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Preface

This investigation demonstrated the capability of the Geometri-
cal Theory of Diffraction (GTD) to analyze the fields due to mono-
pole arrays on cylinders., Although one of the principle arguments
for the use of the GTD method to solve for the field equations was
its requirement for less computer usage compared to alternative
methods, a computer, as such, was not used.

In this regard I would like to thank Mr., Robert Barham for the
use of his HP-67 programable calculator. I would also like to thank
Professor Kouyoumjian at Ohio State for his comments'and his help
in obtaining many of the sources on GTD used herein., I would
especially like to thank Professor Bill Davis fcr taking the time
to go through most of the theory with me and for his comments on

the grammatical problems that occured.

Bruce A. Thieman
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Abstract

)

due to a monopole array mounted on an aircraft near the top or

Using the Geometrical Theory of Diffraction (GTD) the fields

bottom were analyzed. The aircraft was modeled in its most basic
formy an infinitely long elliptical cylinder. The aircraft cross-
section at the location of the antenna was modeled as a 2 meter by
4 meter ellipse. The frequency band of operation was 250 mHz to
400 mHz with an average wavelength assumed of 1 meter. The three
element array was found to have a beam broadening effect when
compared to the array mounted on an infinite ground plane. The
array exhibited a poor potential to form a single major lobe in

its antenna pattern but had a high mobility of pattern nulls.;#
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ANALYSIS OF ANTENNA ARRAYS ON CYLINDERS

BY THE
GEOMETRICAL THEORY OF DIFFRACTION

~ I. Introduction

One of the principal problems in the design of a reliable
airborne antenna is the effect on volumetric antenna radiation pat-—
terns by the aircraft not acting as a flat ground plane., The
particular antenna pattern problem to be considered here consists
of an antenna array of quarter-wavelength, radial monopoles, which
operate in the 250 mHz to 400 mHz range, mounted on an aircraft
fuselage near the top or bottom. The array configuration is depicted

in Fig. 1.

Front Bottom

Fig. 1. Array Configuration

Since this is a general analysis, the aircraft is modeled in

its most basic form. The fuselage is assumed to be an infinitely

long perfectly conducting elliptical cylinder. The cylinder
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solution employed in this analysis, when compared to the experi-
mental case of one monopole on a cylinder, gives an accuracy of
about:d.dB in pattern comoutation down to a level about 20 d3
below the pattern maximum,

Antenna location on an aircraft is usually based primarily
upon convenience with respect to the aircraft structure with no
regard for system requirements. The antenna system performance is
determined by analyzing antenna patterns of scale models, This
approach to antenna design and location requires large amounts of
engineering time and money. This investigation develops an analytic
approach to determining the antenna system performance.

The first analytic solutions used to determine on-aircraft
antenna patterns were the cylindrical harmonic solutions for in-
finitely long circular (Ref 13 Ref 2) and elliptic cylinders (Ref 3).
These solutions modeled the fuselage by a cylinder whose elliptical
cross-section approximated the fuselage cross-section at the antenna.
location, These solutions failed for structures of many wzvelencths
in diameter unless expanded asymptotically for large dimensions.

The expansion of these solutions required computers of very large
memory.

A more recent apnroach is the use of the integral equation
method via moment methods. By solving the boundary value problem
for fields on aircraft structures, the surface currents and the
resulting scattered fields can be found. Richmond (Ref 4; Ref 5),
developed a moment sclution based on a wire grid modelling structure.

This solution required tre determination of a-prroximately 100

unknown currents per square wavelength in order that the grid




adequately simulate a perfectly conducting surface.

Another aporoach is the surface current model method (Ref 6).
This method divides the surface of a conducting body into patches,
with each patch having two orthogonal unknown complex currents,

This reduces the number of unknown currents to about 20 per square
wavelgngth allowing solutions for much larger surfaces. This solu-
tion, modal solution, and the moment method are restricted to lower
frequencies due to the limitation of the size of matrices which
modern computers can solve without unacceptable loss of accuracy.

Another approach that has obtained success at analyzing on-
aircraf't antennas is the Geometrical Theory of Diffraction (referred
to simply as the GTD henceforth). The GTD is a high frequency
solution which is divided into two basic problems; wedge diffraction
and curved surface diffraction. Both of these diffraction solutions
have been applied in computing the patterns of slot antennas mounted
on cylinders (Ref 7; Ref 8; Ref 9 ), rockets (Ref 10), and aircraft
(Ref 113 Ref 12). Using this approach, one applies a ray optics
technique to determine components of the field incident on the
various scatterers. Components of the diffracted field are found
using the GTD solutions in terms of rays vhich are summed with the
geometrical optics terms in the far field.

The aprroach avnplied in this thesis is based on previous work
by Burnside (Ref 13) and Yu (Ref 14), which demonstrated the capa-
bility of the numerical solutions to predict the radiation patterns
of fuselage mounted antennas in an efficient and ecrnomical way. If
the volumetric vatterns were found directly by analyzing rays on

complex three-dimensional surfaces as done in Reference 12, the




resulting numerical solution would be very complex, time-consuming,
and uneconomical., Nervertheless, if certain assumptions cap be
made, the approach undertaken previously can be used to overcome
these di®ficulties and simplify the problem a great deal.

The basic theoretical background on the geometrical theory of
diffraction (GTD) for curved surface diffraction is presented in
Chapter II. Expressions for the parameters and special functions
involved are given in Chapter III. The equation for diffraction by
a monopole on an infinitely long cylinder are presented in Chapter
III, as is the mathematical model of the aircraft. In Chapter IV,
the numerical results obtained for the single monopole case are
compared with published results and measurements and in addition
the field patterns of the three element array for different

phases are presented. Chapter V contains the conclusions,
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II. Theoretical Background

For scattering objects that are large in terms of the wavelength,

such as for electrically large aircraft, the GTD is the optimum
approach. The following developement of the GTD assumes; that ray
trajectories are determined by the generalized Fermat's principle,
that the field amplitude variation along a ray path can be found
from power conservation in a tube (or strip) of rays, and that the
diffraction and excitation of waves can be treated as local
phenomena., The validity of these assumptions and the GTD have been
established in publisk:d materials.

According to geometrical optics the region exterior to a per-
fectly-conducting surface with a radial electiric current source at
point O is divided into an illuminated region and a shadow region
by a plane tangent to the surface ;t Ql called the shadow boundary.
A portion of these two regions adjacent to the shadow boundary is a
transition rzgion. The angular extent of the transition region is
of the order (k/)g)-l/3 when the source is on the surfaces /% being
the radius of curvature of the surface at Q in the direction of

propagation, and k being the wave number 2ﬂZh. The three regions
i

-

are depicted in Fig; 2. To solve for the fields due to the array,
the derivation of the high-frequency, far-zone field due to a point

source has to be determined for these three regionse.

