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~~~~~~~~~~~ 1. Problems with boundary layers at one endpoint

Many physical problems can b~ studied as singularly perturbed two—point vector

:1 ‘ boundary value problems of the form
1

4

cy” + f(y ,t,c)y ’ + g(y, t,c) — 0, 0 < t < 1

(1)

y(O), y(l) prescribed

where c is a small positive parameter (cf., e.g., Amundson (1974), Sethna and
4 Balachandra (1976), and Cohen (1977)). Scalar problems of this form are analyzed

quite thoroughly in the forthcoming memoir, Howes (1978). An enlightening case

history of such analyses was given by Erdélyi (1975) , and important early work
includes that of Codd ington and Levinson (1952) and Wasow (1956).

For simplicity, let us assume that f and g are infinitely differen tiable
in y and t and that they possess asymptotic power series expansions in C as

c -
~~ 0. We’ll first consider the vector problem under the assumption that the

reduced problem

~~~ (2) f (u R, t O)u
~ + g(uR, t,O) — 0, u~~(l)

L.LI is stable throughout 0 < t < 1 in the sense that u exists and
S R

— 
_~~~~~~~ (3) f ( u R (t ) , t ,O) > 0

_ 
H

there (i.e., —f is a strictly stable matrix having eigenva1u~s with negative
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2
real parts). We first realize that UR 

cannot generally represent the solution

to (1) near t — 0 because we cannot expect to have uR(O) = y(0). Instead , we

must expect boundary layer behavior to occur near t = 0, providing the required

nonuniform convergence from y(O) to uR(O) as C + 0. For a (very) small

4 “boundary layer j u mp ” l y(O) — uR(0)l or for a constant f(y,0,0), no extra

hypotheses are needed. More generally , however , we must require an additional

“boundary layer stability” assumption, namely that the inner product

(4) c
T 13 f(uR (O)+s , 0, 0)ds > 0

remains positive for ~ + uR(O) along all paths connecting u
R

(0) and y(O)

with 0 < 1r1 < Iy(0) — u (0)1 . (Here, T represents the transpose and 1z1

zTz.) We note that if f(z,0,O) is the gradient VF(z — uR
(O)) , (4) is

equivalent to the condition that

j 
c
T(F(~) - F(o)) > 0

since the integral is then path—independent. Indeed, (4) directly generalizes the

(miniin
~

i hypotheses used by Howes for the scalar problem and it is weaker than

the common assumption that f(y,0,O) > 0 for all y.

Pictorially, the boundary layer stability assumption must hold within the

circle shown

The results of Roves and others suggest that under such hypotheses, (1) will
— have a solution y(t,c) of the form

(5) y(t,c) — U(t,c) + fl(t ,c)

where the outer solution U has an asymp totic expansion 
-

(6)
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providing the asymptotic solution for t > 0, while the boundary layer correc tion

II has an expansion

(7) fl(t,c) ~ fl (T )c~

whose terms all tend to zero as the stretched variable

1 1
(8) t — t l c

tends to infinity . We would expect this solution to be unique. Under weaker

smoothness assumptions on I and g, we’d have to limit the expansions to finite

order approximations. For the scalar problem, Howes doesn’t actually obtain

higher order terms or complete boundary layer behavior, but they can easily be

generated. Applying his results to the boundary value problem for the remainder

terms, however , shows the asymptotic validity of the expansions so obtained .
The outer expansion (6) must provide the asymptotic solution to (1) for

t > 0, since fl is then asymptotically negligible. Thus, the terms U~ can be

successively obtained by equating coefficients in the terminal value problem

(9) f(U(t,t),t,~ )U’(t,c) + g(U(t,c), t,c) — —cU”(t,c) , U(l,c) = y(l).

Evaluating at c — 0, then, shows that U
0 

must satisfy the reduced problem

(10) f(U
0
(t),t,0)U~ (t) + g(U0

(t),t,0) = 0, 1J
~
(l) = y(l)

(which has a unique solution uR
(t) under (2) and (3)). Succeeding terms

j > 0, will satisfy linear problems of the form

(11) f(U
0

(t),t,O)U~ (t) + f
y

(U
0
(t)~ t~O)U

j
(t)U~ (t)

+ g (iJ
0
(t)~ t~O)U~ (t) — h~~1

(t)~ U~ (l) — 0

where h~~1 is known in terms of t , U
0
(t), ... , U~_1(t). The stability assump-

tion (3) implies that (11) is a nonsingular initial value problem, so it also has

a unique solution throughout 0 < t < 1. Thus, there is no difficulty in generat-

ing the outer expansion U(t,c) with U(t,0) — u.~(t ) .

The boundary layer correc tion U must necessarily be a decaying solution of
the nonlinear initial value problem

(2
(12) 1 + f(U(ct,c) + R(r,c) , cr , c) —c[(f(U(cr,c) + I I (r ,c) ,  c r , e) —

dr

_ _  

_ _  -
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- f(U(ct,c) , ci,c)) ~~ (ci ,c) + g(U(ct,c) + fl(r,c), cr , c)

(12) — g(U(cr,c), cr ,c) ] ,  T > 0

4 
fl(O c) — y(O) — U(O,c).

Thus, the leading term Jt~ must satisfy the nonlinear problem

2d I I  dli
(13) 2 

+ f(U
0

(O) + ]l
o
(T), 0, 0) — 0, lo (0) — y(0) — U

0
(0)

dr

while later terms must satisfy linear problems

d
211 dli

(14) 
~~2 

+ fU J 0
(0) + 110

(r ) ,  0, 0)

dlif... + f ( U
0

(0) + l1~~(T), 0, o)lr~ (t ) ~~~~~~~~ — k~_1 (r)~ ll
~

(O) — _U~ (O)

vherb k~_1 is a linear combination of preceding terms and their derivatives

dfl
~
/dT, t < j, with coefficients that are functions of r and 11

0
(r). The

decaying solution of (13) must satisfy

