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Preface

This investigation demonstrated the capability of the Geometri-

cal Theory of Diffraction ( CTD ) to analyze the fields due to mono—

pole arrays on cylinders. Although one of the principle arguments

for the use of the GTD method to solve for the field equations was

its requirement for less computer usage compared to alternative

methods, a computer, as such, was not used.

In this regard I would like to thank Mr. Robert Barham for the

use of his HP—67 prograrnable calculator. I would also like to thank

Professor Kouyoumjian at Ohio State for his comments and his help

in obtaining many of the sources on GTD used herein. I would

especially like to thank Professor Bill Davis icr taking the time

to go through most of the theory with me and for his comments on

the grammatical problems that occured.

Bruce A. Thiernan
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Abstract

Using the Geometrical Theory of Diffraction (GTD) the fields

due to a monopole array mounted on an aircraft near the top or

bottom were analyzed. The aircraft was modeled in its most basic

forn; an infinitely long elliptical cylinder. The aircraft cross—

section at the location of the antenna was modeled as a 2 meter by

4 meter ellipse. The frequency band of operation was 250 mHz to

400 mHz with an average wavelength assumed of 1 meter. The three

element array was found to have a beam broadening effect when

compared to the array mounted on an infinite ground plane. The

array exhibited a poor potential to form a single major lobe in

its antenna patter!1 but had a high mobility of pattern nulls. 
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ANALYSIS OF A TEi’Th~A ARRAYS ON CYLINDERS

BY PEE

GEOMET RICAL THEORY OF DIFFRACTION

- I. Introduction

One of the principal problems in the design of a reliable

airborne antenna is the effect on volumetric antenna radiation pat-

terns by the aircraft not acting as a flat ground plane. The

particular antenna pattern problem to be considered here consists

of an antenna array of quarter—wavelength, radial monopoles, which

operate in the 250 mHz to 400 mHz range, mounted on an aircraft

fuselage near the top or bottom. The array configuration is depicted

in Fig. 1.

2 ~~~3~~j
_-~1”onopo1es

Front Bottom

Fig. 1. Array Configuration

Since this is a general analysis, the aircraft is modeled in

its most basic ions. The fuselage is assumed to be an infinitely

long perfectly conducting elliptical cylinder. The cylinder

1 
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solution employed in this analysis, when comrared to the experi—

mental case of one monopole on a cylinder, gives an accuracy of

about+]. dB in pattern com~utation down to a level about 20 d3

below the pattern maximum.

Antenna location on an aircraft is usually based primarily

upon convenience with respect to the aircraft structure with no

regard for system requirements. The antenna system performance is

determined by analyzing antenna patterns of scale models. This

approach to antenna design and location requires large amounts of

engineering time and money. This investigation develops an analytic

approach to determining the antenna system performance.

- The first analytic solutions used to determine on—aircraft

antenna patterns were the cylindrical harmonic solutions for in-

finitely long circular (Ref 1; Ref 2) and elliptic cylinders (Ref 3).

These solutions modeled the fuselage by a cylinder whose elliptical

cross—section approximated the fuselage cross—section at the antenna .

locatiDn. These solutions failed for structures of many wavelen~ths

in diameter unless expanded asymptotically for large dimensions .

The expansion of these solutions required computers of very large

memory .

A more recent apnroach is the use of the integral equation

method via -oment methods. By solving the boundary value problem

for fields on aircraft structures, the surface currents and. the

resulting scattered fields car~ be found. ~ichmond (Ref 4; Ref 5) ,

developed a moment sclution based on a wire grid modelling structure.

This solut ion re’-’;ired t~-e det-ermi~ation of a—~-roxiniate1y 100

unknown currerts ter zr~u~~r~ ~a-:elero~ h in or’ier that the ~rid

2
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adequately simulate a perfectly conducting surface.

Another apnroach is the surface current model method (Ref 6).

This method divides the surface of a conducting body into patches,

with each patch having two orthogonal unknown complex currents.

This reduces the number of unknown currents to about 20 per square

wavelength allowing solutions for much larger surfaces. This soiu—

tion, modal solution, and the mDment method are restricted to lower

frequencies due to the limitation of the size of matrices which

modern computers can solve without unacceptable loss of accuracy.

Another approach that has obtained success at analyzing on—

aircraft antennas is the Geometrical Theory of Diffraction (referred

to simply as the GTD henceforth). The GTD is a high frequency

solution which is divided into two basic problems; wedge diffraction

and curved surface diffraction. Both of these diffraction solutions

have been applied in computing the patterns of slot antennas mounted

on cylinders (Ref 7; Ref 8; Ref 9), rockets (Ref io), and aircraft

(Ref 11; Ref 12). Using this approach, one applies a ray optics

technique to determine components of the field incident on the

various scatterers. Components of the diffracted field are found

using the CTD solutions in term s of rays which are summed with the

geometrical optics terms in the far field.

The ap”roach arplied in this thesis is based on previous work

by Burnside (Ref 13) and Yu (Ref 14), which demonstrated the capa-

bility of the numerical solutions to predict the radiation patterns

of fuselage mounted antennas in an efficient and ec—nomical way. If

the volumetri c rat terns were found directly by analyzing rays on

comr lex three—dimensional surfaces as do ne in Reference 12, the

3 

- - -
~~

-
~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘ - -~~ . 
_ _



resulting numerical solution would be very complex, time—consuming,

and uneconomical. Nervertheless, if certain assumptions ca~ be

made, the approach undertaken previously can be used to overcome

these di~ ficulties and simplify the problem a great deal.

The basic theoretical background on the geometrical theory of

diffraction (GTD ) for curved surface diffraction is presented in

Chapter II. Expressions for the parameters arid special functions

involved are given in Chapter III. The equation for diffraction by

a monopole on an infinitely long cylinder are presented in Chapter

III, as is the mathematical model of the aircraft. In Chapter IV,

the numerical results obtained for the single monopole case are

compared with published results and measurements and in addition

the field patterns of the three element array for different

phases are presented. Chapter V contains the conclusions.

- - - - - —- 



II. Theoretical Background

For scattering objects that are large in terms of the wavelength,

such as for electrically large aircraft, the GTD is the optimum

approach. The following developement of the GTD assumes; that ray

trajectories are determined by the generalized Fermat ’s principle,

that the field amplitude variation along a ray path can be found

from power conservation in a tube (or strip) of rays, and that the

diffraction and excitation of waves can be treated as local

phenomena. The validity of these assumptions and the GTD have been

established in publish i materials.

According to geometrical optics the region exterior to a per-

fectly—conducting surface with a radial electric current source at

point o is divided into an illuminated region and a shadow region

by a plane tangent to the surface at Q1 called the shadow boundary.

A portion of these two regions adjacent to the shadow boundary is a -

t ransi tion r-~gion . The angular extent of the transition region is

of the order (k(~Y~~
’
~ when the source is on the surface; being

the radius of curvature of the surface at Q in the direction of

propagation, and k being the wave number 2TT/p~. The three regions
-q

are depicted in Fig. 2. To solve for the fields due to the array,

the derivation of the high—frequency, far—zone field due to a point ‘1.

source has to be determined for these three regions.

Diffracti ’n by a Curved Surface

When an ~nc ir i ent  ray ~t r ike3 a om ooth , curved — er f ec t l :~ con—

5
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ducting surface at grazing incidence, i.e., at the shadow boundary,

a part of its energy is diffracted into the shadow region. This

phenomena is described by a class of diffracted rays now know as

creeping waves ( Ref 15). These ray paths include the points Q1 and

which fo rm a curv e on the diffracting surface, as illustrated in

Fig. 3. The actual concept of creeping waves was introduced by

Franz and Depperman (Ref 16; Ref 17). The basic concepts, as pre-

sented in the following discussion is taken in part form “Asymptotic

High—Frequency Methods” by Kouyoumjian (Ref 18).

