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INTRODUCTION

This paper examines a class of spectral estimates denoted as the modified maximum
entropy method (MEM) for inputs consisting of bandlimited (finite nonzero bandwidth)
signals in lowpass additive noise. This class of inputs is one of substantial practical applica-
tion. For instance, a signal considered to be a Gaussian process of some bandwidth may be
transmitted through a channel exhibiting the “1 IF” type frequency absorption. In another
example, a pure sinusoid might be sent through a media whose time-varying properties serve
to modulate the sinusoid and broaden its frequency characteristics.

The spectral estimate termed in this paper as “modified” MEM differs in two ways
from the original MEM as developed by Burg. 1 First , the modified MEM incorporates a
variable delay ~~~, whereas the method developed by Burg is for unity delay. The motivation
for removing the constraint of unity delay is as follows. As shown by Van den Bos,2 MEM
spectral analysis is equivalent to the all-pole linear prediction spectrum for unit delay. This
MEM spectrum is often derived using the coefficients of a linear prediction filter which are
optimal in the minimum mean-square error (MMSE) sense. Often , however, there an ’
situations for which this MMSE filter is constructed using a delay value which is substantially
greater than unity . An example is given by Alexander and Satorius3 whereby the bandlimit-
ed signal characteristics of a spectrum are separated from the Iowpass noise properties on the
basis of an MMSE prediction filter with variable delay. Since the MEM spectral estimate is
easily derivable from the filter coefficients , we examine the properties of the ma x imum
entropy spectrum for delays other than ~ = I. Since MEM is properly defined only for
unity delay, the method incorporating a variable dela y will be denoted as modified MEM.

A second difference between MEM and modified MEM is a power scaling term. As
developed by Burg, MEM contains a numerator scaling factor which is the MMSE power due
to the optimal linear prediction filter. The inclusion of this scaling factor causes the MEM
to be a true power spectral estimator because the integration of the MEM spectrum over all
frequencies produces the true input process power. The modified MEM spectrum does not
contain this scaling term and , as pointed out by Griffiths ,4 is not a true power spectral
estimate. However, it is shown further in Reference 4 that for ~ = I the modified MEM
spectrum is related to the MEM spectru m through a constant scale factor , namely, the
MMSE of the optimal linear prediction filter for the input process. Thus, many general
properties (such as spectral shape, peak frequency locations, order estimation, etc . . . .) of
MEM spectra may be examined equivalently through the modified MEM for unity delay.

The work presented in this paper is concerned with two areas : an examination of
the mean properties for the unit delay modified MEM for the case of a bandlimited signal
in a lowpass noise background and the effects of variable delay length upon the modified
MEM spectrum for this input process.

_ _  _ _
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ANALYSIS

LINEAR PREDICTION FILTER IMPULSE RESPONSE

In this section we develop the structure of the variable-delay modified MEM spectrum
through analysis of the associated MMSE filter properties. Thus, we develop first the ex-
pression for the linear prediction filter impulse response and then illustrate how this quantity
determines the resultant modified MEM spectrum.

Consider first the classical Wiener MMSE prediction problem : given a sequence of
data values extending L-samples into the past , x(k), x(k — 1), . . . , x(k — L + 1) 

~ 
we wish

to form,1the best estimate (in the MMSE sense) of the sequence value ~ -sampIes into the
future , x(k + ~), using a linear discrete filter. It is well-known that these optimal filter
coefficients , h(k), may be obtained by solving the discrete Wiener matrix equation

R h = P ~ . ( 1)

In Equation 1, h is the weight vector containing the optimal coefficients , R is the L X L
autocorrelation matrix of the input process and P~ is the L-length vector containing the auto-
correlation elements + ~), where Q = 0, 1 , .  . . , L — 1. Equivalently, Equation 1 may
be expanded into L simultaneous equations of the form

