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3 1. Problems with boundary layers at one endpoint 1

Many physical problems can bes studied as singularly perturbed two-point vector

boundary value problems of the form

,"f : ey" + f(y,t,e)y' + g(y,t,e) =0, 0<t<1
En (1)
y(0), y(1) prescribed

- where € 1is a small positive parameter (cf., e.g., Amundson (1974), Sethna and
4 Balachandra (1976), and Cohen (1977)). Scalar problems of this form are analyzed

quite thoroughly in the forthcoming memoir, Howes (1978). An enlightening case
history of such analyses was given by Erdélyi (1975), and important early work
includes that of Coddington and Levinson (1952) and Wasow (1956). 1
For simplicity, let us assume that f and g are infinitely differentiable
in y and t and that they possess asymptotic power series expansions in € as

e € > 0. We'll first consider the vector problem under the assumption that the

reduced problem

~
N
v

f(uR’t-o)u;( + g(uR.t,O) =0, UR(J-) = y(1)

.
DOC FiLe copy

is stable throughout 0 < t <1 in the sense that up exists and

~
w
A

f(uR(t),t:.O) >0

there (i.e., -f 1s a strictly stable matrix having eigenvalues with negative |
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real paris). We first realize that u, cannot generally represent the solution

R 4
to (1) near t = 0 because we cannot expect to have uR(O) = y(0). Instead, we |

i
!
|
must expect boundary layer behavior to occur near t = 0, providing the required |
|
nonuniform convergence from y(0) to uR(O) as € + 0. For a (very) small E
"boundary layer jump" ly(0) - uR(O)I or for a constant f(y,0,0), no extra :
hypotheses are needed. More generally, however, we must require an additional !

"boundary layer stability" assumption, namely that the inner product |
T 4

(4) z [ f(uR(0)+s, 0, 0)ds > 0 i
0

remains positive for ¢ + uR(O) aloné all paths connecting uR(O) and y(0)
with 0 < Izl < ly(0) - uR(O)l. (Here, T represents the transpose and Izl =
J;T;:) We note that if £(z,0,0) is the gradient VF(z - uR(O)), (4) is
equivalent to the condition that

tT(F(z) - F(0)) > 0

since the integral is then path-independent. Indeed, (4) directly generalizes the
(minima}) hypotheses used by Howes for the scalar problem and it is weaker than
the common assumption that f(y,0,0) > 0 for all y.

Pictorially, the boundary layer stability assumption must hold within the

circle shown

y() = uR(l)

o

Figure 1

The results of Howes and others suggest that under such hypotheses, (1) will

have a solution y(t,e) of the form
(5) y(t,e) = U(t,e) + MN(t,¢)

where the outer solution U has an asymptotic expansion

(6) U(t,e) v T U

3 .
(t)e | &

J “Won
j=0 R
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providing the asymptotic solution for t > 0, while the boundary layer correction
I has an expansion

) M(t,e) & I 0, (t)ed

=0 3

whose terms all tend to zero as the stretched variable
(8) T = t/e

tends to infinity. We would expect this solution to be unique. Under weaker
smoothness assumptions on f and g, we'd have to limit the expansions to finite
order approximations. For the scalar problem, Howes doesn't actually obtain
higher order terms or complete boundary layer behavior, but they can easily be
generated. Applying his results to the boundary value problem for the remainder
terms, however, shows the asymptotic validity of the expansions so obtained.

The outer expansion (6) must provide the asymptotic solution to (1) for
t >0, since NI is then asymptotically negligible. Thus, the terms Uj can be

successively obtained by equating coefficients in the terminal value problem
(9) f(U(t,E),t,E)U' (t,E) + g(U(t,E),t,E) - —CU"(t,E), U(]-’E) = y(l)'

Evaluating at € = 0, then, shows that U_ must satisfy the reduced problem

0

(10) £ (U, (£),£,0)U}(t) + g(Uy(6),£,0) = 0, Ug(1) = y(1)

(which has a unique solution uR(t) under (2) and (3)). Succeeding terms Uj’
j > 0, will satisfy linear problems of the form

(11) f(uo(t).t.o)us(t) + fy(Uo(t).t.O)Uj(t)Ub(t)

+ gy(Uo(t).t,O)Uj(t) = hj_l(t), Uj(l) =0

where hj-l is known in terms of t, Uo(t). vouvy U t). The stability assump-~

(
tion (3) implies that (11) is a nonsingular 1n1tialjv;1ue problem, so it also has
a unique solution throughout 0 < t < 1. Thus, there is no difficulty in generat-
ing the outer expansion U(t,e) with U(t,0) = uR(t).

