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Abstract

This thesis presents a set of functional requirements

for a distributed mini-computer network along with a basic
architecture design to fulfill those requirements. The
functional requirements were established by comparing the
requirements of existing networks to the needs of the Alr
Force Institute of Technology Digital Engineering Labora-
tory. The requirements must provide a tool for education
in operating systems studies while allowing mini-computer-
based research.

The primary emphasis of the propoged architecture. is
the separation of the network operating system functlons
into independent processes which will run concurrently on
the various mini-computers in the network. This distri-
bution of network supervisory functions 1is made possible
by limiting all communication between processes to a set
of synchronizing messages., The messages provide a data
interface which allows communication without knowledge
of the processes location within the network.

This investigation also discusses a set or‘p{Pcesses
which will perform the functions set forth in the féqglre-

ments. A brief explanation of the functional working of-.

each necessary process is provided.
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A DISTRIBUTED MINI-COMPUTER NETWORK
I. Introduction

The decade of the '70's has opened the computer revo-
lution so that the computer is no longer a tool of only big
business and big government. Today the computer affects all
parts of human endeavor; including small business, even the
smallest research efforts, and now even the average person's
life at home., The obvious question then, is how have com-
puters so infiltrated all aspects of our way of life. One
answer lies in the evolution of the computer from large,
expensive, removed mainframe number crunchers into the new-
est generation of compact, inexpensive, personally available
mini and micro computers. These small computers make it
possible to automate any task which can be logically thought
out. Also, due to their low cost and availability, micro
and minl computers are entering all research areas no
matter how small.,

AFIT 1i1s obviously a prime market for the low cost
computing power offered by the mini-computer, and the
Digital Engineering Laboratory is especially well suited
for the use of small computers to allow both students and
faculty the opportunity for personal research and educa-
tional time on the computer. AFIT, like many other univer-

sities, has found that these small "individual® computers

are ideal for teaching students the basics of computer
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science by allowing an increased amount of hands-on work.
It has been found that the principles are basically the

same in the programming of the minls versus the larger

mainframe computers. Also, the student can more readily
understand the principles when he himself has the chance
to interface with the system instead of going through an

operator or operating system of great complexity.

Background

The previously stated reasons illustrate why the
mini-computer 1s rapidly augmenting the large, mainframe
computer at many research institutions. There are other
factors, however, which keep the minis from completely
displacing the mainframe computer from its research role.
The mini-computer has limitations which must be overcome
before it can act as a major ald to its big brother the
mainframe computer,

The first and major limitation 1s the size of main
memory of the average mini-computer. Most minis have a
maximum of 64 K (kilowords) of main memory where the
average mainframe computer may have a maximum of 2 million
K of main memory. Obviously, with this capacity differ-
ence the minl i1s no match for the larger computers on
memory silze alone.

A second major limitation is the cost ratio of IO
devices to the mini. A mainframe computer costs many

times that of a single IO device; it is, therefore, easy
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to Jjustify attaching many IO devices to the larger com-

puters to facilitate it's use. The mini-computers present
a completely different picture. One wishes to have a
number of minis to facilitate their 1nd1§1dua1 use by
personnel, but to make them really useful each mini should
have at least one batch form of input and output (card
reader and line printer), some form of mass storage (tape
drives or disk drives), and at least one interactive termi-
nal (teletype or CRT terminal). An assemblage of these IO
devices could easily cost two to five times the cost of
the mini. This directly opposes the obqective of the low
cost individual computers.

An additional drawback to dedicated IO devices on the
minis is the fact that they will surely have low useage.
One of the prime reasohs to have these research minis 1is to
allow human intervention. Whenever a system interacts with
people it must slow down to the human speed and, therefofe,
leave much time unused. Also, if these costly IO devices
on one mini are not available to another mini, they cannot
be used by a program rﬁnning on the second mini even though
they are not being used by the first mini.

