
-

AD—A055 254 AIR FORCE INST OF TECH WRIGHT—PATTERSON AFB OHIO SCH——ETC F/S 9/2A DISTRI BUTED MINI—COMPUTER NETW OR K.cu)DEC 77 R C ADAMSUNCLASSIFI ED AFIT/eCS.’EE,’77..4
NLv i p

I

I

V —
~~:~p

- _
~~

-
______ - — —

~~~
— 

~~~~~~ -~ 
— — —w

A F GCS/~~~~ 7~~J

i~T

p

IL

@ ORK
J

TRES IS

GCS/EE/77-k /~
) R. Cade/Adan~ IIJ

Capt USAU

D D C

This document has been approved for public release and

J sale; its distribution is unlimited.

18 06 13 OS~
_ _

_
- _ _ _

- ~‘-~~‘~~~ ~~~

L -~~~~~~~~ -~~~~~~~~ ~~~~~~~~

— ~~~~~~~~~
- __________ .~r - -

~
-.---

~~
—

AFIT/GCS/EE/?7-~
1~

~~~

~~L A DISTRIBUTED MINI-COMPUTER NETWORK

~H I:

*1 
. THESIS.

4
~~ 

~. Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

~~~~~~~~~~ .

I NtI% 1iin sactioa~~DO~ lull ~~ 0
-. o

MTIFI~AtIId ..

S UISTRI BUT~ON/F.T~ L f : , . r~~s
P1st. MAlL. d’~ &FL~I~L

II
_ _ _

B. Cade Adams, B.S.

Captain USA?

Graduate Computer Science

$ December 1977
.
~ f

Approved for public release; distribution unlimited

I —
- ~~~~~~~~~~ ~~~~~~~~~~

GCS/EE/77~ A4 ~~

‘3 Contents

Page

List of Figures • iv

Abstract • . V

I. Introduction 1

Background • • . • • • • • 2
Problem Statement Li.
Proposed Solution and Scope 5
Overview of Thesis 6

II. Network Functional Requirements 8

Introduction 8
Uniform Processor Environment 8
Dynamic Network Configuration 10
Symbolic Device Access 11
Network Wide Data Base......12
Modular-Separable Supervisory Functions . . . 13

Error Recovery and Confinement 15
4

External System Access 16
Network Performance Monitoring 17
Standard Design Philosophy 18

III. A Network Architecture 21
Int:oduction 21
Hardware Configuration 21

Network Bus Structure 22.
Flexible 10 Locations 27
Micro Interface 29
Heal Time Clock 30

Software Configuration 30
The Basic Network Structure 31.
Configuration Management 33
Network Communication 36

IV. Process Intercommunication and Synchronization. . 38

Int r o du c tio n 38
Process Typ es39
Process Communication , • , Mo
Process Synchronization • . .

H
ii

_ _ _ _ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

GCS/EE/7?-k -

~ S.

‘F
V. Basic Network Pr ocesses 50

Introduction •• • •.50
The Supervisory KERNEL~~~.....50
Memory Allocation • . . 5k
User Job Scheduling 5?
LocalIO ProceSs . . •60

4 VI. Extended Network Processes 63
Introduction • 3
Configuration Management 63
Interprooessor Message Management 68
Intercom Terminal Management • . . 71
Performance Monitor • . . 74
Data Base Management •

VII. Conclusions and Recommendations 80
Introduction •,, • •.8 0

~~i Conclusion 80
- Recommendations.81

Bibliography • . • . 83

Vita . 84

I

H

• 1 - - 3
iii

_t__ — —--p ~~~~~ —~~ —-- — ~~~~~~~.-‘---— ~~~
------ -. —.. — —

_________ .___ i__ ~A

-~~

List of Figures

Figure Page

1 Standard Network Topologies 23

2 Network Bus Topology 24

- 3 A Double Bus Topo].ogy 28

A Typical Network Configuration 311
5 Simple Communication , . . . 44
6 A Synchronization Problem 44

1. 7 A Synchronization Example 116

1 8 An Error Confinement Problem 66
-- 9 The Logical INTERCCN Interface 73

10 The Actual INTERCOM Interface 73
- • 11 The Data Base Manager 78

~~~

iv

- ~~~~~~~~~~~ - ..— --—--- . —  ~~~~~~~~~~~~~~~~ — —— —- —~~~—— — - ——-.——.--..-—-.———~~ ——-..



___S _ _ _ S ___S’S_~ ______ .___.S__S___S_____._S_,_ .S~~~~
,-.” - --~-—,— 

___________

GCS/EE/77-k

Abstract

;1
This thesis presents a set of functional requirements

for a distributed mini-computer network along with a basic

architecture design to fulfill those requirements. The

functional requirements were established by comparing the

requirements of existing networks to the needs of the Air

Force Institute of Technology Digital Engineering Labora-

tory. The requirements must provide a tool for education

in operating systems studies while allowing mini-computer-

based research.

The primary emphasis of the proposed architecture is

the separation of the network operating system functions

into independent prooesses which will run concurrently on

the various mini-computers in the network. This distri-

bution of network supervisory functions is made possible~

by limiting all communication between processes to a set

of synchronizing messages. The messages provide a data 
-

interface which allows communication without knowledge

of the processes location within the network.

This investigation also discusses a set ~?sp~~cesses

which will perform the functions set forth in the i~quire-

merits. A brief explanation of the functional working of’

each necessary process is provided.

S - .. -— ——-  -. —-- .S ~~~~~ _ -— ~~~~~~~~~ —



i i t~ A DISTRIBUTED MINI-COMPUTER NETWORK

I. Introduction

The decade of the ‘70’s has opened the computer revo-

lution so that the computer is no longer a tool of oni.y big

business and big government. Today the computer affects all

parts of human endeavor; including small business, even the

smallest research efforts, and now even the average person’s

life at home. The obvious question then, is how have com-

puters so infiltrated all aspects of our way of life. One

answer lies in the evolution of the computer from large,

expensive, removed mainframe number crunchers into the new-

4;  est generation of compact, inexpensive, personally available

mini and micro computers. These small computers make it

possible to automate any task which can be logically thought

out. Also, due to their low cost and availability, micro

and mini computers are entering all research areas no

matter how small.

AFIT is obviously a prime market for the low cost

computing power offered by the mini-computer, and the

Digital Engineering Laboratory is especially well suited

for the use of small computers to allow both students and

faculty the opportunity for personal research and educa-

tional time on the computer. AFIT, like many other univer-

sities, has found that these small ~individua1~ computers

are ideal for teaching students the basics of computer1



n-
~- ~~~~~~~~~~~~~~~~~~~~~ 

5—--- —

.- 

- -:::: ‘
~~~

~~
- --- --

~~~~~

- 
—- —-5-——-.-- 5

—

-J ;

_ GCS/EE/77-4

I

science by allowing an increased amount of hands-on work.

It has been found that the principles are basically the

same in the programming of the minis versus the larger

mainframe computers . A lso, the student can more readily

understand the principles when he himself has the chance

to interface with the system instead of going through an

operator or operating system of great complexity.

The previously stated reasons illustrate why the

mini-computer is rapidly augmenting the large, mainframe

computer at many research institutions. There are other

factors, however, which keep the minis from completely

displacing the mainframe computer from its research role.
p.

The mini—computer has limitations which must be overcome

before it can act as a major aid to its big brother the

mainframe computer.

The first and major limitation is the size of’ main

memory of the average mini-computer. Most minis have a

maximum of 64 K (kilowords ) of main memory where the

average mainframe computer may have a maximum of 2 million

K of main memory. Obviously, with this capacity differ-

ence the mint is no match for the larger computers on

memory size alone.

A second major limitation is the cost ratio of 10

devices to the mini. A mainframe computer costs many

times that of a single 10 device; it is, therefore, easy

2

~~~~~~~~~~~~~~~~~~~~ -.~~~~ S ~~~.. - - . —5 --~~~ - -- — -5 
~~~~~. ~~~~~~~~~ ——--~~~—~~~~~~~~~~ --



-~~~~ ~~~~~~—-~~~~~ ‘ —±~~ 
~~~~~~~~~~ — 

~~~~~~~~
— —

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

GCS/EE/7?-M

to justify attaching many 10 devices to the larger corn-t ‘ puters to facilitate it’s use. The mini—computers present

a completely different picture. One wishes to have a

number of minis to facilitate their individual use by

personnel, but to make them really useful each mini should

have at least one batch form of input and output (card

reader and line printer), some form of mass storage (tape

drives or disk drives), and at least one interactive termi-

nal (teletype or CR1’ terminal). An assemblage of these 10

devices could easily cost two to five times the cost of

the mini. This directly opposes the ob,jective of the low

cost individual computers .

An additional drawback to dedicated 10 devices on the

minis is the fact that they will surely have low useage.

One of the prime reasons to have these research minis is to

allow human intervention. Whenever a system interacts with

people it must slow down to, the human speed and, therefore,

leave much time unused. Also, if these costly 10 devices

on one mini are not available to another mini, they cannot

be used by a program running on the second mini even though

they are not being used by the first mini.

A similar problem occurs with software preparation

facilities (compilers , editors, linking programs). If one

mini has all the appropriate software preparation facili-

ties and someone wants to use a different mini that doesn’t

have them, then obviously they are being wasted on the

rormer mini. One way of solving this problem is to have

complete facilities on every mini, but as stated before

3 

. . 
--..- .-, -. . - -S - - 5- .- - A



— ——

— 

, 

GCS/EE/77-k

this necessitates a large expenditure for capacity that

has low usage , and this is not a good solution to the

problem.

Problem Statement

The AFIT Electrical Engineering Digital Laboratory

presently has six mini-computers , and is planning to

acquire more . If properly outfitted , they make ideal

tools for the various forms of research being conducted

in the laboratories. Herein lies the problem with the

AFIT minis • Even though the laboratory has six minis

now, it has only a limited ‘number of input output devices

and fewer mass storage devices.

The problem is that only certain minis at any time

can have the proper combination of batch 10 devices plus

interactive devices to allow much meaningful research to

be carried out . Even worse , the available batch 10 devices

cannot be easily moved from one mini to another, so if one

needs to do research on the minis without the batch 10, it

becomes a long process of doing IC at the slow teletype

rate (110 baud). While there are enough interactive termi-

nals to allow each mini at least one device, the batch IC

devices al3d mass storage devices are definitely outnumbered.

An additional problem is that of development software.

Even on the best hardware equipped mini the development soft-

ware (compilers, etc.) often make the user run a paper tape

through the machine three times just to get an object tape

punched out, which must then be loaded back in the computer

LI. 

-—-~~~---- -,--. S .- — 5 -—-— - , . ,, -~~~~- - -



_ _ 5_
~

. ,
~~~T:~

L,:
~~~ ’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GCS/EE/?7-4
S.

in order to accomplish one test run. This procedure often

takes in excess of 15 minutes. In this present age of

interactive terminals and interpreters which allow instant

compilation and execution of programs within one minute or

less , this is truly a hindrance to the researcher trying to

work on an ill-equipped mini.

Proposed Solution and Scope

The most encouraging part of the AFIT mini-computer

problem is that it’s answer lies within the laboratory it-

self, which already has most of the mini computing power

and IC devices which are needed to allow a great amount of

research to be done in an efficient manner. The solution

lies in orchestrating the individual minis to act together

and complement each other’s devices instead of acting a~

small, distinct, separate entities which compete to keep

devices solely to themselves. The lab even has access to

the CDC 6600’s vast development software provided through

the INTERCOM interactive terminal system, if it were only

channeled correctly so that the mini researcher could avail

himself of’ its various compilation and editing facilities.

How can these minis , their 10 dev ices , and the CDC’s

or other large scale computer’s development software be

combined? Through the use of a computer network . Numerous

educational institutions have started to solve their mini

usage problems in this way. By tying the individual minis

together in a network, and linking that network to a large

mainframe computer, they not only have the desirable aspects

5

- ~~~~~~~~~~~~~~~~~ _ _ 5 . . . _ . _— — - -• - ~~~~-~~~~~’—.— -~~~~~~
. - — .— — — — —~~~~-—.~~~~ 5_ -_ -.-,_ -— .—~~~~~~~~

p ~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~

GCS/EE/77-LI

• of hands-on work for the researchers at the mini-computer

level, but they make the superior software development

programs of the larger computer available at the same

• time.
- -I--- .

This is the proposal of this thesis — the requirement
U

definition of a mini-computer network which will inter-

connect all minis in the Digital Engineering Laboratory

and provide an interface between this mini network and the

CDC INTERCOM terminal system or other large scale computer
— system. This will allow any mini in the network to have

access to any IC device in the network and to a large

scale computer.

The scope of this thesis is not that of implementation,

but that of a requirements definition and basic architec-

ture design. The scope includes a study to ‘produce the

desired requirements needed to allow students and faculty

to carry on research in an efficient manner of the proposed

computer network, and a basic architecture design which -

will be used as a guideline for future implementation by

other graduate thesis efforts.

Overview of the Thesis

The succeeding chapters of this thesis will describe

an investigation into the requirements and basic archi-

tecture of a distributed mini-computer network. Chapter

II will discuss the functional requirements deemed neces-

sary to provide a complete network architecture which will

meet the needs of the Digital Engineering Laboratory. Many

6

1

existing networks were reviewed and the applicable require-

ments included in this chapter .

