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SECTION I
INTRODUCTION

The purpose of this program is to study wave propagation in anisotropic
periodic media and generate a theory based on fundamental physical principles
that will lead to models to replacé current materials-specific ad hoc models
for surface acoustic wave resonators. The goals of the program are improved
modeling of resonators, improved device performance, and increased capability
to analyze new materials combinations.

This report describes three approaches used to predict the primary reflector
array property not included in current basic models, the shift in velocity under
the reflector array. This shift is observed as a change in the frequency of
maximum reflection of the array as the size of the reflector perturbation is

varied. An understanding of this phenomenon should lead to a fundamental model

similar to the ad hoc stored energy model proposed by R. C. M. Li and J. Melngailis.‘

The first two approaches used were a variational calculation and a perturbation
analysis. Neither yielded results that agreed with experiments, primarily because
the field approximations used were not sufficiently accurate. A finite element
calculation aimed at obtaining better field estimates has been completed. This
analysis yields approximate velocities and the displacement fields within the
substrate. The only step remaining when the contract terminated was linking

the displacement field from the finite element analysis to the stress fields

used in the perturbation analysis.

1. R. C. M. Li and J. Melngailis, ""The Influence of Stored Energy at Step
Discontinuities on the Behavior of Surface Wave Gratings,' IEEE Trans.
Sonics Ultrason. SU-22, 189 (1975).




SECTION II
VARIATIONAL CALCULATION

The purpose of this analysis is to determine the shift in velocity under
an array of reflectors in terms of the specific substrate-reflector combination
chosen for the resonator. The type of shift considered has been detected exper-
imentally by measuring the change in frequency of maximum reflection of an array
of grooves as a function of groove depth. This variation has not been predicted
by any existing fundamental theory.

The problem was approached as a waveguide-type problem. Piezoelectricity
and anisotropy of the substrate are included. The system considered is shown
in Figure 1. Waveguide problems of this type have been treated by considering
the wave number B as an independent variable and using resonator-type variational
expressions for frequency w. In this, B is fixed by the geometry of the structure.
Therefore, an expression for w = vp will give a direct determination of the effec-
tive velocity v under the array. The fixed value of B in the array is similar to
the fixed B determined by the boundaries of a bulk resonator. The allowable B8
determines the normal modes of oscillation of the resonator.

A variational expression for the oscillator frequency of a nonpiezoelectric
resonator has been derived by Auld.2 The advantage of using a variational expres-
sion stems from its stationary property; the value obtained by using an approximate
or trial solution in the expression has only a second-order error relative to the
error in the trial solution. If a derivation identical to that used by Auld to
obtain Equation (13-3) is used for a piezoelectric substrate, one obtains the
following:

w2 ¥ IV vs V:[f;vsv + ev%%Jdv - I;v-[c:vsv‘+ e:?%%l:ﬁ ds

p[ vev dV
IV

("

2, B. A. Auld, Acoustic Fields and Waves in Solids, Vol. II (John Wiley & Sons,
Inc., New York, 1973).
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Geometry of Structure Analyzed in Variational Calculation

Figure 1
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The notation is the same as that used by Auld:

vs is the symmetric gradient operator,

v is the particle velocity,

e is the piezoelectric stress matrix,
¢ is the electric potential,

c is the permittivity matrix, and

fi is the surface normal.

In the analysis of the SAW resonator reflector, the fields used in this
expression correspond to an unperturbed Rayleigh wave and a third space harmonic.
The fundamental Rayleigh wave satisfies the equations of motion on an unperturbed
half-space. The third harmonic satisfies the same equations when driven by a
source at the bottom of the groove. The relative amplitudes were chosen so that
the total normal stress at the bottom of the groove was as small as possible.
Equal amplitude waves were assumed to be incident from the two sides of the
section considered so that reflection effects would cancel in the integrals.

The medium was assumed to be lossless.

The integrals in the numerator of Equation (1) were divided into parts so
that the significant contributions to the frequency could be determined. The
volume integral was split into two parts, one covering the half-space V and the
other covering the pedestal AV. In AV the contributions of the third-harmonic
fields were ignored. Since the volume here is small and the fields are a small
part of the acoustic disturbance, this approximation should be valid. In V
both sets of fields were considered. The surface integral was divided into
contributions from the fundamental Rayleigh mode and contributions from the
third harmonic.
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The results of this velocity calculation as a function of groove depth are
shown in Table 1. The columns represent the velocity shift caused by different
terms in the integrals and different integrals in the numerator. One can see
that the major contribution to the velocity shift is from the surface integral.

