ADAO5S5234

¥ g oy g g r N Lo ~ »‘- A
Con mHOTHID ThRLE 9 ., f,z i
RO 4
)

Sy [ &
g&,-sh doark A RAL.EY 4 DAy

AIR UNIVERSITY
UNITED STATES AIR FORCE

j F.Iﬂ;)yo\:‘;d $o1 s

'
s s

WRIGHT-PAYTERSON AIR FORCE BASE, OHIO

18 06 13 086




AFIT/GA/ES/77-3

OPTIMAL TERRAIN FOLLOWINC CONTROLLER
FOR AN

OPTIMIZED SPLINE REFERZNCE PATH g !

e A A gt sk et < lmamid s D4 R S At AT St . g ¢ e g

THESIS
I R N e s b N B ek

P % —

U fﬂ AF‘IT/GA/uF/vv.»s) /10 [Rorata 1, fre1y] S, o

e R e o A AT TR 0% \n"“'"'t"‘p Usar ) ; 4
: 7y g 1) E NI Wi v

/,‘-""".,,_,......p-——n-"" '1 [ l . / |

g [ e Uhess ,{ ' {/ JUN 20 3973

) Vs Lo s s, . ]

et e TS i

“""«._ __.__‘___,,_A,_‘,_,,..k & = /,_,_,/ E:

/. gt S

omnrs .

o oa ¢ g ecama T

Approved for public release; distribution unlimited.

s ok R i
B

O/ / IR R

4 Lo b T B




",

et e 4,

R LT PASAI

'#-me:‘,.’-&:ﬂ'_{& .,‘v” ~ =

"'-, S i

i

AFT'IT/GA/EE/ 773

R LS =Lor N AN TN

DPTIMAL TERRAIN FOLLCWING CONTROLLER FOR
AN QPTIMIZED SPLINE REFERZNCE PATH
THESIS
Presented to tne Faculty of the School of Engineering ﬁ
7
of the Air Forc: Institute of Technology %
Air Urniversity 3
in Fartial rulfillment of the i
Regquirements for the Degree of i
Master of Science
\?v :
-
NI W —:__..
NS yinile Scetlan ﬁ }
et olt Suclion 11! i
URANKDINETS M
FUSTIEWAMGH - oo s
)

ny . Y
i BISTRIEITIA AFML R LT BOCES |

. . I
Wi foeil, fatin SPLEIAL
LR ‘

\
Al by
- Ronald T, Kelly, B.S.
Capt USAF

Graduate Astronautical Engineering

Necember 1977

ﬁ Approved fou public releasce; distribution unlimited.




- ey
k4

G T e

Preface

This thesis is an extension of the previous work
aﬁcomplished by Major James E. Funk, ASN/XRHA, Wright-
Patterson AFB, Ohio. In his dissertation, the cubic
spline reference paths for terrain following flight were
not tracked by an optimal feedback controller. It was
Major Funk who suggested I design an optimal controller
for the cubic spline reference path.

I wish to thank my advisor, Major Funk, and my
sponsor, Mr. Michael Breza, for their assistance during
the preparation of this thesis. They both had set the
foundation for this design study and had derived many of
the basic relationships needed for the controller.

I also express my deep gratitude to my wife, Pam,
for withstanding many lonely hours while I worked on
completing this report. And I thank her for typing this

thesis.

Ronald T. Kelly
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Abstract

\\This thesis presents the design of a proposed tcrrain
following flight controller capable of tracking a cubic
spline refefence path. The controller tracks only the
longitudinal motion; however, it provides both thrust and
elevator control.

The controller is based on a nonlinear reference
model constructed from an optimized spline path. The
spline path altitude and associated derivatives are
computed. The longitudinal equations of motion are linear-
ized abcut the reference trajectory and a truth model of
actual aircraft motion is developed. Deviations from the
nonlinear reference trajectory to the actual provide a
linear system. Optimal control theory is used to solve
the resulting linear regulator problem. The feedback
gains are calculated from the steady-state Ricatti matrix
equation. The two system controls are updated using these
feedback galilns.

Results show the feedback controller to be stable
and capable of tracking the cubic spline reference path.
The performance index weighting matrices can be adjusted
to improve the controller. The resulting controller can
provide both good path control and engine'control to
improve vehicle survivability, engine life and fuel

consumption.,
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OPTIMAL TERRAIN FOLLOWING CONTROLLER FOR

AN OPTIMIZED SPLINE REFERENCE PATH

I. Introduction

Low altitucde high-speed flight has become a necessity
to increase penetration probability and survivability of
strategic bomber aircraft. This has resulted in emphasis
being placed on the terrain following mission profile.

And in recent years, the terrain following field has
broadened to include strategic cruisé missile systems and
tactical helicopters. This broadening has been accompanied
by the incorporation of all the best features of modern

technology.

Current Problem

The terrain following mission creates severe demands
on the propulsion system of an airéraft. These demands
take the form of large and frequent fluctuations in the
thrust control system that result in shorter engine life
and increased fuel consumption. The operation of the
F-111 aircraft during the last ten years bears out this
problem. Maintenance reports conclude that the terrain
following mission adversely affects both engine wear and
fuel consumption (Ref 2:4).

Modern control theory has progressed to the point
where effective computational techniques carn definitely

minimize the disadvantages of terrain following flight,

A AT L 1 e 4 e 1 38



Also, the state of the art in on-board computer systems
is such that the required real-time calculations are
achievable. The coupling of control theory with better
computation leads to development of better terrain follow-
ing systems which reduce engine wear by minimizing throttle
control motion. |

Currently, the problem which exists is the design of
a system that optimally‘controls all the aspects of ter-
rain following flight. The controller must be capable
‘of maintaining minimum deviations from a designated
reference path while providing reduced engine wear and

decreased fuel consumption.

Background

The fundamental problem in terrain following flight
is determining the commands to the control system which
achieve a desired flight path. Extensive research has
been addressed to this one area alone. As a result, many
methods and computer algorithms have been developed to
fly the terrain following mission. These methods encom-
pass the flight—path_angle controllers and the path
controllers, Each of these categories contains a hierarchy
of improved development featuring an optimal tracking
system at the top. Accounting for the present state of
the art, these optimal trackers provide accurate naviga-
tion with minimal deviation from the nominal flight path.
But none of thesc optimal methods adequately accounts for

the thrust control problem.
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The tirust control problem has not been considered
because present terrain following control laws essentiélly
decouple vertical flight path control from speed control.
These control laws assume a constant speed as the aircraft
contours the terrain. It can be seen that maintaining a
constant speced throughout a wide variety of flight-path
angles will certainly cause large engine thrust fluctua-
tions. Even though present terrain following control laws
use the constant speed assumption, recent tests have
shown that the overall system still performs well when
the actual speed varies slightly (Ref 8:1). Apparently,
the control system is fairly insensitive to reasonable
speecd variations. Therefore, a control law which allows
reasonable velocity deviations from nominal will produce
lessened throttle adjustment. The best way to achieve
this is to incorporate throttle control,vspeed of the
aircraft, and vertical flight path so that these all will
interrelate and be optimally controlled. This allows a
trade-off between speed variation and thrust fluctuetion
while flying the desired reference flight path.

The Boeing Aerospace Company attacked the problem
using an optimal integrated terrain following system
(Ref 8). This optimal system controls both altitude and
speed while accounting for vertical acceleration con-
straints and available enginec thrust. Boeing's design
minimizes a quadratic performance index which includes

the following characteristics:



(a) Altitude deviation from desired flight path

(b) Speed deviation from set speed -

(c) Vertical acceleration command

(d) Throttle command
The adjoint differential equations for the feed forward
tracking signals are processed in accelerated reverse
time to generate the current terrain following commands.
Once each second a new desired path is computed.

The results of the Boecing integrated model show that
the throttle motion was reduced dramatically when compared
to current terrain following control systems. Only hélf
the excess fuel used by previous controllers was consumed
on the same profile. The Boeina simulation maintained
aircraft speed closer to the set speed and minimized the
altitude standard deviation over a typical flight profile.
The only adverse effect was that the aircraft vertical
acceleration was increased, and tﬁis resulted in a degra-
dation of ride quality. This is quite important for pilot
comfort, and can be improved by adjusting the acceleration
Jimits within the system model (Ref 8:46).

Overall, the Boeing design provides the basis for
an optimal controller, but it does not providé for an
optimized reference path. The optimized cubic spline
reference path gencerator developed by Major James E. Funk
achicves this goal. The optimized spline path incorpe-
rates clcarance, slope and acceleration constraints in

the optimization problem, and gencrates a cubic splinc as



a reference path. This path has continuous first and
second derivatives. Each solution to this optimization
problem results in a smooth reference path which follows
the terrain as closely as possible. Because this smooth
path contains continuous first and second derivativés,

an aircraft should easily be able to fly this path. So,
if an optimal controller can be found which uses the
optimized cubic spline generated path as a reference, the
aircraft controllability will be maximized and the thrust

control problem will be minimized.

Scope

The object of this thesis is to demonstrate the
feasibility of an optimal controller which attempts to
fly an optimized spline reference path. This report uses
optimal control theory with special emphasis on optimal
linear state fecedback control.

The optimal controller is based on deviations from
a nonlinear reference model. The feedback gains are
computed for a system linearized about the reference
model based on a quadratic performance index somewhat
different from the one used by Boeing. The linearized
cquations are also used to estimate the proper value for
the weighting matrices. The feedback gains will be used
in the nonlincar simulation of aircraft motion to evalu-
ate the optimal controller. Performance of the controller
will be evaluated under varying conditions.

This study will investigate the optimal controller

5



for aircraft only. The aircraft data used in the simula-

tion is typical of a medium-sized advanced fighter.

Assumptions

In order to simplify the very complex nature .of the

nonlinear equations of motion certain assumptions must

be made.

(a)

(b)

(c)

(d)

(e)

(£)

These are as follows:

A reliable set of discrete terrain data points
is available

Aircraft motion is restricted to the vertical
plane |

No pilot will be in the control loop, so auto-
matic operation is assumed

The variations in speed of scund, mass of the
aircraft, and atmospheric density are negligible
The center-of-gravity of the aircraft does not
change during flight

Perfect navigation data on the state of the

aircraft is used (Ref 9:102)



II. Description of the Control System

To adequately begin discussion of the proposed ter-
rain following controller, it is necessary to describe
the basic components of the entire system. The remainder
of this report will further explain the mechanization of
each of the components. Figures la, 1lb and lc illustrate
the control system.