A similar problem occure with software preparation
facilitles'(compilers, editors, linking programs). If one
mini has all the appropriate software preparation faclli-
ties and someone wants to use a different mini that doesn't
have them, then obviously they are being wasted on the

former mini. One way of solving this problem is to have

complete facllities on every mini, but as stated before
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this necessitates a large expenditure for capacity that
has low usage, and this is not a good solution to the

problem,

Problem Statement

The AFIT Electrical Engineering Digital Laboratory
presently has six mini-computers, and is planning to
acquire more. If properly outfitted, they make ideal
tools for the various forms of research being conducted
in the laboratories. Herein lies the problem with the
AFIT minis. Even though the laboratory has six minis
now, it has only a limited number of input output devices
and fewer mass sStorage devices,

The problem is that only certain minis at any time
can have the proper combination of batch I0 devices plus
interactive devices to allow much meaningful research to
be carried out. Even worse, the avallable batch IO devices
cannot be easily moved from one mini to another, so if one
needs to do research on the minis without the batch 10, it
becomes a long.process of doing IO at the slow teletype
rate (110 baud). While there are enough interactive termi-
nals to allow each minl at least one device, the batch IO
devices and mass storage devices are definitely outnumbered.

An additional problem is that of development software.

Even on the best hardware equipped mini the development soft-

ware (complilers, etc.) often make the user run a paper tape
through the machine three times just to get an oﬁject‘tape

punched out, which must then be loaded back in the computer
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in order to accomplish one test run. This procedure often
takes in excess of 15 minutes. In this present age of

interactive terminals and interpreters which allow instant
compilation and execution of programs within one minute or
less, this 1is truly a hindrance to the researcher trying to

work on an ill-equipped mini.

Proposed Solution and Scope

The most encouraging part of the AFIT mini-computer
problem is that it's answer lies within the laboratory 1it-
self, which already has most of the minl computing power
and I0 devices which are needed to allow a great amount of
research to be done in an efficient manner. The solution
lies in orchestrating the individual minis to act together
and complement each other's devices instead of acting as
small, distinct, separate entities which compete to keep
devices solely to themselves, The lab éven has access to
the CDC 6600's vast development software provided through
the INTERCOM interactive terminal system, if it were onl&
channeled correctly so that the mini researcher could avail
himself of 1ts various compilation and editing facllities.

How can these minis, their IO devices, and the CDC's
.or other large scale computer's development software be
combined? Through the use of a computer network. Numerous
educational institutions have started to solve their mini
usage problems in this way. By tying the individual minis
together in a network, and linking that network to a large

mainframe computer, they not only have the desirable aspects
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of hands-on work for the researchers at the mini-computer
level, but they make the superior software development
programs of the larger computer available at the same
time.

This 1s the proposal of this thesis - the requirement
definition of a mini-computer network which will inter-
connect all minis in the Digital Engineering Laboratory
and provide an interface between this mini network and the
CDC INTERCOM terminal system or other large scale computer
system. This will allow any mini in the network to have
access to any 10 device in the network and to a large
scale computer.

The scope of this thesis is not that of implementation,
but that of a requirements definition and basic architec-
ture design. The scope includes a study to produce the
desired requirements needed to allow students and faculty
to carry on research in an efficient manner of the propoéed
computer network, and a basic architecture design which
will be used as a guideline for future implementation by

other graduate thesis efforts.

Overview of the Thesis

The succeeding chapters of this thesis will describe

; an investigation into the requirements and basic archi-
f tecture of a distributed mini-computer network. Chapter

II will discuss the functional requirements deemed neces-

| sary to provide a complete network architecture which will

i meet the needs of the Digital Engineering Laboratory. Many
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existing networks were reviewed and the applicable require-
ments included in this chapter.

Chapter III outlines a basic hardware and software
configuration which will fulfill the functional require-
ments, One software implementation scheme 1s presented
which divides all petwork services into independent pro-
cesses that run on the various network mini-computers,
thus providing the distribution of the network operating
system. This chapter gives the general structure of the
operating system without emphasis on detail.

Chapter IV defines the nature of the system processes
discussed above and shows how these processes can control
their own communication and synchronization. Since the
process is the building block of the proposed network,
this chapter is necessary to present the basic structure
and capabilities of the proce&s unit.

