i i %

i =);f-dcr-
i

1 1°

Thus the question becomes whether or not there exists a single integrating

factor ¢ such that
Q. , %
dsS = 5 - z =t f; do.. (I11-16)
i

The importance of this question may be seen in terms of the difficulty that
‘. would be created if a universal integrating factor could not be found. For
then each additional work term would require its own integrating factor
determined individually. Happily the proof that a universal integrating
factor exists has already been completed (see reference 5 & 9) showing that

an overall integrating factor exists regardless of the number of work terms

considered.

Thus assured that an overall integrating factor exists then

the existence of an overall entropy function is guaranteed so that

F

) :@.:gl‘i_._d
g i
B for any i and the quadratic form may be extended to include three spacial L
- work terms and thus becomes "
.= 2 a « . =
5 35 (ds)2 + 2 & asaqu (dS) (dq™) + ————ag'(dq ) > 05 a8 =1, 2, 3.
Adopting this quadratic form as the metric of a general system whose thermo-
l, dynamic variables are held fixed we may then write this metric as
! (ds)2 = h, dq dgd; (i, 3 =0, 1, 2, 3) (11-17)
i 45




where the summation convention is used and

- 22
hisy = 5.3
9q 3q
with q° = S/Fo, the scaled mechanical entropy 7or dimensional correctness.
Thus the stability conditions prcside a metric in the four- ;
dimensional manifold of space-mechanical entropy. Houwever the existing

relativistic theories are theories in a space-time manifold. Therefore,

if these theories are to be contained within the dynamic theory then the i

ah W

space-time manifold must be foind within the dynamic theory.

| il m el
RN AR B

The arc length & in the space-mechanical entropy manifold may

mm
¢|l||l|; il
-

be parameterized by chosing
ds = 9% dt = cdt ;
where &o = ¢ is the unique velocity appearing in the integrating factor of

the second postulate. The metric may now be written as

c2(dt)2 = h, dg'dgd; (i, j =0, 1, 2, 3) (11-18)

Now suppose the systems considered are restricted to only

A o M e R

w0 B s o | 5

Q-conservative systems. Then the principle of increasing mechanical entropy )

may be imposed in the form of the variaticnal princinle

s f f(qu)g = 0. f

In order to use this variational princple equation (II-18) may

TRt et

be expanded, solved for (dg®) and squared to arrive at the quadratic form

WN / “

(dg°)2 = (51—0 {c2(dt)2 + 2hoa A dt dg” - hagdq®dqgs} (11-19) \ |
00 u f
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with §¥ = dq'/dt.

By defining X = ct, x* = q“; a =1, 2, 3 then equation (II-19) may be

writien as

(dg°)2 (}a éij &' axd; (i, §=0, 1,2, 3) (11-20)

where f = h__. This metric obviously reduces, in -he Euclidean limit of

00
constant coefficients, to the metric of Minkowski's space-time manifold of
special relativity.

In his General Theory of Relativity, Einst2in assumed the space-time
manifold to be Reiemannian. However, this assumpl.on involves the a priori
assumption that the scalar product be invariant. This assumption was later
questioned by Weyl in his generalization of geometry. From the viewpoint
that the adopted postulates should contain the other theories it then becomes
desirable to determine whether or not these postulates specify the geometry
of the (dg®)2 space-time manifold. More particularly do the adopted postulates
lead to a geometry which includes the gecmetry of current theories? To
arrive at a more general geometry would not be a limitation for it wouild

certainly include the others.

Recalling equation (II-20) we can define

(dg®)2 = (1) g;5 X' dx (B (do)? = 85 &' axd (11-21)

Now the second postulate guarantees the existence of the function mechanical

entropy and that dq° be a perfect differential, therefore

dq° = o°ax’ (11-22)




e

]

where qoi H aq°/ax‘. Then the exactness of dq0 is stated by

0 0
. ps = .,. = 0. {11-
Qiz5 9 4/ 0 (11-23)

"y defining the parillel displacement of a vector to be

[}

_aV s,
de. = F Y &g, (11-28)

and using equations (I1I-22) and (II-23) it may be seen that the connections

must be symmetrical, or

_ayv
R SN (11-25)

b B

v
i

This result should not be taken to mean that only symmetric connections
need to be considered. Rather it means that given the éij's which maximizes
(dg®)2 = (g-gé)2 then the connections are symmetrical. However, since a
variationa]oprincip1e must be used to determine the §ij's then both symmetric
and anti-symmetric connections will have to be considered.

In Weyl's generalization of geometry he found it necessary to assume
the symmetry of the connections. He proved a theorem showing that the
symmetry of the connections guaranteed the existence of a local Euclidean
1imiting manifold and used this theorem in support of the symmetry assumption.
Herz we find that the second law requires that the connections formed by
the solution coefficients must be symmetrical thus guaranteeing, through
Weyl's theorem, tne existence of a 1ocal Euclidean geometry within the
Dynamic Theory.

Suppose now we consider whether the order of differentiating the change
in entropy makes any difference. This means that we must use symmetric
connections since the actual change in entropy will be determined by the
metric cuefficients which generates a maximum. Therefore. consider the

difference

48
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32(dq®)2 _ 32(dq°)?

(dq®)2 =
axkax®  axtax’

Since (dq®)2 = qoi q°j dx'dxd from equation (I1I-22), using equation (I1I-21)

we find
6 ¢ _ -
95937 9%
Then
Oy2 . -
L = (% P # 9% ) axed + (072
X
Thus
2(dgol2 0 0, .0 0 L0 g0
axKax? L9751kl 95 * O5pk Tile * Qilkje 3
o] 0 1,.3 0 0 0 o
q '!!k q ﬂi]dx dx¥ + 2q llk q o + 2q '\!i’. q K
Likewise
0 A
32(dq )2 _ 0 0o , 0 O L0 0 .0 . dxdxd
ok L9 ahk 95 * Fgpe Tkt Talelk 95 F Tile 0”311, J0x

+2q° k|2 q°y + 20° 2]k ¢° %
Therefore the difference must be
Ova _ r1@ G0 b 0 P T 1,.3
8da")? = U1 = CyppdaTs * (@ pe = T 4]epil y? XEX

Using the definition equation (II-24) we see that

dq°i =T ;6 dx® qor
and

qoi}k = T g
also

o _ 0 =2
V)i 9p Tki -
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Now

of ©
0 -8 0 Sry_C ar o _ ik i
Cijkle "z l0e Tad =0y Tk P9 r ;
3X g
s T
0 a4 ar o ik
=q, T T +q
s 7 r2 0k L
AT
of .
= q0 {r Yi T ?k + :k}.
r i o’
Similarly .
aT P2
0 0 ,ar 24 i
q; =q {r, T3 % }.
ilejk rtosk T i T K
Therefore
3;‘ r BI: r
0 .0 _ a0 =0 o0 s dk T iR ATl as _ar 25,
Tl ~ Cafad =95 T T T PR Tkt T ek T
Then defining the vector curvature as
AT AT
oT . 3T .
3 S, ik iL,ar 28 _ar 28 fTiL
Risk =72 "k "Taalik Tk (11-26)
9x 3X
the difference mav be written as .
0Oy _ 0 0 &7 o 0 sar 4.1 ,3
a(dq”) {q ;9 Ry tad;0, R j2k] dx dx”.
3 3 0 0 - ~
However, recall that g ; 4 j© gij then
Oy _ 2 r - r i 4.4
aldq") {gjr R ok ¥ 95y R jgk} dx  dx’.
But
d_. =g;. and R =g, RT
: 9ri = 9ir ¢ Rijke T Fir ° jke 7
= so that
E‘ O\ _ 3 5 i j -
50 -1 %
g :
e — o - e ,jﬁ:zé
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or the difference will vanish if

Now since

differentiation will result in

d(de)2 = d(e°; o°, ax' &) = d(gy; dx* dxd)

or
dqci qei dx' dxd + q°i dqoj dx' dx® + q°§ qoj d{dx’ dx’)
= dg; dx' daxd + §ij d{dx! ox’)
which can be writter as
Ar ;48 0 O i o ~r &8 0 1,3, .0 0 sra.7 .3,
. - + . T . + - .
T iy dx” q r G j dx’ dx CIFTR dx” q r X dxd + g §9; didx" &x”)
. T3 05 dicxd dyd
dggy dx° dx” ¥ gys d{éx" dx’).
But
~ _ 0 _©
953' =4y G j
Therefore
ar 43 - ar s~ _ -
Tjg OX Gpy FF 56X 05 = doyy
or N
3Q. -
SFT Lo ar 2] 1-27;
g-,-‘ ;. *g 0 . {ii"gf}
rj * is ri " 33 ax®
~ ~ 3“..
:‘-:% + 7., = _}_}.
Jid 138 axé
Now interchange jis to 8ij to get
~ -~ 3 ’5
T .. ¥+ T, .= J 117
ié'i,} i\}é} axé {ii -.3)
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then

. 9. .
a '\J = N 6 A "k - 1,! "J "6
94; dg s dx Irk & ax® &
X
or since
. 30, +
~iJ - i - -]') - S . "
g gij Si 1 and — Fjié T1JA
ax
then

9 < §9 B B G, By B ad

i o
=g" ('Piks) e
= o LI
- rké dx g .

Thus the change in the covariant and the contravariant vectors is given by

& _arv $ 2

da,1 = 7 is dx &
and

a8l = - 1 dxd ET

Now consider the change in the scalar product éi a'. Then

A a9 2 ~3
d(g; n') = dg; n + &5 dn
A 4 2 o~ 2 Af & ar
= 7. £ + . -
Fig dx &p n e,‘ ( I‘ré dx® n )
s ady _oAar o8 2 af i § 2 or
d("i n ) Pié dx Sp 0 It"é dx &y N

Renaming the indices in the second term yields

s

n'i - av ~ ,\‘i AT A .o.'i A

42 ]

d(

Thus the geometry of the (dqo)2 manifold is Riesmannian.

The next question is what is the geometry of the (do)2 space? Equation

(11-21) shows that we may write (do)2 = f(dq®)2, which is reminiscent of Weyl's
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generalized geometry., Further we have

.}

91J = f 913.

1

Then in the sigma space an arbitrary vector £ would have a length : given

by the self-scalar product

s llellzegyelederg,elederin (11-31)
~ where 2 is the Tength of the vector in the entropy space.
If we differentiate equation (11-31) we have

!

2ndi=i2 gt voridi.

@ jJo
x [-n

However in the entropy space the length of the vector % is unchanged under

paraliel displacement so that

R
di = p ol &a panf g0 g, (11-32)
X X

Comparing equation (I11-32) with the definition of the parallel displace-

ment of a vector, equation (I1-24), we find that ¢4 E E-QEQF-plays a role

similar to that of the connections r;k in the definition of paraliel displace-
ment of a vector. Therefore we shall define the change in the length of a

vector under displacement to be
de = (8 dx') 1. (11-33)

This 1s the same definition Weyl made in his generalization of geometry
however, there is a difference in the way it was obtained. Weyl chose this
definition in analogy with the connections I and the definition then led the
second more general metric. In this theory the fundamental laws lead us to

two metrics and equation (II-32) for the change in the length of a vector
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under displacement. Thus within the Dynamic Tneory equation (11-32) is a

derived equation and equation (II-23) only renames the logrithmic derivative.

Using equation (II-33) we may obtain, in general,

ds?

202 (¢; dx') = d(gij g'ed)

k k k

- J 2.3 +
943k g E dx™ + 935 9k £787 dx” gy T zk g’ & dx’,

Renaming the various symmation indices, rearranging terms, and using the

length of a vector, we obtain

id Gk _ i.]
k] gg” dx” = 2945 ¢ €757 dX

k

[gijik 923 ’lk + g.m j k.

Since this must hold for arbitrary choice of g‘ and dx , we conclude that

L [ ,
(9551 = 2945 o) * 9g5 Tik * 9pi Tk = O :
This is the same system of linear equations for the connections F;k as

equation (II-27) only the inhomogeneous term aijlk has now to be replaced by

gij!k - Zgij e Therefore the same linear algebra as before leads to

i __ i 2 ) -
Ta =7 Gt T 97 [9g5.4 % 9y 85 - 95k ¢y (11-34)

where {5k} js the usual Christoffel symbol of the second kind.

Now, since the entropy space is Riemannian, then in the entropy space

we have

2 "1 - _ ,'i

and the length 2 of a vector is unchanged under parallel displacement. However,
the same displacement law in the sigma space, with metric 913, leads to the
relation
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8. £lgd = G.. gled
de = +d ¥ 95 £ °€ +dYf 95 €€
~ 3/f  k
=+ @ dx
axk
<y 3 3enf gk 8 (11-35) '
2 k !
X
Thus % %-éﬁ%g-p1ays the role of ¢, in equation (I1-33). It foilows then that

ax L3 t
the ordinary connections —{jk} constructed from gij are equal to the more *

general connections §}k constructed according to equation (I1I-34) from aij

1 aanf
and 6, = = 295
k™27 k ‘ .
fo= ! (11-36) -
ko ik :

as can also be seen by direct computation from equation (II-33) and

gij =f gij' (11-37)

o

We may interpret the change of metric from aij to Sij by equation (1I-37)

lf“""““" "w:

as a change of scale for the length at every point of the Riemannian manifold

by the variable gauge factor f. This transformation is called a gauge . :
transformation, and Oy is called a gauge vector field. ’

The generalized geometry thus separates the problem of measurement of
angles from that of measurement of length. For instance, the angle between .

the two vectors g‘ and n1 at a given point of the space is measured by the

ratio
i iJ
£' N, ..
AF 913 En ;

[TeTT Tl [(g;5 6'6") (g5 n'n’) D%

This ratio does not change under the gauge transformation (II-37). The i
gauge transformation is therefore an angle-preserving, or conformal, change

of metric. On the other hand, the length of vectors will change under

wm
()]




(I11-37) according to (II-31). Thus the metric tensor §ij determines angles,
while one needs also the gauge vector ox to measure length.
Considering the sigma space, which is characterized by the tensor field

aij and gauge vector $k. The same argument as before shows that we may

replace the geometric quantities by use of a scalar field f as follows:
S _fa.. 5 =4 sl gl
g.. = f 95 O = ¢ 7T Ty T Ty (11-38)

without changing the intrinsic geometric properties of vector fields. That

is, in the new metric, vectors will have the same law of affine transplantation

and the angle between different vectors at the same point of the manifold

will be preserved, but the local lengths of a vector will be changed according to
22 = £ 22,

Thus the general Weyl geometry, of the sigma space, admits also a conformal

gauge transformation.
2. Field Equations

Then with the foregoing it is apparent that the sigma manifold

must have the more general Weyl geometry and given the vector field O in
: equation (II-38) we can follow Weyl's interpretations and study the tensor field

Weyl showed that from a study of this tensor field we are led to the variational

ol
1k

R S
A T e e L D

principle

W
1]

sSIR + 1 A E].j Fid x(%- 6 4 i1 /5d x=0 (11-40)

/A §s

i

and Fij = /i F..

where %5 i

LT
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From this variational principle Weyl showed that Einstein's

General Relativistic Theory and Maxwell's Electromagnetism may be obtained.

The only remaining question here is whether the vector field $p> which

gives rise to the non-vanishing tensor field Fij’ is required by the three

Lt

fundamental laws aaopted by the Dynamic Theory or must be assumed to exist

as Weyl did.

f i il 4 T m
AI\!H L il
I : ;

If we recall the statement of the first law

-—

- - a
Q=du Fu dq

|
il

we find that even for an isolated system there exists the vector field Fu. :

T
IH,!I [

Indeed, in section II-C-1 it was shown that this vector field is inevitable. ;

i
Jull

Further recall that the geometry given by the stability conditions is based

upon the second partial derivatives of the system's energy function, U, :

T
i

I

il

B

and does not include the forces Fa. It seems only logical to suspect that
there exists a link between the vector field 0 and the forces F_ . especially
since the work terms are path dependent and the non-vanishing of the curl
components of ¢; is equivalent to the statement that the potential function

$ is path dependent.

The connection between the potential vector field ¢; and the

T T
f I bl
Lt bt A e T L ||;.‘.;,l"

forces Fu comes from Maxwell's electromagnetic theory where the forces F,

are the Lorentz forces made up of the components 95+ However, we shall not
show the connection here since any text on Weyl's theory, or electromagnetism,
displays the connection. We shall, however, present it during the development
of the more geroral five-dimensional system. For the present though, if we
adopt Weyl's interpretation plus taking the forces F, to be the forces

resulting from the 05 we then may see that the Dynamic Theory leads us, through
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Weyl's unified theory, to Einstein's General Relativistic and Maxwell's

Electromagnetic theories and further, as special cases, the Special

Relativistic Theory and Newtonian mechanics
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E. MECHANICAL SYSTEMS NEAR EQUILIBRIUM

-

We have shown how, for an isoiated system subjected to only three
spacial forces, the Dynamic Theory includes Einstein's relativistic and
Maxwell's electromagnetic theories. However the approach has been ab-
stract and does not readily display the effect of the new point of view
upon the classical physical concepts. It then seems beneficial to pause
in the development and take a different look at what the Dynamic Theory
says about mechanics.

1. <Classical Mechanics

Classical mechanics describes the motion of a system, which
could be a particle, for which the energy of the system is a constant.
The equations of motion may be obtained using Hamilton's principle.

These equations of motion yield trajectories resulting from the action

of forces; they may also be obtained from the principle of least action.
When the action integral is treated as a variational problem with variable
end points the method of Lagrangian multipliers yields the same equations
as does Hamilton's principle. However, if the variational problem is
transformed to a new space in which the new variational problem has fixed
end points, then the metric for this space is displayed, and the equa-
tions of motion are goedesics in this space.

In classica? mechanics the principle of least action as formu-

lated by Lagrange has the integral form

2
A= s mv.ds. (11-41)
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In curvilinear coordinates the integral assumes the form

p
2 dx® . 8 _ t(p,) dx® dxf

A= Mogg e & I Mg gt gt &
P] t(P])

where a,8 = 1, 2, 3,

or defining

T:m gﬁdx%
=7 %psdt @

the integral becomes

t(pz)
A= S 2Tdt .
t(p])

Then the principle of least action may be stated as:
0f a1l curves C' passing through P] and P in the neighborhood of the
trajectory C, which are traversed at a rate such that, for each C',
for every value of t, T + V = F, that one for which the action in-

tegral A is stationary is the trajectory of the particle.

The transformation of variables may be carried cut to display the
metric
(d8)2 = h_dx%dx® (11-42)
where
haB = 2m(eo-v)ga6 . !
Here different particles in the same field and with different energies

€, would appear to have different geometries which has been previously

taken to be impossible and therefore preciuded the geometrization of dy-
namics (see page 6 of reference 1). Howevar, in view of Weyl's generaliza-
tion of geometry, treating the variational problem in the principle of

least action as transformed to a new space in which the variational problem
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has fixed end points, in effect, is a transforuation into a space with
Weyl geometry where the gauge function is Zm(s°~v)ga8. Thus changing
the energies €, does not change the geometry since it will still be a
Weyl space.

Suppose now that the concepts of classical mechanics is compared
with the concepts from the point of view of the Dynamic Theory. The
energy ot the system in classical mechanics is a constant of the motion
and therefore the change in kinetic energy is the negative of the change
in potential energy, which may be written as

dH=dT +dV=0.
However, for classically, conservative forces dH is a perfect differential.
Therefore for this system with only one work term the force is a function
of position cnly.

This suggests the associctior of the classical energy of the system,
H, with the system energy, U, which is also a perfect differentizl. Now
if the system is isolated, or Q-conservative, then

0 = dQ = du - Fdq.
But if dU = dH = 0 then F must be zero. This points out an important dif-
ference between classical physics and the Dynamic Theory. A classically
conservative system is one for which the systems energy is a constant of
the motion. However the Q-conservative system, within the Dynamic Theowy,
is one for which Q0 = 0. Thus a Q-conservative system which is also con-
servative in the classical sense must have no forces F which may depend
upon velocity as well as position but may have forces which arise from
U _

" 39 F and must be functions of positions only.
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2. Relativistic Mechanics

Suppose we now turn our attention to the mechanics of special
relativity. In the special theory of relativity Einstein sought to put
Newtonian mechanics into a form which would leave the speed of light
invariant. The resulting dynamics exhibits the notion of a unique
velocity in a similar sense to the previously defined absolute velocity.