First of all, it will be assumed that the aircraft
is equipped with some modern sensor device which provides
accurate range and altitude data for the terrain. This
can be achieved by using a forward looking radar, a laser
ranger cor even a map-matching terrain data processor.

The method of data acquisition is not important to this
report, as long as good terrain data is available.

Next, this reliable range and altitude data is fed
into the reference path generator. It is here that the
reference flight path is constructed in the range domain.
The rarnge domain is chosen in order to more directly fit
and control the flight path with respect to the terrain.
It is important that the reference path is constructed to
inherently satisfy any acceleration, flight-path angle,
and clearance constraints imposed upon the vehicle.
Linear variations about this reference trajectory will be
considered later, and any limits encountered by these
perturbations will destroy the linear behavior and degrade
the controller performance. The reference path descrip-

tion consists of the path altitude, h, and its first four

7
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[}
(spatial) derivatives with respect to range, h ’ h y :

and he .

These spaﬁial variables are used for all subsequent
reference model computations to obtain the desired veloc-
ity, the reference control and the reference state vari-
ables. The velocity generator computes the desired
velocity, Vd’ along the reference path by using some form
of energy management criteria. fhis desired velocity can
account for the operational speed limits of the aircraft
as well as the desired average groundspeed to successfully
meet the check point times on the low level mission. The
desired velocity and all the calculations of flight path
are used to compute the complete set of reference states,

X These reference states are then used to compute the

R.

estimates of the reference controls, u needed to produce

R’
such reference states. This completes the generation of
all the necessary reference data to begin the simulation
sequence.

The nonlinear aircraft differential equations are
processed to simulate thé actual state representation for

the aircraft. These states are denoted as x In reality

A
the true aircraft states cannot be determined exactly.
The actual states would be estimated from a number of
measurements. This would involve filtering techniques
and various sensing devices. However, in this thesis

the control system errors, rather than the sensor errors,

are of major interest; therefore, it is assumed that

10



integration of the differential ecquations of motion pro-
vides the exact states of aircraft motion and estimation
theory is excluded.

A comparison is next made between the actual aircraft

state, and the corresponding. reference states, XR1 to

Xp0

compute the state doviation Sx. These state deviétions

are kept small by the selection of the proper feedback

gain matrix, G. More explanation will be given to this

topic in Chapter III.

| The feedback gain matrix, G, 1s calculated through

optimal control laws (explained in Chapter III) and the

Ricatti equation. The matrix, G, can be maintained as a

constant for most of the terrain following missions to

be flown. This is consistent with the system design since

the state deviations are small, and variables such as

atmospheric density and aircraft mass are assumed constant

for the terrain following profiles ﬁo be used in this

thesis (Gain sncheduling is possible for extended missions).
Once the feedback gain matrix, G, is calculated a

feedback control signal, Su, can be computed. This signal,

Su, is achieved by muitiplying the feedback gain matrix,

G, with the state deviation, Sx, in the following manner

(Ref 4:151 and 13:194)
Su =G g& (1)

The feedback control signal, Su, can then be added to the

previously computed reference control, u,, to provide the

11



actual control, u. This control, u, provides the necces-
sary commands to the airc.raft engine and aerodynamic
control system to maintain the aircraft close to the
refercnce trajectory.

With the computation of the actual control, u, the
system loop in Fig. l¢ is essentially completed. New data
is sensed ahead of the aircraft, new reference parameters
are computed, and new controls are activated in a sequence
of data frames. This, basically, is the overall operation
of the proposed terrain following controller. The remain-
der of the thesis describes the components of this control-
ler and their interactions in more detail. The results

of the simulation are also discussed.

12



III. Optimization of the Linear Controller

The entire approach to the optimal terrain following
contréller is based on the methods of modern control
theory. This theory forms the foundation for the prelimi-

nary study of the proposed controller.

The Requlator Problem

The function of a state regulator is to maintain the
sfates of a system within an acceptable deviation from
the zero reference condition by using required control.
This is the type of feedback controller to be designed
and used in this project.

The system, in this case, consists of the deviations
from a time-variant reference model and thus is a linear=-
ized system.

gx(ﬂ = ASx(#) + BSu(®) (2)
In Eq (2)

gx(t) is the nx1 vector of perturbed states

gu(t) is the mx1 vector of perturbed controls

A is the nxn‘dynamics matrix

B is the nxm control distribution matrix
Both A and B are time-variant, but they are assumed to
vary slowly to allow quasi-steady state solution of the
controller gains.

The reference conditions are generated by the path
generator, the state generator and the control generator

as described in Chapter II. In addition, the reference:

13
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velocity is calculated continuously alung the Tlight path,
. For this thesis the initial refcrence velocity is €47.3
ft/sec which is Mach .58 at sca level conditions, This
initial reference velocity can be used as a3 nominal flight
condition., Since variations in flight conditicn are not

large, the aerodvnamic stability derivatives are assumed

constant in the region of intcrest while the reference

states change with time.

The perturbation state vector, gﬁ, can be written as

gé — XA - ‘>"<R (3) ,
whera

zq is the actual state vector

— M et

and

Xp is the reference state vector

and the perturbation control vector, Sg, can be written

similarly as

(u—u—-u (4)

52 - = =R

i where
u is the actual control vector 1
and

U, is the reference control vector

=R

The two quantities, Si and gg, represent the deviations

from their respective reference conditions. And these are

PRI

the values which will be regulated by the optimal feedback




controlle:r develonped tor this thesis,

For the optimal terrain following regulater an !
appropriate cost funcition must be designed. The most E
convenient and workable form is the quadratic which %

M

weiahts botbh the state and the control deviations from a 3
reference condition. The conventiconal guadratic cost 3
function will be (Rer 4:149) ;
T+ ;

\ Ll T :

J = 5 ox Pox + Sw RSu)di (5) g

T :

< 1

This form shows that the state deviations and the contrel ]
;i

deviations are direcctly regulated depending on the form 1
1

of the weighting matrices P and K. But {for this control- 4
K|

3

ler, not all of the state deviations are to be regulated 3

directly. Instead, an output deviation, Sy, will be

regulated direcctly. A3 will be seen later, this merely

ok i R o Xl w B L2

represents a particular choice of the P makrix.

N

The output is defined as

S){ = C%x (6)

where C is the transformation matrixe. Using the output

deviation, gy, the cost function can be written as
Tvoe

J :-;-' g_\_fTQg_\Tg_ + g_thSE_L_ d1 (7)

o
The sclection of the two weighting matrices, Q and R, will

be described at the ond of this chapter,

The transpose of the output vector, gy, is




et by

T

e ap v

S)(T:: (C S_a)f = S;CT (8)

Supstitution of £q (8) and Eq (6) into Eq (7) produces the

revised cost {function
THoo

J :-‘i (Q_JCTQCSE + 5w RSu)dt o

Comparison of Egs (5) and (9) shows that thev are equiva-
lent if P = CTOC. The cost function in Eg (9) is also
in the form to use the Ricatti equation to determine the

Ricatti gain matrix, S.

The Ricatti Egquation

The solution to the regulator problem requi:<s solu-
tion oY the Ricattl equation (Ref 4:167). For simplicity,
it is assumed that the dynamics matrix, A, and the control
distribution matrix, B, are constant matrices. This
assumption 1is not strictly true and results in a sub-
optimal set of gains, In the cost function of Eq (9) the
weighting matrix, R, is assumcd constant as L5 the preduct
matrix, CTQC. viith Lhcee assumptions the stead; state

Ricatti equation is written in the form

S =0 = -SA —/\TS+€BY{‘BTS ‘CTQC (10)

This equation above implies that the Ricatti gain matrix,

S, is constant for the optimal terrain rollowing requlator

(Ref 4:167). If terrain following occurred for prolonged




kit

periods, the gains could be scheduled for varying flight
conditions. The solution of Eq (10) is accomplished bhy

using the OPTSYS program described in Appendix E.

I.incar State Fecdback

When solving for the feedback gain matrix, G, from 3

Chapter II, the linear control law of Eq (1) can be .4

written in veclor form as

Su= GS%x . (11)

This value for Sg can be substituted in Eg (2) to obtain
$x = Agg_g + BG‘Q}_Q (12)
. . { - ~ KN :
Factoring out 0x from Eq (12) viclds

S_)g = (A + BG) S X (13)

The term, A+EG, s known as the closed loop dynamics

ORI YO L U 1L Wy A St L L LR

matrix because this term incorporates the feedhack gain

wnatrix, G, as seen in Fig. 1.

Lt G i

A connection may now be made between the feedback
gain matrix, G, and the Ricatti gain matrix, S. Since 5
is the steady-state Ricatti gain matrix it can be shown

that (Ref 4:167 and 13:221)
-y T
G = -R'BS (14)

and the stecady-state linear control liaw of Eq‘(il)

becomes
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This cquation above forms the basic control law for the
lincar regulator problem considered in this thesis. It
is Bqg (15) whicoh updates the control for the terrain

following requlator according to

W= W, t ou (16)

NDotoermination of Q and R Natrices

Therce is no one standard meothod for determining the
exaclt components of the Q and R weighting matrices for

any given problem. It requires some iterations aond

cducated guesswork to determine the bast overall weighta,

Both the Q and R matrices will be used in diagonal {orm

only. “his is done because normally only the main diago-

nal elements are significant (Ref 4:149 and 10:33). 7The
Q matrix weights cach deviation in the four output vari-
ables and the R onatrix welights the deviation in the two
control variables.

