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Preface

This thesis is an extension of the previous work

accomplish ed by Major James E. Funk, ASn/XRHA, Wright-

Patterson AFB, Ohio. In his dissertation, the cubic

spline reference paths for terrain following flight were

not tracked by an optimal feedback controller. It was

Major Funk who suggested I design an optimal. controller

for the cubic spline reference path.

I wish to thank my advisor, Major Funk, and my

sponsor, Mr. Michael Breza, for their assistance during

the preparation of this thesis. They both had set the

foundation for this design study and had derived many of

the basic relationships needed for the controller.

I also express my deep gratitude to my wife, Pam,

for withstanding many lonely hours while I worked on

completing this report. And I thank her for typing this

thesis.

Ronald T. Kelly
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APIT/GA/EE/77-3

Abstract

This thesis presents the design of a proposed tcrrain

following flight controller capable of tracking a cubic

spline reference path. The controller tracks only the

longitudinal motion; however, it provides both thrust and

elevator control.

The controller is based on a nonlinear reference

model constructed from an optimized spline path. The

spline path altitude and associated derivatives are

computed. The longitudinal equations of motion are linear-

ized about the reference trajectory and a truth model of

actual aircraft motion is developed. Deviations from the

nonlinear reference trajectory to the actual provide a

linear system. Optimal control theory is used to solve

the resulting linear regulator problem. The feedback

gains are calculated from the steady-state Ricatti matrix

equation. The two system controls are updated using these

feedback gains.

Results show the feedback controller to be stable

and capable of tracking the cubic spline reference path.

The performance index weighting matrices can be adjusted

to improve the controller. The resulting controller can

provide both good path control and engine control to

improve vehicle survivability, engine life and fuel

consumption.
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OPTIMAL TERRAIN FOLLOWING CONTROLLER FOR

AN OPTIMIZED SPLINE REFERENCE PATH

I. Introduction

Low altitude high-speed flight has become a necessity

to increase penetration probability and survivability of

strategic bomber aircraft. This has resulted in emphasis

being placed on the terrain following mission profile.

And in recent years, the terrain following field has

broadened to include strategic cruise missile systems and

tactical helicopters. This broadening has been accompanied

by the incorporation of all the best features of modern

technology.

Current Problem

The terrain following mission creates severe demands

on the propulsion system of an aircraft. These demands

take the form of large and frequent fluctuations in the

thrust control system that result in shorter engine life

and increased fuel consumption. The operation of the

F-1ll aircraft during the last ten years bears out this

problem. Maintenance reports conclude that the terrain

following mission adversely affects both engine wear and

fuel consumption (Ref 2:4).

Modern control theory has progressed to the point

where effective computational techniques can definitely

minimize the disadvantages of terrain following flight.



Also, the state of the art in on-board computer systems

is such that the required real-time calculations are

achievable. The coupling of control theory with better

computation leads to development of better terrain follow-

ing systems which reduce engine wear by minimizing throttle

control motion.

Currently, the problem which exists is the design of

a system that optimally controls all the aspects of ter-

rain following flight. The controller must be capable

of maintaining minimum deviations from a designated

reference path while providing reduced engine wear and

decreased fuel consumption.

Background

The fundamental problem in terrain following flight

is determining the commands to the control system which

achieve a desired flight path. Extensive research has

been addressed to this one area alone. As a result, many

methods and computer algorithms have been developed to

fly the terrain following mission. These methods encom-

pass the flight-path angle controllers and the path

controllers. Each of these categories contains a hierarchy

of improved development featuring an optimal tracking

system at the top. Accounting for the present state of

the art, these optimal trackers provide accurate naviga-

tion with minimal deviation from the nominal flight path.

But none of these optimal methods adequately accounts for

the thrust control problem.
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The t.'rust control problem has not been considered

because present terrain following control laws essentially

decouple vertical flight path control from speed control.

These control laws assume a constant speed as the aircraft

contours the terrain. It can be seen that maintaining a

constant speed throughout a wide variety of flight-path

angles will certainly cause large engine thrust fluctua-

tions. Even though present terrain following control laws

use the constant speed assumption, recent tests have

shown that the overall system still performs well when

the actual speed varies slightly (Ref 8:1). Apparently,

the control system is fairly insensitive to reasonable

speed variations. Therefore, a control law which allows

reasonable velocity deviations from nominal will produce

lessened throttle adjustment. The best way to achieve

this is to incorporate throttle control, speed of the

aircraft, and vertical flight path so that these all will

interrelate and be optimally controlled. This allows a

trade-off between speed variation and thrust fluctuation

while flying the desired reference flight path.

The Boeing Aerospace Company attacked the problem

using an optimal integrated terrain following system

(Ref 8). This optimal system controls both altitude and

speed while accounting for vertical acceleration con-

straints and available engine thrust. Boeing's design

minimizes a quadratic performance index which includes

the following characteristics:

3



(a) Altitude deviation from desired flight path

(b) Speed deviation from set speed

(c) Vertical acceleration command

(d) Throttle command

The adjoint differential equations for the feed forward

tracking signals are processed in accelerated reverse

time to generate the current terrain following commands.

Once each second a new dcsired path is computed.

The results of the Boeing integrated model show that

the throttle motion was reduced dramatically when compared

to current terrain following control systems. Only half

the excess fuel used by previous controllers was consumed

on the same profile. The Boeing simulation maintained

aircraft speed closer to the set speed and minimized the

altitude standard deviation over a typical flight profile.

The only adverse effect was that the aircraft vertical

acceleration was increased, and this resulted in a deqra-

dation of ride quality. This is quite important for pilot

comfort, and can be improved by adjusting the acceleration

limits within the system model (Ref 8:46).

Overall, the Boeing design provides the basis for

an optimal controller, but it does not provide for an

optimized reference path. The optimized cubic spline

reference path generator developed by Major James E. Funk

achieves this goal. The optimized spline path incorpo-

rates clearance, slope and acceleration constraints in

the optimization problem, and generates a cubic spline as

4



a reference path. This path has continuous first and

second derivatives. Each solution to this optimization

problem results in a smooth reference path which follows

the terrain as closely as possible. Because this smooth

path contains continuous first and second derivatives,

an aircraft should easily be able to fly this path. So,

if an optimal controller can be found which uses the

optimized cubic spline generated path as a reference, the

aircraft controllability will be maximized and the thrust

control problem will be minimized.

Scope

The object of this thesis is to demonstrate the

feasibility of an optimal controller which attempts to

fly an optimized spline reference path. This report uses

optimal control theory with special emphasis on optimal

linear state feedback control.

The optimal controller is based on deviations from

a nonlinear reference model. The feedback gains are

computed for a system linearized about the reference

model based on a quadratic performance index somewhat

different from the one used by Boeing. The linearized

equations are also used to estimate the proper value for

the weighting matrices. The feedback gains will be used

in the nonlinear simulation of aircraft motion to evalu-

ate the optimal controller. Performance of the controller

will be evaluated under varying conditions.

This study will investigate the optimal controller

5



for aircraft only. The aircraft data used in the simula-

tion is typical of a medium-sized advanced fighter.

Assumptions

In order to simplify the very complex nature of the

nonlinear equations of motion certain assumptions must

be made. These are as follows:

(a) A reliable set of discrete terrain data points

is available

(b) Aircraft motion is restricted to the vertical

plane

(c) No pilot will be in the control loop, so auto-

matic operation is assumed

(d) The variations in speed of sound, mass of the

aircraft, and atmospheric density are negligible

(e) The center-of-gravity of the aircraft does not

change during flight

(f) Perfect navigation data on the state of the

aircraft is used (Ref 9:102)

6



II. Description of the Control System

To adequately begin discussion of the proposed ter-

rain following controller, it is necessary to describe

the basic components of the entire system. The remainder

of this report will further explain the mechanization of

each of the components. Figures la, lb and lc illustrate

the control system.

First of all, it will be assumed that the aircraft

is equipped with some modern sensor device which provides

accurate range and altitude data for the terrain. This

can be achieved by using a forward looking radar, a laser

ranger or even a map-matching terrain data processor.

The method of data acquisition is not important to this

report, as long as good terrain data is available.

Next, this reliable range and altitude data is fed

into the reference path generator. It is here that the

reference flight path is constructed in the range domain.

The range domain is chosen in order to more directly fit

and control the flight path with respect to the terrain.

It is important that the reference path is constructed to

inherently satisfy any acceleration, flight-path angle,

and clearance constraints imposed upon the vehicle.

Linear variations about this reference trajectory will be

considered later, and any limits encountered by these

perturbations will destroy the linear behavior and degrade

the controller performance. The reference path descrip-

tion consists of the path altitude, h, and its first four

7
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(spatial) derivatives with respect to range, h , h , h

and h .