~~~~~ J f (110 (0) + U
0
, 0, 0) ~~~dT 0

and , thereby, the initial value problem

dli 
11~ (t)

(15) — —J f (U
0

(0) + w, 0, 0)dw , t > 0, Tl
o

(0) y(O) — uR(O).

Multiplying by fl~, the boundary layer stability condition (4) implies that

(16) ~~ l f l 0 (t ) I ~ — —I1~ (r) J f (U
0

(O) + z, 0, 0)dz < 0

for nonzero values of 1l
0
(r) satisfying 1J 10 ( r ) l  < l y(0) — uR

(O)I — Ill o (o)l .

Thus, our boundary layer stability implies that 111
0
(r)I will decrease monotonic—

ally as t increases until we reach the rest point 11
0

(r) — 0 of (15) at t —
• Ultimately, IT,~(r) will become so small that ~

) (for e — 0) implies that the

eigenvalues of f(110
(0) + 11

0
(r) , 0, 0) will thereafter have real parts greater

than some K > 0 and (15) then implies that

—KT
(17) lt

o
(r) — 0(e ),
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i.e., U 0 is exponentially decaying as i . Although we can seldom explicitly

integra te the nonlinear sys tem (15), we can approximate its solution arbitrarily

closely by using a successive approximations procedure on (15) (Cf. Erdélyt

(1964)). Knowing U
~
, we next integrate (14) for j — 1 and then proceed term—

wise. Rearranging (14) and integrating , we obtain

+ f (U
0

(0) + 11
0

(T) ,  0 , O)Il
~ 
+ ~ (t) - 0

where

I dli
+ l1~~( r ),  0 , 0)( fl~ (r) ~~~ (r)

— 

~j —~ 
(r ) TI~~(r ))  + k~~~ (r))dr

is known whenever l1~ and dfl0/dr  commute. Thus, 11~ satisfies the integral

equation

ft  1
(18) 114 (1) — . P(t)U 4 (0) — P( t )P  (r )L 4 (r)d r

J J J O J

where P ( r )  is the exponentially decaying fundamental matrix for the linear system

dli + f(U0 (O) + U , 0, 0)11 — 0 , t > 0, 11(0) I.

