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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Issues

A broadcast channel is a communications channel where a signal generated
by one transmitter can be received by many receivers. Some examples of these
channels are: a satellite channel where a satellite acts as a transponder;

a ground radio network where a number of terminals have access to common freq-
uencies; and coaxial cables where a number of terminals use a single cable for
communicating by time multiplexing. When a number of spatially isolated inde-
pendent sources have access to a common broadcast channel, a problem usually
arises in allocating the channel capacity to the various users. This is so
because the only means these independent users have of communicating their
requests for channel capacity is through the channel itself.

There ere three main issues that are involved in multi-accessing a
co..ﬁn channel: a) the percentage of the capacity used in accessing, b) the
time it takes to access the channel, and c) the stability of the multi-accessing
system, i.e., how likely is it for the system to be in a state where many
sources are attempting to access the channel and very few are actually
succeeding. These three properties (throughput, delay, and stability) will
be defined more precisely later on; however, it should be clear at this point
that a desirable multi-accessing system is one that is stable, has high
throughput and low accessing delay. As we will see in Section 1.3, when the
number of sources is large and the message lengths short, present multi-

accessing schemes suffer in at least one of these attributes. In this thesis,
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therefore, we will be mainly concerned with the development of stable multi-
accessing techniques that have high throughput and low delay.

More specifically, we will be concerned with the time domain multi-
accessing of a common broadcast channel by having the sources transmit
their data in packet form. A packet is a block of fixed length digital data
that contains the information to be transmitted, along with the source and
destination addresses and any other overhead information that might be
necessary, such as error correcting and error detecting bits. We will
assume that if more than one transmitter transmits simultaneously, then, they
will interfere with each other, and all the packets will be received
incorrectly. If, on the other hand, no packet collisions occur, then we
assume thac error free transmission results.

It is important for each transmitter (also to be referred to as a
source) to be able to determine whether there are zero, one, or more than
one packets in the channel at any one time. More than one packet corresponds
to a collision, i.e., a channel contention. This channel state information
may be obtained directly by listening to the channel or by some other means
such as a central observer along with an auxiliary feedback channel. How
the transmitters obtain this information is not important for our work. Once
it is determined that a collision occurred, then the sources must take action
to resolve this conflict. The resolution of this conflict is the hea*t of the
multi-accessing problem, and it is here that we will focus our attention by
developing and analyzing a new class of confict resolving algorithms. What
makes this problem interesting is that, when an initial collision occurs,
each of the contending sources knows that its packet collided; however, it
does not know the identities or the number of the other contending sources.

«ll-




The multiple access system to which our work is directly applicable
is the so called packet switching broadcast network where the packets might
contain data from such sources as computers, teletype terminals, or vocoders.
The results of this thesis, however, are equally applicable to the various
dynamic reservation multi-accessing systems in which there are two channels,
a data channel and a reservation channel. In this system the reservation
channel is used to make reservation requests for the data channel. Here the
channel contention difficulties arise in the reservation channel and again
one must resolve the conflicts between simultaneous requests on this channel.

Our results, however, need not be restricted to communication systems.
They may be extended to more general systems in which a central facility is
accessible by a number of independent users. If the number of users that
the facility can service simultaneously is less than the maximum that can
place demands upon it, then contentions will arise that wmight be solvable
with the techniques developed here.

From the preceding discussion, we see that a multi-access system may
be decomposed into three major components: the sources and messages, the
channel and the multi-accessing protocol. These are discussed in more detail
in the following sections. In Section 1.2 ve present the channel and source
models that will be used in this thesis and in Section 1.3 we consider the
multi-accessing algorithms. In Section 1.4 we present an outline of the
thesis, the analysis, and the main results. Finally in Section 1.5 we present

the history and the work conducted by others in this field.
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1.2 Channel and Source Models

In this section we will present the channel and source models that

will be used in this thesis.

1.2.1 Channel Model

The channel is assumed to be slotted, that is, the channel time is
divided into equal segments called slots. The length of each slot equals
that of a packet, and it is assumed that a source, which is synchronized to
the channel time, transmits a packet within only one slot. Furthermore,
the channel is such that the sources can determine whether there are zero,
one, or multiple packets in any one slot. Multiple packets per slot
correspond to a collision and under such circumstances no one gets through.
If, however, a packet does not collide with other packets, then it is assumed
that the S/N is high enough or enough forward error correction is applied so
that the packet is successfully transmitted. This last assumption is made so

as to allow us to focus on the multi-access properties of the channel.

1.2.2 méource Models
We will consider two source models in this thesis. They will be

designated as the Poisson and the finite source models.

Lo Poisson Source Model

The Poisson source model assumes the existence of an infinite number of
independent sources that collectively generate k packets per slot, where k

is a Poisson random variable with constant mean A. A source can have at

-13-
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most two packets, one that has undergone a collision and is in the process
of being retransmitted and one that may have arrived since the collision

of the first packet occurred. If a second packet arrives, it is not trans-
mitted until after the first is successfully transmitted. This last assump-
tion will be discussed in more detail in Section 1.3 where the algorithms

are considered.

ii. Finite Source Model

Here we assume that there are ZN independent sources. This model is
similar to the Poisson in that a source can have at most one packet in the
process of being transmitted or retransmitted and at most one waiting to be
processed. If a source has at most one packet then the probability that it
will receive a packet in the next round trip interval is constant and it
is given by p. It can be shown that the Poisson source model is the
limiting case of the finite source model. That is, if we let pZN = constant

and let N then the finite model approaches the Poisson model.
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1.3 Conflict Resolving Algorithms

Here we will consider the third component of the multiple access system,
the conflict resolving algorithm. This section is organized into four
subsections as follows. In Subsection 1.3.1, we first consider the TDMA and
Aloha protocols, the two algorithms presently in use, and then present
a third alternative, the tree algorithm. In Subsectioas 1.3.2 and 1.3.3
we expand upon the tree algorithm and in 1.3.4 we present an information

theoretic discussion of the multiple access channel.

1.3.1 TDMA, Aloha and the Tree Algorithm

There are three basic techniques for accessing a communications
channel in the time domain, the TDMA, the Aloha and the tree algorithm. In
the TDMA scheme, contention is avoided by allocating a portion of the chanmnel
to each of the sources. Although TDMA is effective in situations where the
number of sources is small and the message lengths are long, it suffers from
low throughput and large delays when the number of sources is large and the
duty cycle is short.

In the Aloha algorithm, when a source has a new packet, it transmits
it, and then listens to the channel to determine whether or not the packet
collided with packets from other sources. If a packet collision is detected,
then the source retransmits the packet at a randomly selected time. The
retransmission takes place at a randomly selected time so that conflicting
packets will not surely collide again. It has been shown (see Section 1.5)
that when the sources satisfy the Poisson source model, then the maximum
throughput for the Aloha system is 1/e. However, a multi-access Aloha type

system is unstable, and it eventually overflows. Therefore, although the
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delay and throughput properties might be satisfactory in the short term
they are quite poor when observed over a long interval of time.

There are numerous of dynamic reservation schemes in the literature
(see Section 1.5). Most of these schemes use two channels; a reservation
and a data channel. Before data can be transmitted, the data channel is
reserved by TDMA in Aloha techniques on the reservation channel. It follows
then, that the disadvantages of the TDMA and Aloha algorithms apply to the
reservation channel.

The tree algorithm that we are about to introduce has (when used in
conjunction with Poisson source model) a maximum average throughput of
.430 packets/slot, is stable in that all the moments of the delay are finite
if the arrival rate is less than .430 packets/slot and ‘it has good delay
properties. (The results of the analysis are presented in more detail in
Section 1.4.) Below in Table 1.3.1.1 we present a qualitative comparison
of the three algorithms when the number of sources is large and the

message lengths are short.

TDMA Aloha Tree Algr.
Delay Poor Fair Good
Throughput Poor Good Good
Stability Good Poor Good

Table 1.3.1.1. A Qualitative Comparison of TDMA, Aloha and Tree Algorithm
when the number of sources is large and the message lengths
are short.
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It is easiest to introduce the tree algorithm by an example. However,
before we do this, we need to make the following definitions. Figure 1.3.1.1
should be helpful

Root node - the initial node of a tree; in Fig. 1.3.1.1 it is LR

Depth of a node - correponds to the tier at which the node is found.

The root node is at depth zero.

Degree of a node - is the number of branches that emanate from a node.

Subtree Tij - the subtree whose root node is nij'

Note that in a binary tree, j corresponds to the particular
node of depth i, and that there are 2i nodes of depth 1i.

Symmetry - a tree is symmetric if all nodes of equal depth have equal

degrees.
Example: The Binary Tree Algorithm

Let there be 16 sources {So, S1s cees Sls} and let each correspond to
a leaf of a 16-leaf binary tree as shown in Fig. 1.3.1.1. The tree may be
considered as an addressing procedure, in which each source has a 4-bit
address depending on its location on the tree. In Fig. 1.3.1.1 we also
present the slotted satellite time. For convenience, we assume that the
round trip delay is zero; the effect of a nonzero round trip delay is
considered in Section 1.3.3. Note that the slots are paired and that a slot
pair ies designated by SLij. There is a relationship between the subscripts of

the nodes and those of the slot pairs; as we will see, transmits its

T,

packets in SLij.
Now assume that no collisions have occurred until the beginning of SLOO,

when sources so, sz, 54, Ss, and 310' each has a packet to transmit. Then

-l7=
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An Example of the Binary Tree Algorithm
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beginning with SLOO’ where the first contention arises, the tree algorithm

takes the following steps in the designated slot pairs.

SL

SL

00

10

20

11

Sources in T.. transmit their packets in the first slot of

10
SLOO’ and the sources in Tll transmit theirs in the second
slot. This results in two collisions, one among So, SZ’ and
S4 and the other between 88 and le' Since there was at

least one collision in SLOO’ any new packets that arrive are

not transmitted until that contention is resolved.

Since there was a collision in TlO’ the sources in Tlo are
divided in half and the packets in T20 and T21 are transmitted
in the first and second slots of SLIO’ respectively. This
results in a collision between S0 and S2 and to a successful

transmission by SA'

Since there was a collision in Tzo, T30 and T31 transmit
their packets in the first and second slots of SLzo,
respectively. This results in two successful transmissions

by So and Sz.

Since there was a collision in Tll’ T22 and T23 transmit
their packets is succession. This results in a collision

between s8 and 810 in the first slot and no transmission

in the second.

-19-
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SL22 Since there was a collision in T22’ T34 and T3 transmit.

5
This results is two successful transmissions by 58 and 810'
SLso Since all the sources were involved in some transmission in

which no collisions occurred, we know that the original
contention has been resolved. Any new packets that may have
arrived to TlO’ during this conflict resolution interval, are
transmitted in the first slot of SLao, and packets that arrived
to 'rn are transmitted in the second slot. The process

continues on, as described above.

Note that in this example we used 10 slots to transmit 5 packets. Next we

will state and discuss the binary tree algorithm.

The Binary Tree Algorithm

Let each source correspond to a leaf in a binary tree. If the number
of sources is infinite, then the tree extends to infinity. The slots are
paired into odd and even slots, and until a collision occurs the sources in
Tlo transmit their packets in the odd slots, whereas, the sources in Tll
transmit theirs in the even slots.

Now let Txl and sz be two variables and assume that no collision occurred
up to the beginning of the present pair of slots. Thus, the binary tree algor-

ithms is as follows:

L. T *%e Tea " Ty

2. Txl transmits in the first slot of the present pair of slots, and Tx

=T

2

transmits in the second.
=20~
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3. If any collisions occur in the preceding step, then
a. Until they are resolved, no new packets are transmitted.
b. Resolve the first collision before resolving the second.

A collision in Tx (1 = 1,2) is resolved by dividing Tx in two halves

i
= A, sz = B and then repeating steps 2 and 3.

i
(say A and B), letting Tx

1

This algorithm is equivalent to the following tree search. Beginning
with the root node and at each succeeding node, one asks whether there are
zero, one, or more than one packet in each of the two emanating branches.

If the answer for any of the branches is more than one, then proceed to the
base nodes of those branches and repeat the question. This continues until
all the leaves are separated into sets such that each set contains at most
one packet. Note that the number of slots used in a conflict resolution
interval equals twice the number of nodes visited.

The tree search may be carried out in one of two ways, serially or in
parallel. In the serial search, two branches transmit their packets in two
consecutive slots, and the results of those two transmissions are resolved
before another two subtrees are allowed to transmit. In the parallel search,
all the branches at some depth, whose parents have had a collision, tramsmit
their packets in consecutive slots. It should be clear that the number of
slots needed to process any particular set of sources is the same for both
schemes.

The question arises as to whether some other tree besides the binary
tree might not be more efficient, in that it requires fewer slots to resolve

a conflict. The determination of the optimum tree is one of the major problems
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that is solved in this thesis. More specifically, we will develop the
optimum dynamic tree algorithm, in which the tree that is used to process
a conflict is that which minimizes the average number of slots used, given
the history of the transmission process; more will be said about this in
Section 1.4.

The control for the tree algorithm may be centralized or distributed.
If a central control is used, then an observer observes the transmission
process and notifies, via a feedback channel, the sources that may transmit
in the next slot. If, on the other hand, a distributed control is used,

then all the sources must observe the channel and each must execute the

algorithm by itself.

We will present an interesting variation to the above algorithm, before
concluding this section. Step 3a of the algorithm may be changed somewhat,
so that some packets that arrive after a collision occurs may be transmitted
before that initial contention is resolved. In the example above, for
instance, packets, that arrive to T23 before SLll, could be transmitted in SI.11
and they would be treated similarly to the way they would have been, had they
arrived in SLOO. This variation to the binary tree algorithm appears to be

more efficient then the original algorithm itself. However, it is more

complicated and we have not analyzed it.

1.3.2 Deterministic and Random Source Addressing

In the tree algorithm, as it is given in the preceding section, each
source is preassigned deterministically an address, i.e., a position on the

tree. A variation to the deterministic addressing which has certain imple-
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mentation advantages, is the random address assignment scheme. Here, the
sources are not preassigned addresses on the tree. However, when a collision
occurs, a contending source conducts the tree search by independently and
with equal probability deciding to take the upper or the lower branch that
emanate from each node, beginning with the root node. In general, if any
collisions occur at nodes at one tier, the contending sources move to the next
tier by randomly deciding which branch to take. This process continues until
no collisions occur. As can be seen, the objective of this search is the same
as that of the deterministic addressing scheme; it is to divide the sources
into sets such that each set contains at most one active source.

Note that in the random addresssing scheme, the tree is infinite whether
the number of sources is finite or infinite. Therefore, it can be shown that
when the number of sources is finite, random addressing is slightly inferior
to deterministic addressing in terms of delay and throughput. However, when
the number of sources is infinite, such as in the Poisson model, then the two
schemes are identical. To see this, note that in random addressing, the
sequential random choice decisions that each contending source makes are
equ;valent to allowing each of the contending sources to choose an infinite
dimensional address, and then to execute the tree algorithm as it is given in
the preceding section. The only difference, therefore, between the two
schemes is the way the addresses are chosen. Note, however, that the statistics
of the addresses of the contending sources are the same under both schemes.
This is so because in one scheme, the contending sources randomly choose them
and in the other the addresses are preassigned but the sources are chosen

randomly. Since the address statistics are identical and since the algerithm
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is the same in both cases, we conclude that in the Poisson source model the
throughput, delay and stability properties are the same for both addressing
procedures.

The implementation advantage of the random addressing scheme is due to
the fact that the addresses are not preassigned. Therefore, sources may enter
or leave the system with much greater ease. Note that the tree search for
the random addressing scheme may be carried out serially or in parallel, and

that the tree need not be binary.

1.3.3 Sample Transmission Process and Definitions

Here, Qe will define some of the quantities that we will be using,

and we will consider the effects of the round trip delay by presenting a
sample transmission process for the serial search binary tree (SSBT) algorithm.

In the execution of the SSBT algorithm, two branches transmit their
packets in a pair of comsecutive slota; following this, no action is taken
'until the results of these two transmissions are received, when two more
branches are allowed to transmit. An example of such a transmission process,
in which the round trip delay equals four slots, is illustrated in Fig.
1.3.3.1. In this example, since one algorithm uses only 1/3 of the channel
capacity, one may either divide the sources into three groups and process
each group independently on 1/3 of the channel by a tree algorithm or use
one tree algorithm on 1/3 of the channel to reserve the other 2/3's in a
dynamic reservation scheme.

In any case, we will focus our attention on one algorithm. Therefore,

we will assume that our channel consists only of those slots that are used
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Figure 1.3.3.1 A Sample Transmission Process




by that algorithm. 1In Fig. 1.3.3.1 the channel that we are interested in
is that composed of SLl, SLz, SL3, essy GtC,

At this point, we will make several definitions.

Algorithm Step - It consists of the transmissions taken in a pair of
Qlots, the observation of the results of those transmissions, ;nd
the decision as to what action to take in the next pair of slots.

The time span of a step, therefore, equals the round trip delay
plus the length of two slots. In Fig. 1.3.3.1, a step equals all
the actions taken from the beginning of SL1 to the beginning of SLZ'

Epoch - an interval of conflict resolution, if a conflict exists; other-
wise, it is a pair of slots. In Fig. 1.3.3.1, (si,, SLZ, SL3]. [SLA],
ISLS, SL6] are three consecutive epochs.

£, - the length of the j'th epoch in algorithmic steps.

h, - the number of slots used in the j'th epoch. This equals le.

A - the average of the total number of packets arriving in one slot.

uJ - the average number of packets arriving in the j'th epoch. In the
text, it is shown that for the Poisson source model uj = khj.

§ - packet delay; i.e., the time spent in the system by a packet.
Normally we will express the delay in terms of algorithm steps.

average delay ~ the delay of a randomly chosen packet.

average throughput - the fraction of the slots, over a very long interval,
that contain exactly one packet each.

stability - the system is K'th order stable if the K'th moment of the

delay is finite.
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In terms of the preceding definitioms, in packet switching networks,
packets that arrive in one epoch are transmitted in the following epoch.
Note, however, that since only a portion of the channel is used by the algor-
ithm, only those packets arriving in slots corresponding to those used by
the algorithm in one epoch will be processed by the same algorithm in the
following epoch. In the example of Fig. 1.3.3.1, the packets that arrive in
slot pairs SL., SLi, and SLé are transmitted in SI.I‘. Those that arrive in

and those that arrive in SL! and SL! are transmitted

\J
SLd are transmitted to SL5 5 6

in SL7.

An interesting and a very useful property of the transmission process

is that under the finite, as well as the Poission source model, £, is an

3

embedded Markov chain. That is, lj can be considered to be the state of a

Markov chain after the j'th transition. To see this, first note that 2j+1,

given v,, is independent of the transmission process up to the end of the j'th

j’

epoch. (v, is the number of packets arriving in the j'th epoch.) This

b
observation coupled with the following probabilities (which are developed

in the text) prove the Markovian property.

v, =(2AL))
(2AL,) 1. 4
p(vj|zj.zj_1,...) = vj' for the Poisson model.
= p(vy |2y
p(a packet arrives to a particular source in the j'th epochll,,lj_l,...)
o
s« 1 - (1-p) for the finite model.
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1.3.4 An Information Theoretic Approach to Multi-Accessing
As we will see, the maximum average throughput of the optimum dynamic

tree algorithm is .430 packets/slot when the sources satisfy the Poisson
model; whereas, the maximum throughput for the Aloha system is 1/e = .368.
Since the performance of these two algorithms is different, the question
arises as to whether there are any other algorithms which are better, or,

more interestingly, what is the maximum possible throughput to a particular
multiple access system under all possible algorithms. We have attempted to
answer these questions but were unsuccessful. However, our approach to this
problem offers some insight into the multi-accessing problem and since it might
be the basis for further research, we outline it here.

We have pointed out in the preceding section that the basic problem
in a multiple access system is the resolution of the conflicts. So, let us
examine this a little more carefully. Let us assume that we have a set of
independent sources, and VvV of them are active, i.e., have packets to transmit.
Furthermore, let the probability measure on V be p(V).

Now, note that the conflict is resolved iff the sources are subdivided
into sets such that each set contains at most one active source. Therefore,
this partitioning of the sources must be the objective of any comnflict
resolving algorithm, whether it be the Aloha, the tree, or any other that might
be ptoposedlin the future. In other words, the execution of the algorithm

must supply enough information so that one can partition the sources into

sets such that each set contains at most one active source. Let qnin(source)
be the minimum average information required to do this.
-28-
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Next, by observing the contents of a slot, we lear= whether there are
zero, one, or more than one active sources in the set that is transmitting in
that slot. Let Hmax (trans.) be the maximum average information (maximized
over all partitions) that can be obtained from any one slot; certainly,
Hmax(trans.) 5.1032(3). Therefore, the minimum average number of slots
required to resolve the conflict under any algorithm must be equal to or
greater than Hmin(source)/ﬂna‘(trans.).

We did not proceed beyond this formulation because we were unable to

obtain good bounds to Hhin(source).
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1.4 Thesis Outline and Results

The thesis is organized into four chapters. Chapter 1 is this intro-
duction. The analysis is carried out in Chapters 2, 3 and 4 and in the
appendices that accompany these chapters. Here we will consider the
objectives and results of each of these chapters.

In Chapter 2, we analyze the serial search binary tree algorithm when
it is used in conjunction with the Poisson source model. There are two
main results in this chapter. The first concerns the average delay vs.
average throughput trade-off; we obtain upper and lower bounds to the
average delay, as a function of A. These bounds are given in Eqs. (2.2.4.2)
and (2.2.4.6) and they are illustrated in Fig. 2.2.4.1. It is shown that
these results may be interpreted as average delay vs. average throughput,
and we show that the maximum average throughput is .347 packets/slot.
Furthermore, we show that it is possible to obtain a throughput of up to
.430 packets/slot, but only for a limited time.

The second main result of Chapter 2 concerns the stability of the binary
tree algorithm. Here, we prove that if A < 1/3 packets/slot, then all the
moments of the delay are finite. However, we observe that this is an overly
conservative result, and point out that indications are that all the moments
of the delay are finite for A < ,.347 packets/slot.