The boundary layer correction Il must necessarily be a decaying solution of

the nonlinear initial value problem

a2n dn
(12) .y f(U(et,e) + N(t,e), €T, €) e -e[(f(U(eT,e) + N(T,e), €T, €) =
dt
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- £(UCeT,e),e1,6)) G2 (eT,e) + g(UCet,€) + (T,6), €T, €)

(12) ﬁ - g(U(et,e),eT1,€)], t 20

n(0,e) = y(0) - U(0,¢c).

\

Thus, the leading term Ho must satisfy the nonlinear problem

d2H dn

13) —52 + £y (0) + N (1), 0, 0) z2 =0, N (0) = y(0) - Uy(0)
dt

while later terms must satisfy linear problems

2

dn dn

el - oo

A =+ £ + I, 0, O
dn

0
) 3= = kj_l(r), n (o) = -u, (0)

+ fy(uO(O) + no(r), 0, 0O)I 3 3

3

where kj—l is a linear combination of preceding terms Hm and their derivatives
dﬂlldr, % < j, with coefficients that are functions of T and HO(T). The

decaying solution of (13) must satisfy

dHO % dno-
vy + J f(UO(O) + no, 0, 0) ot dt = 0

@

and, thereby, the initial value problem

dn g (v
0
(15) =g -JO f(UO(O) +w, 0, 0)dw, <t >0, HO(O) = y(0) - uy(0).

Multiplying by ng,

the boundary layer stability condition (4) implies that
n_(t)

(16) L4 g (on? - i) I S S0 % u, 0, Ghtn < 0

2 drt 0 0 0 0
for nonzero values of Ho(t) satisfying IHO(T)I < ly(o) - uR(O)l = lno(O)l.
Thus, our boundary layer stability implies that lno(r)l will decrease monotonic-
ally as T increases until we reach the rest point no(t) =0 of (15) at T = =,
Ultimately, no(r) will become so small that (3) (for ¢t = 0) implies that the
eigenvalues of f(Uo(O) + HO(T), 0, 0) will thereafter have real parts greater

than some k > 0 and (15) then implies that

(17) IIO(T) = O(e-'ﬂ),
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i.e., "o is exponentially decaying as T + «, Although we can seldom explicitly
integrate the nonlinear system (15), we can approximate its solution arbitrarily
closely by using a successive approximations procedure on (15) (cf. Erdélyi
(1964)). Knowing no.

wise. Rearranging (14) and integrating, we obtain

we next integrate (14) for j = 1 and then proceed term-

dn
i =
gt £ (0) + Ty(r), 0, OON, + £, (1) =0

3

where

T dﬂo
L. (1) = J {fy(UO(O) + Ho(t), 0, O)IHj(r) v (r)

3 -
dﬂo

" Sguew (r)Hj(r)] + kJ_l(r)}dr
is known whenever Hj and dﬂoldr commute. Thus, HJ satisfies the integral
equation

s -1
(18) N, (t) = P(x)u,(0) - J P(t)P “(x)L,(r)dr
3 3 " ]

where P(t) is the exponentially decaying fundamental matrix for the linear system

g%+ £W,(0) + T, 0, )N =0, 20, () = I.
In general, (18) must also be solved via successive approximations, though it
directly provides the solution of (14) when the commutator [nj, an/dT] z 0.

We note that the boundary layer jump |H0(0)| = ly(0) - uR(O)l is limited by
the minimum value of Hlzl > 0 such that the inner product

(19) g r £(ug(0) + z. 0, 0)dz = 0.

0
The jump can, in practice, be quite large. It involves no restriction, for exam-
ple, if £(2,0,0) > 0 for all 2z since then (19) cannot ever hold for a E # 0.
It gives precise limits to the jumps for certain scalar problems (Howes (1977)
reconsiders an example of O'Malley (1974)).