L-I

~~ ~~~~~~~~~~~~~~~~~~~~~~~ , ~ = 0 , l , . . . , L — l .  (2)
k=O

A method for analytically solving Equation 2 for the h(k) used in several recent
works3’5’6 is the method of undetermined coefficients. Specifically, this method was used
by Alexander and Satorius 3 in their solution for the MMSE filter impulse response for an
input consisting of a complex bandlimited signal in lowpass noise. The solutions obtained
in Reference 3 were complex weight vectors , corresponding to the complex input signal.
However , Zeidler , Satonius , et al ,6 showed that for widely separated , complex exponential
frequencies the weight vector solutions for real sinusoids could be obtained by a super-
position of the composite complex exponential weight solutions. A similar assumption is
invoked here : that for complex bandlimited signals widely separated we can obtain weight
culutions for real bandlimited signals by a similar superposition. Explicit examinat ion of
the bandlimited interference mechanisms will be done in a future paper. The present work
is limited to the case of a single bandlimited complex signal in lowpass noise.

The autocorrelation function for this specific input is given by

2 ~~N I 2 ~~~~~ i~s~øxx (Q) 0N C  + o Se e (3)

where

= noise mean-square power

= bandlimited signal mean-square power

4 
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aN, as = correlation parameters of noise and signal, respectively

C4)s = radian frequency (relative to sampling frequency) of complex
bandlimited signal .

Using the inversion integral , the spectrum S~~(z) corresponding to 
~~~~~ 

in Equation 3 is
given by3

2~~~~N~~ 2~~~ S~~2aN e sinh aN 2a5e sinh a5S (z) = + . . (4)xx 
~~N -1 -aN S ’~~ S -l S S(z — e  )(z — e  ) ( z — e  )(z —e )

This form of the input power spectrum will be important in future applications.

Reference 3 has derived the general solution for the MMSE filter coefficients h~ (k)
for an input process given by the autocorrelation function of Equation 3. The ~-nota tion
in h A(k) signifies the ~ -dependance of the impusle response through 

~ 
(~ ) and C 1 (~ )

which are themselves functions of £ The solution for h~ (k) is given by

h~ (k) = B 1(~ ) z\~ + B2(~ ) z~ + C1(~ ) 6(k) + C2(~ ) 6(k — L + 1)

k = O , l , . . . , L — l  (5)

~ —1~+jO~ ~.t+j Oi~where ~z 1, z2 }- le ‘, e ‘J are the zeroes of the input spectrum and ~B 1, B2, C 1,
C2 ~ are given as the solution set to a 4 X 4 matrix equati on. By examining the asymptotic
case of long filter length L, the solution given by Equation S simplifies and gives a physical
insight into the resulting filter structure.

For long filter lengths,* the solution for the weight vector reduces to3 :

h~ (k) = B 1(~ )e 4 jO 1k 
+ C 1(~ ) 6(k) (6)

where, in Equation 6,

Ii e
ats L

eJO u] E l  _ e (x5~~ 
j ( O i~wS )]

B 1(.A ) =  e

e~~’~~ ei~ _ e~~~
M eJ

~° l~~~S~

[e~~ 4A -as+i~s)AJ (7a)

C1(A) = e N4A 
— 

El — ~~~~ e~
° i~~s)] [ 

~~~~~ — ~~~~~~~~~~~ (7b)
• e r’~eJ° I _ e a M e

j( O c&)&

Once the impulse response h~ (k) is derived , the t ransfer fu nction H~ (z) is obtained simply
by the z-transform operation:

°Long fil ter length signifies L >> 4/p , where gz Is given by the location of the input spectral zeros .
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L-l
H~ (z) = ~~~~~ h~ (k)z k 

. (8)

k=0

Using Equation .6 and assuming a very long filter length , H~ (z) becomes

B 1(~ )
H,~(z) —j.z +j 0 1 

+ C 1(~ ) . (9)

The frequency response of the transfer function then is obtained by evaluating H~(z) around
the unit circle (making the substitution z = &“). The frequency response is thus dependent
upon the value of ~ chosen .