In Chapter 3, we determine and analyze the optimum dynamic tree algorithm
and examine a suboptimum algorithm that has certain implementation advantages.
This algorithm is called optimum dynamic, because the tree is allowed to vary
from epoch to epoch optimally depending on the traffic. The source model

that is assumed in this chapter is the Poisson.
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More specifically, we show that the tree which minimizes the expected
number of slots needed to process V packets, where V is a Poisson random
variable, is binary everywhere except for the root node whose degree g
depends on U and is given by Eq. (3.1.0.2).

We point out that 4 = hd; therefore, by observing the number of slots
in the preceding epoch, we can determine u and hence from Eq. (3.1.0.2)
determine the optimug tree to be used in the next epoch. In order to
gimplify the analysis, we restricted the degree of the root node to be 2r.
Thus, the root node corresponds to r algorithm steps and each of the other
nodes corresponds to one step. For this dynamic algorithm we have obtained
upper and lower bounds to the average delay as a function of A. These results
are given in Eqs. (3.3.2.13) and (3.3.2.14) and displayed in Fig. 3.3.2.2.
We also show that the maximum average throughput is .430 packets/slot, and
we prove that all the moments of the delay are finite for A < .430 packets/
slot.

In Chapter 5, we also consider the more easily implemented algorithm in
which the root node degree is restricted to be ZK (K > 0), and all other nodes
are binary. Subject to the above constraints, first, we determine K*, the K
which minimizes E{hj+1|uj,x}; this is given in Eq. (3.1.0.3). Next we
determine upper and lower bounds to the average delay vs. A; these are
given in Eqs. (3.4.2.13) and (3.4.2.14) and displayed in Fig. 3.4.2.1. The
maximum average throughput is shown to be greater than .420 but less than

.430 packets/slot.
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In Chapter 4 we consider the static and dynamic tree algorithms when
they are used in conjunction with the finite source model. For the static
binary algorithm we obtain an average delay upper bound vs. average through-
put lower bound curve. This is shown in Fig. 4.2.2.2 for 64 sources. The
maximum throughput for the 64 source model is .507 packets/slot.

The dynamic tree was restricted to be binary everywhere except for
the root node whose degree was restricted to be go-ZK. This algorithm
was optimized, as before, over K and the results are given by Eqs. (4.3.1.1)
and (4.3.1.6). An interesting observation, on the optimum dynamic algorithm,
is that, under low traffic, it is identical to the binary tree algorithm.
However, as the traffic increases this algorithm adaptively changes to a tree
that has only one node with ZN branches, which is recognized to be the TDMA
protocol. (Note 2N equals the number of sources.)

The delay-throughput characteristics of this optimum dynamic tree are
determined, and are illustrated in Fig. 4.3.2.5 for 2N = 64. The maximum
average throughput for this algorithm is one packet/slot. Chapter 4 is
concluded with a theorem proving that the average delay of the optimum dynamic

tree is less than or equal to that of the TDMA protocol.
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1.5 History

The types of multiple access problems that have been considered by
others fall into two main categories, circuit switching and packet switching.
A third category contains the various dynamic reservation techniques, but
this can be considered to be a hybrid of the first two classes.

With circuit switching, the channel is partitioned and allocated (leased)
before hand. The sharing of the channel this way has been accomplished
either by FDMA (Frequency Domain Multiple Access), or by TDMA (Time Domain
Multiple Access) or by a combination of FDMA and TDMA. These techniques
have been the only ones that were in use up to about 1970 [1] and they were
quite effective for the communication needs of that time. If, however, there
is a large number of sources that do not require continuous full use of the
channel or if the data is bursty, i.e., the ratio of peak data rate to
average data rate is high, then circuit switching can lead to long transmission

delays and inefficient use of the channel.

In recent years attention has shifted to packet switching forms of
multiple access. With this form of accessing, as was pointed out earlier,
the transmitter formats the data into a packet of constant length along
with source and destination addresses and error detecting bits. The source
then transmits the packet to all the receivers including the desired one.

If a packet is destroyed in transmission, the originating source learns
about it either through a feedback channel or by listening to its own
transmission. When a source determines that its packet has been destroyed

it retransmits that packet at a randomly selected time. Most of the work
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that has been done to date on packet switching broadcast systems assumes
that the channel is noise free and that all the packets involved in a
collision are destroyed.

There have been two approaches to packet switching broadcast systems;
pure Aloha and slotted Aloha. In pure Aloha, packets are transmitted or
retransmitted asynchronously; in slotted Aloha the sources are synchronized
so that packets are transmitted in phase. In dynamic reservations the
sources first dynamically reserve the channel capacity via an Aloha or a
TDMA channel and then transmit their data.

Pure or class;cal Aloha has been studied by Abramson [1]. He assumed that
1) the starting times of the packets that are offered to the channel for the
first time from all the sources comprise a Poisson point process, and 2) the
starting times of all the packets (new plus retransmitted packets) comprise
another Poisson point process. Given these two assumptions which taken together
imply an equilibrium condition, he proves that the capacity of the system is
%: or approximately .184.

.Roberts (2] pointed out that considerable improvement can be made in the
capacity of the Aloha channel by synchronizing the sources so that all the
packets arrive at the channel in phase. He proposed that the channel time be
divided into slots and sources be allowed to use at.no-c one slot per packet.
By doing this he showed that capacity of the slotted system for the Poisson
source model is %'or twice that of pure Aloha.

Metcalf [3] considered Aloha systems with blocking (that is a source may
not generate a second packet until the first is successfully transmitted) and

examined several random retransmission policies. More important he showed
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that Alohi channels may be unstable in that the number of blocked sources can
become very large. He also proposed control techniques by varying the retrans-
mission probabilities.

Kleinrock and Lam [4], [5] quantified and extended Metcalf's results.

They modeled the slotted Aloha system with blocking by a Markov Chain whose state
corresponded to the number of blocked sources. They showed that the slotted
Aloha channel with an infinite but independent population (i.e., the Poisson
source model) is unstable. They further showed that if the number of sources is
finite then the Aloha system may be bistable in that it is possible to have two
stable operating points - one with a small number and one with a large number of
blocked sources. Random perturbation in the channel traffic will cause the
system to vacillate between these two stable points. They also proposed con-
trolling the system through the retransmission probabilities and derived an
optimum control policy based on exact knowledge of the state of the channel.
Carleial and Hellman [6] also modeled the Aloha system as a Markov chain and
examined its bistable behavior.

Several dynamic reservation schemes have been proposed. Basically, these
techniques use either slotted Aloha or TDMA to make the reservations. Two
protocols that use Aloha techniques to reserve the channel are Reservation-
Aloha introduced by Crowther et.al. [7] and Interleaved Reservation-Aloha sug-
gested by Roberts [8]. In Reservation-Aloha the channel slots are grouped into
frames that are at least a round-trip delay long. A source that has success-
fully used a particular slot in one frame has access to that slot in the fol-
lowing frame. If a slot is unused then it is up for grabs and any one can con-

tend for it by random Aloha techniques. In the Interleaved Reservation-Aloha
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the channel is divided into two states. Reservation and Aloha. On the Reser-
vation state the sources attempt to reserve the Aloha state through slotted
Aloha techniques. As traffic increases the percentage of the channel being in
the Aloha state increases allowing for greater utilization of the channel. In
the Interleaved Reservation Aloha as the ratio of message length to reservation
packet length increases the maximum throughput approaches 1002. Roberts also
showed (in an example where the average message length was 27 times that of

the reservation packet) that the transmission delay for this scheme is better
than slotted Aloha at large throughput but not as good for throughput less than
20%. Crowther, et.al. do not present an analysis of their scheme but one would
expect a behavior similar to Robert's algorithm. Stability is not considered in
either paper but as long as random accessing techniques are used for the reserva-
tion, stability is an issue.

Binder [9] offers a dynamic reservation scheme that uses TDMA techniques.
Essentially what he proposes is that the slots be grouped into frames and each
source be allocated a slot to which it has first priority. If a slot is not
used by its owner then it is available to the other sources on a round-robin
basis. Unfortunately, here again there is no analysis. Limited simulations
indicate that this protocol is better than slotted Aloha at high traffic and
worse at low traffic.

In the work that has been discussed up to now the authors assumed that if
more than one packet is transmitted simultaneously then a collision occurs and
all the packets are destroyed. Roberts [2] points out, however, that this need
not be the case. FM receivers will track the strongest of many signals as long
as the next strongest is down by 1.5 to 3 dB. He examines the problem vwhere
one receiver is surrounded by an equal density population of equal power trans-
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mitters and shows that it is possible for the capacity to increase to .60 with
FM capture. His example is for ground radio systems, but one should be able to
take advantage of FM capture in satellite systems where the sources are essen-
tially equidistant from the satellite by regulating the power of the various
transmitters.

Another technique that offers considerable improvement to Aloha systems
that have a small maximum time delay is CSMA (Carrier Sense Multiple Access).
In CSMA a terminal with a packet to tramsmit first listens for the carrier of
other users to determine whether the channel is busy. If it is busy then the
source refrains from transmitting, whereas if the channel is empty of other
carriers the source will transmit its packet with some probability. A colli-
sion will occur if the time between transmissions of two packets is less than
the time delay between the corresponding sources. In case of a collision the
contending sources retransmit at randomly selected times. Kleinrock and
Tobagi [10], [11] have examined CSMA and have shown that if a) there are no
hidden terminals, i.e., every terminal can hear every other terminal, b) the
time to detect the carrier is zero, and c) the distance between terminals is
not large than considerable improvement can be made. For example, if the ratio
of the maximum time delay between terminals to packet length is .0l then the
channel capacity is .86. CSMA can be quite effective in ground packet switching

channels, but it is ineffective in satellite systems.
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CHAPTER 2

STATIC BINARY TREE ALGORITHM WITH POISSON SOURCE MODEL

2.1 Introduction

In this chapter we will examine the delay, throughput and stability
properties of the static binary tree algorithm when it is used in conjunction
with the Poisson source model. We will restrict the analysis to the serial
search and to the deterministic address assigmment. As was pointed out in
Chapter 1, under the Poisson assumption, the random and deterministic source
address assigmment schemes are identical in terms of delay, throughput and
stability. However, the parallel and serial search algorithms have the same
throughput, but the average delay of the parallel search scheme is less than
that of the serial.

The average packet delay is defined to be the delay that a randomly
selected packet undergoes, and it is the topic of Section 2.2. There, we
obtain upper and lower bounds to the mean packet delay as a function of the
arrival rate A\. These bounds are given by Eqs. (2.2.4.2) and (2.2.4.6) and
are displayed in Fig. 2.2.4.1.

The average throughput is defined to be the fraction of slots over a
very long interval of time that contain exactly one packet each. It is
considered in Section 2.3, where we argue that if the average delay is
finite, then the average arrival rate equals the average throughput. In
that section we also show that the maximum average throughput is .347
packets/slot and that it is possible to attain a throughput of up to .430

packets/slot but only for a limited time.
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The system is considered to be k'th order stable if the first k
moments of the delay are finite. Stability is considered in Section 2.4.
There, first, we show that if A < .347 packets/slot, then the system is
first order stable. Secondly, we prove that if A < 1/3 then all the moments
of the delay are finite. This result, however, seems to be overly conserva-
tive, and indications are that all the moments of the delay are finite if
A < .347 packets/slot. Accompanying the main text is Appendix A2 where
some crucial results of this chapter are developed. A detailed outline of
Appendix A2 is given in the following section after several definitioms are

made.
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2.2 Average Delay

The objective of this section is to develop a characterization of the
average packet delay in a multi-access communication system that uses the
static binary tree protocol. More specifically, we will determine upper and
lower bounds to the average delay, E{8}, that are functions of the packet
arrival rate A. (See Eqs. (2.2.4.2) and (2.2.4.6) and Fig. 2.2.4.1.)

The unit of measure for the delay is the time between two successive
steps of the algorithm. This is constant and it normally equals the round
trip delay plus the transmission time of two packets. The delay, therefore,
that a packet undergoes is directly proportional to the number of steps that
are executed by the algorithm from the time when a packet arrives to the time
when it is received correctly.

The expected delay is defined to be the delay that a randomly chosen
packet will undergo. Note that inherent in the definition of E{§} is the
concept of random 1ncidgnce, this will play a central role in the analysis.

As has been discussed previously, packets that arrive in one epoch (an
epoch is an interval of conflict resolution if a conflict exists or simply a
pair of slots if there is no conflict) wait until that epoch ends and are
transmitted in the following epoch. With this in mind, several definitiomns

are presented below. All lengths are in algorithmic steps.

€ = the epoch in which a randomly chosen packet arrives.

€, " the epoch following €

" the length of el. This is a random incidence random variable.

LJ = a random variable that equals the length ej. The probability that
lj = L is the steady state probability that an epoch of length

L occurs.
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I; = upper bound to E{%}

2, = lower bound to E{%}

;f = ypper bound to E{EZ}

;z = lower bound to E{2%}

hj = the number of slots used by the algorithm in ej.
Note that hj = 2‘9..1 for the binary tree algorithm.

dj = the time spent by a packet in ej.

vj = the number of packets that arrive in ej.

A = the average number of packets that arrive in any one slot.
uj = the average number of packets that arrive in ej given lj. Note

that y, = E{lelj} = 2\%, = Ah,.

] 3 3
§ = the packet delay, or the time spent in the system by a packet. This
quantity equals the sum of d1 and d2'

62 = _ower bound E{§}

3; = upper bound E{§}

As we proceed, we will further expand upon some of the relationships of
the above quantities.

Next we will present an outline of the analysis that follows. In
Section 2.2.1 we develop the relationship between uj, lj and A. In Section
2.2.2 upper and lower bounds to E{8} are developed that are functions of
E{t} and E(2?}. In Section 2.2.3 upper and lower bounds to E{L} and E{2%}
are developed that are functions of A. Finally, in Section 2.2.4 we combine

the results of Sections 2.2.2 and 2.2.3 to obtain upper and lower bounds to

E{6} that are functions of ).
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In Appendix A2 we prove some of the more tedious but still very crucial

results of this chapter. This appendix is organized into eight sectioms. In
Section A2.1, we derive an expression for E{£j+1|uj} and in A2.2 some
important properties of E{2j+1|uj} are developed. In Section A2.3 an
expression for E{2§+1|uj} is derived and its properties are developed in

}. In A2.6

A2.4. In Section A2.5 it is proved that E{% 1z z{zj}z{z

3 zj-"l j+1
E{dj+1|uj} is derived and in A2.7 we develop the relationship between

} E{dj+1luj} and B{£j+1|uj}. Finally in A2.8 we obtain upper bounds to
4 s 22
- ' E{e j+1‘uj} and 3E{e j+1luj}las.
2.2.1 Relationship Among uj, lj and A.

As defined above, A is the average number of packets that arrive in

any one slot, U, is the average number of packets that arrive in ej and L, is

3 3

the number of steps executed by the algorithm in € For the binary tree

5

which is being considered here, 2, also equals the number of nodes visited by

3
the algorithm. It follows from the above definitions that the length of ej

in seconds is given by zj(‘rr + 21‘) where T is the round trip delay and T,
is the length of one slot.

Another relationship which will be proved here is the following:

uj - 2X£j (2.2.1.1)

To see this, first note that the binary tree algorithm uses two slots for

each step; therefore

h, = 2% (2.2.1.2)




Next note that the total number of packets that arrive in ej equals the sum
of the packets that arrive in each of the hJ slots, and since the expectation

of a sum equals the sum of the expectations, it follows that

|..|:l = hjk (2.2.1.3)

Equation (2.2.1.1) follows from Eqs. (2.2.1.2) and (2.2.1.3).

2.2.2 Characterization of E{delay} in terms of E{%} and E{lz}

In this section we will develop upper and lower bounds to E{8} that
are functions of E{L} and E{lz}. More specifically if we let 3; and Ei be

the upper and lower bounds to E{§}, respectively, then we will prove that

2
- E{%
§, = 1.05 gray + 321 (2.2.2.1)
and
= 1[e(2?
8y = '2'[5 ) S E(2} (2.2.2.2)

Now we will begin with the analysis. The total delay that a randomly
chosen test packet will undergo can be decomposed into two parts; dl’ the time
spent in € (the epoch in which it arrived) and dz, the time spent in €,y
(the epoch in which it is transmitted).

§=d, +d (2.2.2.3)
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and
E{6} = E{dl} + E{dz} (2.2.2.4)

Next we will derive expressions for E{dl} and E{dz}. We begin with E{dl}.
If we let Y1 be the length of the epoch that the test packet entered,
then Y1 is a random incidence random variable. It is well known [Ref. 12,
p. 149] that the density of y, can be expressed in terms of the density of 21 as

follows,

V1P21(’1)
pyl(yl) - —-E{T]T— (2.2.2.5)

Since the slot in which the test packet enters el can occur with equal proba-

bility anywhere in el’ we have
E{d,} = 3 E(y,} (2.2.2.6)
1’ T 2 S

From Eqs. (2.2.2.5) and (2.2.2.6) follows

ylz Pz (Yl)
B(d,} =1 1
1 2 y E(L]
1

or

1 E{2
E{dl} 7 () » (2.2.2.7)
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The expectation of d2 can be written as follows:

E{d,} = ] E{dzlyl} P (y;) (2.2.2.8)
Yy 1

and substituting Eq. (2.2.2.5) into Eq. (2.2.2.8), we have
' 1
E{d,} = m§ ylE{dzlyl} pzl(yl) (2.2.2.9)
1

Combining Eqs. (2.2.2.4), (2.2.2.7) and (2.2.2.9), we have the following

result.

3{5}--1-5{"2}+ L7 2.E{d,]2 )p, (L) (2.2.2.10)
2 BEF T EET § 1 21"211
1

In Appendix A2.6, the following expression for E{dzlll} is derived.

Edyu} = 1+ ] eazha + pw/i2'y) (2.2.2.11)
=1
where
1-e Hpe
8(u) = = (2.2.2.12)
l-e e
) = § 2eqnh (2.2.1.13)
1=0
E) =1 - e - pe (2.2.2.13a)
wiiB




and
= 2A21 : (2.2.2.14)
Note that the subscript of u has been dropped for comvenience.
Equations (2.2.2.10) through (2.2.2.14) 1is as far as we can go in
obtaining an exact closed form expression for E{8}. Since this expression
of E{8}, as it stands, is quite complex, we will turn our attention to deriving
upper and lower bounds.
In Appendix A2.1, the following expression for E{Zzlu} is derived.
z{z2|u} = 1+ 2D(u/2) (2.2.2.15)
and in Appendix A2.7 it is proved that
E(d,[u} < .55 z{zzlu} + .321 for u > 0 (2.2.2.16)
But because of Eq. (2.2.2.14) it follows that

E{d,|2,} < .55 E{2,]%,} + 321 (2.2.2.17)

Now combining Eqs. (2.2.2.10) and (2.2.2.17) we have

2
1E{2°} , .55
B8} < 35T * B Ex 2, E(8, |2, }0(2,) + .321 (2.2.2.18)
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It can easily be shown that

g zlz{zzlzl}p(zl) = E(2,2,}
1

1 2 1 2
<7 B2 7) + 5 E(R,) (2.2.2.19)
But since 212 = 222 = 22 we have from Eqs. (2.2.2.18) and (2.2.2.19)
£{2?)
E{S} < 1.05 _ETT}.+ .321 (2.2.2.20)

This is the desired upper bound. Next we will derive an equivalent lower

bound to E{&}.

In Appendix A2.7 it is also shown that
1
Eld,|u,} > 3 E{(2,|u} foru >0
Here again, from Eqs. (2.2.1.1) and (2.2.2.21) we have
1
E{d,[2,} > 3 E(2,]2,} for 2, > 1

Substituting this into Eq. (2.2.2.10) and then summing we have

1 E(2%) . 1
(8} > 3 'aTz% * 3 TET

L -

RS . S

s e —

(2.2.2.21)

(2.2.2.22)

(2.2.2.23)
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In Appendix A2.5 it is proved that
E(2,2,} > z{z:l}n{zz} (2.2.2.28)

Substituting this into Eq. (2.2.2.23) we have the following lower bound.

3

=

E{S} >% 12

+ % E(2} (2.2.2.25)

:

Another lower bound to E{§} is
E{(6} > E{2} (2.2.2.26)

This follows from Eq. (2.2.2.25) by noting that (2%} 3 E2{2).

This concludes the first part of our analysis. In summary, the main
results up to this point are the derivations of the upper and lower bounds
[Eqs. (2.2.2.20), (2.2.2.25) and (2.2.2.26)] to E{8} that depend only on
E{L} and E{2%}. Our goal, however, as stated above is the characterization
of E{8} in terms of A. Therefore, in the following section, we will

determine upper and lower bounds to E{L} and E{Zz} as functions of ).

2.2.3 Characterization of E{%} and E{lz} in terms of )\

In Appendices A2.1 and A2.3 we derive expressions for E{£j+1|uj} and

B{£§+lluj}. where 2 is the length of € and My is the average number of

+1
More precisely, it is shown that,

j+1

packets that arrived in eJ.
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E{2y,, 1} = 1 + w/2) (2.2.3.1)

B(e, [} = 1+ Dw/2) + [G/2))% + F@) (2.2.3.2)
where .
i i

D(u) = § 27E/2) (2.2.3.3)
i=Q

Fa) = § 2ttooqehya - sarzly) + 2wt (2.2.3.4)
i=]

Eu) =1 -e ™ - pe¥ (2.2.3.5)

Note that the above expressions are independent of A. The arrival rate A

enters the analysis through the following relationship.

W= 2\L

3 (2.2.3.6)

The quantities z{zj+1|u} and v/ z{z§+1|u} are plotted in Figs. A2.2.1 and A2.4.1.
Equations (2.2.3.1) through (2.2.3.6) present the first and second

moments of the length of one epoch conditioned on the length of the previous

epoch with A being a parameter. In this section, we will derive upper and

lower bounds to E{L} and E{lz}. the steady state first and second moments of

lj, in terms of A and the above conditional moments.
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This section is divided into four subsections. In Subsection-i, first
we derive an upper bound to E{L} based on a general set of conditions, next
we demonstrate how these conditions relate to the arrival rate and to the
system parameters and finally compute the upper bound to E{L} for various
values of A. In Subsections ii, iii, and iv, we develop a lower bound to
E{2} and upper and lower bounds to E{lz} respectively. The procedure of the
analysis in these subsections ls the same as that of Subsection i. That is,
first, we develop a bound based on a general set of conditions, next we
relate these conditions tc the system parameters and finally compute these

bounds for various A's.

i. Upper Bound to E{2}

Here we will develop an upper bound to E{%} that is a function of A.