The method of Bryson and Ho (Ref 4:149) can be used

vo obtain working valucs for the diagonal clements of both

Q and k. This method utilises the scelting of maximum

acceptable values on ecach clement of 4£he outpul deviction

vector, Si, and the control deviation vector, SH' Corre=-

sponding elements of the weighting matrices can then be

used 1In the cost function, J. The cquations {for deter-

e

LSl




mining the diagonal c¢lement weights are

; 2
1/Q;; = the maximum acceptable value of [?3.:] (173 fi
[ DR
and i
2
l/Rij = the maximum acceptavle value of [%u;] (18) ﬁ
| -4 ¥

It should be noted that these two equations will produce
a "first guess" sot of diagonal elements which can be
adjusted to obtain rcasonable performance for the cost

] function., Once these welghting matrices have been csta-

blished the resulting Ricattil gain matrix, &, is auto-

ki

matically fixed according to the Ricattil cquation, Hq

“

(10). This matrix, S, in turn, directly affects the
overall valuce of the {fecedback gain matrix, G, as seen in
Eg (14). Therefcere, any change in the diagonal eclements

of either Q or R will create multiple changes in the

A i s s a2y £ 4l

subsequent gain matrices of the system,

G, e

The reason Bryson and Ho equations can be considered

a "first gueussY estimate is that certain selected Q and R

diagonal clements may result in control values that are
not realizable. In this fashion the Q and R matrices must
be judiciously adjusted to obtain geood performance without
adversely affecting the flying qualities or the realizable
control deviations,

I{ the diagonal elements of Q are increaced the

controller tends Lo become stronger and restrict the

system deviations closer to zero. This can also be




achieved by decreasing the e¢lement values of R. A
stronger terrain following regulator will result in a
decreasc in the respcnse time of the overall system, But
this is usually accomplished with a corresponding increase
in peak overshoot. 3o these tradeoffis must be considered
when designing the best values for the diagonal elements

of the Q and R weighting matrices,

20
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IV. The Statve Variables and Equations of Mobtion

The purpose of this chapter will be to denote the
variables comprising the state vector and the control
vector used in this thesis. Additionally, this chapter
will describe the linearized equutions of mot:ion. A full
development of the equations of motion will not be pre-~
sented here, but the reader is directed to References 6,
7, 12, 14 and 16 if a fuller explanation is neceded,

Only the longitudinal eguations of motion will be
used in this controller design since the loungitudinal
dynamics are the most important in a terrain following
flight profile. The flight regime will be restricted to
the x-z plane of motion as seen in Fig. 2. Lateral con-
trol is usually termed terrain avoidance and is beyond
the scope of this thesis. Omission of the lateral equa-
tions of motion will not degrade the contreoller design

nor provide inaccurate results. And because of ncar-

X

DTN
/////////'

Terrain

Figure 2. Twe Dimensional Terrain Following Profile




symmetry of the aircraft the longitudinal equations of
motion may be separated from the lateral equations of

motion (Ref 17:218).
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Assumptions and Coordinate Axis

While developing the longitudinal equations of motion
the aircraft is assumed to bhe a rigid body. The variation

of the pitch angle,ge, is arsumed small so that

cos Se = 1

and

Sin $6 = $e

22



And the forward velocity, V, is approximated by

V'-:_\[\Jz-i—w‘ =z \U

The coordinate axes to be used will be a set of

stability axes that is fixed with respect to the reference
trajectory velocity vector. The relation to the x-z

bedy axes is shown in Fig. 3,

State Variables

For the design of thls terrain following controller
there are seven state variables chosen to represent the

sctates of the system. These are

u the longitudinal forward velocity
w the normal velocity

q the pitch rate

%) the pitch angle

£ the elevator deflection angle

A the thrust

h the altitude

These seven state variables will be used throughout this
thesis and will be collectively designated as the vector
Xe

Two of the state variables will be directly control-

led in this design project. These two command values

are the controls




SC the commanded elevator deflecticn angle
AN the commanded thrust

and can be denoted as the control vector u.

Perturbation Theorv

[y e g —

For the purposec of designing the tracking controller,
the nonlinear longitudinal equations can be lincarized |
about a particular reference trajectory and the motion
described in terms of the variations in seven state

variables. This is illustrated in Fig. 4.

reference path

——-—--actual paun

~

R&r\ge

Figure 4. Perturbation aboul a Reference Trajecctory




‘“he use of small-disturbance theory can be used to pro-
duce the linearized perturbation equations of motion

(Ref 7:120). All the perturbation quantities and their
respective derivatives are assumed small so their squares
and products are negligible when compared to the first-
order linearization terms. A linearized perturbation in

angle of attack, o , is illustrated in Fig. 5.

o<
)

A

Figure 5. Linecar Perturbation in Angle of
Attack

Linearized Perturbation Equations

The linearized perturbation equations for each of

the saven state variables can now be written using dimen-
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sional stability derivatives. These dimensional stability

derivatives are explained in Appendix B.

The fact that the equations are linearized about an
arbitrary trajectory, rather than straight and level i

flight as is frequently done, means that the coefficients

bl s e

in the linearized equations would depcnd on the reference

trajc ztory states., This implies that the coefficients

would vary with time. In order to develop a controller

s weikie SRR s b

with constant gains the coefficients rust be constant.

The assunption required Yor this is that the refcrance E

L e

flight path angle, XFU and angle of attack, CKR, are

small enough that their products with a perturbation statc

can be considered of sccond corder. In this way the

R RTARURTER

1%

perturbation equations ra2duce to the usual form. Thereliooe,

i

for the purpose of this study the usual linearization

about straight and level flight was considered accurate

e S i G

encuah to use for the linear perturbation maedel,

For the perturbation in longitudinal velocity, U:

AN

LY N

SV = X, VU + X, 6w +XLS¢L~359+ XA+ X84,
For the perturbation in normal velocity, w:

S = Z SUAZ Sw+(V+Z)S9 + 2,55 42,58 (20

where UO is the nominal forward velocity. For the

perturbation in pitch rate, q:

ch = M, %V + ﬂwa + migq_ + Mssg (21)
26
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For the perturbation in pitch angle, Q
%0 = Si (22)

For the perturbation in elevator deflection angle, g :

§$ = "/!i(“ - ss,_) (23)

where 'Tg is the time constant associated with the
clevator control, g, and Sge is the elevator control
command bascd on the fecedback of perturbation states.
For the perturbation in thrust, D

A |

SA:-—-—;— $A -~ SA .
7 < (24)
P

where ’7; is the time constant associated with the thrust

control, A, and l}c is the perturbation thrust command.

For the perturbation in altitude, h:
$h = —gw +U°ge (25)

These ecgquations above, Ea (19) ~ Eq (25), constitute
the longitudinal perturbation equations of motion in
dimensional derivative form. These cquations can be
rewritten in the matrix form of the linecar differential

equation as
g_)'_(_:'- AS_)_(_ -+ BS_U_. (26)

where A is the open loop dynamics matrix. Gathering

Eq (19) through Eg (25%) into matrix form results in:
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Forcing Function

The two aircraft control commands, gc and Ac ’
act as forcing functions for the linecarized system of
equations, This forcing function consists of a control

distribution matrix, B, multiplied by the contrcl cecmmand

vector. The matrix B takes the form of:
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The commanded controls must also be written in the pertur-

bation form as

Su =

T ]

Ss.
S0 (29)

L —

C

This completely describes the terms in perturbation

equation (26) which is identical to Eq (2) in Chapter I1I,

29
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V. Cubic Spline Reforence Path

This chapter discusses the main points regarding the
generation of the optimized reference flight path., It is
this reference path which the optimal terrain following
controller is designed to follow as closely as possible,
All of the information in this chapter originates in
Reference 7 since the reference path generation is the
essence of Major Funk's doctoral dissertation. As a
result, this chapter will not detail the refcrence path
generation, dbDu: will highlight those main ideas of
importance to the aesign of an optimal terrain following

controller.

Cubic Splincs

A cubic spline function consists of a srquence of
cubic polynomial segments which together form a continuous
function having continuous first and sacond derivatives
(Ref 1:54). Mathematical splinc functions are ideally
suited to digital trajectory computation., They provide
smoobth continuous curves that can be specified uniquely
by a discrecte set of parameters.

A cubic polynhomial can be denoted as

Z 3
- X-X¢ X=X X=X

for 1l = 1’ 2’ ey n-1

where BX = Xiw ™ X




A typical cubic spline function is shown in Fig. 6.

‘//P

(Xl;\fl)
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Figure 6, Cubic Spline Function

The function points (xi, yi) are called knots.

The {irst and sccond derivatives can be obtained by
different:iating Eq (30). For the interior knots (x2
through Xy in Fig + ©) the first and sccond derivatives
must be identical for each adjoining interval., This
means the derivatives at knot (xz, y2) nust be the same :
for Xy to x, and for interval X to Xye This insures é
continuity., Therefore, the three unknowns {or cach
segment., Ai’ S and Ci, can be computed by enforcing the

continuity conditions at cach interior point and by

specifying the slope at 2ach endpeoint., In this manncr a




uriique cubi. cpline function can be constructed to repre-
sent the given datao &5 a smooth, contlnuous function.

For a terrain following profile it is important to
let the knots coincide with the terrain data. This proce-
dure insures that the cubic function passes through each

of the data points.

Ter-rain Data and Clearance Curve

The sampled terrain data is defined in the range
domainlrather than the time domain., This is ideal for a
terrain following flight profile since terrain clevation
is maturally described as a function of range rather than
time. Therefore, Fig. 6 can represent the known terrain
data if the ordinate becomes terrain elevation and the

abscissa 1s range. This is illustrated in Fig. 7.
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Figure 7. Sampled Terrain Data
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The rcfercnce path generation begins vsith the input
of sampled terrain data. These data points consist of
the elevation of the terrain at specified ronge intervals.
For instance, the elevation (in feet) is specified for
each 2000 feot of range along the flight profile. The
reference path generator algorithm normalizes the raw
data and constructs a cubic spline function which passes
through the given set of terrain points, This is called
the terrain curve, Next, th2 minimum amount of clearance
above the terrain curve is specified, This designated
clearance is used for determination of the cubic spline
clcarance curve. Both the terrain curve and the clearance

curve are shown in Fig. 8 below,

cubic spline terrain curve
- —=——cubic spline clecarance curve

Elevotion

b 9

Range

Figurce 4. Terrain and Clearance Curves
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The altitude along the cubic splinc clearance curve
is designated h, which is a function of range. Since the
clearance curve is processed as a cubic spline path, h
will represent a cubic spline function, The slope of the
clearance curve, H, is defined as the first derivative of
h with respect to range (spatial derivative) and desig-

nated as either hW or s.

h= b

(31)
dR
The second spatial derivative is
« £k
‘*\ = (32)

2
é IR\
[ 1]
where h or k is called the curvature,

And the third spatial derivative is

3
w4k
\"\ pus AR3 _- P (33)
where p or e is called the kink. As mentioned in the

previous section on cubic spline functions, the variables

h, s and k are continucus and p is piecewice continuous.