The diffraction by a smooth curved surface is shown in Fig. 3

in which 0 is the source point and P is the observation point in the

shadow region. Diffracted rays are characterized by an extended

form of Fermat ’s principal which is: The diffracted rays connecting

two points 0 and P in the exterior of a perfectly conducting body

are those curves joining 0 and P which have stationary (optical )

length among all curves from 0 to P having an arc on the body sur-

face. Applying this principle, the line OQ
1Q2

P is the shortest

distance between 0 and P which does not penetrate the surface. In

detail , a ray incident on the shadow boundary at Q1 divides ; one

part of the incident enerzy continues straight on as predicted by

~eometrical optics, a second part follows the surface S into the

shadow region as a surface ray shedding diffracted rays tangentially
A A

as it propagates where t , n, and b are the unit vectors in the

direction of incidence, normal to the surface S and binormal to the

surfave (b= t x ‘a). The incident field ~~ (Q 1) may be seperated into

i ts  normal and binormal conronents (
~ ~~

(
~~) arid .

It is assumed that theoc two conporients induce surface ray fields

7
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which propagate independently of each other along the geodesic arc

between and Q2.
The binormal surface ray field at is related to the binormal

component of the incident field at by

A (Q1)exp(j~(Q1)) = D
8(Q

1
)(b

1 
• E ( Q 1)) (1)

where D8(Q1) is the scalar diffraction coefficient for a soft

boundary condition. The terms hard and soft boundary conditions

are terms from acoustics. A soft boundary is one where the preasure

field is zero at the boundary (~ = E~2). A hard boundary condition

is one in which the derivative in the direction normal to the

boundary is zero = 0; H =

The amplitude of the surface ray is assumed to be governed by

the conservation of energy between a pair of adjacent surface rays.

This principal states that in time harmonic fields, the energy

flux is the same through every cross section of a tube of rays, such

as the astigmatic tube of rays in Fig. 4.

I~~~~~a ___________ 0 
. 

.

~‘ig. 4. Astigmatic Bundle of ays
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Let A2 be the intensity of the field at S and A~, the intensity

at the reference point 0. For an isotropic, homogeneous medium

A2d0 = A2d0, (2)

where dc is the cross section of the tube of rays at S and ddc, is

the cross section at 0. Therefore

A A01f~~,/do (3~

If a is the distance from 0 to S, then

‘°i4— — (4)
th~ (ñ+ s)(,~~

+s)

where and P2 are the principal radi i of curvature of the wav e—

front through 0.

Applying the energy conservation principle to a narrow strip

of rays on a curved surface (see Fig. 5) gives

A
2
(J+ aJ)d?(J+ d9) - A

2
(~~)d1(2) =

(5)

where 2’I(~~) is a proportionality factor relating 
the change of flux

to the energy radiated. Dividing by dl and letting d.~ tend to zero

gives

= —2~(A
2
d7) (6)

10 
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Fig. 5. A Band of Diffracted Rays
on the Surface of a Diffracting Object

Upon integrating Eq. 6, the result is

A(Q2) A(Qi)/~~~~x~[-J~~~
(2)d2] (7)

where d11 and d?2 = the seperation between a pair of rays at and

~2 
respectively.

= the attenuation constant which is a function of

~Q and the coordinates along the surface and de—

pends on the local radius of curvature and its

derivatives.

From Fig. 3, Q2 is a caustic of the diffracted field and the

second coustic is located a distance p from Q2. The caustic of a
given family of rays is defined as that surface or curve which is

everywhere tangent to the ray surface. Thus the surface of a

diffracting body is a caustic of the family of diffracted rays re-

sulting from a given field being incident on the body. Thus the

binormal component of the diffracted field which radiates from Q,,

towards P can be found using a caustic at for a reference point as

= D~
(c 2)A(-~2)exP(itc;2)f~~~ ~~exp (-.~ks) (8)

~~~~~ IlI1I~ 

11
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where D8(Q
2
) is a diffraction coefficient of the soft boundary.

Based on the reciprocity principle——that a source at 0 produces

the same field at P as a source at P produces at O—D5(Q~) has the

same form as D5(Q1). Combining Eqs. (1), (7), and (8) yields

b2 
. ?(p) = (

~ 
. j1(Q1))D

2
(Q1)D

5(Q d

vl
lf~~I: s)

• expf—jk() + s) .4 ~L~
(J) c~J (~~

)
L J

The incident field b1 
• E’(Q1) excites 

an infinity of surface

ray modes, each -with its own diffraction coefficient and attenuation

coefficient. For example, in the canonical problem In Appendix A,

if the field scattered from a cylinder given by Eq. (58) is approx-

imated asymptotically, it is seen that there is a surface ray mode

associated with each term of the series, i.e., with each value of m.

Therefore, Eq. (9) is replaced by

= 

~~ 
~ 1

(Q1)jJ
~~~~

/
~
ç
J

a 

~~exp (-jk (J + s))

Q1 ) D (  
~2 )ex4_j~ o ( ( ~l )dIj (10)

This equation relates the diffracted fi eld at P to the incident

field at for the soft boundary condition.

An expression similar to Eq. (10) is also obtained for the

n~ rma1 component of the incident field:

12 
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d
(~~) = (

~~ 
~1(Q)~~~~~

f
~~~~~~OXp (~~ k (J+ s))

~ ~~iD~(Q1)D~(Q2)exPf_j <(~ ) d1] (11)

In this cases the soalar diffraction coefficients and attenuation

constants for the hard surface diffraction replace those of the soft

surface. The vector diffracted field at P can now be written in

terms of the electromagnetic field incident at as

= (~ 2~1’,(Q1,~2 ) + b~b1u 1,Q2 fl . (Q,)~((fl
’
~~~~exP(_iks) 

(12)

where v(Q1,Q2 ) and u(Q1,Q2) are equal to

4icxp(~ jkI) ~~lD(Q,)D(Q2)exp~
_ç2d (2)d.~

] 
(13)

with the superscripts h and s, respectively added to D5 and $~.

The dv~ , ds?~ 
and~~are found by differential geometr.y involving the

rays and surface; this is discussed at length in Levy arid Keller

(Ref 15).

To obtain the diffraction arid attenuati~n constants, the

exact canonical solution of the boundary value problem for the

diffracti -~n in question must be known. Such a solution is expanded

asymptotically for ka large where a is the radius of cu rvature

for cylindrical diffraction. By comparing this exransion with the

OTD solution, the values of ~ and D can be deternined. ApPendix Am m -

contains a derivation of the -‘~erer-~1ize~ diffraction coefficient

13 
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and attenuation coefficient for diffraction by curved surfaces.

The diffraction thus far discussed is applied to an open

curved surface. For a closed surface, each surface ray mode pro-

duced at encircles the surface an infinite number of times. The

length of the surface ray path for the nth encirclement is ~~ + nT

where T is the distance traveled in one transversal of the closed

surface. These multiple encircling rays may be summed to contribute

1 — exP[_~kT _ J0~~~~~d1J (14)

to the denominator of the diffracted field. Note for this derivation

that the exp(jkz) convention has been adopted.

Direct Rays

The rays emanating from a point current element with current

moment 14x determines the incident field for the diffracted and

reflected rays as well as the field at all points where Ferniat ’s

principle produces a straight line from the source.