Diffraction by a Curved Surface

dhen an incident ray strikes a smoonth, curved nerfectly con-




radiation

g
(LLUMINATED REGION

TOTTCIEYS o O,

Fig. 2. Point seurce near a curved surface showiny the different Fegions of
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ducting surface at grazing incidence, i.e., at the shadow boundary,
a part of its energy is diffracted into the shadow region. This
phenomena is described by a class of diffracted rays now know as
creeping waves (Ref 15). These ray paths include the points Ql and
Q2 which form a curve on the diffracting surface, as illustrated in
Fig. 3. The actual concept of creeping waves was introduced by
Franz and Depperman (Ref 163 Ref 17). The basic concepts, as pre-
sented in the following discussion is taken in part form "Asymptotic
High-Frequency Methods" by Kouyoumjian (Ref 18).

The diffraction by a smooth curved surface is shown in Fig. 3
in which O is the source point and P is the observation point in the
shadow region, Diffracted rays are characterized by an extended
form of Fermat's principal which is: The diffracted rays connecting
two points O and P in the exterior of a perfectly conducting body
are those curves joining O and P which have stationary (optical)
length among all curves from O to P having an arc on the body sur-
face. Apvplying this princivnle, the line OQ1Q2P is the shortest
distanc; between O and P which does not penetrate the surface. In
detail, a ray incident on the shadow boundary at Ql dividess one
part of the incident energy continues straight on as predicted by
ceometrical optics, a second part follows the surface S intc the
shadow region as a surface ray shedding diffracted rays tangentially
as it propagates where ?, 2} and‘% are the unit vectors in the
direction of incidence, normal to the surface S and binormal to the
surfave (g;g'x ﬁ). The incident field Ei(Ql) may be severated into
its normal and binormal comronents (N ° Ei(Ql) and D Ei(Ql)).

It is assumed that these two components induce surface ray fields

o o v———————p
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Fig. 3. Diffraction by a smooth convex surface




which propagate independently of each other along the geodesic arc
between Q1 and Q2.
The binormal surface ray field at Ql is related to the binormal

component of the incident field at Ql by
a(Q) )exn(3$(e;)) = D%(a,)(b, « F(q))) (1)
Q) Jexp(3¢(Q;)) = D7(Qy)(P, 1

where Ds(Ql) is the scalar diffraction coefficient for a soft
boundary condition. The terms hard and soft boundary conditions
are terms from acoustics., A soft boundary is one where the preasure
field is zero at the boundary (E = Ez?). A hard boundary condition
is one in which the derivative in the direction normal to the
boundary is zero (JEAn = O3 H = Hz?)'.
The amplitude of the surface ray is assumed to be governed by
L, the conservation of cnergy between a pair of adjacent surface rays.
F%ﬁ This principal states that in time harmonic fields, the energy
flux is the same through every cross section of a tube of rays, such

as the astigmatic tube of rays in Fig. 4.

fig. 4., Astigmatic Bundle of Glays




Let A2 be the intensity of the field at S and As, the intensity

at the reference point O. For an isotropic, homogeneous medium

2%de = A2d0'° (2)

where do is the cross section of the tube of rays at S and dd’o is

the cross section at O, Therefore

A-AOW (3) -

If s is the distance from O to S, then

da.o ) /01102
de (/-i + s)(& + 8)

(4)

where fl and /02 are the principal radii of curvature of the wave-
front through O.
Applying the energy conservation principle to a narrow strip

of rays on a curved surface (see Fig. 5) gives

A2+ dl)d7(!+ aky - AZ(!)dq(.() - —2ol(£)A%(R )drz(!)d!
(5)
where 2'((4() is a proportionality factor relating the change of flux
, to the energy radiated. Dividingby dfand lettingdf tend to zero
gives

Ot 2e( 4%4n) (6)
a-I(A dr{) = =20 A dr,

10
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A Band of Diffracted Rays
on the Surface of a Diffracting Object

Fig. 5.

Upon integrating Eq. 6, the result is

where d71 and d?z

“rom Fig. 3,

second coustic is

everywhere tangent to the ray surface.

[ %
M%)=M%)§?@PQdUMX
1

Q2 respectively.

the seperation between a pair of rays at Q1 and

the attenuation constant which is a function of

L and the coordinates along the surface and de-

pends on the local radius of curvature and its

derivatives,

Q2 is a caustic of the diffracted field and the

located a distance p from Q2. The caustic of a

given family of rays is defined as that surface or curve which is

diffracting body is a caustic of the family of diffracted rays re-
sulting from a given field being incident on the body.
binormal component of the diffracted field which radiates from Q,

towards P can be found using a caustic at Q2 for a reference point as

« BH(P) = 2%(0,)A(q, Jexn( i, )

s(/9+ s)

Thus the surface of a
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where DS(QZ) is a diffraction coefficient of the soft boundary.

Based on the reciprocity principle--that a source at 0 produces
the same field at P as a source at P produces at 0-DS(Q2) has the

same form as DS(QI). Combining Egs. (1), (7), and (8) yields

A - d?' b
b, ° B(p) = ( 7 ° EI(QI))Dz(Ql)Ds(Qg){d?:Ef/: s)

2
. exp[’-jk(l +s) ~j aA>(2) (9)
9

A -
The incident field b, ° El(Ql) excites an infinity of surface

1
ray modes, each with its own diffraction coefficient and attenuation
coefficient. For example, in the canonical problem in Appendix A,
if the field scattered from a cylinder given by Eq. (58) is approx-
imated asymptotically, it is seen that there is a surface ray mode

associated with each term of the series, i.e., with each value of m.

Therefore, Eq. (9) is replaced by

B, - B - (5, - Boy ) Vs(/“ —jexp(=3k(4 + 2))

9
SD (@)D ( Qz)exp[J m(!)df] (10)
%Y

This equation relates the diffracted field at P to the incident

field at @, for the soft boundary condition.

|
An expression similar to Eq. (10) is also obtained for the

normal component of the incident field:

12




- - d ¥ .
R, - B(P) = () - E(q)) d;;‘,/;/,f syexe(=3k( 4 + 5))

) Q

* & pa(a, )05 Qz)exp[-J < (4 )d!] (11)
%Y

In this case, the scalar diffraction coefficients and attenuation

constants for the hard surface diffraction replace those of the soft

surface, The vector diffracted field at P can now be written in

terms of the electromagnetic field incident at Q1 as

E(P) = (8,8,v(q,,Q,) + B,5,u(q;,Q,)) Ei(ql)lé%exp(—jks) s

where v(Ql,Qz) and u(Q1’Q2) are equal to

d o 2
-l:exp(—jkl) éle(Ql)Dm(Qz)exp{— 5 o (£)ad (13)

d7 "

with the superscripts h and s, respectively added to Dm and a%.
The dq&,’d72 and,ﬁare found by differential geometry involving the
rays and surfaces this is discussed at length in Levy and Keller
(Ref 15).

To obtain the diffraction and attenuati-n constants, the
exact canonical solution of the boundary value problem for the
diffraction in question must be known. Such a solution is expanded
asymptétically for ka large where a is the radius of curvature
for cylindrical diffraction. By comparing this expransion with the

GTD solution, the values of o% and Dm can be determined. Apvendix A

contains a derivation »f the cererzlized diffraction coefficient




and attenuation coefficient for diffraction by curved surfaces,
The diffraction thus far discussed is applied to an open
curved surface. For a closed surface, each surface ray mode pro-
duced at Ql encircles the surface an infinite number of times. The
length of the surface ray path for the nth encirclement is £+ nT
where T is the distance traveled in one transversal of the closed

surface. These multiple encircling rays may be summed to contribute

1- exp[—jk‘r -JZO(m(f )dl] (14)

to the denominator of the diffracted field. Note for this derivation

that the exp(jkz) convention has been adopted.