MODIFIED MEM FOR VARIABLE DELAY

Analogous to the spectral estimation method defined in Reference 4, we define the
variable-delay modified MEM spectrum as Q~~(z), where

Q~ (z) = I — z H~~(z) f 
—2 

(10)

Similarly,

Q~ (~~) = Q~ (z) I z = e 
( I 1)

In Equation 10, H,~(z) is given as in Equation 8 and z~~ signifies a delay operator of ~
samples . For the case of a complex bandlimited signal in lowpass noise, h~~(z) is given by
Equation 4, H~ (z) from Equation 8, and the resulting modified Q~ (z) spectrum computed
fro m Equation 10. For the case of long filter length , the weight vector h~ (z) from
Equation 6 is used , leading to H~ (z) given by Equation 9. The remainder of this paper
invokes the condition of long filter length and examines analytically and graphically the
resulting solu tions for Q,~(z) .

6
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ASYMPTOTIC CASES

LONG FILTER LENGTHS

Makhoul 7 shows that in the limit as L -~ °o, the MEM spectru m with ~ = I will
provide an unbiased mean estimate of the true power spectrum for any arbitrary input.
Thus, utilizing a delay i~ = I and L -* 00~ the modified MEM reproduces the original power
spectrum to within a scale factor. Figure 1 shows an input spectrum S,~~(~~) for a band-
limited signal in lowpass noise where the given parameters refer to the autocorrelation
function of the spectrum as given in Equation 3. Figure 2 then shows the resulting modified
MEM spectrum produced by three values of delay . In Figure 2a , for ~ = 1 the modified
MEM spectrum is a replication to within a scale factor of the input spectrum Sxx (CO) . For
the case of non-unity delay (as shown by Figures 2a and 2c) a significant spectral distortion
is introduced by increasing delay. However, the spectral peak corresponding to the center
frequency of the bandlimited signal is retained by the non-unity delay spectra . The spectral
distortion away from the signal center frequency produced by increased delay may be
qualitatively explained by the following analysis. Theoretically, we can examine the
extrema of Q~ (z) by solving the equation

L Q ~ (z) 0 (12)

for the locations of the extrem a. With QA(z) given by Equation 10, this leads to the
condition

A~ (z) .-
~~
- ~~ (z) + X~(z) -~~

. A~ (z) = 0 (13)

L1T ’~~~~~~~~~

FREQUENCY . rad

Figure 1. Input power spectrum for bandlimited complex signal in lowpass noise .
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FRE QUENCY , rad

a. ~ 1

•251T 501r
FREQUENCY , rad

b. A = 7

10

.25ir 501r
FRE QUENCY . rad

C. A =
Figure 2. Modified MEM spectra for input spectrum of Figure 1.
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where, in Equation 13, the overbar implies complex conjugation and AA (z) is given by

AA(z) — ~~~~~~~ HA(z) . (14)

In general , the solution to Equation 13 is a formidable analytical task and will not be pursued
further at this time. However, some general properties of the extrema of QA(z) may he
examined by considering the polynomial AA(Z) in Equation 14. Since it is known that
Q1(z) reproduces the input spectrum within a scale factor , the polynomial A 1(z) must be of
the proper order to estimate correctly the input spectrum. Thus any increase of delay past

• A = 1 will serve only to introduce additional z-domain roots into Equation 14. These newly
introduced roots thus appear in QA(z) as additional poles in the z-plane , which serve to
distort the spectrum away from the signal cenkr frequency. As A is increased by one, the

$ order of QA(z) is thus increased by one, producing an extra pole at some location z =
e~~Jb . Then as QA (z) is evaluated around the unit-circle (z = e1

~’) to form QA(w),
additional extrema (one maxima and one minima) appear in the range —in ~~ o.~ ‘~~~ in. From
this development for an arbitrary delay A = D, a total of 2(D — I )  additional extrema appears
in Q~ (w) and considerable distortion of the signal input may result.