Since this integral contains a normal stress, TeA, multiplicative term, it
should vanish for the true fields. For a variational calculation like this to
yield results to the desired accuracy, field approximations that more nearly
satisfy the boundary condition are required; a more complete basis set is
needed for the calculation.

The results obtained show that the net dependence on h/A is approximately
linear as opposed to the observed quadratic variation. It is also clear that
the third-harmonic term does not have the expected effect of introducing a
significant velocity shift.

The conclusion of this analysis is that more accurate basis fields are
needed to obtain meaningful velocity shifts. All other results must be rechecked
when these corrected fields are used.
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SECTION III
PERTURBATION CALCULATION

To try to bypass the field-sensitive limitations of the variatioral cal-
culation, a perturbation approach was pursued. The starting point for this
calculation is Rayleigh wave propagation on an unperturbed half space. The
frequency is fixed by selecting a Rayleigh wave length equal to twice the
period of the perturbation. The shift in frequency generated by introducing
perturbations on the surface is calculated directly. [In the variational
calculation, the absolute velocity (or frequency) was calculated, leading to
a larger margin for error.] The perturbation expression used is derived from
the complex reciprocity relation, a general acoustic field theorem applicable
to lossless media. This theorem is derived from the acoustic equations of
motion by assuming two solutions to the field equations exist and each is driven
by its own source terms. This derivation is given directly by Auld [Equation
(10.113)].
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Assume the following:
Solution | is the solution for the perturbed system.
Solution 2 is the solution for the unperturbed half space.
Solution | varies as e J®1t,
Solution 2 varies as R e
No body forces (F = 0).

No time-dependent density (3p/dt
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Integrate over the unperturbed half space, and the right side of the equation
above becomes

%

“jlw,; = ) fv[p vy v, * Tz*:s:T' - Tz*:d-v¢| - v°2*'d:Tl + v¢2*.e.v¢l] dV =
Fwy = wp) [ [0 wy wp Y, U, " + 8, eS¢ By ee>eE ] v

Application of the divergence theorem to the left side yields the result
'i (+vp *T) = V)T, = Judy Dy + Jug® Dy ) eds.

Assuming there is no charge buildup in the material (p = 0) and the surfaces
are stress-free (Ten = 0), only the first term contributes, and the integral

becomes
-f 2 -T‘-ndS

Therefore, the overall expression can be solved for the fractional frequency
shift

§S vz*-T‘-ﬁdS
bw = r * 3‘:' . * S dv
-j Jy pw‘wzu‘uz + S2 .c.S' + Ez e -E'

One can simplify this expression by assuming that the surface perturbation will
have only a small effect on the volume integral. This assumption allows one
to use only the unperturbed ''2" fields in the volume integral.

L &
§S vy oT'-ndS

5 2 12 e ¥
-j fv pw”u|® + Sz’:c:S2 + Ez’-c

(2)

The problem has been reduced to a calculation of the component of the perturbed
stress normal to the unperturbed surface T'-ﬁ.




As a special case, consider a surface with a sinusoidal perturbation of
the surface like that shown in Figure 2. The surface is defined by the expres-
sion z = f(x) = #(1 + cos 2mx/p)h. To evaluate Aw. one needs to know the com-
ponent of the perturbed stress normal to the unperturbed surface (z = 0),
T'(O)-i. where 2 is a unit vector in the z direction. The perturbed surface
is stress-free, so the boundary condition at this surface is Tl[f(x)]-i' =0,
where 2’ is the normal to the perturbed surface. If the surface perturbation
is small (f(x)<<l) and the slope of the perturbed surface is small (df/dx << 1),
then one can expand the perturbed stress T‘(z) in a Taylor series about z = f(x)
and evaluate T,(O)-i to give the result

2
dr dv 2 &%t
df 1], . af 4| f .
Ty (0)e2 m T (Flx})) G« &' F —e2'= F L Go 8" * 2 o 5 (3)
z = f(x) z = f(x) z = f(x)

For small perturbations, the tangential stress on the perturbed surface can be
approximated by the tangential stress of an unperturbed Rayleigh wave on an

unperturbed half space;

T (F(x) R = T,(0) & . (1)
Similarly,
dT dT
I ~-__2_ .
-dT * ﬁ iz R ’ (5)

and
2 2
d’T dT
] ’ (6)
ow: | i 2/ o w1 i 2
dz dz
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These approximations are equivalent to assuming that for small perturbations
the major change in the stress is caused by the change in the direction of the
surface normal. This assumption should be good as long as df/dx is small.
This is true for perturbations like the sinusoidal perturbation. As df/dx
increases, arguments about normal and tangential stress and stress derivations
being equivalent at perturbed and unperturbed surfaces break down.