We begin by proving the following theorem.

Theorem 2.2.3.1: Let Zj be a positive integer corresponding to the state
of a Markov chain after the j'th transition. Also assume that for some

constants b and a.s 0 < a, <1

E{lj+l|£:} < au(lj-l) + b for lj >1 (2.2.3.7)
then
) b - au ac
lim BE{2,} < e+=—— = ¢ (2.2.3.8)
3 j°-1- @, u
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Proof: Multiply both sides of Eq. (2.2.3.7) by p(2,) and then sum over £

h| 3

to obtain

E{2

j+1} f_auE{lj} i (2.2.3.9)

Since 0 < a < 1, Eq. (2.2.3.9) 1is solved recursively to obtain the following

steady state solution.

e 1 b-a
lim E{2,} < — (2.2.3.10)
QED

It can be shown that the above bound is the optimum bound over a class of

bounds. That is, if E{f.j -

shown in Fig. 2.2.3.1 then the tightest upper bound over all 0 occurs at 0 = 1.

|Zj} is nondecreasing, and it is upperbounded as

Note that the upper bound to E{% IZJ} at 0 = 1 is given by Eq. (2.2.3.7).

341

Next we will relate the above theorem to the system parameters.

By applying Property 3C (Appendix A2.2) it can be shown that for any Ho >0
z{zjﬂlu} < L.44(u-u,) + z{zj+1|u-uo} for u > u, (2.2.3.11)

Since y = 2AL, and 2, > 1, it follows that minuo = 2. Therefore, comparing

] b
Eqs. (2.2.3.7) and (2.2.3.11) and noting that u = 2A%, we have that

h |
. " 2.88\ (2.2.3.12)
and

b= z{zjﬂlu- 22}
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Figure 2.2.3.1 Illustrating the Form of the Upper Bound to

z{zjﬂlzj}
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or from Eq. (2.2.2.15)
b=1+ 2D()) (2.2.3.13)

Finally substituting Eqs. (2.2.3.12) and (2.2.3.13) into Eq. (2.2.3.8) we have

the following desired expression,

20(0) _ E{#|p = 22} - 2.88)

2,Q) = 1 + 77570 1 < 2.88%

(2.2.3.14)
An interesting result, that follows from Eq. (2.2.3.13) and the fact that
a, < 1, is that if A < .347 then i; < ©, The converse of this statement

follows from the work of the next subsection.

ii. Lower Bound to E{%}

Here we will develop a lower bound to E{L} that is a function of A. A
by-product to the work of this section is a lower bound to the arrival rate

at which E{2} + ®, We begin with the following theorem.

Theorem 2.2.3.2: Let lj be the state of a Markov chain after the j'th

transition, and let fc(z

) be a positive, convex and nondecreasing lower

3

bound to E{2 Then if

sy ),

lj =- fc(lj) (2.2.3.15)

y <L toe &, > 2* then

®
= 2 and f‘:(l?,.1 3 3

has only one solution at £

b
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Lim E{2,} > 2 (2.2.3.16)

jaw

If, on the other hand, Eq. (2.2.3.15) has two solutions, then there exists an

initial state 20 to the Markov chain such that

lim E{,} = = (2.2.3.17)
pro 3
Proof:
E{e,} = zz ; sz(zjlzj_l)p(nj_l) (2.2.3.18)
Jo J'l
- zz n{zjuj_l}p{zj_l} (2.2.3.19)
§-1
> T £ ey ) (2.2.3.20)
"3-1
> fcm"j-l}l (2.2.3.21)

Equation (2.2.3.20) follows because fc(!.j) < z{n.jﬂlzj} and Eq. (2.2.3.21)
follows from the convexity of tc and Jenssen's inequality.
Applying Eq. (2.2.3.21) to ‘3-1' zj_z......zl recursively and using

the fact that fc is nondecreasing yields

]
E{e,} > £{2p) (2.2.3.22)




DR ccsoumt o S

where

b =
fc{lo} = fc[fc[...[fc{!.}]]] (2.2.3.23)

j times

j) < 21 for

*
R.j > 2 . Then fc(lj) is as shown in Fig. 2.2.3.2 and since fc is convex it

*
Now assume that 2'_1 = fc(lj) at only one point, £ , and that fc(l

follows that

3 - o, B
1im fc{zo} fc{z} 2 (2.2.3.24)

j¢¢

* x % *
Now if zj = f(!.j) has two solutions 21 and 9.2 (21 > 2.2), then f(lj) and I.j

are as shown in Fig. 2.2.3.3. Here, as can be seen from the figure, if

*
lo > 12 then

lm £3(2) = » (2.2.3.25)
oo ©
Equations (2.2.3.22), (2.2.3.24) and (2.2.3.25) together conclude the proof.
QED
Our next step will be to relate this theorem to our system, and to obtain
a lower bound to E{L} as a function of ).
It follows from Property 4 (Appendix A2.2) that fz(u) (given below) is

a convex increasing postive lower bound to E{.!j +1|u}.

D (u/2) for u< 8
fz(U) =] + (2.2.3.26)

2884 - 4) + D@W)  w<s
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Since y = 2A%, we have that

fc(L) = fz(ZAl)

(2.2.3.27)

Therefore, an equivalent statement to Theorem 2.2.3.2 is the following.

%
Let u be defined by

*
*
£ =y

"
then if y 1is unique and

f(u)<Lforu>u*

L 2\
we have that
*

(2} > b5x

otherwise

B{’,} =

It follows from Eq. (2.2.3.26), that Eq. (2.2.3.28) has

solution satisfying Eq. (2.2.3.29) for u > 0, iff

' -
> 1l.44u - .98
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(2.2.3.28)

(2.2.3.29)

(2.2.3.30)

(2.2.3.31)

(2.2.3.32)




Since Eq. (2.2.3.32) holds for all u > 0 iff 0 < A < .347, we conclude that

if A > .347 then
TQ_(A) =» (2.2.3.33)

and if 0 < X < .347 then i&(k) is given by Eq. (2.2.3.30). In summary, we

have the following lower bound to E{%},

*
% A < .347

i’z(x) = (2.2.3.34)
o i3> 367

iii. Upper Bound to E{lz}

Here we will derive an upper bound to E{Lz} that 1s a function of A.

We begin with the following theorem.

Theorem 2.2.3.3: Let lj be the state of a Markov chain after the j'th

transition and assume that

2 2

(L, 1) < @y + )" for g, >1 (2.2.3.35)
where

0<a, <1 (2.2.3.36)
and

1im E{2,} = E{2}

oo 3
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then

2 20 cE{2} + e*
lim rz{zj } < 3 (2.2.3.37)
Joe l-a

u

Proof: Expand the right side of Eq. (2.2.3.35), multiply by p(lj) and then

sum over all lj to obtain

(22 .

141 (2.2.3.38)

} < ciE{zj} + 2aucz{;j} +c

Equation (2.2.3.38) is a difference unequality in E(ljz} where ZaucE{li} e

is the driving function. Since from the hypothesis 1:: Eizj} = E{2} and

3

0 f_uu < 1, 1t can be solved recursively to obtain the following steady

state solution.

2
5 Za“cE{l} +c (2.2.3.39)

} <
7 f wa®
u

E{%

QED
Next we will relate this theorem to our system. In Appendix A2.4 we

proved that E(22|u} < (1 + 1.44 w)2. Since, as can be seen from Fig. A2.4.1,
T |u} = 1.44
kM §+1 4
this bound can be generalized as in the following expression

./z{zj!ﬂm} < Ladb(u-ny) + / z{mjzﬂlu-uo} for u > u, (2.2.3.40)

where Ho is an arbitrary parameter "0~l 0
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Now since ¥ = 2A2, and 2, > 1, it follows that min ¥ = 2A. Therefore,

B ]
comparing Eqs. (2.2.3.35) and (2.2.3.40) we have that

c =y E{z§+1|u-2x - a,

and
o 2.88)

Finally substituting Eq. (2.2.3.42) into Eq. (2.2.3.39) we have
(2%} < If )

where

'5.76ck E(8} + o*

1 - (2.88))2

|
L,0) =

and c is given by Eq. (2.2.3.41).

(2.2.3.41)

(2.2.3.42)

(2.2.3.43)

(2.2.3.44)

This is the desired result. Note that as A + .347, li, as well as,

I; and Ii approach infinity.

Next we will turn our attention to the derivation of l:(k). This is

performed in the following subsection.
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iv. Lower Bound to Eflz}

Here we will develop a lower bound to E{2*} sa a Funceion of A.
Since the work here is similar to-that of the previous subsection, the

details will be omitted.

Theorem 2.2.3.4: Let lj be as given in the statement of Theorem 2.2.3.3

except for
E{lz ll }l> (@2, + ¢ )2 (2.2.3.45)
j+1 j . z j z L] . .

then,

2
2c,a, E{L} + ¢

Itm BiE} > =tk . %
f o &= 1-@2

(2.2.3.46)

Proof: This proof is identical to the proof of Theorem 2.2.3.3 with the

inequalities reversed.

QED
Finally in relating Theorem 2.2.3.4 to the system parameters, first
substitute u = 2AL into Eq. (2.2.3.45) to obtain
a, i
E(22|u} > G-+ ¢’ (2.2.3.47)

Comparing this to the results of Appendix A2.4 where it is shown that

B(2%(u} > (1.4bp + .25)2 (2.2.3.48)

-62-




we have from Eq. (2.2.3.46) that

1.44E{2})\ + .125

£{2?} > >
1 - (2.881)

(2.2.3.49)

Note here again that as A + ,.347 then li + o,

2.2.4 E{delay} versus Arrival Rate

In Section 2,2.2 we derived upper and lower bound to E{8} in terms of
E{2} and E{lzl, and in Section 2.2.3 we determined upper and lower bounds to
E{2} and Eflz} in terms of A. In this section we will combine these results
to obtain upper and lower bound to E{8} in terms of A. We begin with the
upper bound to E{8}. Equation (2.2.2.20) which is the upper bound to E{&}

in terms of E{%} and E{lz} is rewritten below.

(2%}

mT—-F .321 (2.2.4.1)

E{§} < 1.05

Now from Eqs. (2.2.4.2), (2.2.3.34) and (2.2.3.44) we have

pta} ¢ —abelSRAL 1.05¢*
T 1 - (2.880)°

—— 4+ .321 (2.2.4.2)
a - @.880%)e,0)

where ¢ and iz(k) are given in Eqs. (2.2.3.41) and (2.2.3.34).
Equation (2.2.4.2) is the desired lower upper bound to E{8}. This
upper bound was computed and the result is presented in Fig. 2.2.4.1.
The derivation of the lower bound to E{8} is similar to that of the

upper bound. From Eqs. (2.2.2.25) and (2.2.3.49) we have

$3=




.

(8} > —=I22 - +2E(1} (2.2.4.3)

1 - (2.880)%  3:E{R}Q - (2.880)%) 2

.72)
1 - (2.88\)2

|v

11—
+ 2 22(A) (2.2.4.4)

Equation (2.2.4.4) is one lower bound to E{§8}, another follows from

Eq. (2.2.2.26); that is
E{§} > 2, (V) (2.2.4.5)

The best lower bound is the maximum of the two bounds given in

Eqs. (2.2.4.4) and (2.2.4.5). This is given below.

E{8} > max [____.nx 5 +%2—£(>‘) , TLZ(A)] (2.2.4.6)
1 - (2.881)

Equation (2.2.4.6) has been computed and it is plotted in Fig. 2.2.4.1 along

with the upper bound.
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Figure 2.2.4.1 Upper and Lower Bounds to the Average Delay versus
Average Arrival Rate for the Binary Tree/Poisson
Source System

Note: An algr. step equals one round trip delay
plus two slots
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2.3 Average Throughput

The average throughput of the system is defined to be the fraction of
the time that the channel contains valid data, i.e., exactly one packet per
slot. Now if the average delay is finite, it follows that over a long
interval of time, all the packets that arrive will be successfully trans-
mitted. Therefore, the average throughput equals the average arrival rate
if the average delay is finite. From the above discussion, it follows that
the E{delay} vs A results of Section 2.2 may be interpreted as E{delay} vs
E{ throughput}, (sge Fig. 2.2.4.1), and the maximum average throughput is
.347 packets/slot.

In the preceding paragraph we defined and determined the maximum
average throughput. It turns out, however, that the system may be operated
at a throughput up to .43 packets/slot but only for a limited time.

In Fig. 2.3.0.1 we have E{2|u} versus u. We know from the results of
Section 2.2 that the average delay is finite for A < .347. However, if
.347 < A < .430 then %T intersects E{%|u} in two places, at u_ and W, which

corresponds to say, L. and lc. Now, 1if .347 < A < .430 and lj 5_£c then

E{2 L.} <
{ j+1| j} lj and
the system will operate around 2'. However, statistical perturbations will

eventually cause lj to become greater than lc’ in which case

2.3 >
Eflj,,,ll j) zj
Here, the system is expected to overflow; this is accompanied by an in-

crease in delay and a drop in throughput.
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Figure 2.3.0.1 1Illustrating the Attainment of the Maximum Through-
put of .430 pck/slot, for the Binary Tree/Poisson
Source System
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2.4 System Stability

Heurestically, an unstable multi-access system is one where the
following scenario is possible. Originally, several channel packet
collisions reduce the number of packets being successfully transmitted.

This results in a packet backlog which further increases the number of
channel collisions, this in turn increases the backlog, etc., until a total
breakdown occurs when essentially everybody is trying to get through with
very few actually succeeding.

A more precise definition of stability of a multi-access system is
the following. The system is defined to be k'th order stable if the k'th
moment of the delay is finite. In Section 2.2, we showed that if A < .347,
then the average delay is finite, therefore, our system is at least first
order stable. In the remainder of this section, we will show that if
A < 1/3, then all the moments of the delay are finite. As has been pointed
out previously, this stability result is overly conservative, and indications
are that all moments are finite for A < .347 packets/slot. In Appendix A2.8,
a way is suggested for determining a larger lower bound to A max.

From the results of Section 2.3, we know that if E{2*} < ® then
E{Gk-l} < o, Therefore, it is sufficient to show that E{lk} < = for A < 1/3
and for all k. This is accomplished by showing that lim E{:zj} z g(e®h)
exists for 0 < s < 8y A < 1/3, 8y > 0. The analysind: carried out by
first obtaining an upper bound to E{e’l} under a general set of conditions
(this is accomplished in Theorem 2.4.0.1), and then relating these conditions

to the multi-access system. Note that upperbounding a moment generating

function assures its existance.
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Theorem 2.4.0.1: Let lj be the state of a Markov chain after the j'th

trangition. Furthermore, let

s(al, + b)

sl
e Mgt ce (2.4.0.1)

- where a and b are constant, 0 < a < 1, and 20, the initial state, is finite

Then

b

sl 1-
1im E{e I} < !™® (2.4.0.2)

j-no

Proof: Multiply both sides of Eq. (2.4.0.1) by p(lj) and then sum over

LJ to obtain

sl sal
Ele 31} < Ele J)e%®

Solving the above equation recursively, we have

s alse 3ol
sle I tln ) el (2.4.0.3)
Since 20 <®and 0 < a<1, Eq. (2.4.0.2) follows by letting j + = in
Eq. (2.4.0.3).
QED
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Next we will show that the conditional generating function of £

can be

3

upper bounded as in Eq. (2.4.0.1) where a < 3A. In Appendix A2.8 we proved

that
Ele®tu} < ae®™ - /8% + awpye + sty BV

where

8 S
A= ,B-iﬂ%,oisis >0

- 8
2 - e8 X -e 0 0

and x is an arbitrary parameter 1 < x < 3. Since ue-u

we have from Eq. (2.4.0.4) that

E(e®t|u) < 2¢° - /8% - a/B + (a/p%)e B-DH

Now for

o e
0 O9s e=0 x=-1

> 0 exists such that

-

B-1<aosfor0_<_sisl
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(2.4.0.4)

(2.4.0.5)

and e ¥ <1 for u > 0,

(2.4.0.6)

(2.4.0.7)




Therefore, from Eq. (2.4.0.6) we have

a,.us
Ele®*|u} < 2¢% - a8 - a/B + (a/B?) o © (2.4.0.8)
s(aou + b) 5
<e for b > =1 0<s< 8y 8, >0 (2.4.0.9)

Equation (2.4.0.9) follows from Eq. (2.4.0.8, because at s = 0, both equal 1,
both are continuous and %;-of Eq. (2.4.0.9) is greater than that of

Eq. (2.4.0.8).

Finally by substituting £ = and U = 2\  into Eq. (2.4.0.9) we

oIl 3

obtain

sl s(2a, AL, + b)
Ele J*llzj}ie il (2.4.0.10)

s
From Theorem 2.4.0.1, we know that for convergence of lim E{e J} we need

j-un
1
A € m—— '
2:0
and from Eq. (2.4.0.7)
2 <« 22 (2.4.0.11)

2x

- -

e ——————————————————— ~ SRR p—




e E - A T

Since 1 < x < 3, we have

This concludes this section.

]2~

(2.4.0.12)



APPENDIX A2

PROPERTIES OF THE BINARY TREE/POISSON SOURCE SYSTEM

A2.1 Derivation of E{2|u}

If we let the number of packets that are to be processed in an epoch be a
Poisson random variable with mean u and let £ be the number of algorithmic
steps required to process these packets by the binary tree algorithm, then

in this appendix we will show that

E{2|u} = 1 + 2D(u/2) (A2.1.1)
where
- 1
D(W) = ] 2°E(/2) (A2.1.2)
1=0
and
E(u) =1 -e ¥ - pe¥ (A2.1.3)

Before proving this result several definitions will be given. (Fig. A.2.1.1

might be helpful in visualizing these definitions)

n,, = the j'th node of level i. There are 21 nodes at level i. (A2.1.4)

13

Tij = gsubtree whose root node is “13 (A2.1.5)

X,, = a random variable that equals one if “1j is visited by the

13
algorithm and zero otherwise. Note that Noo is always visited
by the algorithm, therefore, X90 " 1. (A2.1.6)
B .




Figure A2.1.1

The Infinite Binary Tree

b=




N’

As has been pointed out an algorithmic step is equivalent to visiting
one node. Therefore, the total number of algorithmic steps equals the
total number of nodes visited. Motivated by this observation, we prove the
following lemma which is useful in determining the probability that a

particular node is visited.

Lemma A2.1.1. A node nij i¥0 is transversed in the binary tree algorithm if

and only if there are at least two active sources in Tij'

Proof: Let [nmr: m=0, 1,..., 1] be the set of all the nodes that lie on

the path from ny, to nij' Since Tij is included in [Tmr st = 05 Lyoeey 11,

it follows that if Tij contains at least two active sources so does

[%r:miﬂ.Nwif&ewumdismn«ehm:m<i]mdubfutm

number of active sources in Tn+1 r the answer will be greater than one, and
’

it will move to node n Since this holds for at least m = 0, 1,..., i-1

m+l,r’

we conclude that node n, will be transversed by the algorithm. If, on the

3

other hand, there is at most one source in T,, and the algorithm got at least

i)
as far as LT and asked for the number of active sources in Tij’ the answer
]
will be 0 or 1 and it will not continue to nij’
QED

Theorem A2.1.1: Let there be V active sources (where v is a Poisson random
variable with mean i) and let £ be the number of nodes transversed by the
binary tree algorithm in resolving the conflict, i.e., the process of
separating all the sources into subsets such that each subset contains at

most one active source. Then,
-75=
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E{2|u} = 1 + 2D(n/2) (A2.1.7)

where
S 1
D) = § 27EW/20) (A2.1.8)
1=0
and
Eu) =1 -e ¥ —pe¥ (A2.1.9)

Proof: From the definitions in Eqs. (A2.1.4) to (A2.1.6) we have that

. B-1
£s ¥} Xy (A2.1.10)
1=0 §=0

From Lemma A2.1.1 we have that

p(At least 2 active sources in Tijlu) for 140

p(xij-llu) -
1 if i=0 (A2.1.11)

But since the number of active sources is Poisson distributed, and the sources
are independent of each other, it follows that the number of active sources

in T11 is also Poisson distributed with parameter ulzi. Therefore, from

Eq. (A2.1.11) follows that
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P(xij-llu)

and from Eq. (A2.1.10)

E{2|u} = ]
1=0

and from Eq. (A2.1.11)

u/2

-e - u/2

E/2ty

we have that

P |

i=0

p(xij-llu)

and (A2.1.13)

E{efu} =1+ J 2lgquzl

i=]

-

i

e-u/z

s 140

(A2.1.12)

(A2.1.13)

(A2.1.14)

(A2.1.15)

QED



A2.2 Properties of E{%|u}

Here we will derive several properties of E{llu}. Some of these
properties are trivial, whereas, others are more involved. However, all
of them are presented here for completeness. The quantity E{%|u} which

was derived in Appendix A2.1, is rewritten below and plotted in Fig. A2.2.1.

E{2|u} = 1 + 2D(u/2) (A2.2.1)

pa) = J 2iqeh (A2.2.2)
i=0

Ep) =1 -e ¥ e (A2.2.3)

Since E{2|u} depends trivially on D(u) and since D(u) is a basic quantity
that appears in other expressions, we will develop the properties of D(u).
The corresponding properties of E{2|u} follow from those of D(u) in a
straight forward manner. The properties of D(u) that are derived here are
listed on page 84. In order to motivats these properties we calculated
D(u), D'(u) and D''(u) for ue(0,16]. The results are shown in Figs. A2.2.2,
A2.2.3 and A2.2.4.