Chapter III outlines a basic hardware and software
• configuration which will fulfill the functional require-

ments. One software implementation scheme is presented

which divides all network services into independent pro-

cesses that run on the various network mini-computers ,

1 thus providing the distribution of’ the network operating

system. This chapter gives the general structure of the

operating syst em without emphasis on detail .

Chapter IV defines the nature of the system processes

discussed above and shows how these processes can control

their own communication and synchronization. Since the

process is the building block of the proposed network,

this chapter is necessary to present the basic structure

and capabilities of the procees unit.

Chapters V and VI describe specific processes which

~tll implement the operating system functions and capabi-

lities given in the functional requirements. Chapter V

describes the basic functions needed to operate one pro-

cessor in a stand alone capacity. Chapter VI describes

the additional functions required to operate the full

network of processors in a distributed computing capacity.

Chapter VII closes with the summary of’ conclusions

and recommendations for follow—on efforts .

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S - .~~~~~~~~~~~~~~ ... . ,



— U ~~~~~~~1~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ p V

GCS/E~/77-’#

II • NETWORK FUNCTIONAL REQUIREMENTS

t Introduction

Before a system of any type may be properly designed ,

the designer mus t have a firm idea of what the system will

be required to do , and what limitations will be placed on

the system while it is accomplishing these goals or re-

quirements . This chapter will describe those requirements

to be fulfilled by the proposed mini—computer network .

Note that the requirements will be functional in nature.

They will not try to assume how the functions are to be

carried out; instead , they tell only which functions must

be included in a proper design effort .

In compiling these requirements a number of present

network requirements and implementations were reviewed.

These requirements , together with the author ’s previous

experience in working with small computer systems, were

evaluated against the primary goals of the minis in the

Digital Eng ineering Laboratory. A literature search was

made of government research efforts into mini networks ,

and their various requirements were compared to the deter-

mined needs of the A!IT Laboratory. After conferring with

faculty associated with the Digital Engineering Laboratory

the following functional requirements were selected as the

foundation for the proposed AFIT mini-computer network .

Uniform Processor Environment

The mini network will be composed of a minimum of four

8
/

- 5 . — .——— -5~~~~ - —~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- -~~~~~~~~~~~~~~~ - - -~~ •~~- 

GCS/EE/7?-k

different processing units (processors). Since these mini-

computers are made by separate manufacturers, they have

slightly differing ways of performing their hardware

functions. These differences are, in most respects, very

minor and should be of no concern to either a network user

or a network major sub-system software program (process).

All functional software processes (a user’s job or a network

system function such as core allocation) should have a uniform

processor environment So that the process notices no differ—

ence when running on the various processors.

The network must create a virtual machine at the lowest

possible level. This means that the network will be seen by

its users as a different machine than that defined by the

actual hardware. The lowest level routines which handle the

hardware itself should provide a standard interface to the

rest of the network software so that both user programs and

major network functions alike run on this standard, higher

level, virtual machine. It is not sufficient to merely -

isolate the user processes from the idiosyncrasies of’ the

different processors; the major system (network) functions

(core allocation, scheduling, communication between process-

• ors) should also be isolated so that they may be written

once and not customized for each processor. This allows

more efficient maintenance and modification of network

functions while maintaining a standard across the network.

• By creating a virtual machine the network becomes con-

ceptually one computer with multiple processors. A process

~i.

9

—~s r ~~~ ——p - -5. - - - —~~~~, -5— - - .- - -5 .

GCS/EE/??-~1
-

can then communicate with any other process in the network

regardless of which processor the processes are running on.

This virtual machine environment must standardize formats
* • for communication between processes and processors. The

processes must see the entire network as one virtual pro-

cessor with all processes running together. All communica-

tion between processes is then handled by the network in one

standard format so that all processes will conform to the

standard .

Dynamic Network Configuration

The Digital Engineering Laboratory serves many faculty

members and students who are working on a variety of widely

differing research efforts. Equipment is constantly being

added to the Laboratory and much of it is being tied to the

minis in some way. Hardware research projects are also being

conducted which try one hardware configuration one day and a

changed configuration the next. If the mini, network is to be

responsive to these research efforts, it must be capable of

almost instantaneous reconfiguration.

The proposed network must also allow flexible assignment

of 10 devices to any of’ the processors in the network to pro-

vide for the constant influx of new devices and their reassign-

ment from one processor to another in order to facilitate

the equal use of devices among processors. The network must

not be incapacitated by the loss of any one processor or 10

device. It must be able to adjust its configuration

10

- -- •~~~~~~~~~~~~~~~~ -~~~~ .-~~~~~~~~-•-~~~~~ • ~~~—- .- - -- -.5 .,- - •.~~ ~~~- . - -~~~~~-

______________ ~~~~~-**-~- UJr~~~~~~-~~~~ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ : . ~~~~~~~~~~ - - - .
—

GCS/EE/?7-4

and continue execution in a partial configuration upon

recognition of a non—recoverable error condition.

All of the above constraints require that the network

be able to dynamically reconfigure itself. This means that

the network software must be able to handle these changes

without reprogramming. Some form of status must be input

to the network at start up time which the network will use

to automatically configure its system software to handle

the processors and their associated 10 devices in their

indicated configuration. Additionally, the network will

periodically check this status to decide if the configurat ion

of operational processors and IC devices has changed, and if

a change is found be able to adjust the software to handle

this change without disrupting unchanged parts of the network .

Symbolic Device Access

A process running on the network assumes it is running

on a virtual machine ; therefore , it also assumes that any

10 device attached to any mini in the network is also a part

of that machine . The network then has marty terminals, paper

tape readers , printers and other devices all accessible to

any network process. By the previous dynamic network con-

figuration requirement all 10 devices must be interchangeable

among the processors for configuration flexibility; hence,

the process must be able to communicate with a selected

device wherever it is located .

Symbolic addressing of the network 10 deviceS provides

11

GCS/EE/’77-4

this location flexibility. The network has information

on its present conf iguration and can locate any desired

device given some unique device symbol or class symbol .

Class symbols would be used if the process wanted some

class of devices (tape drive , disk) instead of a particu—

lar device (TAPE 1, DISK 2) . One additional subclass

should be provided - that of either LOCAL or GLOBAL classes

of devices . Thus , the process can ask for a local device

(one physically attached to the processor on which the

process is running) or a global device (one anywhere in

the network). This subclassing of devices is needed to

facilitate the elimination of unwanted interprocessor

traffic to global 10 devices when local IC devices are

available to the process .

With this identification of devices by unique device

symbols, class symbols, and device subclasses (LOCAL or

GLOBAL) the virtual machine (NETWORK) isolates the process

from device location. It also provides for creation of

virtual 10 devices , allowing the network to use mass

storage (disk storage) to simulate more devices than the

network physically has .

Network Wide Data Base

The proposed mini network must have a flexible 10

device configuration that allows 10 relocation among the

processors. This means certain files may also be moved

from one processor to another (a disk file would obviously

12

5 - - -
---— - -~~ ---~~~~~~~ - - - —

~~~~
- - - -.-~~~~~ 

. -.‘---
~~~~~~--~~~~~

—-
- . - --- - — - .

~~
~-

!~

- - . - - -— 5 .

have to be transferred along with a disk drive if it were

the only one on a particular processor). The network will

then have movable files and should have a virtual or

network wide base approach . The process again has no
- -

~ need to know where a file is phys ically located provided

2 it can access it and insure certain class storage attributes.

A process must be able to choose between the type of

storage devices used for a given file or that the storage

device is of no concern. Again the local and global sub-

class attributes must be provided for confinement of highly

active files to the local processor if des ired . Provisions

for copying and moving files from processor to processor by

a single directive should be included . This requirement

creates a higher level virtual machine by freeing the user

process from processor dependent tile locations . The

philosophy is to free the process from knowing its environ-

ment by making the network processors , IC devices , and data

base a single virtual element to the using process .

Modular-Separable Supervisory Functions

This mini network is proposed to be a virtual machine

eliminating all possible processor depend ency . This applies

not only to the user process, but supervisory network pro-

cesses too. The overall supervisory function must be

divided into absolutely functional modules. The machines

in this network are small in main memory size and must not

be overloaded with unused supervisory functions; therefore,

13

-—

. . -r- —- • ~~~~~~~~~ •~~~~,,. ~~~~~~~ . . . ,. ._.,

GCS/EE/?7-k

the functions of supervision must be carefully separated

so that only those needed by a specific processor are

provided .

Even this may not be enough . Commonly , supervisory

functions are divided into modules, but the modules are

highly dependent on each other (coupled) through complex

status tables . This network requires that these modules be

separable - all interactions between modules should be of a

message type that may be queued by the receiving module so

that modules are independent and could run concurrently if

necessary .

This concurrency attribute will be used to allow one

processor to contain supervisory processes that control

other user processes on a different processor . It is

expected that one processor may be dedicated to such super—

visory processes as data base management and 10 device con-

figuration. If these functions were not separable from

others , every processor would need its own copy of these

commonly required supervisory functions. A second benefit

of separable functions is the ease of modification. One

network use is to be research of operating systems , and

thus separable functions allow easy replacement of trial

algorithms and experimental functional updates .

For the network to be a true virtual machine ~~~ pro-

cesses must operate with a freedom from environmental res-

trictions . For the supervisory functions to obtain this

freedom they must be not only modular but separable as well.

~~~~~~~~.



GCS/EE/77-4

Error Recovery and Confinement

This network will be used as a research facility by

both students and faculty . This research will not be

limited to programs run on the network , but will extend

— into the systems and sub—systems inside the network soft—

H ware as experi mental operating system methods are tried .

Since the outside programs run on the network and the net-

work sub-systems themselves will be subjected to constant

experiment and changes, the network software arid hardware

will be highly susceptible to errors. Consequently, the

network must be designed to try to automatically recover

f rom these errors and ii’ necessary confine unrecoverable

errors to the smallest extent possible.

The network must be able to detect those errors which

might cause networkwide failure. These errors may be in

the user program or in the network itself. Here the neces-

s2ty of separable supervisory functions is seen again. The

system modules must protect themselves by monitoring each

other’s status and taking appropriate action when a failure

is discovered. For example, the system modules which

schedule the processes for execution time on each separate

processor could communicate with each other and keep backup

tables on the processes executing in remote processors. In

this way the process status would be maintained in two

separate processors. If one process scheduler failed, the

backup scheduler would have the capability to try to reload

the failing module from mass storage, reset the status, and

15



______________________ - 5——. ~ •~~——5--- T~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~

GCS/EE/?7-~1

try to resume normal operation. If the scheduler failed

again, that processor might have to be disconnected from

the network by the backup process. Accordingly, when arty

network sub-system fails, the remaining sub-systems try

to recover the fatling sub—systems previous correct status

and process over the error.

If a failing sub-system is determined unrecoverable ,

the network must be able to shutdown that sub-system and

and reconfigure itself it necessary. Status of the entire

network must be maintained (which processors have which

processes running on them, which processors have which 10

devices attached to them). Then if one processor or process

fails the other processes can ascertain the correct action

needed to isolate the faulty sub—system and confine the

error while allowing the remaining sub-systems to continue

execution if at all possible.

External System Access

One of the first premises of this network was that it

would provide a means for the minis to use the program

development facilities of’ the CDC 6600 or other large scale

systems. This connection to a large scale computer will be

invaluable in providing source editing and cross compiling

functions to aid the researcher using a mini. The network

should provide a standard interface which can be used to

communicate with a number of external computer systems.

This interface should allow hookup to any desired external

- 
16 



P S — — ~~~~~~~ -. — — ---- 5-—- -— —

GC8/EE/?7-~

computer or system without causing major modification to the

other network sub-systems.

The external connection interface must be able to

isolate the communication protocol of the external system

from the internal network protocol. It will act as a trans-

lator and queueing process between the two systems. In this

way the other systems in the network can communicate with

the external process in the same way they communicate with

internal processes. This extends the virtual machine concept

outside the confines of the mint network to include any out-

side computer. Any process running on the machine will still

be separated from the knowledge of’ where other processes or

devices are physically located in the network.

Network Performance Monitoring

The network itselr is to be used as a research tool

for the study of operating systems and networking techni-

ques. Also, there will be many network sub-systems which

must be tuned and refined to give the best overall operation

of the mini network. Both of these require some way to

measure how efficiently the network is working - performance

monitoring. This must be a design consideration rrom the

beginning and not an added attraction to be forced into

the system later in its development.

The network must be designed with the appropriate

“hooks” to allow all message traffic to be sampled to

acquire statistics of such categories as:

1?

- ~~- - — — - ..4 . -S —
~ — - 5-- -  ——5 - —-5--- — —~~ —5- — -



GCS/EE/77-11

1) Traffic to and from each processor

2) Traffic to each unique IC device and each
class of’ IC devices

3) Memory usage on each processor

11) Transmission retries to any device or
processor

5) Correlations between message traffic and
presently running user j obs

6) User job statistics — duration or run,
number of processors used by job ,
number and locatIon of 10 devices t~sed,amount of time spent waiting for
processor or devices

The above statistics are just an example. to give a

flavor of the areas which must be open to the performance

monitoring function. If’ they are not made available by

initial design, it could prove extremely difficult to de

vise a method of’ sampling these statistics as an after-

thought.

The performance monitor function should be able to

collect its data without apprec iably affecting those

statistics which are being gathered. This function must

be able to run as an independent process without affecting

those parts of the network performance which it is moni-

toring .

Standard Design Philosophy

This network is expected to survive many additions of

both computer hardware and new software ideas. This xe-

qutres that the network design allow a high degree of

flexibility, a term which seems at first to oppose the

J 18

—-- —-5..-. . -  ~~~~~~~---~~~~~~~--—— 
~~~~~~~~~~~~~ -~~~~~~~~~~~~~ - -5 -5- - --5 - —-- --- — - - -  - A


—--5—-.- — - - - —5 -5~’~~~~~ ’ —5-5~~~-5~~-5-5 .- --~~~-~ — - -5~-5~~~55 ~~~-5S~~~~~~~ -~~~~-5~~~~~~~~ ’ ~~~~~~ — -

GCS/EE/77-~1

term standardization, but it can be shown that standards

can be maintained within a flexible structure. If all the

previous requirements are to be molded into one integrated

software system , there must be a standard design philosophy

to adhere to. Without a single standard design for this

flexible structure, too marty idiosyncrasies of’ sub-systems

will immerge and, combined with other sub-system differences,

may start to drive the network efforts far from those

requirements it was conceived to operate within.