We could also consider the reduced problem
(20) f(uL.t.O)UL + g(uL.t,O) = 0, uL(O) = y(0).

Then the stability condition (3) and the boundary layer stability condition (4)
would be replaced by

N — a‘

R i B
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(21) f(uL(t).t,O) <0

for 0 <t <1l and the assumption that
T [® E

(22) 8 J £(u (1) + 2, 1, 0)dz < 0 »
0 3

for all o + uL(l) on paths between uL(l) and y(l) satisfying O < I8l <
ly(1) - uL(l)l. Nonuniform convergence of the solution to (1) would then take
place near t = 1, depending on the stretched variable

G = (1 = t)lea

and the limiting solution on 0 < t < 1 would be uL(t). If f were nonsingular
with eigenvalues having both positive and negative real parts along an appropriate
solution of the reduced system, we must expect boundary layer behavior near each
endpoint (cf. Harris (1973) and Ferguson (1975) for discussions of problems where
fy(Yltto) 2E0)s

2. Problems with boundary layers at both endpoints

Let us now consider the "twin'" boundary layer problem

ey" + g(yst,e) =0, 0<tc<1
(23)
y(0), y(1) prescribed

under the assumption that g 1is infinitely differentiable in the region 0 of

interest and that the reduced system
(24) g(u,t,0) = 0

has a smooth solution Uo(t) throughout 0 < t < 1 which satisfies the stability

assumption
(25) Sy(UO(C).C;O) <0
there, i.e., g, is a stable matrix when evaluated along (Uo(t).t.O). 0Lt s

Motivation for this assumption is obvious if one considers the linear scalar prob-

lems with ey +ty = 0, while generalized stability assumptions are sometimes

appropriate and necessary (cf., e.g., Howes (1978) or consider the scalar problem

with g = y2q+l). With (25), one can hope that a solution to (23) exists which

converges to Uo(t) within (0,1). Since we won't generally have either
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UO(O) = y(0) or Uo(l) = y(1), we must expect '"twin'" endpoint boundary layers
(i.e., regions of nonuniform convergence of thickness 0(/€) near both t = 0
and t = 1). Our previous experience (cf. Fife (1973, 1976), Yarmish (1975),
0'Malley (1976), and Howes (1978)) suggests that we must add "boundary layer
stability" assumptions. These generally limit the size of the boundary layer
jumps ly(0) ~ U0(0)| and ly(1) - U0(1)|. They'll certainly be guaranteed if

gy remains stable throughout the boundary layer regions (cf. Kelley (1978)).
Indeed, for small boundary layer jumps, the stability assumption (25) is suffi-
cient. Under appropriate assumptions, then, we can expect to obtain an asymptotic
solution to (23) in the form ;

(26) gt e} = Ute e} + (/) + 0o, /o)

where U, ¥, and W all have power series expansions in their second variables
and the terms of the left boundary layer correction Vv tend to zero as the

stretched variable

(27) p=t//e

tends to infinity while th; right boundary layer correction w -+ 0 as
(28) o= -t/

becomes unbounded.
The outer expansion
©

(29) U(t,e) » & U

]
(t)e
i
j=0

should therefore satisfy
(30) eU" + g(U,t,e) =0, O0<t<1

as a power series in € and converge to the solution Uo(t) of the reduced sys-
tem (24) as ¢ + 0. Higher order terms in (29) must satisfy linear systems of the
form

(31) 8, (Upe©,00U, = C\ 1 (6), §21

J

where Cj-l is known termwise (e.g., C0 - -UB). The stability condition (25)

implies that the systems (31) are all nonsingular. Therefore successive coeffi-

cients are simply and uniquely obtained termwise. (Different roots U, of (24)

0

e
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would, of course, result in different sequences of perturbation terms U

j’ j>o,
under appropriate stability assumptions.)

According to the Borel-Ritt Theorem (cf, Wasow (1965)), there is a (non-
unique) function ﬁ(t.e), holomorphic in €, having the outer expansion (29).