Referring to Fig. 6, A is defined as (Ref 19: 16)

I AX exp(—jks ’ )
° (15 )

4qs’

Applying Maxwell’s equations

— A A
H = V x A ~

x =  VA~~
X X  (16)

IAx 7 exp (— ~kS ’) A
(17

14

— —
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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= ~~~~~ — ~~~~~~~~~~~~ ~ (18)

x

& 
~~~~~~ P

Fig. 6. Geometry for current source at origin

Since A
x = x (~ cos~ — ~~in8) = — +5m G (19 )

then H = + 
_i~

J
exp(~~jks~~)s ine4~ (20)

In the far zone field the l/s’ term is dominant , the 1/s ’
2 term

tending to zero much faster than u s ’ therefore it can be neglected.

The elect ric field is obtained from

E = - ~~~V x H  (21)

• to give

= ~~~~~~~~~~~~~~~~~~ 1~
’_1

~j sm n e~ +

. ~~~f c~_i
j c~~. ~ (22)

15 ~~~~~~~~~~~~~~~ 
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Again, in the far zone field the 1/8’ term is dominant and the

direct electric field becomes

B exp (—jks’) 4~~
’sinG~ (23)

Launching Coefficients and Constants

The theory presented up to now has assumed a point source near

a cylinder. J!onopoles mounted on a cylinder could be modeled as a

line of point sources with sinusoidally distributed amplitudes,

using this theory. The far—zone field would then be the result

of vectorially summing the fields from each source point at each

field point. . The result is a.large number of ray tracings and field

calculations for even a simple antenna array.

To simplify the calculations, the aum of the incident fields

due to all of the point sources making a monopole model are approx-

imated by a launching coefficient. To determine the launching

coefficients, the radiation from an axial mounted electric current

source on a perfectly conducting cylinder is analyzed. The asym-

ptotic solution of this canonical problem is described in Appendix

B, where it is found that

= —( 4— ) }~~, ‘(ka)D (C 1) (2 3)

• 
L~ = _j(

’/’2
H~
2)
(ka;D~(Q1)

where are the :eroes of the Hankel function in the first equation

‘ncl th~ zeroes of The der1.~rative -f the ~an.kel function in ~~
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second equation. Note that is now the source location. These

launching coefficients are valid for monopoles whose length is small

in comparison to the dimensions of the scatterers.

Eq. (12) now becomes

= 
~~ 

v(Q1,Q2) + ~~ u(Q1~Q2))~~~~~
°-~-jexP(-iks) (24)

where v(Q1,Q2 ) and u(Q1,Q2 ) are equal to

•
~~

1 xP(_ikl)
~

Lm(Ql)Dm(Q2 )exP
E ~~~~~ (25 )

with- the superscripts h and s, respectively added to D
~
, L

~
, and

Diffraction Coefficients and Attenuation Constants

The diffraction coefficients and attenuation constants depend

on the local geometry of the surface, the wave number k, and the

nature of the surface, as described by the boundary conditions.

Voltmer (Ref 20) has derived the diffraction coefficients and attn—

uation constants for general convex surfaces and are included in

Table I. Appendix A contains the derivation of D
~ 

and for a

cylinder.

To first order these functions are

1/3

• = 

~
_(
~

) q~exP(i1T/6) (26)

1/2

D
S
)
2 exn(—jiT/12) (27)

S 25/~
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for the “soft” surface, where Pg is the radius of curvature of the

surface along which the surface ray is propagating in the plane

containing the normal and tangent to the surface ray , and

k 1/3

~~exp(jiT/6) (28)
-

~~~ 1/2
exp(—jiy/l2) (2 )m = 

2S~~T
l’2(kp )

l/6
~ i~~~ n~~

2

for the hard surface, where the Miller-type Airy function -is given

by 
-

A1(x) fco8(~t
3 - xt)dt (30)

Aj(_q~) — 0 (31)

= 0 (32)

where and 
~m 

are the zeroes of A1 and A~
’ respectively with the

prime denoting differentiating with respect to the argument of the

function. These zeroes are calculated in Appendix C.

The terms “hard” and “soft” refer to the boundary conditions.

A soft boundary condition is a Direchlet boundary (the field van-

ishes at the surface). A hard boundary is -a Neumann boundary

condition (the normal derivative of the field vanishes at the

surface). This assumes two types of surface ray modes; one in
‘
~ which B — bE, satisfying a soft boundary condition , and one in

w~ich E - ~F, -atisfying the hard boundary condition. The cor—

restondinc coefficient approximations are essentially what Keller —

and Levy (.9ef 15:166—169) derived. Table I contains Voltmer ’s

19
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-: corrected results. -

Transition Regions

The series representations are rapidly convergent when the

field point is deep in the shadow region. When the local average

radius of curvature of the surface is larger than a wavelength at

the points of diffraction , only the 1st terms are neccessary to

achieve good accuracy. As the field diffraction point Q2 approaches

Q1 (i.e. .f becomes very small), more terms must be added to maintain

accuracy and it becomes inconvenient to treat the excitation,

propagation and. diffraction of the surface ray seperately. The

series representation can now be approximated by integral represent-

ations, which have been found to be proportional to Pock type

functions. Wh en the source is on the surface, the angular extent

of the transition region from the shadow boundary is nearly

(kp Y~~~ radians . The expressions for the fields in the transition

region are also deduced from the asymptotic solutions to appropriate

canonical problems as described in Appendix B.

The well tabulated Pock functions (Ref 21) are

1) Hard Pock function

* 
1 (ex~~-i~~~~ 

~ (33)
~w1

r1 w~(T)

• 2) Soft pock function

1 (ex ~
(_ ii~~~,. (3d)1~’ir1 w9(T) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —• —— ~~~~~-
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which are described in Appendix B and tabulated in Appendix G.

The argument of the Pock function to the first order is

t~2 ‘k ~l/3

~~~ 

, J ~~~~~ dl (35 )

When the field point is in the shadow region, J> 0 and when the
field point is in the illuminated portion of the transition region,

1 <0, where 2 is the distance traveled on the surface of the

cylinder. Note that for these expressions that the surface ray

divergence factor d71/d12 is equal to one in this region.

In the transition region, for sources very close to the surface

the term

r t Q 2 1
• ZL~(Q1)D~ (Q2 ) exP [_) e(5(~~)dJ~ (36)

m=l j

in Eq. (25 ) is replaced for v(~ 1,Q2 ) by

~~~~~~ j~~0 (37)

and for u(Q1,Q2 ) by

. 2/ç )g (ç ), 1~~, o

J~~o (38)

1kp~(Q1 
)\l/3

wher e n i =~~~ 2 ) (38)

= (~g 2 ~~~~~~i~~ (39 )

21
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III. Diffraction ~~ an

Infinitely Long Elliptic Cylinder

The special case of the GTD solution treated here is one in

which l/4A monopole antennas are mounted on the curved surface of

an infinitely long, 2)~ by 4~ elliptical cylinder. An average

wavelength of 1 meter is assumed for this problem.

The particular array to be considered is depicted in Fig. 1.

To solve the field problem , each monopole is approximated by a

launch coefficient. The field at the field point P will be the

Bum of the fields produced by each source.

,~~~~~~~~ ~pproximations

Previous work by Pathak and Luebbers ( Ref 22) has shown that

in the illuminated region (P1, see Fig. 7), the diffracted rays

and 
~2 

have a negligable amplitude compared to the direct ray

For point sources on the cylinder, the field can be modeled as

only ray 
~~ 

and Eq. (23).

In the shadow region only the diffracted rays s
~ 

and

contribute to the field at P3. Since the rays leaving Q1 (or o)

and encircling the cylinder n times, cover a cylinder circumference

of about nine meters, they are heavily attenuated and their effect

is very small. The field at P
3 
is then the sum of the rays

and ~1Q3
P
3 
applied to Eq. (24).

In the transition region, the integral form in Eq. (36 ) and

are ‘~oed to solve fo~ t~ e field ~t F- , a~r.in ~-~~r.1ified ~~~~~

t”-~.:e “ays which enci rcle t~ e cylinder ~re or more times.

22
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Note that for s~ the diffraction field formula in Eq. (23) is used .

For the equations in all of these regions , the spread factor

dq1/dq2 is one.