These spatial variables are ,.sed for all subsequent

reference model computations to obtain the desired veloc-

ity, the reference control and the reference statc vari-

ables. The velocity generator computes the desired

velocity, Vd, along the reference path by using some form

of energy management criteria. This desired velocity can

account for the operational speed limits of the aircraft

as well as the desired average groundspeed to successfully

meet the check point times on the low level mission. The

desired velocity and all the calculations of flight path

are used to compute the complete set of reference states,

x R* These reference states are then used to compute the

estimates of the reference controls, uR, needed to produce

such reference states. This completes the generation of

all the necessary reference data to begin the simulation

sequence.

The nonlinear aircraft differential equations are

processed to simulate the actual state representation for

the aircraft. These states are denoted as xA. In reality

the true aircraft states cannot be determined exactly.

The actual states would be estimated from a number of

measurements. This would involve filtering techniques

and various sensing devices. However, in this thesis

the control system errors, rather than the sensor errors,

are of major interest; therefore, it is assumed that

10



integration of the differential equations of motion pro-

vides the exact states of aircraft motion and estimation

theory is excluded.

A comparison is next made between the actual aircraft

state, XA, and the corresponding reference states, XR, to

compute the state deviation 9x. These state deviJtions

are kept small by the selection of the proper feedback

gain matrix, G. More explanation will be given to this

topic in Chapter III.

The feedback gain matrix, G, is calculated through

optimal control laws (explained in Chapter III) and the

Ricatti equation. The matrix, G, can be maintained as a

constant for most of the terrain following missions to

be flown. This is consistent with the system design since

the state deviations are small, and variables such as

atmospheric density and aircraft mass are assumed constant

for the terrain following profiles to be used in this

thesis (Gain ,;cheduling is possible for extended missions).

Once the feedback gain matrix, G, is calculated a

feedback control signal, 9u, can be computed. This signal,

9u, is achieved by multiplying the feedback gain matrix,

G, with the state deviation, 9x, in the following manner

(Ref 4:151 and 13:194)

= G 9x (1)

The feedback control signal, 9u, can then be added to the

previously computed reference control, uR, to provide the

11



actual control, u. This control, u, provides the neces-

sary commands to the airraft engine and aerodynamic

control system to maintain the aircraft close to the

reference trajectory.

With the computation of the actual control, u, the

system loop in Fig. Ic is essentially completed. New data

is sensed ahead of the aircraft, new reference parameters

are computed, and new controls are activated in a sequence

of data frames. This, basically, is the overall operation

of the proposed terrain following controller. The remain-

der of the thesis describes the components of this control-

ler and their interactions in more detail. The results

of the simulation are also discussed.

12



III. Optimization of the Linear Controller

The entire approach to the optimal terrain following

controller is based on the methods of modern control

theory. This theory forms the foundation for the prelimi-

nary study of the proposed controller.

The Regulator Problem

The function of a state regulator is to maintain the

states of a system within an acceptable deviation from

the zero reference condition by using required control.

This is the type of feedback controller to be designed

and used in this project.

The system, in this case, consists of the deviations

from a time-variant reference model and thus is a linear-

ized system.

Aý (i)t = A (2)

In Eq (2)

ýx(t) is the nxl vector of perturbed states

gu(t) is the mxl vector of perturbed controls

A is the nxn dynamics matrix

B is the nxm control distribution matrix

Both A and B are time-variant, but they are assumed to

vary slowly to allow quasi-steady state solution of the

controller gains.

The reference conditions are generated by the path

generator, the state generator and the control generator

as described in Chapter II. In addition, the reference

13



velocity is calculated continuously along the flight path.

For this thesis the initial reference velocity is 6117.3

ft/sec which is Mach .53 at sea level conditions. This

initial reference velocity can be used as a nominal flight

condition. Since variations in flight condition are not

large, the aerodynamic stability derivatives are assumed

constant in the reqion of interest while the reference

states change with time.

The perturbation state vector., :x, can be wr-itten as

: g9x. x~a-x (3)
A

where

xA is the actual state vector

and

is the reference state vector

and the perturbation control vector, gu, can be written

similarly as

- II I1~~(4)

where

u is the actual control vector

and

u is the reference control vector

The two quantities, 9x and ýU, represent the deviations

from their respective reference conditions. And these are

the values which will be regulated by the optimal feedback

14
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control e1r dCeve I ped I or this t hesis

For the oi t iinal terra• n f ol1owing reoulIa toL an

app-opriatr co st function muSt be designcd. n Tthe most

convenient and workable form is the nuadratic x.hich

w~eiihts both the state and the control deviations from a

reference condition. The conventional quadratic cost

function %ill be (Ref 4' :149) 
A

T 4

This form shows that tho state deviations arnd the control

deviations are direct1y regulated deperdirtn on the form

of the w-egihtincg matrices P and R'. But for this control-

lcr, not all of the state deviations ar 1 to be regulated

directly. Instecid, an output deviation, S%' wiII be

regulated directly. As will be seen later, this merel\

represents a particular choice of the P matrix.

The output is defined as

SC (6)

where C is the transformation matrix. Using the output

deviation, •,, the cost function can be written as

The selection of the two weiqhting matrices, Q and R, will

be described at the ond of this chapter.

The transpose of the output voctori, ýv, i

15



T T
C C

}ubstitution Of 2q (M) and Ea (6) into Eq (•) produces the

revised cost function

0J

Comnarison of Eas (5) and (9) shows that they are equiva-

lent if P = CTOC. The cost function in Eq (9) is also

in the form to use the Ricatti equation to determine the

Ricatti gain matrix, S.

The Ricatti Eouation

The solution to the regulator problem requiLc.s solu-

tion oa the Ricatti equation (Ref 4:167). For simplicity,

it is assumed that the dynamics matrix, A, and the control

distribution matrix, B, are constant matrices. This

assumotion is not strictly true and results in a sub-

optimal set of gains. In the cost function of Eq (9) the

weighting matrix, R, is assumemcd constant. as is the product

matrixC TQc. T With these assumotions the stead- state

Ricatti equation is written in the form

0 : S -A'S- c.RL'b.S -CQC (0

This equation above implies that the Ricatti gain matrix,

S7 is constant for the optimal terrain following regulator

(Ref 4:167). If terrain following occurred for prolonged

16



periods, the gains could be scheduled for varying flight:

conditions. The solution of Eq (10) is accomplished by

using the OPTSYS program described in Appendix E.

Linear State Feedback
When solving for the feedback gain matrix, G, froin

Chapter I, the linear control law of Eq (1) can be

written in vector form as

Thi.s value for _u can be substituted in Eq (2) to obtain

(
Factoring out ox frum Eq (12) yields .

+~ (A+ ) ýX (13)

The term, A+DG, is known as the closed loop dynamics

matrix because this term incorporates the feedback gain

inatrix, G, as seena in Fig. 1.

A connection may now be made between the feedback

gain matrix, G, and the Ricatti gain matrix, S. Since S

is the steady-state Ricatti gain matrix it can be shown

that (Ref 4:167 and 13:221)

: -R.( B 14)

and the steady-state linear control law of Eq (11)

becomes

17



This equation above forms tihe basic control law for the

linear regulator problem considered in this thesis. It

is L[q (15) which updates the control for thoe terraiin

following regulator according to

Detorminat i oin of 0 and 1\ atva-c,

There i.- no one standclard method for determini ng the

exact components of the Q and R weighting matrices for

any given problem. It requires some iterations and

educated guesswork to determine the bast; overall weiqiht:.

Both the Q and IN, matrices will b(e used in digqonal form

only. ihis is done because normally only the main diizgo-

hal elements are significant (k'ef 4:149 and 10:33). 'J'he

Q matrix weights eachl dcviatia n in the four output vari-

abhen and tne IZ mnatrix weights the deviatlon in the two

control variiables,

The method of Blyson and la (Ref 4:149) can be used

0o obtaini workling value:: for the dingonal elem-nnts of both

Q and Ii. This, method utS)i'es tLho sett ing of maximum

acceptable values on each clement of the output deviation

vector, and the control deviation vector, 9u. Corre-

spond lug el(,eents of the weighting mc atrices can then be

used in the cos.t function, 3. The equations for deiter-

I
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mining the diagonal clement weights are
2-

l/Qi the lmaximum acceptable Value of:

and

/ the maximum acceptable)1 value of (Lsw(3
It should be noted that tLhese two equations will produce

a "first guess' set of diagonal elements which can be

adjusted to obtain rcasonable performance for the cost

funct ion. Once thes;e weighting matrices have been esta-

blished the r-eultilig ,.icatti gain matrix, S, is auto-

matically fixed according to the )4icatt i equation, [q.I

(10). This matrix, S, in turn, directly affectts the

over-all value of the feedback gqiin matrix , o, as seen iii

Eq (14). Therefore, any change in the diagonal cnlements I
of either Q or R4 will create multiple chanxges in the

subsequent gain matrices of the system.