Direct Rays
The rays emanating froma point current element with current
moment IAx determines the incident field for the diffracted and
reflected rays as well as the field at all voints where Fermat's
principle produces a straight line from the source.
Referring to Fig. 6, A is defined as (Ref 19: 16)
IoAx exp(-jks')

A_ = 15)
x 4Ms! (

Applying Maxwell's equations

§=vax§=vAxx£ (16)
- laxgexp(-ike') ; ¢ (17)




g Lg[;aﬁf_e_xpizaﬁ_l . _}?xp(_jks.y o (18)

4w s! g

Fig. 6. Geometry for current source at origin .

Since k

TXX=7x (Tcos® - 6sin®) = - $sin9 (19)
- . A
then H = -I%EE, + sﬂ]"z]exp(—jks')sine(}* (20)

In the far zone field the 1/s' term is dominant, the l/s'2 term
tending to zero much faster than 1/s' therefore it can be neglected.

The electric field is obtained from

. to give
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Again, in the far zone field the 1/s' term is dominant and the

direct electric field becomes

E= %exp(-jks') 1% sined (23)

Launching Coefficients and Constants

The theory presented up to now has assumed a point source near
a cylinder. Monopoles mounted on a cylinder could be modeled as a
line of point sources with sinusoidally distributed amplitudes,
using this theory. The far-zone field would then be the result
of vectorially summing the fields from each source point at each
field point.. The result is a.large number of ray tracings and field
calculations for even a simple antenna array.

To simplify the calculations, the sum of the incident fields

due to all of the point sources making a monopole model are approx-—

imated by a launching coefficient., To determine the launching

coefficients, the radiation from an axial mounted electric current
source on a perfectly conducting cylinder is analyzed. The asym-
ptotic solution of this canonical vroblem is described in Appendix

B, where it is found that

: 2
L° = -(-lk—)l/ H(g)'(ka)D:(G

m 2 Va '1) (23)
1R
: L2 - C- H‘S,i)(kajng(gl)

where 1, are the zeroes of the Hankel function in the first equation

and the zeroes of ‘he derivative of the Fankel functinn in thec
16
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second equation. Note that Ql is now the source location. These
launching coefficients are valid for monopoles whose length is small
in comparison to the dimensions of the scatterers.

Eq. (12) now becomes

E(P) = (0, v(Q;,Q) + 1,;2 u(Ql,QQ))’qF—C);-yexp(-ij) (24)

where V(QI’QZ) and u(Ql’Q2) are equal to

an, 0 %

va-q—exp(-skl > L,(Q )0 (Q))exp|-| K (£)ak (25)
2 m=0 0

with the superscripts h and s, respectively added to Dm’ Lm, and dh'

Diffraction Coefficients and Attenuation Constants

F} The diffraction coefficients and attenuation constants devend

on the local geometry of the surface, the wave number k, and the

nature of the surface, as described by the boundary conditions.
Voltmer (Ref 20) has derived the diffraction coefficients and attn-
uation constants for general convex surfaces and are included in

Table I. Appendix A contains the derivation of Dm and a& for a

T ———TT NG P YR, VT

cylinder.

To first order these functions are

1/3

k
‘ o(: = Pl_(_gg) q_exp( jm/6) (26)
g
1/2
(Ds)2 Z exp(=3m/12) f’g (27)

n

m 257%T1/2(kfg)1/0 (4

1 \
=1 (“qm ))

17
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for the "soft" surface, where /& is the radius of curvature of the
surface along which the surface ray is propagating in the plane

containing the normal and tangent to the surface ray, and

P W 1/3—
oy = Fg(-_zg) q_exp(3M/6) (28)
: P1/2
(Dh)2 - exp( = 12 i R R (29)

> Sl e e, (4,6T))

for the hard surface, where the Miller-type Airy function is given

by e
A, (-x) ._},‘[cos(%t3 - xt)dt (30)
0
Ai(-qm) =0 (31)
4;(g,) = 0 (32)

where % and am are the zeroes of Ai and Ai' respectively with the
prime dénoting differentiating with respect to the argument of the
function. These zeroes are calculated in Appendix C.

The terms "hard" and "soft" refer to the boundary conditions.
A soft boundary condition is a Direchlet boundary (the field van-
ishes at the surface). A hard boundary is a Neumann boundary
condition (the normal derivative of the field vanishes at the
surface). This assumes two types of surface ray modesj one in
which E = 83, satisfying a soft boundary condition, and one in
which E = QE, satisfying the hard boundary condition. The cor-

responding coefficient approximations are essentially what Keller

and Levy (Ref 15:166~169) derived. Table I contains Voltmer's
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corrected results,

Transition Regions

The series rtepresentations are rapidly convergent when the
field point is deep in the shadow region. When the local average
radius of curvature of thé surface is larger than a wavelength at
the points of diffraction, only the 1lst terms are neccessary to
achieve good accuracy. As the field diffraction point Q2 approaches
Q, (i.e. £ becomes very small), more terms must be added to maintain
accurﬁcy and it becomes inconvenient to treat the excitation,
propagation and diffraction of the surface ray seperately. The
series representation can now be approximated by integral represent-
ations, which have been found to be prdportional to Fock type
functions. When the source is on the surface, the angular extent
of the transition region from the shadow boundary is nearly
(kfg)_l/B

region are also deduced from the asymptotic solutions to appropriate

radians, The expressions for the fields in the transition

canonical problems as described in Apvendix E.
The well tabulated Fock functions (Ref 21) are

1) Hard Fock function

1 exp(=]¥

2) Soft Fock function

~ 1l | exp(=j»
() - ﬁf——i—-—ﬂn (34)

(T




which are described in Appendix E and tabulated in Appendix G.

The argument of the Fock function to the first order is

% (kp.\>
g = 7"25 ad (35)
Qe

When the field point is in the shadow region, / » O and when the
field point is in the illuminated portion of the transition region,
2 £ 0, where A is the distance traveled on the surface of the
cylinder. Note that for these expressions that the surface ray
divergence factor d7i/d72 is equal to one in this region.

In the transition region, for sources very close to the surface

the term

Zlnz(ql )ng(qz)exp[.L o (§)ak (36)
m= 1 .

in Eq. (25) is replaced for V(QI’QZ) by

8(‘)! J'SO
g(¢)§, 420 (37)

and for u(Ql’QZ) by

j(ny « 8/)e(s), £<o0

-ig(§)8/nm, 420 (38)

1/3
where m = (EfEéEll) (38)
§ = (plap)/p ey )M/ (39)
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III. Diffraction by an

Infinitely Long Elliptic Cylinder

The special case of the GTD solution treated here is one in
which 1/4A monopole antennas are mounted on the curved surface of
an infinitely long, 2A by 4A elliptical cylinder. An average
wavelength of 1 meter is assumed for this problem.