In general , (18) must also be solved via successive approxitna tions, though it

directly provides the solution of (14) when the commutator [fl~ -~ 
d110/dt ) 0.

We note that the boundary layer jump lfl
o

(0) I R y(0) — uR(0)~ 
is limited by

the minimum value of l~ l > 0 such that the inner product

T(19) 
~ J f(u~ (O) + z,  0, O)d z — 0.

0

The jump can, in practice, be quite large. It involves no restriction, for exam—

pie, if f ( z ,O,0) > 0 for all z since then (19) cannot ever hold for a ~ ~ 
0.

It gives precise limits to the j umps for certain scalar problems (Moves (1977)

reconsiders an example of O’Malley (1974)).

We could also cons ider the reduced problem

(21)) f (u
~
, t , O)uL + g (u.~,t,O) — 0, u

L
(0) — y(O) .

Then the stability condition (3) and the boundary layer stability condition (4)

would be replaced by

-- •— — — - :t t 9  -- — -rt.n~~. .* . -fl--- -- .r—  -
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(2 1) f (u L

(t ) , t , O) < 0

for 0 < t < 1 and the assumption that

4 T~~
0

(22) 0 I f(u
L

(l) + z , 1, 0)dz < 0
J o

for all 0 + u,~ (l) on paths between uL
(l) and y(l) satisfying 0 < I~ l <

l y(l )  — u
L

(l)I . Nonuniform convergence of the solution to (1) would then take

place near t — 1, depend ing on the stretched variable

a —  (1— t)/c,

and the limiting solution on 0 < t < 1 would be u
L
(t). If f were nonsingular

with elgenvalues having both positive and negative real parts along an appropriate

solution of the reduced system , we must expect boundary layer behavior near each

.4 
endpoint (cf. Harris (1973) and Ferguson (1975) for discussions of problems where

f
y

(Y~t~O) E 0) .

2. Problems with boundary layers at both endpoints

Let us now consider the ~‘tw
1n” boundary layer problem

.4 
cy” + g(y, t , c) — 0 , 0 < t < 1

(23)
y ( O ) ,  y( 1) prescr ibed

1
under the assumption that g is infinitely differentiable in the region V of

interest and that the reduced system

-a (24) g( u,t,0) — 0

has a smooth solut ion U
0
(t) throughout 0 < t < 1 which satisfies the stability

assumption

(25) g ( U
0

( t), t,O) < 0

then’. i. e., g is a stable matrix when evaluated along (U
0
(t),t,0), 0 < t < 1.

Motivation for this assumption is obvious if one considers the linear scalar prob-

lems with cy” ±y — 0, while generalized stability assumptions are sometimes

appropriate and necessary (cf., e.g., Howes (1978) or consider the scalar problem

with g • 
2q+1
) Witn (25), one can hope that a solution to (23) exists which

converges to U0
(t) within (0,1). Since we won’t generally have either
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• U~(O) — y(O) or L10(l) — y(l), we must expect “twin” endpoint boundary layers
(i.e., regions of nonuniform convergence of thickness O(/~) near both t — 0
and t — 1). Our previous experience (cf. Fife (1973 , 1976), Yarmish (1975),
O’Malley (1976), and Moves (1978)) suggests that we must add “boundary layer

stability” assumptions. These generally limit the size of the boundary layer

jumps l y(O) — U
0
(O)l and Iy(l) — iJ~(l)I. They’ll cer tainly be guaranteed if

g remains stable throughout the boundary layer regions (ef. Kelley (1978)).

Indeed , for small boundary layer jumps, the stability assumption (25) is suff 1—
cient. Under appropriate assumptions, then, we can expect to obtain an asymptotic

solution to (23) in the form

(26) y( t,c) — U( t,c) + ~~o,vc) +
I

where U, ~~~, and * all have power series expansions in their second variables

and the terms of the left boundary layer correction ~ tend to zero as the - :

stretched variable

(27)

tends to infinity while the right boundary layer correc tion * + 0 as

(28) a —  (1— t)//~
4

becomes unbounded .