Chapters V and VI describe specific processes which
will implement the operating system functions and capabi-
lities given in the functional requirements, Chapter V
describes the basic functions needed to operate one pro-
cessor in a stand alone capacity. Chapter VI describes
the additional functions required to operate the full
network of processors in a distributed computing capacity.

Chapter VII closes with the summary of conclusions

and recommendations for follow-on efforts.
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II. NETWORK FUNCTIONAL REQUIREMENTS

Introduction
Before a system of any type may be properly designed,

the designer must have a firm idea of what the system will
be required to do, and what limitations will be placed on
the system while it is accomplishing these goals or re-
quirements. This chapter will describe those requirements
to be fulfilled by the proposed mini-computer network.
Note that the requirements will be functional in nature.
They will not try to assume how the functions are to be
carried out; instead, they tell only which functions must

be included in a proper design effort.

In complling these requirements a number of present
network requirements and implementations were reviewed.
These requirements, together with the author's previous
experience in working with small computer systems, w=are
evaluated against the primary goals of the minis in the
Digital Engineering Laboratory. A literature search was
made of government research efforts into mini networks,
and their various requirements were compared to the deter-
mined needs of the AFIT Laboratory. After conferring with
faculty associated with the Digital Engineering Laboratory
the following functional requirements were selected as the

foundation for the proposed AFIT mini-computer network.

Uniform Processor Environment

The mini network will be composed of a minimum of four
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different processing units (processors). Since these mini-
computers are made by separate manufacturers, they have
slightly differing ways of performing their hardware
functions. These differences are, in most respects, very
minor and should be of no concern to either a network user

or a network major sub-system software program (process).

All functional software processes (a user’s job or a network
system function such as core allocation) should have a uniform
processor environment so that the process notices no differ- ,
ence when running on the various processors.

The network must create a virtual machine at the lowest

possible level. This means that the network will be seen by

its users as a different machine than that defined by the

actual hardware. The lowest level routines which handle the

hardware itself should provide a standard interface to the
rest of the network software so that both user programs and
ma jor network functions alike run on this standard, higher
level, virtual machine., It is not sufficient to merely
isolate the user processes from the idiosyncrasies of the
different processors; the major system (network) functions
(core allocation, scheduling, communication between process-
ors) should also be isolated so that they may be written
once and not customized for each processor. This allows
more efficient maintenance and modification of network
functions while maintaining a standard across the network.
By creating a virtual machine the network becomes con-

ceptually one computer with multiple processors. A process




GCS/EE/77-4

can then communicate with any other process in the network
regardless of which processof the processes are running on.
This virtual machine environment must standardize formats
for communication between processes and processors. The
processes must see the entire network as one virtual pro-
cessor with all processes running together, All communica-
tion between processes i1s then handled by the network in one
standard format so that all processes will conform to the

standard. 5

Dynamic Network Configuration

The Digital Engineering Laboratory serves many faculty
members and students who are working on a variety of widely
differing research efforts. Equipment is constantly being
added to the Laboratory and much of it 1s being tied to the
minis in some way. Hardware research projects are also being
conducted which try one hardware configuration one day and a
changed configuration the next. If the mini network is to be
responsive to these research efforts, it must be capable of
almost instantaneous reconfiguration.

The proposed network must also allow flexible assigmnment
of 10 devices to any of the processors in the network to pro-
vide for the constant influx of new devices and thelr reassign-
ment from one processor to another in order to facilitate
the equal use of devices among processors. The network must

not be incapacitated by the loss of any one processor or IO

device. It must be able to adjust its configuration:

el i A, T 2
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and continue execution in a partial configuration upon
recognition of a non-recoverable error condition.

All of the above constraints require that the network
be able to dynamically reconfigure itself. This means that
the network software must be able to handle these changes
without reprogramming. Some form of status must be input
to the network at start up time which the network will use
to automatically configure its system software to handle
the processors and their associated I0 devices in their
indicated configuration. Additionally, the network will
periodically check this status to decide if the configuration
of operational processors and I0 devices has changed, and if
a change 1s found be able to adjust the software to handle

this change without disrupting unchanged parts of the network.