The particular array to be considered is depicted in Fig. 1.
To solve the field problem, each.monopole is approximated by a
launch coefficient. The field at the field point P will be the

sum of the fields produced by each source.

Ray Approximations

Previous work by Pathak and Luebbers (Ref 22) has shown that
in the illuminated region (Pl’ see Fig. 7), the diffracted rays s,
and S5 have a negligable amplitude compared to the direct ray 8ye
For point sources on the cylinder, the field can be modeled as
only r;y sy and Eq. {23)s

In the shadow region only the diffracted rays S, and S,
contribute to the field at P3. Since the rays leaving Q; (or 0)
and encircling the cylinder n times, cover a cylinder circumference
of about nine meters, they are heavily attenuated and their effect

is very small. The field at P, is then the sum of the rays QIO P

3 2" 3

and ¢;Q;P; applied to Eq. (24).
In the transition region, the integcral form in Eq. (36) and

i 2

(37) are used to solve for the field at sy again simplified by

&

ienorings those rays which encircle the cylinder cne or more times.
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Note that for s, the diffraction field formula in Eq. (23) is used.

For the equations in all of these regions, the spread factor

dql/dq2 is one.

Field Equations

The GTD solutions for the radiated electric field of a point
source on an elliptical cylinder, as shown in Fig. 8, with all

amplitudes combined into A and neglecting torsional effects are

Lit Region
E = -A sin(@_)exp(-j(ks' + )& (40)

Transition Region

; a) Lit side f
F.Im Es= %sin(em)exp[-j(k(s -1) + ‘P] 8*('6) (41)

b) Shadow side

I‘ A * /’(Q2) 1/6A
: B =3 exp[-i(k(s + 1) + ¢ (§) —/,67—15 n (42)

€

Deep Shadow Region

E = %A exp[-j(k(s + 1)+ apgﬁ‘j

9
| . nzlexp -so “o()ad] i, oB(e,) (43)
: o "1
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Fig 8. Geometry of monopole antenna mounted on an infinitely
long elliptic cylinder
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g*(-) complex conjugate of the Fock function (Ref 21)

a, 3, { normal, binormal and tangent unit vectors to
the surface -

,% longitudinal radius of curvature

3 defined in Eq. (35)
phase of source

A amplitude of source

s! distance from source to diffraction point or
field point if cylinder is not intersected.

s distance from diffraction point Q2 to field

point

Geometry of Elliptical Cylinder (Equations)

In order to analyze this problém by GTD, an efficient solution
for the geodesic paths on the elliptic cylinder must be found. The
coordinate system adovted here is illustrated in Fig. 9 and defined
bu

x =d coshucosv=a, cosvV

f

y = 4 sinh u sin v = bf sin v
z =2 (44)

where 2d is the distance between the foci of the ellipse. To define
an ellipse, u must equal tanh'l(bf/af). The coordinate v then
defines any point on the ellipse znd varies from O to 2w,

iising the calculus of variations, the geodesic raths oﬁ an

ellivtic surface are given by




z'
|
|
|

f -
z = : Vaz sin’v + bocosov dv (45)
fS f
l1-C
Vi

Where vs and v, are the equivalent of Ql and Q2 respectively in

this parametric form.

Y
v=V.
4;311 3
2/u= U3
vV,
Yzu,
V=V,
sy,
u=o V=0 x
\

Fig. 9. Elliptic Cylinder Coordinate System (Ref 14:26)
If one defines the geodesic starting direction by the angle (Ks)
as shown in Fig. 8, then C = =cos us. The parameters of the

problem are

-cosdb Ve > > —
a% sin® v + b cos® v dv (46)

zZ =

¢ |sindé| ..
i
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Ty

,ﬁﬂgerTWWWPV

f —
1 2 .2 2 2
j m;— Va—f sin” v + by cos” v dv (47)
b (arc length)
. A A
8 -2, sin vx + bfcos vy
e, = : (48)
2T 2 2 ;
ap sin” v + b, cosv (curvalinear
coordinates)
A A
32 = 2 (49)
t = sina & - cos«? (unit tangent (50)
s1 s 2 €
vector)
A A y A
= '::f cos VX + a, sin vy )
- vr§ 5 5 > (unit normal (51
ap sin- v + bf cos v vector)
A A A A A
= = - ol - i
Le o P (unit binormal (52)
vector)
(a2 B8H° ¥ & b - v)3/2
£ £
- > (53)
afbf sin %
(longitudinal

radius of curvature)

Using the preceeding Eqs. (40)=-(53), the total radiated field for a

point source on a cylinder can be determined.
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IV, Pattern Calculations

The field equations (40) - (53) are used in the following
figures to calculate the field due to the array in Fig. 1. The
tabulated fields due to each monopole are included in Appendix G.

To verify the general GTD equations derived for a monopole,
the antenna pattern for a single monopole on the cylinder was cal-
culated and compared to experimental results obtained from published
literature (Ref 3:662), Fig. 10 contains a plot of both the experi-
mental data and the calculated values, The variation of the experi-
mental field is do to interference from the rays that encircle the
cylinder more than once. It was assumed in the calculations that for
fields not in the deep shadow region, that only the dominant term
would be considered.

Fig. 11 and Fig. 12 (Ref 14:64) provide a means of comparison
of the calculated values with those obtained from a scale model test
of an a%rcraft. Fig. 10 and Fig. 11 are almost identical except
that the theoretical case exhibits a stronger field in the deep
shadow region. The effect of wings (Fig. 12) on the aircraft causes
an even further degradation of field strength in the shadow region.
The calculated antenna patterns are therefore valid as a good aprrox-
imation for @ within the range of + 105° with respect to the antenna
when the antenna is mounted near the top or bottom of the fuselage.

Fig. 13 is a plot of the antenna pattern of antenna 2 or 3. Do
to symmetry, their patterns are reflections of each other., The

ffect of mounting the antenna off of the main axis of the cylinder

is to shift the nulls of the pattern as well as cause sharver
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changes in the pattern where the minima of the radius of curvature
of the cylinder occur. Note that the null has shifted about 26°
from its position in Fig. 10 although antenna 2 and 3 are mounted
perpendicular to the cylinder surface at a point that is about 14°
off of the primary axis of the ellipse (vi-u 14°), This shift is
caused by the antenna angle in space being about 26° from the ver-
ticle.

Fig. 14 is a plot of the antenna pattern with all three
elements of the array driven with the same amplitude and phase.
Comparing this pattern to that of a 3-element triangular array de-
picted in Fig. 15, driven under the same conditions, shows that the
cylinder has the effect of broadening the lobes as well as increasing
the angle ® where the pattern maxima occurs. The result is a pattern
more like that of a single monopole or dipole in space.