The Reference Path Ontimal Control P:oblo@

The cubic spline clcarance curve can be considercd
a minimum clcarance curve over the terrain. It would be

extremely difficult, if not impossible, for a manned air-

craft to track this minimum clearance curve efficiently

within the aircraft performance limitatieons. Thercfore,

34
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the cubic spline clearance curve nmust be optimized by
minimizing a performance index using optimal control
theory. PFor this optimal control problem it is possible
to specify certailn constraints on k, s and p so that the
limits of the aircraft are not exceeded and the aircraft
does not descend below the minimum clearance curve. The
performance index minimizes the deviation from the clear-
ance curve while enforcing the specified constraints along
the curve.

Tihe reference path optimization problem is solved
subject to the following inequality constraints along the

entire ranae (Ref 9:35)

0
1Y

o

th
n

min = “max
pa k ﬁ,'

kmin" kmax
. PrA

Pnin = b= pmax

The limits on k are determined from the normal accelcra- b
tion limits and the nominagl aircraft speed by the

folleowing equation

\{ — aNF\mK
. - (34)

z‘ H
\k ;

This equation is a~zcurate as long as the slope, s, is e

small. The k limits tend to occur at the tops of peaks
and necar the bottoms of valleys where the slope is nearly

zero, So Eq (34) is a good approximation.

35
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Framing of the Obtimal Control Problem

It woﬁld be very impractical to solve an extremely
large optimal control probiem for the entire terrain fol-
lowing flight profile. As a result, the optimal control
problem must be broken intc specified segments called

\

frames (Ref 9:44).

The framing procedure is illustrated in Fig. 9 where

there is no overlap between frames. For Frame 1, essen-

_§ Frame 3
-3 b i
>
2
vl ' Frame 2 i
Frame 1
1

Figure ¢, Framing with no Overlap

tially an optimal control problem is performed over thc
range interve) RQ to Rl. At range Ry a new optimal
control problem is begun for the range interval for
R1 to Rz. This f.raming procedure with no overlap would

{ work well if %£he input terrain data were perfect. But

because of rodar shadowing *he present state of the art

36
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does not allow the accurate solution with no frame over~
lap. There must be an overlap between frames so that as
updated terrain data ahead of the aircraft is sensed, a
new optimization problem can be solved to update the
previously computed flight path signals. The computer
algorithm developed by Major Funk optimizes the entire
reference flight path by overlapping frames as can be

secn in Fig. 10, This overlap allows for a continuocus

P Frame 3
8 —
3

K Frame 2

Frame 1 I

. >
0 P
™o

3
-

Figure 10, One-half Frame Overlap

update of the reference flight path as new terrain
information is detected.

Within each frame a certain number of control points

are specified, These control points correspond to the
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points at which the constraints on h, s, k and p must be
satisfied. As the number of control points per frame
increases, the computation time also increases. 3o there
is a tradeoff between using a large number of control
points which forces the reference path to more closely
follow the terrain, and using a small number of control
points which reduces the computation time and the control
rate,

In addition to the control points, there are numer-
ous other parameters which must be specificd in each
frame of the solution to the optimization problem. These
various parameters will not be described here since they
are listed in Reference 9, page 54. But the availability
of such a variety of paramcters permits the flexibility
in the generation of the optimized cubic spline reference
path for various aircraft and missions., This reference
path generator can account for almost all the practical
constraints for any type of flight vehicle on varying

e e el . .
terrain following profiles,

Qutput of the Reference Path Generator

The output of the reference path gencrator concists
of the optimiced cubic spline reference path as shown in
Fig. 11. It can be seen that the reference path does not
coincide with {he minimum cleararc:s curve. The main
reason for the difference bels:en the two curves is that

the reference path must satisfy all the specified con-

ihcadlt B e B i 3
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- ClCarance curve

}1T -~ - —~—optimized reference path

Romge;

Figure 11, Optimized Reference Path

straints along the flight profile. Generally some por-
tions of the clearance curve will have excessive curva-
tures or slopes which would exceed the acceleration and
fiight-path angle constraints. Whenever the clearance
curve satisfles the specified constraints the two curves
will coincide.

The actual numerical output of the reference path
generator consists of the optimized path altitude, h, and
its slope, h', at each discrete in;rement of range, Ri'
This path data is then input to an interpolat;on routine

which reconstructs the full cubic spline using a direct

slope determination technique (Ref 9:61 and 18:54). This

39
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cubic spline interpolation rbutine calculates the follow-
ing parameters at any desired range along the flight
profile:

(a) h ~ aititude

{b} h =~ slope

(c) h = curvature

(d) h - kink
These four quantities can then be used in the nonlinecur
equations which represent the cubic spline terrain

following controller outlined in Chapter VI,

Some Important Relationships

Before describing the nonlinear reference model it
will be helpful tu show some lmportant relationships
between the time and spatial derivatives along the
reference path. Since altitude, h, is really a function

of range it can ke written
h = \\(R(ﬂ) (35)

where'range, R, is a function of time. From Fig, 12 the

time derivatives of range and altitude are shownr in rela-

$ \
h

R Y

>
3 I

R

Figure 12. Relationship between h, R and V
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tion to the veleocity, V. These relationships can be

written as (Ref 11:306 and 15:64)

- V sin ¥ (36)

and

L ]

R = Vecos¥ (37)
But ﬁ can also be written as

. 1! /
\n:é—?—é——R—: hVcos .
dR 47
which is anothe: representation of the same quantity in
Eq (36).
'4

The time derivative of slope, h , can 7 computed

from

v WY AN Ry
h = - IRt b V cos ¥ (399

These equations above will be important for the nonlinear

eguations of Chapter VI.

41
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VIi. Nonlinear Reference Model

This chapter describes the nonlinear equations used
to construct the reference model for the optimal terrain
following controller, In Chapter IV the linear model with
the perturbation equations was presented. But the non-
linear equations must be used in the design simulation
since the nonlincar model more accurately represents the
actual aircraft flight regime. The nonlinear response
and stability characteristics provide a more realistic
controller operation. The purpose of this chapter is to
show the development of the equations leading to the

reference model state vector, Xns and the truth model,

can be ugsed to obtain

[ 7]

X ‘ther. these two state vector

A
the commanded control vector, u, necessary for tracking
the cubic spline reference path. A partial block diagram

of this development is shown in Fig. 13 below.

Figure 13, Computation of Commanded Control, u

An attempt has been made to organize this chapter sequen-

42
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tially through the eguation derivations in the order in

which they are required,

Reference Path Generat ion

The cubic spline reference path generator described
in Chapter V provides the necessary altitude and deriva-
tive data to construct the optimized flight path. The
path generator calculates the following reference quan-
tities in the range domain:

(a) h, - refercnce altitude

(c)

d
(b) hé - slope
hg ~ curvature

iy
() hd - kink
whera the subscript, d, denotes desired or reference
quantity. These four quantities are essential to the

computation of many other reference conditions.

Reference Velocity Generator

To correlate time and spatial relations along the
flight path, velocity must be known. The desired velocity
along the reference path could be computed from enerqgy
management considerations once the path is known. For
simplicity, a constant energy assumption is made here.

If the terrain is not teo severe and the vehicle kinetic
energy 1is large, this is a reasonable assumption. This
allows an intcrchange of kinetic and potential energy

with a corresponding reduction in throttle activity over

that required for constant speed flight.




Starting with the initial velocity, V_, and the
initial altitude, h_, the total specific energy of the
system 1s computed by sunming the specific potential and
kinetic encrgies as

= =\ + qh

EO_E°+3° (40)

The cubic spline reference path gencrator provides a
value for desired aititude, hd’ at any point along range.
So the desired velocity, Vd’ may be computed by rearrcong-

ing the constant encrgy equation
VA = \/2 E, —3\'\&)

This is the equation for calculating desired or reference

(41)

velocity along range.

Reference Flicht Path Anale and First Time Dorivative

The flight path angle,‘x, can be computed using the

trigonometric relation shown in Fig. 14.
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| dh /
tan ¥ = -;-R— = h | | (42)

is computed by the reference poth geonerator the

7

Since h
d

desived tlight path angle, xd’ in

-l g ‘ ,
\64.’, - +C&-$‘\ L\d (43)

The first derivative of ¥ with respect to time can

bo writlen

§ = 48 SR 4¥
4R 4t Jdt | (a4)

whet ¢

O | O
= |
It
T4

and

-4.& = P ZVCOS‘S
&.,

-

4
An coxpronsion ijor ¥ can be dorived by taking the spatial
i 3 J 1

derivative of bHoth sidens of g (42).  This resuits in
! H b3
¥ = h s ¥ (15)

Substilutiag Bg (37) and iq (45) into Lg (14) yiclds the

exprescion for the first time darivative ot 4

. " Y,
Y = hy Vd cos™ ¥, o)

d
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Time Derivatives of Velocity

Now that thoe flight path angle and its {irst time

derivative arec derived, it is possible to obtain the first

and seccond time derivatives of desired velocity.

The assumption of constant energy implies

.

E = 0O (47)

o
After diffcrentiation of both sides of Eq (10) the first

time derivative of velocity becomes

: —qh
VA - .,3_& {48)
VJ

From Eq (38) in Chapter V the hy term may be repiaced by

’
\’\J = hJVA cos XJ (19)
Substituting Egq (49) into Eq (48) vields

\IA - "'3"‘& COB\GJ (50)

This is tho expression for the first time derivative of
desired velocity. The second time derivative can be
derived in a similar manner.

If Bq (42) 1s written with the reference subsceript,

d, it becomes
P

h

g 51)

= +0bh XJ (¢

46
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4
This form of hd permits substitution in Eq (50) to pro-

duce

VA pt -9 Sin \@‘J (52)

Differentiating both sides of Eq (52) with respect to

time results in
*e

VA = -q cos ¥, ¥, (53)

Substitution of Eq (46) for Xd shows that
(54)

. " 4
VJ = -9 kd Vdcos XJ

Eq (54) is the equation for the second time derivative
of desired velocity and this cquation will be used in

the nonlincar model.