The network will need a central system design to

standardize the nucleus of the network virtual machine.

This network nucleus must ‘have standard communication

protocols and data interfaces which allow change to occur

within the standard format. An example of such a standard

would be communication between network processes being

strictly limited to messages. No global tables or flags

would be allowed. ~1hile the processes must communicate

through a message, possibly of some prescribed length and

general format, the detailed inner format would depend on

the process Itself. As new processes are added to increase

the functions in the network, there are many new internal

formats for messages added . However, all communication is

carried out by these same messages with no deviation from

that standard .

The previous example illustrates the idea of a standard

philosophy. Those major keystones which make the network

conform to the requirements must not be compromised . There

19

~—S-—— 5— ~~~~ ‘— .- — —- —- - - - - - — 5 - —~~~~‘- - ..

GCS/EE/77-~1

is a constant urge to refine and change things for a

little more efficiency or ease of use. Requirements

mus t constantly be reviewed at each point where a

major addition is made to the network design. It

must be assured that every addition conforms to the

philosophy expressed by the functional requirements,

and that the addition blends into the universal needs

or the network instead of serving one particular sub—

system to the detriment of the whole.

- t ’
,

-

II

20

-- -S ~~ ~~~~~-_~~~ - - . 5- -
-5- -5- 55-

— !
F GCS/EE/7?-11’

III. A NETWORK ARCHITECTURE

Introduction

The proposed network requirements have been outlined.

It is known what the network goals are , but not how these

goals will be achieved . This chapter will present an im-

plementation architecture of hardware and software which

will provide the required functions set forth in the

previous chapter. The picture presented by this chapter

is a broad brush treatment with no intention of presenting

the minor details. It should give the reader an idea of

the major architectural pieces that form the nucleus of

the presented system .

There can obviously be as many different implementa-

tions as there are computer designers. The architecture

chosen is a combination of the author ’s research of exis t-

ing systems and the author ’s own experience with mint com-

puter experimentation . This architecture will support the

functional requirements and would seem to be well suited

for the gradual implementation by successive follow-on

graduate student efforts .

Hardware Conf iguration

While the hardware configuration of the network is a

definite factor in the mint network , it will receive less

emphasis here than the software configuration. The dis-

cussjon of hardware will be limited to only the basic

21

-5-5 -’ 5-

~

’ 5

~

. ‘ 5 - 5 - ’ ’ 5 - 5 - ..~~~~~~~~~ . .~~~~~~~~~~~~ -

- — —-5— ~—~~- - - -5- -5__-~ S_
.5 — -5- 5— 5 - - 5—— ‘5— -— . .. ~~~~~~~~~~~~~~~~~~~~ -5 i~

-___•__ ’__-5- ’_____
’~~~

-— ‘

• V — . - - -~~-— -.- s.—-- ‘ ‘ - - ---‘ - - - -~

GCS/EE/?7-k

architecture needed to provide a suitable interconnection

of the minis to allow the software system to operate. This

section will describe the basic structure of the hardware

used to form the network, relying on follow-on thesis

efforts to perform the detailed specifications needed to

-

- construct and implement the actual hardware circuitry .

Network Bus Structure. One of the prime considera—

tions of any computer network is how the various computers

will be interconnected to form the network structure

(topology). Much research effort has been spent on de-

veloping efficient topologies for numerous different types

of networks. An excellent discussion of three of the most

used topologies is given in Ret 9. It discusses the ad—

vantages and disadvantages of the three major topologies

shown in Fig . 1. These topologies are used in most of the

present networks where the computers are physically separat-

ed by large distances. While they work well for the men-

tioned configurations, these topologies were cons idered

for the Digital Engineering Laboratory network and then

rejected .

The mini network at AFIT will be located on one floor

-. of the School of Engineering building and will probably

not extend out of the building. Since the distances

between the processors will be very small , a bus system

can be used for communication. The bus structure (Fig. 2)

allows all of the computers to be attached to one common

set of communication lines. This structure allows any

22

—

~

5-5 - - - --5 —~~~~~~~ ——- - - - -5~~~~-5~~~~ -

p ~~
-5- -

~~~~~~~~~~~~ 
-5---- - — - - —----- --- --—~~- 

-5 -- - -- - - 5- 
______

GCS/EE/77-4

____________________________________________________________________

R~~3

ti Cemi+ritt.arecf -

Fig . 1. Standard Network Topologies

23

--—-5-—-— - - . 5--—--. -- -5 ‘- ‘-.- . - .-—--- . —-- - - -— .------



5- 5 ‘
~~~~~~~ ‘ ‘ w ’ ~~. ’ - -- --—- -

GCS lEE/I?

El
_ _ _

_ _

Netwo~~~K ~u5 I

(m ~iJ _
1

Pig. 2. Network Bus Topology

2k

_ _

—.‘---------5-5— .. - - .’-

GCS/EE/77-11

computer in the network to communicate directly with any

other computer, but only one pair of computers can com-

municate at any one Instance.

When large physical separation of the processors is

not a factor, this bus interface structure has many ad-

vantages over the link structures of Fig. 1. The most

important advantage is the flexibility of processor inter-

connection. There are no topology problems involving the

connection of processors into the network. Every processor

connects to every other processor in the network by simply

connecting to the Network Communications Bus (NCB) . When

new processors are added to the network, one has none of

the problems of the link networks such as: does this

processor have satelite processors , or how many other

processors must have a direct link to the new processor?

A second advantage is additional network reliability .

When one of the network processors tails , the only eftec~
to the network is the loss of those IC devices local to -

the failing processor. In some multi—linked topologies,

one processor’s failure might cause the failure of other

processors which depend totally on the failing processor

for their communication to the rest of the network . Since

the bus structure allows all processors to communicate with

all other processors , the failure of one processor can

never cause another processor to be el iminated from the

network ’s hardware structure .
-

The bus structure also simplifies the network ’s message

—--—--5— — — ’ - —5- .———— —‘— -.5— — ..---—— ‘-——-—-— ‘—5’— —.‘——‘-—- —.———-—— —~~__—__ — .-- — _—.___- ._ ._ _._ _._ _ . ~__ _ . ._ . . —

_____________ -—----5 - - ‘ ‘ ‘ ‘~~~~~~~~~iT 5-T ’-’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GCS/EE/7?-~

handling software modules. Since there is only one con-

nection from the bus to any processor, the processor need

have only one input and one output queue to handle all

message traffic. On the multi—link topologies the messages

:~ must be routed from one processor through one or more inter-

mediate processors to reach the final receiving processor.

With this structure the processors must have multiple

message queues to store messages for forwarding to other

processors down the line to the receiving process. Using

the bus structure, messages are transmitted directly from

the sender to the receiver with no intervening processors

deciding where to queue and re-transmit the messages.

The software queue handlers can be far simpler when us ing

the bus for direct processor to processor communications.

There are disadvantages to the bus interconnection

approach such as reduced performance. Since every message

must travel on the same bus , only one message can be trañs-

mitted at any one instant . This would not seem to be a -

great hindrance, but it must be considered. The simplicity

allowed to the queueing of messages by the bus approach

would seem to outweigh any performance disadvantage.

The NCB can be implemented in either serial or parallel

circuitry for there are advantages and disadvantages to both

methods of operation. While this thesis does not intend to

propose details of implementation, a suggestion is made on

this point. The bus could be implemented with a double bus -
one serial and one parallel. In this way performance studies

26

IL — —
- - ——— 5 -—— _ 5 - _ , __ , _ , 5-— ..— - - .— ~~~~~ - - 55 -—~~~~ ~~~~~ — ‘ — — 5 - ’~~~ ~~~~~~~. — - — - 5 - — — 5- _

~~~~~~~
5-

,_



5-5-5- ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5-’ 5-5-

~~~~~~~~~

GCS/EE/77-~4

and tradeoffs could be done and there would be a backup bus

if one failed completely. This would allow for better per-

formance and could allow for certain processors to have one

bus as the primary with other processors having the second

bus as the primary, thus separating traffic among the two

buses (Fig. 3). It would greatly benefit research efforts

to have both buses to provide comparison statistics as well

as the increased performance and backup facilities.

Flexible IC Locations. One of the network requirements

was to allow flexible IC device location. This is required

to provide the flexibility need ed to conduct all the various

experiments which will sometimes want specific devices

local to a specific processor. This flexibility also

greatly facilitates addition of new IC devices and ex-

perimentation with load leveling of the processors by

allowing easy relocation of any 10 device from one pr-D-

cessor to another . The third reason for wanting this

flexibility is to redistribute 10 devIces in the event

of a processor failure. If one processor with critical

devices fails, the devices can quickly be transferred to

another processor and the network restarted.

All of these reasons require that the network IC

devices be f i t ted with a standard interface which can

be attached to all the processors In the network. The

different processors have their own logic circuits which

differ from company to company. These circuits must be

connected to an interface which is company dependent on

27

-~~~~~



! ~~~~~~~~~~~~~ 
- ‘ •-- ‘ ‘ “ ‘_—‘--:~~~~ - — ~~- 

—--  --.-—

~~~~~~
-

~~~
---- - - -

~~~
- - . - - -

GCS/EE/7?-~ê

I

-

H

~~~~~ ~~~~~~~ IT: I 

-

• I ParitHe t P4e4-ws,K. ~u& J \1—
• I t

$er~~I Meh,spK 6us 
_ _ _ _ _ _ _ _ _) 

1 ____ 
)

_ _  

[
~T _ _

• -•• •——~~

Pig. 3. A Double Bus Topology

28

—5-—- - - .  - —------ —— — - - ‘
-
~~~~~~~ - — .—- -----—-—.- -- - — -—- - - _ _________

~~ c__ _ __-

GCS/EE/77-1&

one side but standard across the network on the other

side .

Two standard interfaces as explained above must be

designed. One should provide a standard serial protocol

similar to aS 232 logic. This should not be a problem

since all of the present mints in the network have such

an interface. The interface, howev er, should provide for
programmable switching between a wide range of baud rates

to allow for the variety of devices which might be run

through the serial interfaces.

The network processors must also provice a parallel

interface of at least 16 bits wide (the wordsize of most

of the minis memories) to allow another interface for high

speed devices in the mass storage category (disk, tape
I

drives). These interfaces might at first be limited to

certain prime processors, since they would probably be

more complicated and not easily available like the serial

interface. The parallel interface would be the topic of

one of the follow—on thesis efforts . After adequate test

and perfection, each of the processors in the network

would ideally be fitted with at least one parallel high

speed mass storage Interface so that these mass storage

devices would not be confined to prime processors and

could be transported like the slower serial devices .

Micro Interface. The minis will not be the only pro-

cessors in the network. Of course, they compose the major

computing power but the network will also have the capacity

29

- 5---

- ‘ - -— .5--- - -—

GCS/EE/77-~

to use the microprocessor computing power for special

functions and research efforts. These microprocessors

are rapidly entering the research area and have many good

appl ications in the network . These micros should inter-

face onto the network bus in the same manner as the mints.

These micros will be used for special system functions

and as research tools. They will have the same priority and

symbolic addresses on the bus as the mini computers .

Real Time Clock. The network software will need a

time reference In order to perform many of its functions .

Therefore, a real time clock (RTC) should be Introduced

into the network. Each processor could have its own RTC,

but this would mean extra cost both in physical equipment

and the overhead of coordinating all clocks so that they

remain synchronized . A better way would be to have access

to the RTC through the network bus so that all processors

would interface to the same RTC e.nd all processors would

be on the same t ime synchronization.

This access to a single RTC would be implemented by

allowing the clock to generate interrupt pulses along the

network bus and allowing each processor to keep its own

count time. This count time would then be checked periodi-

cally to make sure all counts were synchronized . This

would provide an integrity check to assure that all

processor interrupt systems were operating properly .

Software ConfIg~uratIon

This section will present a general overview of the

30

- —-.5. — - -- . _~~— — - . --—--- -- . -5 -- - . ’ ~~~~~~~~ .- ‘-- .5-—-. .- -.~~~~~~~~~ -- - —. —~~~ - — — -
-k-.- - _ _.- - .—~-—

r ~~~~~~~~~~~~~~~~~~

.‘ ,— - — -----5- —-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- 5-_  