Fig. 16 is a plot of the antenna array pattern with element 1
driven 450 out of phase with elements 2 and 3. It takes very little .
vhase change to drastically alter the pattern. The effect of the
out of vhase element is to focus more of the energy in the 1lit region
of the cylinder. By changing elements 2 or 3 such that they are out
of phase with each other should eliminate the null at @ = Oand also
allow the lobes to be moved or combined into a narrower beam as well

as move the nulls,
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Pig 10, Antenna pattern of monopole on major axis of
elliptical cylinder (calculated and
experimental)

31

.k




180°

Fig. 1l. Roll plane pattern (E4) for a 1/25 scale model
of a KC-135 with a A/4 monopole on the fuselage
forward of the wings. (from Ref 14:64)
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Fig. 12. Roll plane pattern (Eg¢) for a A/4 monovole
above the wings.(from Ref 12:99)
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Fig. 14. Antenna pattern of array in Fig. 1 with
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Fig. 15. Antenna pattern of 3 element array on
an infinite ground plane, all elements
driven in phase.




180°

Fig. 16. Antenna pattern of array in Fig. 1
with element 1 driven 45 out of
phase with elements 2 and 3.




V. Conclusions

The geometrical theory of diffraction has been extended to
tre;t monopoles on perfectly conducting cylinders of variable
curvature. Following Pathak's approach (Ref 23:19-20) of defining
a launch coefficient for a slot in a cylinder, a launch coefficient
for a monopole was obtained. For the monopole case, the launch
coefficients are the same as for an axially mounted and a length
wise mounted slot superimposed on each other,

By carefully keeping track of the distance traveled by the
difffacted rays an interference pattern for two or more rays or
two or more sources was obtained. If the field pattern is analyzed
in such a way as to let the observation distance approach infinity,
then the phase could be approximated as the phase at the diffraction
point for the ray leaving the cylinder (Qz). In the illuminated
region the phase would be assumed to be that of the source. Although
this approximation is valid it was assumed for this protlem that
since this antenna is to serve as an air to air communications link
that the range was not infinite. A nominal distance between com-
munication points of 300 meters was assumed such as to account for
aircraft in close proximity to each other., The field further out
will just have a smaller ripple on the lobe boundary due to the phases
of the wavefronts being nearer the same as a function of their dis-
tance allowing the previous aprroximation to be valid.

The effect of the cylinder is to broaden the beamwidth in the
zrinciple plane. By mountinz the antenna pervendicular to the sur-

face, the condition of the antennas nof being varallel in the x, ¥y
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plane resulted. Linear array theory was therefore not valid (i.e.,
an array factor is not present). If the antenna were mounted par-
allel to each other, the effect would be similar (in the lit region)
to tilting a monopole on a flat ground plane so that one side of the
beam is directed into instead of along the ground plane. Again,
linear antenna theory would not apply. If the field point is in the
deep shadow region of all three elements of the array then the
result is an equivalent linear array summation at the diffraction
point Q2 but it is only valid for that field point producing a
tangent at Q2. It can also be assumed that the angle with which the
antenna is attached to the surface and not its angle with respect
to the center of the cylinder controls the location of the nulls.
The array analyzed provides a broad beam for communication
problems but with high mobility of nulls for a null steering use.
Due to the creeping wave effect, it appears it would be very hard
to create a single beam in one general direction. The symmetrical
cylindef would tend to cause multivle lobes as in fig. 16. An end
fire or broadside pattern in the x, y plane is not readily ob-
tainable because the elements are not parallel. However when
analyzing the fields in the x, z plane (xs = 0, 180) the antenna
elements avpear to bea.linear array with antenna 2 and 3 reduced
in height. DPTlanes of view in between (0 < “< 90) would be a
combination of the two approachs although the GTD can still be

applied directly and obtain valid results.
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Appendix A

Derivation of Dm and <m

The first step is to formulate and solve the boundary value
problem of diffraction of a cylindrical wave by a circular cylinder
of radius a. Then the solution will be expanded asymrtotically for
large values of ka.

In order to simplify computations and avoid revetition, a
scalar field is assumed with conditions stated to allow for hard
and soft boundary conditions. This scalar field u(r,®) must satisfy

the equation

(% + K¥)u = §(r -p )h(®) (54)

Two different boundary conditions at r = a will be considered. They
correspond to different physical problems,

By exvanding the diffracted field in cylindriczl wave functions
and imposing the boundary conditions (Ref 24:Ch. 5) the field for

the ray OQ1Q2P as shown inFig. 17 becomes

o GJ_(ka) o >
u - —;mz_:xp(—jme) [Jm(kra - Wﬁ, Yz | 8B kr,)  (55)

r>a

Here ry and T¢ aTe, resrectively, the larger and zmaller of the

quantities r and /3.
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Fig. 17. Geometry for Diffraction

The operator G, which is determined by the boundary conditions

a8 given in Table II.

.

Table II

The Cperator G

G Boundary condition ¥ield Equivalent
Case I: 1 u=20 s u = Ez; verfectly
conducting
cylinder
Case II: 22 iﬂ =0 h u = H 3 perfectly
° §n an z

conducting
cylinder

The representation of the field as given by Eq. (55) is valid

only for small values of ka.

A numerically useful result for large

values of ka is obtained by emvploying the well-known Watson trans-

formation which leads to an asymptotic expansion of the field.




o

Accessible descriptions of the method are given in References 25 and
26.
Letting C be a contour encircling the real axis as shown in

Fig. 18, the sum in Eg. (55) becomes

2
us=- 15 exp(jv(e - m)) HS, )(kr’)
B),  sinrm) GHLZ)(ka)

(56)
. (Gﬂg,z)(ka)J”(klz) - GJV(ka)H(yz)(kr<))dV

When yis replaced by -V on that part of the contour for which

yﬂl < 0, Eq. (56) becomes

2
1( cos(V(® -~ m)) Hsr )(kr>)
u==- 4 5

sin(Vn, Gﬂgf)(ka)
o (6a{®) (k)3 (kxg ) - 63, (ka)m B (ke N)av  (57)
¥V PLANE

> .- o T
’ “
f '.
‘ (]

\ v

~‘ i =

iz, 18. The path of intecration for the
Watson type intecral re -esentation of the
field diffracted V- cevlinder
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If the point (r,®) lies in the geometrical shadow, the contour

D can be closed in the lower half-plane. The integral can now be

(2

evaluated by computing the residues at the zeroes z(l'l of GH,,

This yields

1
o _1_1;]_“ cos(.(0 - m)) GH( )(ka)
4 & sin(¥; )

—GH(Z)(ka)
W

JT( )(kl‘)y(z)(kf)

)(ka)sO.

(58)

The values for Vx‘n are given in Table IV, Appendix D. Asymptotically

expanding the Hankel function appearing in Eq. (58) (Ref 18:365-866):

.Lexp(-sk((r - a )1/2 LB 1/2))
2k(r - )174(F a2 1/4

icos(vm(e -m
=] sin(]ll;ln)

GH(I)(ka)

* ¢ exp(,nf(cos (-) + Co -l(l,)))m—;——

cos(V e -m))
s:.n(l/ms)

Using Buler's eguati-n to replace yields

exp(_wk((r a2 1/2 g Qe - a2)1/2D

2k(r p a?_)ﬂz;(fz _ 2)/4

u~L

exp(-j¥ ¥) + exn(=3U )
m=1 1 - exp(-jeny)

« exp( jz)r'_‘(cos-l(%) + cos-l(—a-

(59)

(60)




where ¢, = @ and ¥, = 2 -& Eq. (60) contains the leading terms

in the asymptotic expansion of the field in the shadow region.