The rectangular groove profile commonly used for reflector arrays can be
expanded in a Fourier series. The first term of this series can be substituted
for the sinusoidal perturbation f(x) in this analysis. Neglecting the other
terms in the expansion, Equations (2) through (6) can be combined to predict
the dependence of frequency on groove depth. This approximation results in
the dependence shown by the dotted curve in Figure 3.

An expansion similar to that of Equation (3) can be carried out for trape-~
zoidal grooves like those shown on the inset of Figure 3. This expansion can
be carried out without the restriction df/dx << 1. For sloping grooves the
results are the same as those for the sinusoidal perturbation. For steep grooves
the results change to those shown by the solid line in Figure 3, but the approxi-
mations for the perturbed stress on the edges of these grooves [Equations (4), (5),
and (6)] are not good. This fact explains the deviation from the experimental
results shown in Figure 3. A better approximation to the perturbed fields is
needed. The similarity of the experimental results to the steep groove theory
is indicative of the fact that extremely accurate field approximations are not
needed, since the field approximations used here are quite crude.

The finite element calculation described in the next section was intended
to yield the improved field approximations needed for the surface integral in
Equation (2).
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SECTION IV
FINITE ELEMENT CALCULATION

A. Introduction

The purpose of this calculation is to obtain an estimate of the field
distribution in the substrate when it is perturbed by the presence of an array
of reflectors. The starting point is the same as that of the variational
calculation, Equation (1). In principle, this expression, when solved exactly,
will predict the actual velocity perturbation. A finite element solution aimed
at achieving the accuracy required to model the velocity shift caused by distrib-
uted arrays of weak reflectors leads to a calculation involving a large number
of small elements. This approach involves prohibitively large numerical
arrays and exceeds the capacity of modern computers.

The approach used here does not require this high degree of accuracy in
the finite element calculation. The system is divided into a small number
of large elements to keep the size of the numerical arrays within reasonable
limits. This leads to a first-order approximation to the solution of
Equation (1) in the substrate-reflector system. This approximate solution can
be used to evaluate the stress T' in this system and to evaluate the numerator
of the perturbation calculation expression, Equation (2). This perturbation
calculation yields the accuracy required to model the weak perturbation.

Since the finite element calculation is designed to give only a first-
order approximation to the field distribution, the effects of piezoelectricity
will be ignored to simplify the calculation. From the fact that the stored
energy velocity changes are nearly the same for grooves in ST quartz (a weak
piezoelectric) and for grooves in YZ LiNbO3 (a strong piezoelectric), one can
conclude the effect is primarily mechanical and ignoring piezoelectricity is
justified. This approximation and a rearrangement of terms reduces Equation (1)
to the following:

13




2
JV Vg vie:Uv = w p IV vev dV = 0, (7

The surface integral vanishes in this analysis, since the normal stress is
constrained to vanish in the calculation.

The displacement in the system is the unknown that we want to evaluate.
The system is divided into rectangular cells, The displacement is expanded

3
i
i
1
é
1

in terms of the position within the cell. Specific positions within each

cell and on the boundaries between cells are selected as points where Equation (1)
will be exactly satisfied. These positions are the nodes of the system.

The displacement expansion coefficients can be evaluated in terms of the nodal
displacements so that ultimately, the displacement at any point can be ex-
pressed in terms of the nodal displacements and the position within the cell.
Equation (1) becomes an equation involving products of nodal displacements.

The first term in the equation is the potential energy. The second term is

the kinetic energy. Thus, the right side of the equation is the Lagrangian

for the system, The derivative of the Lagrangian with respect to the nodal
displacements vanishes identically, so the system of equations represented by
Equation (1) reduces to a system of linear simul taneous equations. For this
system to have a nontrivial solution, the determinant of the coefficients must
vanish. This condition fixes the perturbed system velocity. The relative
displacements of the nodes can then be found by solving the system of equations.

8. Approach

This section contains the details of the finite element calculation. The
governing equations and manipulations are detailed and their relation to the
computer calculation is pointed out.