If we set
(32) y(t,e) = 6(:.:) + z(t,¢c),
we convert the problem (23) into the two-point problem
(33) ex” = hix,t,¢e), Q=< ;_5 1, z(0,e) = y(0) - 6(0,:).
Here

h(z,t,e) = -cﬁ"(t,e) - g(a(t,e) * %y By k)
satisfies
(34) h(0,t,e) = O(CN) for every integer N > 0
since ca" + s(ﬁ,c,c) = O(CN). In particular, the reduced system

h(z,t,0) = 0

corresponding to the transformed problem (33) has the (not necessarily unique)
trivial solution and the outer expansion for (33) is also trivial. Henceforth,
then, we shall deal with (33) and, corresponding tc (26), we shall seek an asymp-
totic solution of the form

(35) z(t,e) = v(p,ve) + w(a,ve)

providing the needed boundary layer decay to zero within 0 < t < 1. Our smooth-

ness assumptions will be required in a domain
Dcl.s “ {imte)t O la=goie)d 2d,00), O5txl, Oxegxsy
where € is a small positive number and, for any & > 0, we define
1z(0) - u0(0)l +8, O0<t<$

dg(t) = §, dS<t<l-3$




1z(1) - Uo(l)l * 5 @ l1-8ctel,

We shall determine the asymptotic behavior of 2z by first determining that

B L iz i 3
7 TP R
faiiin &

of Mzl =V2'z, Here lzl satisfies the scalar problem

:a‘ i
: (36) elzl" = [hi(z,t,e)z + e(Bz'12 = (1202)' /020,
0<t<1, where 1z(0,e)! and Iz(1,e)! are prescribed.

This follows via simple calculations,' namely

B

é% 1202 = 202llz0' = 2(2") 72

PR Ll S C—

and
& 2
4 i 1zl® = 20zR0z0" + 2(lz0")
dt

= 2(z")Tz + 2ﬂz'|2

imply the differential equation for U!zl. Further,

(37) Iz'l2 i(lzl')2

since the Cauchy-Schwarz inequality ((z')Tz)2 f_lz'lzﬁzlz implies that Iz'l2 >

((z')Tzllzl)2 = (lzl')z. Thus, with a loss whenever z and 2z' are not

collinear,

(38) elzl" > hi(z,t,e)z/lzl, 0 <t < 1.

(Through the inequality (37), then, we eliminate the first derivative term from
(38). We note that (38) is an equality for scalar problems.)

We'll now ask that for all (z,t,e) in De 5 there exists a smooth scalar
1!

function

¢{(n,t,c)

such that

;‘ (39) hT(z,t )z > o(lzl,t,e)lzl

where

Wert T T e PO MM SRR . 7T 47 < AR
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(40) $(0,t,6) <0,  $(0,t,0) = 0, 3% (0,¢,0) > 0

and

A

n
J $(s,0,0)ds > 0 whenever 0 < n < 1z(0,0)} if =z(0,0) # 0

(41) { and

r

14
J $(s,1,0)ds > 0 whenever 0 < g < 0z(1,000 if z(1,0) ¥ 0.
\ ‘0

.

Existence of such a function ¢ will constitute our stability hypotheses. Spe-

cifically, %% (0,t,0) > 0 implies the stability of the trivial solution of the

reduced system within (0,1) while (41) implies boundary layer stability at both
endpoints. Hypotheses (39)-(40) imply that

(42) 0 < lz(e,e)l < m(t,e)
where m(t,e) satisfies the scalar two-point problem
(43) em” = ¢(m,t,e), O <t<l, m(0,e)=1"z(0,), m(l,e)=1Ulz(1,e)l.

The bounds (42) follow from the elementary theory of differential inequalities
since zero is a lower solution for Jzl and m is an upper solution (cf. Nagumo
(1937), Dorr, Parter, and Shampine (1973), and Howes (1976)). Further, ¢(0,t,0)
= 0 and %% (0,t,0) > 0 imply that the zero solution of the reduced problem
¢(m,t,0) = 0 corresponding to (43) is stable and, according to Howes (1978), (41)
is the appropriate hypothesis for the needed boundary layer stability of this

solution. Indeed, the solution of (43) satisfies

(44) m(t,e) = (o) + 8,(0) + 0(Ye)
where L is the decaying solution of the boundary layer problem
dzro
(45) = $(r,,0,0), »2>0, r (0 =1z(0,00F = My(0) - U, (O}
dpz 0 o~ 0 0
while s is the decaying solution of
dzlo
(‘6) — - ‘(. +1,0), o >0, s (0) - l!(l,O)' - 'Y(l) - U (1).-
do2 0 - 0 0