Field Equations

The GTD solutions for the radiated electric field of a point

source on an elliptical cylinder, as shown in Fig. 8, with all

amplitudes combined into A and neglecting torsional effects are

Lit Region

B — —A sin(05)exp(_j(ks’ + cp)~~~ (40 )

Transition Region

a) Lit side

B ~ 9sin(em ) exp -[-i(k(s _ J )  ~~}g
*(_ ~ ) (41)

b) Shadow side

~~~~ ~ 

1/6

E =4 exp~_j(k(s +1) + ~)g
*
(~~
)(
~~
(r
2
)
~ 

~ (42)

Deep Shadow Region

B = ZA exp[—~(k(s + 1) +

~1

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (43 )
m=l 

~l
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Where
*g ( )  complex conjug ate of the Fock function (Ref 21)

A A
n, b, t normal, binormal and tangent unit vectors to

the surface

fig longitudinal radius of curvature

defined in Eq. (35 )

f phase of source

A amplitude of source

s’ distance from source to diffraction point or

field point if cylinder is not intersected.

a distance from diffraction point Q~ to field

point

• Geometry of Elliptical Cylinder (.Equations)

In order to analyze this problem by GTD, an efficient solution

for the geodesic paths on the elliptic cylinder must be found. The

coordinate system adopted here is illustrated in Fig. 9 and defined

b”
x = d  cosh u cos v = af cos v

y d sinh u sin v = bf S lf l  V

z = z  (44)

where 2d is the distance between the foci of the ellipse. To define

an ellipse, u must equal tanh~~(bf/af). The coordinate v then

defines any point on the ellipse and varies from 0 to ~~~~.

oin~ the cai.~u1us of variations, the reodesic raths on an

ellirtic ~‘~rf-~ice a-’~ ~~i i €~’. b:;

26
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+ b~cos2v d v  (45 )

where v1 and Vf are the equivalent of and Q2 respectively in

this parametric form.

‘ Y
V:V3

2 u:u3

v~ vI

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ tS:O V :O

X

Fig. 9. Elliptic Cylinder Coordinate System (Ref 14:26)

If one defines the geodesic starting direction by the angle (~~
)

as shown in Fig. 8, then C = —cos .~~. The parameters of the

problem are
V

= sin 2 v + b~ cos2~~~~v (46 )

27
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2 = si~o(8 
jV

f 
~~~~~~~ 

~~ + b~~ cos2
~~

’dv (47) 

-

( arc length)
A—a sin v x + b c o s vy

e = _ _ _ _ _ _ _ _ _ _ _ _ _  ( 4 )1 J2 . 2 2 2
yaf 5ifl v + bf cos v (curvalinear

coordinates)

e2 = z  (49 )

a sin 5~1 — cos~~~ 2 (unit tangent (50)
vector)

A A

~ bf cos v x + a f sin vy
n = 

~~~~~~~~~~~ . 2 2 2 ‘ ( unit normal (51)

~af Sifl v + bf COB V vector )

P4 A A A •b = t ( n = —coa ’(~e1 — SiflSC e2 (unit binormal (52)

vector )
2 2 2 2 3/2(a sin v + b  cos v)

. 2
-• af bf Sifl

S 
(longitudinal

radius of curvature)

Using the preceeding Eqs. (40)— (53), the total radiated field for a

point source on a cylinder can be determined.

28
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IV. Pattern Calculations

The field equations (40) — (53) are used in the following

figures to calculate the field due to the array in Fig. 1. The

tabulated fields due to each monopole are included in Appendix G.

To verify the general GTD equations derived for a znonopole,

the antenna pattern for a single monopole on the cylinder was cal-

culated and compared to experimental results obtained from published

literature (Ref 3:662). Fig. 10 contains a plot of both the experi—

mental data and the calculated values. The variation of the experi-

mental field is do to interference from the rays that encircle the

cylinder more than once. It was assumed in the calculations that for

fields not in the deep shadow region, that only the dominant term

would be considered.

Fig. 11 and Fig. 12 (Ref 14:64) provide a means of comparison

of the calculated values with those obtained from a scale model test

of an aircraft. Fig. 10 and Fig. 11 are almost identical except

that the theoretical case exhibits a stronger field in the deep

shadow region. The effect of wings (Fig. 12) on the aircraft causes

an even further degradation of field strength in the shadow region.

The calculated antenna patterns are therefore valid as a good approx—

imation for 0 within the range of + 105° with respect to the antenna

when the antenna is mounted near the top or bottom of the fuselage.

Fig. 13 is a plot of the antenna pattern of antenna 2 or 3. Do

to symmetry, their patterns are reflections of each other. The

effect of mounting the antenna off of the main axis of the cylinder

is to c~ii ft the nulls of the pattern as well as cause s~arDer

29
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changes in the pattern where the minima of the radius of curvature

of the cylinder occur. Note that the null has shi ft ed about 26°

from its position in Fig. 10 although antenna 2 and 3 are mounted

perpendicular to the cylinder surface at a point that is about 14°

off of the primary axis of the ellipse (v~~~ 14°). This shif t is

caused by the antenna angle in space being about 260 from the ver-~

tid e.

Fig. 14 is a plot of the antenna pattern with all three

elements of the array driven with the same amplitude and phase.

Comparing this pattern to that of a 3—element triangular array de-

picted in Fig. 15, driven under the same conditions, shows that the

cylinder has the effect of broadening the lobes as well as increasing

the angle • where the pattern maxima occurs. The result is a pattern

more like that of a single monopole or dipole in space.

Fig. 16 is a plot of the antenna array pattern with element 1

driven 450 out of phase with elements 2 arid 3. It takes very l i t t le

phase change to drastically alter the pattern. The effect of the

out of t hase element is to focus more of the energy in the lit region

of the cylinder. By changing elements 2 or 3 such that they are out

of phase with each other should eliminate the null at ~ = O and also

allow the lobes to be moved or combined into a narrower beam as well

as move the nulls.

30
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Fig. 13. Antenna pattern of monopole mounted at
9 = 14° on a 2A by 4A elliptical cylinder.
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V. Conclusions

The geometrical theory of diffraction has been extended to

treat monopoles on perfectly conducting, cylinders of variable

cuzvatu±e. Following Pathak’s approach (Ref 23:19—20) of defining

a launch coefficient for a slot in a cylinder, a launch coefficient

for a monopole was obtained . For the monopole case , the launch

coefficients are the same as for an axially mounted and a length

wise mounted slot superimposed on each other.

By carefully keeping track of the distance traveled by the

diffracted rays an interference pattern for two or more rays or

two or more sources was obtained . If the field pattern is analyzed

in such a way as to let the observation distance approach infinity,

then the phase could be approximated as the phase at the diffraction

point for the ray leaving the cylinder (Q2). In the illuminated

region the phase would be assumed to be that of the source. Although

this approximation is valid it was assumed for this problem that

since this antenna is to serve as an air to air communications link

that the range was not infinite. A nominal distance between com-

munication points of 300 meters was assumed such as to account for

aircraft in close proximity to each other. The field further out

will ju3t have a smaller ripple on the lobe boundary due to the phases

of the wavefronts being nearer the same as a function of their dis-

tance allowing the previüus, ap roximation to be valid.

The effect of the cylinder is to broaden the beamwIdth in the

~~inciple rl ’ne. ~
y mounting the  antenna ~erm end ic~ 1ar to the sur-

face, the c~~n~~i t~~on of th e  anternas no~ heir~ ~~~~~ in the x , y

38
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plane resulted. Linear array theory was therefore not valid (i.e.,

an array factor is not present). If the antenna were mounted par-

allel to each other, the effect would be similar (in the lit region)

to tilting a monopole on a flat ground plane so that one side of the

beam is directed into instead of along the ground plane. Again,

linear antenna theory would not apply. If the field point is in the

deep shadow region of all three elements of the array then the

result is sri equivalent linear array summation at the diffraction

point Q2 but it is only valid for that field point producing a

tangent at Q2. It can also be assumed that the angle with which the

antenna is attached to the surface and not its angle with respect

to the center of the cylinder controls the location of the nulls.

The array analyzed provides a broad. beam for communication

problems but with high mobility of nulls for a null steering use.

Due to the creeping wave effect, it appears it would be very hard

to create a single beam in one general direction. The symmetrical

cylinder would tend to cause mult i~ le lobes as in Fig. 16 . An end

fire or broadside pattern in the x, y plane is not readily ob-

tainable because the elements are not parallel. However when

analyzing the fields in the x, z plane 
~~~~~ 

0, 180) the antenna

elements appear to bea•linear array with antenna 2 and 3 reduced

in height. Planes of view in between (0 < ~~~ 90) would be a

combination of the two approachs although the GTD can still be

applied directl.i and obtain valid results.