The reason liryson and Ho equations can be considered

a "first guess" estimate is that certain selected Q and Ft

diagonal elements may result in control values that are

not real izable. In this fashion the Q and 1R matrices must

be judiciously adjusted to obtain good per,-formancc without

adwversly afIecting the flying qualities or the reali:zahlc

control deviations.

It the diagonal elements of Q are increased the

control lcr tends to become stronger and rcstrict the

system deviaticos closer to zero. Tlis can also be
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achieved by decreasing the element values of R. A

stronger terrain following regulator will result in a

decrease in the response time of the overall system. But

this is usually accomplished with a corresponding increase

in peak overshoot. So these tradeoffs must be considered

when designing the best values for the diagonal elements

of the Q and R weighting matrices.
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I
IV. The State Variables and Eua tionsF of Notion

The purpose of this chapter will be to denote the

variables comprising the state vector and thbc control

vector used in this thesis. Additionally, this chapter

will describe the linearized equations of mot:on. A full

development of the equations of motion will not be pre-

sented here, but the reader is directed to References 6,

7, 12, 14 and 16 if a fuller explanation is needed.

Only the longitudinal equations of motion will be

used in this controller design since the longitudinal

dynamics are the most important in a terrain following

flight profile. The flight regime will be restricted to

the x-z plane of motion as seen in Fig. 2. Lateral con-

trol is usually termed terrain avoidance and is beyond

the scope of this thesis. Omission of the lateral equa-

tions of motion will not degrade the controller design

nor provide inaccurate results. And because of near--

"Terrain

Figure 2. Two Dimensional Terrain Following Profile
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symmetry of the aircraft the longitudinal equations of

motion may be separated from the lateral equations of

motion (Ref 17:218).

LUt L;("I

00:.

7-O-Ki s

Figure 3. Axis System

Assumptions and Coordinate Axis

While dcveloping the longitudinal equations of motion

the aircraft is assumed to be a rigid body. The variation

of the pitch angle,90, is arsumed small so that

cos _

and
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And the forward velocity, V, is approximated by

The coordinate axes to be used will be a set of

stability axes that i.s fixed with respect to the reference

trajectory velocity vector. The relation to the x-z

body axes is shown in Fig. 3.

State Variables

For the design of this terrain following controller

there are seven state variables chosen to represent the

6ates of the system. These are

U the longitudinal forward velocity

w the normal velocity

q the pitch rate

e the pitch angle

Sthe elevator deflection angle

Athe thrust

h the altitude

These seven state variables will be used throughout this

thesis and will be collectively designated as the vector

x.

Two of the state variables will be directly control-

led in this design project. These two command values

are the controls
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ýc the commnnded elevator deflection angle

the commanded thrustcm
and can be denoted as the control vector ui.

Perturbation Thoorv

For the purpose of designing the tracking controller,

the nonlinear longitudinal equations can be linearized

about a particolar reference trajectory and the motion

described in terms of the variations in seven state

variables. This in illustrated in Fig. 4.

-- -refercnce path

IV-0I

Figure 4. Perturbation about a Reference Trajectory
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The use of small-disturbance theory can be used to pro-

duce the linearized perturbation equations of motion

(Ref 7:120). All the perturbation quantities and their

respective derivatives are assumed small so their squares

and products are negligible when compared to the first-

order linearization terms. A lioearized perturbation in

anqle of attack, o , is illustrated in Fig. 5.

II

_ _

Figure 5. Linear Perturbation in Angle of
Attack

Linearized Perturbation Equations

The linearized perturbation equations for each of

the seven state variables can now be written using dimen-
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sional stability derivatives. These dimensional stability

derivatives are explained in Appendix B.

The fact that the equations are linearized about an

arbitrary trajectory, rather than straight and level

flight as is frequently done, means that the coefficients

in the linearized equations would depend on the reference

traj: ztory states. This implies that the coefficients

would vary with time. In order to develop a controller

with constant gains the coefficients must be constant.

The assumption required ior this is that the rofcLczzo

flight path angle, , and angle of attack, •.,, are

small enough that their producLs with a perturbation state

can be considered of second order. In this way the

perturbation equations raduce to the usual form. ThcrefooQe,

for the purpose of thi.- study the usual linearization

about straight and level flight was considered accurate

enough to use for the linear perturbation model.

For the perturbation in longitudinal velocity, U:

For the perturbation in normal velocity, %q:

zz{0~ 2 +~ +7Z (20)

where U is the nominal forw:ard velocity. For the
0

perturbation in pitch raLe, q:

If O + w + (21)
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For the perturbation in pitch angle, e

(22)

For the perturbation in elevator deflection angle,

~ : -(23)

where Te is the time constant associated with the

elevator conrtrol, is the elevator control

command based on the feedback of perturbation states.

For the perturbation in thrust, :

where TP is the time constant associated with the thrust

control, A , and A is the perturbation tU-rust command.

For the perturbation in altitude, h:

o - - vJ-V e (25)

These equations above, Eq (19) - Eq (25), constitute

the longitudir.al perturbation equations of motion in

dimensional derivative form. These equations can be

rewritten in the mat-rix form of the linear differential

equation as

9k = A + M t_ (26)

where A is the open loop dynamics matrix. Gather-ing

Eq (19) thLouqh Eq (25) into matrix form results in:
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XV X w Xt - , X4 0

Ai Z, w M'1.Z• 0 ZS ZA 0
A A o o 0oo

A 0  
(27)

O 0 0 Qoo

-000L O0v-O
o -1 0 , 0O00

, Forcinq Function

The two aircraft control commands, and A
act as forcing functions for the linearized system of

equations. This forcing function consists of a control

distribution matrix, B, multiplied by the control command

vector. The matrix 13 takes the form of:
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o 0
0 0

0 0

o
o 0

The commanded controls must also be written in the pertur-

bation form as

0. --

j (29)

This completely describes the terms in perturbation

equation (26) which is identical to Eq (2) in Chapter I11.
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V. Cubic S;pl ine ,eforence Path

This chapter discusses the main points regarding the

genercation of the opirmized reference flight path. It is

this reference path which the optimal terrain following

controller is designed to follow as closely as possible.

All of the information in this chapter originates in

Reference 7 since the reference path generation is the

essence of Major Funk's doctoral dissertation. As a

result, this chapter x.will not detail the reference path

generation, but will hiqhlight those main ideas of

importance to the cesign of an optimal terrain following

controller.

Cubic ins

A cubic spline function consists of a sequence of

cubic polynomial segments which together form a continuous

function having continuous first and second derivatives

(Ref 1:54). Mathematical spline functions are ideally
suited to diital t orajectory ...... They rrnvide

smooth continuous curves that can be specified uniquely

by a disc[rete set of parameters.

A cubic polynomial can be denoted as

L~ L •6 '30)

for i 1, 2y....., n-l

where X X L+ - XL
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A typical cubic splirie0 function is shown in Fig. 6.

F~ioure 6. Cubic- Spinc' F"Unction

The function points (xi, Yi) are called knots.

The first and second dorivativcs- can be obtained by

different-iating Eq (30). For the interior knots (x 2

through x5in Figj . 6) the first and second derivatives

must bc- identical for each adjoining interval., "his

means the derivatives at knot (x 2, Y2 ) rnust be th'e same

for x toxaafritrixtox Tiinueto1 2 an o nev x to x3. hsinue

continuity. Therefore, the throce unknowns for each

segment, A., and' and can be computed by enforcing the

contiruity conditioný; at each interior point and by

specifying the slope -at e!ach endpoint. in Lhis manner- a
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urique cub',. spline function can be constructed to repre-

sent the 9iven data as a smooth, contlinuous function.

For a terrain following profile it is important to

let the knots coincidc with the terrain data. This proce-

dure insures that the cubic function pass;es through each

of the data points.

Te-:rain Data and Clerari•-e Curve

The sampled terrain data is defined in the range

domain rather than the time domain. This is ideal for a

terrain following flight profile since terrain elevation

is naturally described as a function of range rather than

time. Therefore, Fig. 6 can represent the known terrain

data if the ordinate becomes terrain elevation and the

abscissa is range. This is illustrated in Fig. 7.

0 9

Figure 7. Sampled Terrain Data

32



V

The refercnce path generation begins iith the input

of sampled terrain data. These data pointVý consist of

the elevation of the terrain at specified range intervals.

For instance, the elevation (in feet) is specified for

each 2000 feet of range along the flight profile. The

reference path generator algorithm normalizes the raw

data and constructs a cubic spline function which passes

through the given ,at of terrain points. This is called

the terrain cirve. Next, tha minimum amount of clearance

above the terrain curve is specified. This designated

clearance is used for determination of the cubic spline

clearance curve. Both the tci'rain curve and the clearance

curve -,re shown in Fiq. 8 below.