Definition of K and its Dor}vativcn

Since one important term rcappears in many subse=
quent equations it is convenient to defirc the quantity,
K, called the mathematical path curvature (it is inversely
proportional to the ilnstantancous radius of curvature

(Ref 9:149)),
P y 3
! A .
K = "\J Cos XJ (55)

The first derivative of K with respect to range is

/ i

K'= b

a 0" 2 ‘ 4
Co5 XA - 5\'\& C0S BA Sln\éd XJ (56)
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Substitution of Eq (45) for 'x vields

"

n\2 .
K h Cos’ 3 3(%) cos"XJ Sin Yy (s7)

But Eq (57) can be written in terms of K as

"

K ‘\ COS x -5K SeécC XJ S‘hx (58)

Eg (58) is the expression for the spatial derivative of
K., (In subsequent cquation derivations the subscript, d,
will be omitted, but it 1is still assumed that all quan-
tities will be those desired for the reference model).
The time derivatives of K arc now obtained from
differentiation of Eg (55) with respect tc time so that
.

K = Ag“) Cos ¥ - 5'\: sin¥ cos ¥ ¥ (59)

N

But i{ can be scen that

() )

—— .ﬂ-—--.—-
-—

J-‘- :‘ cH' (60)

which equals

1]

(W
—fﬁ_—)-.. h Vecos¥ o)

If the ¥ ccuation, Egq (46), is written in terms of K

it becomes

‘k - KV | (62)




Substitnting BEq (61) and Eq (G2) into Eq (59) shows that
the first time derivative of K is

* ”i

K = b Veos ¥ =3k KN sin ¥ cos™ ¥ (63)

And this ¢ o written more compactly as

K (\\mcos‘*x -3 \'\' Kz) (64)

The sccond time derivative of K results from taking

an b
\

H

the derivative of hoth sides of Eq (64).
a0 - ' 4 Y 2 ' iv
K= \/(k“cos ¥ —5\\\() + J(k Veos'y -
" . . 2 .
Acos™8 sin¥ ¥ -3K VeostK'- 6h'KK)  ceo

W
where h = 0 for a cubic splince function.
After much maripulation and rearrangement of Eq (65)

it can be rewritten in slightly shorter form as

NT

-

k = K(':-’/" *IO\“\, +Vz \\NcossX‘SKA(HSL’Z (66)

Second Time Derivative of Flignt Path Anqle

With all the equations for K it is now possible to
derive the sccona Ltime derivative of the flight path
angle. Differentiation of Eq (62) with respect to time
is

%: RV+VK (67)

Substitution of Eq (64) into Eg (G7) produces

19
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¥ = Vz(hmcos4x ~ SLZKI) + VK (68)

SRl s

This equation is the expression for the second time
derivative of ¥ and is used later for computation of the

angular rates {or the nonlinecar equations.

Forces in the Lift Dircction

This section derives one important equation which
will be used for other refcerence model computations,
This cquaticn results from the summation of all forces

in the lift direction. From the forces shown in Fig. 15

Ll 'F‘t X, + 0—1;\6
s
\
A=
k |
w

Figure 15. Forces in the Lift Direction

the force equaltion is

ma,= L+ | sinct —mgcos 8 o
N 3 (69)

Tt e b =
Friten fer sinhAMAD, A Wi

i A 8o i




where a,, is the acceleration in the 1ift direction.,

N

This accelergtion, 3y is shown in Fig. 16 and can be

Figurc 16. Accelceration in Lift Direction
(Ref ©:149)

vwiritten as
os.N = L\Cosx _R S“’\ \6 (70)

The normal acceleration can also be written as

a,, = KN® = WiN"cos® ¥ (71)

since X is the inversce of the instantaneous radius of

curvature (Ref 9:151), The lift force, L, can be written
L - CLSC\._ (72)

Both Eq (71) and Eq (72) can be substituted into Eg (G9)

for the following equation




e e e < e A

et

C + 7S Sin o = %TS—(KV?'-rﬁcos‘d) (73)

The 1ift coefficient, C can bhe expressed as

L’

CL: C‘-o + C“-:x + C‘_gg + C";; AM (74)

where [I denotes Mach number. Using the small angle
approximation and substituting Eq (74) into Eq (73)

yields

(CL; :“'_E,' o + C'Lsg = —-—~(K\/7'+3cos\d -
1

Eq (75) iz the first of two equations which will be solved

as a simultaneous set later in this chapter.

Estimated Angle of Attack and Derivatives

In order to obtain an estimate of the angle of

attack {call this K.) the {ollowing conditicns are set
E J
on Eq (75)
CL. CL_ - CL - 3
$ iR o

This is done so the resulting expression for the estimated
angle of attack,°<5, can be used for computing the time
derivatives of © neceded in subsequent equations (the
actual relcerence value for oL is obiained later without

assuming the zcro conditionsz above). So, aftes the zero

g e s

i e 2




conditions are set in Eq (75) the resulting expression

for estimated angle of attock is

-\
g = (K\ll-*gcosx\) [‘:%S— ¢+ -};— (76)

At this point it is convenient to define a variable,

C,» as -1
.y 2 S T
C}. = 5%;7(:ng_r *7;- 77

Using Eq (77) the expression for °(F becones

-

~ -
\ - !
Differcntiation of Eq (78) with respect to time results in

o = éA (K\Jz-i-gcos‘q +CA(K\Ilf 2KVV -
q sin Y X) (79)

.
.~
4 o “<

A -

éA = - —i—sf-‘"—;—i .Z-_S.C_L:‘ (80)

9!

An expression o0

which can be written

(.: - -C:IOV\:/SCLAL

- A —
m

(81)

Subgstituting BEq (31) into Eg (72) vields




we——
—

o 'C:IKV\./ SC}-qc KN+ 36053 +

E M

CA (K V' +2KVV - 33“\‘6 X) (82)

But it can be seen from Eq (78) that

. p 2
e _ KV + Scosx (83)
C%
Therefore, after scme substitution Eq (82) may be

rewritten in terms of oK. as

& = -'CAIP\,VSCLC.L otg + CA(KVI-rZKV\'/ -

m

g VK cos¥) aa)

After rcarranging and factoring, OCE takes the final

form of
[ ] I3 'I I ; E L‘ \
VIKV' \ K,_s\g%\"l()‘\_ IE._.__.Q( }. l (353

Eq (85) is now uced to obtain the sccond derivative of

c&E with respect to time. Initially this equation is

a:éV&E,CVf’-‘i—l—
A(cv>+A C,V

A




CA\J KV+K\/ —3\:’\¥:cos‘d —BKL‘\ICOSX +

%K\r:s‘m\ﬁ\:&' + \’ (ZK - %ﬁ “g) -+

. L] SCLOL . '
E
(\ m (86)
ftor factoring this equation can be written 3s

.3

s (NN 45NVSC,
o= se(Y ey - Tha o)

mV
C\:"[i&n{(“ - -\-,’-\ +
| vy

A

_g_cosXK L\/(_\_/_ _ _g_ —X) (87)
N V K

Now that the time derivative equations, Eq (85) and Eq
(37), are derived these quantities can Le used in {urther
development of the nonlincar equations., It must be
recalled that these angle of attack derivatives were
derived from an estimated angle of attack cquation,

BEq (7G).

The Moment Equation

For an aircraft in flight the moment cquation is

My = 176 (887

R i i Rt~ M s o e




r—trC

e

where M7 - ‘?._SECM
and e - é_

Eq (88) can be rewritten as

C, = _‘_[4 3_ (89)
'cl“—S c

But the pitching moment coefficient, Cm, can be expanded

C, = Cmo-vadcx +C. & +C AR+

) R
C
C. 9
(90)
Eq (20) can be substituted in Eq (89) to vield
“m T Y Y, @ = T T T N S -
o - C= ™

$ gse 24\t

C,. — C._anm (91)
o M

This equation, Eq (91), is the sccond of two equations
forming a set of simultaneous eguations which are used

for computing elevator deflection, g » and angle of

attack,o{ . The first equation was Eq (75).




Reforence States

With all the preliminary cquation derivations
comnletad, the seven reference state cquations will be
developed in this secction. The seven reference states
comprising the reference state vector are:

U, reference velocity in the x~direction

reference normal velocity in the z-direction

dg reference piltch rate

QR reierence pitch angle

SR reference elevator deflection

AR refercnce thrust (TR is equation notation)
hy reference or desired altitude

Reference Thrust., For computation of reference

thrust the forces are summed along the velocity axis as

shown in Fig. 17, The force equation is

h‘\\‘/ :TRCOSOQ‘D"MSS‘U\X (92)
<,
|\°‘ Na‘v
X k:
Drag
W

Fiqure 17. Forces in Velocity Direction




Solving for reference thrust

T - mV +35C +mgsin¥

Q

which can be reowritten as

(84)

TR = scco«(mv + iSCD + mj Sin &

Eg (94) is the equation for reference thr-ust. The only
available value for angle of attack, e, at this point,
is C(B which is used in this equation. (In actual compu-
tation reference thrust 15 updated by using the reference
angle of attack, C(R, which is derived in the next

section).

Referconce Elevator Deflectiorn and Reference Anale

of Attack. Since a value for reference thrust has been
computed in Eq (94) it is now possible to solve the twe
simultaneous equations, Eq (75) and Eq (91). These two
previous equations can be writiten in matrix form as

e e T e e —

CL +-2 (C 4 %(KV1+SCOSX - CL;‘Aﬁ -CLO

L - L . -—
For conciseness, let

58




3 * A T
/ f CL = CL. -+ ‘i
o, o by
I alld 1ot
.[‘( v
'y
| ACLD &

S

rol

2 and

ACMD

11>
FH
g A
!
ol
)
|
~
>
=X
(
~

The valucs for q and q must be computoed {rom values

obtained Srom kBgs (46), (63), (85) and (87) such that

1

2 3 \8 . *
‘l = + oL ]

i

and 1

v et va }

9 = ¥+ o<, ;

Using Craner's Rule, Ug (95) wmay Le solved for the '

two referance iates of bl‘ and 0(],. The final resalts:

AY \ 2

are

< C.* acmo - G ACLD

R "
C"»& C"‘S - C"‘oc.CLQ (9¢)




SERE R LS o - - -
R TP A s L 555 <5
and

Cpog BELD = G ACMD

ol =
R

Cﬁ.