Symbolic Device Access
A process running on the network assumes it is running

on a virtual machine; therefore, it also assumes that any

I0 device attached to any mini in the network 1s also a part
of that machine. The network then has many terminals, paper
tape readers, printers and other devices all accessible to
any network process. By the previous dynamic network con-
figuration requirement all IO devices must be interchangeable
among the processors for configuration flexibility; hence,
the process must be able to communicate with a selected
device wherever it 1is located.

Symbolic addressing of the network I0 devices provides

11
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this location flexibility. The network has information
on its present configuration and can locate any desired
device given some unique device symbol or class symbol.
Class symbols would de used if the process wanted some
class of devices (tape drive, disk) instead of a particu-
lar device (TAPE 1, DISK 2). One additional subclass
should be provided'- that of either LOCAL or GLOBAL classes
of devices., Thus, the process can ask for a local device
(one physically attached to the processor on which the
process is running) or a global device (one anywhere in
the network). This subclassing of devices is needed to
facilitate the elimination of unwanted interprocessor
traffic to global IO devices when local IO devices are
available to the process,

With this identification of devices by unique device
symbols, class symbols, and device subclasses (LOCAL or
GLOBAL) the virtual machine (NETWORK) isolates the process
from device location. It also provides for creation of
virtual I0 devices, allowing the network to use mass
storage (disk storage) to simulate more devices than the

network physically has.

Network Wide Data Base

The proposed mini network must have a flexible IO
device configuration that allows 10 relocation among the
processors. This means certain filles may also be moved

from one processor to another (a disk file would obviously
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have to be transferred along with a disk drive if it were
the only one on a particular processor). The network will
then have movable files and should have a virtual or
network wide base approach. The process again has no
need to know where a file 1s physically located provided
it can access it and insure certain class storage attributes,
A process musé be able to choose between the type of
storage devices used for a given file or that the storage
device is of no concern., Again the local and global sub-
class attributes must be provided for confinement of highly
active flles to the local processor if desired. Provisions
for copying and moving files from processor to processor by
a single directive should be included. This requirement
creates a higher level virtual machine by freeing the user
process from processor dependent file locations. The
philosophy 1s to free the process from knowing its environ-
ment by making the network processors, IO devices, and data

base a single virtual element to the using process.

Modular-Separable Supervisory Functions

This mini network is proposed to be a virtual machine
eliminating all possible processor dependency. This applies
not only to the user process, but supervisory network pro-

cesses too. The overall supervisory function must be -

divided into absolutely functional modules. The machines

in this network are small in main memory size and must not

be overloaded with unused supervisory functions; therefore,

13
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the functions of supervision must be carefully sSeparated
so that only those needed by a specific processor are

provided. :

Even this may not be enough. Commonly, supervisory
functions are divided into modules, but the modules are
highly dependent on each other (coupled) through complex
status tables. This network requires that these modules be
separable - all interactions between modules should be of a
message type that may be queued by the receiving module so
that modules are independent and could run concurrently if
necessary.

This concurrency attribute will be used to allow one
processor to contain supervisory processes that control
other user processes on a different processor. It is
expected that one processor may be dedicated to such super-
visory processes as data base management and I0 device con-
figuration. If these functions were not separable from
others, every processor would need its own copy of these.
commonly required supervisory functions. A second benefit
of separable functions is the ease of modification. One
network use is to be research of operating systems, and
thus separable functions allow easy replacement of trial
algorithms and experimental functional updates.

For the network to be a true virtual machine all pro-
cesses must operate with a freedom from environmental res-
trictions. For the supervisory functions to obtqin this

freedom they must be not only modular but separable as well.

14
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Error Recovery and Confinement
This network will be used as a research facility by

both students and faculty. This research will not be
limited to programs run on the network, but will extend
into the systems and sub-systems inside the network soft-
ware as experimental operating system methods are tried.
Since the outside ﬁrograms run on the network and the net-
work sub-systems themselves will be subjected to constant
experiment and changes, the network software and hardware
will be highly susceptible to errors. Consequently, the
network must be designed to try to automatically recover
from these errors and if necessary confine unrecoverable
errors to the smallest extent possible.