--- cubic spline terrain curve
cubic spline clearance curve

'II

Figure U. Terrain and Clearance Curves
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The altitude along the cubic spline clearance curve

is desionated h, which is a function of range. Since the

clearance curve is processed as a cubic spline path, h

will represent a cubic spline function. The slope of the

clearance curve, h, is defined as the first derivative of

h with respect to range (spatial derivative) and desig-

nated as either h' or s.

(31)

JR
The second spatial derivative is

41  k (32)

where h or k is called the curvature.

And the third spatial derivative is

III

where p or h is called the kink. As mentioned in the

previous section on cubic spline functions, the variables

h, s and k are continuous and p is piecewise continuous.

The Reference Path Ontimal Control Problem

Thu cubic spline clearance curve can be considered

a minimum clearance curve over the terrain. It would be

extremely difficult, if not impossible, for a manned air-

craft to track this minimum clearance curve efficiently

within the aircraft performance limitations. Therefore,
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the cubic spline clearance curve must be optimized by

minimizing a performance index using optimal control

theory. For this optimal control problem it is possible

to specify certain constraints on k, s and p so that the

limits of the aircraft are not exceeded and the aircraft

does not descend below the minimum clearance curve. The

performance index minimizes the deviation from the clear-

ance curve while enforcing the specified constraints along

the curve.

The reference oath optimization problem is solved

3ubject to the following inequality constraints along the

entire range (Ref 9:35)

S min s max

k min k max

Pmin- p Piax

The limits on k are determined from the normal accelera-

tion limits drid the iaominal aircr.ft speed by the_•

following equation

(34)

110'

This equation is a':curate as long as the slope, s, is

small. The k limits tend to occur at the tops of peaks

and near the bottoms of valleys where the slope is nearly

zero. So Eq (34) is a good approximation.
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Framina of the Ontimal Control Problem

Tt would be very impractical to solve an extremely

large optimal control problem for the entire terrain fol-

lowing flight profile. As a result, the optimal control

problem must be broken into specified segments called

frames (Ref 9:44).

The framing procedure is illustrated in Fig. 9 where

there is no overlap between frames. For Frame 1, essen-

SIFrame 3

Frame 2

Frame 1

Figure- 9. Framing with no Overlap

tially an optimal control problem is performed over the

range interve) R to RI. At range R1 a new optimal

control problem -is begun for the range interval for

R to R2 . This *F:caming procedure with no overlap would

work well it the inpui- terrain data were perfect. But

because of redar shadowing the present state of the art
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does not allow the accurate solution with no frame over-

"lap. There must be an overlap between frames so that as

updated terrain data ahead of the aircraft is sensed, a

new optimization problem can be solved to update the

previously computed flight path signals. The computer

algorithm developed by Major Funk optimizes the entire

reference flight path by overlapping frames as can be

seen -in Fig. 10. This overlap allows for a continuous

AI
! Frarme 3

Frame 2

Frame -I

HP
,' 1 p .. . -"

NO _8

Figure 10. One-half Frame Overlap

update of the reference flight path as new terrain

information is detected.

Within each frame a certain number of control points

are specified. These control points correspond to the
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points at which the constraints on h, s, k and p must be

satisfied. As the number of control points per frame

increases, the computation time also increases. So there

is a tradeoff between using a large number of control

points which forces the reference path to more closely

follow the terrain, and using a small number of control

points which reduces the computation time and the control

rate.

In addition to the control points, there are numer-

ous other parameters which must be specified in each

frame of the solution to the optimization problem. These

various parameters will not be described here since they

are listed in Reference 9, page 54. But the availability

of such a variety of parameters permits the flexibility

in the generation of the optimized cubic spline reference

path for various aircraft and missions. This reference

path generator can account for almost all the practical

constraints for any type of flight vehicle on varying

turcaiin fol lo.. ing pr0f 11-e

Output of the Reference Path Genenrator

The output of the reference path generator consists

of the optimized cubic spline reference path as shown in

Fig. 11. It can be seen that the reference path does not

coincide with the minimum clearane curve. The main

reason for the difference beL. :ef the two curvcs is that

the reference path must satisfy all the specified con-
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clearance curve

-.. optimized reference path

Ia

Figure 11. Optimized Reference Path

straints along the flight profile. Generally some por-

tions of the clearance curve will have excessive curva-

tures or slopes which would exceed the acceleration and

flight-path angle consLraints. Whenever the clearance

curve satisfies the specified constraints the two curves

will coincide.

The actual numerical output of the reference path

generator consists of the optimized path altitude, h, and

its slope, h, at each discrete increment of range, Ri-

This path data is then input to an interpolation routine

which reconstructs the full cubic spline using a direct

slope determination technique (Ref 9:61 and 18:54). This
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cubic spline interpolation routine calculates the follow-

ing parameters at any desired range along the flight"

profile:

(a) h - altitude

(b) h' - slope

(c) h' - curvature

(d) h - kink

These four quantities can then be used in the nonlinear

equations which represent the cubic spline terrain

following controller outlined in Chapter VI.

Some Important Relationships

Before describing the nonlinear reference model it

will be hlpful tu show some important relationships

between the time and spatial derivatives along the

reference path. Since altitude, h, is really a function

of range it can be written

= (35)

where range, R, is a function of time. From Fig. 12 the

time derivatives of range and altitude are shown in rela-

V

Figure 12. Relationship between ;, I and V
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tion to the velocity, V. These relationships can be

written as (Ref 11:306 and 15:64)

'-%-- VS~nb(36)

and

Rz IosX (37)

But h can also be written as

_-_J"L _RO L_ 'V s'g 3•
a- -. -C0s (38)

which is anothe.: representation of the same quantity in

Eq (36).

The time derivative of slope, h , can h computed

from

k+ JCots (39)

These equations above will be important for the nonlinear

equations of C-hater VT
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V:T. Noni]inear Eeeorence tode'l

This chapter describes the nonlinear equations used

to construct the reference model. for the optimal terrain

following controller. In Chapter IV the linear model with

the perturbation equations was presented. But the non-

linear equations must be used in the design simulation

since the nonlinear model more accurately represents the

actual aircraft flight regime. The nonlinear response

and stability characteeristics provide a more realistic

controller operation. The purpose of this chapter is to

show the development of the equations leading to the

reference model state vector, •', and the truth model,

LA T'ner, these two shate vectors can be used to obthain

the commanded control vector, u, necessary for tracking

the cubic spline reference path. A partial block diagram

of this development is shown in Fig. 13 below.

+ +

i..

Figure 13. Computation of Commanded Control, u

An attempt has been made to organize this chapter sequen-
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tially through the equation derivations in the order in

which they are required.

Reference Path Generation

The cubic spline reference path generator described

in Chapter V provides the necessary altitude and deriva-

tive data to construct the optimized flight path. The

path generator calculates the following reference quan-

tities in the range domain:

(a) hd - reference altitude
d

(b) h d - slope

(c) hd - curvature
hij

(d) hd - kink

where the subscript, d, denotes desired or reference

quantity. These four quantities are essential to the

computation of many other reference conditions.

Reference Velocity Geonerator

To correlate time and spatial relations along the

flight path, velocity must be known. The desired velocity

along the reference path could be computed from energy

management considerations once the path is known. For

simplicity, a constant energy assumption is made here.

If the terrain is not too severe and the vehicle kinetic

energy is large, this is a reasonable assumption. This

allows an interchange of kinetic and potential energy

with a corresponding reduction in throttle activity over

that required for constant speed flight.
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Startingc with the initial -,elocitv, V0 , and the

initial altitude, h, the total specific energy of the

system is computed by summing the specific potential and

kinetic energies as

Eo 0-2 - + , (40)

The cubic snline reference path goenerator provides a

value for desired altitude, h6, at any point along ranqe.

So the desired velocity, Vd, may be computed by rearri-ng-

ing the constant energy equation

V -- 41)

This is the equation for calculating desired ot reference

velocity along range.

Reference Flicht Path Anole and First Time DofiVative !!

The flight path angle, ', can be computed using the

trigonometric relation shown in Fig. 14.

At

Figure 14. !"light Path Anqle,
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Time Dc-ivativ-e; of Veloci,:v

Now that the flight pa!-h angle and its first time

derivative are derived, it is possible to obtain the first

and second time derLivatives of desired vcelocity.

The assumption of constant energy implies

E :O (47)
-

After differentiation of both sides of Eq (110) the first

time derivative of velocity become,

From Eq (38) in Chapter V the hd term may be repiaced by

J -- d Cos (g

Substituting Eq (49) into Eq (48) yields

j - (50)

This is th2 expression for thi first time derivative of

desired velocity. The second time der-ivative can be

derived in a sinilar manner.

If Eq (A2) is written with the referenc.ec subscript.

d, it boc:o4es



I:!

This form of hd permits substitution in Eq (50) to pro-

i ;.-u-cc

jS~r~~(52)

Differentiating both sides of Eq (52) with respect to

time resul's in

C05 j CO S A4 (53)

Substitut'on of Eq (46) for id shows that

\ 4 v
j JVCOS6-- - d CO j(54) "

Eq (54) is tihe equation for the second time derivative

of desired velocity and this equation will be used in

I the nionlirnear mode~l.