The outer expansion

(29) U(t,c) ‘~ ~ U (t)c~
j—0

should therefore satisfy

(30) cU” + g(U,t,c) — 0, 0 < t < 1

as a power series in c and converge to the solution U
0
(t) of the reduced sys-

tem (24) as c -‘ 0. Higher order terms in (29) must satisfy linear systems of the

— form

(31) g~ (U
0
,t,O)U~ — C~_1(t)~ j > I

where C~_1 is known termwise (e .g . ,  C
0 

— —Us). The stability condition (25)

implies that the systems (31) are all nonsingular. Therefore successive coeff i—

d ents are simply and uniquely obtained termwise. (Different roots U
0 

of (24)

_ _ _  

.... ~~~~~ ~~~~~~~~~~~~~~~~~~~ 
-
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would , of course , result in different sequences of perturbation terms U~ , j > 0,

under appropriate stability assumptions.)

According to the Borel—Ritt Theorem (ef. Wasow (1965)), there is a (non—

unique) function U(t,c), holomorphic in c, having the outer expansion (29).

4 If we set

(32) y(t,c) — U(t,c) + z( t,c),

we convert the problem (23) into the two—point problem

(33) cz” — h(z ,t,c) ,  U < t < 1, z(0 ,c) — y(O) — U(O ,c).

Here

h(z ,t,c) —eU”(t,c) — g(U(t,e) + z , t, c)

.1
satisfies

N(34) h (O ,t,c) — O(c ) for every in teger N > 0

since cU ” + g (1J,t ,c) O(c~) In particular the reduced system

h (z ,t,0) 0

corresponding to the transformed problem (33) has the (not necessarily unique)

trivial solution and the outer expansion for (33) is also trivial. Henceforth,

then, we shall deal with (33) and , corresponding tc (26), we shall seek an asymp-

totic solu tion of the form
4

(35) z(t,c) — v( p ,/~) +

providing the needed boundary layer decay to zero within 0 < t < 1. Our smooth-

ness assumptions will be required in a domain

V ~ — ( ( z ,t,c): 0 < Pa — U (t)I < d (t), 0 < t ‘~ 1, 0 < c }
0 ~~~i

where C
l 

is a small positive number and , for any 6 > 0, we def ine

Iz( 0)  — U
0

(O)P + 6, 0 < t ~ 6

6 , 6 < t < l — 6

____________ — —~~~~~~~~~ .—
--- ~~~~~~~~~~ -~~~~~~ - - •

-~~~~~~ -~~~~~~~--~ ~~~~~~~~~~~ • ~~~- _ _ _ _ _
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lf1(~ — U
0

(l)I + 6 , 1 — 6 < t < i.

We shall determine the asymptotic behavior of z by first determining that

of Pa l / ? .  Here i zi satisfies the scalar problem

(36) cl aP ” — [hT(z ,t,c)z + ~ (if z ’l 2 
— (1z12)’J /lzl ,

0 ‘ t < 1, where lz(O,c)l and if z(1,c)l are prescribed .

This follows via simple calculations, namely

.
~9— lzl~ — 2l z l i z l ’ — 2 (z~)Tz

and

2

~~ 1z1 2 
— 2i zl Ilzl” + 2(Pzi’)2

dt

+ 2 1z ’12

imply the differential equation for izi . Further ,

4 
- (37) i z’1 2 > ( if~ i ’) 2

. T 2  2 2
since the Cauchy—Schwarz inequality ((z’) z) < l z ’l if z1 implies that lz I >

• , T 2 , 2 
—

((z ) z/Izl ) — (Pal ) . Thus , with a loss whenever z and z are not

• collinea r ,

(38) claP ” > hT (z ,t ,c)z/izl , 0 < t < 1.