The mudification required the motion to be such that

t . on
2 (MBC_ 4 Fsq) dt = 0,
]_62/c2

s
Y

where F is a force which is a function of position only.

The factorvy 1 - q2/c? displays the qualities required of the
integrating factor ¢(q). Therefore consider a modification of Hamilton's
principle in terms of the system energy U, the force F and the integrating
factor ¢. The modified statement then would be that the motion be such
that tz
s (§£-+ géq) dt = 0.
t ¢ ¢

1
It can be seen that if #(q) = 1 then F must be a function only of q and
classical mechanics results. It wili be shown that if ¢(q) = v 1 - q¥/c®

relativistic mechanics is obtained.

Now for an isentropic system

or




i MR

This would be the classical work-energy theorem if ¢ = 1. For anv ¢

L
1

d=r.
If the system energy U is taken to be the kinetic energy and
defined as
TER T (11-43)
then

or Newton's second law.
This tends to indicate that a modification of Hamilton's principle

would apply to a system for which dS = 0. This modification would be to
assume that for an isentropic system the motion is given by the principle:
If a particle is at the point P] at the time t] and at the
point P2 at the time t, then the motion of the particle

takes place in such a way that
2w F *2
J (——+—208q)dt =38 S Ldt=0,
t] Q(Q) é{a) t}

where q = q(t) is the generalized coordinate of the particle

along the trajectory and o + &g is the coordinate along a

varied path beginning at P, at the time t} and ending at P2

at time tz.
The hypothesis of the fundamental lemma of calculus of variations

is that L be a real continuous function, therefore, the mixed second

partial derivatives of L must be equal, or
32 2!.

2q2q  203q

[+¥]

[+

[ I i
L L L L R e
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dr=——Mag+ L #+7)
¢{q) 3q ¢{q)
so that
Lol g gl
3q 7 ag T ©
B Then
2 Z s 42
o°L _ 13U _ 1 ,3%u |, 3F, &2
P e R iy e
3gdg 3q0§ © 9gdq dq  §

This requires that

oF _ ¢! A, ;
E-oo &4
2y 0 30

R T

- & However, dS is a perfect differential sc that
= 3% _ 3%

=1 3g3q  33q

= Since

1 as=1Hag+1E-n

= ¥ a4 ¢ o]

= eg

= . 2

= 1 24 S P 1A N S
= 1 ®sqsq ¢ s3q ¢ ¢ o0
= or

M

time then

4 3F_ sl gy o8l 3,
:_: 35 e 3{2 ) $ g °
= Therefore

= U

= T.:Q

= sq

In order that ¢S and dL both be perfect differentials at the sa=m
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and

dL = p dq + F(q) dq.

The equations of mocion would be

d ,sL L
@ G - ga 0, (11-49)
q
or
dp _ oL _
a‘%“ 3q F(q).
IT m = constant then p = mq/¢ and
dL = %ﬁ dq + F(q) dq
while
ds = gf-dé - F(q) dq.
Then fc-dS = 0
S=(d) +v@);  L=r(q) - vig
where

v
Flq) = - é_%%l

How then may ¢(q) be determined? The precedence set by thermodynamics
is to determine ¢(q) experimentaily. Experiments with a charged particle in

a magnetic field, such as a mass spectrometer, show that

$(q) = Ji- q2/c% . {11-50)

In special relativity this “actor comes from the metric of Minkowski's
space-time manifoid. The Dynamic Theory gives us the same factor for
systems which are very near an equilibrium state since for such a system
the coefficients of the metric become constants, which are the second
partial derivatives of the system energy function evaluated at the equiii-

brium state. Therefore The 2ynamic Theory produces Einstein's Special
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Theory of Relativity fur an isolated system very near an equilibrium ‘
state.

Notice that the integrating factor in equation (II-46) satisfies
the renuirements for the integrating factor with ¢ as the absolute

velocity.

If this integrating factor is substituted into the equations of

motion the resulting equations are

d mq
[ . ] = F(q) ,

dt N - qz/cz
then '
dL = —Madq + F(q) da,
v1 - éE/c2 é
. H
- . q . q ’
L(d,9) - Lldg,aq) = , 7 M+ s Fla) dg |

Go J1 =82k 9
2 Z,.2 Ié ¢ H
mecy 1 - &/c { - vig) + V{ag) -

%

If L(ao,qo) = L{0,») = 0, then

L(8,q) = mePr1 -V 1 - <'12/<:2 1 - V{q) . (I1-51)

With the exception of the additive term mc2 this is the form of the ,
relativistic Lagrangian when m is interpreted as the rest mass, and

since additive constants in the Lagrangian do not affect the eguations

of motion, this Lagrangian yields equations of motion consistent with

the special theory of relativity.
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The first integral of the equations of motion may be written as
. ol .
fu-i%-Lu-gpm=o,
9q

therefore

L - gp = constant.

Then define this constant cf the motion, which may be calied a "Hamiltonian",
by
H=zqgp-1L (11-52)
Since the Lagrangian is given by
L = spdg - V(q),
the Hamiltonian becomes
H=ap - fpdq + V(q) = sadp + V(q). f

Then the Hamiltonian equations of motion may be written as

o _od, M )
g = - Fla) = - §& 5 = O (11-53)

For the particular Lagrangian

L=n2 (1- vV 1-a727- () ,

the Hamiltonian is

H = mg -1 - J 1 - /¢ + v(q)

s ] - 62/(:2 ! .
3 = me? (] - 1) + ¥(q)
V- &t
or
H=me? (y - 1) + v(q) (11-54)
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Then defining E(q) - E, = me2(y - 1) implies that

Y =

g2 = E02 + (pc)?. (11-55)

In the special theory of relativity the Hamiltonian, which is inter-
preted as the energy of the system when m is the rest mass and ¢ is the
speed of 1ight, has the same form as equation (1I-54). However, in the
Dynamic Theory the Hamiltonian is not the energy of the system since it is

the system energy U and is here given by U = %mdz since ég-was taken to

3q
be zero.

Thus inter-relationship between mechanical concepts of classical
mechanics, relativistic mechanics, and the Dynamic Theory may be displayed.
This approach does not show the rigorous development which could have been
achieved by beginning with the metric, restricting the system to be very
near an equilibrium state in order to obtain ccnstant coefficients then
applying the principle of increasing mechanical entropy. Such a procedure
only duplicates Einstein's development of the special theory from Minkowskis
space-time continuum and is also presented in a generalized version later
in this report. Therefore the rigorous development will not be attempted .
here.

Suppose we now return to the question of whether the force is really
a function of position only or is also a functicn of velocity as taken to

be the case in the introduction. To view this consider the differential

expression of the first law
dQ = du - Fdq

70 i




but U = %méz and F = ¢F(q) = v 1 - ézlc2 F(q) so that

30 =midg - A - &% Flq) dg

If the first law is taken to be the "real" expression of conservation
of energy, as is the case in the Dynamic Theory, then the "real force”,
F, displays the velocity dependence believed to be the case. On the other
hand the mass appearing in the first law is the "rest" mass and does not 3
depend upon the velocity. However the first law is a path dependent
function and as such may not be integrated until the path is known there-
fore its utility is limited.

The second law provides a path independent function whose differential
is given by ; }

_du_
ds = 3 d

©-|

q
or, since i = mq®, F=/1 - d2/c2 F(q), and ¢ = vV 1 - ézlc2 .

mq dq
ds = /——:?;c—z' - F(q) dq.

1-q
In this differential we see the appearance of the relativistic, or
“effective," mass and an "effective" force which is a function of position
only. Thus it is obvious that we cannot interchangeably use the concept
of rest mass and velocity dependent forces as compared to relativistic mass
and velocity independent forces. This is-because, in the Dynamic Theory,
there are two differential expressions which may not be used interchanjeably

- ince cne is the result of the first fundamental law and is not an exact

differential while the other comes as the result of the second fundamental

law and is exact. 7=




3. Non-isolated System

Thus far we have consistently required the system to be 1solated.
Obviously there 1s a large nuimber of physical phenomena for which this
restriction may not be used, even as an approximation. Therefore, relax-
ation of this restriction should provide description of a large and impor-
tant class of systems,

One of the benefits of the Dynamic Theory 1s the capabiiity of
using procedures currently used in one branch of physics in another where
prior to the unification displayed here would have been thought impossible.
A system to which this procedure should pfoduce significant results 1s a
non~equilibrium thermodynamic system. Thermodynamicstells us that we
must ‘minimize the free energy, but the abi14ity to use this as a variational
principle to obtain equations of motion 1s a procedure which the Dynamic
Theory now makes possible for this thérmodynam1c system.

This research has not yet considered non-isolated systems though some
discussion of this class of systems 1s contained 1n referance (9) they re-

main a possible subject for future research.
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F. QUANTUM EFFECTS

Before displaying the quantum effects of the Dynamic Theory it
seems important to briefly discuss my philosophy with regard to current
quantum theory. I view with awe the strength of the quantum theoretical
structure which has swept aside virtually every attack upon it. Indeed
its successes have mounted so rapidly and stand so firmly that to express
disagreement is taken as sacréligious. Yet I can not subscribe to all
the teachings of current quantum physics. However, my scepticism concerns
only the implication that Heisenberg's uncertainty principle applies to
all physical phenomena.

On the other hand I cannot embrace Einstein's celebrated quote "God
does not play with dice" completely either. Rather I would like to modify
this quote to read "God does not play with dice all the time." For I feel
that quantum effects depends upon the constraints placed upon a given system.
This is akin to the vibrating string which is anchored at both ends and
vibrates, ideally, in certain allowed modes or the string which vibrates at
one end with the other end free.

How then can the limits of applicability of the uncertainty principle
be obtained if indeed there are any limits to be placed upon it? Suppose
we consider the Poisson brackets which are fundamental in classical mechanics
and form the iink between classical physics and quantum physics through the
correspondence principie.

The classical Poisson brackets represent the Euler equations resulting
from a variational problem minimizing a functional subject to a constraint.

Therefore consider the definition, in tensor formalism,
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where the canonical momenta Bi is defined in the classical fashion.

Let f = xi and g = H where H is the Hamiltonian, then

ixj, n} 3"{ at‘ - a’fJ o,
ax' ap;  ap; ax'
i, ax) dp;

- - dt
apj Bpi

since the equations of motion yieids

. i ;
«1 _dx_ _ 3H v . _dpj . 3H
L Al and -P; "'c!ht 3T

3p; X
Therefore
IxJ, H] = %3 (11-56)
if xJ is independent of the bi‘s so that
j
2o,
P
Consider
[pss H] = 3P BH -a?j Chil
J ax’ ap;  ap; X'
N dp.
_ P ei i
= —% X + 0.
i ax] ij dt
- dpj \
then [pin] ol i (11-57)

- . 3.
if pj is independent of the x''s so that ——%-= 0.
X

Thus if the 5i'5 and the xi‘s are independent then equations (II-56) and

(11-57)are the Poisson bracket equations of motion.
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Now consider the fundamentai Poisson brackets,

ix', ¥1; ;s BJ-}; and [x', P;1 -
First
[xi xj] _ax axd _ ax' ax?
> K .. - k
= 6 axj - 6 k .ax_i.
ik 3> jk 3>
Py Py
which is

[, oy = 222l

api apj
or [xi, xj] =90 if (1) the xi‘s are independent of the ﬁi‘s or (2) if
axd= ax)
3; P

J
The next fundamental bracket is
[5, 31 = 3p “pJ - “p1 apa

axK ask 3k axK

or [51, 5:’ o if (1) the 5i's are independent of the xi's or (2) if

= 3

sl
axJ ax1
The third bracket is . .
ax! %P5 ax! apJ

[x'5p51 = - 2
AR 3 %, Py axk




5 -
[x ’pj] 515
if the Bi's and x''s are independent.

Thus it can be seen that if the coordinates and canonical momenta

are independent ther the classical Poisson brackets are given by

x',x3] = o
[5i’6j3 =0 (11-58)
[x',ps] = 65

R 1]

Indeed this is the condition used in developing the Lagrange and Poisson
brackets. However, the tensor formulism may be used to investigate the
requirements placed upon the metric coefficients for this condition of

independence of momenta and coordinates 1o ho]d

3P 3P
Consider [x ,p ] if the condition — 3 3 =3 f . For this cendition
.. -;5
- 3 J - X k
{X",pi-‘ = 8. - ==——¥%= . "-.—"—*'
A i 2 k 3
1 Py 3 J pk J
PSR AP
5,3 99
or
IX’,p-] =0
39- 3D, 5 cen . -
Therefore if —- =-—=$ then x' commutes with aj ¥hat conditions must
Xy 3X
the 9, n the metric for the space satisfy in order to achieve this

-

(
C.-h

condition?
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The canonical momenta are given by :
where in general the gij's are functions of the x''s. Hence the condi-
tion required for the momenta to be independent of the coordinates is
that tic gij‘s be constants. For this condition tc be met it is necessary
and sufficient for the Riemann curvature tensor formed from the gij's to

be identically zero. This requires that the Gaussian and Einstein curva-

tures to be zero also since the Riemann tensor is

Ruays = +
[By,a] [BS,a] lay,2]  [aé,2]
while the Einstein curvature is
R= gu“Ruv ) gxugpvglnvu

and the Gaussian curvature is
K=-%R .
The vanishing of the curvature is necessary and sufficient for the
existence of a transformation to a coordinate system where the metric
coefficients are constants and therefore guarantees that the canonical

transformation in classical mechanics can be made. Then the conditions for

P
tX , D

-

- = 5___
31 7 %43
is the vanishing of the space curvature.
The equation Rij = PG55 is Einstein's gravitational equation at points

where matter is present. Therefore, when the Riemann curvature tensor
vanishes the rectilinear geodesics of the manifolds corresponds to tne tra-

jectories of particles in the absence of a gravitational field. Consequently,

77




ORI

T e

if the manifold with the quadratic form

(da)2 = g}.jdxidxj
is to account for non-rectilinear trajectories, the Riemann curvature
tensor must not vanish. Then the 55 and the xi vwill not be independent
and the fundamental Poisson brackets cannot be written as given by
equation (11-58).

In particular, the existence of a function p in R.j = 0955 such

- -

p D
that %—l-: 3 J

is possible and in that event {xi,ij} = 5. Now the

o
wd

X
quantum Poisson brackets are recquired, through the correspondence principle,

to correspond to the classical Poisson brackets. Obviously in the event

of a curved space it is possible that the xi’s and ﬁi’s commute thus re-

moving support for the applicability of Heisenberg uncertainty principle.
This, of course, cannot be taken as proof that the uncertainity principle
is applicable only in Euclidean spaces since the correspondence principle
is a correspondence only. However it does represent a possible limit of

applicability which we shall see again from a different point of view.

Ir 1927 F. London derived quantum princinles from Weyl's geometry.
However, the results ¢f his work made it ¢ifficult *o défine length as 2
real number and because of this ¥Weyl later interpreted the mathematical
formulism of his unified thecv. a: r-nmnacted with transpianting a state
vector of s gquantum-theoretical system.

Suppose that we consider an isolated, or Q-conservative, systam so
that d§ = o. Then because of the second law dg® > o which is the principle

of increasing mechanical entropy. Then cartainly {dg"} = > ¢ and also.

since




then

greater than, or equal to, zero. In this case

- dqo =/ -F V{d)? .

But d(ds) = ¢kdxk(ds)

and J‘ d{do) _ [, 4k
{dc) Tk

which i=piies that the element o
~adxk
. (ds) = (o), e"**‘d

L
[
LA

S T AR

i

f arc {ds) is given by

where {ds)o is some initis! value oF the element of arc.

However if T < 0 then (do} < o since it is the oroduct which must resain

Xow suppose an eguilibrium, or reversible, state is desired so that

- . s ips . % o= s xs 2
de® = 0. Thus the desired condition is a null trajectory of thre (%)
H
5 . manitold. Then iT ¥ # o the desired condition is aiso a nuli trajectory
= - of the {és}z smanifold. This implies that
% o d{ds) = o
= or
= ” \ .\
= . {ds} = {do),
so that ¥
."C;é)ﬁ'
= e = 1
= which 1s satisfied only if
L 22 i -
ickéxx = 2zin
where n is an integer. This is the quantum condition London introduced.
] To iliustrate how this conditisn arises froz= the dynezic arproach
suppose a description of a2 hydrogen atom is desired. A hydrogen atom
. is in 2 stable condition anré, iT isoiated, satisfiss the conditions
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The imaginary o! presented the difficulty, in London's work, of
defining length as a real number. In the dynamic approach real distance,
or length, may be defined, and properly should be, in the (dq°) manifold.
Recalling that the definition of the potentials is

., o
oK

¢
k X

‘1t may easily be seen that if f < o then ok becomes imaginary as does the

length of arc in the (do)2 manifold since the length of arc 1s given by

o= f /(do)2 .
However the arc length in the (dq®)2 manifold 1s real since dq° > o by the
second law,

It should be noted that the conditions for quantization are not restricted
to dQ = o, dq° = 0, and f < 0 as used here. Any set of conditions which
results in the final element of arc (do) being equal to the initial element
of arc (do)o results in quantum conditions. It is particularly significant
to note that the quantization involves only forces which may be described in
terms of the "distance curvature" and does not involve forces describable by
a vector curvature. Thus interpretinn the gauge potentials ¢y to be electro-
magnetic potentials provides quantum éffects for electromagnetic forces.
While interpreting the forces describable by the vector curvature to be
gravitational removes the possibility of achieving quantum effects involving
gravitational forces alone.

Here, again, is a distinction between curved and Euclidean manifulds.
Though here 1t appears slightly different. The Dynamic THeory requires a
quantization. However this quantization depends upon the existence of a
gauge function and appropriate restrictive conditions. Thus a curved space

may be exhibit quantum effects but only {if the curvature is accompanied by
81 ! |
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a gauge function, or a distance curvature. |

Thus the Dynamic Theory, through London's quantization, not only

supports the contention that "God does not play with dice all the time"
but, further, may supply the answers to two questions concerning quantum
physics. The first question is, "What is waving in the wave function?"
London showed that the wave function is directly related to the element
of the arc length in the sigma manifold. Therefore the "waving" is the
tendency of this elemen. of arc length to increase and decrease around
a closed path. Using the calculus of complex variables the quantum number
becomes the order, or multiplicity, of the zero of (do).

The second question is how gravitational effects may be quantized?

Here the answer becomes, "It can not." If we assume the validity of ‘

Einstein's General Theory of Relativity, which is included within the

R

E scope of the Dynamic Theory, in equating gravitational effects with the

curvature of the space-time manifold, then gravitational effects alone

may not be quantized. However, electromagnetic effects within a gravi- .
tational field may still be guanvized. However, the quantization will be

affected by the vector curvature.
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G. 3SUMMARY
When this investigation was initiated it was concluded that
Einstein's postulate of the constancy of the velocity of 1ight could not
be adopted since it was felt that experimental evidence in electromag-
netism alone did not justify applying it as a limitina velocity to all
types of forces. However, we find that this is required by the Dynamic
Theory which approaches physical phenomena from a different way. The
new viewpoint indeed supports Einstein's every contention including his
uneasiness concerning quantization and it does it in such a way that it
seems only the early successes of his theories kept Einstein himself from )
coming to the same realization.
This is of course speculation but it was Einstein who returned to
very fundamental concepts in order to establish a basis for his relativity
theory. He was also known to be aware of the tremendous strength of I

classical thermodynamics since he vrote, "A theory is the more impressive

the greater the simplicity of its premises are, the more diffevent kinds
of things it relates, and the more extended is its area of applicability.
Therefore the deep impression that classical thermodynamics made upon me.
Tt is the only physical theory of universal content concerning which I
am convinced that, within the framework of app.icability of its basic

concepts, it will never be overthrown." Thus it seems only the fact

o 5 e e i s =+

that Caratheodory's statement of the second law, which is the key to the
development of the Dynamic Theor. , did not make its appearance before the
relativisti. theory had achieved such stupendous successes kept Einstein

from eventually investigating its possible extended application.
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The key points in the develcpment of the Dynamic Theory seem to be;
the recognition of the generality of the thermodynamic laws and their
independence upon the number or type of variables considered and the
recognition that the quadratic forms associated with the stability con-
ditions form natural metrics leading to a geometrical description of the
dynamics of the system independent of the variables used in the description.