Although the spectral distortion as shown in Figure 2 is, in general , undesirable , there
are some situations in which these can be beneficial results by increasing delay beyond A = 1.
An example is shown beginning with Figure 3, which is considerably lower power bandlimit-
ed signal than that of Figure 1. In S~~(~~) and in Ql(~~

) shown in Figure 4a the lowpass
noise dominates the spectrum. However , by increasing A past unity (Figures 4b and 4c) the
effect of the lowpass noise on the resulting QA(w) estimate may be made smaller and
smaller. The power in the bandlimited signal is not attenuated greatly for increasing delay
and the signal center frequency is estimated correctly by QA (w) for increasing delay. The

= .20

L 
0

FREQUENCY , rad

Figure 3. Ira~ut spectrum for bandlimited complex signal in lowpass noise.
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.251r •501T
FRE QUENCY , rad

a. A

•2 51T •501T wFREQUENCY , rad
b . A

$

.251T •501T ~~~
FREQUENCY , rad

c. A 14

Figu re 4. Modifie d MEM spectra for input spectrum of Figure 3.
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decorrelation of the lowpass noise is due to the properties of the linear prediction MMSE
filter HA(~O, as developed in Reference 2. The bandlimited signal has a longer correlation
distance than the lowpass noise and thus is not decorrelated so severely. An asymptotic
property of QA (

~~
) for large delay lengths may also be inferred from the plots in Figures 2

and 4. As A is made significantly larger than the correlation distance of the bandlimited
signal, the linear prediction filter HA(W) is no longer able to extract the bandlimited sign al
properties from the input series, and , in the limit for large delay HA(~~), approaches zero
for all ~~~~. This latter property may be seen in the limits of 1(A) and 

~ 
(A) for A —~ co.

From Equations 7a and 7b,
I

lim B 1(A )=0 (l5a)
A

• lim C 1(A )=0 (l5b)
A -~’oo

which gives from Equation 9,

lim HA(~~) = O (l6a)

and thus from Equation 10,
lim QA(w) = 1 ( 16b)
A-* oo

Thus the result of using a very long delay value is to whiten perfectly the QA(w) spectrum ,
which is illustrated in Figures 2 and 4. For increasing A-values , the spectral ripples grow
lower in amplitude and closer in frequency until , for very long delay values , the resulting
spectrum is effectively white. The delay necessary to whiten the input spectrum must be
chosen to be much greater than the longest correlation distance of any bandlimited signal
present. For a bandlimited signal with bandwidth parameter as, as given by Equation 3,
the delay must be given by A > >  I /a5 to achieve this whitening.

BANDLIMITED SIGNAL IN WHITE NOISE

The analytical results for a bandlimited complex signal in white noise are easily
obtained from the previous derivations through a simple limiting operation. From Equation 3
we see that the autocorrelation function for a complex bandlimited signal in white noise is
obtained if one allows aN to a~proach infinity. The effect on the weight vector solution is
such that for long filter lengths, C1 (A) from Equation 7 vanishes and hA(k) is given by

—~1 k j O k
hA(k) B~(A) e e ( 17)

where

B~ (A) = lim 81(A) = ~~~~~~~~~ El — e~~~
1’
~ e~

° 1 ~‘s)] . (18)
aN ~ 

00
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But as shown in Reference 3 for white noise, the exponential frequency 0 1 is exactly equal
to the bandlimited signal center frequency “s’ This gives for hA(k) the expression

hA(k) = ~~~~~~~~~ ( I — ~~~~~ ~~~ 
j~i~k ( 19)

The transfer fun ction HA(z) for long filter length is then given by Equation 9 as

(-a5+jw~)A [
~ - 

as-p]
HA(z) = e 

. (20)
—l1 — e  z

The modified MEM spectrum QA(z) is then given by (using Equations 10, 14 and 20):

QA(z) AA(z)A A(z) = I A A(z) (21)

where

1 ~~~~~~~~~~ 
-~ ( 1  - 

a~ —gi ( s+iws)A 
~~p AA(z) — e  z e )e  

. ( 2 2 )

A simple closed form expression for QA(z) may be obtained for the special case
A 1. Thus setting A = I in Equation 22 and substituting in Equation 21 , we can calculate
Q 1 (z), which , after simplification , becomes

j 2w~ 1
Ql (z ) e ~5~

L z — 2ze cosh i . t+e  
. (23)