SDefiniti-on of K and i. t-, Der ivatLi ves

Since one importint term reappears in many suhse-

quent equatios it- is convenient to definc the quantity,

K, called the mathematical path curvature (it is inversely

proportional to the instantaneous radius of curvature

(Ref 9:149)).

K %COS3J($

The first derivative of K with respect to range is

Koi 9~C$c V 1 co 4  1
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Substitution of Sq (45) for •d yields

oil

COS -0

But Eq (57) can be written in terms of K as rI iii
3 2-K ½cos>~ - 3 K secZ j ci,'t 4  (58)

Eq (58) is the expression for the spatial derivative of

K. (In subsequent equation derivations the subscript, dc,

will be omitted, but it is still assumed that all quan-

tities will be those desired for the reference model).

The time derivatives of K arc now obtained from

differentiation of Eq (55) with respect to time so that

K co5 31- ~cj (59

But it can be seen that

SW) i(V') 44R-
A I AR at (60)

which equals

- z k" "Vcos'•

At C0S(61)

If the Y equation, Eq (46), is written in terms of K

it becomes

z v (62)
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Substitulting Sq (61) and Eq (02) into Eq (59) shows that

the first time derivative of K is

~ Cos4  -3 ''SirjCos, (63

And this can be written more compactly as

K (Cos- -31 K (64)

The second time derivative of K results from taking

the derivative of both sides of Eq (64).

= 'Q&4c2' -.3u" +v(Wv,'oil' 3 
-K 

I

Ikt cos W sin'6 3 IVcosK- 6K K ) (G5)

where 1) 0 for a cubic spline function.

After much manipulation and rearrangement of Eq (65)

it can be rewritten in slightly shorter form as

kF, - Iot$)+vz cos% •-3k(I•.. 1 o,
K =K 3 2)

Second Time Derivative of Flinnt Path Anqle

With all thpe equations for K it is now possible to

derive the second time derivative of the flight path

angle. Differentiation of Eq (62) with respect to time

is

~= (67)

Substitution of Eq (01) into Eq (67) produces
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S=v 1("09o• -3 4K2 + q K (63

This equation is the expression for the second time

derivative of I and is used later for computation of the

angular rates for the nonlinear equations.

Forces in the L ft Direction

This section derives one important equation which

will be used for other reforence model computations.

This equation results from the summation of all forces

in the lift direction. From the forces sho-.,n in Fig. 15

r

Figure 15. Forces in the Lift Direction

the force equation is

C L (69)
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where aN is the acceleration in the lift direction.

This acceleration, aN, is shown in Fig. 10 and can be

/ " -I:

/~ I•-

N

Figure 16. Acceleration in Lift Direction
(Ref 9:149)

wr-itten as

%0 - kCos - si'2" (70)

The normal acceleration can also be written as

K Co'" (71)

since K< is the inverse of the instantaneous radius of

curvature (Ref 9:151). The lift force, L, can be written

L = _S C-L (72)

Both Eq (71) and Eq (72) can be substituted into Eq (G9)

for the following equation
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L+ IT5 . jKN2s 5 ~ (73)L---

The lift coefficient, CL, can be expressed as

CL =CL +C CL + L4()

where M denotes rMach number. Using the small angle

approximation and substituting Eq (74) into Eq (73)

yields

(CL~o~C~2 Z -(KL3C+ ' c -

CO &Fi CL (75)I -0
Eq (75) is the first of two equations which will be solved

as a simultaneous set later in this chapter.

Estimated Annle of At.tack and Derivatives

In order to obtain an estimate of the angle of
attack (call tni.,E) the following con.itions are set

on Eq (75)

C L - - -C L O

This is done so the resulting expression for the estimated

angle of attackQ<E, can be used for computing the time

derivatives of o( needed in subsequent equations (the

actual reference value for O- 3s obtained later, without

¶ 'assuming the zero conditions above). So, afte.7 the zero
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conditions are set in Eq (75) the resulting expression

for estimated angle of att.ack is

CK •. K% 11+SOS -SC (76) -

At this point it is convenient to define a variable,

C~7 C s- (77)

Using Eq (77) the exoression for ( becomes

~~C0' (K ~~o Ž Ca, (78)

Differentiation of Eq (78) with respect to time results in

CýE A C (K'4±2 C015 +

(79)

An exprei2union for C I

ýA S • CL.. +1 T--

which can be written

S-cAf v 04c._
A = (f1)

Substituting Eq (31) into Lq (79) yields

53



SAfVA LC. (K\J + cos -

C,(KV+2- KVVý -v~ (82)

But it can be seen from Eq (78) that

•E KV• + •c05 1 (83)

Therefore, after some substitution Eq (32) may be
rewritten in termis of 0( as

C• Nf , L S C + c,ý(Vl2 KV -

After rcarranging and factoring, oE takes the final I
form of

LAV RV j X 'c\ / _ 'E

Eq (85) is now used to obtain the second derivative of

0ý with re-espect to time. Initially this equation is
E

A '
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CAN[~K+KV-~Vco& -COS-C co

After f 3ct-ofrfiv~i h: equation canl be witn3

+ýA

/ Li; K(7

Now' thlat thlc timeo derivative equations, Eq (1,3) and Eq

(7,are dlerived t-hes-e quantities can be- used in furthe1r

developmnct Of %thIe n)onlinealr equations. it mus-t be

recalled that these anqie of attack derivatives were

derivcd froia an erstimated angle of attack' equationl,

Eq (76).

For t-i a icraft- in f light the moment equation is
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iszc

and -

Eq (33) can be rewritten as-

C - (89) '+

But the pitching moment coefficient, Cm? can be expanded

as

- (c,,o
C. - M C hl + C, 4+ C _ AR -+-

(90)

Eq (90) can be substituted in Eq (39) to yield

___- -.1 __ I

-2 v

,11,

C - C M AN F(91)

This equation, Eq (91), is TChe second of two equations

fuwminq a set of simultaneous equEations whi.ch are used

for computing elevator deflection, , and anlIe of

attack,O(<. The first equation was Eq (75).
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Refereonce StCtCs

With all the preliminary equation derivations

completeod, the seven reference state equations will be

developed in thin section. The seven reference states

comprising the reference state vector are:

U., reference velocity in the x-direction

VI Preference normal velocity in the z-direction

qR reference pitch rate

R reference pitch angle

reference elevator deflection

•R reference thrust (TR is equation notation)

hd reference or desired altitude

Referpnrcý Thrust. For computation of reference

thrust the forces are summed along the velocity axis as

shown in Fig. 17. The force equation is

RaCOCV i (92)

Figure 17. Porces in Velocity Direction
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Solving for reference thrust

"T oso (93)
R Co 5 OC

which can be rewritten as

T
TR C-0 -C+YjSn(4

'q (94) is the equation for reference th.'ust. The only

available value for angle of attack, o0 , at this point,

is 0E which is used in this equation. (In actual compu-

tation reference tlhrust is updated by using the reference

angle of attack, w ,hich is derived in the next

section) .

Reference Elevator Deflection and Reference Anqle

of Attack. Since a value for reference thrust has been

computed in Eq (94) it is now possible to solve the two

simultaneous equations, Eq (75) and Eq (91). These two

p-evious equations can be writte~ in matrix form as

For conciseness, let
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an Ic

= C ACLD CL$ ACD

Now that Ihese two reference anrles have beer derived,

the rezatna'der of the refeorencc states follo.,,,

R ~fer-en:~ Vec.octian__ in x, and PDirrt inv. Prom the

relationship shown in Fig. 13 the followinci equations

Figure 18. Velocities in x and z directions

result

S~Cos (gs>

and

(99)
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Reference Pi tzch Rate. The reference pitch rate is

derived from the basic definition of

(100)

Using the reference angles

where Q, comes from Eq (25) with a( replaced by R
E

and comes from Eq /

Reference Pitch Annle. The reference pitch angle,

G, is derived also from the basic definition

R= (102)

where is from Eq (97) and is from Eq (43).
R ae

Reference Altitude. The reference or desired alti-

tude, ha, is computed in the reference path generator-

and is supplied to the nonlinear reference state c(Jnerator.

Summary,. The seven reference states and their

respective equations are listed below:

17R= JSir\ c:y

qlý = AP,+ ",

R- E.q (96)
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Fr - Eq (24) !

h - reference path generator

Truth Model

In order to calculate the actual values of each of

the sev'n states, a truth model is required. This section

provides sets of equzations wri.ch calculate the actual

values for the seven state variables. Since the NODGDF

progr-am (see Appendix D) integrates the seccified equa-

tions, various first-order differential equations are

dex'.loped.