~~~~~~~~~~~~ 
‘
~~~~~~~

5-’5- ’

GCS/EE/77-~&

network software architecture design. This software
- 

. architecture will fulfill the proposed requirements and

should provide the necessary insight to allow follow—on

thesis efforts to implement the detailed design and produce

the actual network software. The proposed architecture

differs greatly from most present operating system structures.

Consequently, the design will not incorporate any of the

operating system software provided by the manufacturers

of the mini-computers in the network. The purpose of the

proposed network is twofold. First, to produce a network

which will aid the users of the Digital Engineering Labora-

tory computers, but, ~ust as important, to allow students

to participate in its design and Implementation , providing

actual experience in’ computer systems operating system

design.

The Basic Network Structure. The proposed network

can be classified as a distributed computer network. This

implies that the network supervisori functions, as well as

IC devices and data files, will be spread among the various

network processors instead of being centralized into one

prime processor which would control other processors as

slaves. Every processor in the network will act as an

independent entity. It will maintain control of its local

resources while providing a part of the total computing

power needed to support network services and user processes.

The network supervisory software will create a multi-

programming environment on each computer or Network Pro-

5- — --—----- -~~~~~ - 5 - -.~~~~~~~~~~~ —— _

31

__



- ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 5-’  ‘~~~~~~~~r:, - 

~~~~~~~~~~~ 
-

-

GCS/EE/77-k

cessing Unit (NPU). This allows each processor in the

network to support multiple user and system processes

which will run with apparent concurrency. The supervisory

system maintains each processes’ status and resources

while also providing interorocess communication, logical

10 operations , and a network data base facility. While

all these functions are provided by the supervisory system,

they are actually implemented as independent system pro-

cesses.

Each NPU will have a KERNEL hardware supervisor which

will handle the hardware schedule for that one NPU. This

KERNEL will contain only those supervisory services neces-

sary for the basic scheduling of the processes for hardware

execution time. These basic scheduling services will include

only the handling of hardware Interrupts , context switching

needed to give each process machine execution time, and

basic queuetng of messages which provide the communication

between all processes. This KERNEL becomes the one common

denominator of network software which will be the same for

all NPU’s.
-

All other services; 10 handlers, communication between

NPU’s, error recovery , and file management ; will be delegated

to independent system processes running much in the same

manner as the user processes under control of the KERNEL .

These system processes combine to form the virtual machine

which the network presents to its user. Because each net—

work function is implemented by a separate system process ,

32

- - ~~~~~~~~~~~ - - --~~- - - , - ~~~ ~~~~~~~~~~~~~~ —5- -5 5- -5 - — — — -~~~~~~ - 5 ,—— —’~~~~~~~ —~~-—-- - — — - _ - . -

- ‘

-

~~~~~

GCS/EE/7?-~~4

only the functions used by each specific NPU are allocated

to that NPU.

Fig. ~l’ shows a possible network configuration. Notice

that each NPU has a KERNEL supervisor, but that each NPU

has only the system processes needed to support its local

resources and the specific user processes which run on

that NPU. It is important to notice the differences bet -~en

each of the NPU’s system processes. NPU1 has no user pro-

cesses at all, instead it is responsible for handling many

of the global services which aid the entire network such as

the Data Base Manager, the Configuration Control and the

Performance Monitor. NPU2 and NPU3 have the most common

combination of user processes and 10 system handling pro—

cesses. Notice that the first three NPU’s have a com-

munication process which allows inter-NPU communication,

while NPUk has no communication process. This shows how

any NPU can be configured to run in a stand alone mode by

simply logically disconnecting it from the Network Communi-

cations Bus.

Configuration Management. Fig. ~1. shows that the net-

work can take on many different configurations of NPU’s

and IC devices. It follows that the network must have a

way of controlling or manag ing the configuration so that

it knows which NPU ’s are available and which IC devices

are local to the various NPU’s. This configuration will

be under control of one Configuration Process for the en-

tire network. This process will communicate with all NPU’s

33

- — - --5- ~~~~ 5---~~~~~— . - - -- 5--- - ~~~
-—--

~~~~~~~ 
-

i— ’ . - -~~~~l

GCS/EE/77-~ê

14PU~ . NPU2..

I- -

— He Iwo,k 6us

NPC’ 3 NPU 4

Pig . 4~ A Typical Network Configuration

~~‘ - ~---5- —--’---~ -- - -. -- —--,‘- -- -— _,-5- --_ - 5 _ —

GCS/EE/77-4

F to keep track of which NPU ’s and 10 devices are available

and working properly .

When the network is started up, a configuration
‘S

terminal will communicate with the configuration process .

This terminal will allow an operator to configure the net—

work as he wishes . The network has a pres tored configuration
• table on mass storage which indicates the normal predesign—

ed structure of the NPU’s and 10 devices. But, before the

network system is started, the operator can change this

table to Indicate any change in the layout from the normal

structure.

The configuration process then controls the loading

of the proper software modules into the appropriate NPU’s

to accomodate the ind icated configurat ion. This is not

the end of the configuration control process execution.

The process continues to run and communicates with all

NPU’s to check on the NPU status and the status of all Io

devices . The configuration control monitors all network

hardware and periodically checks to assure correct perform-

ance of the entire network. If an error occurs, this process

can shut down any part of the network when the error is

unrecoverable. The process takes on the responsibility

of restructuring the network software at any time to allow

for dynamic relocation of IC devices or network system

functions . This allows the network to chang e its structure

to accomodate errors or in response to an operato7’s

commands .

35

_ _

--— -,--_____________ __ ‘_____ __
--
~

-
‘ ‘_ -‘- . . - — .., _ . .. - ~~~~~~~ ‘ ‘ s ’ T X .~~~~~~~~~ ’ T ”

GCS/EE/7 ?-~1

Network Communication. This network must present the

Image to the user of be ing a virtual machine with many

processors . To provide this image it must allow the user

processes to communicate with each other without regard as

to which actual processor a process is running on This

communication is provided through a system of messages

which are sent and received by the various processes. A

communication’s process at each NPU controls these messages

and handles all inter-NPU protocol and error checking.

Since a process should not need to know other process

locations , all messages between processes are sent by us ing

a process name instead of a direct hardware addr°ss. Each

NPU KERNEL then checks this process name. If the process

is in its local process list, the message is queued for the

process. If the process is not local , the KERNEL Invokes

the communication’s (COMM) process which determines the

receiving message’s location and formats the message for

inter—NPU transmission. The message is sent to the receiv-

ing NPU where another COMM process inputs, error checks,

and queues the message for the receiving process local to

the receiving NPU. All inter-NPU messages are handled by

the COMM process, providing the standard interface between

each KPU and the Network Communications Bus, The message

handling is separated from both the rest of the supervisory

systems and the user processes . In this way any change to

the protocols used, or the methods of transmission used,

36

-- -----— -- - - --- -. —-5—.- A


~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• •

~~~~~~~~~~~~~~~~~~~~~~~ w~~~~ 
-
~~~
-

~~ 
- 

~~~~~~~
- - - - ‘ - - - - - -w-—

GCS/EE/77-ll

will be isolated to the COMM processes and have no effect
on the other network functions .

3?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~-



I,’ --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GCS/EE/77-M

IV. PROCESS INTERCOMMUNICATION AND SYNCHRONIZATION

-
‘

Introduction

The term “process” denotes the basic software unit of

this network. This process implies a set of software in-

instructions which are treated as an independent entity by

the network, and as such become the network “atoms” or

buIlding blocks. All functions accomplished by the network

are separated into these processes and it is the process to

which the Network Processing Unit (NPU) processing time is —

scheduled. Processes do not denote user functions alone,

but also denote many of the network service functions.

The network KERNEL’S supervisory services will be

limited to those services needed to coordinate these pro-

cesses. The KERNEL, which will be detailed later, pro-

vides such basic services as hardware interrupt ha. ~ling,

scheduling of hardware processor time between processes,

and interprocess synchronization. All advanced network

services (file handling, user process scheduling, data base

manager, etc.) will be implemented through actual system

processes running in much the same manner as the user pro-

cess. These system processes form the layers of the operat—

ing system above the network KERNEL which the user sees as

the network virtual machine. Even some of the most basic

functions of the operating system (memory allocation and

deallocation) can be separated from the KERNEL and be

implemented as system processes.

~

—--5—- — ,—— —
~~~~~

--
~~~ 

—
~~~~~~~~~

-— - 
‘



— -- -5 • --.-~~~~~~ —-5—-5-—-5--5---—• -5—---
- ---5-- 

- - 
-5-- - -- — 5----

- 
- 

GCS/EE/77-4

Process Types

:~ The system processes mentioned above lead to the dis—

oussion of orocess typing. It was stated that the system

supervisory processes which will form the network virtual
-

- 
- machine will run much in the same manner as the user pro-

cesses . This is true , but the key word is much , not
• exactly , in the same manner . While the system processes

will compete for the NPU along with the user process , they

will compete at a higher priority and have some privileges

that the user processes don’t have.

Looking closer , it can be seen that the system process

must have a priority edge .over the user process since the

user process must depend on the system process for many of

its services. An example Is the handling of 10 requests.

Each 10 device will be under control of a system 10 pro-

cess. If two user processes were running in one NPU, the

— 
• following events might occur. User process one (UP1 ) might

come to a point where It makes an 10 request to the 10 - ‘

process. If both the IC process and the user process two

(UP2) are in the ready state (both are waiting for NPU

time), which process should be scheduled on the NPU first?

Obviously, the 10 process must be scheduled first in order

to maximize IC and NPU concurrency. If the 10 process is

scheduled it will start an IC operation and immediately

give control to the KERNEL, allowing UP2 to be scheduled

while the IC is running. If UP2 is scheduled, the 10 pro—

oess must wait until UP2 Is interrupted for some reason and 

- - ‘
5---’- ~~~~~~~~~~~~ ‘ - 5 - ’ -~~~~~-,•~~~~~- - - - - •-  



GCS/EE/77-~1

then if  there were more processes the 10 process might not

receive the NPTJ even then . This necessitates the separa-

tion of processes into System Processes (SP ) and User
- Processes (UP ) for priority scheduling on the NPU’s.

There is also another cons ideration for the SP and UP

- division or classification. The SP must be allowed to run

In a freer state than the UP. Such operations as START IC

and TEST 10 which affect the physical control of the hard-

ware state must be reserved for the network virtual machine

so that it can maintain control . It would not do for a UP

to rewind a tape drive or disk that was being shared by

other UP’s under the control of another SP for all users

would suffer.

Although many supervisor services are delegated to

system processes , these processes are given the protection

of being part of the virtual network machine by being

classified as privileged or system processes and can be 
-

distinguished from the more limited user process. -

Process Communication

The network described cons ists of a KERNEL hardware

supervisor and a number of Up’s and SP’s all running on the

NPU interacting with each other. They must communicate for

the network to operate , but how is the communication carried

out? Here , another basic requirement must be remembered .

It has already been stated that many of the network operat-

J ing system functions will be implemented as processors .

40

I; 
-—---5- - -~~’- -



~~ - -~~~~~~~ -~~~~~~~~~ — - - - -‘ -~~ -~-- —

GCS/EE/7?—4

The network requirements also state that these supervisory

functions will be separable so that they may run with

apparent concurrency. This implies that both the system

processes and all user processes cannot be allowed to use

common memory storage as a communication medium, for they

could not then be independent of each other nor could they

be independ ent of each other ’s location in the network .

This prohibition from common memory as a form of pro-

cess communication seems overly restrictive at first, but

it must be remembered that the processes may not have any

memory in common. They could be running on totally separate

NPU’s and one of the functional requirements states that

this communication must not depend on the location of either

process. The processes must be able to communicate with

processes on and remote to their local NPU ’s , an attribute

which makes the use of global tables impossible. Instead ,

all communication between network processes will be through

a system of messages . These messages will be under the

processes control and will, make up all the communication

between any two independent processes. -

One can see that these messages allow a total freedom

of process location. It now makes no difference if the

receiving process co-resides with the sending process; for

It not the network will automatically format the message

for transmittal to the remote NPU. At the receiving NPU,

the message is re—formatted by the network to its local

form and presented to the receiving process just as it

41

“ L , . . , .~~~~~~~~~~~~~~



p _______ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- - --5’---
~~~~- - ~~~~~~~~~ -~~~-~~-

— - ‘- ‘-- ‘
~~~~~ 

‘- - ~~
--------—-- --

GCS/EE/77-4

would be if sent from a local process.

The process message becomes the standard information

transfer interface between all network processes whether

they are classified as user or system type.
-

- ‘ All processes are restricted to message transmission

for all data and control communication. This actually

—
provides more freedom rather than being truly restrictive.