To calculate the GTD field, Eq. (12) in the text of the thesis
is used as a starting point. For a torsionless* surface path on a
cylinder, no E field exists in the g'direction so Eq. (10) is equal

to zero and Eg.(12) may be written as

d
u = ui@vs(f’; s7exp(-jk(l + 8)

oo 9
* an(al)nm(ae)exp -S o (£)ad (61)
m=1 Q1
with u, = Zgi-;-%xp(-j(ka + P) (62)

Due to the symmetry of the problem it is clear that the geo-
desics are arcs of the generating circle of the cylinder. Further-
more, the cuantity d71/d72 has the value unity since a band of dif-
fracted rays does not spread on the cylinder. Also, the radius of
curvature p in Eq. (61) is infinite so that (IO/(/0+ s)s)l/2 assumes
its limiting value s-1/2. Moreover, because the geodesic curvature
of a ray is constant, the quantities 0&(!) and Dm(°) are constants
with Dm(Ql) = Dm(QQ)' Introducing these simplifications into Eq. (61)
and using Eq. (62), noting that R at 9 is (Pz - 32)1/2. Then

Eq. (61) becomes

* " ; s ; A
A torsionless surface path is one where the direction of b

does not change along a gecdesic rath on the cylinder,
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w e It oy (3(k((p? - 822 4 8) 4 )

16_‘1;3(/:2 2 32)1/2

o0 > :

- 2 i G T (62) x
M=

Eq. (63) gives the field associated with any ray from O to P
having an arc length £ oa the cylinder. For the ray OQleP, the
length £ for a circle has the value "o = aB@-a cos-l(a/P) -

a cos‘l(a/r), while s = (r2 - a2)1/2. In addition to this ray,

all of the rays which are tangent to the cylinder at Ql and encircle
the cylinder g times before emerging at Q2 are also diffracted rays
through P. For these rays 4 has the value J; = Jz + 2gWa. Inserting
this value of £ into Eq. (63) and summing over g, the diffracted

field at P due to those rays which are tangent at Ql is given by

b, S ’féi'(f'? = 32-1%22":2 T S =3 (3 (f‘2 - V2L f 32)1/3*@

Q0
. Zlnflexp((-jk - )A)(1 - exp(2n(-jka - a%t )™t (64)

Along with the family of rays described above, there exists
other rays which are tangent to the cylinder at Q3, encircle the
cylinder g times and then emerge tangentially at Q4 and pass through
P, Computing the field along these rays yields a result of the form

; of Eq. (64) with ® replaced by 2TT- @in ,e). Adding this result to

Ea. (65), we obtain for the total diffracted field at P




i —jTwmexp(=ik((P° - a2)1/2 + (2% - &° 1/2) +P)
T8 - o)A - )

u

ibiexp((-jka - ad(m)‘yl) + exp((=jka - adm)”'z)
) 1 - exp(2n(-jka - a< ))
. exp((jka + aclm)(cos-l(-;-) + cos-l(g))) (65)

where wl = @ and 9’2 = 2W - ®, Comparing Eq. (65) to Eq. (60) and

ignoring the amplitude and the phase of the source gives

3 -1
< = =jk + j)fma

2 GH(I)(ka)

o \=1/ v
&y _[Gk m
b (2”) 3 550%) (ka) i
W,
vf, Expansion of GHj(,l)(ka)/[(A/)V)GH‘frz)(kag is done in Appendix D.

A m m
]

7 Voltmer's generalizations for surfaces of variable curvature
re contained in Table I in the text, and are seen to be dependent
on not only Pg’ the radius of curvature of the surface with respect
to arc length along the ray trajectory, nrut also /'.?g’ é, and /’tn’
where the dot denotes a derivative with resvect to arc length and
Ptn is the radius of curvature of the surface in the direction of the

binormal to the ray.




Appendix B

The Launching Coefficient

The launching coefficinet is derived by asymptotically expan-
ding a canonical problem for ka large and comparing this to the GTD
solution as was done for the diffraction coefficients in Appendix A.

Start with Eq. (58) in Appendix A.

(1)
o0 GH'"/(ka)
p< cos((® -m) Ty - PR
-3, e i e oo
vm

. cos(ym(e -m) exp(-jym‘ﬂ) + exp(—jvm"lé)
Replacing Bin(vmm # 1= exp(-jg"ﬁ)

s and letting

(1 - exp(-j21fzs))~1 = 1 for ka large gives

. cH,.)( ka)
an m +(2) (2)
u = o i H(z)(ka u a (ka)H (k,n)

- exp(=3y§) + exn(-iyn Y,) (67)

where \|i =© and % = 2M - O, Using the definition of the diffrac-

tion coefficient from Appendix A

GH(I)(ka)

/25
ro, ) (56

J—GHVm (xa)

and the asymptotic exransion




2) 2 ”
#$2)(kp) ~ s, = (274 1) (68)
and defining the boundary conditions as

:n'u(f 'o) = 0 for p' = a (hard boundary) (69)
and

u(a,s',f) =0 (soft boundary) (70)

then for the hard boundary condition, noting the results for a point

source in Eq. (23)

By(A) = Ix%Fa(p,fa) (1)

Then Eq. (67) becomes

Z[ sy’ H‘,,Z)(ka)n{;]

8ﬂk3 m=

o [erp(=syp ) + exn(-in )]

B exp( =ikp)

* n .r'i._‘ (72)

Referring to Fig. 17, the GTD solution for E with a launching

coefficient rerlacing the field incident at Ql is
o
h h i h
Eg = CImeleDm exo((=jka - a-lm)‘ffl)

+ exn((~3ka - ad

St A ittt e

|
|
|
g
|



Comparing Eqs. (72) and (73) gives

B k- expl jn/4 (14)

12 - ()1 %5(%) (ca )0l (15)
m
o = ka ~ j&a (75)

Replacing the hard coefficients with the soft coefficients and

differentiating Hg?)(ka) with respect to ka will solve the problem

m
for the soft boundary condition. Hif)(ka) and g&?)'(ka) are ex-
m m

panded in Appendix D,

Comparing this to Pathak's work on slots in cylinders (Ref 23:
46-62) shows that the same launch coefficient results for a magnetic
current source in the 7z direction. The soft boundary condition for
a monopole is equivalent to a launch coefficient of a magnetic line

o - > ‘ . . . 3
source oriented in the ® direction (circumferential slot). The

monopole can then be modeled as 2 magnetic line sources perpendicular

to the direction of the monopole electric source for fields in the

deep shadow region.
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Appendix C

Airy Functions, Derivatives and Zeros-

The Airy differential equation,

2
dwiz) _ zw(z) = O (76)

dz2

yields two independent solutions which assumes several forms.