The network must be able to detect those errors which
might cause networkwide fallure. These errors may be in
the user program or in the network itself. Here the neces-
Sity of separable supervisory functions is seen again. The
system modules must protect themselves by monitoring each
other*s status and taking appropriate action when a failure
is discovered. For example, the system modules which
schedule the processes for execution time on each separate
processor could communicate with each other and keep backup
tables on the processes executing in remote processors. 1In
this way the process stﬁtus would be maintained in two
separate processors. If one process scheduler failed, the
backup scheduler would have the capability to try to reload

the falling module from mass storage, reset the status, and

15
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try to resume normal operation. If the scheduler failed

again, that processor might have to be disconnected from

the network by the backup process. Accordingly, when any
network sub-system fails, the remaining sub-systems try

to recover the failing sub-systems previous correct status
and process over the error.

If a falling sub-system is determined unrecoverable,
the network must be able to shutdown that sub-system and
and reconfigure itself if necessary. Status of the entire
network must be maintained (which processors have which
processes running on them, which processors have which IO
devices attached to them). Then if one processor or process
falls the other processes can ascertain the correct action
needed to i1solate the faulty sub-system and confine the
error while allowing the remaining sub-systems to continue

execution if at all possible.

External System Access
One of the first premises of this network was that it

would provide a means for the minis to use the program
development facilities of the CDC 6600 or other large scale
systems. This connection to a large scale computer will be
invaluable in providing source editing and cross compiling
functions to aid the researcher using a mini. The network
should provide a standard interface which can be used to
communicate with a number of external computer systems.

This interface should allow hookup to any desired external

16
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computer or system without causing major moditication to the
other network sub-systems.

The external connection interface must be able to
isolate the communication protocol of the external system
from the internal network protocol. It will act as a trans-
lator and queuelng process between the two systems. In this
way the other systems in the network can communicate with
the external process in the same way they communicate with
internal processes. This extends the virtual machine concept
outside the confines of the mini network to include any out-
side computer. Any process running on the machine will still
be separated from the knowledge of where other processes or

devices are physically located in the network.

Network Performance Monitoring

The network itself is to be used as a research tool
for the study of operating systems and networking techni-
ques., Also, there will be many network sub-systems which
must be tuned and refined to give the best overall operation
of the mini network. Both of these require some way to
measure how efficiently the network 1is working - performance
monitoring. This must be a design consideration from the
beginning and not an added attraction to be forced into
the system later in 1its development.

The network must be designed with the appropriate
"hooks" to allow all message traffic to be sampled to

acquire statistics of such categories as:

1?7
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1) Traffic to and from each processor

2) Traffic to each unique I0 device and each
class of IO devices

3) Memory usage on each processor

4) Transmission retries to any device or
processor

5) Correlations between message traffic and
presently running user Jjobs

6) User job statistics - duration of run,
number of processors used by Jjob,
number and location of I0 devices used,
amount of time spent walting for
processor or devices

The above statistics are just an example. to give a
flavor of the areas which must be open to the performance
monitoring function. If they are not made available by
initial design, it could prove extremely difficult to de-
vise a method of sampling these statistics as an after-
thought.

The performance monitor function should be able to
collect its data without appreciably affecting those
statistics which are being gathered. This function must>
be able to run as an independent process wilthout affecting

those parts of the network performance which it is moni-

toring.

Standard Design Philosophy

This network 1s expected to survive many additions of
both computer hardware and new software ideas. This re-
quires that the network design allow a high degree of

flexibility, a term which seems at first to oppose the
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term standardlzation, but 1t can be shown that standards

can be maintained within a flexible structure. If all the
previous requirements are to be molded into one integrated
software system, there must be a standard design philosophy
to adhere to. Without a single standard design for this
flexible structure, too many idiosyncrasies of sub-systems
will immerge and, combined with other sub-system differences,
may start to drive the network efforts far from those
requirements it was conceived to operate within,

The network will need a central system design t