39

~~IhI.~ - - —  — -~~~~ •—•—--- . - - —-•--- — - - - —- V-V •V V -  

a — 

~~~~~~~ _ — - -  
- -  - -  —



Bibli ogpaphy

1. Carter, P. S., “Antenna Arrays Around Cylinders,” Proceedings
of the IRE , 31:671—693 (December 1943).

2. Carter, P. S., “Antenna and Cylindrical Fuselage,” Report No.
895—11, Rocky Point, RCA Laboratories, N.Y. (December 24, 1943).

3. Sinclair, G., “The Patterns of Antennas Located Near Cylinders
of Elliptical Cross Section,” Proceedings of the IRE, ~~~660—
668 (June 1952).

4. Ri chmond , J. H., “A Wire—Grid Model for Scattering by Conducting
Bodies ,” IEEE Transactions on Antennas and Prooa~gation, AP—l4:
782— 786 ( November 1966).

5. Richmond, J. EL , “Computer Analysis of Three—Dimensional wire
Antennas,” Report 2703—4, The Ohio State University Electro—
science Laboratory, Department of Electrical Engineering;
prepared under Contract DAAD 05-69—C—0031 for Ballistic Research
Laboratory (22 December 1969).

6. Wang, N. L, “Sinusoi4al Reaction Formulation for Radiation and.
Scattering from Conducting Surfaces,” IEEE Transactions on
Antennas and Propagation, AP—23:376—382 (~:ay 1975).

7. Balanis, C. A., “Aserture Radiation from an Axially Slotted
Circular Conducting Cylinder using Geometrical Diffraction
Theory, ” IEEE Trans. Antennas and T~ropagat ion , AP— 17;507—5 13
(July 1969).

8. Balanis, C. A., and Peters, L., “.~nalysis of Arerature ::adiation
from an Axially 3lotted Circular Conducting Cylinder tJsin~
Geometrical Theory of Diffraction,’ I~~E Trans. Antennas ardPropagation, AP—l7;93—97 (January 1969).

9. Balanis, C. A., “Radiation from Th10Node ~1ots on Circular and
Ellipt ical Cyli nde rs,” IEEE. Trans. Antennas and Propagation ,
AP— 18;400—403 ( :~ay 1970). — __________

10. Ryan, C. E.,  Jr., “Analysis of Rad i-~tion -atterns of Antennas
on Finite Circular Cylinders and ConicJly—Capoed Cylinders,”
Report 2805—2 , the  Ohio tate ~lectroscience Laboratory, Dept.of Electrical Enp~ineering. Fre~ared under contract DAA21—69—
C—0533 for hicatinny Ars enal.

11. Furnside, ~. D., Gilreath , M. C. ,  !aarhefk a , R , J. and Yu , C. L.,
“A 3tudy of KC— 135 :‘~irCraft Antenna Patterns,” IEFE Trans. on
Antenn~~ 1’ . :l ~r o - a ~ a t ion ,  .; —23 :33~;—3lo ( ..ay 1275)

40  

-~~~~~~~~~~~ -_



12. Burnside, W. D., “Analysis of On—Aircraft Antenna Patterns,”
Report 3390—1, the Ohio State University Electroscience Labor-
atory, Department of Electrical Engineering, prepared under
contract N62269—72—C—0354 for Naval Air Developement Center
(August 1972). (liD 777 989)

13. Marhefka, R. 3., and Burnside, W. D., “Numerical Solutions to
some On—Aircraft Antenna Pattern Problems,” Technical Report
3390—4, the Ohio State University Electroscience Laboratory,
Department of Electrical Engineering. Prepared under contract
N62269—72—C—0354 for Naval Air Developement Center (October
1973).

14. Tu, Chong L., “Volumetric Pattern Analysis of Fuselage Mounted
Airborne Antennas,” Ph.D. Dissertation, Columbus, Ohio (April
1976 ) NTIS Library no. N76—224l9 .

15. Levy, B. R., ane Keller, J. B., “Diffraction by a Smooth Object”
Communications in Pure and Applied Mathematics, l2 ;159—20 9
(February 1959).

16. Franz, W., and Depperman, K., “Theorie der Beugang Am Zylinder
unter Berucksichtigung der Kreisshivelle , ” Ann of Physik,l0;
361—373 (June 1952).

17. Franz, W., and Depperman, K., “Theorie der Beugang Am Zylinder
unter Berucksichtigung der Kreischwelle,” Ann. of Physik, 14;
253—264 (.~une 1954).

18. Kouyoumjian, R. C., “Asymptotic High—Frequency Methods,”
Proceedings of the IEEE,,~~;864—876 (August 1965).

19. i4eeks, W. L., ~ntenna Ent~ineering. New York: .cG raw—Hill Book
Co., 196~ ).

20. Voitmer, D. ‘., “Diffraction by Doubly Curved Convex Surfaces,”
Ph.D. Dissertation, The Chio State T niversity (1970)

21. Logan, Nelson A., “General Research in Diffraction Theory,”
Jol. 2, eport LMSD—288088, —lissles and Stace Division, Lockheed
Aircraft Corporation, (December 1972). (tD24l 22~ , L~243 182)

22. Pathak, P. H., and Luetbers, R. J., “An -‘nalysis of the Radia-
tion from ~onopoles in Curved Surfaces,” Report in ‘reparation
fo r publication. The Chio .~ta te University nlectroscience
Laboratory, Derartment of Rlectrical Er~-ineering.

‘ 23. Pathak, P. H., ~nd I~ouyoum ,~ian, ~~. C., “The Radiation from

~t-ertures in C~~~ed .urfaces ,” ~TASA , ~azhint~ton . D.C.. Retort
NASA CR—22u3 . Fre~nired under irrant :~GR 3o—OO-~—144 to the
ilect:-o. cience La~ora~or~, 2erarttnent of ~lectnical Rr.~ tneenin~
Ohio 2tate ‘ nive~oit:7, Columbus (July 1Q73). 

- --- ~~~~~~~~~~~~~~~~~~ 
1_ ._ _ -V _-V.._ _ _ _~~_ -V~._



~1

24~ Harrington , R. R .,  Time Harmonic Electromagnetic Fields, New
York: McGraw—Hill Book Co., 1961.

25. Bowman, J. 3., Senior, and Uslenghi, P. L. E. (Ed’s) Electro-
magnetic and Acoustic Scattering ~~ Simple Shapes. North
Holland Publishing Co., 1969, pp. 380—395,

26. Tyras, C., Radiation and Propag’~tion of Electromagnetic .iaves,
New York and London, Academic Press, 1969.

42

________________________________ --



Appendix A

Derivation of D and .(

The first step is to formulate and solve the boundary value

problem of diffraction of a cylindrical wave by a circular cylinder

of radius a. Then the solution will be expanded asymrtotically for

large values of ka.

In order to simplify computations and avoid resetition, a

scalar field is assumed with conditions stated to allow for hard

and soft boundary conditions. This scalar field u(r,ø) must satisfy

the equation

(v2 + k
2

)u - S(r  -~ 
)
~

(e) (54)

Two different boundary conditions at r = a will be considered. They

correspond to different physical problems.

By expanding the diffracted field in cylindrical wave functions

and imposing the boundary conditions (Ref 24:Ch. 5) the field for

the ray OQ1Q2P as shown in Fig. 17 becomes

03 (ka )
u 