It a user program can be designed into processes which can

be run concurrently, this nOn--common communication restric-

tion actually benefits the program ~f enough NPU’s are

available to split the processes among the NPU’s. Here

the user has an inherent design tool which will allow con-

currence if it is available, but will not hinder the pro—

gram if all processes must run on one NPU. If the program

had been designed using common memory communication, the

availability of the second NPU could not be used to

promote the program’s inherent concurrency.

The message communication requirement is carried

throughout the network’s system processes. Whenever a user

process calls for the execution of an 10 -operation, it is

really sending a message to the 10 process handling that

10 device. This message is transmitted to a remote N-PU

and IC process if necessary without the user processes’

apparent knowledge. This goes for all system processes.

No system process shares a common memory data structure

with any other process. This allows maximum flexibility

for location of system processes used by more than one NPU

112

GCS/EE/7?-11

such as a data base manager. All processes , user and

system, may be sending requests for data base action from

all parts of the network. All requests are then trans-

mitted to the data base process wherever it is located.

The message Interface also allows for ease of replacement

of system processes, since there is no common memory

linkage. The interface between separate functions in

separate processes is clearly delineated through the

message formats between associated functions or processes.

Process Synchronization

The processes now have a standard method of communi-

cation; they can send messages to other processes and

presumably receive messages from other processes. This

solves the problem of getting data from process to process,

but does it totally solve the whole communication problem?

For example, process UP1 needs to write a line to the line

printer handler LP1. If UP1 simply sends one message to

LP1 there may be no problem If LP1 is also expecting just

one specific message from UP1 (Fig. 5). In reality, how-

ever, Upi will probably run in a loop sending many lines

to LP1, and LP1 may be receiving other messages from other

processes (Fig . 6) .

It can easily be seen that some form of control or

process synchronization must exist for arty communication

effort to be successful. Obviously, LP1 must be able to

wait until It receives a valid message or its execution

4,

I

- — —- 5- -— -5— —
, 4

______ ~~~~~~~~~~~~~~~~

GCS/EE/77- 11

—

~~~~~~~~~~~~~ 

I ~~
LP11

Fig. 5. Simple Communication

f~~1 L~~i 
u~ 3 ~~~‘‘  (I)Px

Let

FIg. 6. A Synchronication Problem

44

— —  — -~~~~~~~~~~~~~ - ‘ —  - -~~~~~~ - ---5 - ’-5~~~- -~~~~~~~ -- - •~L



5---- -—- ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~

-—-----‘ —---- ----‘‘ —-—-- -5 - - - —--- ‘--—----—-——
~— -~~~~

GCS/EE/77-11

loop would be spouting endless garbage from memory to the

line printer . Not so obvious at first , but just as impor-

tant is the fact tha t UP1 might want to wait in its loop

for LP1 to signal that the print operation was successful

before UP1 continues . If UP1 were reading a card instead of

printing a line, it would be forced to wait for the reader

process to return a message with the card’s contents.

This process synchronization is one of the prime res-

ponsibilities of the KERNEL supervisor. It must be capable

of controlling the processes and allowing them to specify

when they need to watt for an Incoming message or when

they wish to send a message . E. W. Dljkstra, (Ref 6:253)

has provided a solution to this synchronization problem

through the use of his P and V counting semaphores when

used together with basic message queueing for each process.

A good explanation with example is given in (Ref 6:254)

so a total explanation is not attempted within this paper.

Instead, an example is given (FIg. 7) showing how the pro-

cesses would use the Send and Receive primitives (Ref 6:2.511)

which combine the P and V semaphores with the queueing of

the process messages.

This example presents a simple user program which must

read a set of cards, do some form of conversion, then present

the converted cards to another module which will format the

converted cards into a report and output the report. This

example also shows the advantage of splitting a program into

independent processes. One process can read the input and

45

- - w~ :~~~~~fl - tS. - -

GCS/EE/77-4

- - -

~~~~~~~~~~~~

— si~.PL —

ST1 REc. a~ot ~~ i~EC s&PiI
t, RE*O c~*D PRUJT £JM

se, o sore s’~
e.OTO ST

Lf~~

1

_‘) ~~~~~~~~~~~~~~

- 
UPL

a; S5~J~ ~~~~~L $T~ ~~~C UPI
~ a~• U Pt 

_ _ _ _ _ _ _ _ _ _ _

$D~D S1.p.j
£eJP UP2. ~o ro ST

~~OT h  ~T

Sys te m Pfless~~eS

Syst ~ s~ Co~fi~o I

FIg. 7. A synchronization Example

*6

5- ~~~~~~~~~~~~~~ ~~~ —
- ~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~ --- ——~~~~~~ • - —  - — - — - -5   

—-  ‘ 5 - ’ -  —— —

~~



_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GCS/EE/7?-4

convert it, while a second process can concurrently process

the converted input and print the desired report. The

intermediate converted cards will be passed between the

two processes through the use of the process message.

Shown in Fig. 7 are the two user processes running

with the two system processes SRD1 (card reader 10) and —

SLP1 (line printer IC). When the network was started the

SRD1 and SLP1 processes were automatically initiated as

necessary processes to this NPU through the configuration

control. Both SED1 and SLP1 accomplished necessary startup

code then executed EEC primitives to notify the KERNEL that

they- will wait until some process sends one of them a

message. The two user processes then enter the NPU and

begin execution. Either process could receive control of

the NPU for execution fi~-st and either way the processes

will, execute properly due to their SEND and EEC primitives.

Assume UP1 executes first; it will immediately send a

message to SRD1 asking it to read one card. Both the SEND

and EEC act as supervisor calls (SVc) to the KERNEL, at

which t ime it may assign the N-PU to the highest priority

process ready for execution. SRD1 is now scheduled which

in turn initiates a read which allows the KERNEL to

schedule another process. If UP1 is scheduled it then

executes a EEC UP1 which makes It wait for a message. If

UP2 is executed It executes a EEC UP2 which causes it to

wait .

Now all four processes are waiting - three (UP1, UP2,

47 

I



L GCS/EE/77-4

and SLP1 ) on EEC message primitives , and SRD1 is waiting

for the hardware card reader to complete its operation.

When the read operation completes the KERNEL schedules

SRD1 which executes the SEND UP1 to send the card contents

to UP1, SED1 then executes the EEC SED1 to again wait for

the next message or command. Upi now has a message to

work on and the KERNEL schedules it for execution. UP1

does its processing of the card data and formats it into

a message to UP2, which it sends with SEND UP2. When UP1

gets the N-PU again it will immediately execute the SEND

SRD1 to read another card then wait for It with the EEC

UP1.

Now SRD1 is waiting for a card being read, UP1 is

also waiting for the card, but UP2 has a message to pro-

cess — the one UP1 just sent. When UP2 is scheduled It

takes the message and uses the data to begin formatting

the first line of a report. UP2 then executes the SEND

SLP1 to send the line to the line printer process. After

sending the message to SLP1, UP2 loops back to EEC U 2

to receive the next message. SLP1 will then receive its

message, output a line to the printer, and loop back to

wait for another line to be printed.

So the processes continue, all four processes running

apparently concurrently, but yet in perfect synchronization.

Each handles the part of the program for which it is designed,

then passes its data along to the next process in line.

H 118

-5 - — —



V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘

~~~~~~~~~~~~ 

-—

GCS/EE/?7-4

Through the simple primitives of SEND and EEC , which

- - 
combine the P and V operations with message queuetng, the

KERNEL is able to schedule each process when it has work

to do (a message to process). Therefore, the processes

can not only communicate with, but also can control, each

other’s timing all through the use of the interprocess

message. -

49
I- i

~~~~~~~~ ___..~ -~~~
j ,

~

~ . _ _ _ _ _ _ .

-.- - —---—--— -— —-—--- 5---—-—- —-- ——— -—.-- -.--———---- - ~~~~ - -- - - ---5

5-— - --:--- - --- ---—
~~-- _ - —-—‘- ‘-- - — --- - - -~~~~~~ - ----- - -------- — - -

~~~~~~~~ -= - ____

GCS/EE/77-4

V. BASIC NETWORK PROCESSES

Introduction

It has been shown that most of the network’s virtual
— 

machine will, be implemented in a special class of processes

identified as Network System Processes (NSP). These pro-

cesses are the separable supervisor functions specified in

the functional requirements. While the proposed network

will eventually develop new NSP’s as it grows and changes

to meet new requirements , this chapter outlInes those basic

NSP’s which are needed to the initial network configuration.

A brief explanation of what each required process is expect—

ed to handle will be given. It is to be remembered that

while the NSP requirements are outlined in some detail,

thIs is not an attempt to give actual detail design speci-

fications for each process. Follow—on implementation

should further research new ways to accomplish the process

function while staying within the proposed basic architec-

ture and requirements.

The Supervisory KERNEL

The KERNEL is actually the most basic software unit in

the network. Technically, it is not a system process, but

is the scheduler of all system processes and, as such, the

implementer of the network must know what is expected of it.

This piece of software handles only those functions Integral

to context switching between the network processes and the

handling of the hardware interrupts. It should not be

50

5- 
—5- -‘5-- __~~~••~_ 1-5 ~~~~~~~~~ -5 -5 5-— 5-— 5- —5---- —-—5-



GCS/EE/77-k

allowed to expand into functions which could be pushed up

into the NSP layer. A good example is memory allocation.

One would first think that the KERNEL must handle the

allocation of the NPU central main memory; if not, how

would a process ever be allocated memory to run in? This

- 

- problem can be solved by preallocation of memory to an

allocation process at network Initiation, so that when the

network KERNEL is loaded the allocator process is also

loaded. This allocation process will be described in more

detail later.

The prime function of the KERNEL is the scheduling of

the N-PU to those processes initiated on that particular NPU.

Each NPtJ will have exactly one KERNEL associated with it.

Since the KERNEL is not a process, and must communicate

only with those processes physically located In the same

NPTJ, it is allowed to communicate through central memory

in the form of SVC (Supervisor Calls) instructions executed

by the NPU hardware.

While the minis in the network may not have a SVC in-

struction as such, one can be implemented on almost all

minis through the use of an Illegal execution of some form

of instruction. It is desirable to implement such an illegal

instruction trap, so that whenever the pseudo SVC is executed

the hardware itself performs the entry into the KERNEL. This

provides better control of the hardware than allowing the

processes themselves to branch into the KERNEL directly- and

possibly allowing them to branch incorrectly, causing mal-

, 

51.

‘

~~~~~

— — —__,_z_~
_ r:,,~_ ,— ,&a~3~~~- , , ,~~~~~~ ,,, , —‘ - --

— - -
~~~~:

‘ ‘
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GCS/EE/?7-4

functions in the KERNEL due to a using process. The

KERNEL’s scheduling integrity should be protected at all

costs for should the KERNEL fail, the entire N-PU is likely
b

to tail.

The process now has the means to communicate with the

KERNEL, but what requests can it ask from the KERNEL? The

follow list of KERNEL SVC ’s is suggested for the basic

network implementation:

ACS - add a process to the KERNEL’s scheduling list

EMS — remove a process from the scheduling list

- send a message to a process

XWT - send a message and wait f or reply

EEC - receive a message from a process

While other SVC’s may be added for extended versions

of the network, these will allow a basic configuration

KERNEL to control the processes on a NPU. The ACS and ENS

SVC’s add and delete processes to and from the KERNEL’s

active process queue. They can only be executed by a

system process and have no effect when executed by a user

process. The XMT SVC allows one process to send a message

to another process and remain ready for execution, while

the XWT SYC informs the KERNEL to send the message and

place the process in the wait queue until receipt of the

message by the receiving process has been verified. The

EEC SVC tells the KERNEL that the process wants to wait

for a message. If there is no message queued for the

process, the KERNEL puts the process into the wait queue,

52

GCS/EE/77-4 -

- -

otherwise the message is made available to the process and

the process remains in the ready queue. This small set of

-‘ SVC’s handle the basic communication needs between the
II

KERNEL and Its processes. The implementation format of

- ‘ 1 the SVC Is left to the implementer, but a possible solution

would be to have all parameters for a particular SVC follow

it in sequential words in memory, or have a lIst of para-

-

‘ meter addresses follow the SVC in memory.

The KERNEL must be able to receive the hardware inter-

rupts and notify the appropriate system process which is

handling the device that caused the interrupt. The hard-

ware interrupts can be handled by converting them into

messages and putting them into the appropriate queue for

the proper handling device. In this way there are no

special communication methods established between the

KERNEL and the system IC handlers. The system handlers

simply establish a message port through which the KERNEL

can signal the presence of an interrupt and the interrupt

is processed much in the same manner as a message. It

should be noted that since the KERNEL controls the priority

of execution of processes, there should be no timing

problem in this method of handling interrupts. Whenever

an interrupt occurs, the KERNEL will know which process

it belongs to and schedule it as the next process to run

after entering the interrupt as a message in that process’

queue.

-—
~~~~~~~~~~~~~~ _ _ _  — - — -- ----- ---—--- --—‘—-- ---- --------- -‘ -5 - -  -— --- ---‘----—--—---—-- ------—--- — -----— -‘--- -----—--



GCS/EE/7 ’?-k

Memory Allocation

It was stated earlier that resource allocation such

as memory allocation can be done by one of the system

processes. The memory allocation system process is

responsible for coordinating all requests for memory through- 
-

out the network. This memory allocation can be handled in

one of two ways. A process can be assigned to each NPU to

handle only the memory allocation t or that NPU, or one

process can be assigned to handle memory allocation for

the network. Both methods should be experimented with to

see which best serves the needs of the network.