Basic Equations. The force equation, Eq (92), is

again used except it is solved in terms of V as

(, V/ Tcos'x - Q Cb -tn, Y (103) s

This equation for V can be integrated to solve for actual

velocity, VA'

The normal force equation can be written (Ref 17:207)

M 4 L - m c r-s Y+T - hc< (104)

which can be solved for ý as

J- Ll5 i~SQ -w~3 oS~!+TsI~oc (105)

Eq (105) may be integrated to yield the actual flight

path angle, IA'
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The moment equation can be used to solve for the

pitch rate derivative. This equation, previously written

in the form of Eq •88), may be rewritten as

"- .(106)

Eq (106) may be integrated to compute the actual pitch

rate, q Then q can be used to find the actual pitch

angle since

(107)

Referring back to Chapter V, Pig. 12 illustrates

the relationship between h,-, and V. Previously derived

equa~•ions for range and altitude deri.vtLives are

k = Cos (37)

and

(36)

Integration "f Eqs (37) and (36) result in actual range,

RA, and actual altltude, hA, respectively.

The actual elevator deflection, 9A is computed by

integrating

A +A-r+- (10$)
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where T is the time constant and is the reference

elevator deflection.

Likewise, the actual thrust is found by integrating

A _ + (R +
AA r(109)

where .is the time constant and is the reference

thrust.

Actual States. For convenience, the equations for

each of the seven actual states are summarized below:

For velocity, U, the equation is

VA C S C A (110)

where VA is actual velocity and o(A is computed from

Normal velocity, w,•, is

For pitch rate, q, the equation is

For pitch angle, • , UtCLe luatjon is

A' 4114)
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The actual elevator deflection is

(7 ~SA +A-,
A ) L Te. (115

The actual thrust is

AA f + itI~ (110

And the actual altitude, h, is

f - 5(VAC (117)

Initial Conditions. in order to intkyLC•aL tuach of

the first order differential equations some initial

conditions must be set. These are designated below for

each of the quantities which is integrated:

0 rad S = .066 rad

V = 647.3 ft/sec b -=-.065 radVo

q= 0 rad/sec •Ao = 4729 lbso A

h = 500 ft R = 0 ft0

Comnutation of Urdatecl Control

Now that the reference states and the actual states

have been computed it is appropriate to use both to find

the new control. With reference to Pig. 13 of this

chapter, the state deviation vector, Sx, can be computed
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I.

by differencing the reference and truth state vectors.

The feedback gain matri.:, G, has been computed from tue

linear model in Chapter III and can be multiplied by the

state deviation vector, $x, so that

Eq (118) is the control law which calculates the feedback

commands for the elevator and engine.

Both the total elevator control, , and the total

thrust control, A , are computed by addition of the

respective feedback command to the reference command

and

(120)

This update of the two controls then completes one cycle

of the nonnlncar model computation leading to a new set

of controls. The new control values are now used to

adjust the reference states and the actual states as the

simulation progresses in time along the range direction.
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VII. Results

This chapter presents the results of the design study

of the proposed optimal terrain following controller using

a cubic spline reference path. The chapter is organized

into three main sections. The first section shows the

resultant numerical data for the system matrices. The

second section illustrates the performance of the linear-

ized model. And, in the third section an evaluation is

made of the nonlinear controller model.

System Matrices

The open loop dynamics matrix, A, and the control

distribution matrix, B, have been discussed previously.

In this section the actual numerical values of each matrix

are presented. The A matrix of Eq (27) is shown in Fig.

20. The B matrix of Eq (28) is illustrated in Fig. 19

below.

0. 0.7
0x, 0.

0. 0.

0. 0.

10. 0.
10. 0.

0 . 1.

0. 0.

Figure 19. The Control Distribution Matrix-, B3
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The Output Matrix. In Chapter III the vector \.

was shown to be the output deviation vector. The output.

deviation, S,-, for this thesis consists of the following

four output variables:

(a) h- altitude deviation I
(b) ih - vertical velocity deviation

(c) h - vertical acceleration deviation

(d) iu - forward speed deviation ,

The two variables Sh and %h were sized by dividing these

2
terms by Vo and V respectively. The four. output variable .1
equations are shown below. -1

i; k (121)

- +U~) (122)

W ( 124)

These four output equations can be written in the iorrn of

Eq (6) in Chapter III as
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TW 0W

-0 V0 - Vo2-
(a25)

When the numerical values are substituted the trans-

formation matrix- C, used for this thesis is shown in

Fig. 21.

Weiqhtino Matrices Q and R. The m.thod for deter-

mining the Q and R weighting matrices was discussed in

Chapter III. Both matrices wecrc developed in diagonal

form. The final forms of the Q and P matrices are shown

in Figs. 22 and 23. These values resulted fr-om the

iterations described in the next paragraph.

The •ryson and Ho method (Ref 4:149) was used to

estimate reaconable values for the diagonal elements.
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.25 0. 0. 0.

0. 1056. 0. 0.

0. 0. 2.78E09 0.

0. 0. 0. 6.25E-04

Figure 22. The Q weighting matrix

i0. 0.

0. 2.5E-07

Figurc 23. The R weighting matrix
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Then these values were perturbed in attempting to achieve

good performance for the controller. The corresponding

maximum allowable deviations associated with the Q and R

diagonal elements are shown in Figs. 24 and 25.

State Deviation Weiohtino Matrix. In Chapter III

the cost function was written in terms of ox anid su.

This required the state deviation weighting matrix, P,

which was shown to be equivalent to C TQC. This matrix

with its numerical values is shown in Fig. 26.

Computations of OPTSYS. Using all the system matrices

and the weighting matrices, the OPTSYS program calculated

the optimal steady-state gains for the terrain following

controller and computed the eigenvalues of the system.

The steady-state Ricatti gain matrix, 7, is presented

in Fig. 27 and the feedback gain matrix, G, is shown in

Fig. 20.

The seven eigenvalues of the open loop dynamics

matrix, A, are shown in Fig. 29. All the open loop

eigenvalues are stable.

The closed loop dynamics matrix, A+BG, results in

eigenvalues which have been moved further into the stable

region of the complex plane. This increase in stability

is shown by comparison with the corresponding open loop

eigenvalucs in Fig. 29. The dominant complex roots pro-

duce a damping factor close to .707. This damping factor

was desired so that the system would possess good time

response and damping with minimal peak overshoot. It was
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also required that- the ryie ot be overly damped since

that w-ould caiuno exccosive acceleratiJon and undue crew

discomforE..

Staili'ofheL ar~ned Pert-urba-tioni -ciuat ions

A computer program was deve-loped to vcrify the

stability of the linearized perturbation equations derived

in Chapter IV. '3,ince the coefficiLents in these equations

determine the value of the A matrfi; and ultimately dictate

the optimE.l feedb~ack, gains, it was important to insure

their Ltability. The matrices A, .3, G, and A+BG were

used to simulate 'the system, in closed loop form.

Since the l-inearized equations are in perturbation

form a straight rand level flight profile war, assumed as

the z-ero reference condition. Initial conditions were

ston one of the seven perturbation state variables

while the remaining six %were set to zero. Then the sevian

differential equat-ions (see 1-ýqs (19) through (25)') were

intecirated fron 0 to 20 seconds. In addition, LEq (122)

was int-egrated t-o check the output- vertical velocity

perf ormanicc. Fig~urcs '30, 31, 32, ann, 33 illu-strate t he

lineariz,-ed equations Fnerfcrmance for an initial perturba-

tion in z-direct-ion veloc~ity olr 25 ft/s;ec. Figurecz 3/1 to

3' corrcespond to an initial. -perturbat ion -Lin altitudle of

25 feet. And, IFigur-s. 3tc2 to 11 -show how a pocturbation

of 200 lbs: of thrust effecrts the closed loop linear model.

Alno iLncluded in 1-5.,s. 42 to 42are plots of the
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steady-stalte perfor-mance of tile controllcr, cesponding to

an initial pcuubation eL 25 ft/sec in x-direction

velocity. These plots show that in steady-state the

controller restores all states to the Z0ero flight

conditions.

In all cases, the time response of the linear- sys3tem

is shown to be quite good. There are no large fluctua-

tions in response and the system is restored to the zero

reference in a reasonable amount of time.

Performance of the Nonl inear Contt-roll]or

Much of the initial study of this thesis consisted

of verification of the equations used in the nonlinear

reference and truth models. Once these equations irid tUh

associated computer programs were investtgated it was

possible to evaluate the performance of the controller

with the nonlinear reference and truth models.

The MODGDF program was used to compute a simulated

reference path for the controller. This simulated path

consisted of a simple pullup maneuver in which an air-

craft climbs over an obstacle and levels off. This is

shown in Fig. 46. For this simple pullup maneuver th'e

acceleration and g rate limits can be varied and the

duration of the pullup can be specified.