~~~~~~
exp(_jm

~~~
Tm(kr() - 

OH ~ka
”
~

2

~ 

H~
2
~(kr > ) (55)

r > a

Here r> and r< are, resrectively, 
the larger and ~ma1ler of the

~~ntitie~ r ~r’~ ,A.
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Fig. 17. Geometry for Diffraction

The operator G, which is determined by the boundary conditions

as given in Table II.

Table II

The Operator C

C Boundary condition Field Equivalent

Case I: 1 u 0 s u = E~; perfectly
conducting
cylinder

1u
Case II : = 0 h u = H~

; perfectly
conducting
cylinder

The representation of the field as given by Eq. (55 ) is valid

only for small values of ka. A numericall.y useful result for large

values of ka is obtained by emoloying the well—known Watson trans—

formation which leads to an asymptotic expansion of the field.
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Accessible descriptions of the method are given in References 25 and

26.

Letting C be a contour encircling the real axis as shown in

Fig. 18, the sum in Eq. (55) becomes

exp( jV (e - ~~~ 
H~~~ (kr ,)

U — siri(VTT) GH~,
2
~ (ka )

(56)

. (GE~,~~(ka)J~(kr<) — GJ,(ka)Hj,
2)(kr<))dV

When vie replaced by —2Pon that part of the contour for which

< 0, Eq. (56) becomes

cos(V (8 - ii)) 4~~(kr>)
U = 

~
) D sin(V77) 

G4~~(ka)

• (GH~~~ (k a)J~(kr< ) — GJ~(ka)H~~~(kr<))dy (57)

if PL.AN E~
— -*.

‘4

S.

~‘i~’. 18. T:ne r n t ~: of ir . e~ rat~ on :or  the
-iatson type in t er r n ’. ro ooent~ ticn of’ th~

f’iel-S dif’fracted ~ cvlird~ r 

-~~~~~~~~~~~~~~~~~ ~~~~~ ~~- . -  - - -
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If the point (r ,e) lies in the geometrical shadow, the contour

D can be closed in the lower half—plane. The integral can now be

evaluated by comput ing the residues at the zeroes of GH~~~ (ka).~O.

This yields

GH(1)(ka)
U — _

~~
_
~~~

cos 
:..~~;T

)) 
j 

_II~Y kr)H.~,
2
(k
f
) ( 58)

W V in

The values for ~~~ are given in Table 1V, App endix D. Asymptotically

expanding the Hankel function appearing in Eq. (58) (Ref 18:365—866):

2 2 1/2 2 2 1/2
,j exp(—~k((r — a ) + (~ — a ) ))

2k(r2 — a2)h14(p
2 

— a2 ) 11~
’4

cos(V (G — ir)

m=l sin(~çn~

GH~~~ (ka )

~ exp( j~~ ( cos~~ (~~) + cos~~(~~) ) )  ~~ (59 )in r L
~GH(’~ (ka)

cos(V (~ — nflUsing Euler ’s eauati-’n to replace 
— 

m yields
sin(V G)

• • 2 2 1/2 2 2 1/2p exp(—~k((r — a ) + (P — a ) ))

2k( r’~ — a2 ) h/’4
(p

2 
— a2~~i4

• ~~~ exp (—j)~~~~~ + exp (_j1mm)~~~
m=l 1 — exp (—j2TT~~)

GH~~~ (ka )
e (if (co ~~~(~~) + ~~~~~~~~~~~~~~~ (60)

- ( :za )
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where p
1 

= 
~~ 

and = 211 —~~~ Eq. (60) contains the leading terms

in the asymptotic expansion of the field in the shadow region.

To calculate the GTD field, Eq. (12) in the text of the thesis
*is used as a starting point. For a torsionless surface path on a

cylinci~r, no E field exists in the ~
‘ direction so Eq. (10) is equal

to zero and Eq.(l2) may be written as

U = U~1/~~~~~~~~~( p +  ~)
-exP(_ik(

~ 
+ s)

~~~Dm(Ql)Dm(Q2)exP[_~~~~~(2)d~] 
(61)

rn-i

with u~ ~~~
‘
~~xp(—j(kR + 

~~
) (62)

Due to the symmetry of the problem it is clear that the geo—

desics are arcs of the generating circle of the cylinder. Further—
-

more , the quan ti ty df/1/dP22 has the value unity since a band of dif-

fracted rays does not  spread on the cylinder. Also, the radius of

curvature 
p 

in Eq. (61) is infinite so that 
~~~~ 

~)~)1~”2 assumes

its limiting value ~—1/2~ Moreover, because the geodesic curvature

of a ray is constant, the quantities ~~~(J) and Dm ( ” )  are constants

with D~
(Q 1) = Dm(Q2)~ 

Introducing these simplifications into Eq. (6])

and using Eq. (62), not ing that i~ at is (~ 2 — a2)]12. Then

Eq. (61) becomes

*A torsionless surface path is one whe:e the direction of b

doeu not chance alonr a .--ccdesic oath on the cylinder.
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- exP(_i(k((p
2 

— a2 u/2 
+ a) +

—

• ~~~D~(Q)exp(—jk — o~~) I)  (63)
rn-i

Eq. (63) gives the field associated with any ray from 0 to P

having an arc length I o~i the cylinder. For the ray CQ
1Q2P, 

the

length! for a circle has the value = aO— a cos~~(a/p) —

a cos~~(a/r), while a = (r2 — a2)
1
~
’2. In addition to this ray,

all of the rays which are tangent to the cylinder at and encircle

the cylinder g times before emerging at are also diffracted rays

through P. For these rays I has the value tg = + 2gITa. Inserting

this value of I into Eq. (63) and summing over g, the diffracted
field at P due to those rays which are tangent at is given by

~ 
- a2)hh

I4
(r2 - a

2
)u”4~~~~ 

i( ((p - a2 h/2 
+ Cr

2 
- a

2
)
hh’~~~~

~~
1
~~~~p~~~jk 

_
~~m
)
~~
)(l - exp(2n(-jka - ao~~)Y

1 (64)

Along with the family of rays described above, there exists

other rays which are tangent to the cylinder at Q~3, encircle the

cylinder g times and then emerge tangentially at arid pass through

P. Computing the field along these rays yields a result of the form

of Eq. (64) with ~ replaced by 211— 8in J~. Adding this result to

Ea. (65), we obtain f~r the total diffracted field at P
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—j I~~ ’exp(—jk( (P 2 — a2)V2 + ( r2 — a2)V2) +)~~~11 - 
j~~

’(~~
2 

— a2)l~
’4(r

2 
—

~
° D~exp((—jka — a

~~
)’
~
’i) + exp((—jka — a.ç))~~~

1 — exp(2n(—jka — am) )

• exp((jica + ac&~)(cos~~(~~) + cos~~(~~))) (65)

where = e and 217 —0. Comparing Eq. (65) to Eq. (60) and

ignoring the amplitude and the phase of the source gives

.~~a —ik + izça~~

1/2 GH~~~(ka)

D~ = —(4Y 
~~GH~~~(ka) 

(66)

Expansion of OH~ (ka)/[(~/Jv)GH~,
2)(ka )J is done in Appendix D.

m in

Voltmer ’s generalizations for surfaces of variable curvature

are contained in Table I in the text, and are seen to be dependent

on not only /0g’ the radius of curvature of the surface with respect

to arc length along the ray trajectory, hut also fg’ ,
i~~~~ and

where the dot denotes a derivative with respect to arc length and

Ptn is the radius of curvature of the surface in the direction of the
binorrnal to the ray.
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Appendix B

The Launching Coefficient

The launching coefficinet is derived by asymptotically expan-

ding a canonical problem for ka large and comparing this to the GTD

solution as was done for the diffraction coefficients in Appendix A.

Start with Eq. (58) in Appendix A.

GH~~~~ (ka)

U = — 
~~~~~~~~~ 