10




The solutions to (45) and (46) are easily shown to exist and be unique. Multiply-
ing (45) by droldp. for example, and integrating from ¢ to infinity implies

that
o drg |2 role)
i = $(s,0,0)ds > 0
dp 0

(by (41)). Thus, r, satisfies the initial value problem

d r (p)
ro 0
(47) - aboti 2 f ¢(s,0,0)ds, ro(O) = ly(™ - UO(O)l.

Hence, ro(p) will decrease monotonically to zero as p increases, reaching the
rest point = 0 at p = Since ¢(s.0.0)’f~‘$—2%(0.0,0)s for & emall,
%% (0,0,0) > 0 implies that the decay of T

(When ro(O) = 0, we have ro(p) = 0 since there is no need for a boundary

to zero is exponential as p * ®,

layer correction.) Continuing by solving linear problems, we could obtain an

asymptotic solution of (43) in the form
(48) m(t,e) = r(p,/e) + s(a,e).

In terms of the original problem (23), our stability hypothesis (39) becomes the
inequality

gT(Uo(O) +2,t, ez < ¢(lzl,t,e)lzl

where ¢ satisfies (40) and (41). The expansion (44) corresponds to the expected
expansion (26) for an asymptotic solution for the vector problem (23).

Now, we return to the vector boundary value problem (33) and its asymptotic
solution in the form (35). Near t = 0, w and its derivatives should be asymp~
totically negligible (0 being infinite), so (33) and (35) imply that the initial
boundary layer correction v should be a decaying solution of the nonlinear

initial value problem
(49) Y h(v,”ep,e), o >0, v(0,e) = 2(0,¢).
Thus, it is natural to seek an expansion

(50) vip,/e) » ¥ v (p)ej/2

y=0

by substitution into (49). The leading term v, must then satisfy the nonlinear

0

AT :

11




problem

dzvd
d02

(51)

= h(VO.O.O). p >0, VO(O) = y(0) - UO(O), Vo 0 as p + =.

Later terms v,, j > 1, must satisfy the linear problems

/ dzv
Y 5, G0
d92 hz(vo.O.O)vJ s dj_l(o). p >0
(52) < vj(O) =0, jJ odd; | vj(O) = -UJ/Z(O), j even
§ vJ +0 as p+ =

where dj-l will be determined successively as an exponentially decaying vector,

Since (51) and our hypothesis (39) imply that

v t v 1 I I =

Vo op ] ¢ ( VO +0,0), e 2 o, Vo(o) !'0(0)‘
we are guaranteed a decaying solution vo(p) such that
(53) 0 < 'VO(D)'.i r,e), 020

(and vo(p) = 0 if UO(O) = y(0)). No explicit solution v, can be provided,

though an approximate solution can be obtained as usual. Introducing the matrix
a = hz(0,0.0) >0

(whose eigenvalues have strictly positive real parts by our stability assumption

(25)), variation of parameters can be used to express the solution of (52) in the

form
(54) v, (o) = e-Jgp v, (0) - J e—JESF (s)ds
f 3 : 3
(o] 0
-3 (/&flU e_J;(o_r)Fj(r)dr + J Miheae 3 (s)ds]
0 [

where Fj(p) = [hz(vo(p),0,0) - alv,(p) +d (p). This provides the exact solu-

J j=1
tion to (52) whenever h(vO,O.O) is linear. Otherwise, the linear integral
equation (54) must also be solved by successive approximations. In analogous
fashion, we could generate the terms of the terminal boundary layer correction

w(a,/;) of (35). Thus, we've formally obtained (35), which we expect is a locally

unique asymptotic solution.