Two different reference generation schemes were

developed. One involved a cubic spline path and the

other was a quartic (polynomial of degree four) spline
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path. Medu 10:, were designed f or prOg rjm MUDGL)P whbich

Ccon)s ifst ed of I S pi inc CPaitl1 goneI rat ion routine ( and( a,

corespnd nninterpolaL lon L'outi5.5. These reference

path qerierat ion suciroutinf mar werec then link-ed to theý

nonlIinear con~trol toy model to evaiul'tc pertOL :iiance.

F-or the quar-t c sp~ilIm re0ference p-ull up IIdr)c'uver the

initial altitudec was 500 feet, Over a range of 10,000

feet the ai troraf it ol irobed 90.) i 2oct to level of f. Thi1e

spe)(cifled ilmit-s On k- (seeQ Fi. G) were . 5g for this

proflile. The r-su-liting quart-ic r-cefn-unce path %-JfLb tracked

by the controllecr with a maximumri altitude, error of- G f eet.

Thu vlott deviation wan lesthan 21 ft/s'ec at level

off. Bo0th the altitude anid velocity track ing errorsf were,

regulated to re.ro af ter complet ion of the pullup mnaneuver.

The veloci ty eIrror sett~ling time was s~lightly, longer th-an

the alt itude settl ing time -3teolvel off .

The cubic spi inc pul lup rmaneuver w..as also pox f ormedl

for a .5g limit on k-. Over a ranige of 9,000 feet the

cubje spl increftruo path iceedinl alt-ituderic from

500 feet to '1280 feet. The optim'-al controller tracked

the reference altitude wit~hin 4.5 feet. The velocity

tracking error for i-he cubic spline refereuice pullup was

less than 2 ft/sec. Like, the quartic: pullup maneuver,

both the velocity error and the altitude error were- nulled

after level off by the feedback controller.

The opt~imal controller wsnext flown u-sing the

opti.mized cubic spline, reference path describ-ed in



Chapter V. Over the first 15,000 feot of this terrain

proaile the standard deviation in altitude was 1.60 feet.

The optimal controller was capable of maintaining the

altitude tracking error at less than 1.5 feet and kept

the velocity tracking error less than 1.5 ft/sec. This

vas very good performance even though the terrain was

rather benign. The thrust fluctuation was reduced when

compared to the Boeing optimal controller flying oveo• a

similat" low level terrain profile. But the actual

thrust did lag the required reference thrust because of

the simplified thrust control system developed for this

thesis.

In all the flight profiles flown by the optimal

tet'rain following controller so far, the tracking errors.

have not been large and can be considered quite accept- I
able. Wnenever an altitude tracking error exists the

actual aircraft altitude has always been greater than

the ref erence altitude thus promoting a safe terrain fol-

lowing mission. Even though these test profiles have not

been iorg in duration they do show the potential for good

controller performance using an optimized cubic spline

reference path.

A
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VIII Conc I us ions and :,erorncndat ons

Thte feedback controller is a stable controller

capable of track In a cubic spliinc reference path. The

cubic sp[line generator produces a reference path possessing

Cood track inq qua]ity,. Thoe resu lting controllerz pryovides

good path control and only slight, tracking errors in alti-

tude and velocity provided the state deviations remain in

the linearicd region a.)out the nom inal re-fe-ence trajec-

tory. By allowing variatiorns in velocity, the thrust

fluctuation is reduced. This is essential to increasing

engine life and decreasing fuel consumption.

The weighting matrices, Q and R, are very influential

in the performance of the terrain following controller.

These matrices can be judiciously adjusted to strengthen

the cotitoller operation and cause the aircraft to fly

closer to the reference path.

The following recommendations result from work on

this design study

(a) investigate, through more sophisticated tech-

niques like root square locus, the eigenvalue

placement due to varying the Q and P{ matrices

(b) evaluate this nonlinear conitroller over a

greater variety of terrain profiles

(c) investigate the linearizing assumptions made in

Chapter IV and determine whether a rototino

coordinate reference frame tangent to the

100



reference trajectory is more accurate

(d) devalop a more sophisticated thrust and velocity

control system for- improving the controller

performance

(e) modit'' the constant ,nerg' assumption to allow

vaLiations in energy within a specified ene.-gy

envelope
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Appendix A

Constants of the Aircraft Model

This appendix contains all the modelling constants

used in the controller design simulation. The data rep-

resents a large fighter-bomber aircraft flying at sea

level. The conditions for a standard atmospheric day are

assumed.

Density 4 2.378E-03 slug/ft3

Speed of sound A = 1116 ft/sec (Ref 17:465)

Nominal aircraft velocity VO 647.3 Ft/sec (Mach .58)

Aircraft weight W = 55000 lbs

Wing area S 647 ft 2

Wing mean aerodynamic chord Z 18.678 ft

Dynamic pressure at nominal velocity 2i
=½ Vo S = 322307.6 slug-ft/sec

Moment of inertia about aircraft y-axis

I = 380000 slug-ft/sec
2
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Appencix B

Stability Decivatives

This appenCix presents all the stability derivatives

in the controller design and explains their derivation.

First of all, the dimensional stability derivatives are

designated. Then the non-dimensional stability deriva-

tives are explained. And, finally, the numerical values

of all the stability derivatives are compiled.

Dimensional Stability Derivatives

The linear model in Chapter IV illustrated how the

linearized equations of motion contain dimensional

stability derivatives. These dimensional st-ability de-'

rivatives are the coefficients in the open loop dynamics

matrix, Eq (27). These dimensional derivative values

result from data computed by ASD/XRHA, Wright-Patterson

A.FB, Ohio. The definition of each dimensional derivative

is included with its corresponding symbol. In addition,

for dimensional derivatives required for further com-

putation, the corresponding equation and units are

included. The dimensional derivative equations and the

units are compiled from Reference 16.

XU, Dimensional Variation of x-force with Speed

(sec 01)5(B-i)
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Xj, Dimensional Variation of x-force with Elevator

Deflection

$S--C' (ft/sec 2  (B-2)

X,, Dimensional Variation of x-force with Anqle of Attack

S s(Ccb-- CLO) (ftisec 2 ) (B-3)

U, Dimensional Variation of z-force with Speed

QzVu O (sec"L(B4

Zý, Dimensional Variation of z-force with Elevator

D e t l e c t i onS__ _,

-a SC_,_. 2._7• = ;b (ft/sec-) 55

Z,, Dimensional Variation of z-force with Anqle of Attack

Z4- - S (CL_4 +•C1>0 (f t/scec2) ('3-6)

M U' Dimen.;ional Variation of Pitching Moment with Speed

I06



_ Sz (C_ _C0'10) (ft-sec)- 1  (B.-7)

MTV0

Mg, Dimensional Variation of Pitching Moment with Elevator

Deflection

11 (sec-) (B-2)

M•, Dimensional Variation of Pitching Moment with Angle

of Attack

KA _S z Ct_ (sec- 2 ) (B-9)

I I L I .

The nine equations, Eq(B-I) through Sq (B-9), are

required to compute the non-dimensional stability deriv-

atives shown later in Appendix B.

It can be seen that the open loop dynamics matrix,

A, in Eq (27) does not include the di.meniional derivative

terms X., Z,, or M. as coefficients. Instead, the longi-

tudinal equations of motion include Xw, Z w, and M w

respectively. With a simplified azsumption these three

varianles in w can be transformed into variables in c4

for computaLion purposes. As seen in Fig. B-i for small
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6=0

Figure B-i. Velocity RelationshipsIS

angles of attack,o(, the following equation is true

(Ref 12:72, 6:11)

o( = - (B-lu)a

There is also a relationship between dimensional stability

derivatives as follows

- B1

Substitution of Eq (B-1O) into Eq (B-l1) results in an

important relationX~ -of,
-- (B-12)

Now, since the value of X is a known quantity from the
4 w

open loop dynamics matrix, it is possible to solve for X .
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using Eq (B-12). There is an available equation, Eq (B-3),

which is written in terms of X,, so it car, -e used to

calculate the non-dimensional stability derivatives. The

same process developed for X, is used for the Z. and the

Ma equations. This is the method needed to solve for

several unknowns in the noniinear model equations.,

Non-Dimensiona. Stability Derivatives

The non-dimensional stability derivatives are not

used in the open loop dynamics matrix, A, but are required

for the nonlinear model equatiols. The non-dimensional

stability derivatives, with their definitions and perti-

nent equations, are listed below (Ref 16):

CL is the lift coefficient

CL - (B-13)

C is the aircraft lift curve

*% r

C L _( Q%_(B-14)

C L is the control surface lift effectiveness

CLE (B-15)

109



CLu is the variation in lift coefficient with forward

speed

CL is the lift coefficient for zero angle of attack.
0

CD is the drag coefficient

C _
Cb •-- (B-1"7) :

i S-

C is the variation in drag coefficient with angle of

attack

CC
C,. - -' (8-18)

CD is the variation of drag coefficient with elevator

deflection

Cu is the variation of drag coefficient with forward

speed

Cbl' - b C- (B-20)
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CD is the drag coefficient for .ýero angle of attack.
0

C is the pitching moment coefficient
m

Cm

C is the variation in pitching moment coefficient with
mn

angle of attack

CI

CtO (B-22)

C is the variation of pitching moment coefficient withME

elevator deflection

C- (B-23)

C is the variation in pitching moment coefficient with

forward speed

C-,v 
(B-24)

Cm is the variation in pitching moment coefficient with
q

pitch rate

--- (R-25)

C is the pitching moment coefficient for zero angle of
m

attack.
Ul



All of these non-dimensional stability derivatives

are required for the nonlinear model equations. The

numerical values are shown in the next section.