3 $

(97)

Now that these two reference angles have been derived,
the remainder of the reference states follow,

Rafeorenae VYelocitios in » and o Diroections. From the

relationship shown in fig. 13 the following equatltions

Figure 18. Velocitics in x and =z directions

result

f
'\JR = V cosg ™ (o0)

and

qe

b

FERRCER AT -T Ny - T L)

RIS R S TP RN
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3

5

Reference Pitch Rate. The reference pitch rate is g
derived from the basic definition of 3
A

E

(L = & -+ 8 (100)

Using the reference angles

iR: X T Y (101)
where O(R comes from Bg (85) with & . replaced by C*R '%
and %d comes from Eqg (46). %

Reference Pitch Angle. The refercence pitch angle, é

i

©, is derived also from the basic definition é
e,_ = X, 7t \6& (102) ;

K

where C‘R is from Eg (97) and xd is from Eq (43). .
.
Reference Altitude., The reference or desired alti- B

tude, hd’ is computed in the reference path generator

and is supplied to the nonlincar reigrence state generator.
Summary. The seven reference states and thelr

respective cquations arce listed below:

W, = \’Slr\CiR
A = g ¥ K&

o
!

kg (96)
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o ST R ST e

A

R ~ Eq (24)

hd - reference path generator

Truth Hodel

In order to calculate the actual values of each of
the sev:n states, a truth model is required. This section
provides sets of equetions which calculate the actual
values for the seven state variables, Since the MODGDF
program (sce Appendix D) integrates the snecified equa-~
tions, various {irst-order differential equations are
dev-eloped.

Basic Bquations. The force equation, Eq (92), is

again used except it 1s solved in terms of V as

. ~g35C, -magsinY
V Tcosocr ,i b g Sin (103)
m

This equation for V can be integrated to solve for actual
velocity, Ve
The normal forcc cquation can be written (Ref 17:207)

W\VB = L - \m3 ces ¥ -i-Tsir\o{ (104}

which can be solved for X a

[97]

\-‘ _ iSCL - msCoSX +Tsino( (105

mV

BEq (105) may be integrated to yicld the actual flight

path angle, XA'
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B R T,

The moment equaticn can be used to solve for the
pitch rate derivat:ve. This equation, previously written
in the form of Eq {83), may be rewritten as

ﬁL - T (106)

Eq (106) may be integrated to compuZe the actual pitch

rate, q,. Then q, can be used to find the actual pitch

angle since

e - (i‘ (107)

Referring back to Chapter V, Fig. 12 illustrates

the relationship bhetween E, 2 and V, Previously derived

ions for range and altitude derivatives are
R = Vecos ¥ (37)

and

h = NsinY (36)

Integration ~f Egs (37) and (36) result in actual range,

R and actual altitude, h respectively.

A’ A,

The actual elevator deflection, SA’ is computed by
integrating

AT VA I 12

— +

: ' (108)
R A A A




where 7; i5 the time constant and o is

R the refercence

elevator deflection,

Likewise, the actual thrust is found by integrating

amn  essm——

A~ T T, £A (109)

A= - Ln (L S8

where ‘T; is the time constant and & is the reference

thrust,

Actual States. For convenience, the equations for

each of the seven actual states are summarized below:

For velocity, U, the equation is

UA: VA COS oy (110)

where V, is actual velocity and G‘A is computed from

= G -~ XA (111)

Normal velocity, w, is

wA = \‘IA Sin D(A (1:2)

For pitch rate, q, the equation is

_ ((CmESTN gt
(zA IY (113)

For pitch angle, © , the equation is
G, = cic”
A .
A V114)

64




pagnaza b i AT e "W.‘wwp-wmvy-f}fv‘ PR T TRCCIITIC MAdE  Teieem T ite s e o e e

et D F ki e o

The actual elevator deflection is
—— —T
S g gg

A R c lf

= - —_—
gA e Te 7e (115)

- —

The actual thrust is

A, - b (Be, SAY gy
To To 7o (116)

Ang the actual altitude, h, is
- sin %, ) dt
hA - (\JA P‘) (117)

Initial Conditions. 1n order to integrate cach of

the first order differential equations some initial

conditions must be set. These are designated below for

each of the quantities which is integrated:
¥ =0 rad © = .046 rad
o o
= G4 Ft/s Y = - . ;
VO 647.3 ft/sec bA .065 rad :
o
g = 0 rad/sec A = 4729 1bs 3
O A E-
o .y
ho = 500 ft RO =0 ft j
Computation of Updatad Control f
3
Now that the reference states and the actual states i
have been computed it is appropriate to usc both to find %
j
the new control, With refercence to Fig. 13 of this :
chapter, the state deviation vector, Slr can be computed ;
65 i
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by differencing the reference and truth state vectors,
The feedback gain matrix, G, has bheen computed from tne
linear model in Chapter III and can be multiplied by the

state deviation vector, Sﬁ, so that

Sw = GSx (118)

Eg (118) is the control law which calculates the feedback
conmands for the elevator and engine,

Both the total elevator control, g, and the total
thrust centrol, A , arc computed by addition of the

respactive feedback command to the reference command

g g_,,‘ + S{ (119)

and

A

i

AR+SA

(120)

This update of the two controls then completes one cycle
of the nonlincar model computation leading to a new set
of controls. The new control values are now used to

adjust the reference states and the actual states as the

simulation progresces in time along the range direction,




VII. Results

This chapter presents the results of the design study
of the proposed optimal terrain following controller using
a cubic spline reference path. The chapter is organized
into three main sections. The first section shows the
resultant numerical data for the system matrices., The
second section illustrates the performance of the linear-
ized model. And, in the third section an evaluation is

made of the nonlinear controller model,

System Matrices

The open loop dynamics matrix, A, and the control
distribution matrix, B, have been discussed previously.
In this section the actual numerical values of each matrix
are presented. The A matrix of Eq (27) is shown in Fig.

20. The B matrix of Egq (28) is illustrated in Fig. 19

below.

- -

0. 0.

0. 0.

0. 0.

B = 0. O.

10. O.

O. 1la

‘_ 0. 0.

Figure 19. The Control Distribution HMatrix, B
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The Qutput Matrixe. In Chapter III the vector S_};

was shown to e the output deviation vector. The outpui

deviation, slh for this thesis consists of the following

four output variables:

(a) Sh - altitude deviation

vertical velocity deviation

() &n

(¢) %h - vertical acceleraltion deviation
(d) $u - forward speced deviation

The two variables $h and $h were sized by dividing these

?
4
3
|
4
3
4
3
1

terms by V_ and Vg respectively. The four output variable

equations are shown below,.

Sh = Sh (121)

i

RS, S T TS

‘é“ - Sw *USQ) (122)

/ 4 e o I ad Ve \
ZUSU+ L 0w +Zi%z + Lgod + L, ) .

-
V'

SU = %U (124)

These four output equations can be written in the Iorm of

Eq (6) in Chapter IIT as
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NPONG OVE T NV

(125)

wWhen the numerical values are substituted the trans-
formation matrix, C, used for this thesis is shown in
- ~
Flge. £l

Weightinag Matrices Q and R. The mcithod for deter-

mining the Q and R weighting matrices was discussed in
Chapter III. Both matrices werc developed in dilagonal
form. The final forms of the Q and R matrices are shown
in Figs. 22 and 23. These values resulted from the
iterations described in the next paragraph.

The Bryson and Ho method (Ref 4:149) was used to

estimate recasonable values for the dilagonal elements.
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25 0. C.

0. 1056. 0.
C. 0. 2.78E09
0. 0. 0.

€.25E~-04

Figure 22. The Q welighting matrix

100 Oo

0. 2.5E-07

Figure 23. The R welghting matrix
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Then these values were perturbed in attempting to achiceve
qood performance for the controller. The corresponding
maximum allowable deviations associated with the Q and R
diagonal elements are shown in Figs. 24 and 25.

State Deviation Weiahtina Matrix. In Chapter IIIX

the cost function was written in terms of Si and Sg.
This required the state deviation weighting matrix, P,
which was shown to be equivaient to CTQC. This matrix
with its numerical values 1s shown in Fig. 26.

Computations of CPTSYS. Using all the system matrices

and the weighting matrices, the OPTSYS program calculated
the optimal steady-state gains for the terrain following
controller and computed the eigenvalues of the system.

The steady-state Ricatti gair matrix, °, is presented
in Fig. 27 and the feedback gain matrix, G, is shown in
Fig. 28.

The seven cigenvalues of the open loop dynamics
matrix, A, are shown in Fig. 29. All the open loop
eigenvalues are stable.

The closed loop dynamics matrix, A+BG, results in
eigenvalues which have bcen moved further into the stable
region of the complex plane. This increase in stability
is shown by comparison with the corrnsponding open loop
eigenvalucs in Fig. 29. The dominant complex roots pro-
duce a damping factor close to .707. This damping factor
was desired so that the system would possess good time

responsce and damping with minimal peak overshoot. It was

73



e T R A AR ¢ AR LTI farin oy

Diaaonal Elcement

Maximum Doviation

944

Sh = 2 ft

Sh = 2

o

f

e

Hocr

/sec
t/sec

~N 0
%}

50

<
O

O

"
)
il

2
8 ft/sec
(650ft/scc)2

l

<
O

LN
c

40 ft/sec

Figure 24. Q Matrix Maximum Deviations

Diagonal Bleneont

Y11

Yas
-

Maximum Drviation

= 4316 rad

= 2000 1lbs

-

Figure 25. R Matrix Maximum De
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also recquired that the system not be overly damped since
that would cause excessive acceleraticn and undue crow

discomicrt.

"

Stability of the Lincarized Perturbation ZSauationsg

A computer program was developed to verify the
stability of the linearized perturbation eguations derived
in Chapter IV, 3Since the coefficients in these equations
determine the value of the A matrix and ultimately dictate
the optimal feedback gains, it was important to insure
their stability. The matrices A, B, G, and A+BG were
used to simulate the system in closed loop forn.