There are numerous conclusions and implications that could be reiterated
here, however, only a few of the seemingly more significant ones will be
discussed. The first one is the existence of an integrating factor for
any system describable by the first law, particularly that this integrating
factor is independent of the type of force considered. It is this fact
which ultimately leads to a unique 1imiting velocity for all forces. How-
ever, in speaking of the absolute velocity, for mechanical systems, care
must be taken to point out that, as far as the three laws are concerned, it

does not represent an absolute barrier. Rather the laws only state that,

for a mechanical system with only three work terms representing the work
done by three spacial forces the absolute velocity represents ar upper and
Tower 1imit. Thus solutions with velocities greater than the speed of
Tight are also allowed. However, so long as the system is subjected to only
these three forces then its velocity may never cross this barvier. This
absolute barrier effect may be expected to change if another force term
representing an additional dimension is found mecessary.

The reduction in the number of fundamer<al laws or postulates is
significant. This together with the unifying effect of the thres laws
promises to simpiify the study of physical phenomena by founding the entire

realm of physics upon a common set of conceptualizations.
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Perhaps the best way to summarize the unifying effect of the
Dynamic Theory is to consider a vin diagram which depicts not only the
overall realm of applicability of the theory but indicates also the

effects of different restrictions.

k1.
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i During the preceeding development displaying the unifying effect

of the Dynamic Theory there did not appear anything which approached a
. description of nuclear effects. Of course quantum theorists may response

-- that the nuclear effects 1ie within the realm of quantum theory. This,

however, does not seem 1o be a strong argument since current nuclear

E; theory appears to depend upon a number of ad hoc postulates.

If it is supposed that nuclear theory cannot be extracted from some ‘
?: aspect of the preceeding four-dimensional world view then how might the
-- Dynamic Theory produce a foundation for nuclear theory? At this point
g* there appears to be no obvious way. There.ore let us proceed on a dif- g
?’ ferent tack. |
- Thus far we have constantly adhered to the policy of dividing systems
5. into two types; thermodynamic systems with only a work term of the pdv
- type and mechanical systems with three mechanical, or spacial, work terms.
3' Now the generality of the adopted laws places no restrictions upon the
;’ number or type of variables used. Particularly there is no restriction
- coming from the laws themselves which says we cannot use four work terms,
z; one the thermodyramic pdv term and three mechanical Fdq terms. Obviously

pdv itself is just another Fdq type term with the pressure as the general-

s

ized force and the volume as the generalized displacement.

?’ The rub comes in attempting to vis alize a world description in five
. dimensions. Many arguments may be envisioned which tend to imply only a
{: four-dimensional manifold is needed. The kinetic theory of gases relates
- the pressure to the average velocities of the particles contained, Doesn't
: ‘. that "imply that thermodynamics ultimately rests upon a four-dimensionai
L o7 ’




manifuld? Recall that the system in the kinetic theory is basically in
equilibrium,

Statistical thermodynamists may claim that thermodynamics is basically
statistical in nature and is fundamentally tied to order and disorder and
hence to the four-dimensional world of quantum theory. But remember that
the overall system, to which the statistical approach is applicable, is a
composite system made up of many subsystems each in an equilibrium state.

Still there seems to be no substantial support for a five-dimensional
world from the point of view of current theories. This is to be expected
though in view of the difficulties experienced in the transition from the
classical three-dimensional world to the four-dimensional space-time of
Finstein's theories. Obviously had the extension of the universe been
restricted on a priori grounds to t! ‘ee-dimensional Luclidean space,
Einstein's theory would bhave been rejected on first principles. On the
other hand as soon as we recognize that the fundamental continuum of the
universe and its geometry cannot be posted a priori and can only be dis-
closed to us from place to place by experiment and measurement, a vast
number ot possibilities are thrown open. Among these the four-dimensional
space-time of relativity, with its varying degrees of non-Euclideanism,
has found a place. So also may the five-dimensional view of the Dynamic
Theory be found witnin the possibilities. Ultimate judamert upon its
necessity, or applicability, should rest upon a comparison of the theory's

predictions with reality.
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A. SYSTEMS NEAR AN EQUILIBRIUM STATE

The metric coefficients are made up of the second partial derivatives
of the system energy function and therefore if the system remains near an
equilibrium state then the value of these derivatives evaluated at the
equilibrium state may be used as a first approximation for the metric co-
efficients. In this case the geometry will be Euclidean and from the
preceeding four-dimensional development the Euclidean manifold produced
by applying the (-conservative restriction was Minkowski's space-time con-
tinuum of special relativity.

Therefore suppose we begin an investigation of the five-dimensional
world by staying very near an equilibrium state so as to simplify the
description to a five-dimensional generalization of Minkowski's space-time
manifold.

1. Equations of Motion.

Suppcse that we consider some sort of system requiring four work
terms and for the momeni not concern ourselves as to exactly what this
system might be. Thus for our systam we will have thermodynamic es well as

mechanical variables and the first law becomes

afz:dz}ﬂmv-;udq“;aﬂ,z, 3.
Where the §, 5, v and ;c are considered as specific quantities. That is
these quantities are related to a unit of mass such as is customary in
thermodvnamics.
“he specific volume is the reciprocal of the mass density, y, then

using the mass density instead of the specific volume the first law becomes,

& = du -(P/y?)dy - F_d% a =1, 2, 3.

This law now requires that the system's specific energy U be a function of
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five independent variables so that
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4 u(s, q*s a2, g%, ¥).
Thus the first law requires a five-dimensional manifold of specific en-
tropy, space, and mass density for a general system. Since the system
under consideration needs both thermodynamic and mechanical variables we
can no longer refer to the entropy as mechanical or thermodynamic however,
the 1imiting case where the mass is held fixed must produce the mechanical
entropy.
The procedure established by the Dynamic Theory is to take the sta-
bility condition quadratic form as the metric for a stable system. Thus
the coefficients of the metric become the second partial derivatives of
*he energy function. In order to simplify the metric suppose for the
present that we restrict our system to be very near an equilibrium state
so that we may consider the second partial derivatives to be constants.
This is in essence considering a local Euclidean manifold which the symmetry .
of the gecmetric connectiors guarantees that we may do. -
Since the metric coefficients are constants a transformation may be
found such that the cross terms are zero. Then in this coordinate system
the metric becomes
c?(dt)? = (dg?)? + do®da® + (dq*)?; e =1, 2, 3.  (1II-1)

when

qO

t
S L

and o* 'al ]
0 0

If we again consider the restriction dd = 0 so that we are talking
of a Q-conservative system for which the principle of inrreasing entropy

holds, then we have thes variational principle given by

(111-2)

(2]
L™ Y
1}
[e=]

4

80




(TR I TR W N a0 M ok
" LU Al e RIS et P DA el R X f ‘:H i .|’,'g'| It f
s iy " v
AP Te AR My san o 1 b5,y o " L

———

onmed
[ +

e,

r—

Solving equations {1I1-1) for dq® and squaring we get

(dq°)2

c2(dt)? - dq%de® - (dq*)? (111-3)

or

d?“ dg°
2 . -
c 'gﬂS( t) (;t_): G, ‘]: 2) 3,4

gag = dal.

&>

The entropy manifcld given by equation (III-3) is a five-dimensional
Minkowski-type manifold with coordinates of space-time-mass. We may there-
fore follow the procedure Minkowski and Einstein used in the Special Theory
of Relativity.

First, to avoid confusion, let us rename the ccordinates as

x0 = ct; x! = q, x2 = g2, x3 = g3 and x* = q¥.

Then define the five-dimensional velocity vector as

Now the specific entropy is the arc length and the variationai princi-
ple is based upon the entropy. Therefore iT we multiply the specific
entropy by the mass density we have the entropy density. The variational

problem becomas

&§ 5 A2([dqP)2 =6 5y /{dq0)z =0 . (i11-3)

The Euler equations for this problem are

3 Yig—?:_k_u}uk
d Y 9i5U u 3 =0
0 - g J PP | I - T
a7 Vgl EUCE gjzu'u’
91
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Using the fact that g v'v’ = 1 the Euler equaticons become

i3

w o= fl (111-5)

where the Fi are force densities.
Obviously if we hold the mass density fixed, u® = 0, then the voiume
integral of this equation tecomes the force-mass-acceleration relatiorship

of special relativity.

. 3 )
Kow since f’=i‘%ané (%t—)=c2-u°‘u“;u=1, 2, 3, 4,
8q
then
. e ] |
F""‘f“o:’fif dto
&q “* dq
= 8 dxi 2 o
.%?-s—t-(-é—o)h'hE?e ”=Uu§ﬁz1,2,3,§.
cs - v¢ a
Then
Y. _5_1_1__ g.x.i)
FP=/3_, & W g2 O
1 dx=

X S \
2 Ao w7 Tow &)
wrere 8 = v/c with v the four-dimensional spesd.
The force density equation mav now be written as

- 1 o
v’r-_STF"=C%--c%(jr=?=§z=-ag}-
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0 -
- .3 a uz,
. P NI (s y &, "o 1 déx™ 1.
A-" TERIMTE T T o
T We may define =7 = y! as ihe effective mass density or “Rela-
tivistic® mass density then
5.,Q
. . a. vw
ATTZF =4 8 8 3
: 8 gl Fl o=
# By defining F = c2 /T = 82 {F*) so that
] vev®
I - Py
E :\1_ Q :v}.ux o
: 4 >R R O R v (i11-8)

Ke see that this force density becomes Eimstein’s special relativistic Torce
density when v* = 0, or for constant ®rest mass.” Thus the eguations of
motion, egquation (iii-O) reduce to Einsteinr's special relativistic eguations
of motiens when v = O.

2. EInergy fguatiecn

Xow for our systes the restriction that

- - P T .o
Q=0=cl-Zdr-F o a=1,2,3
reguires that
du = 5 2 ody Fa*e=1,2,3

or if i}-is considered as another ganeralized force density then

i = %adxa; a=1, 2, 3, 4.




r the system's specific energy
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By taking the constant of integration to be zero this internal energy
density then corresponds to Einstein's "rest energy" where here the ‘rest
energy' is in terms of a four-dimensional "at rest" state.

If we make the usual type approximation of allowing B2 << 1 then the

system’s energy density is approximataly given by

1 1 .
ye2 + 5y v2 + T—xyz-(v)z
. Z Z 2,

éL-is used. This displays the classical Timit system
0

energy density for a Q-conservative system very near equilibrium.

u

where here u"
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B. SYSTEMS WITH NON-EUCLIDEAN MANIFOLD

Suppose now we relax the assumption that the system is very near an
equilibrium point so that the second partial derivatives are no longer
constants but are functions. This is essentially the same transition as
Einstein made going from his special to general theory, however, the logic
of the transition is much simplier here. The only change in the logic
appears in the relaxation of the assumption of nearness. There is, of
course, a drastic increase in mathematical difficulty since the metric
components are no longer constants.

1. General Variational Principle

We shall consider a system, which may be a charged plasma, that
must be described by both thermodynamic and mechanical variables. When
written in terms of the mass density the first law for this system may be
written as

di=da--§zdy-;adq“; a=1,2,3

where the tilda denotes specific quantities.
Following the prescribed procedures of the Dynamic Theory we shall
take the stability condition quadratic form as the metric for our system.

Thus the metric coefficients will be given by the second partial derivatives

where q* = éL-. The metric may then be written as
0

2 1 2 = 0y2 Q4.0 ay.B
c? {dt) hoo (dq~)2 + 2 hca dq dq™ + hae dq™dq

where a,8 = 1, 2, 3, 4.
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Imposing the restriction that the system be Q-conservative, dQ = 0,
results in the principle of increasing entropy so that
6 s /{dS)? = 0.
Thus in terms of the specific entropy the variational principle may be
written as
8§ £ /[3dqd)Z =6 s/ vy /{dq0)Z = 0. '%
Solving the metric given by equation (III-4) and squaring yields the

expression

(dq°)2 = {ﬁl-} {c? (dt)2 + 2 hOa [*] dt dq® - huB dq“dqs}; as B=1, 25 3, 4

00 §
with
. h -
- A : h (OW N '
- ()] =L aT e V2 48 avee e !
5 hoo h00 h00 a'q + hoo . ,

This metric in a five-dimensional manifold of space-time-mass may be re-

é? . written as
| (da°)2 = (£ (do)?
H 00
where
(dg®)2 = aij dxldxJ; i, j=0, 1, 2, 3, 4 |
(do)? = a‘l\] dxidxj; i,j=0,1,2,3,4

o:

with x° = ct; x! Thus we may write

1; x2 = q2; x3 = ¢35 x* = v/a,.

(}9 §ij dxidxd . (I11-7)

e
LO

A W e Gl

A~

%; dxidxd = (}g (do)2

.. (dg®)2

Having established the metrics in equation (III-7) in the manner

é prescribed by the Dynamic Theory the geometry must be Weyl geometry and

. defining the potential five-vector as

1/2
05 % iﬂ%f (11I-8)
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and the field tensor as

|
|
g
f
|

then we may follow Weyl's procedure ia his unified fieid theory to

arrive at the variational principle

§/ [R+ J—A FooFio - A& - 12 - )] /-3 dxS = 0 (111-10)
J ?'

where F /== Fis and ;i z /7" o5 -

— N\

Varying the metric coefficients aij in the variational principle
(IT1-10) will yield field equations of the Dynamic Theory which are ex-
tensions of Einstein's General Tneorv of Relativity.

2. Gauge Function Field Equations

In order to isolate the field equations resulting from a gauge ) '

function from the :eld equations produced by a vector curvature let us
consider a Local Euclidean manifold for (do)2.

Now the field tensor given by equation (III-9) has 25 components. We
would like to determine the field equations for these components. The
quickest, though not the only, way is to consider the five dimensions to

be o
X°=icty; x*=x%a=1, 2, 3, 4.

The field tensor is then defined to be

0 i E1 i E2 i E3 i VO\
-1 El 0 83 -8, v,
Fig 3| T & -8y 0 B V2
-1 By B, -8, n v,
iV -V1 -V2 -V3 0 }
9(\ §
° {
s S e BN e et T .m..\uwmnm%.f e e *_: . ==
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%_ ' Using Bianchi's identities

e aFij+an.k+aFlSi=o
axk o) ax?

and the various combinations of the indices 0, 1, 2, 3, 4 we obtain the

field equations

1 8B _
XE+E§E-0

<}
.
|
n
o
<y

_ _ _ (I111-11)
5 9B _ Ty s LW, E_ 4
vxV+ a, 3y v vo tosEt Ty 0.
The definition of the 5-vector current density
9 F..
iJ _ 4o
=~ = 21 J. (111-12)
ax] c i
yields the equations
aV - — -
- 0. GxF.L2E, , oV _ad
V-E+a\w—-41rp ng-cat+a08y—c
2V (111-13)
( vToV+l_0o.- _dr,
! ¢ at c 4

Equations (III-11) and (III-13) form a set of seven Maxwell-type
equations which obviously reduce to Maxwell's four equat.. . if the mass
density is held fixed.

The wave equations for the new field quantities may be derived using

standard assumptions.

2 n2
.- l(V.V)-{-laVo—ﬂi’.aJh:V.3v+lovo
ot c ot? ¢ dt dt * ¢ 3t?
* while
a = s 15 oV _ = 1=,V 5. =
; V'(Vvo)+EV‘§E"‘aoV 3y cV @ty vV,
! therefore i
Co
e
i j__ 99
18
= - .
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VZV ! 3V = dn 3\] -a F.E.E.
‘?atz "Tat 0 Y

For the vector field we have:

and
2 l3asy =40
Tx(FxV) +v V+catvv0 = v J,
therefore
2V _ 4r = 3 a2F — _ 3B
VV‘CQ'W‘?VJ“'*??Y‘*aO(VX%-Y-).
_ v,
But V«E = 4np - 3, 5y S° that
32y 3 av
S i T S TP
0 2 at2 c< ot o Y 0 3t
- 19F _ 4v oV
andvxF-c—f J - Zhrsotha’c
w13 _ 4 s R 3E . WV
- e et 25t 33

Now since the wave equations for the usual vecter and scalar po-

tentials are
2
o2k - 1 228 _ 4» J

T T
2
v - gz S = - dmo

We may differentiate these with respect to the mass density and substitute

them into our wave equations and get

2
=ﬂ?:]_l:-+ zavo

(111-14)
2. 1 3 _ 4= 9 gf__ v
v Zz ¢V J, * 3, 3 (2 % 3y
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where Uo z V0 ta, and U=V -a
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Y 0
3. Interpretation of the Current Densities

For our system the conservation of charge becomes

ad,
—,}-=0;i=0,1,2,3,4
ax
so that
ad
B .7 bo_
S;E-+V-U+30W-—O. (III-]E)

Thus we see that defining the current densities by equations (I1I1I-12)
leads us to consider the new component of current density J, which alters
the conservation o¥ charge equation, (II1I-15).

Since equation {I11-12) defining the current densities involves an
interpretation linking these equations to ieaiity there seems to be no a
priori reason for this defining relationship. Defining the current density
in this manner introduces also the necessity of interpreting the new term
Jq, which in turn requires changing our concept of conservation of charge
to that of equation (III-15). While the extension to five dimensions may
well require changing our concept of conservation of charge, just as the
step from three to four dimensions required a change in the conservation of
mass, it should be possible to appeal to experimentation to determine this
requirement.

Suppose we look at the defining relations

3 F..
—W =9 (111-15)
3\<1

then equation (IIi-11) becomes
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(111-17)

- 0 0
“mE (111-18)

and the current density as

J=- ?%5 gz : (111-19)
Substituting equations (I11-18) and (III-19) into the remaining equation
(I1I-17) we obtain

7T+ at =0 (111-20)
which is the classical conservation of charge equation.

Thus if we use the defining equation (I11I-12) we are faced with
interpreting the new term 1 which has its origin in the thermodynamic
variables our system. While if we choose the defining relations (II1I-16),
(111-18), and (III-19) we may keep our concept of conservation of charge
but this requires us, by eguations (III-18) and (III-192), to consider
current densities to have their origin in the thermodynamics of our system.

4, Additicnal Developments of the Five-dimensional field.

a. Energy-Momentum Tensor

If we foliow the approach of relativistic electro-dynamics

we may define the tensor {T} in terms of the field tensor {F} according to

Tsg = = (z) FypFa ¥ 71'63k st Fatd -
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Recall that the 5-dimensional field tensor is given by

0 i€, if,  iE, ivo\
-iE, b By -B, v,
{Fy= | -if,  -B, 6 B, v, |
~iE, B, -8, 0 v,
Y -y v, -V, = /

Using the field tensor to calculate the components of the energy-
momentum tensor we find that the components are given by:
-1 7 o B .
T = 3§'[(E X B)a + VOVaj; a=1, 2,3

oa

=V P2 4 R2 1+ v2 + y2
T g;-[E + B< + Vo + V<)

00
o4

€T
1

T VE, + (VxB) }50=1,2,3

sa A
=y 24+R2._r£2_y2
T, =g Vo2 + B2 - E2 -2
and T .= L {EE._+8B8B vV ! sa3 [E2 + 82+ Vv 2 -V
ag  Fm Yat3 T Pats T Ya'p m Z %l o ~ VI

where a, 8=1, 2, 5.
The field energy density may be defined by

e ) . FsF-F4V.- 2
:,:7[; E.-B B+V V+VO],

and the electrical Poynting vector may be defined by
€ - ¢
SE—E(E-XE.).
Now the electrical Poynting vector represents the outward flow of

the electromagnetic field energy through a surface. Thus if we take the

tctai sector, whose components are Tou , to be the total flow of energy
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then the vector, with components, {é-vova » must be the outward flow of
enargy duc to changes of the mass density within the surface. Therefore
let us designate the mass energy vector as
- C
gm =3 (VOV) *

so that the tcta! energy vector is

o .

whose components are

- C = - (&
S, =& HEX B+ V¥ = - &1y, -

B2

The Dynamic stress tensor may be defined as the three-dimensional

tensor whose elements are

D _ 1 v2
T = - {EuES + SQBS - VBVS - ZﬁaS I - 2v-]%,

a

2]

The Maxwell stress tensor is defined in electro dynamics as the three-

dimensional tensor with elements

\1-—}”:: ] r2 21
T;S T s “tats * ans - 2‘638[' * B

Thus, in terms of the Maxwell stress tensor, the Dynamic stress tensor

m3y be written as

D M 1 v v 1 2 2
= I - H ¥ - S = o < }
TQS ag &z ‘\..x ] 2 L:xE;M VO 1.