We note that the assumptions on ¢ automatically hold if gy(y.t,O) or

-hz(z,t,O) are everywhere stable. Thus, if we take
hz(v,0,0) -yl >0

(i.e., positive definite) for some real Y > 0 and all v satisfying 0 < Ivl <
1z2(0,0)!, the mean value theorem implies that

hT(z,O,O)z = zThz(i,O,O)z > ylzl2
" " ~ ‘ _?_Q_
for some "intermediate" point %. Thus, taking ¢(n,0,0) = yn, both = (0,0,0)
>0 and fg ¢(s,0,0)ds > 0 for 0 < n < 12(0,0)l hold.

We could also extend our discussion to systems of the form
ex" = F(x,x',t,€)

with 9F/3x' small. Thus, Kelley (1978) considered problems where %5 -

T
%:-%ET-(%ET) > 0, just as Erdélyi (1968) considered scalar problems somewhat

more nonlinear than semilinear.

3. Examples
a. A problem with an initial boundary layer

Let us consider the vector equation

ey" + f(y.t,e)y' + g(y,tgt) =0, 0

IA
(ad
S
[

where
y1 y1 05 yl + 1
y = Y, i . S R L .
yz 1 }'2 y2 + 1

In order to have a limiting solution u, of the two-point problem which satisfies

R
the reduced problem

f(uR.t.O)ué + g(ug,t,0) = 0, up (1) = y(1)
we must require up to be stable in 0 <t <1, 1i.e.,
-f(uR(t).c.O) <0

must be a stable matrix, and we must also require boundary layer stability at

13
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t=0, 1i,e., we ask that
T 4
4 J f(uR(O) + 2z, 0, 0)dz > 0
0

for all ¢ such that 0 < Igl < ly(0) - uR(0)|.
More specifically, the reduced problem has the solution
t+C
u (t) =
R t+D

where C = uRl(O) = -1 + yl(l) and D = uR2(0) = -1+ yz(l). Stability of Ur

‘

requires the matrix
-t -C -1

=1 i)

to be stable throughout 0 < t < 1. This is, however, equivalent to asking that
C+D>0 and CD > 1,
1.e.;
y My, () > y, (1) +y,(1) > 2.

Further, boundary layer stability requires that

w, +C 1 dw

& 1 1
cTJ > 0,
0 1 w2 +D dw2
i.e.,
3 2 3 2
cl + 2Cc1 + 4c1c2 + qz + 2Dc2 >0

§ ! 2
or all ¢ = . satisfying 0 < lgh = ly(0) - uR(O)l =\/ (3,0 = C)" +
2

(y2(0) ~ D)”. Our initial values y(0) are thereby restricted to a circle about
(C,D) with radius less than the least norm Iyl of the nontrivial zeros of the
cubic polynomial., Setting L, = tg;. such a ¢ will satisfy

(1 + t3)c1 = =2(C + 2t + th)

and we minimize

d(t) = Igl = Jl + ¢ Icll.

= e . e _—

14




(We note that the minimum for § =0, t ==, is 2D.) This calculus problen,

then, determines an upper bound %or ty(0) - uR(O)l.

For C=D=2, {i.,e., y(l) = (g), we'd obtain the minimum value 3.390
for d(t) corresponding to P -0.291. Thus, we're guaranteed that the
limiting solution of our two-point problem is provided by uR(t) if y(0) 1lies
in the circle of radius 3.390 about (i). This is presumably a conservative
estimate for the "domain of attraction" of the reduced solution uR(t). We expect
that boundary layer stability need only hold for ¢ + uR(O) on the actual trajec-
tory joining y(0) and uR(O). Finally, we observe that this example is quite
analogous to the simplest cases occurring in the analysis of solutions of the

scalar problem ey" + yy' -~y = 0 (cf. Cole (1968), Howes (1978), and elsewhere).

b. A problem with twin boundary layers at the endpoints

Consider the vector problem

e = hig,e.8), OG<tc1l

where
z gtz - 23
1 1 2 1
z = and h = .
z g Y = z3
2 1 2 2
Here U0 = 0 is a stable solution of the reduced problem h(Uo,t,O) = 0 since
the Jacobian matrix
1 1
hz(o,t,o) =
=1 1

has the unstable eigenvalues 1 *+ i. Boundary layer stability involves the deter-

mination of a scalar function ¢ such that
T
h'(z,t,e)z > ¢(hzl,c,e)lzl,

Here

4

hT(z.t.c)z - (:: + zg) - (2, + z;) 3_'2'2(1 - lzlz).