Stability Derivative Data

The values of the dimensional stability derivatives

are known from the open loop dynamics matrix, A (see

Chapter IV). From these known values and the model

constants all the nezessary derivatives are calculated.

The actual dimensional stability derivatives are:

XU =-.007578 sec

X .01276 sec

X = .034 ft/secq
-.000314 ft/sec'

X & .000713 sec

ZU = -. 1029 sec I -1-

Z = -. 8198 sec-
w

Zq -2.175 ft/sec

ZC = -48.4 ft/sec 2

Za = -. 00003CI spc-I

MU = -. 00013 (ft/sec)"

Mw -. 006086 (ft/sec)- 1

M = -. 201 sec -
q

MI 9= -4.477 sec

Befo-e the non-dimensional stability derivatives are

listed, the zero angle of attack conditions must be set.
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These values are:

CL Cm 0
0 0

C M- .0106

With these zero angle of attack quantities, the remainder

of the stability derivatives may be calculated from the

equations of the first two sections of this Appenqix.

CL 1.706 C .2567

2.804 C = .35328

CL
CD I --. 0412 AU n

-6l
C 1.6G54x1O 6  Cm -. 2484met

C M -. 0053 C - -. 2326

C -. 8794
q

These values are us,ýed in the variety of equations in the

non.ineaL controller model. This data is consistent with

actual flight test data (Ref 7 and 17).
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Appendix C

Calculation of Trim Conditions

During the trim condition for stability the angular

rates are zero, the linear rates are zero and, essentially,

lift equals weight (Ref 7:30).

For the trim condition

Substitution of the known values into Eq (C-i) provides

a value for CL Of

CL - ,i70" •

The corresponding CL trim equation is

CL- CL +C (C-2)

Ea (C-2) is one equation needed to solve for the two

trim angleo,oe and S.
The pitchng moment coefficient equation is written as

C"' C +~ C +o C (C-3)

For the trlm condition C 0 and Eq (C-3) becomes
m

0~ ~~~0 +-¢, ,,, C,,l
0 (C-4)
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From Appendix B the value of Cm is zero for the control-
0

ler design, so Eq (C--4) reduces to

This is the second equation required to solve for the

two unknown trim angles. Eq (C-2) and Eq (C-5) can be

solved simultaneously to yield the trim conditions of

.0'4 rOA

and

These two trim angles are used for calculations in the

nonlinedfix eference model. p'



Appendix D

TNODGDF Computer Program

The Litton MOD6DF algorithm is a six-degree-of-

freedom digital simulation program useful as a t,3ol to

analyze various guidance and control systems. It uses

a modular approach to FORTRAN programming which allows

the user flexibility to adapt modules to various physical

systems. This appendix consists of a summary of th•

MOD6DF program. For more detail about the algorithm

the reader should consult Reference 5.

Program Structure

The MODGDF program is structured for syLtems engi-

neers rather than programmers. It permits an engineer

to use the overall program without being too concerned

about numerous programming details. An engineer only

needs to modify an independent module representing the

physical system of interest.

The basic structure of the MOD6DF program is built

around three main levels of subroutines (see Figure D-1).

These three types of subroutines are:

(a) Type 0 - Executive subroutines which manage

aind supervise the overall MODGDF program

(b) Type I - Operational subroutines which provide

control at the beginning of each integration

step

.. ".



___E::ecutive Progrcams

(Input of data, etc)

Begin Flight

Operational
Subroutines

(Printout, etc)

:.ntegrat ion
Loop r

SSystem Modules
with Differential
Equations

Integration
Algorithm .-
(Advance &t in time)

End of Flight

[jPnr+ Proce -inJ

Series

of
Runs_- Set Up for New Run

Figure D-1  structure of the MCODGDF Program (Ref 5:3)
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(c) Type 2 - Modules which are constructed by the

user according to the physical system being

investigated

Thp exýcutive and operational subroutines are not

normally modified by the user. The modules are the

"black boxes" of the MODGDF program which represent

modelling equations from the physical system. The proper

development of these modules is the main concern of an

engineer" utilizing the MODGDF program.

Operat ion

The MODGDF program operates basicall-, as an inte-

gration subroutine package. It utilizes a fourth-order

Runge Kutta integration scheme in closed torm. Within

each modulP there is a number of differential equations

represcrtirg the physical system. The user identifies

the locati,.-ns of the variables which are Integrated

by wrltin I c,ýrtain specifications in an initialization

n.o.duie. Uf-iiq tie integration alcjorithm, the ý,ystem

solutio- progre:;-.es at each point in time by processing

the specified dWiferential equations to advance the solu-

tion one 3tCp Lt in time. Computed values of various

variables ma,, be stored at each step At for -later use

as outpuL 3F!L-a tL for plotting. The program can also

generate ranidomi noise for Monte Carlo simulation and can

per.form covarlance simulation.

Most o' the communication between subroutines is
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accomplished through COMMON locations. Many of the

COMMON storage locations are specified (Ref 5:23), but

others are reserved for the variables in the system

modules. Therefore, the user does not have to u!ýe CALL

statements or argument lists when performing analysis.

The COMMON locations are arranged so that each variable

being integrated is associated with four consecutive

COMMON locations. The first location is for the deriva-

tive of the variable which is specified by the differential

equation in the system module. The second and third J

locations were previously for the lower and upper bounds,

respectivelt,, on the integration error of that variable;

but, these are no lonqer in use. And, the fourth loca-

tion] is for the variable itself. Figure D-2 illustrates

an e<aiTtple of how this COMMON arrangement works for the

I Variable Value COMI1ON location

VFm 301

V P/m 304

Figure D-2. COMMON locations for a typical integration

basic equation F - mV

input Cards

The input cards to MODGDF are of ten types. These

input cards are closely related to the operational sub-

routines and the system modules. As a result, the input

cards essentially dictate how the MODGDF program will be
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implemented for any particular data run. There is a

basic format for the input cards which must be strictly

followed. The ten types of input cards are shown below.

Type Input Description

1 Operational subroutines to

be used

2 System modules to be used

3 Numerical input data includ-
ing initial conditions

4 Variables to be printed out

5 Variables to be controlled

6 Parameters of random number
generators

7 Variables to be plotted

8 Spare

9 Spare

10 Indicates end of a data run
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Appendix E

The OPTSYS Program

This appendix explains the input and output para-

mehers of the OPTSYS computer program. It does not

describe the program operation in detail since that is

the purpose of Reference 3.

Program Description

OPTSYS is a digital algorithm which utilizes optimal.

control theory to calculate optimal gains for a system of

the general form

-~ S u (E-1)

using a cost function written as

5 Y + L_ E2

The OPTSYS program sol-es the steady-state form of

the matrix Ricatti equation to obtain the corresponding

2icatti gain matrix, S. It is possible to compute the

feedback gain matrix, G, using

G z ,RBTS

where all three matrices on the right hand side of
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Eq (E-3) are known. The linear control law iz

X (E-4)

which permit& substitution of Eq (E-4) into Eq (E-1) to

yield

= (A+2S&) ýx (5

The resultinq matrix, A+BG, is called the closed loop

dynamics matrix. The stability characteristics of this

closed loop matrix determines how well a feedback con-

troller operates.

Input Parameters

OPTSYS requires the following parameters for opera-

tion:

(a) A the open loop dynamics matrix

(b) B the control distribution matrix

(c) P the state weighting matrix

(d) R the control weighting matrix

Using these four matrices which correspond to the standard

form of Eqs (E-1) and (E-2), the optimal gains are calcu-

lated.

Outpu Parameters

The output quantities of the OPTSYS program are:
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(a) the eigenvalues and eigenvectors of the open

loop dynamics matrix, A

(b) the steady-state Ricatti gain matrix, S

(c) the feedback gain matrix, G

(d) the closed loop dynamics matrix, A+BC, and its

i.ssociated eigenvalues and eigenvectors

Additional Uses

For the ourpose of this thesis OPTSYS performed

calculations as a deterministic controller. It is

posL.iule to int.:oduce noise in OPTSYS and to perform

stochastic calculations ui3ng estimation theory. Proce-

dure5 fo1- this rodc of opcration may he found in

Reference 3.
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