Then in terms of the above defined quantities

—-ds

c i T
: i E T

vy o i‘!‘ fc~ .l r ¥ Y

(7Y = - =3 (T} —(VI+ (VxBn .
c e O

L (F. "W %{\'cf+(vx§)‘; g?[vg+sﬁ-£2-v2}
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Suppose we calculate the trace of the energy-momentum tenscr:

B D
JJ JJ

t {1} =T e:+—-{v2+82-f - v

1 (q2 2 0
B VT

2182 + V2] 4 S{E2 + B2 - V2 - 3 (E2 + B2 + V2 - V2)]

2
v2) 3

]
[+

V2 -

dympz_ Le2
47[]/2 B - 2 E +

a{82 + V2 - E2 - V2]

b. Force Density Vector
The force density vector may be defined in terms of the divergence
of the energy-momentum tensor. Therefore suppose we calculate the 5-d
ivergence of the tensor {T}, o

jk_ 1 2 ]
Lo (Fsefor ¥ 7 85uFaefatd -

ax

Because of the anti-symmetry of ij, the first term may be written as

£
]

0

iz F o= e 23 F
M T

By interchanging the indices k and 2

eF.. oF

aF.

Ji kJ Ji k2
.k sz F 7'( E ) Fik -
oX 3X

The terms contained within the parenthesis may be written as

aF ; B eF oy — 1.3(F£ank)
ax% ek T ?'axJ 2k & 3




T i A I TR e <l
= i ﬁﬂt‘f = aE "%x‘:. =

S
T TN R X PRI TR Ty

Substituting this back into the expression for the divercence the

TS

last term will be cancelled because i, k, &, and ¢ are dusmy indices.

Then the divergence becames

st TR K :
By interchanging the indices k and £ on the right-hand side we obtain i
T .1, Fa
axk Z= 3% axk (111-21)

migs

Therefore the components of X are given by
.= L F. Frs
D -2 L S

v 3X

Byt the S5-vector current density is given by

o

F
ax* c k

Thys the components of the S-vacter force cdensity become

ki _ -4< J

KDL # B SN R A DT O T B G K RE g T

- "] !‘: 3 Y - -" o i
Xow, since 3, = (icp, J, d,), then g
X = i J.-T s J Vv i
KO Ei\. b L’;“Oj :
- =.1 = .m Sy
‘(=:‘.:‘E{D‘(3,."‘E“"

These then are the components of the force density d-vector

~zs.1ting from 2 gauge Tield in the JynawTc Theory. These comoonents reduce
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e
e

to the four components of the Lorent: rorce density should Vo =V =o.
With the interpretacion that the four force density components with
subscript 1 through 4 are the force density vectors which appear in the
first law as Fu » then the force densily vector provides the connection
between the first law and the geometry of the sigma manifold discussed in
section 1I-D-2. Thus the existence of the vec* r field ¥ is also de~

manded by the Dynamic Theory and need not exist as a separate assumption.
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C. Equation of Energy Flow
Consider the zeroth component of the Dynamic force density

' 5-vector.

. - o _ Tog , o . 0Ty,
0 K k@ @ axk
Then 35 -
i3 __oe 1%, 1 aEY
B e Tt T W
g or
3s =
l3F 2123 .1 %a 1 3(EN)
'c[d E+ Juvo] cat C oy &7 axt
: or, since X% = y/ao.

) while separating out the electrical Poynting vector leads to
. 3¢ A(E.V)

. 8 . = iy T
div §E + 3% -£.J JHVO div Sm + Y. oy

This then is the 5-dimensional energy flow equation.

s e

PR U5 2 e B

il b & Bl @ S P i Bty b Lty W WA i oy W, A ow,
o L b S P I o Sk a3 by D0 39 8 o S RIAIE B B 2300 A )
8300 »a

AL P n

g

0

s

[y

LD B o M0 e i s

S0 A D B e inirr g 1o

£ .

¢

LoL 107
_E
~5

]
|




ST HL IR 1“7;”‘;:—7»"""»:—t‘":"h——‘ - Ko pm iy RISt S ipcrn gy Ex T 7 e S g T g
E’ RAEBENI  w S L STT ERR o  e e  AR SoR e O e

R R e D WA S -3

e . ettt s s

'”'r"‘a’“f»*;'lﬂ"'ﬂ*lri"z S DA s
‘ !

d. Momentum Conservation
ff The expression for the conservation of momentum may be obtained

from the space portion of the force density 5-vector,

2 | oT 3T T T

. K = —ft-—80, B, 8 429,23,

s ax ax° axB axh

= | aT

o But 28 is the 3-d divergence of the Dynamic stress tensor {TD}, therefore
X

1885, oDy 20 aIVE+ (VB
K-*a'-é-t—‘*d\V{T}'*'ﬁWo

If we consider a volume in which all the material is contained and

outside of which the field vanishes, then integrating over this volume yields .

155 % a(VE+ (VxB)dv = £ diviTl)dv .
fv{R"*‘Ez'—a-{-*H%‘; 0 v

The integral of X gives the total force (i.e; the time derivative of the

mechanical momentum p less the vector yv& ).
v 1-82

Now define the vector
a

5 ~_ 5 0 AVE+ (VxB) + pe
f 9=z 7, f{-a-;0 } dt .
| V1-82
X Then define
fy 9 do = [

so that ,

d =, = _ D
EE'(p +0) = fvdiv{T ldv .

Using the divergence theorem the volume integral may be converted

to a surface integral so that

di=,m =0y . = .
P+ 8 =/ (T} -7 da.

« -
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If the field vanishes outside of V, it must do so also on the boundary
surface s, hence
FFE+D =0
Therefore it is not the mechanical momentum p but the quantity p + G

which is conserved. Therefore we must interpret G as the momentum of the

field and é
§-5, - 20 AVE+ (VxB)] + 4ni¥ :
9= z;-f{s;' = }dt

as the momentum of the field. '§

e. Gauge Field Pressure

The Dynamic stress tensor is given by i

D

= - _ 2 L R2 4 V2 _ y2
TGB z;-{EaEB + BaBB VavB ?.GGB E€ + B4 + V0 V<11

e r2 42 _y2y -3 2
g-;[E + B V4] m‘jvo.

Now separate the 3-d Dynamic stress tensor into a traceless and an

isotropic tensor.

N vy o 2 4 R2 4 V2 _ \2 ;
TaB 4x {EaES ¥ BaBB VaJB ?'GGBIE * RO V0 Ve :

=111-T.{E(1EB+BC(BS-VV‘-§1" [E2+BL+\’2 _VZ]

]

1 . 2y} 24 r2oy21_(Ly L 240242u2_y2
47r[E“ES+BuBB VuVB] (gb(ggasas[E + B2-V2) (3)(93)GQB[E +B2+3V2 VZ)

taB * T;S

AT 000l 0 0 8 e A A0 e i A 0 8 e

I]‘ EE, + BBy = V.V, - (31?)%3“52 + B2 - 2]}
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and :
w2y = - () 6 gIE2 + B2 + V2 - V2] A

Now ,

tultyg) = (Z-)(EZ % B2 - V2 - (E2 + B2 - V2)] = o

while 1
to0r2,) = () [E2 + B2 + V2 - V2] s
Consider the definition g
-}tﬁas == - (7}{;)5“8[52 B2+ V2 - V2]
Then ¢§
t= - (g)(E2 + B2+ 2 - \2
and ; é
t 0 0 ;
T&B =10 t 0 %
0 0 t §
The isotropic part of the stress tersor is usually called the "pressure". ‘ %
Therefore define g
3p =t ,é
in accordance with customary notation, so that :g
p = - (=) (E2 + B2 + 3V2 - v2)
With the exception of the factor of 3 this reduces to the "radiation i
pressure” For an electromagnetic field when V = V0 = 0. ';
Note tiat this pressure may be zero since it is the sum and difference ’ é
of squares, or p = o when , g
V2 = EZ + B2+ V2. ‘ g
This may prove to be an important point when considering boundary con- §
. é ditions in cosmology or elementary particles.. é
e e T S T &ﬁ
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C. QUANTIZATION IN FIVE-DIMENSIONS

The preceeding development provides a tremendous weaith of mathemati-

cal abstractions. However, there seems within it no readily apparent

method of interpreting the new fields. If there appears to be no physical
entity which may be associated with the new field quantities then the develop-
ment will have gone for naught. On the other hand wit!. the notion of nuciear
fields in mind it seems that if the new field quantities are included in a
quantized picture ’hen perhaps the relation to nuclear fields may be made.

In the following the requirement for quantization is provided by ap-
propriate restrictions upon a system whose description is taken from the
Dynamic Theory. However the use of the five-dimensional Dirac equation
has not yet been shown to result from the Dynamic Theory. Schrodinger's
quantum mechanics may be obtained using London's work, but I am not aware
of a procedure to arrive logically at Dirac's equation even though I feel
that the method exists. As it now stands the use of the generalized Dirac
equation must be accepted as an independent fundamental assumption.

1. Quantization

The system under consideration now is a five-dimensional system
with arc element
(dq°)2 = f (do)? .
Now since our system is a Q-conservative, dQ = 0, system the principle cf
increasing entropy requires that (dq®)2 > 0 so that f (do)2 > 0. Introducing
the quantitization conditions results in

Y dxd = 2nin; j=0,1, 2, 3, 4

1/2
where ¢, = & EE ond w0 s oty X1 s ql; x2 = q2; x3 = ¢3; x*+ = L
J J a
X 0]
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If we restrict ourselves to a (do)2 space which is the local
Euclidean space then (du)? is the five-dimensional Minkowski-type manifold
and using London's work we would produce a five-dimensional quantum dynamical
system.

2. Five-Dimensioral Hamiltonian

We previously showed that the principle of increasing entropy
resulted in
§ S v /{dq0)2 =

as the variationai principle for a local Euclidean manifold. Since multi-
plication by a constant does not change the problem we may take our vari-

ational problem to be

GfYcz/(dQ)2=0 '
Defining the veiocity vector as u = 9——-and the momentum as p. = Jﬁ;-s
dq° I ad

k _—
Y gjku » where we have uscd the fact that qjkuJuL = 1, then we may form

the contravariant momentum as

J o gk, o ,dk R
p - g pk = g Y gkz ]
so that
J - J Jk 2y - 2 L k
PP~ = (v g5,u7) (97 v gy, u™) = ¥2 85 U g5 u
v (v g5y wu¥) (111-22)

since yc? = y nguJ k. Equation (III-22) is the five-dimensional “momen-

tum-energy" equation.
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We may now follow London's procedure to obtain our wave function
for the five-dimensional system. However a quicker way to investigate

the effect of the Dynamic Theory upon quantum mechanics would seem to be
that of adopting Dirac's equation in a five-dimensional form and following
a development analogous to standard four-dimensional relativistic quantum

mechanics. With this in mind then we shall adopt the form

h=iloysor*d, 500, 505* 0, 50 -8  (111-23)
to be the five-dimensional specific Hamiltonian operator. In equation (III-23)
the a's and 8 do not involve derivatives and must be Hermitian in order
that h be Hermitian.
By taking the four partial derivatives in equation (III-23) as the
4-vector momentum operator we may write
h=-(a-«p+8). (111-24)
3. Five-Dimensional Dirac Equation
If we take p0 ! >=h i > and require that the ao's and 8 are

chosen such that solutions of this equation are also solutions of equation

(I111-24) we find the restrictions imposed upon the choice of the a's and

8 to be:
(a - p)? = p?
82 = 1 (111-25)
aBt g =0

where natural units, ¢ = 1, are used.

A set of 4 x 4 matrices satisfying the requirements of equation
(111-25) is
8= (190, =099%), 5=1,2 3a = (%) (11-26)
0-1/? J J ’ ) ’ ’ 02_02
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where [ is the 2 x 2 identity matrix and the o's are the 2 x 2 Pauli
spin matrices.

Then the five-dimensional Dirac equation may be taken to be

iFy(x)=(ia-v-8)v¥(x (111-27) )
where the v is a four-dimensional operator. By defining
0 -, . _Uu._ -
Yy =83 y = - Ba, (v=1,2, 3, 48) (111-28)

then equation (III-27) may be written as

(o + 1) v () =0. (111-29)
By virtue of the properties of the a's and 8 plus the fact that %
]forj=k:0 %
Jk _ C Lo §
g" =<4 -1 for j=k=k,2, 3,4 5
0 for j # k ;

the anticommutator of the y-matrices nust satisfy
o, vy =29 .
In standard representation the y-matrices are given by
- - 0
Yo = (é _0); Yu = (g 0“)’ u=1,2, 3 Yu = 82 o )-
u 2

4, "Lorentz" Covariance

Under a five-dimensional Lorentz transformation

3223 Kk
X L g X

we shall suppose each component of the wave function v (x) transforms

into a linear combination of all four components;

¢ (x) LT ¥ (x*) = § ¥ (x) (111-30) ' ‘ H

14
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where S is a Dirac spinor satisfying

stys- 13, . (111-31)

By using an infinitesimal Lorentz transformation given by

I oo Jd J
Lk gk+deek

where eJk are a set of 16 numbers, then S(6) may be shown to be given by
)
S(8) = exp (T 5 ds) (111-32)
o
where the matrix T is given by

T=%ejkyjk.
Equations (I1I-30), (III-31) and (I1I-32) suffice to guarantee the
Lorentz covariance of the five-dimensional Dirac equation.
5. "Free Particle" Sc utions
If we look for solutions of equation (III-30) which are also

eigen-functions of the operator pJ = 39 then we may write the wave function as

¢ (x) =w (p) e P (111-33)
By substituting equation (III-33) into equation (III-30) we find that
w (p) must satisfy

(pjvj +1)w(p)=0. (111-34)
Using the standard representation of the y-matrices equation (I11I-34)

may be written

. ) e
’po *1 P, Ps Py TP, \ {wl
-ip, Po * 1 -p, - ip, Py W,
- =0 (III-35)
Py P, = ip, Py *1 -ip, Wy
‘pl tip;  -P3 +ip, Py *1 } \Wu
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where it is important to remember that Pys pz, p3 and pu represents minus

the respcctive components of p. This set of four, linear, homogeneous,

PR

algebraic equations has a nontrivial solution only if the determinant of
the square matrix on the left hand side vanishes. This determinant is

(po2 - p2 - 1)2. Thus equation (I1I-33) is a solution of the Dirac equation

A W

only if :
Po=x (2 + 1)Y7 (111-36)

By defining e (p) = (p + 1)/? then equation (I11-36) becomes
Po = *e (P} . (111-37)
Substituting equation (I11-37) into eguation (III-35) the solutions are %
found to be: E
for Py = %

P, \ / P, - p, \ :

€+ 1 ’ e+ 1 3

’ pl + ‘ipz ..p3 é

u (P)=N | &FT | u, (p)=N e +1 | (111-38)

1 tn,

\ " g

\ Py 1 1

e+ 1 i

for Pp = = f
1 / ipk ;

e+ 71 i

-]'pk g

€+ 1 1 é

= = N . {111-39) é

v (p) =N -D3 v (p) "D1 + 1p2 i

€ + l € + i 'z%

l -Pl - TPZ ; } E

e+ 1 e+ 1 ] E
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where N is a constant.

Following standard quantum mechanical procedure we shall adopt the

probabiiity current dersity to be

) =F 0¥y (x)
with the requirements:

i
(]) akJ "0
{2) jk transforms as a contravariant vector, and
(3) jk must be real.

Ke can determine the normalizing ccnstant N by using the fact that
3
m= 7 ydx
Y

then calculating the expectation value of the mass. Thus

where + represents the transposed complex conjugate. Then using any of

the solutions given by equations {III-38) or (III-39) the expectation value

becomes
_ 2N2meV
«m>= =+ 1)
so that
1/2
N = () (111-40)

Thus the "free particle” solutions of the five-dimeasional Dirac
equation are given by equations (III-38) and (I1I-39) with the constant
having the value given by equation (III-30).

6. Spin

In the three-dimensicnal space the angular momentum is given the

vector, L, as the cross product of the coordinates and momenta. We shall

e e P Sl . . o g s e gt e, il h———_.
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then define the angular 4-momentum to be the four-dimensional cross product

Hi

ik
T €55KX P
where x* is the mass density and

0 if any two indices are alike

1 for even permutation to align indices in
ascending order

e
Couts
e

-1 for odd permutation to align indices in
ascending order.

T X LTI PF

Then the comutator of the componenits of the angular 4-momentum with
the specific Hamiltonian are not zeru, for instance

[igs D] = iy®yip2 - iyOy2pt + ivOyipl - iyOylp® + iyOy*p? - iy0yZp* .
Now suppose there exists a 4-spin vector 5 such that the sum of the

angular 4-momentum and the 4-spin vector ceimutes with the specific

R I R T e bk B

Hamiltonian, then if we define a new 3-spin vector to be u, given by the

i . oz -1 .
5 iyiel, u, =5 ivty2, and U =¥ iy®*y3, and take the usual

components u,

spin vector, s, given by sy = %—i7273, s, = ;-iy3yl, and s, = %-'71?2, the

compenents of the 4-spiz vector may be shown to be

S1 =S, - U, - U,

[

(1)

w

= - +
Sh S, = S. *s,.

[P¥)

1n analogy with standard relativistic quantum mechanics the eigen-

vaires of the 4-spin components c2n be shown t6 be = 3. . It may also

shown that the set of observables P, h, and § - P, where P is the &-momentum

i e W R b e B h b 2w

and S is the &-spin, form a complete set of commuting cbservables.

3
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7. Dirac fquation with Fields

In analogy with relativistic quantum mechanicc we take the 5-

dimensional Dirac equation to be
(i35 - 6) ¥ + 117 =0 (111-41)

where ¢j is 5-vector potential.

By operating on the left with {(iaj - ¢J-)yJ - 1} and separating nyk

into symmetric and anti symmetric parts as
ik_1,4i k.

Ty =zly,yit %‘[YJsYk]

-l

gk + K (111-42)

then equation (II1I-41) becomes

Separating Sjék into symmetric and anti symmetric parts as
- I N + a3« | P
°j¢k 2‘ (°j¢k °k93) + '2' (°j9k 3k¢j)

ang cefining the Tield tensor as

Fk T 5% T
then ecuation (I1I-33) becomes

(i35 - s5)(Ea% - 6 - 3 - z 0% = 0. (I11-44)
) Now since
E; 0 x1 x2 x3 55 1 %
> -x! 0 -2is? 2is? n! %
i SR = | g2 2is3 0 -2is!? a2 g
: -x3 ~2is? 2is! 0 n3 i
) | -x* -n! -n2 -nd 0 }
' :

3 8 19




where o¥% = nd for j = 1, 2, 3, and
£ £ £
] o E, E, £y Ve ‘
| -E, 0 -8, 8, v,
£, -5, 8, 9 Vs
3 '] ] }
| -v, -, ¥, -V, 9 J

_ - 13
T+«B=0 ?xf*%;_do
v = - —
?-._—-kp-aoay ¥vX58 T T aoe (i1t )
= 3f = 13V, aF _
l*_ A *1f > T A —— =
vxV ao 3y 0 :xo c 2t a0 3y o
sV
= 1 '0o_ &=
SeVicwc-Th

Then equatior (11[-42) may be written as

(3 - 5:){13 - &8) -1+ 8 . S - T -XT-V i -in-V]v=0 (III-26)

and thus becomes the Dirac equation with fields %, B, V,, and V.
Suppose we consider a system witnout an electric charge so that

p = J = 0, then by equation (311-45) we s*ill have

= 3¥0 =_. = 1 H 3? . p==
?-:=-ao-§;-and?x5--£g—§-=-ac—.§ (11:-47;
and therefore there will stil?! be a magnetic moment.
This then sets up an argument which my provide an interpretation of

the new fipld quintities. Suppose that ar eiectron, because of its small
zmount of mass when coopared te a proton or reutron, dess not involve

sefficent mass density change teo warrant using the fifih dimension. Then
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the magnetic moment of the electron should be given accurately by the

relativistic Dirac equation.

sttt eSS oS o R

t But suppose that nuclecns (i.e., protons and neutrons) have sufficient

mass density change to warrant using the fifth dimension provided by the

i PR NS TS D NN

dynamic theory. Then the nucleons involve the new field components and we |

should expect a different value for the magnetic moment of a proton. For

the neutron, which has no electric charge we find a magnetic moment due
to these new field components.