‘ i’.,.’~z —2ze cosh a5 + e

Using the relationships developed thus far , we may now verify analytically the
equivalence (within a scale factor) of Q1(z) and S~~(z) for the case of a complex bandlimit-
ed signal in whi te noise. The spectrum Sxx (z) for this input may be obtained from Equa-
tion 4 by allowing aN 00~ This gives

2 -
~~~~~2u~ e sinh ac

S (z) o~~+ . . . (24)
XX _as+J(~)s — 1 -a~~ —j~~~~~~( z — e  )(z — e  )

Combining terms in Equation 23,

— 2 
{ z2 — 2zd’~

’5 [cosh as + (o~/ o)~~ sinh asi + ~,J2”S }
S ( z ) — o ~ . . ‘

2 J”S J2” Sz — 2 z cosh a~~e + e

The spectral zeros of S~~(z) thus are given by solving for the roots of

z2 — 2ae~”~~ z + e~2”S = 0 (25)

12
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where, in Equation 25 ,

a = cosh as +(-f ) sinh as . (26)

Solving Equation 25 via the complex quadratic formula gives

z 1 e ’S[a _~/ i J e~° l e (27a)

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (27b)

These equations give the relations

(28a)

e ’ M i a_ ,Ja2 _ 1 (28b)

(28c)

The first relation states that the complex exponential component of the weight
vector solution for white noise is at exactly the bandlimited center frequency, regardless of
signal bandwidth . The last two relations may be used to derive the following:

coshp 
2 

=a . (29)

Substituting this relation into Equation 24 for S~~(z) we get

2 i”5 j2w 5
S~~(z) = ~~~ z — 2ze cosh iz + e (30)

2 ~“ ‘s J2°’SZ — 2ze cosh aS + e

Comparing this result with the expression for Q1(z) as given by Equation 23, Q 1(z) and
Sxx(z) are indeed equivalent to within a scale factor:

as-p
Q1(z) e 

2 ISxx (Z)] . (31)

Figure 5 shows the power spectrum of a moderately bandlimited signal in white
noise. Figure 6a then gives the modified MEM spectrum for A = I and the reproduction of
S~~(w) may be seen clearly. The parameter e~~ for this case equals 0.783 and thus the
scaling factor becomes

a5-pe = 4.33 = 6.4 dB

13 ~~~~~~~~~~~~~
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Figure 5. Spectrum of bandli mited complex sign al in white noise .
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.251T .5011 .7511
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~0
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.2511 .5011 .7511

FREQUENCY , rad

b. A =9

-10 -

1 
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—
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FREQUENCY , rad

c. A 17

Figure 6. ModifIe d MEM spectra for input spectrum of Figure 5.
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Thus the modified MEM spectrum has the exact spectral shape as S~~ (w) but is 6.4 dB
higher in power , as shown by comparing Figures 5 and 6a. Figures 6b and 6c are the modi-
fied MEM spectrum for A = 9 and A = 17, respectively, and the spectral fl attening due to
longer delay is clearly evident. The height of the spectral peak at “‘s decreases rapidly with
delay due to the bandwidth of the signal.

In contrast to this , consider the narrowe r ba ndwidth peak shown in Figure 7, the
modified MEM estimates of which are shown in Figure 8. For A = I , Q~ 

(
~ ) is again seen to

give an excellent reproduction of ~~~~~ with the associated scale factor . The effects of
increased delay in Figures 8b and 8c are shown to be less drastic upon the signal peak than
in the preceding examp le. This is due to the longer correlation distance of the narrower
bandwidth signal of Figure 7. However the spectral rippling due to the inclusion of addi~
tional poles in QA(w) is still evident.

.01
0~ .01

.375ir

V °N 15.0

I . 1 I
.25w .50w

FREQUENCY , r d

Figure 7. Spectrum of band limited complex signal in white noise.
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0 
.2~in .~~~~~

FREQUENCY , rad
a. A 1

0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 511~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 1 1 w

FRE QUENCY , rad
b. A =9

FREQUENCY, rsd
c . A — 1 7

Figure 8. Modifie d MEM spectra for input spectrum of Figure 7.
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