(Through the inequal ity (37), then, we eliminate the first derivative term from

(38). We note that (38) is an equality for scalar problems.)

We ’ll now ask that for all (z ,t,c) in V , there exists a smooth scalar
c~ ,6function

— 
+(n,t,c)

such tha t

(39) hT (z , t ,c)z > 4(izI ,t,c ) I z I

where 

• _



- -  - ••-,--
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10

4 J •(s,O,O)ds > 0 whenever 0 n 5, l z(O ,0)l if z (O ,O) ~ 0
0

(41) and

I •(s,1,O)ds 0 whenever 0 ‘~ ~ lz(l ,0)i if z(1,O) ~ 0.Jo

Existence of such a function • will constitute our stability hypotheses. Spe-

cifically, ~~~~~ (O,t,0) > 0 implies the stability of th ~’ trivial solution of the

reduced system within (0,1) while (41) implies boundary layer stability at both

— endpoints. Hypotheses (39)—(40) imply that

(42) 0 < lz(t ,c)i < m (t,c)

where m (t,c) satisfies the scalar two—point problem

(43) cm” — $(m.t,c) ,  0 t < 1, m (O,e) — Iz(D,c)I, m(1,c) — Pz (l,c)i .

The bounds (42) follow from the elementary theory of differential inequalities

since zero is a lower solution for ‘z1 and m is an upper solution (cf. Nagumo

(1937), Dorr , Parter, and Shampine (1973), and Moves (1976)). Further , $(0,t,0)

— 0 and (0,t,0) > 0 imply that the zero solution of the reduced problem

p(m,t,0) — 0 corresponding to (43) is stable and, according to lloves (1978), (41)

is the appropriate hypothesis for the needed boundary layer stability of this

solution. Indeed , the solution of (43) satisfies

(44) m (t,c) — r
0
(p ) + s~ (a) +

where r
0 

is the decaying solution of the boundary layer problem

d
2
r

2 
— •(r0

,O,0), p 0, r
0

(O) — Iz (O ,O)1 •‘ l y(0) — ).lo
(O ) l

dp

whil , ii th. decaying solution of

4 2d i
(46) •(i~ ,l~O), 0 ~ 0, ‘o~°~ 

— I~~(l,O)l — I y ( 1)  — U 0 ( l ) P .

- --- • _

-
~~~~~~~~~~~

—
~~~~~~~

- -~~~~~~~~~~~~~~~ - - ~• • •
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The solutions to (45) and (46) are easily shown to exist and be unique . Multiply-

ing (45) by dr
0
/dp , for examp le, and integrating from p to infinity implies

that

1 
dr 2 r

0
(p)

— J •(s,0,0)ds > 0

(by (41)). Thus, r
0 

satisfies the initial value problem

dr / r
0
(p)

(47) ~~~~~~~~ — —~\/ 2 10 4 (s ,0,0)ds, r
0
(0) Iy(’’~ — U 0

( O ) I .

Hence, r
0
(p) will decrease monotonically to zero as p increases, reaching the

rest point r — 0 at p — . Since •(s,0,0)~~~-~-~ (O,0,0) s f or s small ,
0

~~
-
~
- (0,0,0) > 0 implies that the decay of r

0 
to zero is exponential as p +

(When r
0

(0) — 0, we have r
0
(p) 0 since there is no need for a boundary

layer correction.) Continuing by solving linear problems, we could obtain an

a asymptotic solution of (43) in the form

(48) m ( t ,c) — r(p,v’) +

In terms of the original problem (23), our stability hypothesis (39) becomes the

inequality

g
T (U (0) + a, t, c)z < •(izI ,t,c ) Pz i

where • satisfies (40) and (41). T~ic’ expansion (44) corresponds to the expected

expansion (26) for an asymptotic solution for the vector problem (23).

Now, we return to the vector boundary value problem (33) and its asymptotic

solution in the form (35). Near t — 0, w and its derivatives should be asymp’-

• tocically negligible (a being infinite), so (33) and (35) imply that the initial

boundary layer correction v should be a decaying solution of  the nonlinear

initial value problem

— (49) v~ , — h(v,vcp,c), p > 0, v(0,c) — z(0,c).