~_GH
(2)(k)v v t

~ 
(58)

~~~~~~

OoS(Vm
(b — w) exp (—j j 4~j)~~ + exp (—j)~~~~

Replacing • = , and letting- sln(y iv) 1 — exp(—jz1f~’)

(i — exp(_j27T~~)~~~ = 1 for ka large gives

u - — ~~~~~~~ 

C H : )

• ex p ( — jj (~
(
~~) + exp (_jy

~’f’~) (67)

where =e and 217 — 9. Using the definition of the diffrac-

tion coefficient from Appendix A

GH~ (ka )
(66)

GH~
2
~(ka) 

- 

~2TI’ m

and the asymDtotic exransion -
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H~,~~(kp) 
5~~~~~oxP(kp 

— (2/+ i)~) (68)

and defining the boundary conditions as

- 0 for = a (hard boundary ) (69 )

and

u(a,’,,3) = a (soft boundary) (70)

then for the hard boundary condition, noting the results for a point

source in Eq. (23)

= I
~4~71((~

,
~
a) (71)

Then Eq. (67) becomes

B9 - 
~~~ X ~~~ [_jT (~~~) ’H~~~ (ka )D~]

+ exp (— iiç~t’2 )]

Ii exp (~~~ç,&
. D (72)

Referring to Fig. 17, the GTD solution for E with a launching

coefficient replacing the field incident at is

E e - CI
~ZL~

D
~
texP((_jka — a~~)’4~~)

+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(73)



Comparing Eqs. (72) and (73) gives

— 
k- exp(jn/4)

= ~~~~~ l/2Ii(2) (ka)D h (75 )

= ka — jJ~a (75 )

Replacing the hard coeffi ci ents with the soft coefficients and

differentiating H~,~~(ka) with respect to ka will solve the problem

for the soft boundary condition. H (ka) and H ‘(ka) are ex—yin

panded in Appendix D.

Comparing this to Pathak’s work on slots in cylinders (Ref 23:

- ‘  
46—62) shows that the same launch coefficient results for a magnetic

current source in the ~ direction. The soft boundary condition for

a monopole is equivalent to a launch coeffi ci ent of a magnetic line

source ori ented in the direction (circumferential slot). The

monopole can then be modeled as 2 magnetic line sources perpendicular

to the direction of the monopole elect ric source for fields in the

deep shadow region.
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Appendix C

Airy Functions, Derivatives and. Zeros-

The Airy differential equation,

— zw (z )  = 0 (76 )

yields two independent solutions which assumes several forms .

The form used in this thesis is defined by Miller as

Ai (z )  = exp( zt — t3/3)dt (77)

which for z x (x real) may be written as

Ai(x) = 
~ 
ç

cos(xt + t3/3)dt (78)

is shown in Figure 19. A. second independent solution is given by

Ai(ze~~
217”3) = [e~~~~e

_
~
2
~~
’3t — t3/3)dt

j2TI/3 I
= 

e J exP(zt  — t3/3)dt (79 )

while the ~ronskian relation satisfied by these solutions is
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- Ai(z)Ai~(ze 
2
~/3)e_J2~/3 — Ai (ze

_J2
~~3)Ai~(z) (80)

The derivatives are obtained by differentiating under the integrals

of Eqs. (77) and (79) .

The roots of the Airy function and its derivative which

satiety

Ai(z)  - 0 and A i ’( z )  - 0
are real and negative and are denoted as ~~~~~ and —~~~, respectively,

where m denotes the number of the root. The first two roots are

presented in Table III as are the values of Ai (_
~~
) and Ai’(_q~).

Table III..

Lily Functions, Derivatives, and Zeros -

rn Ai!(_q~) A
~
(•
~~

•
m)

1 +2.33811 +1.01879 +0.70121 +0.53566

2 +4.08795 +3.24820 —0.80311 —0.4 1902
(from Ref 20:149) 
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Appendix D

Rankel Functions

An evaluation of the integral resulting from the Watson trans—

formation requires the calculation of the roots of the equation

GH
~,~~

(ka ) - 0 (81)

where

1 Soft EM cylinder

G =

— I Hard EM cylinderIX 1~c k ~
A closed—form evaluation of these zeros is not possible. However,

an asymptotic representation of the roots may be obtained for large

values of ka. The procedure is outlined in Reference 20, pages

127 to 133. The results are listed in Tables IV and V on the next

page. The asymDtotic approximations for the Hankel functions of the

second order are 
-

2) 2 1/3 ( 2 2/3 
i.

~~~~ )
(ka) ~ 2 e ~ (

~~
) Ai(—q )~ l +(

~~~~~
) 

e J (82)

2) ~~~~~ 
2/3 ~ , 2/3 q ~~~~~~!)

‘(ka)’~
..—2e ~~~~~~~~~~~ Ai~ (_ ~~ ){l _ (

~~~~~~) 
~~e 

J 
(83)

an alternative form is

H~,
21
(kp ) ~~~~~~~~ —~(kp — (2/+ 1~~~ ( 6 :)
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Table IV

Hankel Function Zeros, G$~~(ka) = 0

Surface Zeros—2P

Soft 
~~ 

= ka + ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Cylinder - ka + ~~~~~~~~~~~~~~ 
~~

_ (
~
.+ ) ( )

(from Ref 20;l45)

Table V

GH~?~ (ka)
Hankel Function Quotient, 

~ “2”L...GH’ ‘(ka)
~y Y

Surface C—Cperator Quotient

1/3

Soft 1 
~—j5J~/6 

~~ 2 ‘ + (2 )

2
~
”3 

~~~~~ e~~~
”3

2fl(Ai’(—q )) 
a 3

- 
1/3/ka~

_____ 
e_351~

’6~TI 1 2 ~2/3 
q

.~ard 
21T~~(A i(—~~ )) 2 

1 + -
~~~~ e

( from Ref 20:136 )
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Appendix B

The Field in the Transition Region

The material for this Appendix is taken in part from Reference

23, pages 63 to 70. In the transition region adjacent to the

shadow boundary, the representation of the field radiated by the

monopole described by the launching coefficient in Appendix B is

poorly convergent so a different form is needed. It will be seen

that a suitable asymptotic solution can be obtained in terms of

integrals. The first order approximation is adequate for ka ~ 3,

and since the added complexity is hard to justify, only the first

ord er will approximation will be derived.

For the principle plane analysis of the cylinder (looking

length—wise down the cylinder), only the hard boundary condition

exists, therefore only it will be treated . The soft condition

is solved identically as below except without taking the ~u/~p.

The Watson transform is a—airi a~~lied to ~q. ( 55) ,  but th is

time the resulting extiression is left in the form of an integral.

In the far zone , H~,~~(kp ) is approximated asymptotically as in Eq.

(68) so that (see Ref 18:865—866)

~~~~

—k exp(—jkft)~~~ ( dV
è(’ 2)!8,Tk j  T~

..’ 
i=oj~~~

• 
H~~)’(ka)H~~~(ka) — U ’(ka)H~~~(ka)

H~~)(ka) 
-

exp(-~i~~ 1 + 2 17k)) + exp( -j ~~~ 2 + 2172) (84)
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?rom the Wronskian relationshi~ for the Hankel function,

R~’~ ’(ka)H ~
2
~ (ka ) — H,~

2)
~(ka)H~~~(ka) ~ rr ka (85)

then .u
à u ,,, 2jk exp(—jk~I ~~~(d m

kaY~ ii~3’ 
~~T 

1=0)

(exp (_jm (~)1 + 21tJ)) + exp(—jm(% + 2274’)) 
(86)

H~
2
~(ka)

Rerlacing H~
2) (ka ) by its Watson approximations (for  m’~ka))l )

gives rise to the Fock function representations for the

Ip~~~r a I 8lrkj s ~~ 0[ex~ (_ ika (~”i + 21r~) )  (~~~)
/

(exp(—j~
’
1?)