• The local allocation process will be loaded with the

KERNEL at nework load time and will be responsible for

allocating the memory for only those processes running on

the same NPU. At start up of the network the memory allo-

cator, along with other system processes, will be pre—

allocated for that NPU. Prom that Initial point on, the -

allocation process will control all requests for processor

central memory . Whenever a process needs memory for

buffers, tables, or to load another process, a message

is sent to the allocation process. The allocation process

handles the messages, updates its memory allocation tables,

and either rejects the allocation request or honors it,

then sends a reply to the process indicating the result.

511.

5- -- 5-—

~~~~~~~

-

~~~~~~~~~~

’

~~

-’- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


5-’5-

~

_ ‘

~~~~~

5-

~~~~~~~~~

GCS/E E/? 7 -11

I.

When a process needs a segment of memory, it would

- - send a message of the format

3 MEN CON AMOUNT ADDR

MEN — is the symbolic name of the
memory allocation process

CON — is the request command to
the process — either

~-i i ALLOCATE - request a new
segment of
memory

DEALLOCATE - return an old
segment of men~ory

AMOUNT - indicates the number of
words being requested or
returned

ADDE - used only with a return
request to indicate which
segment of memory is being
returned.

The allocation process then returns a similar message of

the same format indicating in CON whether the request was

granted or not. By creating a process to handle memory

allocation, the KERNEL is relieved of this function nor-

mally integrated into the basic machine supervisory soft-

ware. The next logical step for network-wide memory

allocation could be taken.

A good experiment might be allowing one Memory Alloca-

tion Process to handle the entire network’s memory allocation.

This process , running on one NPU, would be responsible for

the memory on all NPU’s. This virtual allocation would have -

no effect on the other processes , since they request memory

through the interprocess message system. Obviously, the

55

- -5 — - -- - —- — -- _ ,__ _ _ ,- -- • _ - ---• - - • • ~~~~~ ‘— ‘- - — - - .

— ‘ ‘
~~~~ 

—— “- - —— -—- -
~~

-
~~~~

-
~~~~~~~ = — -

GCS/EE/77-4

allocation of memory on NPU’s remote to the NPU where this

allocation process is running will take a little longer,

since the messages which control the allocation will have

to travel between NPU’s. This is really of no major conse— 
-

quenc e, however, for the allocation and deallocation requests

do not occur frequently within a process. Most allocations

will be executed during process initiation and termination —

with relatively few requests executed during the process

life. -

It is not necessary to limit the allocation completely

to either local or global means. The network could have a

mixture of both global and local memory allocation. An

example could have one NPU with a high occurrence of memory

allocation requests best handled by the local allocation,

while the remainder of the network NPU’s had a lower occur-

rence of memory requests which would be handled adequately

by one global allocator.

Two configurations of the network memory allocation

processes are proposed to handle the network needs. First,

the memory allocation process could be configured to run on

the NPU with the large number of memory requests . In this

configuration that NPU’s requests would be local requests,

which would be handled speedily, while other NPU requests

would come over the network communication system and would

be handled less rapidly due to the inter NPU traffic.

Second, two allocation processes could be running on

the network, one on the busy NPU to handle only its memory

56

-5- -5- --5— - — - —- -5- -- - - -



__ - ‘
~~~~~~~~~~~~~~~ 

_ _

requests, while a second allocation process would handle

all other memory requests for the remaining NPU’s in the

network. This example demonstrates the benefit provided

by separating this system function by the use of inter—

process messages. The entire spectrum of using one process

for each NPU to using one process for the entire network

and all steps in between become feasible.

-

.

The network should initially be designed with only

one allocation process to free memory in the remaining

NPU’a for other processes. If later development shows

— that certain NPU’s, or all NPU’s, should handle their own

memory allocation, then the processes are added when need-

ed. In any case, no other processes are affected, either

way they still generate their requests for memory in the

same protocol without regard to where those requests are

actually processed.

User Job Scheduling

- - ~ The KERNEL and its supporting System processes are in

the NPU and waiting for work to do, but there must obviously

be a user process in the system before the system is actually

used. This section will explain the basic User Job Schedul-

ing Process which will handle that interface to allow a

user to introduce hIs work Into the network.

There will actually be two different ways to enter a

user job into the network. The job could be entered as a

batch job through one of the batch 10 devices or inter-

57

--5-

p — -- — — ----- -- ---- ---- --

~~~~~~~~~~~~~~~~~~~~~ 
--_ • -- --- --- - - _-- —--—--- • -5

GCS/EE/77-4

actively through one of the terminals. The network will be

provided with at least one batch terminal which will allow

the user to submit jobs through the use of card decks or
: b

paper tapes . This batch system should be able to use job

control commands to allocate resources to individual user

- 
- 

processes in a job. This job scheduler must interface with

the other system processes to provide the necessary batch

facilities. Most of the jobs will probably be entered

through the use of interactive terminals. The jobs entered

through the terminals will be handled much in the same way

as the batch jobs except in an interactive procedure. The

batch and interactive procedures should accomplish the same

functions while allowing each to do It in its prescribed

mode.
I

This user scheduling function should actually be

broken into three separate functions with one process per

function. A User Command Process will be used to standard—

ize the allocation process for both interactive jobs and

batch jobs. This process will receive commands from the

user job through the Batch and Interactive Interface

Processes. The command process handles all user commands

uniformly regardless of from where they are Issued.

This process will handle requests for memory for

initial scheduling of a user process, requests for IC

resources , requests for a particular N-PU or class of NPU’s

to run on, etc. Any command which the user can present to

the network will be coordinated through this User Command

58

—~~~~~~ -- ~~~~~~~ - -5 —
~~~~~

—-
~~~~

-—5- ’_ —-
~~~~

—
~~~~

- - -
~~~~~


— - -5—--- ~~~~— ‘ 5 -~~~~~~’~~

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

‘_
‘ 

- - 

~~~~~~ ~~~~~~~~~

GCS/EE/77-l1

Process.

-
- Although the User Command Process actually handles

the execution of user commands, different formats and

responses are required for the batch needs compared to the -

interactive needs. The Batch Interface Process upon

initiation will request allocation of those devices

‘ designated as batch devices by the network configuration

tables. It will then present a read request to the batch

input devices and wait for any input to occur. Upon the

presence of batch input, this process converts the input

command for presentation to the command process

The Batch Interface Process also handles output to

the batch devices from the batch user processes . Along

with input and output control, this process will establish
I

communication to the network operator console through the

configuration process. This process is the central control

point between all user processes running in the batch mode

and the rest of the network system processes.

While the batch system handles all the batch devices,

the Interactive Interface Process handles all the inter-

active terminals on the network. Since there is much

dialogue in the interactive mode, this process acts as

the go between to the User Command Process. It handles

the logon procedure and prompting messages for all the

interactive terminals. Its primary job is to interface

with the User Command Process and convert the interactive

• user commands to the internal format to be processed by

59

- 5- _-. - -~~ - - -- --- - — ‘-‘ - - - - ‘-
~~~~ •



GCS/EE/77-4

the command process.
There are many advantages to the logical division of

user job scheduling into these three parts. The main ad-

vantage is the consolidation of both the interact ive and

batch command processors into one processor . By using the

Interactive and batch interface processes, all user pro—

cesses can be scheduled by the one command process, eli-

minating the duplication of functions that might be done to

schedule both types with separate full scheduling processes.

Local 10 Process

The Local IC Process-handles all the functions that

an 10 driver routine would handle for a large mainframe

computer supervisor program. This includes the physical

handling of the device, the status keeping for a device,

and the queueing of requests for a particular device.

• There will be one Local IC process for each IC device, or

class of 10 devices, In the network. Whenever a process

executes a read or write to an 10 devIce, it is actually

sending a message to a Local 10 process somewhere in the

network.

When an 10 message is issued, the KERNEL determines

whether the message is to be a local device or one located

on a remote NPUS If the request is not local, the Communi-

cation Process (COMM ) is invoked to send the 10 request to

the appropriate NPU. There a second COMM process queues

the request then sends it to the Local 10 process in that

NPU . Once placed in the local process queue , all 10

60 

- - -‘- -- ‘ --~~~~~~ -- -  



- — - - ‘5--- -
5 - —  —— —5- -‘5- —5- ~~~~ 1~~ -r--- —

GCS/EE/77-4

messages are handled in the same way by the Local IC

processes on the various NPU’s.

The user process IC messages are initially queued by

the KERNEL in a first-in-first—out method. The 10 process

can then Input the messages and queue them in any manner.
- 

- If one type of 10 device is best handled with a priority

queueing scheme, then the process handling that device

will maintain a priority queue internal to itself after

receiving the messages. Note that all aspects of the IC

device manipulation, such as the type of queueing, remain

inside this process to Isolate the device from the net— —

work. If an experimental type of queueing is to be tried,

the IC process Is replaced by the experimental process and

the network sees no change external to the changed process.

The 10 process will have a second message Input port

separate from the 10 request. This second port receives

interrupt messages from the KERNEL. While the KERNEL

handles the actual Interrupt, the interrupt is immediately

passed to the handling 10 process for actual logical pro— 
-

ceasing. The KERNEL Is merely a switch to route the hard—

ware interrupt to the 10 process which then services the

device according to its device dependent needs. All

physIcal manipulation of the device is initiated within

the 10 process. It must consequently run as a privileged

system process. The entire process will not run in the

privileged state, but as a privileged system process it

can request to run in the privileged mode for short

61

- -  -5~-5’~ ‘-5 —5----- -- ____  -



____ 
____ 5-- - -

GCS/EE/77-11

execution sequences such as the issuing of a START 10 or

TEST IC operation.

The Local IC Process is also responsible for maintain—

ing the status of its 10 devIce. It will periodically

check the device to make sure it is operating properly .

If the process detects a constant error condition on the

- 

• 
device, it will then send an error report message to the

Configuration Process discussed later. The Configuration

Process will also periodically send check messages to the

10 process to verify that the process Itself is running

correctly. These status messages help the entire network

to monitor Itself and detect errors at the earliest possible

time to prevent loss of additional functions due to the

failure of other functions .
F-

62

- 5 -  - - —-- - - - ~~~~~~~ -5~~~-- ~~~~~~ - - -- ---5-5 --—- - - -



V - -

VI. EXTENDED NETWORK PROCESSES

Introduction

The previous chapter described the basic processes

needed to form the network software required to operate

one N-PU only. There was no provision for any configura-

tion control of the NPU’s and IC devices nor any system

process to handle Inter-NPU communication, These system

processes were not included in the basic processes for it

is the author ’s opinion that the basic functions mus t be

tried on a single NPU before t~iey can be extended to

encompass the implementation problems which will accompany

the integration of multiple NPU’s Into the network.

For this reason some of the processes which are

basic to the network as a whole, but not an integral part

of a single NPU operation, have been left for this chapter.

This chapter will describe the remaining system processes

which the author feels must be included in the network to -

meet the functional requirements given In ChaDter II. This

does not mean that other processes will not be implemented

later to provide additional function for the network , but

the lack of any of the following system processes would

cause the network to fall short of the requirements pre-

sented .

Configuration Management

Even though the proposed network will distribute

supervisory functions among all the NPU’s, there must

63



be a control point to orchestrate this distribution. The

Configuration Management Process will be this central

control point. It will maintain the network status for

all NPU’S and IC devices within the network. This status

will form a structure describing which NPU’s the various

10 devices are attached to and which supervisory service

processes are running in each NPU. From this status it

can monitor the entire network to make sure that all

parts are running properly and take proper actions when

failure occurs.

The configuration process will also communicate with -

a master network console, an interactive terminal of some

type. Through this console the network operator can deter-

mine what Is happening in all parts of the network. The

- ‘ operator must be able to start and halt the network, as

well as reconfigure it by adding or substract ing NPU’s and

10 devices . The network will hav e a predesigned structure

stored away before the network is started by this operator.

When the network is first initiated , the operator will

load the configuration process into one of the network ’s

NPU’s. The process wIll input the predefined structure

and then communicate with the master console. At this

point the operator will have the option of starting the

network in the preset configuration or of making changes.

He can use the console to reconfigure the network to allow

for minor differences for this running period . On a

certain day one NPU may be left out of the network for a

6k

- — -- - - -
•- -—- - -—~~~~~~~~ -~~~~~~~~~ —— --5 ~~

—— - - -- — - - —  — — —-—-
~~~~~

5-— - — -—--—- 5-—-

___ -- —-—-
~~~ ~~~~

-
~• , _ ‘  ~

---
~•~~-_-_---—

GCS/EE/77-k

— special stand alone experiment , or various 10 devices may

be out of order and not available to the network.