Thus, it is natural to seek an expansion

(50) v(p,vc) ~~ ~ v (p )c~~~
j—0

by substitution into (49). The leading term v
0 

must then satisfy the nonlinear 

--- --•--- --•-•-•-- -~~~~~ - — - -• —— ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~ ~~~~-- -
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problem

2d v
(51) — h(v

0
,0,0), p > 0, v

0
(0) — y( 0)  — U

o
(O)

~ 
v
0 

-
~~ 0 as p -ø ~~~.

dp

Later terms v~, j > I, mus t satisfy the linear problems

d
_
2 

- h (v
0~
0~O)v~ ÷ d~~1(~)~ p > 0

dp

(52) v~ (O) — 0, j odd ; v~ (O) — _U~,2
(0). j even

as p - ø~~

where d~~ 1 
will be determined successively as an exponentially decaying vector.

“tiit e (51) and our hypothesis (39) imply that

~v0
i > 4~(Iv 0if ,0,0), p > 0, 1v

0
(O)I =

we are guaranteed a decaying solution v
0
(p) such that

(53) 0 < ifv
0
(p)if < r~ (p), p > 0

(and v
0
(p) 0 if U

0
(O) = y(O)). No explicit solut ion v0 can be prov ided ,

though an approximate solution can be obtained as usual. Introducing the matrix

— h(0,0,O) > 0

(whose elgenvalues have strictly positive real parts by our stability assumption

(25)), variation of parameters can be used to express the solution of (52) in the