Now if we assume that the difference between the observed values of
: the magnetic moments of the proton and the neutron and the predicted values |

of relativistic quantum theory are due to the strong interaction, or nuclear

AN kAt B

forces, then we must connect the new field quantities with the nuclear field {

h')

SN B b

S

: quantities.
8. Allowed Fundamental Spin States i

' In the 5-dimensional quantization of the space-time-mass manifold j

three spin vectors appear. One of these is the familiar 3 component spin ;

vector of relativistic quantum mechanics. The second of the three is a

b

N new 3 component spin vector while the remaining is a 4 component spin vector. i
Using the theorem: ‘
. If o satisfies a2 = 32 where a is a number then the eigenvalues by
of a are + a.

Then it is not difficult to show that the component eigenvalues are,

Ry A P A R R 5 e R S RO

S =thiu =r%;582=3/65a=1,2,3;§=1,2,3,4.
} If, in analogy with the eigenvalues for the total angular momentum, we write f
t .2 = = . . ,
SJ 3/4 SJ(SJ + 1)
{ Then the possible eigenvalues become
B
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Ak,

6q =+ N U, = 3 Sj = 3, =3/2 .

However, the following relations restrict the number of possible
combinations of these eigenvalues:

S1 =4, -y, -u

= + -
S, = 4, * Uy - Uy

[
w

S

S

"
o

4
=

4
=

3 3 1 2

Su =4, -4, t 4

A TR S R R T TP IO, SO S (NPT

The question asked now is, how many combinations of the above eigen-
values are allowed?

For S1 = k3 .

4, % ~hyu, =S E>ug = Gy ,
&

o
i
a

»
=
]
2y
Y
<
]
e

n

s =), uy = - D> Uy

"
!
¥

& =% u =k u 5
2 1 3

= <% is jmpossible
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3 1 2 -
= 1 = &N o= 5 = :
A3 < ul S = U, ‘2 s ;

53:-}é’u1=35=>u2=)é .

8§, = <%, u. = =% is jmpossible
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For S =4
4

8, = <%, 8, = % is impossible

s =k, 8, = ks =)

For S1 = -3/2 only one combination is possible; ;
]
8, % <k Uy =5 u3 =, :
For S, = -3/2 only one combination is possible. j
by = g3 up = M ug =
For §, = -3/2 only one combination is possible; f%
o
8% <35 up = <k up = -k '
For S, = -3/2 only one combination is possible; f%
8= k3 8, = k3 8, = %, |
Now because S, is a combination of the first terms of each of the !
4 P
components S., S., and S_ not all of the above listed 16 combinations are s
1° 72 3 s
possible.

For S, =3 the following combinations of (4,,4,, 45 J uy, Uz, u3)

are possible.

(]) (;is Yo% s -k, k%, % ) for Sl=52'—'53=3§ "
(2) (5 %, % %, 5 % ) for S, =5, =S;=%
(3) (3, <%, -3 %, %, -% ) for S1 = 52 = 53 = 4
(4) (‘15: ~h, Y5 %, <k, <b ) for 51 = SZ S3 =1,
B
£ : %
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The remaining combinations are:

(5) ( %, %, <% %, -%, =% ) for S, =S, = -3/2; S, *S, =%
(6) (%, %, =43 %, %, %) for S, =S, = -3/2; S, = S3 = 4

(7) 0 %, <53 % <% %) for S, =S, =-3/2; 5 =5, =%

(

8) (-4, % % - 5, %) forS =S = -3/2;5, =5, =%

Thus tnere is an octet of possible combinations. There are also some
obvious symmetries in these combinations. An aid in seeing these symmetries i

is the vector defined as £ where

t, = -(u2 + u3); t, T Uy - Ugs bty T Uy tug

Then for each of the eight combinations above we find (t,, t,, t;)

AP ST

PR

1

given by
(1) =>
(2) =>
(3) => ¢
(4) => T

Thus the eight combinations correspond to four distinct t vectors

= (1' 09 ‘1)

|
]
ot
!

(o, 0, 0) (5) =>
(o, 0, 0) (6) => (-1, 0, 1)

(0, 1, 1) (7) = (0, -1, -1) ;
(1, 1, 0) (8) =>t = (-1, -1, 0) . -

ot
1
+
"

|
"

) AR SR ] D AL € § sl bR £ butus v e ¢ b v,

which carry a * sign. Or §
T,5 (0,0, 0:%, = (0,1, 1); T, = (1,1, 0:F, = (1,0, -1)

For + f; we have: §

t, = (B0 = (6% s -k Y k) .

t, = (B0) = (%5 <% % % % %) .

t o= (50) = (< - 5k, h ) :

tq => (Z;m (%, 35, =%3 -k, My =%3) .

Loere

1
s
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For - E; we have:

1
—
X

-tl => (Z;U) 29 %s ;i; }i‘s "‘}59 }5)

-t2 => (Z;U) (}59 -3, <k <k, “;5: ;ﬁ)

't3 => (Z;-ﬁ-) = ("';é: ‘;Ea ;i; ';ia 353 ;i)
-t, = (Z;m = ('}5) }5) "35; 359 159 2) .

Now by defining the vectors:
(;5, ;é: ;i) H E = (";59 }ﬁa "!5)

(}ia ';ﬁa ’;5) ;H = (;io ;5’ ";i) .

a

23]
n

We may write
t) = (&u) = (@5B) -t = (530)
t, = (&u) = (cd) -t = (550) = (c; -d)
t,>@ED = (HD -ty > @D = (T 0
o (50 = (B A -t, = (50 = (5:3)
The octet is ttien made up of the combinations:
(2:1b); (c; +d); (b; +a); (-d; *c)

The appearance of octets for basic quantum numbers is reminiscent

(a; -b)

of elementary particle theory, Thus the Dynamic Theory seems to give
promise to the hope of tying elementary particle to fundamental principles b

in a new way.
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D. MASS CONSERVATIVE HYDRODYNAMICAL SYSTEMS

[T

The equation of motion for the fifth dimension, mass density, appears
as a generalization of the princinle of the conservation of mass. Further
in classical hydrodynamic systems five equations in five unknowns are used.
It seems logical then to expect the five equations of motion appearing in
the five-dimensional dynamic theory to be generalizations of the classical

equations. An added incentive to investigate the possibility this general-

L T N S R PRI

ization is gained when electromagnetically contained ionized plasmas with

ann

mass conversion is considered. For if the five equations are generalizations

S |

of the classical hydrod, ramic equations, then the use ¢f the five-dimensional

fields allowing mass conversion should provide an entirely new viewpoint of

WA LAY s

a controlled fusion reactor.

v Bt Ak 0 ko

Since it is suspected that the five equations of motion resulting from

the application of the principle of increasing entropy to a thermo-mechani-

g ') D it g

cal system are generalizations of the classical equations, it then becomes

necessary to show that this is indeed the case. This seems possible by - %

restricting the system so that it corresponds to the usual system considered.
First, from the dynamic approach, the manifold required for a descrip- ‘ : :
tion of the system is the five dimensional manifold of space, time, and \ ‘é
mass density. Within this manifold the continuity equation no longer holds » ,
for the general system. We can, however, restrict our system by first re- ‘
quiring that the system remain on a hypersurface within the 5 - d manifold.

For a system so restricted, any of the five dimensions may be considered as ) :

wa 4 i 0

functions of the other four. In particular, since by custom in hydrody-

}

’ namics the mass density is considered to be a function of space and time, we .. é
% may consider the mass density to be the variable chosen to be function of - %
% the others or 'j g
: : 126 } ; f
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y = y({x%, x1, x2, x3)
so that
dy = £L ) dx®
ax®

Such a system will be constrained to be on a hypersurface embedded
within the 5-d manifold of space, time, and mass density as shown and upon
this hypersurface will be described in a four dimensional manifold of
space and time.

1. Surface Geometry

Y4

If we further restrict our system by requiring that the total deriva-

tive of the mass density to be zero or

0=—d—1-dxa

dy
dx®

;fﬁi
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which is the usual continuity equation. Thus by restricting the system
to this particular hypersurface we have constrained the system to obey
the continuity equation as does a usual hydrodynamical system.

The importance of this restriction is that, not only does this re-
striction place our system within the space-time manifold where we may
compare the resulting four equations of motion with the equations of motion
in relativistic theories but, since the seven gauge field equations must
hold in the five-dimensional manifold they must also hold on the hyper-
surface. This allows the new field quantities to be expressed as functions
of the E, B fields and the partial derivatives of the mass densities.
Further, it appears that the additional B field equations may be used to
determine a dependence of the E and B fields upon the mass density and/or
its changes.

Then by comparing the equations of motion obtained here for the system

restricted to the mass conservation hypersurface with the relativistic

Navier-Stokes equations it should be possible to identify the viscous co-
efficients with the field quantities and perhaps see how the viscosity

depends upon these fields as I feel it does.

= Since we have restricted the system to a hypersurface here the mass

density is a function of space and time, then the surface is defined by

five equations of the type

xi = x! (u%, u®, u2, ud) (111-48)
Further, since x* = v/a, and x* = x* (x0, x1, x2, x3), tnen equation
(111-48) become

x0 = ul; x = yly x2 = y2; x3 = u3 (111-49)

N
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and x* = f(u%, ul, u?, ud).
Since u®, u!, u? and u3 are independent variables, the locus defined

by equation (I1i-48) is four-dimensional, and these equations give the

coordinates x'

of a point on the hypersurface when u%, u!, u? and u3 are

assigned particular values. Tnis point of view leads one to consider the

surface as a four-dimensional manifold S embedded in a five-dimensional

enveloping space. We can also study surfaces without reference to the §
surrounding space, and consider parameters u®, ul, u? and u3 as coordinates

of points in the surface.

If we assign to u® in (III1-48) some fixed value u® = u%; we obtain a

three-dimensional manifold
X=X, ul, w2, ), (1200, 1,2, 3, 4)

which is a three-dimensional manifold lying on the hypersurface S defined
by equations (III-48). By assigning fixed values for any three of the four
hypersurface variables we obtain a net of curves, on the hypersurface,
which may be called coordinate curves.

Obviously the parametric representation of a hypersurface ir the form
of (111-48) is not unique, and there are infinitely many curvilinear co-
ordinate systems which can be used to locate points on a given hypersurface

S. Thus, if one introduces a transformation

u® = uo(u?, ul, u?, uld)

ul = ul{u®, u?, u?, ud)
(111-56)
u2 = u2(u?, u?, u?, ud)
ud = u3(ub, ul, u?, ud)
where he u®*(u®, G', u?, u3) are of class C! and are such that the Jacobian

129




a(u?, ul, u2, ud) . . _ ]
Jd = does not vanish in some region of the variables
a(u%, ul, u?, ud)

u®, then one can insert the values from (III-50) in (I11I-48) and obtain
a different set of parametric equations.

X' = 1@, 1, B, ©) (111-51)
defining the hypersurface S. Equation (I1I-50) can be looked upon as
representing a transformation of coordinates in cne hypersurface.

a. First Fundamental Quadratic Form
The properties of hypersurfaces that can be described with-
out reference to the space in which the hypersurface is embedded are termed
"intrinsic” properties, A study of intrinsic properties is made to depend
on a certain quadratic differential form describing the metric character
of the hypersurface. We proceed to derive this quadratic form for our
restricted system.

It will be convenient to adopt certain conventions concerning inc
meaning of the indices to be used. We will be dealing with two distinct
sets of variables: tnose referring to the 5-dimensional space in which the
hypersurface is embedded (these are five in number) and with four coordinates
uf, ul, u? and u3 referring to the four dimensional manifold S. In order
not to confuse these sets of variables we shall use Latin letters for the
indices referring to the space variables and Greek letters for the hyper-
surface variables. Thus Latin indices wiil assume values 0, 1, 2, 3, 4 and
Greek indices will have the range of values 0, 1, 2, 3. A transformation T

of space coordinates from one system X to another X will be written as

T=x"=x"(x0 X}, X3, X3, X*)3
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% by equations (III-50) will be denotec by

o = @, T, ®, B).

% A repeated Greek index in any term denotes the summation from 0 to 3; a
§ repeated Latin index represents the sum from O to 4. Unless a statement
§1 to the contrary is made, we shall suppose that all functions appearing in
; the discussicn are of class C2 in the regions of their definitions.

i Consider the hypersurface S defined by

%i X! = o, ul, u2, ud), (1:1-52)

5 E wnere the x' are coordinates covering the 5-dimensional space in which
the hypersurface S is embedded, and a curve C on S defined by

‘ % u® = u®(x), T, LTS, (111-53}

%i : where the u®'s are the uaussian coordinates coverinc S. Viewed from the
?i ; surrounding space, the curve defined by (III-53) is a curve in a five-

?% i dimensicnal manifold, which we shall assume, for the present, is Riemannian
zi entropy manifold of the Dynamic Theory , and its element of arc is given
;; : bv the formula

_% (dg®)2 = 35 dx’ dx {111-54)

a transformation of Gaussian hypersurface coordinates, such as déescribed

i

Frem (111-52) we have

sttt

- 3
dx! = 3 gy (111-55)
- - a

Ju

where, as is clear from (I1I-53)
H a _ _du(1
N du = dTE'— dt

Substituting from (II1I-54) and (III-55}, we get

A Py i .j ~
== (dg0)2 = g, X 3 4% 4,5
: il o

v su au

8
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= o , 8B
AaB du- du

5 .

A~ ax! e
A =g, X X (111-56)

af 13 auﬁ aus

The expression for ©q%)2, namely
(dg?)? = Ag du° du® (111-57)

is the square cof the linear eiement of T lying on the hypersurface S,
and the right hand member of (III-57) can be called the First Fundamental

quadratic form of the hypersurface. The length of arc of the curve is

given by
TZ e
2 _ad = . s3 *8 4
Q°, - ¢7, { ¢ /R Ut U dr,
N1
(¢ 3
where ¢* = %%—-and g% is the specific entropy. The total change in the

entropy aiong the curve C would then be
12 a B
v(c? - %) = 5y /AUt et dr (111-58)

.
21

Consider a transformation of surfaca coordinates

u® = ®(u?, ul, u?, u?) (111-59)

14,08

with a noch-vanishing Jacobian J =§£§§ i . It follows from (III-60) that
iau H
du® = 2 gt |
au

and hence (I111-57) yields

B
(dg°)’ = A ; ﬁﬁ%dﬁ” . .
&° Y au

WA APy g
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If we set
Y6 a8 Y o8

we see that the set of guantities Aaa represents a symmetric covariant

tensor of rank two with respect to the admissabie transvormations {I11-59)

of hypersurface coordinates. The fact that the A . are components of a

a

tensor is 21su ~vident from (III-57), since (dq?)2 is an invariant and the

™

quantities Aus are symwetric. The tensor Aas is cailed the covariant metric
tensor of the hypersurface.

Since the form (III-57) is positive definite. the determinant :

- | :

A= Au81>0

and we can define the recip-ocal tensor A°® by the formuia A®E Agy = 6$ . §
The properties of surfaces concerning the study of the first funda- é

mental quadratic form %

(aq?)? = A du® du®

constitute a body of what is known as the "intrinsic geometry of surfaces.”
They take no account of the distinguishing characteristics of surfaces as
they might appear to an observer located in the surrounding space. Two
surfaces, a cylinder and a cone, for example, appear to be entirely different
when viewed from the enveloping space, and yet their intrinsic geometries

are completely indistinguiskable since the metric properties of cylinders

and cones can be described by the identical expressions for square of the
element of arc. If a coordinate system exists on each of the two surfaces
such that the linear elements on them are characterized by the same metric

coefficients Aus’ the surfaces are called "isometric.”
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Thus if our descriptior of the restricted system is done only in
terms of the intrinsic geometry of the hypersurface we may lose sight of
features which may characterize our system when viewed from the enveloping

space. Therefore, in order to characterize the shape of the surface we

must develop a wiew which invoives the enveloping space.

b. Second Fundamental Quadiatic Form

ntity that orovides a characterization of the shkase of the

1"y

[1}]

A
as

surface as it appears from the enveloping space is the normal line to the

surface. The behavior c¢f the normal iine as its foot is displaced along

the surface depends on the shepe of the surface, and it occurred to Gauss

to describe certain properties of surfaces with the aié¢ of a guadratic form

that depends in a fundamentai way or the behavior of the normal line. Before

we introduce this new cuadratic form let us recall the definition {I111-56),

A= gij 2‘;3—"% (i,35=0,1,2, 3, 8) (e, a=0. 1, 2, 3).
- au {111-55)

We note that the foregoing formulas depend on both the Latin and Greek
indices, and we recall that the Latin irdices run from § tc £ and refer %o

the surrounding space, wher2as the Greek indices assume values 0, 1, 2,

and 3 and are associated with the embedded hypersurface. Furthermore, the

dx' and gij‘s are tensors with respect to the transformations induced on
the space variables x', whereas such guantities du® and Ans are tensors with

respect to the transformation of Gaussian surface coordinates u®. Eguation

-
-
2

(111-56) is a curious one since it contains partial derivatives, 35;-,
3y

depending on both Latin and Greek indices. Since b9th A . and éij in
1 -

ax_ can be recavded

-1

(111-56) are tensors, this formula suggests that
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either as a contravariant space vector or as a covariant surface vector.
Let us investigate this set of quantities more closely.

Let us take a small displacement on the hypersurface S, specified by
the surface vector du®. The same disp1aceﬁent. as is clear from (III-55),

is described by the space vector with components
dx! = 3 g, | (111-60)

The Teft-hand member of this expression is independent of the Greek indices,
and hence it is invariant relative to a change of the surface coordinates

u®. Since du® is an arbitrary surface vector, we conclude that

.i .
ax_ (111-61)

au®
is a covariant surface vector. On the other hand, if we change the spéce
coordinates, the du®, being a surface vector, is invariant relative to this
change, so the (III-61) must be a contravariant space vector. Hence we can

write (III-61) as
X === (I11-62)
where the indices properly describe the tensor character of this set of

quantities.

Let A and B be a pair of surface vectors drawn from some point P of S.
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Then using (I11-62) they can be represented in the form
Al = 1 p% Bl = x! g%, (I11-63)
[s ] ¢4
The 5-d vector product, defined by

NK 2+ KT pg, (I11-64)
is the vector normal to the tangent plane determined by the vectors A
and B, and the unit vector n perpendicular to the tangent plane, so

oriented that A, B, and n form a right handed system, is

Xid g,
[ H (111-65)
aB
Is A B l
o B
We call the vector n the unit normal vector to the nypersurface S
at P. Clearly, n is a function of coordinates (u®, u!, u?, ud), and, as
the point P (u®, ul, u2, u3) is displaced to a new position P(u + duf,
u! + dul, u? + du?, ud + du3), the vector n undergoes a change
dn = & q° (111-66)
au®
whereas the position vector r is changed by the amount
dr = &0 4y,
o

au

Let us form the scalar product

dn - dr = & ﬁfg-du“ du®, (111-67)
w®  du

IT we define

— vy

1 ,9n dr ., an  or
b =% (=—- + . =)
z aw® s o au® .
so that (I11-67) reads ”
G -+ dF = - b du® duf (111-68) i
af -
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. the left-hand member of (111-68), being the scalar product of two vectors

in a Riemannian space by being in the entropy manifold, is an invariant;
moreover, from symmetry with respect to « and 8, it is clear that the

coefficients of du® du®

in the right hand member of (II1I-68) define a co-

variant tensor of rank two. The quadratic form, called the second funda-

mental quadratic form of the hypersurface, :
Bz b, du® du® (111-69)

will be shown to play an essential part in the study of hypersurfaces when

they are viewed from the surrounding space, just as the first fundamental

quadratic form A = dr - dr, or

= A du® dub
aB

did in the study of intrinsic properties of a hypersurface.
We can rewrite the formula (III-65) in terms of the components x’a
of the base vectors E; . We denote the contravariant components of n by

n' and observe that its covariant components n. are given by

J nk
€., AV B
ng = -k (111-70)
A B sin o
ana
. - a 8 T
ABsineg = .8 A" AP, (I171-71)
. Substituting in (I111-70) from (III-63) and (III-71), we get "
) J ok a oB _
an (ni EC!B- Eijkxaxs) A" B 0]

and, since this relation is valid for all surface vectors, we conclude

that K

. J -
ni eaB = bijk X « X B. (III 72)

Multiplving {111-72) through by ¢*°, and noting that e“seas = 2, we get

the desired result
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ni=

of J Jk
€5k Xy X g (111-73) )

N —

It is clear from the structure -'..s formula that ny is a space

vector which does not depend on the .oice of surface coordinates. This ‘ :
fact is also obvious from purely -ometric considerations.