The starting point is an expansion of the displacement vector for use in
Equation (7). AVl quantities in the analysis are assumed to vary as eTdut o

1

e e e i i S S




that the particle velocity in Equation (7) can be expressed in terms of the

displacement u.

V= -qu .

In addition, we assume that there is no variation in the plane of propagation
perpendicular to the direction of propagation; the acoustic beam is infinitely
wide, The displacement is expanded in terms of the position within the cell,
The coordinate positions are expressed as a vector P and the coefficients are
expressed as a matrix A.

us AeP . (8)

The order of the polynomial P determines the order of the calculation. If P

is a first-order polynomial,

P = [l,x,ZJ ¥ (9)

then the calculation is first-order. The true displacements are approximated
by linear variations within each cell. When a large number of cells is used,
a reasonably good approximation to the displacement is obtained. The order
of P leads to two conditions on the nodes in the cell. First, to generate

a system with an equal number of unknowns and equations, the number of nodes
in each cell must equal the number of terms in P. Second, to guarantee that
the displacement is continuous across cell boundaries, i.e., that the dis-
placement along a cell wall is the same when evaluated from either of two
adjacent cells, the order of the polynomial must be one less than the number
of nodes along each side. The first condition establishes a one-to-one
correspondence between the unknown coefficients A in Equation (8) and the
nodal displacements that will become the unknowns in this analysis. The
basis for the second condition is the uniqueness of the expansion of u along
the boundary when the values of u are fixed ;t the nodes. These conditions

are discussed in more detail by Zienkiewicz,

3. 0. C. Zlenkiewicz, IEO Finite Element Method in Engineering Science (New
York, McGraw Hill Book Co., 1971).

15




Consider first-order calculations as an example of satisifying these two
conditions. The second condition states there must be two nodes on each side
of the cell or, equivalently, one at each corner as shown in Figure 4. The
first condition requires the number of terms in P to equal the total number of
nodes in the cell. Thus, the triangular cell with three nodes [Figure 4(a)]
is appropriate for a three-term polynomial like that in Equation (9). The
structures of interest here divide naturally into rectangles. The cell in
Figure 4(b) satisifies the continuity requirement, two nodes on each side,

and matches a four-term polynomial. The appropriate polynomial for this

case is

P=[1, x, 2, x2]

Along any boundary one parameter, x or 2, is fixed. Therefore, along that line
the polynomial P has only two independent terms, and the coefficients of
these terms are determined uniquely by the displacements at the two corner

nodes.

Zienkiewicz states that greater accuracy can be achieved in a computation
for a given number of nodes by increasing the order of P and therefore the
number of nodes in a cell than by reducing the size of each cell and increasing
the number of cells. Therefore, all calculations up to fourth-order were
considered in this analysis, The polynomial used is as follows:

y 3 3 2.2 3 4 b

2- 22 3 2
Pofl, x, 2, n2, x, 2, x'2, x2°, x°, 27, x°2, x'2°, x2°, &, 2,
e
x 2z, X2 "

where the first 4 terms are used for first-order, 8 for second, 13 for third,
and all 17 for fourth-order calculations. The corresponding cells are shown
in Figures 4(b) and 5.

Once the order of calculation and nodal positions have been chosen, the
nodal displacements, up can be evaluated in terms of the coefficients A in

16
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Figure 4 Cells for First-Order Finite Element Calculations

(a)

17




® °
®

? ®

[ ST T )
(b)

[ 2 T8 T T ]

4 4

® ® ®

® ®

S e @ O §
(c)

Figure 5 Cells for Finite Element Calculations.
(b) third-order, (c) fourth-order.

e T T A I SRR 2 W 4 T g MmA 3 3 7 e 1 R SORIAP AR ¥ 755 1 T TR

(a) Second-order,




Equation (8) by evaluating P at the node positions. To express this in
matrix form, let N be number of nodes and u, be a 3 by N element matrix
(one element for displacement along each axis at each node); then A must be
a matrix with 3 by N elements and the nodal polynomial matrix Q is an N by
N matrix formed by evaluating P at the nodes.

un = AeQ
This expression can be inverted, since Q is a known matrix:
-1
A=u.Q o

Combining this expression with Equation (8) gives the following expression
for the displacement at any point within a cell in terms of the displacement
at the nodes:

U= unoQ.‘oP = (‘0)

This expression can be used in Equation (7) for the displacement in this cell,
but Equation (7) applies only to the system as a whole, not to individual
cells, Thus, the contributions to the volume integrals from each cell must
be summed to give the desired system of equations.