Before beginning the derivations we will comment on one of the techniques
used in this appendix as well as several other places in the thesis. At times
we need to show that a function is positive over some finite range of its
argument. This is accomplished here simply by calculating the function at
several points. An example of the use of this technique can be found in

3%p

i Property 4 where it is shown that —-E': 0 for 0 < u < 4. We are aware
. 5y ou
of the fact that calculating the function at a finite number of points does
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Figure A2.2.1 E{%|u)} versus | for the Binary Tree/Poisson Source
Systea

=79~



1 |
. { 2 3 4

i (packets)

Figure A2.2.2 D(u) for the Binary Tree/Poisson Source System
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Figure A2.2.3 9D/3u for the Binary Tree/Poisson Source System
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Figure A2.2.4 azbl(au)z for the Binary Tree/Poisson Source
Systea
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not constitute a proof of its properties over a range. However, given the
smoothness of the functions involved (Properties 2A, 2B and 2C), it is felt
that this technique is justified. A more rigorous approach would be to find
a lower bound that is valid over a small finite region and them show by
computation that this lower bound is positive over the desired range. For

example, by taking the second derivative of D(u) we have

a%p 3-' 1 u, _-u/ 21]
— ;g (1 - ) e
2 [21 zi

W .0

It follows easily that

o -graw2t
'@ > [ -
2

i=0

i
uoﬂu -uolz

2

for Uy < U < My + Bu
So to show rigorously that D''(u) > 0 for 0 < u < 4 one need simply show by
computation that the above lower bound is positive at
U = Kiu for some Au and K = O.l.Z.....IKs-I
As vas pointed out above, it is felt that this more rigorous technique is
not necessary for our purpose, therefore, when needed to show properties,
such as positiveness, of a single variable function over some small range
it will be accomplished by computing the function.
The properties that will be proved are listed below.
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Property 1A

1B

1C

2B

2C

2D

@ k
k k+l 2
D) = I Gaprw T,
k=1
w - <w? oc<uciaz

D(2u) = 2D(u) + £(2u)

D'(2u) = D'(w) + £ (2n)

D'*(2u) = 3 D' (W) + ' W)

paw = J twzhy + 7 pazh
i=0 i=1

min D'(M) = min D'(u) = By(ny)
W2y e i

By (4) = 1.440



3B D'(M) >0 for u >0

3C max D' (u) = Su = 1.443
w0
3D D(u) < Buu
D(u) O<uc<sé4
4 Let £ =
D' (4)(u=4) + D(4) U4

where D'(4) = 1.44 and D(4) = 4.77, then £ is a convex
increasing, positive lower bound to D(u).
For the main text, we will use values of 8,_(4) and Bu that are rounded
off to three significant figures. Therefore we will assume that Bz(lo) = Bu =

1.44. The error caused by this approximation is insignificant.

Properties 1A and 1B. Here we will show that

= K+l
g = § ok (A2.2.4)
k=1
3.3 2
bb<r <l foro<pci2 (A2.2.5)

Proof: Substitute the Taylor series expansion of e tato Eq. (A2.2.3) to

cbtain
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k o
g =1- ] SH-., 7 L0 (A2.2.6)

Equation (A2.2.6) is then rearranged to obtain (A2.2.4). Equation (A2.2.5)
follows from (A2.2.4) becuase for u < 1.2 the sum in Eq. (A2.2.4) is the

sum of an alternating sequence whose magnitude is decreasing.

Properties 1C and 1D. Here we will prove that

@ K
K K+l 2
D(u) = 2 e (=) RS (A2.2.7)
iy (SH! *.
and
w? - %03 <o <o for 0 < u < 1.2 (A2.2.8)

Proof: To obtain Eq. (A2.2.7), first substitute Eq. (A2.2.4) into Eq. (A2.2.2).

(e+1)1 (A2.2.9)
i=0 k=1

Equation (A2.2.7) follows from (A2.2.9) by first interchanging the order of
summation and then summing over the index i.

Equation (A2.2.8) follows from Eq. (A2.2.7) because the sum is
Eq. (A2.2.7) is that of a decreasing alternating sequence.

QED
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Properties 2A, 2B, and 2C. Here it will be proved that

D(2u) = 2D(u) + £(2u) (A2.2.10)
D'(2u) = D' (u) + £'"(2u) (A2.2.11)
D''(2u) = 3 D'" (W) + E'" (2W) (a2.2.12)

Proof: From Eq. (A2.2.2) follows that

72t gq2t™h (A2.2.13)
1=0

D(2u)

o2 § 2 gt
1=0

2(3 £(2u) + DW)]
therefore

D(2u)

2D(u) + E(2u) (A2.2.14)

Equations (A2.2.11) and (A2.2.12) follow from Eq. (A2.2.14) by differen-

tiating with respect to u.
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Property 2D. Here, we will prove that

(- - ()
o) = § w2+ § o) (A2.2.15)
i=0 i=]1

Proof: From Eq. (A2.2.2) we have that

paw) = § e + § et-newnh (A2.2.16)
i=0 i=0
i-1
Now, 2t | 2*
k=0
80
@ = i-1
7 o-newsah = T 2Xeanh (A2.2.17)
i=0 i=1 k=0

Interchange order of summation

e § I Moenh
k=0 i=k+l

= 7 2* 7 gqnat™
k=0 i=1




Interchange order of summation once again to obtain

- 7 I 2Xentth (A2.2.18)
i=1 k=0
But
I 2%ta2t™® - pa2h (A2.2.19)
k=0

Equation (A2.2.15) follows by substituting Eq. (A2.2.19) into Eq. (A2.2.18)

and Eq. (A2.2.18) into Eq. (A2.2.16).

Property 3A. Let
Bl.(“!.) = min D' (u) (A2.2.20)

Wy SH<2uy

Then Property 3A states that

D'(u) > By(uy) for u > uy . (A2.2.21)

and Property 3B is

D'(u) >0 foru>0 (A2.2.22)



Proof: From Eqs. (A2.2.3) and (A2.2.11) we have
D'(2u) = D' (u) + 2ue"2¥ (A2.2.23)
since

2ue~?¥ > o

it follows that

D'(2u) > D' (W)

therefore
Min D'(n) < min D'(u) (A2.2.24)
DL§P<2U1 ZH‘£P<‘Hz

Equation (A2.2.21) follows by induction from Eq. (A2.2.24).

QED

The quantity BL(4) was calculated and it is given by

Bl(b) = 1.440 (A2.2.25)



Property 3B. Prove that

D'(w) >0 for u >0

Proof: Differentiating Eq. (A2.2.2) we have

@ i
o' = § u2hye™?
i=Q

which is positive for u > 0.

Property 3C. Let

[l i
) = J atye™?

1i=0
and
@ i
D'_(c) 5 I c_i ‘°c,2
iw-m 2
then

sup D' () = max D' (c)
u>0 1<e<2

@Zg -91-
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(A2.2.27)

(A2.2.28)

(A2.2.29)

(A2.2.30)




First we will prove Eq. (A2.2.29) and then we will calculate Bu.
Proof: Substituting into Eq. (A2.2.28)
U= cZk for Lfg:? and k=0,1,2,...
and then rearranging we have
® i
p'(e2¥) = [ & /2 (A2.2.31)
i=-k 2
Since the summand in Eq. (A2.2.31) is positive we have
1 (nrk '
lim D'(e2™) = D'_(c)
koo

> D' (c2d) for 1<c<2, 3=0,1,2,... (A2.2.32)

QED

The maximum of D (c) over 1<c<2 was calculated and it equals 1.443.

Therefore
Bu = 1.443 (A2.2.33)
Property 3D D(u) S-Bu u (A2.2.34)

This follows from Property 3C and the fact that D(0) = 0.
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Property 4. A postive,convex non-decreasing lower bound to D(u) is £ (u)

where

D(u) for 0 < u <4
£ = ' (A2.2.35)
D'(4)(u-4] + D(4) for u > 4

Proof: From Property 3B we have that D'(u) > 0 and since D(0) = 0 it
follows that f(u) is positive and non-decreasing. That D(u) is convex

for 0 < u < 4 follows from Fig. A2.2.4 and from a more detailed computer

printout of 3—2 To show that f is convex for u > 0, note that
ou
ag?
du =

and that f(u) is continuous and has a continuous first derivative at u = 4,
Therefore £f(u) is convex.
Next we will show that

£(u) < D(u) for u > 0 (A2.2.37)

Since f(u) = D(u) for u < 4, Eq. (A2.2.37) would be true if f'(u) < D'(u)

for u _>_b. But

£'(u) = D'(4) for u > 4 (A2.2.38)
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so we need to show that

D'(4) < D'(u) for u >4

From Property 3a

min D'(u) < D'(u) for u > 4
4<u<8

D' (u) was computed for 4 < u < 8 (see Fig. A2.2.2).

did occur at 4 where

D'(4) = 1.440

94~

The minimum

(A2.2.39)

(A2.2.40)

QED




A2.3 Derivation of E{LZIH}

In this section we will derive an expression for E{izlu}. This 1is
accomplished in Theorem A2.3.1. However, before this theorem is proved

it will be necessary to prove the following Lemma.

Lemma A2.3.1. Let x,, be a random variable as defined in Eq. (A2.1.6)

1]
with the probability demsity given in Eq. (A2.1.11). Then for {>m>1

E(u/Zi) if n,, and n_ 1lie on the same path

3 mk
E[xijxuklu] - 4 -
EM/27)E(/27) otherwise (A.2.3.1)

Note, two nodes (nij and LI 1 > m) lie on the same path if e lies

on the line connecting nij and L

Proof: If nij and nok lie on the same path, then

P(xmk-llxij-l) -1 (A2.3.2)
and
Plrgy=1lu) = E/2h) (A2.3.3)
-95-
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therefore
Plxyy=1 and x . 1lu) = g/27) (A2.3.4)
Next note that

1 1ff x,.=]1 and x ,h =1
1 . (A2.3.5)

X,,X =
- 0 otherwise

Therefore, from Eqs. (A2.3.4) and (A2.3.5)
E[xijxmklu;nij and n , On same path; 1 > m] = E(u/Zi) (A2.3.6)
If, on the other hand, nij and nk do not lie on the same path, then xij and
Xk are independent because the sources of Tij and ka are independent.
Therefore
. @ i m
B[xij‘mklu’nij and n , ROt on same path] = E(u/27)EW/27) (A2.3.7)

QED

Now we are ready to proceed with Theorem A2.3.1. where E[lzlul is

derived.
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Theorem A2.3.1. Let vV be a Poisson random variable with mean u corresponding

to the number of contending sources. Also let £ (given in Eq. (A2.2.10) and

rewritten below) be the number of nodes transversed by the binary tree

algorithm.

2l

L=1+ 7 J x
i=1 j=0

i

Where xij is defined be Eqs. (A2.1.6) and (A2.1.11), then
E(22|u] = 1 + 20(u/2) + [2D(/2)]% + F(w)
where

pw) = J 2zt
1=0

and

r) = 2§ 2ahi - gazhy + T2t 2anh
i=1 i=1

(A2.3.8)

(A2.3.9)

(A2.3.10)

(A2.3.11)

Proof: Square both sides of Eq. (A2.3.8) and then take the expectation to

obtain
p o 241 0 s R
E(2ul =1+26| J 7§ xij|u +e\ T I Xy |u
=1 §=0 =1 j=0
-97-
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From Theorem A2.1.1 and Eq. (A2.3.10), the above expression can be simplified

to
rghal. y2
E(2flul =1+ 4pw/2) +E |[ § I xg ) I (A2.3.13)
i=1 j=0
Next note that
i i m
- 2 “ =k 2°-1 :
150 x4 « ¥ 3 g .3 .2 Xy 4%an = %1 (A2.3.14)
i=]1 j=0 i=1 j=0 m>1 n=n(i,m)
j for m=i
where n(i,m) =
0 otherwise
Now the sums over m and n will be decomposed into three sums Yij’zij and
wij $ Yij is the sum over all (m,n) € Tij’zij is the sum over all
(m,n) ¢ Tij and m > 1, and wij is the sum over all (m,n) ¢ Tij such that

m=i, n>j., Figure A2.3.1 might be helpful in visualizing the preceding.

In terms of the above definitions we have

Y, - ) Xy %mn (A2.3.15)
(n.n)eTij
24y = e %4 %an (A2.3.16)

kek (I.n)€T1+1.k
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Where kek 1f T, | f] T,,=0; note that there are 2'"2 such T, .
2t
L ) X44%1n (A2.3.17)
n=j+1
Finally from Eqs. (A2.3.14) through (A.2.3.17) we have
f w 2t M o
2
\ ¥ 2 xij) A G @Y, + 22, + M0 - x,, ) (A2.3.18)
i=1 3j=0 i=1 §=0
Next we will determine E[Yijlu]’ E[Zijhjl, E[Wijlu] and E[xijlu].
First note that from Lemma A2.3.1 we have
2 i
E[xij_lu] = E/27) (A2.3.19)
Now from Lemma A2.3.1 and Eq. (A2.3.15)
Blyg lul = [ @ hew2®
m=1i
and from Eq. (A2.3.10)
BY,, u] = p/2t (A2.3.20)
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Next apply Lemma A2.3.1 to Eq. (A2.3.16) and use symmetry to obtain,

Elzy lul = @2y ] T hatygana™
m=i+1

Simplifying
Elzy [ul = 22 -DE@/2Y0 2t
Similarly

E(Wy, [u] = @*-1-1)6% szt

Next take expectations of both sides of Eq. (A2.3.18), substitute

(A2.3.21)

(A2.3.22)

(A2.3.23)

Eqs. (A2.3.19), (A2.3.20), (A2.3.22) and (A2.3.23) into (A2.3.18) sum over 3j

and then substitute this into Eq. (A2.3.13) to obtain,

e2?lul = #20a/2) + § (22hp/2tyaady 216 w/2bp w2t

1=l
w2t @tne?wah)
Now from Property 2A we have

i+l

pw2"™) = 3oty - L gquraty
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Substituting this into Eq. (A2.3.24) and then rearranging we have,

E?|u] = wpw/2) + § 2Ymazhreei-vow2bewnh-et-newet)

i=1 (A2.3.26)
Next note that
2 ol g3 %
2 w/2)2 = EZ 2! g2 )] (A2.3.27)
i=]1
=2 7 7 2Meqrbhea) - 7 e@bhZianh
=1 j=i 1=1
Summing over 3
= 7 202hZ@2tyowrty - @bt (A2.3.28)
i=]
Substituting Eq. (A2.3.28) into Eq. (A2.3.26) concludes the proof.
QED

Next in Appendix A2.4 we will derive upper and louir bounds to E[Lzlu].
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A2.4 Upper and Lower Bounds to E|22|E|

In Appendix A2.3 we showed that

E[22|u] = 1 + 2D(u/2) + [20(u/2)]% + FQu) (A2.4.1)
where
) = § 2 gqrad (A2.4.2)
1=0
Fa) =2 J 2t o2hyi-sq2ty) + 7 2te2quady (A2.4.3)
t=1 1=0

The quantity v E(12|u] was calculated and it is plotted in Fig. A2.4.1. In
this Appendix we will derive upper and lower bounds to E[Lzlu]. More
specifically we will show that
2 2
E(2%|u] < (1 + 1.44u) (A2.4.4)

E(22|u] > (.25 + 1.44p)> (A2.4.5)

We begin with the proof of Eq. (A2.4.4). Two other quantities will be

needed in the analysis that follows. These are
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Figure A2.4.1 /E{Lzlu} versus U for the Binary Tree/Poisson
Source System
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F;x(16) = max F'(u) = 4.369
u>16

D(8) = 10.54

(A2.4.6)

(A2.4.7)

The computations of Fl;m(16) is somewhat involved and it is performed

at the end of this Appendix. The value for F;x(16) given in Eq. (A2.4.6)

is calculated in Eqs. (A2.4.11) through (A2.4.22). The computation of

D(8) is straightforward and no special explanation for its computation

will be given.

From Fig. A2.4.1 and from a more detailed computer printout, it can be

seen that Eq. (A2.4.4) is true for 0<u<l6. The validity of this equation

for u>16 will follow if we prove that

3t < 35 o+ 1ean? for w2 16

We begin by differentiating Eq. (A2.4.1)

%,—, 2(22|u] = D' (u/2) + 4D(u/2)D' (W/2) + F' (u)

Now by applying Property 3C we can upper bound the right side of

Eq. (A2.4.9) as follows:

=105~
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B
%i E(2%|u] SA® 48“[§!(u-16)+b(8)] + Fy (16) for u > 16

or

%U E(22|u] < 4.147u + .164 for u > 16 (A2.4.10)

Equation (A2.4.8) follows by carrying out the indicated differentiation
on its right side and then comparing the result to Eq. (A2.4.10).
The above argument was based on Eq. (A2.4.6). Next, we will prove

this equation. Now from Eq. (A2.4.3) we have

Fa) = § 2 equeh) (A2.4.11)
i=]1
where
£(u) = D) A-EW)) + E2 () (A2.4.12)

Differentiating Eq. (A2.4.11) we have
v 1
F'(w) = J £'(w/2%) (A2.4.13)
i=1

Next any 4 > 16 can be expressed as

u = x2* vhere 8<x<16 and k = 1,2,3,... (A2.4.14)
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Substituting Eq. (A2.4.14) into Eq. (A2.4.13) and then rearranging we have

k
| e =@+ J £l (A2.4.15)
“ i=1
: Next we will show that
K
I £'@2') < 107 for k>1 and 8<x<16 (A2.4.16)

i=]

Differentiating Eq. (A2.4.12) and then substituting D(u) = 2D (u/2)+E(n)
(Property 2A) we have

£'(u) = 2D (u) (1-E(u))=4D(u/2)E" (u)
= 2¢7M[D' (u)(1+u) - 2D(u/2)u) (A2.4.17)
A simple upper to £'(u) is

£' (1) < 2¢7MD' (M) (1+) (A2.4.18)

Equation (A2.4.18) can be, further, upper bounded by applyiv: Property 3C.
Doing this we have

§ £' () < 28 (1+)e™" (A2.4.19)
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therefore

. 1 ® g . a0t 4
I £'(2x) < ] 28 (1#27x)e™" * < 107" for xe([8,16] (A2.4.20)
1=1 1=1

/

Finally from Eq. (A2.4.15) we have that

4

max F'(u) < max F'(n) + 10 (A2.4.21)
u>16 8<u<16

The right side of Eq. (A2.4.21) was calculated and is given by

me(16) = 4.369 (A2.4.22)

This concludes the proof of Eq. (A2.4.4).
The proof of Eq. (A2.4.5) is similar to that of Eq. (A2.4.4) and will not

be given here. That Eq. (A2.4.5) is true should be obvious from Fig. A2.4.1.

P

) g
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A2.5 E[2,%,] > E[2]E(2,]

In this Appendix we will prove that 5[212.2] > E[QI]E[QZI where 2.1 and
!.2 are the lengths of two conmsecutive epochs. This will be accomplished in
two steps; first, in Lemma A5.1 it is shown that E[!.zflll is a non-decreasing
function of 2.1, and then in Theorem A5.1, the main result is proved.
Lemma A5.1. Let
P x[mzlu] = 1 + 2D(u/2) (See Eq. (A2.1.7)) (A2.5.1)
where

U= 2M.1 (See. Eq. (2.2.1.1)) (A2.5.2)

and A > 0 is the packet arrival rate. Then

)
EI; 3[121111_3 0 (A2.5.3)

Proof: From Eqs. (A2.5.1) and (A2.5.2) we have

3 E8,|2,] = 20' (L)) (A2.5.4)
1
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From Property 3B, D'(u) > O and since A > 0 it follows that %I-E[Lzllll > 0.
1

QED

Now we are ready to prove the main result.

Theorem A2.5.1. Let E[!.2|!,1] be non-decreasing in %,. Then, assuming all

expectations to exist,

2[2.19,2] > E[LI]E[R.Z] (A2.5.5)
Proof: An equivalent statement to Eq. (A2.5.5) is

E((2,-,)(2,-%,)] > 0 (A2.5.6)
Now,

E[(2-E)(2-T) = [ (2-T))(E(L,|2))-T,1p(2))
2
1

= I E)IT,-E@, 2 o+ T (0-T))IE®,[2)-T,lp (L)

<ty 2,58, (A2.5.7)

>

L.<%.
i 1t (A2.5.8)
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Equation (A2.5.8) follows from (A2.5.7) because E[22|£1] is non-decreasing.

Carrying out the summation in Eq. (A2.5.8) results in Eq. (A2.5.9).

QED
This concludes Appendix A2.S.
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A2.6 Derivation of E[d]|u]

Assume that there are v > 1 packets to be processed by the binary tree
algorithm where v is a Poisson random variable with mean u, and let d
correspond to the number of nodes visited by the algorithm before a randomly
selected packet from the set of the vV active ones is successfully transmitted.
In this Appendix we will determine an expression for E[dlu]. Note that
2[1|u]. as derived in Appendix A2.1, is the expected number of nodes visited
given uy, whereas E[d|u] equals the expected number of nodes visited before a
randomly selected packet is tramsmitted. The relationship between E[zlu] and
E[d|u] is examined in Appendix A2.7.

The binary tree is shown in Fig. A2.6.1. As has been pointed out
previously, the sources correspond to the leaves of this tree. Another
representation of the sources which will be more convenient for the work in

this Appendix is to represent each source by the binary number S where,

S = 8y8,8,.... (A2.6.1)
The equivalence between the two representations is established through the
following convention.

If -i-o take the upper branch emanating from the node of

level-i, and if 01-1 take the lower branch. This is

performed consecutively beginning with 1=0,1,....etc.

In Fig. A2.6.1, for example, the circled nodes correspond to S=0110...

' -112-
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The Binary Tree: Definitions for the Derivation
of E{d|u}
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Below are some definitions that we will need.
S= ;6;£;2... the bit-by-bit complement of S. (A2.6.2)

E[dslu] = the expected delay source S undergoes, given u. (A2.6.3)

E[d|u] = the expected delay, i.e., E[dslu] averaged over S. (A2.6.4)

'1‘i = the subtree of level-i whose root node is one branch
away from S, (see Fig. A2.6.1) (A2.6.5)
1 b 1+
pa2ly = T 23 g2t (A2.6.6)
j=0

This is the expected number of nodes that must be
visited by the algorithm in order to process all the

active sources of Ti‘ (See Appendix A2.1)

Xs = expected number of nodes lying on path-S that are used
to process source S given M. (A2.6.7)
Y' = the expected number of nodes lying above S that are
visited before source S transmits, given u. (A2.6.8)
=114~




i
ou/2ty - SWZ) (A2.6.9)
l-e-ulz
This is the probability that there are at least two
active sources in Ti, given that there is at least

one active source.
In terms of the above definitions we have
E[dslu] o TR (A2.6.10)

Next we will calculate E[d_|u] and E[dg|u] and show that E[d_|u] + Eldg|u] is

independent of S. This result will lead us to conclude that

E[d|u] --% [E[dalu] + z[d!Ju]] (A2.6.11)

First we will calculate XB. A node of level i will be visited by the
algorithm if there are at least two active sources in the subtree that emanate
from it (see Lemma A2.1.1). Now any subtree whose root node lies on S contains
at least one active source, i.e., source S. Therefore, the probability that a
node of level-i, that is on S will be used is E(u/2'). Now as in Theorem
A2.1.1 use the fact that expectation of a sum equals the sum of the expecta-

" tion to obtain,

x, =1+ § ez2h (A2.6.12)
1=1
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Now we will make several observations before deriving Ys‘ Figure A2.6.1

should be helpful in conceptualizing the following observations.