C. Tensor Derivatives

We wish to reduce the second fundamental quadratic form (I1I-69)

analytically by the operation of tensor differentiation of tensor fields
which are functions of both surface and space coordinates. To do this we
shall first present the concept of tensor differentiation introduced by
A. J. McConne11 (1), ,

Let us consider a curve C lying on a given hypersurface S and a vector

Ai defined along C. If 1 is a parameter along C, we can compute the in-

AN, 0 WA D0 0 A1 B TGN o O B MDAl A 33 A P R e 80 0 uth f

j .

trinsic derivative %é?-of A', namely,
§Ai.= QAE.+ (dyAd dx* . (111-74) %
T t &Jk dt ‘ ﬁ

In formula (I11-74 the Christoffel symbols.{ j‘k} refer to the space co-
o a -
ordinates x' and are formed from the metric coefficients gij' This is

indicated by the prefix § on the symbol. On the other hand, if we consider

a surface vector A® defined along the same curve C, we can form the in-

AR e K onantinningnadi O R g

trinsic derivative with respect to the surface variables, namely, .

sA® _ dA® @y a8 du¥ .
oAt e M (111-75) ‘
In this expression the Christoffel symbols {g;} are formed from the metric . ;
coefficients g associated with the Gaussian hypersurface coordinates u®. - ; §
(I)A. J. McConnell, Absolute Differential Calculus, Chapter XIV - XVI 'Z §
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t :
i A gesmetric interpretetion of these Tormuias is at hend when the ficics A
. and A% are such that :;_ = Jend = 0. In tne first equation the
i 3 3
e vectors A' form a paraliel Tieid with respeci to C, considered as a space
el
1 curve, wnereas the equation {§5—= 0 defines & paraiiel Tieid with respect
! . .
to C regarded as a surface curve. The corresponding formulas for the in- i
G, rinsic derivatives of the covariant vectors A; and A are :
{
.- A A : 3 ;
, Filh (Xyp, & (111-76)
i 8t at g ij’ "k dt :
N and :
- A dA - 5 5
o4 = a - Y - du . v . _%
= ow T e A (111-77)
Consider next a tensor Tieid T; , which is a contravariant vector b
with respect to a transformation of space ccordinate x' and a covariant :
- vector relative to a trans’ ormation of surface coordinates u®. An example P
¢ - ’\-1-; g
‘- of a field of this type is the tensor x' = °Aa introduced earlier. If :
“ A T
i o - - ot < . i
, I, is definea over a surface curve C, and the parameter afong C is 7, then .
T; is a function of ¢ . We introduce a parailel vector field Ai along C, %
i regarded as a space curve, and a paraiiel vector Tield 3% along C, viewed P :
. as a surtace cdrve, and TorH an iavariant o
! a(z) = T'a.8% . i
¥ = :
& the cerivative of a(t) with respect to the parameier 1 is given by the X
T exsression i
éf f‘-‘ GT; _ =z C‘l: > }- L_:‘-,a \ :f
" a ~G -1 P R0 L =1 ] - E
= L2 AEY T —— BT+ THA, = 111-78 :
p T dr 4P a at et ( ! P
i . . . - . . . L. . H
= winich is obviously an invariant relative fo both the space and surface i
i, coordinates. But, since the Tields A.(<) anc 8%(r) are parallel, :
EN E
¢ : :
s 138 ‘ 5
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22 - + 8X . 9yt QU e 1-

dz {_3:.— ;{S‘k‘ Tc'. ax —av’ ‘¢ dr” A:2% . (111-79)

¢ a
Since this is invariart for an arbitrary choice of paraliet fields A. and
i

B%, the auotient iaw of cuarartees that *he exvressior ir the brackets of

(I11-79) is a tensor ¢ the same characier 3s T ., Vo ¢3ll “his tensor the

intrinsic tensor derivative of 7' with respect %0 “he parameter 1, and write
i i
sT daT : A R
§t T Cr C AtiK e e ay’ § dr y
T oo - 2
> -r’. 3 > 2
If the field :; is defined over the eriire hypersurface S, we can argue
that, since
sTi o .. oy
&2+ {”}T.x‘(- !5}'{“16‘}1

Yy L dk7 Tav o 27ye” T80 ¢x

¥
. . u . - ~ . .
is a tensor field and 357-15 an arbtravy surface vector (for C is arbitrary),

. . . . - i .
the expression in the bracket is a tensor of the type Tny. We write
3 T, J 8y o
TN s % ~{-°'<3' X, - (T (111-81)
and call T; v the tensor derivative of T; with respect to u'.
s Ve

The extension of this definition to more complicated tensors is obvious
from the structure of (I7I-81}. Thus the tensor derivaiive of T;B with

respect to u' is given by
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=
a5

e

B e

. aT1 . . .
i B, iy ik 8,0 6 i
g{jk} TanY a{aYI TGB a{ﬁY} TaG‘

aBsy | 0¥ (111-82)

If the surface coordinates at any point P or S are geodesic, and
the space coordinates are orthogonal cartesian, we see that at that point
the tensor derivatives reduce fo the ordinary derivatives. This leads us
to conclude that the operations of tensor differentiations of products and
sums follow the usual rules and that the tensor derivatives of 51j5
Aas, €i5k* €op and their associated tensors vanish. Accordingly, they
behave as constants in the tensor differentiation.

The apparatus developed in the preceeding section permits us to obtain
easily and in the most general form an important set of formulas due to
Gauss. We will also deduce with its aid the second fundamental quadiatic
form of a surface already encountered.

We begin by calculating the tensor derivative of the tensor xl,

representing the components of the surface base vectors E; . We have

i a2 iy ik 8§, i
X = Aol xix {°} x (I11-83)
et au®uf g Jk* Ta"8  CaB” 78
from which we deduce that
i _ Ui
Xa,B xB,a . (111-84)

Since the tensor derivative of 3. vanishes, we obtain, upon differentiating

the relation

= g.. xiyd -
AaB 933 xaxp (111-85)
o i 3 i,d.d = -
933 Xy 8 + 9i5%a *a %3,y 0. (111-86)
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Interchanging «,B8,y cyclically leads to two formulas:

T Jd a3 =
955 *g,a Xy +0; ij %8 %V,a 0, (111-87)
~ i j » i J -
913 Y,8 Xa * 91' Y a.B 0. (111-88)

If we add (II1I-87) and (iI1-88), subtract (III-86), and take into

account the symmetry relation (III-84), we obtain

i J - -

955 Xa,8 Xy = 0. (111-89)

This is the orthogonality relation which states that xi 8
]

vector normal to the surface, and hence it is directed along the unit

is a space i

normal ni. Consequently, there exists a set of functions buB such that .
i i - .
X8 bus n (111-90)

The quantities bas are the components of a symmetric surface tensor, and
the differential quadratic form *
- a , 8 v
B = buﬁ du” du (113-91)
is the desired second fundamental form.

~

. i_ g 3 j
Now since n; n Gj, and n, gij n¥ then

. _ 1 aB ik
but since n,=ye eijk X, xB then

_1 v§ i J k -
bag = 7 €™ ik Xaig X Xs - (111-92) :

We now have, in equations (III-56) and (III-92), the formulas necessary

to determine the first and second fundamental quadratic forms for our

system constrained to a four-dimensional hypersurface. Since our objective
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is to show that by appropriately constraining our system we arrive at
the Navier-Stokes equations. Let us determine the first fundamental qua-
dratic form.

First recall that our system was restricted so that x* = x%(x9, x1,

x2, x3), or the mass density is a function of space and time, then we have

the relations

x0 = 4o

. xl =yl
22 (111-93)

x3 = u3

x* = f(x0, x1, x2, x3) = f(u°, ul, u?, ud)

Since equations (III-56) are

i3
g;: X X
‘ af 1] au® aus 1] "¢ B
then
Roo = 900 *+ 29¢u Ty + uy ()2
i
where
1 fE_a_f_

o ou®

In a similar fashion we may determine the remaining coefficients so

i

that

~ ~ ~ ~ 2 ~ ~ -A ~ ~ ~ ; -~ ~ -
{goo+290ufo+9uu(ro) 9517290, T1¥9,,Fofy 90212904 Fo%9u,Tofy  303%290, 7379, Tofs

[
AR

9917290, T1#94, Fof1 911729, 7149, (F1)% 9, ,%29,,F +9, F,F, g,,%29, f*g,, F\f;

=1 90229042100 Fof2 9127291424 0unfif 0224202472490 (F2)? 9,3420,,F549u,Fo 5 .

{
l903+290~f3+94“f0f3 9.3%29,, 779, F1Fs 95512957549, T,f; 923+293hf3+9u4(f3)# :
(111-94)
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Obviously from this determination we may write the metric ccefficients

of the {irst fundamental quadratic form as the sum of twc tensors. or

~

Pyg = 9pg * Pyg 3 «.8=0.1,2,3 (111-95)

when the hus are functions of ~he partial derivatives of the mass density
with respect to space and time in addition to space and time from the aik
where 1 = 0, 1, 2, 3, 4.

Though we may use equations (I111-92) to determine the metric coefficients
for the second fundamental gquadratic form, it is not necessary for the
current prescatation.

The hypersurface which is embedded in the five-dimensional space is
a four-dimensional curvilinear space-time manifoid. Thus the relativistic
hydrodynamical eouations are applicable here so long as the metric co-

efficients are determined as coefficients of the hypersurface quadratic

form.

The complete energy-momentum tensor for a fluid in a flat Riemannian
space-time manifold is given by(]) .

T8 = | 5ocB P

v w8 + I %P
Ce

- ¢%%) (I11-96)

o
where u® = %%T , § is the arc length. Then based upon this energy-momentum
tensor the flow of a fluid under the effect of its own internal pressure

force is given by setting the divergence of (I[I-96) equal to zero, or
T8, = 0. (111-97)
If we reduce equations (III-96) to the non-relativisitic limit the

use of (I111-97) gives us

g% + =va 5 a,8,8 = 1, 2, 3 (111-98)

aB,0

(1) R. Adler, M. Bazin, and M, Schiffer; Introduction to General Relativity, -
pg 337, McGraw-Hill, 2nd, 1975
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where *f = Pc_;"‘S is the three dimensional stress tensor of an ideal fluid.

If in equation (III-96) we use the fact that the metric coefficients

for the hypersurface may be written as the sum of {III-95) then we have

8 =y o8+ D (0% - g8 - %) (111-99)
where it must be remembered that the u®iP are also dependent upon this same

sum. In the non-relativistic 1imit the effects of this sum of metric tensors

appears as a sum in the stress tensor

%8 = _pg®B _ph®8 ; 48=1, 2, 3 (111-100)

Recall that the 6“3 refer to the three-dimensional space viewed from
the five-dimensional manifold. The huB, however, contain the information
about the surface embedded in the five-dimensional space. If we then

associate the tensor

toB = _ ppob (111-101)

with the viscous stresses this is saying that the viscous stresses depand
upon the geometrical character of the hypersurface.

In the Timit of small displacements we write the strain velccity

tensor as
a8 %'(Va,s * VB,6)° (111-102)

then the first order coefficients of viscosity are related to the strain

velocity tensor and viscous stresses according to
u86n

af _
t% = S (Vg 0 * Va6) (111-103)
If we then use (III-101) in (III-103) we find that the relationship between

the gecmetric character of the hypersurface and the viscous coefficients

is given by




-ph°B = Sl (v. +v_ ) (111-104)
2 §,n n,é *

Equations (III-104) then expresses the functional dependence of the
viscous coefficients upon the strain velocities, pressure, mass density :
and their derivatives.

2. Relativistic Hydrodynamics

By viewing classical hydrodynamics to be given by the embedding
of a four-dimensional hypersurface within a five-dimensional manifold, the
association (I11-104) between the geometrical properties cf the hypersurfa:ce
and the viscous coefficients could be tentatively made. We may now go back
and develop this relationship more compietely.

The hypersurface, which becomes embedded in the five-dimensional mani-
fold by the restriction that x* = x*{(x%, x!, x2, x3), is a four-dimensional
relativistic manifold. Thus for the surface we may use the relativistic

enerqy momentum tensor, which is
™ =y B L Y - g) (I11-105)

where u* = %§§-and v, v =0, 1, 2, 3. The divergence of (III-105) yields

the flow equations for a fluid under the effects of its own internal pressure.
However, from the viewpoint of the Dynamic Theory, the surface metric

coefficients may be written in terms of the metric coefficients of the

first four space coordinates as given by equations (III-95) end (III-96), or

AuB = 3.8 + th 3 a, 8=0,1, 2, 3. (111-96) ]
Thus the square of the arc length for the entropy manifold may be written as -
0V2 = a 4.8 7 a 4. B8 a . B :
(dq®) Ausdx dx 9ug dx* dx® + h g dx® dx )

a
or, if u® = 953- then .
dqg 2
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1=A, uef = aus uuf + hog u’u

then on the hypersurface the energy momentum tensor would become

198 = y Wb + ‘(':Ef‘ (uau8 - AuB) (111-1C6)
or
78 = ¢ y%f + 2?2' (uuf - g8 - nB) (111-107)

Since the surface coordinates, x%, are the same as the first four
coordinates of the surrounding space then the velocities u® are the same
whether considered as surface or space vectors. The difference between
the surface view and a four-dimensional space view appears in the metric
coefficients. Thus while the sguare of the arc element on the surface is

unity the square of the arc element in the surrounding space is nct, or

- a, B
1= AaB uu

but

aua Wt =1 - L wu?

3. Classical Hydrodynamics

Suppose we consider éas tc be a flat space then because of (II11-107)

we may write

TuB g

-~ D ~R v-v_n
= o u®u aBy _ éz‘h“b (111-108)

? a B
toz (W - g
IT we then for.r the space divergence

ov 1 3 p .00 2 . u® P .t 0ayv, _
= e - —— = —_—t e {—— - =
T celr-gn it ax® R Ce-rn=o

this may be written as

1 3y, 1 8{Pn%0) . 1 = 1 = -0y _

———
'
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where h™? has components h%® ; e« = 1, 2, 3.

- -

Therefore x

_ _ ooy _ o _
Hev.n=-l7. o0+ A 5. eh )

so that if hY is a four-vector with comoonents h%V = kY, then

3 T 15 - P . :
FrT- (V) =-cTP V-V, s (PhV),  (111-105)

vl ¢V aih

E The remaining components of the divergence are given by

av _ 1 3 u® | Py? ? o0,
Thwiecwlryer o -afh
a8 e 8 - o8
3 , VvV P vV a8 Ph
= + — + — % 8 ) - =0 .
2 v A=A e < : =
= which may be rearranged to read N
‘_;1 o] + IS0 af N 3
b o _— P {
=2 Yfégr'+ Vevyvil=o - V“fgl +3¥ - (v V)3 12 oL ) a\?hﬂ ) -
; = Qx" [of 3T 3x= i
3 - lz. [3_(':1”_2. +¥ - (PVvEV )L (111-110)
=3 C =1 ™ -
f? If we look at tne non-relativistic limit then by neglecting the teres x
e P(v/c) we get
£ . = 11 2(PR%?) | = (pp-0
= —_— . R + . _p. " .
3 D = e R L
= The multiplicative factor éé-on the right hand side suggests that .
it +F.{yV) =0, (111-111) i

which is the assumption we choose to place our system on a particular surface hnd
which corresponds to a classical system where conservation of mass is

assumed, Therefore, on a curve specified by

[}
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R,

o 00) af
y[%—wv-?fv“]:-ap +1Ea(Ph +a(PhB)
ax® at X
or
a0 af
YaOL:_BP +la(ng“a(Ph)
ax® C ' axP
(111-112)
a0
= LAPHT) 4 (pro®), s8=1,2,3
X B
Thus if we write
y a% = %8 (IT1-113)
’8
where t°8 = - pg®B + pnoB = _ p(g®f . 1@B), (111-114)

a0
The term %--i%%——l has been neglected in (III-114).

If we now associate the geometrical properties of the surface con-

tained within the h®® with the coefficients of viscosity, we find that

t28 = ppeB - coBuv &, ) (111-115)
’
or
oBuv
hod = 9—§F-(vu’ oYy, ) (111-116)

For a fluid which is homogeneous und isotropic the number of inde-

pendent coefficients of viscosity reduces to two and

%8 = ppoB = 3 M, g% + 2y, &°B, (111-117)
s _ v _ v
Then, for v = v sy =9 €,
Phas = taB =Avg.qt 2u €.s (I11-118)
and
Tug -Pgas tAvg, + 2u €.g" (I11-119)
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The equations of motion (III-113) then becomes

vya - g Ty (111-120)

so that

e - “nv . .
Yy a, p a tugov oF (A + u) v, (1r1-121) |

o,N a
which is Navier's equations of fluid motion for a fluid subject to its
internal pressure P,

In terms of the geometrical properties of the surface equations (1I1I1-121)
become

ABV -~
=g (-Pgg, + Ph

<
Y
]

Bv),a

=-p +p ¢ h P

N1 N B Bv,a (111-122)

~Bv ~Bv
-(1-g th) P’a + Pg th’u,

Stokes introduced the hypothesis that the mean pressure in a viscous
fluid is given by P = « %-aas 8 just as for fluids at rest. This

assumption puts restrictions upon the surface since

Phas = taB = Tag + PguB
therefore
PO Mg = 97 tyg = 9 Ty * PO gy
or
q%8 = q*B = - "
Pg hOlB g tGB 3P+3P=20

Thus we have Pg®f hyg = 0 and g%® g = 0. When

tuB =Av guB *ou eaB
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then
~af ’ ~of ¢
A g 9y Y +2n g € " 0
or
(3x+2u) v=0
so that

3x + 2u = 0. (I11-123)
Equations (III-121) and (III-123) combine to yield the set of Navier-

Stokes hydrodynamical equations for a fluid under internal pressure,

~By D
S e — + .
Y aa o v 9 va,Bv 3'axa

(111-124)
X

Thus we have shown that by restricting our system to a surface where
mass conservation holds and associating the viscous coefficients with the
surface geometry by equations (I1I-115) and (III-116) the equations of
motion for a homogeneous, isotropic fluid subject to Stokes hypothesis
become the Navier-Stokes equations. Therefore the equations of motion are
indeed generalizations of the classical and relativistic hydrodynamical
equations.

We may further consider what restrictions Stokes' hypothesis places
upon the geometry of the surface, and ultimately upon the partial deriva-
tives of the mass density, by considering the requirement Péas ha = Q.

B8
If P # 0 then

~aB -
g haB = Ot

For our three-dimensional flat space this becomes

h,, +h

11 * hyg = 0,

22 33

Which says that the trace of the three-dimensional matrix haB is zero.
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Since haa for « = 1, 2, 3, is given by

9
~

hya = 295 T, ¥ yy (F,)2

ac

where f = éL- Y then
o »°

h = W,y o Du (212
z
aa ao axd ao axa

If our system is very near an equilibrium so that ai is a flat space then

J
y = 0 and Gy is a constant which may be taken as unity and ol

~

%

212 B '
o . R

1
h,, = (=)
aa ao ax

For this case the requirement that §
hyy + hy, +hy3 =0
requires that = ;

B+ (@’ + (2 - 0. (111-125) -

Obviously this restriction says that under Stokes hypothesis the mass -t

density may possess no gradient.