form

(54) v~~(~ )  - e ”
~~ [v~(o) - J e

_
~~~ Fj (s)d s]

- 

~ 
(r) ’ [J~ 

e 
)
F~~r d r  + J~~ e~~~~

- Fj s d s

where F~(~) — [h (v 0
(p ) , 0,0) — cI]v~(P) + d~~1

(~). This provides the exact solu—

tion to (52) whenever h(v0,0,0) is linear. Otherwise, the linear integral

equation (54) must also be solved by successive approximations. In analogous

fashion, we could generate the terms of the terminal boundary layer correction
of (35). Thus, we ’ve formally obtained (35), which we expect is a locally

unique asymptotic solution.
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We note that the assumptions on $ automatically hold if g (y,t,0) or

..h
~

(z ,t,O) are everywhere stable. Thus, if we take

h ( v ,0,O) — yl > 0

4

(i.e., positive definite) for some real y > 0 and all v satisf ying 0 < lvi <

• ifz(0,0)I , the mean value theorem implies that

h
T(z ,O,0)Z — z

T
h (~,0,0)z > ylzl 2

for some “intermediate” point ~~~. Thus , taking •(n ,0,0) — yn , both (0,0,0)

> 0 and f ~ •(s ,O ,0)ds > 0 for 0 < ~i < if z(O,0)if hold .

We could also extend our discussion to systems of the form

cx ” F(x,x’,t,c)

with 3F/ax ’ 
1. 

Thus, Kelley (1978) considered problems where ~~ —

> 0, j ust as Erdélyi (1968) considered scalar problems somewhat

more nonlinear than semilinear.

3. Examples

a a. A problem with an initial boundary layer

Let us consider the vector equation

cy” + f (y, t,c)y ’ + g(y,t,c) — 0, 0 < t < 1

where
4 y

1 
y
1 

1 y
1 +l

y , f , and g — —
1 y 2 y 2 + l

In order to have a limiting solution UR 
of the two—point problem which satisfies

the reduced problem

— f(uR, t,0)u
~ 
+ g(u~,t,O) 0, uR

(l) —

we must require uR to be stable in 0 5, t < 1, i.e.,

_f(u
R

(t),t ,0) < 0

must be a stable matrix, and we must also require boundary layer stability at



—. -r ~~ —- ~~ •r
t • 0, i.e., we ask that 14

r C
~
T j ~~~R

(O) + a, 0 0)dz > 0
0

for all ~ such that 0 < i~ l < l y(0) — uR
(0)P .

More specifically, the reduced problem has the solution

t + C
u
R
(t) —

t + D

where C uRl(0) — —1 + y1
(l) and D — uR2 (0) — — l + y

2
(l). Stability of

requires the matrix

- t - C  -l

J —1 — t — D

to be stable throughout 0 < t < 1. This is, however , equivalent to asking that

C + D > 0  and CD > l ,

• i.e.,

> y
1
(l) + y2

(1) > 2.

4 Fur ther , boundary layer stability requires that

w + C  1 \ d w
T IC  1 1

> 0 ,
• 

~0 1 w
2 +D) 

dw2

i.e.,

+ 2Cç~ + 4
~1~2 + + 2DC~ > 0

for all ~ - (
~

) satisf ying 0 < P c i - i y(0) - uR (0)P —\/(y1
(O) - C) 2 +

(y ( Q) D) 2 Our initial values y(0) are thereby restricted to a circle about
(C ,D) with radius less than the least norm Ir ~I of the nontrivial zeros of the

cubic poiynoJT.lal . Setting C 2 • tC1. such a ~ will satisf y

(1 + t 3)c 1 — —2(C + 2t + Dt2)

and we minimize

d( t) - I~ P - /1 + t
2 1c 11,

-— • _ _ •~~~~~~~~~ , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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(We note that the minimum for C1 

— 0, t — ~~~, is 2D.) This calculus problem,

then, determines an upper bound for Iy(O) — uR
(O)i .

For C — D — 2, i.e., y(l) — (~), we’d obtain the minimum value 3.390

for d(t) corresponding to — —0.291. Thus, we’re guaranteed that the
• 
• 

limiting solution of our two—point problem is provided by uR(t) if y(O) lies

in the circle of radius 3.390 about (~~
). This is presumably a conservative

estimate for the “domain of attraction” of the reduced solution uR(t). We expect

that boundary layer stability need only hold for C + uR
(O) on the actual trajec—

tory joining y(O) and 
uR~~

°
~ 

Finally, we observe that this example is quite

analogous to the simplest cases occurring in the analysis of solutions of the

scalar problem cy” + yy ’ — y — 0 (ef .  Cole (1968), Howes (1978), and elsewhere).

b. A problem with twin boundary layers at the endpoints

Consider the vector problem

cz” h(z t,c), 0 < t < 1

where

and h

4 Here U
0 

— 0 is a stable solution of the reduced problem h0J0,t,0) — 0 since

the Jacobian matrix

1 1
h (0 , t ,O) —

Z — 1 1