A) T: lies above S iff 8,1 " 1.

1
B) The set of all the T: that lie above S equals all the nodes that

lie above S.

8
i

before S is transmitted) is D(u/Zi). This follows from Theorem A2.1.1.

C) The average number of nodes in T, that are used (not necessarily

D) A tree T: lying above S will be processed before S if there are more
than one active source in the subtree of level-i that contains S.
This is so because if S is the only active source in Ti’ then that
source would have been transmitted at some node at level less than 1i.
Therefore, the probability that Ti that lies above S will be processed

before S is 6(u/21).

Next we will combine the above observations so as to derive an expression
for Y .

8

From observations A and D we have
i+l

P_[T°

rt i+l ) (A2.6.13)

lies above S and it is processed before S] = siﬁ(u/2

From Eq. (A2.6.13) and observation C we have
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E[number of nodes in T;_ that are processed before S)

1

i+1 i+l

-sie(ulz Wwm/27 %) (A2.6.14)

From Eq. (A2.6.14) and observation B we have

i+1 i+1

Y = ] s 0/27DW/27) (A2.6.15)

i=0

Therefore substituting Eqs. (A2.6.12) and (A2.6.15) into Eq. (A2.6.10)

and then rearranging we have

Eld_[u] =1+ J (+s,_pw/2'0m/2h (A2.6.16)
=]
similarly
Efdlu) = 1+ § (¥s,_pw/2")em/2h (A2.6.17)
i=1
and
1 S 8,125 1 1
LBl |u)+Eld_Ju)) = 1 + ] (1+—lnz (u/27))8 /2% (A2.6.18)
1=1

Since 8, + ;1 =1, %[E[ds]-l-t[d’]] is independent of S, therefore,
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e

Eldlu] = 1+ ] e@/2h)15pw/2")) (A2.6.19)
i=1

This concludes this Appendix. In Appendix A2.7 that follows, we develop

the relationship between E[L|u] and E[d|u].
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A2.7 Relationship Between E[d and E[2
In Appendices A2.1 and A2.6 we derived expressions for E[2|u] and

E[dlu]. These expressions are rewritten below.

E[2{u] = 1 + 2D(u/2) (A2.7.1)
E(dlu) = 1+ ] o@/2Y1 + £ pas2hy) (A2.7.2)
1=1
where

b = ¥ 2%l (42.7.3)
=0

E(u) =1 - e ¥ e (A2.7.4)

o(u = SUL (A2.7.5)
l-e

In this Appendix we will prove in Theorems A2.7.1 and A2.7.2, respectively

that
E(d|u] > 3 Eftin) for u > 0 (A2.7.6)

and
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E[d|u) < a E[2|u] + b for u > 0 (A2.7.7)
where (a,b) = (.55,.321)

Equation (A2.7.7) is specifically proved for the constants (a,b) = (.55,.321).
However, it should be noted that there are other (a,b) pairs, that satisfy
Eq. (A2.7.7).

Now we are ready to prove Eqs. (A2.7.6) and (A2.7.7). In the
Theorems A2.7.1 and A2.7.2 that follow, we will refer extensively to the

properties of D(u) that were developed in Appendix A2.2. We will also need

.the following Lemma.

Lemma A2.7.1. Let E[d|u] be as given in Eq. (A2.7.2). Then

g? E(d|u] > 0 (A2.7.8)

Proof: Differentiating Eq. (A2.7.2) and then rearranging we have

-
W (1-%0(1‘—)’( . .ﬁ
%T;E[dlul- ) 1—1%D(u/2)5ﬂ‘1—)—+ i
sap 2 w2t (1 : .-u/z )
(A2.7.9)
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Now, it can easily be shown that -1 + u + e-u‘i 0 for u > 0. And
since D(u) > 0 and D' (u) > 0 (See Property 3B), it follows that all the
terms in Eq. (A2.7.9) are positive.

QED

Theorem A2.7.1. Let E[d|u] and E[%|u] be as given in Eqs. (A2.7.1) and

(A2.7.2) then,
E[d|u] > 3 E[2|u) for u > 0 (A2.7.10)
Proof: By computation it can be shown that the maximum of %-E[llu] -
E(d|u] in the range of pe[0,4] occurs at u=0 and it equals 0. Therefore,
FE2|ul - EldJul <0 for 0<u< 4 (A2.7.11)

For u > 4 we will first prove that for any u > 4 there exists a

u*elz,kl such that

3 Eleul-etd|ul < 3 ee|u*1-ealu*) for w> 4 (A2.7.12)

The conclusion to the proof will follow by using Eq. (A2.7.11) to upper

bound the right side of Eq. (A2.7.12).
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From Eqs. (A2.7.1) and (A2.7.2) and Properties 2A and 2D we have

3 Eelul-ealu) = - 2+ 2 T £ 2 (A2.7.13)
1=1
where
£,(0) = (1—+-L) E(w) +( -u) D(u) (A2.7.14)
l-e l-e

Now for any u > 4 there exists a k such that 2 < u/2* < 4. For that k

Eq. (A2.7.13) can be rewritten as follows.

k-1
FE|uI-Ela|u]] = FEelu2™-Ealu2™ 11 + | g2t a2.7.15)
i=1

From the definition of k it follows that u/21 > 4 for 1 < k. Next, therefore,
we will show that fl(x) < 0 for x > 4, our ultimate objective being to show
that the sum in Eq. (A2.7.15) is negative for u > 4.

From Property 3D we have

)E(::)"'(Bx)——,t
X =-e

(A2.7.16)

fl(*)i (1+¢
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It is a straightforward exercise to show that the right side of Eq. (A2.7.16)

is negative for x > 4. So
fl(x) <0 for x>4

And from Eq. (A2.7.15) we have

FEL|ul-Ed|u]] < 2E(2|u2”*1-EC4|u2 7]
where

u_>_loand2_<_u2°k<4

(A2.7.17)

(A2.7.18)

QED

Theorem A2.7.2. Let E[%|u] and E{d|u) be as given in Eqs. (A2.7.1) and

(A2.7.2). Then

E(d|u] < .55 E(2|u] + .321

=123~
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Proof: The structure of this proof is similar to that of Theorem A2.7.1.

By computation it can be shown that

E(d|u] - .55 E[2|u] < .321 for 0 < n < 8 (A2.7.20)

To prove Eq. (A2.7.19) for u > 8 we have from Eqs. (A2.7.1) and (A2.7.2)

and Properties 2A and 2D that

E[d/u] - .55 E[%/u] = .45 + [ £,(u/2) (A2.7.21)
1=1
where
-u
£,u) = EQu) (A3t e35e N, 50y [RE) 55 (A2.7.22)
: P e 1-¢*

As in Theorem A2.7.1 we conclude this proof by showing that f,(u) < 0 for
U > 8. This follows by substituting the following lower bound for D(u)
into Eq. (A2.7.22).

D(u) > B, (4)[u-4] + D(4)

= 1.44(u=4) + 4.77 (A2.7.23)

QED

This concludes Appendix A2.7.
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A2.8 An Upper Bound to E{eszlg}

Let G(s,u) = E{eazlu} be the generating function for the number of
steps required to resolve a conflict by the binary tree algorithm, given
that the number of contending packets is a Poisson random variable with mean
U. In this appendix we will upper bound G(s,u) and 3G(s,3)/3s. More speci-
fically if we will let

G (s,m,x) = (1+)e®™™ - (a/8% + au/Bye™ + (as%) WM (a2.8.1)

then
G(S,u) i Gu(S.U.X) (A2.8.2)
and
2 G(a,m <26 (s,1,2) (A2.8.3)
os P =038 Tu e g
where
e' x-1 ‘
Ao padxle o 03, 0c8<s, 8, 50  (A2.8.0)
2-e x-e

s, depends on x and is positive for 1 < x < 3; at x=2, s°-1n2. x is a
variable which is chosen so as to minimize the right side of Eq. (A2.8.1).
Note that the right side of Eq. (A2.8.1) is decreasing in x, therefore, its
greatest lower bound occurs at x=3,

Now we are ready to begin with the proof of Eq. (A2.8.2). Let,

fj(') - E{c'llj packets to resolve} (A2.8.5)
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3-1
=1 273 £, 08
1=1

(s) + 2731 e"fj (s) (A2.8.6)

-1
We have divided j into i packets in the upper subtree and j-i in the lower.
Note that e® is the contribution of the root node, Z-j(i) is the probability
of the assumed division, and fi(s) and fj_i(s) are the generating functions
for the number of steps to resolve each subtree. Furthermore, note that
fo(s) = fl(s) = ]1; this is because exactly one step is required when there
are either zero or one packet.

Now solving Eq. (A2.8.6) for fj(s) we have,

j-1
DRI ENO LR
i=1
£,(s) = e for 3 > 1 (A2.8.7)

Solving the above equations recursively we have

fl(s) =]
£,(s) Cn
§) = e
2 2-e
8 -8
£.(s) = (2—)@2-)
3 2-e- 4—0'

Motivated by the above expressions, we will show that

£ (.)<-ﬁ._ (x-1)e® 372
1 —2-0'( 8 :

for § > 2, 1< x< 3and s <s_ (A2.8.8)
x-e 2y o

where s, >0 for 1< x< 3,
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Assuming that the above is true for j-1, then

-2 s 2 s j-4
£,(8) 5_[ ) e’z"(1>(2f o (x=lle,)”

1=2 e Xx-e

o s _as & J=3
2¢%5273 —e—-'-(ii-l&) } l (A2.8.9)

2-e% x-e° 1-2"3+1 s

e (1:-1)3s 3-4 e® -j+l -j+1
B 2-¢° Q x-e® ; -2--—e-; e 2 e

IR (A2.8.10)
X-e 1-2-'j "'lea

gx-lles g 2-j+1)] e
8

] _1\a8 3-2
i—e—-;(-g’—‘—l-)z—) for §>2 1<x<3and0<s8s<s,
o = where s_(x) > 0 for 1 < x < 3.

(A2.8.11)

Equation (A2.8.11) follows from Eq. (A2.8.10), by noting that at s=0; both

equal one, both are continuous, and %; of Eq. (A2.8.9) is greater than that
Of Eq- (Az.sns).

Finally
B(e®*|u) = ¢®p@=0,1l) + | £, (s)p2=y|w) (A2.8.12)
i=2
8 -} v j=2 je-"
< e®()e™ +] AB (‘-‘T!—) (A2.8.13)
3=2

where A and B are given in Eq. (A2.8.4). Carrying out the indicated sum-

mation in Eq. (A2.8.13), we obtain Eq. (A2.8.2).
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A tighter bound to G(s,u) should be possible if we use for an upper

bound to fi(s) the following

s -s s j=3
£ < CEoy =Dy T fr 333, 0<8 <8,

3 o S L o
Lo Bl NN (A2.8.14)

The variable x is chosen so that the induction step is satisfied for all
J >3 and for s, > 0. Although we have not carried out the derivation
of this upper bound, it is felt that the resulting lower bound to the maxi-
mum arrival rate at which the moments of the delay are finite, will be
greater than that obtained from the bound given in Eq. (A2.8.2) (see Section
2.4).

Now we will prove Eq. (A2.8.3). From Eq. (A2.8.12), we see that it

is sufficient to show that

of . (s) s j-1 s j-1
st ity L2 ey gy s (A2.8.15)
o =98 2.t 2-¢° 2-e°
Differentiating Eq. (A2.8.7), we have
-1
NORID R RIHE HRAORINCY

) i=1
2 £ (s) = k. (A2.8.16)
3s §'° 1 - 2 IS

Assuming Eq. (A2.8.15) to be true for j~-1, we have from Eqs. (A2.8.11) and

(A2.8.16) that

3 1+ 2(4-2)(a-2"3*Y) 8 3-1
i 10 & R
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This concludes Appendix A2.8.
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CHAPTER 3

OPTIMUM DYNAMIC TREE ALGORITHMS WITH POISSON SOURCE MODEL

3.1 Introduction

In Chapter 2 we presented and analyzed the static binary tree algorithm,
a protocol where the tree is fixed to be binary and independent of traffic
condition. In this chapter we will consider a dynamic algorithm where the
tree is allowed to vary from epoch to epoch depending on traffic conditioms.
Even though the tree m;y vary from one epoch to another, it is held fixed
within any one epoch. The tree search is the same as that of the static
algorithms that were considered in Chapter 2 and may be carried out serially
or in parallel, deterministically or randomly. The source model that will
be assumed in this chapter is the Poisson Source Model.

Now we will state the issues of this chapter more precisely. Three main
problems will be considered here. The first is the determination of the
The optimum tree for € is defined to

j+1° j+1
be that tree which minimizes the expected number of slots used in €

optimum tree to be used in €
J+1°
given the observation of the transmission process up to the end of Ej' The
second problem will be the analysis of this optimal dynamic protocol, i.e.,
the determination of the delay, throughput and stability properties. The
third is the optimization and analysis of a suboptimum algorithm where the
tree is restricted to have binary nodes everywhere except for the root node;
the degree of the root node is constrained to be a power of two. As will

be seen, this algorithm does have certain implementation advantages.
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Given that the number of arrivals in any one slot is a Poisson random
variable which is independent of the arrivals in any other slot, it follows
that the only quantity from the transmission process that is needed to fully

characterize the packets to be processed during € is hj - the number of

j+1

slots in €,. This is because, given h,, the number of packets that arrived in

3 3"

ej is a Poisson random variable with mean u where,

U = Ah (3.1.0.1)

3

*
If we let 8y be the degree of the optimum tree at depth-i, then in

Section 3.2 it is proved that

* 1 u<1.70

8 =

u n 1.70 + 1.15(n-2) < u < 1.70 + 1.15(n-1)
*

g, = 2 for 1 >1; ally (3.1.0.2)

In terms of Eqs. (3.1.0.1) and (3.1.0.2), the optimum dynamic algorithm may

be stated as follows:

1. Observe h, the number of slots in the previous epoch

2. Calculate y from Eq. (3.1.0.1)

3. Determine the optimum tree to be used in the following epoch
from Eq. (3.1.0.2)

4, Execute the search in the following epoch using one of the tree

search algorithms of Chapter 2.
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In Section 3.3 we will analyze the slightly suboptimum but easier to
implement tree, where &g is restricted to be an even positive integer. There,
we will calculate upper and lower bounds to the average delay as a function
of the arrival rate (see Fig. 3.3.2.2), prove that the maximum average
throughput is .430 packets/slot, and show that system is stable for A < .430,
in the sense that all the moments of the delay exist for A < .430.

The third problem that was posed above will be considered in Section 3.4.
There we will show cha; if the root node degree of a binary tree is constrained

*
to be ZK; then K , the optimum K, is given by

* 1 for u < 3.40

B oy ™Y (3.1.0.3)

K 3.40 (2
We will also determine upper and lower bounds to the E[delay] (see Fig.
3.4.2.1) and we will show that for this dynamic algorithm the maximum E[thr]
is less than .430 but greater than .420 packets/slot.
In Appendix A3 that accompanies this chapter, we prove several of the
theorems. This appendix is consulted frequently as we proceed through

this chapter.
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3.2 The Optimum Tree

In this section we will prove that if the number of contending packets

is a Poisson random variable with mean y, then the symmetric tree that

minimizes the expected number of slots required to process the contending

packets is given by Eq. (3.1.0.2). Althougn we do not prove that symmetric

trees are optimum, that this is so should be obvious from the symmetry of

the problem.

It can be shown, by a procedure analogous to that of Appendix A2.1.1,

that the expected number of slots required to-process the packets is given

by
v 8441
Elblu} = gy +u | g E@1)
qup 1
where
M, = S —
8081l..81
and

EM) = 1 - e - o™

(3.2.0.1)

(3.2.0.2)

(3.2.0.3)

In terms of the above three equations, our goal in this section is to

determine that {31: 1i=0,1,2,...} wvhich minimizes E{h|u} subject to the

constraint that 8y is an integer and

lif 1 =0

8y 2
2 otherwise
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The solution will be carried out in three steps. First, we will show that

g:, the optimum 8> equals 2 for sufficiently large i. This is accomplished
in Section 3.2.1. Secondly, in Section 3.2.2, we will prove that the minimum
of E{h|u} over 8,1 and g,, subject to the condition that g, = 2 for i >k,
occurs at then g: = 2, This result applied recursively with the result of
Section 3.2.1 as the boundary condition proves that g: = 2 for { > 1. Finally,
in Section 3.2.3, g; is calculated as a function of u; this result is given

by Eq. (3.1.0.2).

3.2.1 Optimum Tail End of the Tree

We begin this section with the following definitioms:

Gk = [gk, 8k+1"'°']; k>0 (3.2.1.1)
G, = the G, which minimizes E{h|u} subject to  (3.2.1.2)
8y (1 > k) being an integer and greater than 1
202,831 (3.2.1.3)
17 Bkt
fi(c ) = ) g ) (3.2.1.4)
eMer) s b A M
1=0
1-1 -1

G =1 § g, (M g )7 i vhere 21  (3.2.1.5)

1=0 3=0 §=0

*
In this section we will prove that if k > 0 and if "k-l < %E then G = 2.

It should be observed that since Hi = u/sosl...gi and 8y > 2 for 1 > 0,
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then for any finite y,a k exists such that Hkrl < %E. In other words, the

main result of this section states that beyond some finite depth the optimum

tree has binary nodes.

The solution will be carried out as follows:

a) Show that if G, minimizes ﬁ(ck’Hk-l) it will also minimize

k
E{h|u}. This is Theorem 3.2.1.1.
b) Determine upper and lower bounds to E(Gk,Mk_l) in terms of

A(G This is accomplished in Theorem 3.2.1.2.

k)'
c) Show that the upper bound of fi evaluated at Gk = 2 is less than the
lower bound at G, ¥ 2. This is accomplished in Theorems 3.2.1.3

and 3.2.1.4 and Corollary 3.2.1.1.

Theorem 3.2.1.1: If, Gk minimizes ﬁ(ck.ﬂk_l) for all Mk—l then it will

also minimize E{h|u}.

Proof: By combining Eqs. (3.2.0.1) and (3.2.1.4), E{h|u} may be written as

follows:

k=2
g
Bh|u} = gy +u [ =2 £01) +we _ KG, M, ;) (3.2.1.6)
i

i=0

Since of the three terms on the right side of Eq. (3.2.1.6), only f depends

on Gk and since f and quPI are greater than zero, it follows that if

*
minimizes fi then it will also minimize E{h|u}.

Gy

QED
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Theorem 3.2.1.2: Let R(G,,M, _,), R(G,), M, and G, be as defined in
Eqs. (3.2.1.1) through (3.2.1.5) and (3.2.0.2). Furthermore, let

0 < < 1 and g, be integer and greater than one. Then,
- k-1 i

-M
Proof: First substitute the Taylor series expansion of e A into

Eq. (3.2.0.3) and then substitute Eq. (3.2.0.3) into Eq. (3.2.1.4) and

rearrange to obtain

(e, M _,) = ——mk B iZ B vin = “k : i{ B R M _14) (3-2.1.8)

where

T n n
RO y+g) = 1 (M) @7 (3.2.1.9)
n=2

If O f-"k-1+1 < 1, then ROMk_1+1) is the sum of an alternating sequence of

decreasing magnitude and it follows that,

1.2
0 < RMy 144 ST M 14 (3.2.1.10)

From Eqs (3.2.1.8) and (3.2.1.10) we have

1 -]
G, M ) <5 ) 8 . (3.2.1.11)
el <3 . i =144
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and

(-]

-]
1 1 Biri 2
RGMy) > 2 1 Bpag Me-141 " ] S, G212
~1 1=0 -1 40

Since 0 < “k+i < Hk for 1 > 1, it follows that

17 T
-3- Z k"'i Hk-' <- Z 8““'1"1—14'1 (3.2.1.13)
i=0 i=0
Substituting Eq. (3.2.1.13) into Eq. (3.2.1.12) we have
B(GyM,_y) > @ - $w D 1 e y141 (3.2.1.14)
z"k 1
1=0
Pinally from Eqs. (3.2.0.2) and (3.2.1.5) we have
(3.2.1.15)

1 L]
e Y D Sri™e141
1=0

and by substituting Eq. (3.2.1.15) into Egs. (3.2.1.11) and (3.2.1.14), wé

obtain the desired result.
QED
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Theorem 3.2.1.3: Let ﬁ(Gk) be as given in Eq. (3.2.1.5) and let 8y be

integer and greater than one. Then the minimum of ﬁ(Gk) is 2 and it occurs

at G, = 2.

Proof: For n > k we have from Eq. (3.2.1.5)

3 n-k-1 4-1 -1 i -3
BG) =7 1 g\ T By ) *\ T gy BGYD (3.2.1.16)
1=0 o 1=0

From Eq. (3.2.1.16) it follows that if 8, minimizes ﬁ(Gn), it will also
*
minimize ﬁ(Gk). Therefore we will determine g .

From Eq. (3.2.1.5) we have

ﬁ(cn+1)

&n

gn
ﬁ(cn) o ek (3.2.1.17)

*
Now assume that G has been determined in Eq. (3.2.1.17) and we would like

m+l
* *
to know 8, But ﬁ(Gn) is convex in 8y therefore the optimum g, is the

smallest integer greater than one such that
fig .G ..) < R(g +1, G 3.2.1.18
(sn’ n‘*l) =g Sn » n+1) ( ebodo )

Substituting Eq. (3.2.1.17) into Eq. (3.2.1.18) and rearranging, we have

%
the following equivalent expression that gn must satisfy,

s:(x: +1)>2 ﬁ(c:ﬂ) (3.2.1.19)
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But since
fG < fi(2
©_,,) < 8@ =2
*
it follows that the smallest integer 8, greater than one that satisfies
Eq. (3.2.1.19) is
QED

Corollary 3.2.1.1: Let G, be such that g, > 3. Then ﬁ(Gk) > 13/6.

k

Proof: From Eq. (3.2.1.17) we have

8 , BGy)
ﬁ(Gk) - '2— + —-g—k'—— (3.2.1.20)

and from Theorem 3.2.1.3 we have

R(Gy,,) > 2 (3.2.1.21)
therefore
f(6.) > 2% 4 2 (3.2.1.22)
k et 2 3k . . .