After the configuration is set the operator would
1

start the network. The configuration process then starts

to load the specified software Into the NPU’s through a

bootstrap loading system. The software is loaded according

to the Network Status Table; only those system processes

needed by each specific NPU are loaded. All necessary

system processes are loaded, given independent life, and

the network is up and running.

Once the network Is running, the configuration process

takes on an additional function. Throughout the life of

the active network, the process constantly sends consist—

ency check messages to all NPU’s and all 10 devices in the
I

network. It periodically sends a message to each device

handler to assure their proper operation. If a correct

response is not received within a predetermined time in-

terval, the configuration process assumes a problem exists

and begins to attemp t isolation of the probl em area .

The Isolation of the error in this case is no simple

matter. Fig . 8 shows that the error between the configu-

ration process and the IC device being tested could have

occurred in any of six software modules ( including the

configuration process itself) or four pieces of hardware.

The configuration process will systematically check each

piece until the problem is found . If a problem is found

in the software, the configuration process will try to

65

I~- - --~ 



______________ - -  -- — - Th__• _ ___5-~~
_______ _ _ 5 -_— —-- -“-‘—- -.-, —‘--

- - - 5-----— - — -- --•--— -—--- ---- - _ _ _ _

GCS/EE/7?-k

- 

- 

NP (J~L

E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
o

[ u t  NETWOA~ ~ US

NP V2. ~xo 
~~us

Fig . 8. An error confinement problem

66

- -~~~~~~-5-—~~~~ 5- - -—- — — —  - ‘ rn -~~~~~~~~ •_ ,~~~~~~~~~ 5-- 
~~~~~----— 5- - - - - - - -~~~~~~~~~~~~~~ -


p i~~~~~~
- ”

~~
—--~ - r~~—-—-— ——- •— — -------- ----

~~~~~~~~~~~~~~~~
- 

~~~—-~~~~~~~ •

GCS/EE/77 4 —

-; correct by reloading a backup software module. If the

problem cannot be solved, the failing part of the network

will be marked inoperabl e and will be logically disconnect—

ed from the network.

The Network Status Table also keeps track of where

all the processes are running in the network and where

global network data files are located . When a process

asks for use of one of the global network resources, the

configuration handles the initial request and controls

access to the resource. This allows the configuration

process to keep the status of all resources in the network ,

not just the hardware status. This also implements the

global property of resources by allowing a user process

to find the resource without knowledge of its network

location. It simply requests that the configuration

process establish the linkage for further communication -

with the requested resource.

It is obvious that the configuration process is the

hub of the proposed network. Without its central control,

many of the virtual features of the network, like process

independency and common environment, would be lost. Due

to its importance , the configuration management process

and its host NPU must be reliable and always available to

the network . To help accomplish this goal another specific -
-

implementation point is suggested.

It might prove advantageous to dedicate one micro-

processor , along with one interact ive terminal, to this

H
-

67

— - — - ~~~~~- — -• . — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— —~~~~~— — — — 5- ~~~~-—~~~~ —~~~~~ - --~~
-
~~~

—- - - -



GCS/EE/77-k

I

function. Together they would act as an intelligent

terminal connected directly to the Network Communica-

tions Bus, which stands alone - separate from all other
-
~~~~ network NPU’s. In this way if any other NPU’s fail, the

configuration control is not lost, and if the micro—

processor failed, it could be replaced by a backup micro.

This also prevents any other processes from running along

in the same NPU with the configuration control and possibly

causing a failure to this critical function. This is

simply an implementation suggestion and, by no means,

a required configuration.

Interprocessor Message Management

This section explains the processes which actually

accomplish the communication between the NPU’s that make

up the network. Whenever a process makes a request to

send a message to another process, the KERNEL first

receives that request. The KERNEL then checks its active

process queue to determine if the message is to be sent

to a local process. If the process is found in the active

queue, the KERNEL queues the message to that process and

updates the process status if necessary. For the local

process that communication is complete and under the

control of “the receiving process.

However, what happens when the KERNEL does not find

the process local to its NPU? The KERNEL knows the

message must be to a global process which is out of its

GCS/EE/77-k

control. It queues the message to the Communication

System Process (COMM), and schedules COMM for the next

execution. COMM then takes over and performs the neces-

sary steps to transmit the message to the appropriate

NPU. How does COMM know which NPU to send the message

to? Let’s look at how COMM Is started and what informa-
-

tion is available to it.

When the network is first started, every NPU is

bootstrap loaded with at least the KERNEL and the COMM

system process. The COMM process must be loaded along

with the KERNEL, for until it is present each NPU is

unable to talk to any other NPU. When activated the

COMM process tries to establish communications with the

Network Communications Bus and the Configuration Manage-
I

ment Process • It will keep try ing this communication

until it receives a reply from the configuration process.

When the reply is received , the COMM process then asks

for the network status. The configuration process then

begIns to 3end out the network status to all active COMM

proóesses.

The COMM process is actually receiving the Network

Status Table from the configurstion process. Throughout

the life of the network, the two processes periodically

check each other to assure the status tables are identi—

cal and that the configuration process, and all COMM

processes, are running properly. This is part of the

backup system which is constantly checking itself for

1/ 69

-5 —- -‘ s~~~-r~~~ —— -- — - - , , -•

GCS/EE/77-k

correct operation. The COMM process now has the status

of all processes in the network as well as their res—

pective NPU locations.

The COMM process could be implemented to ask the

-
- Configuration Management Process for the location of a

global process each time It sends a message, but this

would double the network message traffic. This would ,

obviously , tie up the NCB much more than necessary, and

would lead to much slower response times. In addition,

the duplication of the Network Status Tables in each NPU

is an excellent way to provIde backup for this most im-

portant single network function of configuration control.

The COMM process can determine where the receiving

process is located from its status table and prepare the
I

message for transmission to the proper remote NPU. The

COMM process handles all formatting for transmission and

all error checking at the receiving end of the transinis- - -

sion. During all inter-NPU messages, two identical COMM

processes are talkIng to each other. An excellent protocol

for this transmission is given in (Ref 7) . ThIs is the

ARPANET’s suggested protocol discipline for real-time

highspeed data transmission, and would seem to be appli-

cable as the standard for the proposed network .

The protocol suggested consists of the sending process

noting the t ime that a message is transmitted and storing

this time with the message in the process output queue .

If after a preset interval the sending process receives

70

-~~ r - - _ ~~~~~~~~~~~,— — - — — I- ,___ -- ----- ——--- . , _ , , , —---~---------- — , - ‘

—- - - - ---—----—------ -—-——,‘ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- --5- ----~~ -—--— ~~~~~~~~~~~~~~~~~~~~ --

GCS/EE/77-k
-

-

no acknowledgement that this message was received correctly,

the sending process will attempt another transmissIon of

the message. This protocol precludes the use of negative
I

replies to indicate a message was received in error. If

-
~~ the receiving nrocess receives a message with an error ,

the process s Imply discard s the message , knowing that It

will be sent again. This helps to reduce message traffic

by elIminating the negative acknowledgements and also

provides detection of a failing piece of hardware when

no acknowledgement has been received for a preset number

of retrys. The entire protocol discipline is outlined in

detail in (Ref 7) so no further details are included in

this discussion.

The COMM process will include the handlers for the
I

NCB hardware and would be responsible for handling both

a serial and parallel protocol if both type of bus were

includ ed In the network. All functions of accomplishing

the inter-NPU communication will be handled by the COMM

process, thereby isolating this function from the rest

of the network.

Intercom Terminal Management

One of the most important functions of the network

is to provide better software preparation facilities for

the users of the Digital Engineering Laboratory mini-

computers. The network will provIde better facilities

than the minis alone, due to its access to all the net—

71

1

GCS/EE/77-4

4

- - work ’s 10 devIces , but this alone is not enough . It was

mentioned earlier that the COO 6600 does have the needed

facilities available through its INTERCOM terminal system.

The network terminals need a way to have access to the

INTERCOM system and the INTERCOM Terminal Management

process provides this access.

Before talking about the process functions, a word

about the hardware interface to the CDC 6600. The net-

work must match the protocol of its NCB to the protocol

provided by the INTERCOM system . This appears to be

another excellent application for a microprocessor , which

could do the conversion necessary to translate the INTER-

COM messages into standard network format messages. Since

this conversion should not use the total capacity of the

micro , a concentration func t ion might also be added .

Fig. 9 shows how the micro would appear logically to

the CDC 6600. Since the messages from all the network

terminals would be going through the micro interface, the

micro would appear to be multiplexing terminals A through

E into the intercom system. Each network terminal would

have its own logical connection to the INTERCOM system ,

but all messages to and from the terminals would be con-

centrated and multiplexed through one network link, the

micro , to the CDC 6600.

While Fig , 9 shows the logical appearance of the net-

work to the INTERCOM interface, Fig. 10 shows the actual

message and control paths needed to accomplish this inter—

72

— -5- - — -~~~~~~~~~ - - 5 - —- —~~~~ —- --
~~~~ 



- 5- 
—--— -,-

~
5-- --— ---5-” - ,-,‘~ 

-5- — ‘— -“-- 5-- 
~~—----------—

GCS/EE/77-
~
1

-

~ t COC. (I,6OO~~

1D
Tc.

- 1  ~e

I

- 

Ii~j  L~i

Fig. 9. The logical INTERCOM Interface

c.oc. (.600 j
_ _

IU~~c~s~ 1~J~°I-— - -II~:~~;J

pJ~ tWOI~t( ØO S

_

1~
j 11*1 

_ _  _ _  _ _

Fig. 10. The actual INTERCOM interface

7,
-
~1

—~~~~~~~~ -~~ .- - - — ‘ -  -~~~~~- ‘-~~~~——-- ——---~~ - — -~



GCS/EE/77-1#

connection. When the network Is started up, the Network

Status Table will indicate which of the network terminals

- ~~

‘ are to be connected into the INTERCOM interface. This con—

figuration can be changed at any time by the network opera-

tor. Therefore, the configuration process controls which

network terminals will be allowed into INTERCOM at any time.

Once running, the INTERCOM Terminal Manager Process

controls which of the terminals are actually logged on to

the INTERCOM system . This process will output a message

to each term inal assigned to It by configuration control

indicating that the terminal is available for intercom use.

It should be noted that no addItIonal processes need to be

added to any of the NPU’s where the terminals are located,

for all INTERCOM functions are handled by the INTERCOM

manager in conjunction with the COMM processes and 10

device processes through the standard network message

protocol . -

Performance Monitor 
-

This network is to be an experimental tool to try out

new and different methods of accomplishing many software

and hardware functions . It must allow the students and

faculty to compare different ways of handling the same

function and to decide which method was better depending

upon such factors as memory size, speed of execution, and

reliability . Also, the network should be constantly

Improved to provide better service to all those using it.

5- _ _s_s_~~_ 
~~~~~ ~~~~ -‘-—5----—— 5---- ~_ 5-  5-5-5-5-5- , ,~5-—, -- —- -


GCS/EE/?7-~ê

Both requirements call for the necessity of the network

to be able to monitor the performance of the network

itself and the user jobs running on it.
I

Before the performance can be monitored , there must

be data produced to monitor . This means that all of the

processes described in Chapters V and VI must produce the

data needed to allow their efficient monitoring. The key

to the monitoring is again provided by the network message

system.

The designer of’ each process must be aware of these

statistics which might be of consequence to the perfor-

mance monitoring effort and make provisions to output

them as messages directed to a monitoring process. The

User Job Scheduling Process Is a good example. It would

be almost impossible for a separate process to find out

how much memory or execution time a user process is us ing

if the statistics are not specifically made available.

Each time the User Job Scheduler starts a process,

a message should be sent to the performance monitor con-

taining memory usage and start time. Another message

should be sent when the user process stops execution.

In addItion, the KERNEL will keep execution time on the

NPU and output a message when the process Is halted . All

processes can be designed In this manner, using network

messages to provide the necessary statistics to the

performance monitor.

When all the proper information is provided by the

75

-‘ -5--- -
‘ - -“ - - - —-—-—-5-——,-— -——5---- - —5---—----- ---

‘

— , —‘-5-- ,
, -- - —.—--—-‘-,—- - —

~~~~~~~

— - - -5- 
5- 5 - 5- 5 - _ T L~~~~~~~~~~- - —-- -~~

-
~~~~~ 

— 5- ’
~~~~~ 

— — -5 - 5 - -
’

- - -

GCS/EE/77-4 
-

system processes through system messages, the performance

monitor has a much simpler job. It really becomes a

passive process relying on the input messages to give a

picture of now the network Is running. Since this is a

separate process, it too might be implemented in a micro-

processor. By residing in a microprocessor, separate from

all other processes , it is not using the execut ion time or

resources of any of the NPU’s which it is monitoring . This

allows the network to be monitor with smaller effect  than

if the monitor was integral to one or more of the network

supervisory functions.

The monitoring NPU (hopefully the micro shown above)

should also have the capability of intercepting all net-

work messages while they also go to the directed NPtJ.

This monitoring NPU should be a special interface capable 
-

of tapping into all message traffic. In this way it can

see not only the specific statistics directed to it , but

it can also determine whIch NPU’s are most active or -

which IC devices are receiving the most traffic. With

the double capability of receiving specifically directed

statistic messages, and being able to monitor all network

message traffic, this performance monitor should provide

an accurate picture of the inner network workings.