has the unstable eigenvalues 1 ± 1. Boundary layer stability involves the deter—

mination of a scalar func tion • such that

hT(z,t,c)z > $ (izi ,t ,c)IzI .

Here

hT (z , t ,E ) z  • (z~ + z~) — (4 + 4) > 1z1 2(l — Izi 2).

4 4 2 2 2Since z
~ 

+ < (a
1 
+ 

~~ 
so we can take

$(n , t , c) • n(l  — n
2
).

Clearly, $(O , t ,e) < 0, •(0 , t ,0) • 0, $~~(0~ t~ 0) > 0 and

_ _ _
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• 
J 

•(s ,i ,0)ds - ~ n~~(l ~
2 /2)  > 0 for 0 < n < v’~, i - 0 or 1.

0

Our preceding results, then, guarantee the existence of an asymptotic solution to

the two—point problem which converges to the limiting solution U0 
— 0 within

(0,1) provided the boundary values satisfy

< /~ and if z( l ,O) I < /1 .

Indeed, we then have

0 < It z (t , c ) V  < m(t , c)

• where m satisfies the scalar problem

cm” — $(m , t , c) ,  0 < t < 1, rn(i,c) — lz( i,c)i < /~, i — 0 and 1.

The asymptotic behavior of m follows from the scalar results of Howes (1978)

and others.

c. A problem with interna l transition layers

We now consider the very special problem

cy” ÷ f(y,t,c)y’ + g(y,t,c) — 0, 0 < t < 1

where
f
1

(y1,t,~ ) f
2

(y
1 ,y 2, t,c)

y — , f(y, t,c)
0 y 2

g
1

(y
1

,y
2
)

and g —

This system decouples into the two nonlinear scalar equations

cy~~+ y2y — y 2 0

and

cy~ + f1
(y
1~

t~ c)y~ + [f 2 (y 1,y 2 , t , c)y~ + g1(y 1,y 2, t , c) 1 — 0.



• . If y2(1) > y2(O) + 1 and —y 2 (l) — 1 < y
2
(O) < 1 — y2

(l) ,  it follows from

Howes (1978) tha t the limiting solution for y
2 

will satisfy the reduced problem

u
~
(uL—l ) O, u,~(0)—y 2

(O) on 0 < t <  t*~~~~~(l — y 2(l)—y 2
(O) )

and the red uced problem

U
R CU R 

— I) — 0, u.~(l) — y
2

(1) on t~ < t < 1,

i.e.,• 1 uL (t)  — t + y
2

(0) , 0 < t < t~

• . uR
(t) t + — 1, t~ < t < 1.

• Thus, the limiting solution is generally discontinuous at t~ and its derivative

(which is asymptotically one elsewhere) becomes unbounded there. Indeed , y
2

increases monotonically near t~ from u
L(t*) to ua(t*) — _uL

(t*). For other

relations between the boundary values y2
(0) and y

2
( l ) ,  other limiting possi-

bilities occur (cf., e.g., .Howes).

One must generally expect the transition layer at t~ in y2 
to generate a

corresponding discontinuity there in y1
. To simplify our discussion, however ,

• let’s assume that f
2

(y
1

,y 2, t,0) — 0 and attempt to apply Howes’ scalar theory

to the equation for y1
. Thus, consider the reduced problems

f
l

(v
L
,t,0)vj — ~~~~~~~~~~~~ — 0 , 0 < t < 1, v

L
(O) — y

1
(0)

and

• f
l

(v
R,t,

O)v
~ 
+ g

1
(v~~u~t~O) • 0, 0 < t < 1, vR

(1) - y
1
(l).

The limiting solution for y1 
will be provided by vR(t) if the stability con-

dition

f
l

(v
R

(t ) , t,O) > 0

holds throughout 0 < t < 1 and the boundary layer stability assumption

v
R

(O)
(v
R

(0) — y
1

(O) ) J f
1

(s ,0,0)ds ) 0
n

for n between vR
(O) and (including ) y1(O) . Similar cond itions would imp ly

that the limiting solution is vL
(t) on 0 < t < 1 wi th boundary layer behavior 

~~—
- _
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near t — 1. If, instead, we have

f
l

(v
R(t)I t,0) > 0 on t~ < t < 1

while

f
l

(v
L

(t),t,0) < 0 on 0 < t <

with tR < tL, we can expect y
1 to have a limiting solution

vL(t), 0 < t < t

y - ø v —
1 

vR(t), t < t < 1

as c -ø 0 provided we can f ind a t in (tR, tL) such that

-s -

J(t) — 0 , J’( t) # 0

-1 for
V

R
( t )

4 J( t) J f 1(s , t ,O)ds
vL (t)

(cf. Howes (1978)). Pictorially, we will have limiting solutions y2 and y1 
as

shown in Figures 2 and 3.

y (0)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Figure 2

4 

_ _ _ _ _ _ _ _ _ _   

• .1
- ~~~~ •• - - . •  

~~~~~~~~~~~~~~~~~~~~~~ . - - ---.- ~~
. - — 

- ~~~~~~~~~~~~~~~~~ - •
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L
y
l

4

Figure 3

Note that y2 
has a jump at t and y~ has a jump at t*, corresponding to a

Haber—Levinson crossing (cf. Howes (1978)). Much more complicated possibilities

remain to be studied.

4
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