Since the derivative of the right side of Eq. (3.2.1.22) is positive for

8 > 2, 1t follows that for g, > 3

~139-
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k., 2 3 2
—4+=>=+ =

2 8y — 2 -3

or
13
ﬁ(Gk) 2% (3.2.1.23)
QED

Now we are ready to prove the main result of this section in the following

theorem.

Theorem 3.2.1.4: If LI -E%, then G, = 2 minimizes ﬁ(Gk,Mk_l).

k

Proof: Take any Gk ¥ 2 and let g8, for n > k be the first element of Gk that

is greater than 2. Then from Eq. (3.2.1.4) we have,

n-k=-1
RGM, ) = L S P
-1 "'k 1 12 D144 Mee141 M1

oMo (3.2.1.24)

-1

First, note that the G that will minimize K(G ,M _,) will also minimize

E(Gk.Hk_l). Then from Theorems 2 and 3 and Corollary 1, we have

B2, M_)) <2 (3.2.1.25)

) 13
R(G, M )2 (1-5M ) (3.2.1.26)
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But forn > k, 0 <M , <M , < 3/26, therefore from Eq. (3.2.1.26),
RG M _1) > 2 (3.2.1.27)
and it follows from Eqs. (3.2.1.25) and (3.2.1.27) that,

h2.M _,) < B M _ (3.2.1.28)

1)

Finally since n was chosen so that g8y = 2 for k < 1 < n-1, we have that

M
BG ) -B@x ) - "::i (R M _ ) - B@M )] (3.2.1.29)

and from Eq. (3.2.1.28) we conclude that
3
BGpM ) - A2 )) > 0 for M, < 3¢ (3.2.1.30)

QED
Theorems 3.2.1.1 and 3.2.1.4 taken together prove the main result of
this section, i.e., the tail end of the optimum tree is binary. In the
next section we will be concérned with the degrees of the nodes of the

optimum tree from the tail end to the root node.

3.2.2 A Recursive Optimization Technique

Whereas in Section 3.2.1 we were concerned with the tail end of

the optimum tree, in this section we will develop a recursive relationship
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which in conjuction with the results of the previous section proves that
g: = 2 for 1 > 0. The optimum degree g; of the root node does depend on
M and this will be considered in Section 3.2.3.

The recursive relationship that will be proved here is as follows.
Let 8y and 8141 be integer and greater than one (for k=0,1...) and let
8, = 2 for 1>k + 1, then for any u > 0, the point that minimizes E(h|u}

satisfies,

B+l ~ 2 (3.2.2.1)
The minimization problem has a slightly different objective for k=0

then it does for k > 0. Therefore, the analysis of this section is

organized into two subsections. In Subsection i the case where k > 0 is

considered and in Subsection ii the case where k=0 is considered.

1. Recursive Relationship for k > 0
Now we begin the analysis for k > 0. Setting g - 2 for 1>k +2

in Eq. (3.2.0.1) we have

k-2
k-1
E(hlu} = gy + 1 | —“—lem ) + (1“0 si> L@y ot y)  (3:2.2.2)

i=0

where

k 1 = -

(3.2.2.3)
BBre1

B My ) + sksk.,,li(uk 2 )t 28,8, DC——
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and

-]
px) = J 2'g/2h (3.2.2.4)
i=0
As can be seen from Eq. (3.2.2.2), the (gk’8k+1) that minimizes L will also
minimize E{h|u}. Therefore, we will be concerned with the minimization of
L(sk’gk+1’uk-1) over gk’8k+1' In order to simplify the notation somewhat
we will drop the subscript of M and also use 81 and 8, instead of 8y and
Br+1® In what follows, therefore, we will prove that for any M > 0, the
: !
minimum of L(gl,gz,x) occurs at g, = 2. This will be accomplished in two

parts. In Part 1 it will be proved for M < 8 and in Part 2 for M > 8.

Part 1. Minimization of L(gl,gz,n) for M < 8

In this part we will prove that if M < 8, and if 8, and g, are
in-2gers and greater than one, then the min_ L(g,,g,,M) occurs at g, = 2.
The results of Section 3.2.1 prove this statement for M < 3/26; therefore,
we will be concerned with its proof for 3/26 < M < 8.
Firat divide the (g1 x gz) space into three regions, RI’RZ’ and R3 as

follows.

Ry=[(8,,8)): 228, <9 258,%5] (3.2.2.5)
R, = [(8,,8,): 8, > 10, g, > 3] (3.2.2.6)
Ry = [(8,,8,): 2<8, 29, 8,2 6] (3.2.2.7)

(See Fig. 3.2.2.1).
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Figure 3.2.2.1 The Subdivision of the (31 X 32) Space into Rl’ RZ
and R
3
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In the Appendix to this chapter we prove in Theorem A3.1 that

Ll(gl’SZ’M) f_L(gl,gz,M) for M/(glgz) < 1.2 (3.2.2.8)
where
= M M _4 M 2

Note that the above lower bound is valid in R2 and R3.

In Theorem A3.2 it is proved that for (81'82) in Rz and .1 < M < 8,
then Lz(gl’SZ'H) is minimum at (31,32) = (10,3).

In Theorem A3.3 it is proved that if (gl,gz) in R3 and .1 <m< 8,
Ehen Ll(sl’gZ’M) is minimum at g, = 6.

Now for M = .1k, k = 0,1,....80, the quantity L(glgz,M) was minimized
over the 32 (gl,gz) points in Rl‘ The minimum did occur at g8, = 2 and it is
plotted in Fig. 3.2.2.2 as a function of M.

In R,, because of Theorems A3.1 and A3.2, we calculated L£(10,3,.1K)

and in R3, because of Theorems A3.1 and A3.3, we calculated

min Lz(gl,6,.lx) for k = 0,1,...,80
2:gl§9

These results are also included in Fig. 3.2.2.2. As can be seen from this

figure,
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Figure 3.2.2.2 The Minimization of L(gl,gz,m) over g, and 8y
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Min L(gl,Z,M) % L2(10,3,M) (3.2.2.10)
2_<_glf_9

Min L(gl,Z,M) iL(gl,6,M) ;24 8 < 9 (3.2.2.11)
2i31_<_9

for .1 <M< 8

Therefore, we conclude that L(gl,gz,M) attains its integer minimum at 32-2,

1fgl_>_2, 3212and .1<m<8.

Part 2. Minimization of L(gl,gz,u) for M > 8

In this part we will prove that if g and 8, are integers and
greater than one, then for any M > 8, the minimum of L(gl,gz,M) lies on the
line 32-2.

In this range of M it is more convenient to work with H(gl.gz,u) instead

of with L(gl,gz,u), where
o
H(sliSZ’M) = i L(81»82,H) (3.2.2.12)

Since, for any M > 0, if (31,32)* minimizes H(gl,gz,M) it will also minimize
L(gl,gz.M). it is sufficient to prove that the minimum of H(gl.gz,n) for
81 22, 8, 2 2 ldes on g,=2.

Here again, the way this will be proved is to show that an upper bound
to H(gl,gz,ﬂ) evaluated at 32-2 and minimized over 8, > 2 is less than a

lower bound evaluated at (31 22, 8,2 3}.
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Since £(M) 1is an increasing function bounded by 1, we have from Eqs. (3.2.2.3)

and (3.2.2.12) that,

Hy (8,,8,,M) < H(g,,8,,M) < H (g,,8,,M) ; for M > 8 (3.2.2.13)
where
8 88 s 218132 M
Hy(8,,8,,M) = @)=+ ==ty +2 § £( ) (3.2.2.14)
28118 M M g M 2k
1=0 g8
8 818 5 218132 M
H (8,,8),M) = ==+ =—=EC) +2 ] £ ( ) (3.2.2.15)
w8187 M M 8 M gt
=0 2,8,
Since
g -4 8121 M |
B (24:2,M) = =+ 2 ] == (3.2.2.16)
1=0 8,2

we have from Theorem A3.4 that

Min H (8,,2,M) < 2.34 (3.2.2.17)
8,>2

In Theorem A3.5 it is proved that if M/g1 < .35, g, >3, and M > 8, then

“2.(31’82'“) > 2,498 (3.2.2.18)
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And in Theorem A3.6 it 1is proved that
Hl(gl’SZ’M) > 2.34 for .1 f.M/gl < 3 and g, >3 (3.2.2.19)
Therefore, from Theorems A3.4, A3.5 and A3.6 we conclude that if
M/g, <3, M>8, g >2, 8, >2 then
the minimum of H(gl,gz,M) occurs on the line
gy =2

In Theorem A3.7 it is proved that the minimum of H(gl,gz,u) for M/g1 > 3 also

occurs on
8, =2
This concludes Part 2.

ii. Determination of Optimum 8

What we proved up to this point is that the minimum of E{h|u} over
8y and B+l (subject to the constraints that 8y and 841 2TC integer and
greater than one; g - 2 for 1 > k+2, and k > 0) occurs at 8k+1-2' We still

have to prove the above statement for k=0 and this is what we will do next.
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Setting g, = 2 for 1 > 2 in Eq. (3.2.0.1) we have
i —

E{nlu} = g, + soslacgg) +2 3031°(§§§;) (3.2.2.20)
We are going to show that the minimum of the above expression subject to
g9 and 8, being integer and g >1, g, > 2 occurs at g = 2. By comparing
Eq. (3.2.2.20) to Eq. (3.2.2.3) it can be seen that this problem is very
similar to that solved in Subsection i. Therefore, one may go through a
similar procedure in solving the above programming problem. Here, however, we
are going to be less rigorous and simply show that gl* = 2 by computation.
The procedure to be used here is as follows.

Divide Eq. (3.2.2.20) by U4 and let x = u/go to obtain f(x,gl).
. x
£(x,8,) = S + g, E(x) + 2gln(a)) (3.2.2.21)

Given the preceding definition of f(x,gl), it follows that if the
minimum of f(x,8;) occurs at g,=2 then the minimum of E{h|u} will also occur
at g1-2. We computed f(x,gl) for various values of (x,gl) and the results
are shown in Fig. 3.2.2.3.

Now if u < 3.08 then x = %— < 1.54, and as can be seen from this

0
figure

f(x,2) :_f(x,gl) for x < 1.54; g > 2 (3.2.2.22)

If, on the other hand, u > 3.08 then it can be shown that a 31<1 7 exists

such that .89 < u/sl < 1.54. But here again as can be seen from Fig. 3.2.2.3
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The Determination of the Optimum 8

Figure 3.2.2.3
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£(x,2) < £(x,8,) for .89 < x < 1.54; g, > 2 (3.2.2.23)

Therefore, we will assume that

g = 2 (3.2.2.24)

This concludes Section 3.2.2.

3.2.3 The Root Node of the Optimum Tree

In this section we will determine the optimum 8g» i.e., that g9
which minimizes E{hlu,go} subject to g9 being integer, 30‘: 1 and g = 2
for 1 > 1.

We begin by setting 31-2 in Eq. (3.2.2.2) to obtain
E{hu, g4} = 8o{1 + W (u/gy)} (3.2.3.1)
This equation was calculated and the results are illustrated in Fig. 3.2.3.1.

The problem posed in this section is solved by determining fi(n), a quantity

defined by,
*
go(u) = n for fi(n) < u < u(n+l) (3.2.3.2)
As can be seen from Fig. 3.2.3.1, ﬁ(go) is that y which satisfies

E{hlu.go-l} = E(h|u, g4} (3.2.3.3)
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Equation (3.2.3.3) was solved, and fi(n) to within two significant places to

the right of the decimal point is given by,

fi(n) = 1.70 + 1.15(n-2) (3.2.3.4)

This concludes Section 3.2.3.
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3.3 Analysis of the Dynamic Algorithm

In this section we will analyze (for the Poisson Source Model) the
dynamic tree algorithm where all the nodes except for the root node are
binary - the degree of the‘root is restricted to be even and it is chosen
80 as to minimize the expected number of slots used, given the expected
number of contending sources. This algorithm should be >gnized as being
very similar to the optimum algorithm of Section 3.2, the only difference being
that here the root node is restricted to taking on an even degree where in
the optimum algorithm it is not. There are two reasons for considering
this suboptimum algorithm. First, the even degree root node tree is easier to
implement since here all nodes are even, and secondly the analysis is neater,
even though it is not essentially less complex.

This algorithm will be executed serially by assigning two consecutive
slots to it for each round trip interval. If, for example, the initial node
has degree 2r, then the tree search is identical to r consecutive serial
searches (of the type described in Chapter 2) where each of the r searches
is over 1/r of the sources.

As in Chapter 2, an algorithmic step consists of the actions taken in
two consecutive slots. Therefore, the root node correponds to r steps but
all other nodes correspond to a single step each. It also follows that if
we let § be the number of steps between the arrival and the successful
transmission of a packet, and Te and Ta the round trip delay and length
of one slot, then the delay (in seconds) experienced by that packet is

given by
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packet delay = G{Tr + ZTS} (3.3.0.1)

Since in the above equation Tr and Ts are constant, it follows that in order
to characterize the packet delay, one need only obtain the statistics of
§. In this section, therefore, we will obtain upper and lower bounds to
E{8} as a function of the packet arrival rate A. A by-product of this
analysis is the determination of the maximum throughput and the characteri~
zation of stability.

Since the expected delay with the parallel execution of the algorithm
is less than that with the series execution, the delay results obtained here
may be considered to be upper bounds to those of the parallel execution. The
maximum throughput, however, is the same for both schemes.

The analysis is organized as follows. In Section 3.3.1, expressions
for E{2|u,rl}, E{lzlu,r} and E{d|u,r} are derived. The quantities £, M and d
have the same definition as they did in Chapter 2; that is, u is the
expected number of packet arrivals in the previous epoch, £ is the number
of algorithmic steps in the present epoch, and d is the number of algorithmic
steps until a randomly chosen packet from the set of conflicting packets is
successfully transmitted. Furthermore, note that the above conditional
moments with r=1 are identical to the corresponding ones of Chapter 2. In
Section 3.3.2, we determine the optimum r and obtain upper and lower bound
to E{8} (see Eqs. (3.3.2.3), (3.3.2.13), and (3.2.2.14)). In Sections 3.3.3
and 3.3.4 the stability and throughput are considered, respectively. It should
be noted that the analysis of the dynamic tree is very similar to that of the
static binary tree which was considered in Section 2.2. Therefore, since many
of the results of Section 2.2 carry over to the dynamic tree analysis, we will

not be as detailed here.
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3.3.1. Derivation of E{2|u,r}, E{lzlu,r} and E{d|u,r}

Consider a tree where the root node has degree 2r and where all other
nodes have degree two. Furthermore, the slots are used in pairs, and the
algorithm is executed serially as described above. In this section, expressions
of E{%|u,r}, E{lzlu,r} and E{d|y,r} will be derived in terms of Efll%,l} and
Eflzrg,l} (the corresponding quantities of the binary tree that was analyzed
in Section 2.2. These derivations are developed in Theorems 3.3.3.1 and

3.3.3.2 below.

Theorem 3.3.3.1: Let £ and y be as defined above and let the source model

be Poisson. Then

E{2|u,r} = rE(ll%;l} (3.3.1.1)

E(¢?|u,r} = re-DEX2|E, 1) + rE(2?|E,1) (3.3.1.2)
or

e(2%|u,r} = rzzz{z|§31} + r var{z|8,1} (3.3.1.9)

Proof: Divide the 2r subtrees that emanate from the root node into r pairs
and let 21 be the number of nodes that are visited in the i'th pair. Then
since the root node corresponds to r steps and all other nodes correspond to

a single step, we have

r
g I A+ (3.3.1.4)
1=1
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Taking expectations of the above equation and then noting that 1 + 21 equals
the number of nodes in a binary tree with mean u/r we have Eq. (3.3.1.1).

To prove Eq. (3.3.1.2), square both sides of Eq. (3.3.1.4) to obtain,

-1 «r r
=2 ] ] a+gpa- td+ I G+ Ly (3.3.1.5)
i=1 j=i+1 1=1

Taking expectation of Eq. (3.3.1.5) and noting the independence of 21 and lj
for 1 # j we have Eq. (3.3.1.2).

QED

Theorem 3.3.1.2: Let the source model be Poisson, and %, d, u be as defined

above, (Note that d is the same as dz)‘ Then

E{d|u,r} < .55E{2|u,r} + .321 (3.3.1.6)
and

E(d|u,r} > 2 E(2[u,r) (3.3.1.7)

Proof: Here, again, divide the tree into r pairs of subtrees and observe
that each pair is equivalent to a binary tree where the expected number of
contending packets is %.

Assuming that each pair 1is processed in sequence, we have

E{d|u,r, test packet is in the 1'th pair} = (1-1)E{2|E,1} + E(d|5,1)
(3.3.1.8)
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Next multiply by %-and sum over i to obtain
E(alu,r} = 52 E(2|E,1) + E(a]¥,1) (3.3.1.9)
But from Appendix A2.4.2
E{d|y,1} < .55E{2|y,1} + .321 (3.3.1.10)
and
E{d]y,1} > 7 E(2]y,1} A (3.3.1.11)
Substituting Eq. (3.3.1.10) into Eq. (3.3.1.9) we have

efa|¥,1} < &80 ¢ pe|l1) + 32 (3.3.1.12)

But for r > 1,

|A

7r .55 (3.3.1.13)
Therefore, substituting Eq. (3.3.1.1) into Eq. (3.3.1.12) and then applying
Theorem 3.3.3.1, we get Eq. (3.3.1.6). To obtain Eq. (3.3.1.7), substitute
Eq. (3.3.1.11) into Eq. (3.3.1.9) and apply Theorem 3.3.1.1.

QED
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3.3.2 Upper and Lower Bounds to Average Delay

Here, upper and lower bounds to E{8}, that are functions of A, will
be obtained for the dynamic tree. This will be accomplished as follows.
First, bounds to E{8} that depend on E{2} and E{lz} are obtained. Secondly
r*(u), the optimum relationship between u and r, is obtained. (Note: 2r is
the degree of the root node.) And finally, r*(u) is substituted into
Ef2|u,r}, E{lz|u,r} and E{d|u,r} so that techniques similar to those used
in Section 2.2.1.3 may be applied here to obtain bounds to E{%} and

E{lz} that are functions of A.

E{6} vs E{%} and E{2%}

Since Eqs. (3.3.1.6) and (3.3.1.7) are identical to Eqs. (2.2.2.16)
and (2.2.2.17), the results of Section 2.2.2 (Eqs. (2.2.2.20) and (2.2.2.25))

are applicable here. Therefore,

2
E{ﬁ}‘i 1.05 E%%E% + .321 {3:53.2.1)
1 E(2%) . 1
E{6} > 2 TE(LT + 7 E{2} (3.3.2.2)

*
Determination of r (i) for Even Degree Node Tree

The quantity r*(u) is the optimum relationship between the degree of
the root node and the expected number of contending packets for a tree where
the root node is restricted to be even and all others are binary. It was
calculated by a procedure analogous to that used in Section 3.2.3 to obtain
g;; the result is,
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. 1 for u < 3.40
r () =
r for 3.40 + (r-2)2.30 < u < 3.40 + (r-1)2.30

Determination of E{8} vs. )\

(3.3.2.3)

: *
Next r (u) is substituted into Eqs. (3.3.1.1) and (3.3.1.2) to obtain

* s %
E{2|u,r (1)} and ¥ E{2°|u,r (u)}. These two quantities are plotted in

*
Fig. 3.3.2.1. The discontinuities of E{Lzlu,r }, which are evident in this

figure, are due to changes in the degree of the root node.

As in Chapter 2, it can be shown that

|2,,c°} < 2.3250(8,-1) + E(8&, . |%,=1,1}
b = 3

E{Zj+1

3 j+1

Jrtad, 1,,5") < 23250001 + /R =1,1}

£
1 +1l%y

*
/ z{z§+1|z } > 2.32508, + .6

sl 3

E{2|u,1} for u < 2
fu(u) =
2.325(u-2) + E{%|u=2,1} u>2

*
Where fu is a convex, increasing lower bound to E{L|u,r (w)}.

Continuing, as in Chapter 2, it can, furcher be shown that

2D()
E{} < 1+ 9575
B2} > 2"
o161~
e e e T R e ————————————— ——

(3.3.2.4)

(3.3.2.5)

(3.3.2.6)

(3.3.2.7)

(3.3.2.8)

(3.3.2.9)




g

E[2%x] and E[/p] (algr. steps)

] ] 1 1
o) 1 2 3 4 5

& 3

1 (packets)

Figure 3.3.2.1 E{2|u} and /g{lzlu} versus U for the Optimum
Dynamic Tree/Poisson Source System
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where o fc(l*)

and fc(l) = fu(ZAl)

2
Emz}.i 4.65cAE{2} + ;
1 - (2.325))
where
2
e /’E{zj+1|u = 21} - 2.325)
and i

E{zz}‘z 2.79)E{2} + i36
1 - (2.325))

(3.3.2.10)

(3.3.2.11)

(3.3.2.12)

Finally, from Eqs. (3.3.2.1), (3.3.7.2) and (3.3.2.7) through (3.3.2.12) we

have
4,88c) 1.05¢
E{8} < 7+ e
1 - (2.325)) (1 - (2.3250)°12, )
208} > max [(1.3951\ 5 + .18 —
7 1-(2.325)) [1-(2.325)) 1%, Q)
=163~

+ .321 (3.3.2.13)

l —_— —

(3.3.2.14)
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Equations (3.3.2.13) and (3.3.2.14) have been calculated and they are plotted

in Fig. 3.3.2.2. Note that the maximum arrival rate is .430 packets/slot.

3.3.3 Average Throughput

Based on the results of the preceding section and Section 2.3, it
follows that the maximum average throughput for the optimum dynamic algorithm
is .430 packets/slot. Furthermore, the average delay vs. average arrival
rate results of Section 3.3.2 may be interpreted as average delay vs.

average throughput (see Fig. 3.3.2.2).