The form used in this thesis is defined by Miller as

Ai(z) = ‘z‘lﬁg exp(zt - £3/3)dt (17)
n

which for z = x (x real) may be written as

©
Ai(x) = % $OCOS(Xt + t3/3)dt (78)

|"i is shown in Figure 19. A second independent solution is given by

Ai(ze.jz"”) - 2—%-.-5( e::p(ze-jznht - t3/3)dt

n
jen/3
- %S—Ir‘:xp(zt - t3/3)dt (79)

while the “ronskian relation satisfied by these solutions is
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Fige 19. Airy Function contours of integration




6 ; - j
e;:{_ = Ai(z)Ai'(ze'-72“"/3)e—:’2w/3 - Ai(ze.32"73)Ai'(z) (80)

The derivatives are obtained by differentiating under the integrals
of EqB. (77) and (79).
The roots of the Airy function and its derivative which

satisfy

Ai(z) = O and Ai'(z) = O
are real and negative and are denoted as -0 and -E;n, respectively,
where m denotes the number of the root. The first two roots are

presented in Table III as are the values of Ai(—?m) and Ai'(—qm).

Table III.

Airy Functions, Derivatives, and Zeros:

m a, q Ait(=q,) AL(=q_ )
1 +2.33811 +1.01879 +0,70121 +0.53566
2 +4.08795 +3.24820 -0.80311 -0.41902

(from Ref 20:149)
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Appendix D

Hankel Functions

An evaluation of the integral resulting from the Watson trans-

formation requires the calculation of the roots of the equation

GHL?)(ka) =0 (81)
where
1 Soft EM cylinder
i— Hard EM cylinder
)X|x=kq

A closed-form evaluation of these zeros is not possible. FKHowever,
an asymptotic representation of the roots may be obtained for large
values of ka. The procedure is outlined in Reference 20, pages

127 to 133. The results are listed in Tables IV and V on the next
page. The asymototic approximations for the Hankel functions of the

second order are

oo

g oa/3 2/3 58
2 3 /2 Ly - 2 3
Hz(rm)(ka) ~2 e (&) Al(—qm){l *\E) " (82)

m

- 2/3 ~ 2/3 2
H_ff‘)’(ka)"'-.?e 34?2_) Ai'(—qm){l - -‘_.) ﬂn_e:f?} (83)

an alternative form is




— T T — TP — 1
Table IV
Hankel Function Zeros, rcagf)(ka) =0
Surface Zeros-V
2
! /3 a- -1/3
-jn/3(ka m__jm/3fka
sinks v, = ka +qpe () - & (2)
-2
Hard . 1/3 9 -1/3
Cylinder ?m = ka + E’me-J"/B(k?a‘-) - %(h %)(%a—)
U
(from Ref 203145) ,
s
Table V 1
Gﬂg,l)(ka)
Hankel Function Quotient, o
S;GHV (ka)
Surface G=Cperator Quotient
1/
: , ka
T o L 2\/3 9 _jmy3
Soft 1 (1 + (EZ e
2M(Ai*(-q_))
: ka - -
. ) 3-35"/6('2_) g 2\2/3 i -3mw3
Hard -aT*-" - e 2\1 *ive 30 e
9 2% (4i(-T,))

(from Ref 20:136)
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Appendix E

The Field in the Transition Region

The material for this Apprendix is taken in part from Reference
23, pages 63 to 70. In the transition region adjacent to the
shadow boundary, the representation of the field radiated by the
monopole described by the launching coefficient in Appendix B is
poorly convergent so a different form is needed. It will be seen
that a suitable asymptotic solution can be obtained in terms of
integrals. The first order approximation is adequate for ka > 3,
and since the added complexity is hard to justify, only the first
order will approximation will be derived.

For the principle plane analysis of the cylinder (looking
length-wise down the cylinder), only the hard boundary condition
exists, therefore only it will be treated. The soft condition
is solved identically as below except without taking the 5u/§p.

The Watson transform is acain annlied to Zgq. (55), but this
time the resulting exvression is left in the form of an integral.
In the far zone, H&?)(kp) is approximayed asymptotically as in Eq.

(68) so that (see Ref 18:865-366)

du -k exp(=- jkp)
)f' 2' T—- !20
1)'(ka)H(2)(ka) 12 (12 )r{1) (ka)
H(f.)(ka)

. exp(-jul‘(‘f'l + 2MR)) + exp(-jt’(vz + ond) (82)




7rom the Wronskian relationshiy for the Hankel function,

B an{Pika) - 5P rmanlVa) <AL (g5

a

, 0O

2jk exp(-jkp) Z ¥
0/’ " atoET Vg A0

(exp(=jm(P; + 274)) + exp(-jn(¥, + 277))

then

(86)
8.2 (ka)
Rerlacing H‘gz)(ka) by its Watson approximations (for maka>>1)
gives rise to the Fock function representations for the 3“/3,“
|
du, 2 Z‘
exp(-jka(¥) + 2m)) ( .
¥ T oy
exp(-j§;T)
(=3¥m) f‘1_;‘27'?)__d7 + exp(-jka(¥, + 2m¢)) :
b’ 2/3 exp(-3§,)
% ’ exp(-jk :
| ( 2) (=i "i—“zrﬂ_—d Y7 (87)

5 1/3
where Hglz)(ka) ~#~E§) w,(T), and 61 = () ?/1
2

4 Here WZ(T) is the Fock-type Airy function related to the NMiller-

type airy function by
W, (T) = 2Vexp(=j/6)4; (~Texo( in/3)) (88)

il
or T ﬁgexpm - 23/3)dz (89)

with the contour of integration shown in Appendix C.

Introducins the Fock functions
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&) v%.—/l"—%zf;%—%’r (90)

then Eq. (87) becomes

1/3
3—;.\. SeE) | g exp(-kat) + BE,) -

V(O
Where only the 1:0 term is retained for large ka. Substituting
this into Eq. (71), the far—zone electric fields for the line source
”~

xI_ is
b ¢

1/3
Egn C Ix{-;j(kia },
. (8(§;)exp(-jka¥;) + &(§,)exn(-3ka¥)) .
. Sk (92)
YF"

Comparing with Eq. (73 ) yields

d 1/3
v(Q»Qp) = -j{;;ﬁ(—z-) &(§, Jexn(-jkat] Jexp(-jkt) (93)

Tabulation of &(§) is included in Appendix G.

a

N




Appendix F

Field Data

The following data consists of the field at P due to each
antenna, Values were calculated for field points at a constant
distance of 300 meters. The angle v is the angle the field radius
vector makes with the verticle——the same as the parametric v used
in the mathematical model of the cylinder. The field is calculated
for v between 0 and 180° in steps of 5°. Due to symmetry the field
due to antenna 2 in the 180° to 360° range is the same as for
antenna 3 in the 0 to 180° range with the direction of the field
vector turned around (shifted 180° spatially).

To calculate the total fields using these tables, add the
source phase of the antenna in question to that in the chart for
that antenna, and multiply the x and y quantities by the source
amplitude., Now for each field point determired by v, an x,y,vchase
data point for each antenna is taken from the table. To obtain the
total field these three vectors are added vectorially.