Since the linearized equations are in perturbation
form a straight and level flight profile was assumed as
the zero reference condition. Initial conditions were
set on one of the seven perturbation state variables
while the remaining six were set to zero. Then the seven
differential equations (sece Egs (19) through (25)) were
integrated from 0 to 20 seconds. In addition, Eq (122)
was integrated to check the output vertical velocity
performance. Figures 30, 31, 32, and 33 illustrate the
lincarinsed equations performance for an initial perturba-
tion in u~directicn velocity of 235 ft/scc. Figures 34 to
37 correspond tn an initial perturbation in altitude of
25 feet. And, Pigures 38 to 41 show how a purturbation
of 200 1bs of thrust affects the closed loop linecar model.

Also included in ¥igs. 42 te 4L are pleots of the
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steady-state poerformance of the controller vesponding to

an initial perturbation ot 25 ft/sec in x=direction
velocity. These plots show that in steady-state the
controller restores all states to the zero flight
conditions.

In all cases, the time response or the linecar systom
is shown to be quite goed. There are no large fluctua-
tions in response and the system is restored to the zero

reference in a reasonable amount of time,

Performance of the Nonlinevar Controller

Much of the initial study of this thesis consisted
of verification of the equations used in the nonlinecar
reference and truth modaels. Once these equations and ihe
associated computer programs were investigated it was
possible to evaluate the peirformance of the controller
with the nonlinear reference and truth models.,

The MODGDF program was used to compute a simulated
reference path for the controller. This simulated path
consisted of a simple pullup maneuver in which an air-
cratt climbs over an obstacle and levals off, This is
shown in Fig. 46. For this simple pullup maneuver the
acceleration and g rate limits can be varied and the
duration of the pullup can be specified.

Two different reference generation schemes were
develeped, One involved a cubic spline path and the

other was a quartic (polynomial of degree four) spline
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path., Modules were designed tor program MODGDE which
censisted of a spline path geneoration routine and a
correspondlina interpolacion rouline., These reference
path generation sudroutines were then linked to the
nonlinecar controllier model to cvalulite poriormance.

For the quartic spline reference pullup nancuver the
initial altitude was 500 feet, Over a rangec of 10,000
feet the ailrcraft climbed 1020 fect Lo level off. The
specified limits on k (sce Fig. 46) were .5g for this
prefile.s The resulting quartic reference »nath was tracked
by the controller with a maximum altitude ecrror of 6 feeot.
The velocity deviation was less than 2 ft/sec at level
off. Both the altitude and velocity tracking errorvs were
regulated to zero after completion of the pullup mancuver.
The velocily error settling time was clightly longer than
the altitude scttling time after level off.

The cubic spline pullup maneuver was also pe:formed
for a .5g limit on k. Over a range of 9,000 feet the
cubic spline reference path increased in aliitude from
500 fcet to 1280 {feet. The optimal controller tracked
the reference altitude within 4.5 feet. The velocity
tracking error for the cubic spline reference pullup was
less than 2 ft/sec. Like the quartic pullup mancuver,
both the velocity crror and the altitude crror werce nuiled
after level off by the feedback controller,

The optimal controller was next flown using the

optimined cubic spline reference path described in
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Chapter V. Over the first 15,000 fect of this terrain
profile the standard deviation in altitude was 160 fect.
The optimal controller was capeble of maintaining the
altitude tracking error at less than 1.5 feet and kept
the velocity tracking error less than 1.5 ft/sec. This
was very good performance even though the terrain was
rather benign. The thrust fluctuation was reduced when
compared to the Boeing oplimal controller flying over a
similar low level terrain profile. But the actual
thrust did lag the required reference thrust because of

the simplified thrust control system developed for this

In all the flight profiles flown by the optimal
terrain following controller so far, the tracking crrofs
have not been large and can be considered quite accept-
able. Whenever an altitude tracking error exists the
actual aircraft altitude has always been greater than
the refezrence altitude thus promoting a safe terrain fol-
lowing mission. Even though these test profiles have not
been long in duration they do show the potential for good
controller performance using an optimized cubic spline

reference path,
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V1iII. Conclusions and Recomnmandations

The feedbach controller is a stable contreller
capable of tracking a cubic spline reference path. The
cubic spline generator produces a reference path possessing
good tracking qualitve. The reculting controller provides
good path control and only slight tracking errorgs in alti-
tude and velocity provided the state deviations remain in
the linearined region asout the nominal reference trajec-
tory. By allowing variations in velocity, the thrust
fluctuation is reduced. This is essential to increasing
engine life and decreasing fuel consumption.

The woighting matrices, Q and R, are very influential
in the poerformance of the terrain following controller,
Thesc matrices can be judiciously adjusted to strengthen
the controller operation and cause the aircraft to fly
closer to the reference path.

The following recommendations result from vork on
this design study

(a) 1investigate, through more sophisticated tech-

niques like root square locus, the cigenvaluce
placement due to varying the Q and R matrices

{b) cvaluate this nonlinear controller over a

greater variety of terrain profiles

(c) investigalte the lincarizing assumpticons made in

Chapter 1V and determine whether a rotating

coordinate retcrence frame tangant to the

et L ] e 030 S A 3 2 i w1
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reference trajectory is mere accurate
(d) develop a more sophisticated thrust and velocity

control svestem for improving the controller

performance

el e ekl

(e) nmodify the constant energy assumption to allow

A LY

s
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variations in energy within a cpecifiad ene.gy

envelope
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Appendix A

Constants of the Aircraft Model

This appendix contains all the modelling constants
used in the controller design simulation, The data rep-
resents a large fighter-~bomber aircraft flying at sea
level. The conditicns for a standard atmospheric day are

assumed,

Density 2.378E-03 slug/ft>

Speed of sound = 1116 ft/sec (Ref 17:465)

3}

Nominal aircraft velocity 647.3 ft/sec (Mach .58)

n T < > ‘o
o}
[}

Aircraft weight = 55000 lbs
Wwing area = 647 ft2
Wing mean aerodynamic chord ¢ = 18.678 ft

Dynamic pressure at nominal velocity

3 =% vi S = 322307.6 slug-ft/sec”
Moment of inertia about aircraft y-axis

I, = 380000 slug-ft/sec?
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Appendix B

Stability Derivatives

This appencix presents all the stability derivatives
in the controller design and explains their derivation.
First of all, the dimensional stability derivatives are
designated. Then the non-dimensional stability deriva-
tives are explained. And, finally. the numerical values

of all the stability derivatives are compiled.

Dimensional Stabilityvy Derivatives

The linear model in Chapter IV illustrated how the
linearized equations of motion contain dimensional

stability derivatives. These dimensiona

o

A -
obLa

pord

1lity de-
rivatives are the coefficients in the open loop dynamics
matrix, Eq (27), These dimensional derivative values
result from data computed by ASD/XRHA, Wright-Patterson
AFB, Ohio. The definition of each dimensional derivatilve
is included with its corresponding symbol. In addition,
for dimensional derivatives required for further com-
putation,; the corresponding equation and units are
included. The dimensional derivative equations and the

units are compiled from Reference 16.

XU, Dimensional Variation of x-force with Speed

5 5(Co, +2GCo,)

(sec

Xy

) (B-1)

s U,u




Xgy Limensional Variation of x-force with Elevator

"beflection

-5 SC
yA DS (ft/sec?) (B=2)

XS:

m

Xg1 Dimensional Variation of x~force with Anqle of Attack

x - 7'_ i S(Cbo(- CL") (ft/secz) (B-3)

oL

™

-7

Zy» Dimensional Variation of z=-force with Speed

- C.
7 = -9 -y tol (sec™ ™) (B-4)

Zgo Dimensional Variation of z-force with Elevator

Dctlection

-a S
ZZ - £ S, , _ (ft/sccz) {B8=~5)
6 ™

Ze» Dimensional Varlation of z-force with angle of Attack

_5 s(cl_ +Cp, )
Z ._____2 = ®o (ft/sec) (3-6)
,A" m

Myy» Dimer.sional Variation of Fitching Moment with Speed
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__3s¢e (C.., +2€.)
v -I’ \L

(ft-sec)™t (B-7)

Mg, Dimensional Variation of Pitching Moment with Elevator

o NI T

s ScC
M. - 1 ™ (sec™®) (B-8)

¢ 17

My, Dimensional Variation of Pitching Moment with Angle

£ At;ack

e—

2) (B=9)

rﬁ - 7 (sec”

The nine equations, Eq(B=-1) through Eq (B-9), are
required to compute the non-dimensional stability deriv-
atives shown later in Appendix B.

It can be seen that the open loop dynamics matrix,
A, in Eq (27) does not include the d4imensicnal derivative
terms Xy, Zgy ©r My as coefflcients. Instead, the longi-
tudinal equations of motion include Xt Zw, and Mw
respectively. With a simplified assumption these three
varianles in w can be transformed into variables in o

for computation purposes. As seen in Fig. B-1 for small

PSP
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Figure B-1, Velocity Relationships

angles of attack,ol, the following equation is true

(Ref 12:72, 6:11)

(B-10)

X

There is also a relationship between dimensional stability

derivatives as follows

X“_d - wa (B~11)

Substitution of Eq (B-~10) into Egq (B-11) results in an

impeortant relation

Xw - (8-12)

Now, since the value of Xw is a known guantity from the

open loop dynamics matrix, it is possibie to solve for Xt

e M, i o bt i s i e G el

P

XL R ek




using Eq (B-12). There is an available equation, Eg
which is written in terms of X_ so it car he used to
calculate the non-dimensional stability derivatives.

same process developed for Xg is used for the 2, and

several unknowns in the noniinear model equations,

Non-Dimensional Stability Derivatives

nent equations, are listed below (Ref 1€):

C. is the 1lift coefficient

L
C, - -

'iS

C is the aircraft 1ift curve

il

Lo
3C
at )cK

C is the control surface lift effectiveness

g
C — BCL

LS -—

3§

(8-3) ’

The

the

M, equations. This is the method needed to solve for

The non-dimensional stability derivatives are not
used in the open loop dynamics matrix, A, but are required
for the nonlinear model equations. The non-dimensional

stability derivatives, with their definitions and perti-

(B-13)

(B~14)

(B-15)




CL is tne variation in 1lift coefficient with forward

u
speed
C 3¢
Thy  — (B-16)
©TOR)
%
CL is the 1ift coefficient for zero angle of attack.
Lo ,
CD is the drag coefficient

¢, = _B_
7_8

Ch is the variation in drag coefficient with angle of
ok

(B-17)

attack
A Wa
C — d\.b
JP— (B~18)
) o
CDS is the variation of drag coefficient with elevator

deflection

C- - >Cb
u — R
§
PR
C is the variation of drag coefficient with forward

by

speed

C, = 3G, (B~20)
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CD is the drag coefficient for -ero angle of attack. E
o -

Cm is the pitching moment coefficient

c - M

M — T (B-21)

Cm is the wvariation in pitching moment coefficient with
~
angle of attack

31 b bR Lo 14F 0 e 2

(B=22)

Cm is the variation of pitching moment coefficient with !