Since the objective was to show that the equations of motion in the

five-dimensional manifold were generalizations of the Navier-Stokes, con-

tinuity, and constituent equations, then the preceediné fulfills this

objective. Not only have we been able to show that appropriate restrictions

upon our system leads us to the classical description of hydrodynamical - i
systems but we also find that, from the Dynamic Theory approach, the viscous
stresses must be related to the geometrical character of a four-dimensional

hypersurface embedded in a five dimensional manifold. This relation is not

only remarkable but promises to have tremendous significance. o

152 : A




e o e o LT ST T EEoom e A e N
SRR TR ST B 5%?

rtr;

e

T

To envision the significance of the notion that viscous effects
are related to geometrical properties of a surface consider the fact that
the coefficients of elasticity in the generalized Hooke's law of linear
elasticity would carry the same appearance as the coefficienis of viscosity.
Thus when using the first fundamental quadratic form for the hypersurface
the geometrical character of the hypersurface describing an elastic solid
would appear identical with the geometrical character of a viscous fluid.
.- This is the same situation as the fact that the metrical character of two-
- dimensional surface coordinates of a cone are indistinguishable from the
two-dimensional character of a cylinder when the first fundamental quadratic
form is used. Yet when the second fundamental form determined by {(117-92)
the metrical difference between a cone and a cylinder embedded in a three-
dimensional space is readily dispiayed. The.: the use of the second fun-

damental quadratic form in the Dynamic Theory can be expected to disclose

PR —

that the surface describing elastic solids is metrically different from
viscous fluids. Transitions from fluids to elastic solids then become

transitions from a surface with a certain metrical character to another

surface with a different cnaracter.
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E. ELECTRODYNAMICS

One of the incentives for seeking to determine whether the five equa-
tions of motion were generalizations of the classical hydrodynamic equations
was the possibility of shedding new 1ight upon fusion plasmas. Now before
mass conversion is accomplished the plasma must reach certain conditions.
The attainment of these conditions envolve electromagnetic fieids not en-
countered in usual circumstances on earth. If the Dynamic Theory is to he
believed then perhaps it may provide new insight into the attainment of the
appropriate conditions before mass conversion begins.

The following development still assumes conservation of mass in order
to see the geometry of the hypersurface for a system under the influence
of electromagretic fields. -

1. Mass Conservative Electrodynamics

Suppose we now describe the behavior of charged matter under the

influence of an electromagnetic field from the viewpoint of the Dynamic
Theory. From this viewpoint the conservation of mass has the effect of
restricting our system to a four-dimensional hypersurface which is embedded
in the five-dimensional manifold of space, time, and mass density. ‘
Since we desire to consider the effects of an electromagnetic field
we must consider a gauge function. When a gauge function exists the square
of the arc leagth in the entropy space is related to the square of the arc
length in the sigma space by

2 ~ . . - . N
(dg®) = g;; ax' dxd = (Wl?) g &' dxd = (T]-’;;)(dc;)2 (111-126)
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When the system is restricted to a hypersurface by the relation

x# = x% (x9 x!, x2, x3) then the entropy surface may be written as

2 -
(da®)" = a du® du® (111-127)
where
a = g.. ax! 2 _ g:: X! xd (111-128)
of 1] aua auB 1] "o "8°

Likewise for the sigma surface

(do)2 = Sus du® duf 111-129)
where

2 _ 4 i3 o

a8 = gij Xy Xg- (I11-130)
Thus we have

3 " (E%EJ . (I11-131)

The principle of increasing entropy requires that the equations of
motion be gecdesics in the entropy space but they will appear as equatiors
involving forces in the sigma space. We desire to expose these forces and
therefore should work in the sigma space. Our objective then is to de-
termine the effect of embedding a four-dimensional surface given by

x% = x* (x9%, x!, x2, x3) in the sigma space and thus obtain a sigma surface

describing a system subjected to the classical conservation of mass restriction.

Having previously determined the metric coefficients for the entropy
space by equations (III-94) and (III-95) we may write the coefficients for

the sigma surface as

a8 = hyo aaB = h00 {ga8 + hus]' (111-132)

te. .




However by considering the effects of the electromagnetic field

as a force we must first consider the space field tensor:

0 E1 E2 E3 V0
—E1 0 33 --B2 V1
Fij = -E2 -83 0 B1 V2 (111-133)
-E, B, -B, 0 v,
S A 2 0

If we restrict ourselves to the classical field quantities E and B
and for the moment assume that the field quantities Vo and V are zero,
then we obtain only the effects of the hypersurface viewpoint. This as-
sumption seems reasonable considering the possible interpretation of the
new field quantities in terms of nuclear effects. Under this assumption

our field tensor becomes

0 E E E 0
€, 0 B, -B, 0
Fig= | B2 By 0 By 0 (111-134)
€, 8 -B, 0O 0
0 0 0 0 0

We can now use this space field tensor to determine the appearance
of the fields when viewed from the surface. The surface field tensor will
be given by

Foo = Fis X0 X (111-135)
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But since x; = 62 for i, «a =0, 1, 2, 3 and xz = f&, the surface field

tensor of a purely electromagnetic space field tensor is only the 4-d

portion of the space field tensor since Fiu =0 fori=20,1, 2,3, 4.
Thus when we use the relativistic energy-momentum tensor for the

surface we nave

RN N N B L Y (111-136)

£f —t

which is the relativistic energy-momentum tensor for matter under the

~

+ h _ then

influence of electromagnetic fields. But since a = g
af af af

(I11-136) becomes

3 - A ..
™ =y o+ (PR g (@ + hY) P Foel (111-137)

or

Tre1 * Tgeo (111-138)

where

Wos e L PPV e gV PR ] (111-139)

is the four-dimensional space relativistic energy momentum tensor and

! THY 1, pHV goB FuB (I1I-140)

is the portion of the energy-momentum tensor which contains the geometrical

[y——
[

I properties of the hypersurface.

]
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From equation (III~138) we can say that the Dynamic Theory has the

%%g : geo - (zem
% appearance of adding a term to the relativistic energy-momentum tensor.

iy

This term contains the geometrical character of the surface and represents

the difference between the appearance of the energy-momentum tensor when

‘wmm‘mmﬂ

i)
[

If we take the divergence of the energy-momentum tensor (III-138) we

have
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b
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BV = THV uv 1
T Tv- Trel v * Tgeo Tv*® (I11-141)

The additional force terms from the surface geometry are given by

1 pv 0B . £} )
(7 (0™ FERF 2)q, = PR (111-142)

Buz if we define
Fob Fog = 1618 (111-143)

as the electromagnetic energy density, where

—_L 2 » p2
E_SW(EB)

then the geometric energy-momentum tensor becomes

T =4 huvi

geo = < (111-144)
and the additional forces are given by
u_ _Ar v -
£ =2 h 5)Iv' (111-145)

We may also look at the radiation pressure predicted by the Dynamic
Theory to see how the surface restriction affects the relativistic pre-
diction of radiation pressure.

The relativistic radiation pressure is taken as one third of the
three-dimensional Maxwell stress tensor which is the space portion of the

energy-momentum tensor, or

£ (111-146)

where o, 8= 1, 2, 3.
To cet the equivalent stress tensor for the Dynamic radiation pressure
we must add the space portion of {(II1I-143) so that the total stress tensor

hecomes
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TaB = (EaEB + BQBS) aasg 4 haﬁg (111-147)

-1
= 7 (EQE8 + BaBs) - £ (GaB haB),

We can then obtain the negative of the trace by

- {T}

- [z (E2 + B2) - 3¢ = (hy, + hy, + Byy) £]

-[- € - (hy; + h,, + hy) E]. (111-148)
The radiation pressure is then given by
= %.[] + hy; + hy, + hy,l. (111-149)
The first term in (III-149) is the classical radiation pressure in

electrodynamics. The remaining three terms give the difference between
the pressure predicted by the Dynamic Theory and the classical prediction.
To determine what this difference is let us restrict our system to again
be very near equilibrium so that the ﬁak =0 fore=20,1, 2, 3 and aun =

constant. Thus we have a flat space. For this space the

from (I11-94) while §uk = -1. Thus

h,, +h,,+h

(202 4 (21y? : \
11 ¥ My 337 a 7 5 ) (557 + (%) 1. (111-150)

By substituting {III-150) irto (III-148) the pressure becomes

_ £ 1 3y |4
9—341-§FH§9 3ﬁ 59]}

However, since the classical pressure is given by Pc = %-then the pressure

predicted by the Dynamic Theory becomes

- 1 3y |2 v 2 3y 2
Pp = P (1~ (32) Lggp) + (G2 + ()1 (11-150)
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We see then that the Dynamic Theory predicts a decrease in the

radiation pressure as a result of viewing the system to be restricted to
a four-dimensional hypersurface embedded in a five-dimensional space.
The amount of this decrease in pressure depends upon the gradient of the
mass density and the constant a,- Orice the constant a, is determined then
the deviation in predicted pressures can be specified.
2. Limiting Mass Conversion Rate

But how may a, be determined? From the five-dimensional point of
view the constant a, is a universal constant which is invoived in the maxi-
mum rate at which mass may be converted into energy. This may be seen Trom

the integrating factor for the five-dimensiocnal system, which is

Y.V __}32_ (111-152)
c2 a0 c

in a2 local Euclidean manifold. Then just as relativistic theory limits
velocities to ¢ so the Dynamic Theory limits the velocity and the mass
conversion rate y . This limitation comes from the third law which states

that theé entropy of the system is zero when the integrating factor is zero.

Thus we see that in a five-dimensional world the maximum mass conversion

rate depends upon the velocity, for the integrating factor goes tc zero

when
v2 oy
1 —Ef-—alofa— 0
or
= a,c /1 -%; . (111-153)

Therefore, a.c specifies the maximum rate of mass conversion.
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The concept of a 1imiting rate of mass conversion predicted by the
Dynamic Theory is as fundamental as the speed of light which is the limiting
rate of displacement. Such a concept seems intuitively pleasing yet as far

as is known first appears as a requirement of the Dynamic Theery.
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F. FIELD EQUATICNS

Einstein’'s General Theory of Relativity made possible varicus models
of the universe through solutions of his field equations. These solutions
gave the metric coefficients according to the various models considered.
Using Weyl's interpretations the Dynamic Theory leads to a five-dimensional
set of field equations. These equations are generalizations of Einstein’'s
field equations and, together with their boundary conditions will be pre-
sented here.

1. Norn-linear Field Equations

The seven Maxwell equations may be used to determine the gauge

function for the five-dimensional manifold for an isolated system. The
remaining metric coefficients may be determined by Einstein-type field

eguaticns. Therefore let us assume that the cauge function is sieply 2

=

ficients.

wh

constant so that the following may concentrate ypon the remaining coe
¥We shall suppese that the metric ceefficients are determined by the

gravitating effects of mass as is done in Einstein's Theory and, furtker,

if our system is infinitely far from gravitating matter then it will be in

an equilibrium state. Therefore the boundary conditions to be imposed is

that the system satisfy the conditions of equilibrium when far resoved from
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gravitating matter. In equilibrii==m the second partial
constants evaluated at this egquilibrium state. Therefore the Timiting
meiric will bz one with constant coefficients.

conditions used in the Schwarzchild solution tc Einstein's eguations.

Thus our limiting metric will be
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The field eguations in a vacuum are

Ri‘j=0
or .
3¢ Jlal 3 .2 L4

R.. = il - e (S U HSD

W axtaxd ax~ W 43718
s, 2o V|g )

- {.;} (I11-1584)

iJ xS

where i, 3 =0, 1, 2, 3, 4 .

Sitting 2 = 1 and taking the trajectory to be a straight line far
from gravitating matter. (Note: This involves an assumption concerning
the nature of how the mass density is a.’ected and should be considered

in detail later.) This leads us to assume the limiting form of the metric
to be

(dq®)? = (dt)* - (dr)* - r(de)’ - risine (d¢)” - .C(LE‘:;;?:":.
(4]

We may further set do = 1 in the same sense as ¢ = 1 for further

simplification. Therefore let us adopt the for.w

(d6%)” = £, (Fy) (dt)2 - F5(Fyy) (dr)2 - r2(de)? - r2sing (ds)”

-f3(F,y) (dr)2, (ITI-155)
Here the cross-product terms have been reje:ted due to arguments of
static, spherical symmetry and simplicity.
Suppose for the purpose of finding the functions f,, f,, and f, we
follow Schwarzchild's example by setting
fo=e 5 f,=e s 6y =e" (111-156)

Substituting these into the metric of (III-155) the metric becomes

2 2. 2 2 2 .2 2 2 .
(dQ°)2 = —eMdr)” - r (o) - r sina(de) - eV(dy)” + e¥(dt),, (III-157}
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Thus the metric coefficients are given by

A- .A-Ao\_ 'I\— .2
900 < et 3 g11 = -€ 3 Qggo = -r? ; gs3 = -r2sing

A "

gyy = -e” 3 95 = 0 fori#fJ.

The determinate for_the quadratic f.rm of equation (III-157) is

~ ~ ~ -~ ~ ?
Atuty
e‘ Ly )

l\— _ .-2
9 = 99091192293394y = risin <o

and the contravariant tensor 613 is given by the matrix

(e’“ 0 0 0 0
0 < 0 o0 0 \
g = o -L o o
-1
\0 0 0 i O
0 0 0 0 -e'v)

The Christoffel symbols {;%} may now be constructed and since éij =0

when 1 # j we have:

axd ax! sxa

~f

The non-zero Christoffel symbols are then:
0, _ 1,3

= 183y, (u-2) _ 1,3

1, 2143 1, _ -
{14} = 2(3; {yp}t = -re
2
{3]3} = o re-)\s.}ne {4]4} = - .;_(_g_;‘_’.)e(\)-}\)

et
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4, _ 1.3
} = 5{(52)

4. _ %{au)e(h—V)

{ég} = -sing coso
{3} = coto = S3%¢
Gyt = - %‘%}A‘)e(k-v)
4y} = ’]Z(g—:

The equations for u,v, and A are then obtained by inserting the

Christoffel symbols into equation (III-154) and setting Rij = 0. This

procedure yields five equations:

1,92y
[ - ?{5;{)

+z-§+§—i§)+%( )32

1,52y 1,9Ay,0uy , 1,9uy2
5'(5;29 - z(g;ﬂ(g;ﬂ + 1(5;)

2
+H 533 + 12

1 Su v _
A+ )r( ter -

sin2e{e”?[1 + (?Qr(

1+ 3 &+
+e(\) A) ]( ) 'l (32\)) -

ard

( )]e(U‘A)

1( ) -

C - @yl < 0

(111-158)

Ty | oy 4 Jdv® o 12y

(111-159)
12 @& - 72 &1 = 0
)1 (111-160)
+ 232 21 - (111-161)
7 @& 7 B+ 3 3y
(I11-162)
L@y + L @A L&Y -
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Equation (III-161) is a repetition of equation (III-160). Therefore

there are only four equations on the three functions A, u, and v to con-
sider. This situation is similar to the one in Schwarzchild's solution.
It is relatively easy to show that these equations reduce to Einstein's
equations of Schwarzchild.

Here the solution to these equations are not obtained. However ob-
taining the solution will provide a model of the universe in which mass
conversion, or creation, plays a free role as an independent coordinate.
This picture of the universe should produce an interesting and perhaps
enlightening view of Blackholes. Particularly since Blackholes involve
tremendous mass densities and mass density changes.

2. Linearization of Field Equations

The set of differential equations for the functions u, v, and A
given in the preceeding section are non-linear equations which may prove
difficult to solve. Linearizations of these equations may provide approxi-
mate solutions which could prove useful.

The procedure to linearize the equations is identical to the process
of linearizating the general relativistic field equations. However here
the equations involve five-dimensions and we therefore obtain 15 partial
differential equations.

If we restrict our system to be sufficientiy near an equilibrium state
so that the metric tensor differs only slightly from the flat-space metric

for the equilibrium state then we may write the metric tensor as the flat-

space tensor, nij,given by
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} | -1 0 0 0 0

. 0 -1 0 0 0
1 ng; =| 0 ¢ -1 0 01 {111-163)
: 0 0 0 -1 0

L \ 0 0 0 0 -1

i Where the five-dimensional Minkowski coordinates ict, x, A, z, gL

i. )

are used for simplicity, plus a pertubation term Egij s¢ that
B gij = 5 + egij H ijj =0,1,2, 3, 4. (111-164)

as significant in all equations.

By following the same procedures as in the relativistic case the

five dimensions instead of the four used in the general relativistic

»E\me:

approach.

| 4

e )

{

frrmanern

then only the first-order terms in the parameter e are to be considered

linearized partial differential equations for the fifteen distinct per-

; tubation terms Yij may be found to be

I T e e e RS0
axvax 2=o 2=0 X ax 3K ax

‘ The only difference between equations (I1I-165) and the linearized

; relativistic equations is the increased dimensionality which results in

z, summing over the five coordinates and allowing the indices to range over

' o s .
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IV. IMPLICATIONS OF THE DYNAMIC THEORY
Though a runber of imylicaticns of the Dynamic Theory could be singled
out for discussicn here only two have been. The choice was made primarily
to 4isplay the capability of the theory. The first implication, the existence
of a limiting rate of mass conversion, was picked because it represents,
as far as is known, a prediction which is originated by the Dynamic Theory.
On the other hand the self energy of a charged particle is discussed in order
to show the capability of the theory to shed new 1ight upon previously
considered concepts and/or phenomena.
A. LIMITING MASS CONVERSION RATE

As far as is known the prediction of the existence of a limiting
rate of mass corversion is original. Hcwever, the manner in which it appears
within the theory is identical with the manner in which the limiting, or
absolute, velocity appears. namely; as the resuli c¢f applying the third law.
Further, this coincides with the classical appearance of the absolute zero ..
temperature as a limiting value. Thus from the Dynamic Theory's point of
view the concept of a limiting rate of mass conversion is just as fundamental
as the concept of a Timiting temperature or velocity.

On the other hand the existence of a limiting rate of mass conversion
seems intuitively pleasing. Fer if we accept the notion that something
cannot travel with infinite velocity it seems only reasonable to believe
that mass may not be converted instantaneously.

The third law establishes a 1imiting value of the time rate of
change of one of the coordinates, or variables, by the integrating factor
going to zero. Then for a system near equilibrium, so that a flat space .3

may be considered, the integrating factor goes to zero when
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1-5 - oy (1v-1)
0

2

. " 1.2 2 3.2 oL
where y = dy/dt and v2 = (dvxt) + (ddxt) + (ddxt) . Thus the Timiting rate

of mass conversion depends upon the velocitv since, from equation (IV-1)

. v2

Y= £ac /1 - = - (1v-2)
Therefore the maximum rate of mass conversion occurs when v = 0 and then
it may be seen that the limiting rate of mass conversion is given by %max = a,cC.
The 1imiting rate is specified for a particle which is setting still, or
for v = 0. However, on the other hand if v = ¢ then there can be no mass
conversion. This might be better seen from another view. A system, which
we might consider as a particle, finds itself limited in how fast its mass
may change (to be concise we should say "mass density") by the relativistic

appearing equation (IV-2). On the other hand the speed of light, c,

represents a limiting velocity and the arguments of special relativity

may be reproduced here to show that, for a particle beginning with a velocity
less than c, no massive particle may be accelerated to the speed of light.
Pere we find the further conclusion that a particle may not be created and
have a velocity equal to ¢ upon creation.

Notice that in the argument above we hedged a 1ittle when comparing
the argument to an argument based upon Einstein's special theory. The
reason for this comes from an important difference between the theories.
Einstein's theory is restricted to the four-dimensional worlid of space-time.
Thus it seems reasonable to conclude that if something cannot be accelerated
up to the speed of 1ight then nothing can exist at a velocity greater than
the speed of light. This logic, however, contains the pitfall of inductive

reasoning. The trap appears, not so much in the logic of the Special Theory,
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as in the limitations imposed by the nature of Einstein's postulates. By
this 1 maan that by adopting Einstein's postulates we are limited to a
four-dimensional world and must rule out solutions with velocities greater
than the speed of light.

I, on the other hand, we look at the Dynamic Theory we find that
the theory is not restricted to any number of independent variables, or
dimensionality. Further, we find that the limiting effect of the third law
does not exclude solutions with velocities greater than the speed of light
but, in the four-dimensicnal case, rather rules out solutions with velocities
which cross the absolute velocity. This means that within the Dynamic Theory
solutions may exist for particles with velocity jreater than the speed of
Tight.

The next question might well be, if velocities greater than the
speed of 1ight are allowed, how might they be obtained? Obviously, the
allowance of these velocities as solutions does not necessarily mean that
they can be obtained. Here we find the generality of the Dynamic Theory
coming into the picture. It allows a fifth dimension. Equations (IV-1)
and (IV-2) were written for a system restricted to remain very near
equilibrium so that a flat, or Euclidean, space may be used. Suppose we
remove this restriction so that we must consider a curved space. However, .
suppose that we relax this restriction in a very particular fashion. Let
us suppose that the only non-constant metric element is §kk. Then equation
(IV-1), which is the conditions for the vanishing of the integrating factor,

may be written,

~ .2
2 9y, Y
V-5 - =0 (1v-3)
0 .
?’} §
170 -




where §q4 may depend upon position and mass density. Then solving for the

velocity which drives the integrating factor to zero we find

/G, ¥
v, =£¢C ]-—q—“z—z- (1v-4)

o aoc

Now suppose we define the speed of 1ight to be the velocity for which the

=K integrating factor goes to zero. This definition is consistant with Einstein's
' definition of 1ight waves traveling along a null trajectory in the four-
dimensional space-time manifoid. However, in the five-dimensional manifold

of the Dynamic Theory this speed of light depends upon the rate of mass
conversion and the metric element g,,.