3.3.4 System Stability

In this section, we will consider the stability of the optimum
dynamic tree where the root node has degree Zr* and all other nodes are
binary. The definition of stability of the multi-access system with the
dynamic algorithm is the same as it is with the static algorithm. That is,
the system is k'th order stable if the k'th moment of the delay is finite.
In this section we will prove that if E{2} exists, then the generating
function of 2 also exists (L corresponds to the number of algorithm steps).
Since in Section 3.3.2, we showed that E{L} is finite iff A < .430 and
since E{[delay]k-l} < w{f B{lk} < o, the preceding statement allows us
to conclude that all the moments of the delay are finite as long as A < .430
packets/slot.

Let G(s,u) and Gd(s,u) be the generating functions of 2 given u for the
binary and for the dynamic tree algorithms. The analysis of this section is

organized as follows.

=164~




103

"; -
Q
b
“21()2._
= -
o -
oS N
>~ F
S L
()
©
Ko L
w
|
10 |- |
E I
: l
L |
|
L I
|
|
1 | 1 1 : J
0 04 0.2 03 04| 05
4

a4
o

N\ (packets/slot)

Figure 3.3.2.2 Upper and Lower Bounds to the E{delay} versus the

Arrival Rate for the Optimum Dynamic Tree/Poisson
Source System

Note: An algr, step equals one round trip delay
plus two slots
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p 18 Show that G(s,H) < estE{llu} * &) for 0 < s < So* 0 <wuc< 3.4,
S > 0, and € arbitrary.

s(E;(2|u} + €]
ii. Show that Gd(s,u) <e for all u and 0 <8 < So*

8y > 0. Note that E,{¢|u} is the indicated expectation for the

optimum dynamic tree algorithm.

11i. Argue that E{esg'} exists if E{2|u} exists or equivalently if

A < .430 packets/slot.

G 2 Upperbound to G(s,u)

Let

s s u[ ess e, 1]
Gu (s,u) = e"u<es - (2-: )) + ue-u(es-l) + -2;3— e 2-e (3.3.4.1)
e e

foro_f_s < 1In2

Then in Appendix A2.8 we show that

G(s,n) < Gu(a,u) for s < 1n2 (3.3.4.2)
and
Es,m) < 36 (a,1) for s < 1n2 (3.3.4.3)
-166-
v RO & T e SO




It can be shown that if a generating function is bounded, then it

is continuous in s. The same is true for %%. Therefore, it follows from

Eqs. (3.3.4.2) and (3.3.4.3) that G(s,u) and %;G(s,u) are continuous in s

for s < 1n2. Note that G(s,u) and %;G(s,u) are also continuous in u. This

k_-u

follows from the fact that P{j packets are active} = e

k!

Since G(s,u) and %;G(s,u) are continuous in s and yu, %glnc(s,u) is

continuous in s and 4 for s < 1In2 and u. Then, in any closed bounded region,

say 0 < s 5.% In2, 0 < u < 3.4, %glnc(s,u) is uniformly continuous. Thus

for any € > 0 we can choose s, > 0 so that

0

%;1n6(s,u) j_%;lnc(s,u) +efor0<s<s

s=0

0,
Therefore, since %gln(c(s,u) l = E{%|u},

s=0

s[E(2|u) + €]

G(s,u) < e for s < 8ps 2 <u<34

ii. Upperbound to Gd(s,u)

0 < W< 3.4 (3.3.4.4)

(3.3.4.5)

*
Let 2r (u) be the degree of the optimum root node. Note that this

*
tree corresponds to r (u) independent binary trees where the mean number

*
of contending packets at each subtree is u/r . Therefore, from Eq. (3.3.4.5)

we have

or' [E{2|L} + €]

Cyls,m) < e % s <
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But rE{l'%} = E;{2|u} and Y- < 3.4 (see Section 3.3.2), therefore
{

s(E {2|u} + = €]
Gyls,m) < e Y 5 s <8 {3.3.6.58)

iii. Existance of E{esz}

In Section 3.3.2 we showed that E {f|u} < 1 + 1.163u. Substituting

this along with 2=£ and p=2AL, into Eq. (3.3.4.6) we have

i+l 3

2 (es!-jﬂ“ } < 8[(1.163 + €/3.4)2) + 1]
j -—

d (3.3.4.7)

Finally, from Theorem 2.4.0.1 we have

s 1
E{e '} exists for A < T 163 T /30 and 8 < s,

but € is arbitrary so Amax =  ,430 packets/slot.

)

It can be shown that if E{esz} exists for s < s, then so does E{%

0
for any k.

This concludes this section.
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3.4 An Efficient Suboptimum Dynamic Tree Algorithm

In this section we will consider a tree algorithm whose root node
degree is constrained to be a power of 2, but whose all other nodes are
binary. The advantage of such an algorithm is that it is relatively easy
to implement. The reason for this is that as the root node degree is varied
dynamically, it is not necessary to choose a different tree and a different
addressing scheme each time; variations in the root node degree may be
realized in a single binary tree simply by varying the depth of the nodes
where the algorithm originates.

In Subsection 3.4.1, we determined the optimum tree given the above

constraints. That is, if we let,

* Ke1,2,... fori=0

g, = (3.4.0.1)
2 i>0

*
Then we will show that K , the K which minimizes E{h/u,K}, is given by

< 1 for u < 3.40 :
K = (3.4.0.2)

K for 3.4002%%) < u < 3.402%Y) g5

In Subsection 3.4.2, where the above algorithm is analyzed, we obtain
upper and lower bounds to the E{delay}; these are illustrated in Fig. 3.4.2.1.
In this section we also show that the maximum throughput is less than .430

but greater than .420 packets/slot.
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3.4.1 Optimizing the Suboptimum Tree

Let a dyanmic algorithm have a tree with node degrees given by

A R N0 SO P g

g, = (3.4.1.1)
2 i>0

Then, in this section, we will determine the K which minimizes E{%/u,K}.
Note that since h = 2%, minimizing E{2/u,K} is equivalent to minimizing
E{h/u,K}.
By making the association that 2r = ZK, we have from Eq. (3.3.1.1)
that
g
E{2|u,K} = = (2|1} (3.4.1.2)
2 2K
*
As in Section 3.2.3, K may be determined by setting
E{2|p,K-1} = E{2|u,K} (3.4.1.3)
and then solving for {i(K) for K = 2,3,4,... . Where {i(K) is defined by
K" = K for fi(K) < u < A(R+1) (3.4.1.4)
This problem is considerably simplified if both sides of Eq. (3.4.1.3)

are divided by u before it is solved. (Note that this operation does not

affect the solution fi(k).) The simplification arises from the fact that
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E{2|u,2x}/u is simply a function of u/ZK, therefore, as will be shown below,
i(K) = ﬁ(2)2K-2; and it follows that Eq. (3.4.1.3) need be solved only for
K= 2, Let
k. 2F 2
HW/2D) = 5= E{e|,1) (3.4.1.5)
H 2K

then 1if f1(2) satisfies

H(u/2) = H(u/4) (3.4.1.6)
it follows that

A = 1(2)2%? (3.4.2.7)
will satisfy

ww/2%Y) = w25 (3.4.1.8)

Equation (3.4.1.6) was solved numerically; and the answer is

u(2) = 3.40 (3.4.1.9)

The final result to this section follows from Eqs. (3.4.1.4), (3.4.1.7) and

(3.4.1.9). It is given by
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1 for u < 3.40
K - (3-4.1.10)

K for 3.402X2) < u < 3.402%1), k> 1

3.4.2 Analysis of the Suboptimum Algorithm

The first step of the analysis is to determine Bu and Bz, the slopes
*
of the straight lines that respectively upper and lower bound E{2/u,K }.

These two quantities are given by,

%*
B = max ELILKD (3.4.2.1)
w>3.4 2
*
8, = min E{t/u,K } (3.4.2.2)
u>3.4 s

From Eq. (3.4.1.10) and the fact that B{llu,K}/u is simply a function of

uIZK, it can be shown that

* %
- E{2|u,R} _ — E(2|p,K} b 2.3)
e TG 3.4<p<6.8 Y

and

* *
min E{2]u,K }- min Ei&lH;&.l (3.4.2.4)
wis " 3.4<p<6.8 ¥
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Equations (3.4.2.3) and (3.4.2.4) were solved numerically and the answers

are

Bu = 1.189 (3.4.2.5)
B2 = 1.164 (3.4.2.6)

. *
The corresponding B's of //E{lzlu,K } equal those of E{L|u}. To see

this, first note that by setting 2r = 2K in Eq. (3.3.1.2) we have
2 * K*l K*l 2 K*l K*I 2 K*l
E{(2%|u,K'} = 27 (27 =1)E“ {2 |u/27 7,1} 4+ 20 TE(RS |w/27 1) (3.4.2.7)

Next take the square root of this expression, divide by u, let y + =,

and use Eq. (3.4.1.10) to obtain,

* * < 1.189
/B 1K) JE2luk} ) - (3.4.2.8)

H Lo 1.164

lim

|v

*
Using the above results and numerical calculation of E{2|u,K } and

*
E{£2|u,K } it can be shown as in Section 3.3.2 that

B(2) < 1+ 2N (3.4.2.9)

(2} > 2" (3.4.2.10)

* *
where £ = fc(l )
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£.(2) = fu(ZAQ)

E{2|u,K=1} for u < 2

L 2.328(p-2) + E{2|u=2,K=1} u > 2

Furthermore it can be shown that

2
E{lz}.i 4.756cAE{2} +2c (3.4.2.11)
1 - (2.378))
where
c= E{zj+1|u-2x} - 2.378)
and
E{zz}.z 2.328E{2} + .25 (3.4.2.12)

1 - (2.3280)2

Now substitute Eqs. (3.4.2.9-3.4.2.12) into Eqs. (3.3.2.1) and (3.3.2.2) to

obtain

2
E{S} < 4.99 C X + 1.05(:

< + 321 (3.4.2.13)
1- @a8n?  1- f2.3780 00
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and

E(8} > m[(L““ A 412 ——+ %E;m) 5 O
1- (232802 1- 232027 )
¥ (3.4.2.14)

Equations (3.4.2.13) and (3.4.2.14) are the desired bounds; they are

illustrated in Fig. 3.4.2.1. Note that the upper bound approaches infinity

at A = .420, whereas, the lower bound approaches infinity at A = ,430.
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APPENDIX A3

SELECTED THEOREMS OF CHAPTER 3

Theorem A3.1: Let .1 < < 8; El‘— < 1.2;

1%2

L(8;.85.4) = 8,6 + 88,5~ 42 T2 tg,8,6(—L—) (a.3.1)

1=0 818,27
and
e Shu 2

Lg(8:85:4) = 8,800 + 8,8,8( ) * 2u(8132 (8132) ) (A.3.2)
then;

L(8;,85,H) > L) (8;,8,,1) (A.3.3)

Proof: This follows from Property 1D in Appendix A.2.2.

QED

Theorem A3.2: Let Lz‘“l'“Z’”) be as in Eq. (A.3.2), furthermore, let

12 10, 8, >3 and .1 <y < 8. Then the minimum of 1-1(81,82.11) occurs

at g, = 10, 8 = 3.

oL
Proof: This theorem will be proved by showing that -5-—2- > 0 and
L
rﬁ > 0. Differentiating Eq. (A3.2),
g 32-3
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oL
332

— = ta(“—) - tela? 4

88,

By _ p—Ey?
> E(gl) 2(g S )

g2 _ La,3
238" - 4i® -

g

2(—-L) from Property 1B in

(
98,8y

)

182

%

since g; 2 > 10, —}‘-l-- >0

Appendix A2.2

since g, >3

since L < :

£,8;

(A3.4)

(a3.5)

(A3.6)

(A3.7)

(A3.8)

For the second part of this proof substitute the expression for £(u)

given in Property 1A in Appendix A2.2 into Eq. (A3.2) to obtain,

oL
——’“ - EQu) +

> E) -

= &£ -

ug, 10
k=1

_(P_) ...

LBy ,2
o6

g

- Rdy? . 83 for &< 1

(P—)
g 8 932
178
a165'° at g, =3
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g . 21 131 1 178 1
3313“[2' 6 2 "G - g 3]
g &
>0 for u < 1.2
For u > 1.2

G > £(1.2) = .337
Bu£
(§—)2(12) (1‘—>3 18 < a2
Therefore from Eq. (A3.9)

aL,
20 for > 1.2
g, — -

Eqs. (A3.11) and (A3.12) taken together conclude the proof.
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(A3.12)

QED
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Theorem A3.3: Let Lg(gl,gz,u) be as given in Eq. (A3.2); furthermore,
let 2 < g8, <9, g, > 6 and .1 < y < 8, Then the minimum of Ll(gl,gz,u)

occurs at g, = 6.

Proof: We will prove this bv showing that when 811+8,,} are as specified
aL
in the above statement then -5;&- > 0. From Eq. (A3.5) we have that
2

;—%3 6(-;’—1-> - 2d—*
> r,(sLl) o 1—;(1;—1\7 for 8,26 (A3.13)
- (%)2(5(%2 s(ﬁ) -3 (A3.14)
Since };—1 > 0, we need to show that (—:l)zﬁ(g—l) > -]%

Now since 2 < 8, €9 and .1 <u<8it follows that

o & B
30 < 8 <4 (A3.15)

And since ZS(E(x)/x?) < 0, we have that

8
Gh%d > @%w for 0 < L <4 (A3.16)
1 1
= ,05678 (23.17)
> 1/18 (A3.18)
QED
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Theorem A3.4: Define,

® 4
H(g,w) =8+2 §J 28 gL, (A3.19)
u M H i

1=0 2’8

And let U > 8 and g be integer and greater than one. Then

min H (g,1) < 2.34 (A3.20)
g

Proof: This will be proved by first finding an interval X such that for any
U > 8, an integer y > exists such that u/g € X and then showing that

max H (X) < 2.34. First, we prove that X = b1l 1299
(u/g)ex g

satisfies the above criteria. It is sufficient to show that

sup[ min & = 1.257 (A3.21)
w8 | g<p/1.1 8

But mén -E- = }71 for 8 < u < 8(1.1). Therefore,

sup (4] = (1.1)8 = 1.257 (A3.22)
8<u<8.8
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Similarly for 1.1k < p < 1.1(kt+l) ; u>8

sup min 3 k+l
1.1k<p<l.1(k+1) [315P/1~1(u/€ﬂ 1.1~ for k > 8 (A3.23)

Equations (A3.22) and (A3.23) prove Eq. (A3.21)

Now let
x = yu/g (A3.24)
then from Eq. (A3.19) we have

H()-l+2§2—1£(—5) (43.25)
u ' x X 21 =
1=0

Finally, Hu(x) was maximized over xeX and the result is
max Hu(x) = 2.34 (A3.26)
xeX

QED

Theorem A3.5: Define

@ 1
Hy(x,8) = 268) + g2X + 2 ] z—xsﬁ(;’i‘—) (A3.27)
1=0 .
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and let 0 < x < .5and g > 3. Then

Hy (x,8) > 2.498 (A3.28)

Proof: Since the sum in Eq. (A3.27) is positive we have that

Hy (x,8) _{%5(8) + 35,{5) (A3.29)
> ey + 35X gor g > 3 (43.30)
>l + %x -zt (A3.31)

The last equation follows from Property 1B of Appendix A2.1.2. Now for
0 <x< .5 the right side of Eq. (A3.31) is decreasing in x. Therefore,

evaluating it at x = .5 we have

Hy (x,8) > 2.498

QED
Theorem A3.6: Let Hz(x,g) be as in Eq. (A3.27). Also let .5 £x%3
and g > 3. Then
Hl(x,g) > 2.3 (A3.32)
-183-




Proof: First we prove this for g > 12

It can easily be shown that,

2 :
_d_ﬂi).,_l_[l - (1+x+x3)e'x
de x 3

] <0 for x <3
x

therefore

min [§_£_)_] = min [_.L_l ﬂ_).] - g_ﬂ__l

(A3.33)
«5<x<3
But from Eq. (A3.29)
Hy(x,8) > 36(8) + 12543 for .5 < x < 3and g > 12 (A3.34)
= 2.497 for g > 12 (A3.35)
Finally, Hl(x,g) is minimized over g = 3,4,...,12 and .5 < x < 3. The
result is
(x,8) > 2.34 for .5 < x <3 and g = 2,3,...,12 (A3.36)
Theorem A3.7: Define H(gl.gz.u) as
o M e
H(gy,8yH) = 60 + —-—5( e 7 ot -——z(g =) (A3.37)
1°2
i=0
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and let 8118, be integer and greater than one.
and E 3.
81 B

Furthermore, let u > 8

then chesm%n H(gl.gz.u) lies on g, = 2

(A3.38)
1%2
Proof: Since §(u) is an increasing function we have for u > 8 that
3 8.8 - 8,8
Bias o) £ M 8 — @ R R J 2 < ket ) (43.39)
| 5 1=0 88,2
8, 8,8, - 213132
Hg)8W) 2 5608 + Ed +2 | —fE @0
g 1=0 8182
for u > 8
; u/gy
8)e
Now for 2 < gy < 1+ “/31 the following holds
E(8) + g,E(u/g,) > 8y (A3.41)
therefore,
818, = 2'g8, u
H(g,,8,,H) By e m % 7 (A3.42)
1=0 81852

¥ and
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H(g,,8,,1) > min[E + 2 | ZBgl)) (A3.43)
1=0

But the right side of Eq. (A3.43) is the upper bound (Eq. (A3.39)) evaluated
u/g
at g, = 2 and minimized over 8- So we have proved that if g,y < %3225——-1,
= ulg1
then the minimum of H(gl.gz,u) lies on 8, = 2.

The proof is concluded by demonstrating that Eq. (A3.43) also holds

u/g
8)e ' °1 ;
if iy > g u/gl' Letting x = y/g in Eq. (A3.40) we have from Theorem A3.1l
that ;
Hixis,) > 26(8) + 2200 + 25 - 8 (/g )2 (A3.44)
80 Z % X g, 9 & .
>Lled) + 200 + ZE -8R oM gor g > £ (A3.45)
x x g, 9 l+x 82 7 T+x .
Now let y be defined by
E(x) , 2 (A3.46)

Sl The- s,

Then it can easily be shown that y is convex in gy for x > 0 with the

minimum occurring at

* 2
‘2'*Jsu)

(A3.47)
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But for x > 3

s 48
8 X T (A3.48)
and since y is convex it follows that
e* E(x) 14+x
yzm . +2x(——;) for x > 3
e
Therefore from the above equation and Eq. (A3.45) we have that
x
£(8) e” E(x) o (1+x) _ 8, x %2
Btk 2t Trs 0 = 3T )
> 2.55
and from Theorem A3.4 we conclude that
] 21
>min [(B+2 J £ Bg -ty
31 1=0 8
QED
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CHAPTER 4

THE TREE ALGORITHMS WITH A FINITE SOURCE MODEL

4.1 Introduction

In this chapter we will consider a multiple access system with 2N
independent sources. The transmissions process is essentially the same as
thac which is described in Chapter 2. That is, packets that arrive in ome
epoch are processed in the following epoch by a tree algorithm (both static
and dynamic algorithms will be considered in this chapter). Here, as in
Chapter 2, a group of sources that has undergone a conflict is divided in
half and the two subgroups transmit their packets in two consecutive slots.
The decision to divide a group in half, the transmission of the two halves
and the observation of the results of those two transmissions constitute
an algorithmic step. The number of algorithmic steps in one epoch will be
designated by 2. ”

It will be assumed that a source may receive at most one new packet per

epoch. The probability that a source will receive a packet in the next step

given that it has not yet received one in the present epoch, is a constant and

will be designated by p. It follows then, that q, the probability that a

source will receive a packet in an epoch of length £, is given by
L
q=1- (1-p)". (4.1.0.1)

It should be noted that in the above source model, a source can have
at most two packets at any one time; one that arrived in the previous epoch

and which is in the process of being transmitted, and one that arrived in
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the present epoch and which will be processed in the following epoch.

The channel model is the same as that which was considered in Chap-
ters 2 and 3. That is, it 1is slotted and the sources have the means
to determine whether there are 0, 1 or more than 1 packets in any one slot.
If a slot contains more than one packet, then it is assumed that no one
gets through.

The tree searches of the algorithms that we will consider here will
be carried out serially and the source addresses are assigned deterministi-
cally. The parallel search and the random address assignment will not be
considered here. It is important to point out however that, even though
for the Poisson source model the random and deterministic source assign-
ments had the same delay and throughput properties, in the finite source
model it can be shown that the random address assignment has larger average
delay than that of the deterministic.

The rest of this chapter is organized into two sections. In Section
4.2 we consider the static binary tree. Here we obtain an upper bound to
the average delay and a lower bound to the average throughput in terms of
p. We also combine these two bounds to obtain an E{delay} vs E{throughput}
performance curve. This is illustrated in Fig. 4.2.2.2 for N=6. In Sec-
tion 4.3 we consider the optimum dynamic tree algorithm. Here we restrict
all nodes to be binary except for the root node which is allowed to have
a degree that is a power of 2 but less than or equal to 2". Subject to
the preceding resctrictions, 8 is chosen so as to minimize the expected num-
ber of slots needed to process the contending packets, given q. The optimum
8o is given by Eqs. (4.3.1.1) and (4.3.1.6). Following the determination

of the optimum tree, first, we obtain upper and lower bounds to the average
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delay and average throughput respectively, and then obtain an E{delay} vs
E{throughput} curve. The E{delay} vs E{throughput} curve is shown in
Fig. 4.3.2.5. Section 4.3 is concluded with a theorem proving that the

E{delay} for the optimum dynamic tree protocol is less than or equal to the

E{delay} of the TDMA protocol.
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4.2 Static Binary Tree Algorithm with Finite Source Model

This section contains two subsections: 4.2.1 where an upper bound to
the E{delay} is obtained and 4.2.2 where a lower bound to E{throughput} 1is
obtained. Both of these bounds are functions of P, the traffic parameter.
They have been computed for N=6 and they are plotted in Figs. 4.2.1.4 and
4.2.2.1. The E{delay} vs. E{throughput} curve is given in 4.2.2.1.