§

elevator deflection

SR

- i i

C,.h - BC"“ (B-23)

S — —_— i

3§

Cm is the variation in pitching moment coefficient with
U
forward speed

e ')Ch‘

LN — . o s
%
Cm is the variation in pitching moment coefficient with

q
pitch rate

o A i — s

¢ 3o

4 aY

(B=25)

©(3)

c is the piltching moment coefficient for zero angle of

(@]
attack,




All of these non-dimensional stability derivatives
are required for the nonlinear model equations. The

numerical values are shown 1in the next section.

Stability Derivatiye Data

The values of the dimensional stability derivatives
are known from the open loop dynamics matrix, A (see
Chapter IVJ. From these known values and the model
constants all the necessary derivatives are calculated.

The actual dimensional stability derivatives are:

X, = =-007578 se="1

X = 01276 sec™!

w

Xq = ,L,034 ft/sec

Xg = =.000314 ft/sec”
-1

XA = L,000713 sec

2, = —-1029 sec~1

Z = -.8198 sec™ !

w

Zq = =2,175 ft/sec

ZS = =48.4 ft/sec:2

Zp = --00003€1 sec™!

M, = -.00013 (ft/sec)™?!

it

-.006086 (ft/sec) %

W
M = =,201 sec”l
q
MS = =4.477 sec"2

Befo.e the non-dimensional stability derivatives are

listed, the zero angle of attack conditions must be set,




B T R R P S

PO

3
P
These values are: o
C. = C_ =0 %
Lo m, g
C, = .0106 ;
DO |
g
with these zero angle of attack quantities, the remainder _é
of the stability derivatives may be calculated from the g
cquations orf the first two sections of this Appencix. %
CL = ,1706 (.L,s = ,2567
C = 2.804 C, = .35328 ?
-t 8] .
H
C. = -,0412 C = o0C482 i
Dy Py - ;
¢ o= 1.6654x10~° C = -.2484 :

C = =-,0053 Cm = ~-,2326

My e
Cm L _¢8794
q

These values are used in the variety of equations in the
nonlinear controller model. This data 1s consistent with

actual flight test data (Ref 7 ancg 17).

P s PR AR R i st i o - - AST AT 1 e




e i re

adased

Appendlx C

Calculation of TrimVConditions

During the trim condition for stability the angular
rates are cero, the linear rates are zero and, ecssentially,
1ift ecquals weight (Ref 7:30),

For the trim condition

L. = ELSCQ, = W (C-1)

Substitution of the known values into Egq (C-1) provides

a value for CL cf

- 1 nt
— 1 iva
(. =
The corresponding CL trim equation is
C = C o + C § (Cc=2)

Eq (C-2) is onc cquation needed to solve for the two
trim angles, o and §.

The pitchi.ng moment coefficient cquation is wriltten as

G = Cy C'“xo( + CMS S (c-3)

For the trim conditlon C = 0 and Lg (C-3) becomes

C = G, +Cu, +C'“s£
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From Appendix B the value of C ~ is zerc for the control-
o
ler design, so Egq (C-4) reduces to

O = CM = ¥ CMSC (C-5)

ol

This i1s the second eguation required to solve for the
two unknown trim angles. Eq (C-2) and Eg (C-5) can be

solved simultaneously to yield the trim conditions of

oﬁ'gm = 06"2 ro.J

and

- — 0582 rad

TR

These two trim angles are used for calculations in the

nonlinear reference model.




Appendix D

MODG6DF Computer Program

The Litton MODGEDF algorithm is a six-degree-of-
freedom digital simulation program useful as a tool to
analyze various guidance and control systems, 1t uses

a modular approach to FORTRAN programming which allows

the user flexibility teo adapt modules to various physical

systems. This appendix consists of a summary of the
MOD6DI program. For more detail about the algorithm

the readar should consult Reference 5,

Program Structure

The MODGDI program is structured for systems engi-
neers rather than programmers. It permits an engineer
to use the overall program without being too concerned
about numerous programming details. An engineer only
needs to modify an independent module representing the
physical system of interest.

The basic structure of the MODGDF program is built

around three mailn levels of subroutines (see Figure D-1).

These three types of subroutines are:
(a) Type 0 - Exccutive subroutines which manage
and supervise the overall MOD6DF program
(b) Type 1 - Operational subroutines which provide

control at the beginning of each integration

step




Executive Drograms

(Input of data, etc)

Begin Flight

Operational
Subroutines

/}”

Loop

e e e e e o

~.ntegration

(Printout, etc)

System Mcdules
with Differential
Equations

Integration
Algorithm

Series
of

Runs e

(Advance At in time)

End or Flight

Sct Up for New Run

Figure D-* Structure of the MCD6EDE Program (Ref 5:3)
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(¢c) Type 2 = Modules which are constructed by the
user according to the physical system belng
investigated

The exacutive and operational subroutines are not

normally modified by the user. The modules are the
"black boxes" of the MOD6DF program which represent
modelling equations from the physical system. The proper
development of these modules is the main concern of an

engineer utilizing the MODSDF program,.

Operation

Tha MODGDF program operates basically as an inte-
gration subroutline package. It utillzes a fourtihe-order
Runge Kutta integration scheme in closed form,., Within
each module there is a number of differential equations
represcrtirg the physical system. The user identifies
the locatinns of the variables which are integrated
py writing cortaln specifications in an initialization
module. Uring the integration algorithm, the cystem
solution projresses at each point in time by processing
the specified dirferential eguations to advance the solu-
tion one step &t in time. Computed values of various
variables mav be stored at each step At for tater use
as output deota cr for plotting. The program can also
genzrate rarndom noise for Monte Carlo simulation and can

perform covariance simulation.

Most 0f the communication between subroutines is

L3 carindin: ol e ks, sl
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accompiished through COMMON locations. Many of the
COMMON storage locations are specifled (Ref 5:23), but
others are reserved for the varlables in the system
modules. Therefore, the user does not have to use CALL
statements or argument lists when performing analysis.
The COMMON locaticns are arranged so that each variable
being integrated is associlated with four consecutive
COMMON locations. The first location is for the deriva-
tive of the variable which is specified by the differential
equation in the system module. The second and third
locations were previously for the lower and upper bounds,
respectively, on the integration error of that variable;
but,. these are no lonaer in use, And, the fourth loca-
tion is for the variable itself. Figure D-2 illustrates

an cxample of how this COMMON arrangement works for the

Variable Value COMMON location
v F/m 301
v SP/m 304

FFigure D-2. COMMON locations for a typical integration

basic equation F = nV

Input Cards

The input cards to MODSGDF are of ten types. These
input cards are closely related to the operational sub-
routines and the system modules. As a result, the input

cards essentially dictate how the MODGDF program will be
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implemented for any particular data run, There is a

basic format for the input cards which must be strictly

followed.

Txge
1

10

The ten types of input cards are shown %“elow.

Input Description

Operational subroutines to
be used

System modules to be used

Numerical input data includ-
ing initial conditions

Variables to be printed out
Variables to be controlled

Parameters of random number
generators

Variables to be plotted
Spare
Spare

Indicates end of a data run
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Appendix E

The OPTSYS Program

This appendix explains the input and output para-
me.ers of the OPTSYS computer program. It does not
describe the program operation in detail since that is

the purpose of Reference 3.

Program Description

OPTSYS is a digital algorithm which utilizes optima’
control theory to calculate coptimal gains for a system of

the general form

(E-1)

using a cost function written as
T M-
J = -!7-((55 PSx + Su RSu)dt (E-2)
-—j - 4

The OPTSYS proaram sclves the steady-state form of
the matrix Ricatti equation to obtain the corresponding
Ricatti gain matrix, S. It is possible to compute the

feedback gain matrix, G, using
- T
G =z ~-RBS (E-3)

where all three matrices on the right hand side of
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Eq (E-3) are known., The linear control law ic
S& _— G’g_)s (E-4)

which permits substitution of Eq (E-4) into Eq (E-1) to
yield

Ox = (A-\-BG) S_g.

(E-5)

The resultinag matrix, A+BG, is called the closed loop
dynamics matrix. The stabilicy characteristics of this
closed loop matrix determines how well a feedback con-

troller operates.

Input Parameters

OPTSYE requires the following parameters for opera=
tion:

(a) A the open loop dynamics matrix

{b) B the control distribution matrix

(c) P the state weighting matrix

(d) R the control weighting matrix
Using these four matrices which correspond to the standard
form of Egs (E-~1) and (E~2), the optimal gains are calcu-

lated.

Qutput Parameters

The output quantities of the OPTSYS program are:




(s A RRND, s i < =t = e

ity ok o A e s 4R

(a) the eigenvalues and eigenvectors of the open
loop dynamics matrix, A

(b) the steady-state Ricatti gain matrix, S

{c) the feedback gain matrix, G

(d) the closed loop dynamics matrix, A+BC, and its

associated eigenvalues and eigenvectors

Additional Uses

For the ourpose of this thesis OPTSYS performed
calculations as a deterministic controller. It is
posusinle to introduce noise in OPTSYS and to perform
stochastic calculations uring estimation theory. Proce-
dures for this mode of opcration may ke found in

Reference 3,
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