Obviously, if g,, is negative then the limiting velocity, Vo» exceeds

by

the absolute zero velocity ¢, which now may be defined as the limiting
velocity in the absence of mass conversion. Thus the attainment of solutions
with velocities which are greater than ¢ depends upon the possibility that

the metric element §§u be less than zero.

B. SELF ENERGY OF A CHARGED PARTICLE
In classical electromagnetic theory the self energy of a charged
particle is discussed but its value has not been established. This is
because the expression for the self energy is a function of the radius
- associated with the physical extent of the charge distribution. Thus the
-- radius of the charged parvicle must be known before the value of the self
energy can be determined.
Currently the self energy of a charged particle is equated with the
energy associated with its inertial mass by

E=m2.

Then the radius associated with this energy is taken as the "radius" of the

‘i
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particle. There is no intention that this radius be the physical radius

of tne particle though it compares favorably with experimental values.

The question arises here of whether or not the Dynamic Theory, with
the five~-dimensional viawpoint, can theoretically predict the self energy
and/or the radius of the physical extent of the mass or charge c¢istribution
of the particle.

One of the beneficial aspects of the generalization of physical theory
as done in the Dynamic Theory is the possibility of using conceptualizations
and procedures developed in one branch of physics in another branch. This
aspect of the theory appears applicable here. The self energy of a charged
particle is the notion that a certain amount of energy be associated with
the a2xistence of the particle and its charge. This notion may be associated
with the notion of free energy used in thermodynamics for if the self energy
of the charged particle is its free energy then it represents the energy
which nay be 'freed' upon converting the particle into energy. Conversely
this would represent the energy required to assemble the charged particle.

With the conceptualization of free energy the second law provides
the condition for a stable equilibrium state. Namely that a charged particle
in an equilibrium state must exist at a minimum of its free energy. Thus
if the self energy, or free energy, of a charged particle is sought then
mirimizing its free energy will yield the desired result.

Before applying the principle of minimum free energy to a charged
particle in a five-dimensional space, suppose that the principle is applied
in a four-dimensicnal manifold first. This procedure will hopefully provide
some validity to the method or may poirt out some difficulty with it.

The free energy was defined, in analogy with the thermodynamic case,

as
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G=zU-¢8- x“Fu (1v-5}

where = depends upon the applicable work terms which here will be taken as

the three spacial dimensions so that « = 1, 2, 3. The first law is given

by
dQ = du - Fadx“ (1v-6) 7
wnile the second law yields
$dS = ¢l - Fdx® (1v-7)
L for a quasi-static, reversible process. Therefore the differential change
: in the system energy is
‘ du = odS + Fodx®. (1-8)

Differentiati..g equation (IV-5) gives the difierential change in the

Tree energy as
dG = du - ¢dS - Sdo - F dx™ - x*dF . (1v-9)
Substituting (IV-8) into (IV-9) yields
d6 = - Sd¢ - x%dF. (1v-10)

The force in equation (IV-10) is considered to be the Lorentz force

F,=alE+ (vx B

so that equation (IV-10) becomes

d6 = - Sdo - x“d {q(F + (v x B)) . (IV-11)

If we wish to consider the change in free energy with respect to a

change in the charge at a constant velocity we find that since é is a

il
‘I',h | ||v|;nm o ||||g|h,

function of velocity only then d¢ = 0. The specitication of constant

velocity stems from the desire to obtain the self energy of a charged

particle therefore the particle should be considered as sitting still so
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that it will have no kinetic energy. The differential change of free

energy for a stationary particle is then

st l iy
A

PEEPERI o '

i

dG

- 8ds - x%d {q [T+ {Vv x E)]u}

- Sdo - x* {dq [E+ (VxB)] +qd [E+ (vxB)]2

so that for & = constant

_ o[E+ (Vv x B)]
= By L T LTy EY] - & af o o
E (eq S =X [E+ (vx3B)] -x df 59 )¢- (1v-12)
But £ + (v x B} is independent of the charge q and therefore
By L, [E+(VxE v-
% (aq’¢ x> [E+ (vx B)]u . (1v-13)
If the charge is not in motion then
:»:-; 3Gy _ a
= (35 8= X E, (1v-14)
] since v = 0. Further, if the field £ is due to the charged particle then
radial symmetry vields - :
: F_cer _
: E= Fme 12 (1v-15)

for points external to the negative charge distribution. Substituting

(IV-15} into (IV-14) results in

It n n 1 il b 1) Mt i
LU b L ERARR T
!

3G re ] ,
Gols S Toc 2 = 57 {IV-16)
3q é .‘:\.Or -z.:._oi

Thus we may integrate over the charge q at the radius R to get

so that the free energy is given by




2
e

G = ——=+ G_. (1v-17)

-8

41:50R 0 c j

Here the use ¢f the (-e) in the limits of integration corresponds to the
notion of free energy as the energy required bring the charge to the radius
k.

Thus the free energy given by equation (IV-17), and hence the adopted
method, differs from the classical expression for the seif energy of a
charged particle by the constant Go only. From equation (IV-17) it may be
seen that the value for the free energy depends upon the physical radius
R by an inverse relation. This function«l relationship obviously will not
yield a finite value of R which will minimize the free energy. Therefore
we are no better off than we were by using the classizal theory.

The question of interest though is whether or not the five-dimensional
viewpoint will shed a new light cn the self energy. By the preceding develop-
ment arriving at an expression consistent with the classical self energy of ;
a charged particle a measure of validity has been obtained for using the
method.

Suppose now we apply the preceeding procedure from a Tive-dimensional

point of view. In a five-dimensional system the forces are given by

Ji

§ FoeaqlE+ (VxB)] +—V,e=1,2,3
- -7 (1V-18)
- _ v .V s
Fy = al¥y - — -
' Thus :
- I Ve
X\‘! dFa = xa d{q[? + (V X a]c + € :-

v -V

+ x* digly, - T} (IV-19)

10

. . 4(3.v,)
x* dalf + (vx B)] +x° —
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¢ WE+ (Vv xB)] +xt Y- ¥
+ x qdlE + (v x E)Ja + x* dq[V —3
. V-V
+ X gd{yo C }.
Then for a stationary particle and charge so that v = 0,
3{d.V ) 3t
By _ e X ¢ ____g{ G c ; AN
(aq {; ==X Lu X VO - ‘E“ ;( aq )g;! T cc_ (E—)éj

L (]
x qbg§9$ .

Again suppose that the electric field is due to a spherically symmetric

charge distribution so that

= E?
=1 5P gt
4=£e

which is independent of gq. Thus equation (IV-20) becomes

& - _ _ ey . 52.(33*¥5
305 4ssor T 0 ¢ t3g Y,
i ’ (1v-21)
v

& a0y |
- X ﬂz(aﬁ_)p_é

t is not obvious whether J,, V and V_ are independent of g or not
= w7
when the seven Maxwell equations are first considered. However, with
the tentative inierpretation that these gquantities are related with nuclear

forces we can suyopose that they are independent of the charge g ané

e

%%. S - Ly 1 29
(ég)é égsor X ¥or (1v-22)

Since x* = v/a, then equation {1V-22) becomes

G e v
& - e {(1v-23)
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since Vo was assumed to be independent of q.
The charge q 1s external to the charged particle and therefore should

be independent of the mass density so that the free enerqy becomes
02 | oYV,
KWT + --- *+ Gy (1v-25)

For a charged particle the mass density will depend upon the physical
cxtent of the particle and hence upon R. The field quantity Vo 1s supposed
to be related to nuclear field properties and may also depend upon R. Thus
there should be a finite radius of physical extent R which will minimize
the free energy given by equation (IV-25).

If the functional dependence of Vo and y upon the radfus R were known
then a minimum of the free eneorgy would be given by determining the radius

Ro for which

O | L - S -
(W)R 0 G&%Rg + ao 3 (YVO)- (IV-26)
0

Before equation (IV-26) may be used to find the radius R, which minimizes
the froe cnergy, an appeal to the saven Maxwell aquations and/or a model of
the particie must be made so that the dopendence of the product yvo upon
R can be determined,

Suppose a simple model of the particle is mada in order to further
invastigate the existence of a finite radius Ro which will minimize the free
energy, If a uniform mass distribution in a spherica) shape is considered

then
177
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and equation (IV-25) becomes
" 3emV
G = + 6.
4ﬂCOR 4nR3 0

If it is also supposed that VO has a (1/R) dependence then

-e? 3emk
= + 4+ 8§
4mc0R 4na0R“ Yo

Differentiating equation (IV-28) with respect to R yields

(aG) - =8 12emk
4neoR£ 4na0Rb

or

0 00

eao

for this model.

2
e 0 .
.= - +
Gnnn ] ) Go

/ ea 3me kK ea

, ea
- \4na ) 3\) 12ne1< {- -4-} * G0'

or

“nin T G

Q
4we ) %/ TZme k { ea, (12msok) -
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The minimum value of the free energy would then be given by

1} + Go

(1v-27)

(Iv-28}

(1v-29)

/12mke
Then R = 3 O is the radius which would minimize the free energy

{1v-39)

x




Though the self energy given by equation (IV-30) is based upon an

unvarified model it does represent a demonstration that the Dynamic Theory
can produce a predicted value of self energy for a charged particle. It
remains then to determine a realistic model of the particle or another
method of determining the functional dependence of YVO upon the radius R
plus determining the value of the universal constant 3. Once this has

- been done then the self energy, or free energy, may be specified.
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V. CONCLUSIONS

The generality of the fundamental laws adopted by the Dynamic Theory
makes it possible to arrive at a great number of conclusions. However,
only a few will be selected for discussion here.

The first question which provided the motivation to seek a new theoretical
approach to physics concerned the uniqueness of the velocity of light as
a limiting velocity for all natural forces. The answer is provided by the
axiomatic development of the second law. This development produced ar
integrating factor for the differential statement of the first law. A
characteristic velocity was shown to exist in the definition of the absolute
velocity. That absolute velocity is given by a constant velocity process
at which the integrating factor is zero. The important point in the
development which provides the answer to the uniqueness of the velocity is
the proof that the integrating factor is independent of the nature of the
force. Therefore, if the absolute velocity is independent of the force
it must be applicable to all forces and hence unique.

Since by definition the absolute velocity is a constant in one reference
frame, it must also be a constant in any other reference frame moving with
a constant velocity relative to the first. Thus the absolute velocity must
be unique and a constant in all reference frames moving with constant
relative velocities. The experimental and theoretical evidence of electro-
magnetism requires that this absolute velocity be the sane value in all
these reference frames. This requirement leads to the principle of Lorentz
covariance. Then all the laws of nature must be Lorentz covariant whether
electromagnetic, gravitational, or nuclear since the absolut- velecicy is

unique and independent of the force,
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We find that the appearance of the integrating factor also clarifies
the relationship between the velocity dependent relativistic mass and
velocity dependent forces. In Einstein's Special Theory of Relativity we
find it necessary to consider a velocity dependent relativistic mass and a
velocity independent force. However, in the Dynamic Theory there appears
two differential expressions which become important for any system description.
The first differential expression is the first law itself, which, in

simplified form is

dQ =m§ dj - /T - §%/cZ F(q) dq.

The other is the expression for the differential change in mechanical entropy

or

ds = 2.9 ___ _ k(q) da.
T (q) daq

The integral of dQ depends upon the path and therefore is of little
utility in determining the actual process, or path, taken by the system.
On the other hand the entropy is independent of the path. This characteristic

together with the principle of increasing entropy for an isolated system

. ostabiishes the variational principie for determining the path. Since the

objective of dynamics is to find the path taken then it becomes obvious

that the differential expression for the entropy change plays a dominate role
and it is in this expression that we find Einstein’'s velocity dependenti
relativistic mass and a velocity independent force. However, from the
Dynamic Theory's point of view the first law descriues “"reality" and here

we find velocity dependent forces and mass which is independent of the

velocity.




Thus we find that the Dynamic Theory requires that the kinetic energy,
which comes from the energy expression, to be the classical kinetic energy,
or (%) mg2, while from the entropy expression comes a function, -mc2
which may be called the "kinetic entropy." In this manner the Dynamic Theory
clarifies the mental controversy which motivated it. For from this view
point kinetic energy does not depend upon the value of the limiting velocity;
kinetic entropy does. The two are distinct concepts, however, the distinction
can not be seen from a relativistic point of view.

Though the philosophy which formed the basis for the development of the
Dynamic Theory made it necessary to set aside the fundamental postulates
of Einstein's relativistic theories and Newtonian laws and begin to establish
a new theoretical basis, we find that the Dynamic Theory requires the same
conclusions as special cases. Therefore the viewpoint of the Dynamic Theory,
which appeared incompatible with current theories, not only supports current
theories but lends them additional strength from its more general approach.
The concept of a 1imiting velocity takes on a new, mo.e fundamental, character
as the mechanical counterpart to thermodynamic's absolute zero temperature.
Yet because of the different point of view this limiting velocity does not
have the absolute character attributed to it in relativistic theory for we
find that its value depends upon the dimensionality of the system.

When the metric provided by the stability conditions is considered
we find that the Dynamic Theory, through the second law, specifies the
geometry which must be considered. This removes the necessity of assuming
a particular geometric character and, for an isclated system specifies the
type of geometry which can satisfy the principle of increasing entropy.
Using Weyl's interpretations from his unified field theory we find that the

Dynamic Theory answeres some questions which Weyl's theory leaves unanswered

or introdyces.
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First recall that Weyl assumed the existence of a quadratic and linear

differential form. The Dynamic Theory produces two quadratic, plus a linear,
difterential forms for isolated systems and it is the interplay of these
three forms which provide the answers. Weyl's theory raised a question
concerning integrability and Einstein produced an argument which indicated
that Weyl's theory would not produce the sharp spectral lines we see from
atoms changing states. Weyl only had one quadratic form. The Dynamic Theory
has two; one an entropy manifold, which yields an integrable arc lenath of
entropy. the other manifold is related to it by the gauge function. Thus
the second law requires that the entropy manifold have an integrable arc
length though the other may not and in that event the gauge function be
haves 1ike an integrating factor.

An additional feature of the interrelation of the three differential
forms lies in its ability to shed new 1light upon the existence of both
positive and negative electromagnetic charges. Weyl's theory, as well as
Maxwell's leaves this question unanswered. Weyl defined the potentials

- which are the coefficients of the linear differential form; as

o, = 1 3anf
k2 axk
where f is the gauge function. Though the gauge function relates Weyl's

"distance measures" £ and % by

22 = f 22,
Weyl did not take the potentials to be logrithmic derivatives of a radical
function. As a result he pointed out that one way of accounting for the
difference between positive and negative electricity would be to introduce

a radical some where.
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The Dynamic Theory requires that the entropy manifold be related
to the sigma manifold by
(da®)2 = f(do)2.
Here the principle of inéﬁeasing entropy provides the variational principle
hence there is added significance in$considering the differential change

in entropy or

dq® = 2 do.

Thus the only mathematically consisternt difinition for Ok is

PR 1 aanf
k 2 axE

thereby accounting for the existence of both positive and negative electro-
magnetic potentials.

The recognition of the existence of the radical together with fact
that the second law deman%% a real function for the entropy since dq° >0 .
for an isolated system provides the capability *o remove London's difficulty
with imaginary distances in his quantization of Weyl's theory. This coupled
with the logical demand, by the Dynamic Theory, for the conditions resulting
in quantization demonstrate the power of the theory to unify th2 whole of
physical theory under the umbrella of a single set of generalized laws.

The real power 6f the theory begins to make its appearance wher some
of the restrictions are relaxed. This is demonstrated here by considering
a thermodynamic work term in the first law together with three mechanical
work terms. For it is here that forces with the appearance of ruclear
forces appears. These forces ccme from the action of new field quantities
appearing as the fifth-dimensional components of the gauge field. Though

these field components first appear in an interrelatio:nship with the

- . . 3
classical electromagnetic fields it is the quantization which provides a;
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the connection of the Tield aquantities with nuclear proberties. The
connection shcws up first in the prediction of anomalous magnetic moments
but gains additional support from the appearance of three spin vectors
which become necessary to complete a set of commut‘ing observables.

Thus the Dynamic Theory offers the hope of includine nuclear theory
and elementary particle theory within the same unified structure. Two
aspects from this approach seem particularly significant in their support
of thi, contention. One is the appearance of octets as the number of
allawed combinations of fundamental eigen-values for the components of the
three spin vectors. The other is the necessity for one of the vectors
to be a four-dimensional spin vector instead of being a three-dimensional
one. Could this not be the additional freeasom necessary to include the
newly discovered elemesntary particles within the same theoretical frame
work as the others?

When hydrodynamical systems are considered the thecry offers new views
of several different physical phenomena. First, there is the comparison
between viscous coefficients and the elastic coefficients of elastic solids.
These coefficients mathematically appear the same. The Dynamic Theory
offers a geometrical interpretation of these coefficients relating them
to the geometry of a four-dimensional hypersurface embedded by mass
conservation into the five-dimensional manifold. This allows two geometrical
descriptions of these pheromena. From one geometrical approach two surfaces
may appear the same while from the other they are distinct. Thus it seems
possible to establish a geometrical distinction between the viscous and
elastic coefficients.,

Another phenomenon which appears under a new light in the Dynamic

Theory is the electromagnetic containment of an ionized plasma. This should

185
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prove to be of considerable benefit when applied to a fusion reactor.
For here the theory gives a geometric view of a hyper-surface imbedded

into a five-dimensional space until sucn time as mass conversion begins

to take place when the system description becomes one given by the five
equations of motion in the full five-dimensional space.

It is here that the concept of 1imiting rate of mass conversion becomes
prominent. This limiting rate stands as a fundamental concept with the
same character as the speed of light in relativistic theories and within
this theory where mass conservation applies.

For cosmological modeling the Dynamic Theory offers the possibility of
zerc radiatiun pressure boundary conditions. Further, the theory may
oitcr new insights on black holes. Black holes are considered to have
tremendous mass densities and seem to be apprecpriate for the application of
the theory. Further justification of the theory's applicability to black
holes comes from the recent appearance in the literature of the need tc
talk of a generalized second law. This generalization appears as a particular
combination of the thermodynamic entropy and an area of a black hole.

To quote Hald,(l) "The generalized second law is a truely remarkable
law in that it involves three rather distinct fields of physics: thermo-
dynamics, general relativity, and quantum theory. IS it merely a strange

coincidence that this new law appears to be ture, or is there some deep,
fundamental significance behind it which we do not yet fully appreciate?
At the nresent, I do not feel that we can answer this questicn.”™ The

Dynamic Theory offers an answer for it shows that there is no coincidence

(1)¥a1d, R., 1977, Particle Creation near Black Holes, Scientific American
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in finding a second law involving these three theories to be seen to hold.
Indeed that is just what is predicts. The unification of the different
physical theories by the adoption of the three generalized laws points
out tha fundamental significance of a generalized second law.

It thus seems approoriate to offer three further quotes: "The
ultimate aim of many theoretical physicists is, first, to define more
precisely the range of validity of the currently known laws of physics and,
then, to find the new laws of physics that govern the phencsiena outside this
range. The discovery of such new laws is generally accompanied by a major
breakthrough in our understanding of nature." (R. Wald 1977) "If we wish
to find in rational mechanics an A Priori foundation for the principles of
thermodynamics, we must seek mechanical definitions of temperature and
entropy.” {J. W. Gibbs) "A theory is the more impressive the greater
tne simpliicity of its premises are, the more different kinds of things it
relates, and the more extended is its area of applicability. Therefore,
the deep impression that classical thermodyna=ics made upon me. It is
the only physical theory of universai content concerninag which I am convinced
that, within tne frame work of applicability of its basic concepts, it will

never be over thrown.“ (A. finstein, 1549). So tne Dvnamic Theory, as a

new view of space, time and matter, appears to me.
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