~~ts Base Management

?odsy a*ny computer users are moving away from having

$.t~~ f I l . a  for .seh icectt t c  appl ication and 

—‘ ——5--—



5-5 -

GCS/EE/77-~

are coordinating their files into large data bases.

While this network will have many independent users,

with many different needs in the data file area, many of - -

the concepts used in data base management will apply. The

most aprlicable concept is a standard access mechanism to

all data files. This is the main concern of having a

Data Base Manager Process.

This thesis has stated throughout that the user must

be separated from having to know where resources are

located In the network to use them. This is the purpose

of the data base manager, to allow symbolic access to all

data files in the network without regard to their location.

It will also provide for the security access to the files.

Whenever a process needs access to a particular data

file, it will send a message to the data base manager

requesting a type of access (private or shared, read only,

or read—write, etc.); the manager will check the access 
-

type requested by the process against its authorization

tables and either grant or deny that access. If the re—

quest is granted , the data base manager will return the

name of the process which handles the requested resource. 
-

Working in conjunction with the Central Data Base

Manager (CDBM ) will be local resource managers (Fig. 11)

which handle only the resources on one particular NPU.

While all requests for initIal access to a resource go to

the central data base manager, once granted acceas the

user process communicates only with the particular local

77



~~~~~~~~~~~~~ V~~~~~~~~~~~~ ?~~’ W , _ , .~~- ‘ 5-~~~ 5-5- ’-5-5- 5- ”r GCS/EE/77-1~ 

-

~~~~

I

- 9

‘
I

’ 

- 

¼

L ‘ N ~~ S —1

!

• 

~~ 

______

5

/

’

Fig. 1].. The Data Base Manager

78

-5— - .



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F ‘ ‘ — 5 -  ‘- “ - — 5-

GCS/EE/?7-~

resource managing process . In this way a user process
-t

requesting access to a resource local to its NPU does

not communicate across the NCB for all accesses - only

for initial authorization access, which must be granted

by the central data base manager. All normal data access

( read and write) is handled by the Local Resource Manager

(LRM) (Fig. 11) without causing unnecessary network bus

traffic. - 
—

Once the user process has been given the name of its

requested file’s local resource manager, the user process

proceeds as if that process is in total control. All

further access to the data is done directly with the

local resource manager. It can be seen that while the

control of the network files is centrally located in

one global data base manager, many processes are simulta-

neously handling the local data requests. This central

control, with local access, provides an efficient method of

handling all network data needs.

-. - A



“~~~~~~~~~~~~~~~~~~~~
5- 

~
5- ’5- 5-

~~~~~~~~~~~~ 
‘-‘-5- ‘

~~~~~~ . ——--—“~~~~~~~~~~~ ------——--

BCS/EE/77-~ . -

VII • CONCLUSIONS AND RECOMMENDATIONS

Introduction
I

This chapter discusses some conclusions reached from

the development of a general architecture for a distri-

buted mini-computer network. It also gives recommenda-

tions for a proposed plan for the detailed implementation

of the network by follow—on thesis efforts.

Conclusion

Two things have been accomplished by this investiga—

tion. First, the functional requirements were developed

to define what must be done to provide the AFIT faculty

and students with a responsive mini-computer network in

the Digital Engineering Laboratory. Next, an architecture

was proposed which would lead to an implementation of hard-

ware and software which would meet those requirements. The

main emphasis of this thesis was given to the software

architecture, although a basic hardware architecture was

also presented.

The significant difference between the proposed net-

work structure and the structures of most existing networks

is the distributed independence of the network services.

There Is no central supervisor in this network. Each

specific supervisory function is separated into an m dc—

pendent system process with all processes running in

apparent concurrency .

80

‘ . 5 - - ’ - -



GCS/EE/77-~4 
-

The heart of the network is the independence of its

- 
. 

processes. The processes have no common memory coxnmuni—

cation schemes, but instead communicate through a system

of synchronizing messages. These messages allow each

process to control Its own execution synchronization

and allow processes to communicate without regard to

physical locatIon in the network.

Any function can be changed in its entirety without

forcing change in any other part of the network, due to

the total separation of function into these independent

processes. This independence enables the network to be

truly distributed and divisible.

Recommendations

This thesis was intended to guide in the development

of a Digital Engineering Laboratory mini-computer network.

Since this was to be a guiding document, there was a tempta- —

tion to suggest specific ways to produce the proposed

architecture and delve into the many implementation

details. While a few suggestions were given in the text,

the author feels that further suggestions would only Inter-

fere with the implementers’ own creative ideas and not

necessarily produce a better product.

One bit of advice is offered. The order of presenta-

tion of the processes presented in Chapters V and VI might

serve as an implementation schedule. The author chose this -

- 

a order for this particular reason. These processes seem to

build on each other to provide a logical progression from

81



- - ‘ — 5 -  -~~~~~~~~~~~~~ - 
— -— -5- 5- ’ -— 5- 5--5-—--5-— -..-

~~~~~~~ ~~~~~~
I 5 -

~~~~
5 - 5 - 5 -

- GCS/EE/77-11

basic needs through the “nice to have” but not entirely

necessary functions . This is not to say that a data base

manager is unnecessary, only that it may not serve the

- network to full capacity until the other functions

preceding it are complete.

II

U

I
‘

~~

82

P 
1’

--  - - 5-



P~~~~~~~~~~~~~

- -‘- 5—-- -’. “- ‘ — 5-- — - - ‘5--—-
GCS/EE/77-k

Bibliography

1. Baker, Bob E. Efficient Multiple Processor
Coordination. Unpublished dissertation.
Wright-Patterson Air Force Base, Ohio:
Air Force Institute of Technology, November 1976.

2. Bohnsack, R. H. Interfacing HP21XX
Minicomputers with a SEL 86 for Real-Time
Applications. Unpublished thesis.
Wright—Patterson Air Force Base, Ohio:
Air Force Institute of’ Technology , June 1976.

3. Clark, H. B., et al. Preliminary AFBITS
Network Control System. ESD-TR-75-66.
Springfield, Virginia: National Technical
Information Service, 1975. ADA012218.

k. Coffin, D. D. and H.E.T. Connell. The
Multi-Minicomputer Processor. ESD-TR-75-351.
Washington: Defense Documentation Center,
1976. ADA021777.

5. Davies, E. W. and D.L.A. Barber.
Communication Networks for Computers.
New York: John Wiley and Sons, 1973.

6. Madnick, S. S. and J. J. Donovan.,
- Operating Systems. New York: McGraw-Hill
Book Co., 197k.

7. Meyer , E. W. ,  Jr. The RTDCOM Protocol -
A Real—Time Intercomputer Data Transmission
Protocol for the ARPA Network. Teledyne
Geotech Technical Report. Springfield , Virginia:
National Technical Information Service, 1975.
ADA021687.

8. Mills, D. L. An Overview of the Distribute4
Computer Network. Computer Science Technical
Report TR-k13. College Park, Maryland:
UniversIty of Maryland , 1975. ADAO1873k.

9. Warren, Hoyt M. A General Computer Network
Simulation Model. Unpublished thesis.
Wright-Patterson Air Force Base, Ohio:
Air Forc e Institute of’ Technology ,
March 1977.

83

-- --5- - 
- ‘-- --



- ‘ - “ ‘  “~~~~~‘-~~~~~‘- “ 5-~~~5 - 5 - . - ‘ 5 -~~~~~~~~ ’-’ ’ - ’ -  r ’5-5 -”~~~”- - ~~~~ ‘ 5-~~~~~~~ ’ ’ 5 - T W 5-’~~~~~~~’ ,~~~~~~~~ fl_~~5- 5-
_••_,_,_5-,,~ 

-

F ‘~~~~

—-- - 

GCS/EE/77-k

:;  i

Vita

Captain B. Cade Adams was born June 21, l9k9 in

Shreveport , Louisiana . After graduation from Byrd

High School, Shreveport, Louisiana, he enrolled at

Louisiana Polytechnic University at Ruston, Louisiana ,~
Captain Adams received a Bachelor of Science degree

in Computer Science in 1971 from Louisiana Polytech-

nic University and was commissioned in the United States

Air Force through the Reserve Officer Training Corps

- 
. .~ immediately upon graduation. He was assigned to the

‘ 
1155th Technical Operations Squadron at NcClelland

Air Force Base, California from the date of’ his corn-

missioning until his assignment at Wright-Patterson

AFB in June, 1976. He resides with his wife in

Dayton, Ohio.

Permanent Address: 918 Delmar Avenue
Shreveport, Louisiana 71106

- -



— 
-
~~~~~~~~~~~~~~ 

-- —‘-‘-5--’- -. —
~~ —‘- -

- — ‘5-— --
5-- ’ ” —‘---5-.-—— — ‘—-5-—.— —‘-C—-— ‘—‘-‘—-—-“-~~~.~~~~~

- - ‘- —- —‘-- --‘~~~~~~~ - — 1

UNCLASSIFTED -
-

- ,
SECURITY CLASSIF ICATION OF THIS PAGE (W71.n Data Ent.r.d) -_ _

DEDADT ~flt’IIUE~J’rA ’rIflU DAS”~~
READ tNSTRUCT IONS

~ ~~ i~~ i ~~~~~~~~~~ • “~~ ‘~~~~“ ‘ ~ BE FORE COMPLETING FORM
~ • REPORT NUMBER

-
2. GOVT ACCESSION NO. 3. R EC I P I E N TS C A T A L O G NUMBER

- ~
I AFIT/GCS/EE/77-4 ,,—T’

_
- -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TITLE (ned SubtStI.) 5. TYPE OF REPORT & PERIOD COVERED

A DISTRIBUTED MINI-COMPUTER NETWORK AFIT Thesis
- . - - _: - ‘ - ‘ - - -

- - - - - .- S. PERFORMING ORG. REPORT NUMBER

:-
~

~~, AUTHOR(.) S. CONTRACT OR GRAN T NUMBER(a)

R. Cede Adams, Capt, USAF

I. PERFORMING ORGANIZAT ION NAM E AND ADDRESS 10. PROGRAM ELEMENT, PROJECT , TASK
AREA a WORK UNIT NUMBERS

Air Force Institute of Technology
(AFIT_s~)_WPAFB OH k5k33 ____________________

-~~ ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1977
13. NUMB EROF PA GES

1’
~~~~~ONITORING AGENCY NAME & ADORESS(if differen t from Controlling Office) IL SECURITY CLS~SS. (of tHe report)

- UNCLASSIFIED
5.. OECLASS IF ICATI ON/ OOWNGRA OIN G

- - 
SCHEDULE

15. DISTRIBUTION STATEMENT (of tHe Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. abatract .nt.,.d in Block 20, if dItt.eent from R.port)

IS. SUPPLEMENTARY NOTES 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Di otor of Information
IS. KEY WORDS (Contlnu• on r.v .r.. .id, it n.c..aary and id.ntily by block numb.r)

mini computer network
mini computer
distributed computer network

55 ISTRACT (Continue ott p.,.,.. .Sd. St n.r...a’,’ and gd nrSh by block ntanb.,)

Is thesis presents a set of functiona l requirements for a
distrIbuted mlnI-comDuter network along with a basic architec-
ture design to fulfill those requirements. The functional
requirements were established by compsrirL~ the requirements of
existing networks to the need s of the A i r Force lnRtitut e of
T.chnolo~y Dtg~~ta1 Engtneertnx

Laboratory . The r~qutret’~ents
aust provil. a tool for educat ion tr r~oeratin, sy stem s stu lte s
whi le a f l - w i n a e1nt~~’c r ,ut .r-b*sed F. arr r .

,~~ , 5 0 -

“a.DO • ~~~
,, ~473 I~~ ’ ’ ’)N - “ • • ~~~~ •‘ ‘6 ~•l-~~ t ’~ UN-5-’I A~v ’ ; i F I E ~~

• - • (•$5~ • ~~ ‘ • 5- I — ~~~~~~ •~ot. 1-.... .m


~~~~~~ I’
5- ’5-’-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• 

-‘~~~~~~~~ C-

r UNCLASSIFIED - .
SECURITY CLASSIFICATION OF THIS PAGE(Wh.n Date Hnte,.d)

- . - — —-~~The primary emphasis of the proposed architecture is the
- separation of the network opera t ing system functions into
- 

- ,, Independent processes which will run concurrently on the various
mini—computers in the network. - This distribution of n~ ,orksupervisory functions i.s made possible by limiting all communica-
tion between processes to a set of’ snychroniztng messages. The
messages provIde a data interface which allows communication with-

- out knowledge of’ the processes location within the network.

This investigation also discusses a set of processes which
will perform the functions set forth in the requlrements. A - ‘

brief explanation of the func t ional working of each necessary
process is provided.

. - ‘ 
~~~~

— -
~~

- _ _

~~~~

_ ‘ _
~~~~~

‘ ‘
~
‘ - - ‘ -- “

~~
-

~;p~
r
~ t ASS I?lgr)

~, _~~•‘
. . - .~~ . ‘ , . - —‘I • sSS ~~~~ ... • - - . — .