Since zb + za

N 2 £ (zf + :g)z, 8o we can take

#(a,t,¢) = all = a%).

Clearly, ¢(0,t,e) < 0, ¢(0,t,0) = O, On(O.t.O) > 0 and

g e
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n
J 9(s,1,0)ds = % e i A e BeRt B iwt e 1.
0

Our preceding results, then, guarantee the existence of an asymptotic solution to
the two-point problem which converges to the limiting solution UO = 0 within
(0,1) provided the boundary values satisfy

12(0,0)l < V2 and lz(1,0)1 < V2,
Indeed, we then have
0 < z(t,e)l < m(t,e)
where m satisfies the scalar problem
em" = ¢(m,t,e), O0<t<1l, m(i,e) =lz(i,e)l < Y2, i=0 and 1;

The asymptotic behavior of m follows from the scalar results of Howes (1978)

and others.

c. A problem with internal transition layers

We now consider the very special problem

ey" + £(y,t,e)y' + gly,tye) =0, 0<t<1

where
yl fl(yl,tgﬁ) fz(ylnyzytre)
y - ’ f(y,t.e) . ’
Y2 . Y2
8, (v15yy)
and g = .

This system decouples into the two nonlinear scalar equations
" L -
€y, ¥ ¥y, =¥, =0
and

]
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If y2(1) > yz(O) + 1 and -yz(l) -1< y2(0) <1 - yz(l), it follows from
Howes (1978) that the limiting solution for Y, will satisfy the reduced problem

1
wly -1) =0, ul(0)-= y,(0) on 0<t< k=3 (1-y,(Q)- y,(0))
and the reduced problem
ug(up - 1) =0, up(1) = y,(1) on t*¥<tc<1,

i.e.,

= %*
uL(t) t+y2(0), Qi<t <t

Yy, *u=
4 up(t) = e + ¥y, (1) =1, ¢e*<tcxl.

Thus, the limiting solution is generally discontinuous at t* and its derivative
(which is asymptotically one elsewhere) becomes unbounded there. Indeed, Y,
increases monotonically near t* from uL(t*) to uR(t*) = —uL(t*). For other
relations between the boundary values y2(0) and yz(l), other limiting possi-
bilities occur (cf., e.g., Howes).

One must generally expect the transition layer at t* in Yy to generate a
corresponding discontinuity there in yp+ To simplify our discussion, however,
let's assume that fz(yl,yz,t,o) = 0 and attempt to apply Howes' scalar theory

to the equation for e Thus, consider the reduced problems
fl(vL,t,O)vI" 4 gl(vL,u,t,O) =0, U<stcxil, vL(O) = yl(O)
and
fl(vR't’o)Vl’l + gl(vR,u,t,O) “«f Yxctxl, vR(l) = yl(l).

The limiting solution for Y, will be provided by vR(t) if the stability con-
dition

fl(VR(t).t.O) >0

holds throughout 0 < t < 1 and the boundary layer stability assumption
Vg (0)

g (0) = ¥, (0) £,(5,0,0)ds > 0

n

for n between vR(O) and (including) yl(O). Similar conditions would imply
that the limiting solution is vL(t) on 0 <t <1 with boundary layer behavior

17
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near t =1, If, instead, we have
fl(vR(t).t,O) *8% e £ . tE<]
while

fl(vL(t),t.O) <0 on Oc<tcrt

with t, < t

R L Ve can expect Y1 to have a limiting solution

VL(t). 0<t<t
S .
vpt), t<t<1

-~

as € + 0 provided we can find a t in (tR.tL) such that
J() =0, J'(t) #0

for
vR(t)

J(t) = fl(s,t,o)ds
vL(t)

18

(cf. Howes (1978)). Pictorially, we will have limiting solutions Yp and y, as

shown in Figures 2 and 3.

N
Y2 y, (1)

u
R

" —> t

t /,t*

"
yz(O)
) Figure 2
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-
1 Note that Yy has a jump at t and yé has a jump at t*, corresponding to a
i ' Haber-Levinson crossing (cf. Howes (1978)). Much more complicated possibilities
3 3 remain to be studied.
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