Also noted are the equations which were used to calculate the

values in the chart. The equations are

Eq. # Equations used
1 Lit region Zq. (40)
2 Lit side of transition region
Ba. (41)
3 Shadow side of transition region

Ea. (42)

S

Deer shadow region Ug. (43)
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Table VI

Field Data
Antenna 1

v Eq. # Magnitude x y Phase[-j('ﬂ

0 1 0.000 0,000 0.000 0.00
10 1 5.865 -1.024 5.766 11.01
15 il 8.740 -2,276 8.438 24.70
25 1 14.259 -6.062 12,906 67.89
30 1 16.861 -8.479 14.574 97.07
35 1 19.330 -11.147 15.791 131.00
40 1 21.646 -13.986 16.521 169.44
45 2 23.793 -16.903 16.744 212,09
50 2 24,000 -18.463 15.337 258.61
55 2 24.510 -22,623 15.659 306.28
60 2 25.068 -21.781 12,409 344,02
65 2 25.479 ~23.166 10.627 28.17
8o 2 25,026 -24.674 4.182 182,32
85 2 24,304 -22,965 1.958 239.15
90 23.316 -23.316 0.000 3.06
95 3 22,223 -22.138 -1.937 79.95
100 3 21,082 -20.762 -3.661 156.54
110 3 18.771 -17.639 -6.420 303.32
115 3 17.618 =15.967 ~T.446 8.05
120 3 16.366 =14.173 -3.183 73,22
125 3 15,310 -12.541 -8.781 137.67
130 4 14.466 -11.082 -9.299 195.93
135 4 11.399 -8.060 -8.060 208, 36
140 4 11.468 7,372 -8.785 284,12
145 4 10.830 =6,212 -8.871 344.67
150 4 T+950 -3.975 -6.885 50.41
155 4 9.520 -4.023 -8.628 107.02
160 4 64316 -2.160 =De335 128.98
165 4 8.580 -2.,221 -8.238 164.79
170 4 3.831 -0.665 =3.713 145.14
175 4 7.329 -0.682 -7.800 164.79
180 4 0,000 0,000 0.000 0.00

O —
NPT AT




Table VII

Field Data
Antenna 2

v Eq. # Magnitude x vy Phase[—j(o)]

(0] 1 15.418 0.000 15.418 22,90

5 1 17.970 -1.591 17.899 33.46
15 1 22,635 ~5.912 21.849 T70.24
20 1 24.712 -8.521 23,196 96,17
25 1 25.595 =10.897 23.159 126.87
30 2 25,222 -12.699 21.792 156,53
35 2 25,220 -14.555 20.596 186,01
40 2 25.546 -16.,516 19.489 220,88
45 2 25,606 -18,201 18,012 260,81
50 2 30.279 =19.442 16.135 305.37
55 2 24.678 -20,296 14.038 344.71
60 2 23.830 -20,707 11.792 3677
65 3 22,866 -20.724 9.664 86.T7
70 3 21.723 =-20.413 T.430 132.00
15 3 20.575 -19.874 54325 234.178
85 3 18.229 -18.160 1.589 83.45
95 3 15.960 -15.899 -1.391 274439
100 4 14.854 -14,623 -2.579 352.03
105 4 10.921 -10.590 -2.827 296,08
110 4 10,639 -9.997 -3,639 18.36
115 4 10. 469 -0, 483 -4,424 110.64
120 4 9.3859 -8.538 -4.930 190.99
125 4 8.484 -6,950 -4,866 272,01
130 4 Be274 -6,338 -5.318 347.50
135 4 6.569 -4,645 -4.645 79473
140 4 T.771 -4.995 -5.953 144.93
145 4 6.136 -3.519 -5.026 189.05
150 4 3,825 -1,912 -3.313 236,93
160 4 1.370 -0,469 -1,287 325407
165 4 T.241 -1,874 -6,994 24,83
175 4 8.130 -0,709 -3.099 9.34
180 4 5.024 0.000 =5.025 117.38




;
Table VIII
Field Data
Antenna 3
v Eq. # Magnitude x y Phase [—j( . )]
0 1 15.418 0,000 -15.418 22.90
5 1l 12.745 1.110 -12,697 17.67
10 1 9.973 1,732 -9,821 17.83
15 1 Te.124 1.844 -6.881 23,36
25 1 1.285 0.543 -1.165 5035
: 30 1 1,658 -0,829 1.436 T1.60
; 35 1 4,587 -2,631 3.758 97.81
50 1 13.056 -10,039 84349 204.00
55 1 15.700 -12,905 8.943 247.67
60 1 18.220 -15,827 9,027 294.94
65 1 20.596 -18.715 8.600 345.45
70 1 20,810 -21,480 7.678 38.80
85 2 25.797 -25,713 2,082 210.15
1 90 2 25.842 -25.841 0,000 268,30
- 95 2 25.972 -25,858 -2.431 327.97
. 100 2 26,147 -25.719 -4,.707 11.99
110 2 24,700 -23,157 -8.594 150,92
115 2 22.770 =20,577 -9,749 212.65
120 3 21.622 -18,.725 -10,811 289,60
125 3 21,618 -17.708 -12.400 302,50
130 3 20,368 -15.603 -13.,092 0.72
135 3 19.219 -13.590 ~13.590 58.52
145 3 16.926 -9.708 -13.865 161.14
150 3 15.697 -7.848 -13.594 206,92
160 4 11.630 -3,978 ~10.929 304.16 ,
165 4 11.513 -2,981 ~-11.126 347.81 |
170 4 8.274 -1.437 -8.148 329.34
175 4 10.593 =0,923 ~10.553 345.40
180 4 3.329 0,000 -3.291 290.14 |
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Appendix G
Table of the Hard Fock Function T
The function is defined as ?

g(§) = %;-/exp(-jft wilt dt

Table IX

The Hard Fock Function

Ef Modulus Argument
-1.00 1.861 15.460
-0,85 1.818 7.801
-0,80 1.802 5.785
-0.75 1.785 4.016
-0, 70 1.766 2,482
-0,65 1.747 1.174
k| -0,60 1.726 0.079
4 -0.55 1.705 359.187 . :
! -0.50 1.682 358.487
' -0,45 1.658 357.971
-0,40 1.633 357.627
-0,35 1.607 357.446 .
-0,30 1.580 357.419 1
-0.25 1.552 357.536
-0.20 1.523 357.790
-0,15 1,493 358.172
-0,05 1.431 359,284
0,00 1.399 0,000
0.10 1.334 1.713
0.15 1.300 2.696 1
0.20 1,266 3.755
Q.25 132 4,883
0.30 1.197 6.074
0.35 1,163 7.323
0.40 1,128 8.624
0:45 1.093 9,971
0,50 1.059 11.360
De5 1,025 12,786
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& Modulus Argument

0.60 0.991 14.244
0.65 0.958 15,731
0.70 0.924 17.243
0.75 0.892 18.776
0.80 0.860 20,326
0.85 0.828 21.893
0.90 0.798 23.474
0.95 0.768 25.070
1,00 0.738 26.683

(from Ref 21l:ch. 4)
For more accurate values see Ref 21.
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