4.2.1 Average Delay .

We begin this section by presenting several definitions. We will be
using the following quantities: ej, 21, dj s, I;, p, and q. The first five
of these are defined in Section 2.2 and the last 2 are defined in Section

4.1. Furthermore, let

m m
¥(gum) = 1 - (1-q)2 - 2%q(1-q) D (6.2.1.1)
m
$(q,@) = 1 - (1-q)¢% -1 (4.2.1.2)
m=]l
D(g,m) = §  2Yy(q,m-1) (4.2.1.3)
10

¥(q,m) is the probability that there are at least two active sources in a
branch with 2™ leaves. ¢(q,m) 1is the probability that there is at least
one other active source in a branch with 2® leaves given that one particular
source of that branch is active. D(q,m) is the expected number of nodes
visited in & branch with 2™ leaves. These quantitites are considered
in more detail in Appendix A4,

The analysis is carried out as follows:

i. Calculate 3{6'11.9}.
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1i. Show that E{Glll,p} is concave and increasing in %,.
1ii. Calculate i;, an upper bound to E{L}.
iv. Apply Jenssen's inequality to the above three steps to prove

that E{§|p} S_E{Glzu,p} =5,.

i. Derivation of E{GIQI,p}

The delay that a packet undergoes can be decomposed into d1 and
d2 where dl is the time spent by the packet in the epoch of arrival and
d2 is the time spent in the following epoch, i.e., the epoch where it is
successfully transmitted. As a consequence of this observation we have

that
s{slzl.p} - B{dllll,p} + z{dzlzl,p} (4.2.1.4)

The subscript of £ will not be used where ambiguities do not arise.
Note that 21 refers to length of the epoch in which the packet arrived
and wvhen a random variable is conditioned on £ we will mean 21.

Next an expression for !{dlll.p} will be determined; this is accom—
plished by noting that, given that € has length £, the delay of a packet

th

arriving in the j  step of € is,

d, =2 -3j-1 (4.2.1.5)

1

th

The probability of a given packet arriving in the j  step is
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h|
P(3|2,0) = -931:21—7E for §=0,1,...,%-1. (4.2.1.6)
1- @1-p)

Multiplying Eqs. (4.2.1.5) and (4.2.1.6) and summing over j we have

L

B(d)|8,0} = 2 - 1 - 128= (op) (Gotlop) (4.2.1.7)
p(1 - (1=-p)7)

This is the desired expression for E{dllz,p}. !{dzll,p} is derived in

Appendix A4 and it is rewritten below,

N1
E(d,[2,0} = 1 + I [1+3 D(a,%0)] 6(q,8~1) (4.2.1.8)
1=1

where q, ¢, and D are given by Eqs. (4.1.0.1), (4.2.1.2) and (4.2.1.3). The
expression for E(§|%,p} follows from Eqs. (4.2.1.4), (4.2.1.7) and (4.2.1.8).

1i. Properties of E{§|%,0}

For N=6 and selected values of p, the quantity E{§|%,p} was cal-
culated for %=1,2,3,...63. The results are shown in Fig. 4.2.1.1. From the
computer printout, as well as from this figure, it is evident that E(8|2,p}
is concave and increasing in &. These properties will be used in Subsection

iv.

iii. Determination of Upper Bound to l{ll

In this subsection, first, we will derive Tu. an upper bound to
E{2)}, and then compute that upper bound for N=6. The upper bound follows
from the following theorem.
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Figure 4.2.1.1 E{delay|%,p} versus L for the Binary Tree Algorithm

with 64 Sources
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Theorem 4.2.1.1: Let 2j be the outcome of a Markov chain after the jth

transition and let fv(lj) be a nondecreasing concave upper bound to

E{£j+1l£j}. Furthermore, let L" be defined by
AR RO : (4.2.1.9)

) for £, > 2* then

and assume that %, > fv(z 3

] 3

lim

j-u-

B2} < 2" = T (4.2.1.10)

Proof: This proof is similar to that of Theorem 2.2.3.2. Therefore, it

will not be given.

QED

Next we will calculate E; for N=6. In Appendix A4 the following ex-

pression is derived.

z{zzlq} = 1 + 2D(q,N-1) (4.2.1.11)

Equation (4.2.1.11) is plotted in Fig. 4.2.1.2 for N=6, where for comparison
we also plot on the same figure E{£2|q} for the optimum dynamic tree —

this is derived in Section 4.3.1. E{LZ|Ll.p} follows from Eqs. (4.2.1.11)
and (4.1.0.1). This quantity is illustrated in Fig. 4.2.1.3. As can be
seen from this figure, for p > .016, :v(z*) - Eflzll*}. Equation (4.2.1.9)
vas solved for this f and for p > .016. The results are listed in Table
4.2.1.1. For p = ,004, .008 and .012, the following three linear expressions

upperbound l{lzltl} respectively.
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Figure 4.2.1.2 E{2|q} versus q for the Binary and the Optimum

Dynamic Tree Algorithms with 64 Sources
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Figure 4.2.1.3 E{.!.zlll,p} versus £, for the Binary Tree Algorithm
with 64 Sources

-197-




|

o

P i e thl thz
.004 1.04 1.24 .125
.001 1.2 1.6 .232
.012 1.9 2.6 <314
.016 19 22.5 .372 .331
.020 32 36 .410 .370
.030 50 59.5 436 .436
.040 57 70 .436 470
.050 60 77 <437 489
.100 63 89 <439 .507

TABLE 4.2.1.1

AVERAGE DELAY AND AVERAGE THROUGHPUT

BINARY TREE ALGORITEM WITH 64 SOURCES

FOR
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E{2,[2,,.004} < .224%, + .804 (64.2.1.12)
E{%,%,,.008} < .5002, + .605 (4.2.1.13)
E(%,]8,,.012} < .7502, + .473 . (4.2.1.14)

These fv's were used in Eq. (4.2.1.9) to obtain I; for the indicated
p's. The results are listed in Table 4.2.1.1. On that same table we also

present 3;, ;Ei and EE}. 3; is the upper bound to the E{delay} which is de-

termined in the following subsection and Eﬁi and Eﬁé are lower bounds to

the expected throughput which are derived in Section 4.2.2.

iv. Determination of Upper Bound to E{delay}

In Subsection ii, it was shown E{8|%,p} 1s concave and nondecreas-

ing in 2. Therefore, from Jenssen's inequality and the concavity of

E{§]|2,0} it follows that
E{§|p} < E{§|2,p} (4.2.1.15)

and from the nondecreasing property of E{§|%,0} we have the following upper
bound.

E{8]p} < z(sl‘fu.p} s '5'“ (4.2.1.16)

Note that the right side of the above equation equals Eq. (4.2.1.4) with
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Ll replaced by I;. The values of E;(p) that were calculated in the pre-
ceding subsection were substituted into Eq. (4.2.1.16) and the results
are presented in Table 4.2.1.1 and in Fig. 4.2.1.4.

One more result will be developed before comcluding this section; it
is an exact expression for E{delay} at p=l. This is a useful quantity
since it is the maximum E{delay} over p. When p=l, a packet arrives at

each source in the first step of each epoch with probability ome. There-

fore, it can be shown that

E(d, |o=1} = 2%-2 (4.2.1.17)
N2 .1
and E{d,|p=1} = Semere, (4.7.1.18)
and we have
3™ +N-5
E{§]p=1} = 3 (4.2.1.19)

This should be compared with the maximum average delay for the optimum
dynamic tree which, as we will see, is given by
"y

N=
Edynfﬁlp-l} = (3(279)-1)/2 (4.2.1.20)

This concludes Section 4.2.1. Next we consider the expected throughput.

4.2.2 Average Throughput

This section has two objectives. The first is the determination of
a lower bound on the E{throughput} as a function of p, and the second is
the determination of an E{delay} vs E{throughput} curve. These two results

are displayed in Figs. 4.2.2.1 and 4.2.2.2.
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Figure 4.2.1.4 Upper Bound to the E{delayl} versus p for the Binary
Tree Algorithm with 64 Sources
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The definition of throughput for the finite source model is the same
as it was for the Poisson source model. That is, the average throughput
is the fraction of time that the channel contains valid data, i.e., exactly
one packet/slot. Even though the definition of E{throughput} is the same
for both cases, the computations are more involved in the finite source
model because of the assumptions that a source can accept only one packet
per epoch.

We begin by deriving an expression for E{throughput} in terms of the
system parameters. By using the law of large numbers, one sees that
in an interval of length 2kE{%} slots the number of packets that is succes-

sfully transmitted approaches k[ZNE{q) + o(k)] for large k, where 2, q,

and N are as defined previously and t:: o(k)=0. It follows then that,
E{q} 2"
E{ throughput} = EEfIT‘ (4.2.2.1)

Note that in the above equation both E{q} and E{L} are functions of the
traffic parameter p.

Next we will develop two lower bounds to E{throughputl}; they will be
designated by Eﬁi(p) and Eﬁé(p). Since, as will be shown shortly, neither
of these bounds is tightest over all p, we will take the lower bound to the

E{ throughput} to be,
th, = Hlx{thl, chz} (4.2.2.2)

Now we will derive Eﬁi. Equation (4.2.2.1) can be rewritten as follows
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JE(q! Ll}p{ll}
e
Z:‘“‘z"uh’{’u}
1

E{throughput} = Pl

¥-1 min Elal2y)

22 5, WOET © th,

(4.2.2.3)

Where z{qlzl) and s{zzlzl} are given by Eqs.(4.1.0.1) and (4.2.1.11).

Next we will derive th,. First note that E{2|q} (see Eq. 4.1.0.1)

2
can be lower bounded as follows:

E{q[2} > at - a+p  for 2=1,2,...,2%1

where

Taking expectations of both sides of Eq. (4.2.2.4) we have
E{q} > a E{2} - a +9p

Substituting this into Eq. (4.2.2.1) we have
E(ch} > (a + SPpR12%0

It can be shown that p -~ a > 0, and therefore
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r T T,
E(eh} > (o + 222" = W, (4.2.2.8)
z\.l
This is the desired form for ?l;z. ?ﬁl(p) and Eﬁz(p) were calculated for
N=6 for several values of p. The results are presented in Table 4.2.1.1
and in Fig. 4.2.2.1.
The performance curve ('G-u vs E!.) can be obtained directly from
Table 4.2.1.1. This is plotted in Fig. 4.2.2.2.
-
\.‘-;
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Figure 4.2.2.1 Lower Bounds to the Average Throughput versus p for
the Binary Tree Algorithm with 64 Sources
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4.3 Optimum Dynamic Tree Algorithm with Finite Source Model

There are two major objectives to this section; the determination of

the optimum finite tree algorithm and the analysis of that algorithm. These
two problems are considered in Subsection 4.3.1 and 4.3.2, respectively. In
Subsection 4.3.2 we also prove that the optimum dynamic tree algorithm is
superior to the TDMA protocol.
4.3.1 Optimum Tree

The criterion of optimality to be used here is the same as that of
Chapter 3. That is, the optimum tree is that which minimizes the expected
number of slots needed to process the ZN sources given that the probability
that any one of them has a packet to transmit is q. Since the number of
sources is finite, the optimization is carried out over a smaller set
of trees then it was in the Poisson source model. More specifically, we
are going to restrict all nodes to be binary except for the root node which
can have a degree that is a power of 2. In other words, if we let go-zx,
then the problem is to choose K=1,2,...,N so that 2E{%|q,N,K} is minimum.

The reason for restricting the initial degree to be a power of two is
easier implementation. Variations in the degree of the root node under this
restriction are equivalent to starting the binary tree algorithm at different
levels, thus not requiring a different tree each time the degree of the root
node is changed. For example, an algorithm whose tree has 2n leaves and
root node degree equal to 2‘ is equivalent to a binary tree algorithm that
starts with the nodes of depth K.

Now we will determine K*, the optimum K, as a function of q. More
specifically we will obtain an equation whose solution is ;(K,N), where
;(K.N) is defined by
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" = K for q(K,N) < q < q(K+L,N) (4.3.1.1)
As ve will shortly see, q(K,N) = q(N-K). It can be shown by a procedure
analogous to that of Section 3.3.1 that for a tree with 2N leaves and a
root node degree 2‘, that

E{2,]|q,N,K} = %1 g(e, |q,N-K+1,1} (4.3.1.2)

2 q. 1 ] 2 q’ ’ edede

Substituting Bq. (4.2.1.11) into this expression results inm,

E(L,|q,N,K} = 2571 {1 + 20(q,%B)) (4.3.1.3)
q(N,K) is determined by setting

!{Lzlq,u,l-l} - z(zzlq,n,x} (4.3.1.4)
and then solving for q. Substituting Eqs. (4.2.1.3) and (4.3.1.3) into
Eq. (4.3.1.4) and then rearranging we have the following expression which
defines q.

¥v(q, N=K+1) = 1/2
or

N-K+1

. o oaN=K#1) _ a2 «1) =
(1 + q(2 1)1(1-q) 1) = 1/2 (4.3.1.5)
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Equation (4.3.1.5) was solved for N~K=0,1,2,3,4,5. The results are

given in Table 4.3.1.1 below:

NK Q(N-K)
0 . 707
1 .38
2 .20
3 .10
4 .05
5 .025
TABLE 4.3.1.1

OPTIMUM ROOT NODE DEGREE

From the above table the following expression for q(N-K) is evident

- .707 for N-K=0
q(N-K) = (.38 N-K=1 (4.3.1.6)
¥ e NK > 2

The optimum K for Nw6é, which follows from Eqs. (4.3.1.1) and (4.3.1.6)
was substituted into Eq. (4.3.1.2) and the result is plotted in Fig. 4.2.1.2.
As can be seen from that figure, E{%|q} is the same for both binary and
optimum tree for small q. As q increases, however, the optimum protocol is
definitely superior. What this suggests is that the optimum algoritim
should be used when the traffic is heavy.

When K=N the tree algorithm is equivalent to the TDMA protocol. Since

. q(N=K=0) = 1//Z = .707 we see that TDMA is optimum if q > 1//2. What is
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surprising is that this result does not depend on N. The relationship
between the tree aigorithm and TDMA is considered in more detail in Theorem
4.3.2.1 in the following section.

We conclude this section with the presentation of the optimal dynamic
strategy. This is as follows:

1. Observe 21. the length of the previous epoch.

2. Substitute Ll into Eq. (4.1.0.1) to obtain q.

3. Use the q, determined in Step-2, to obtain K* from Eq. (4.3.1.6).

4. Use the tree, determined in Step-3, to resolve any conflicts

that may exist.

4.3.2 Analysis of the Optimum Dynamic Tree Algorithm

In this section we will analyze the optimum dynamic algorithm when it
is used in conjunction with the finite source model. First, we will develop
an upper bound to the E{delay} in terms of p, secondly, we will develop a
corresponding lower bound to the E{throughput}, and finally, combine these
two bounds to obtain a 3; vs Eﬁ; performance curve. These three results are
illustrated in Figs. 4.3.2.3, 4.3.2.4 and 4.3.2.5. 1In this section, we will
also prove (in Theorem 4.3.2.1) that the E{delay} of the optimum dynamic
tree algorithm is smaller than or equal to that of the TDMA protocol. This
interssting result should be evident from the work of the preceding section.

i. Upper Bound to E{delay}

As in Section 4.2.1 the delay is decomposed into d1 and dz. There-

fore, we can write

E(6|2,0,N,K} = x{d1|z.p.u,x} + z{dzlz.p,n,z} (4.3.2.1)
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E{dlll,p,n,x} in the preceding equation is the same as that of the static

algorithm. That is,

)
E(d,|2,0,N,K} = 2-1- 10=(l=p) (fotl-p) (4.3.2.2)

0 (1~(1-2)%)

B{d2|£.p,u.x} can be shown to be

-1)

2 (K1),
3

E{d,[£,0,N,K} = E{t,]q(2,p) ,N-k41,1} +

(4.3.2.3)
Eld,|q(2,p), N-K+1,1}

In the preceding equation, q, E[dzlq,u,l}. and Efzzlq,m,l} are given by
Eqs. (4.1.0.1), (4.2.1.8), and (4.2.1.11).

The conditional delay given by Eq. (4.3.2.1) was computed for N=6
and K=k" (from Table 4.3.1.1). The results are shown in Pig. 4.3.2.1. As
can be seen from that figure, !{6|£,p,u,t.} is increasing in 2 but it is
not concave. The nonconcavity of this function is especially evident for
p=.4 around £=10. Next, we proceed by obtaining fvl(l), the tightest con-
cave lower bound to E{6|£.p.n,x*) and then upper bounding E{§} by

B8} < £, (). (4.3.2.4)

The function fvl is determined graphically from Pig. 4.3.2.1 and from a

more detailed computer printout.
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The next step is to calculate I;(D). It can be seen that
* e 1 *
z{zzlzl.p,n,x} -2 E[lzlzl,p,N-K +1,1} (4.3.2.5)

where the conditional mean on the right of Eq. (4.3.2.5) is givenm by
Eq. (4.2.1.8). Equation (4.3.2.5) is plotted in Fig. (4.3.2.2) for Ne6.
By a procedure similar to that of Section 4.2.1, I;(p) is calculated. The
results are listed in Table 4.3.2.1. Finally I;. is substituted into
Eq. (4.3.2.4) and the upper bound to E{8}, thus derived, is tabulated in
Table 4.3.2.1 and plotted in Fig. 4.3.2.3.

11, Lower Bound to E{throughput}

Here as in Section 4.2.2, we will determine Eﬁi and Eﬂé. These
two quantities are defined by Eqs. (4.2.2.3) and (4.2.2.9). They have
been calculated using the values of i; given in Table 4.3.2.1, and the re-
sults are presented on that same table and in Fig. 4.3.2.4. Finally, by
using the lower bound to E{throughput} the m{t—hl, th,} we obtain from
Table 4.3.2.1 the 3; vs Eﬁi performance curve shown in Fig. 4.3.2.5.

iii. On the Superiority of the Optimum Dynamic Tree Over the TDMA Protocol

The following theorem is'baned on the observation that %; E{8|q}
> 0. That this is so follows by showing that

STEely 2>

Theorem 4.3.2.1: Let q be the probability that a source has a packet to
transmit and let § be the delay that a packet undergoes when it is processed
by the optimsum tree algorithm. Furthermore, assume that,
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P Iu '§u thy th,
0046 . 1,04 1.24 .125
.008 1.20 1.60 .232
.012 1.72 2.40 314
.016 6.8 7.7 372 .329
.02 14 14.9 410 .381
.03 19 30.5 454 443
.04 32 35.4 462 .481
.05 32 36.2 .505
ol 32 39.6 .549
o2 32 43.7 .600
.4 32 46.2 .700
.6 32 47.0 .812

AVERAGE DELAY AND AVERAGE THROUGHPUT FOR OPTIMUM
DYNAMIC TREE ALGORITHM WITH 64 SOURCES

TABLE 4.3.2.1
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Note: An Algr. step equals one round trip delay
plus two slots
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3 3L
57 E(8]2} 2

Then the E{delay} of the optimum dynamic tree protocol is less than or equal

to the E{delay} of the TDMA protocol.
Proof:

1
E{8} = [ E{6|q} dF(q)
0

integrating by parts we have,

.1’

£(6} = (5[q} P(q)| 3
0

1
{(ﬁ E{8|q)} F(q)dq.

But %; E{8|q} > 0, F(q) > 0, P(0) = 0, and F(1) = 1; therefore

E{8) < B(§|q=1}

But from Eq. (6.3.1.6) it follows that at q=1 the optimum tree algorithm

is the TDMA protocol.
QED
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APPENDIX A4
PROPERTIES OF THE BINARY TREE/FINITE SOURCE SYSTEM

Let there be ZN sources in a multiaccess system where each source may
be active with probability q, and assume that the multi-access protocol is
the static binary tree algorithm. Also let L and d have the same definitions
as they did in Chapter 2. Then in this appendix we will derive expressions
for E{%|q} and E{d|q}. Since the work of this appendix parallels that of
Appendix A2, we will not be as detailed here.

A4.1 Derivation of E{%|q}

The number of nodes £ visited by the algorithm may be written as follows:

N1 211
L=1+] J Xy (A4.1.1)
i=]1 j=0
where
1 1f node nij is visited
xij (A4.1.2)
0 otherwise

Since a node nij is visited if there are at least two active sources in Tij

we have that

P(xij-llq) = y(q,N-1) (A4.1.3)
where
¥(q,m) =1 - (1-q)2- - 2'q(1-q)2.'1 (A4.1.4)
-220-
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and it follows that

o S
E{2|q} =1+ | 2% ¥(q,N-1) (A4.1.5)
1=1
or
E{2|q} = 1 + 2D(q,N-1) (A4.1.6)
where
m=-1 "
D(q,n) = 120 2" Y(q,m~1) (A4.1.7)

Equations (A4.1.5) through (A4.1.7) are the desired results.

A4.2 Derivation of E{d|q}

E{d|q} 1is the number of nodes that are visited before a randomly se-
lected packet from the contending set is successfully transmitted. First
we will calculate E{d’lq}, vhere d_ is the mmber of nodes visited before

source-s is successfully transmitted. E{d.lq} may be decomposed as

l{d.lq} =X +Y (A4.2.1)

Where x‘ and Y. have the same definitions as in Appendix A2.6. That is, x.

is the avnrtgc‘nu-bor of nodes lying on s, and !. is the average number of
nodes above s that were visited before the successful transmission of s.

As in Appendix A2.6 we may write X. and Y. as
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N-1

X =1+ ] ¢(q,N-1) (A4.2.2)
. 1=1
and
N-1
Y, - 121 S;_; D(a,N-1) ¢(q,N~1) (A4.2.3)
where

m
¢(q,m) = 1 ~ (l-q)(2 ks
= Pr {at least 2 active sources in a branch of depth
m, given that a particular source in that branch

is active}.
To obtain the final result, first substitute Eqs. (A4.2.2) and (A4.2.3) into
Eq. (A4.2.1) and then add 3 E{d_|q} and % Eldgla}, as shown tn Eq. (a4.2.5).

Note that s is the ones’ complement of s.

1 e{d|q} + 31 (ag]a) el Ab.2
7 Hda,la} + 3 {dglq} = 1+1§1 [1 + 3 D(q,N~1)] ¢(q,N-1) (A4.2.5)

= E{d|q} (A4.2.6)

The last step follows because E{d'lq} + E{dllq} is independent of s.
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