a {I Vg uic: 9 u dv - u)p I ueu dv} -0 . (m

cells Vc c

where Vc is the particular cell volume. When Equation (10) is used for the
displacement in Equation (11), the displacements u, can be removed from the
integrals, and the integrals can be evaluated analytically. This results in

a system of 3.N° quadratic equations in the nodal displacement, where No

is the total number of nodes in the system. Since the left side of Equation (11)
is the Lagrangian for the system, its derivative with respect to each nodal

displacement must vanish. This differentiation results in a system of
3oN homogeneous equations in 3-N° unknowns of the following form:

[Pe - (—2) KE] u, (12)

19




where PE and KE are matrices made up of the contributions from all cells to
the integrals in Equation (11). The phase velocity of the wave in the system
being analyzed is vp and the unperturbed substrate velocity is Vor aN input
parameter. For these equations to have a nontrivial solution, the determinant
of the coefficient matrix must vanish. This condition sets the value for

the ratio vp/vo. The value is determined numerically with a zero crossing

subroutine.

This portion of the analysis routine was checked by analyzing an ST
quartz substrate. For this case the correct value for the velocity ratio is
1.0. The system analyzed was a two-wavelength thick substrate with the top
surface free and the bottom surface rigid. The ratio was found to be
0.96 + 0.01. Increasing the thickness of the slice from 3 wavelengths to
3.5 wavelengths increased the ratio to 1.00 * 0.01. This answer verified the
validity of the approach, and the analysis proceeded. (The accuracy was not
adequate to bypass the perturbation analysis.)

The next quantities of interest are the nodal displacements themselves.
The system of equations represented by Equation (12) is degenerate once the
value of vp/vo is determined. Discarding one equation and using the corre-
sponding displacement as a reference, the relative displacements of the nodes

can be determined. Equation (12) reduces to the following:
4

Lag o - b 9 (13)

where Lag is the same as the square matrix in Equation (12) with one row and
one column removed, un' is the displacement matrix normalized to the reference
displacement, and b is a column vector of constants formed from the column
that was removed from Equation (12) to form the matrix Lag. This set of
equations is the same as the set in Equation (12) with one displacement set

to unity and the corresponding equation removed.

20
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Inverting the matrix Lag in Equation (13) gives the nodal displacements,
which can be used in Equation (10) to obtain expressions for the displacements

in each cell of the system.

The finite element method has been used to obtain approximate solutions
for the velocity and displacement fields in a propagation medium of arbitrary
cross section. From the displacement field, one can calculate the stress
field required for the perturbation analysis described in Section II of this
report. The perturbation calculation will yield an accurate value for the

change in velocity caused by the reflector array.

This approach creates a basis for determining the variation of SAW
velocity in a reflector array consisting of arbitrary reflector-substrate
material combinations. For example, the dependence of the velocity in an array
of grooves on groove depth can be determined. Similarly, the velocity changes
caused by an array of metal stripes forming a reflector or transducer can be
determined. The steps remaining to connect the two sections of this work are
conceptually straightforward, but were not completed during the contract
period.

From the accurate velocity perturbation one can also create a transmission
line model for propagation in the periodic array that is based on fundamental
principles. This may simply consist of postulating a more complex form for
the variation of the storage term, B, in the Li and Melngailisb stored energy
mode! for the array that will extend its application to deep grooves.

The remaining goals of the contract -- to study dispersion of Rayleigh
waves and scattering at oblique angles in an infinitely wide grating array --
were not pursued in this work. The approach that would have been used to achieve

these goals was dependent on the results of the velocity calculation and

could not be fruitfully pursued in a parallel analysis.

h. R. C. M. Li and J. Melngailis, op. cit.
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SECTION V
SUMMARY

Three approaches have been used to predict the shift in velocity under
an array of identical reflectors as the reflection coefficient per reflector
is varied. A variational calculation was tried and found to be too sensitive
to the basis functions available as initial guesses. A perturbation analysis
was found to give better results, but again failed to give reliable agreement
because of limitations in the ability of field expansions to model the rapid
stress variations at reflector edges. Finally, a finite element solution of
the equations of motion was used to obtain more accurate approximations to
the field distributions needed for the perturbation analysis. The interface
between the finite element and perturbation calculations is incomplete at
present, Completion of this interface will allow one to predict the variation

of velocity under a reflector array.
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