~~Jr w2( 1)  d? + exp(—jka(~t’2 + 211’l))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(87 ) -

where H(2)(k) ~~
2
~~~
’
~W (~.) and 41 - 

~~~ lf3

Here 
~~~~ 

is the Fock—type Airy function related to the ~‘il1er—

type ~~ry function by

w2(’r) 2lQexp(—jll’/6)A1(—Texp( jlT/3)) (88)

or = ,& çexP(~ z - z3~3)dz (~~~
)

with the contour of integ:ation shown in Appendix C.

Introducin~-’ tI-xe ~‘ock furctions
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~~~~~ ) 1/exP(_ i ~ t)~~?. (90)

then Eq. (87) becomes

1/3
~~~~~~~~~~~~ ~ (ç1)exp(—jk a~~ ) 

~~~~~~~

. exp (—jka~~) 
exp (—jkf) (91)

Where only the J=o term is retained for large ka. Substituting

this into Eq. (71), the far—zone electric fields for the line source

x I is

2 1/3C 
~~~~~~~~ 

1

. (~~~1)exp(—jka ) + ~(ç2)exp (—jka~~)) .

exp(—jkp) (92)

Comparing wi th Eq. (73 yields

v(Q1,Q2) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(93)

Tabulation of ~~(c,) is included in Appendix C.
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Appendix F

Field Data

The following data consists of the field at P due to each

antenna. Values were calculated for field points at a constant

distance of 300 meters. The angle v is the angle the field radius

vector makes with the verticle—the same as the parametric v used

in the mathematical model of the cylinder. The field is calculated

for v bètwBen0 and 180° in steps of 5°. Due to symmetry the field

due to antenna 2 in the 180° to 3600 range is the same as for

antenna 3 in the 0 to 180° range with the direction of the field

vector turned. around (shifted 180° spatially).

To calculate the total fields using these tables, add the

source phase of the ant enna in question to that in the chart for

that antenna, and multiply the x and y quantities by the source

amplitude. Iow for each field point determined by v, an x,y,shase

data point for each antenna is taken from the table. To obtain the

total field these three vectors are added vectorially.

Also noted are the equations which were used to calculate the

values in the chart . The equations are

Eq. ,~~ Equa tions used

1 Lit region Eq. (40)

2 Lit side of transition region
Eq . (41)

3 Shadow side of t~’— n a i t i o n  region
~q.(42)

-~ Deep shado’~: re~ :or. :a. ~43 )

61. 
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Table VI

Field Data
Antenna 1

v Eq. # Magnitude x y Phase[_j(1)J

0 1 0.000 0.000 0.000 0.00
5 1 2.944 —0.258 2.933 2.76
10 1 5.865 —1.024 5.766 11.01
15 1 8.740 —2.276 8.438 24.70
20 1 11.545 —3.957 10.798 43.70
25 1 14.259 —6.062 12.906 67.89
30 1 16.861 —8.479 14.574 97.07
35 1 19.330 —11.147 15.791 131.00
40 1 21.646 —13.986 16.521 169.44
45 1 23.793 —16.903 16.744 212.09
50 2 24.000 —18.463 15.337 258.61
55 2 24.510 —22.623 15.659 306.28
60 2 - 25.068 —21.781 12.409 344.02
65 2 25.479 —23.166 10.627 28.17
70 2 25.555 —23.907 8.589 76.30
75 2 25.480 —24.654 6.436 127.84
80 2 25.026 —24.674 4.182 182.32
85 2 24.304 —22.965 1.958 239.15
90 23.316 —23.316 0.000 3.06
95 3 22.223 —22.138 —1.937 79.95

100 3 21.082 —20.762 —3.661 156.54
105 3 19.826 —19.150 —5.131 231.73
110 3 18.771 —17.63 9 —6.420 303.32
115 3 17.618 —15.967 —7.446 8.05
120 3 16.366 —14.173 —8.183 73.22
125 3 15.310 —12.541 —8.781 137.67
130 4 14.466 —11.082 —9.299 195.93
135 4 11.399 —8.060 —8.060 208.36
140 4 11.468 —7.372 —8.785 284.12
145 4 10.830 —6.212 —8.871 344.67
150 4 7.950 —3.975 —6.885 50.41
155 4 9.520 —4.023 —8.628 107.02
160 4 6.316 —2.160 —5.93 5 128.98
165 4 8.580 —2.221 —8 . 288 164.79
170 4 3.831 —0 .665 —3.773 145.14
175 4 7.829 —0.682 —7.800 164.79
180 4 0.000 0.000 0.000 0.00
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Table VII

Field Data
Antenna 2

-v Eq. # Magnitude x y Phase[_j(.)J

0 1 15.418 0.000 15.418 22.90
5 1 17.970 —1.591 17.899 33.46
10 1 20.382 —3.578 20.066 49.28
15 1 22.635 —5.912 21.849 70.24
20 1 24.712 —8.521 23.196 96.17
25 1 25.595 —10.897 23.159 126.87
30 2 25.222 —12.699 21.792 156.53
35 2 25.220 —14.555 20.596 186.01
40 2 25.546 —16.516 19.489 220.88
45 2 25.606 —18.201 18.012 260.81
50 2 30.279 —19.442 16.135 305.37
55 2 24.678 —20.296 14.038 344.71
60 2 23.830 —20.707 11.792 36.77
65 3 22.866 —20.724 9.664 86.77
70 3 21.723 —20.413 7.430 132.00
75 3 20.575 —19.874 5.325 234.78
80 3 19.410 —19.115 3.371 7.94
85 3 18.229 —18.160 1.589 83.45
90 3 17.083 —17.083 0.000 196.85
95 3 15.960 —15.899 —1.391 274.39

100 4 14.854 -44.628 —2 .579 352.03
105 4 10.921 — 10.590 —2 .827 296.08
110 4 10.639 —9 .997 — 3. 639 18.86
115 -. 4 10.469 —9.4 63 —4 .424 110.64
120 4 9.859 —8.538 —4.930 190.99
125 4 8.484 —6.950 —4.866 272.01
130 4 8.274 —6.338 —5.318 347.50
135 4 6.569 —4.645 —4.645 79.73
140 4 7.771 —4.995 —5.953 144.93
145 4 6.136 —3.519 —5.026 189.05
150 4 3.825 —1.912 —3.313 286,93
155 4 7.305 —3 .087 —6.621 315.70
160 4 1.370 —0.469 —1.287 325.07
165 4 7.241 —1.874 —6,994 24.83
170 4 6.601 —1.146 —6.501 59.56
175 4 8.130 —0.709 —8.099 9.34
180 4 5.024 0.000 —5.025 117.38
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Table VIII

Field Data
Antenna 3

v Eq. # Magnitude x y Phase[_j ( .)J

Q 1 15.418 0.000 —15.418 22.90
5 1 12.745 1.110 —12.697 17.67
10 1 9.973 1.732 -—9.821 17.83
15 1 7.124 1.844 —6.881 23.36
20 1 4.440 1.443 —3.966 34.23
25 1 1.285 0.543 —1.165 50.35
30 1 1.658 —0.829 1.436 71.60
35 1 4.587 —2.631 3.758 97.81
40 1 7.478 —4.827 5.712 128.78
45 1 10.308 —7.319 7.260 164.27
50 1 13.056 —10.039 8.349 204.00
55 1 15.700 —12.905 8.943 247.67
60 1 18.220 —15.827 9.027 294.94
65 1 20.596 —18.715 8.600 345.45
70 1 20.810 —21.480 7.678 38.80
75 1 24.846 —24.039 6.283 94.60
80 1 25.670 —25.313 4.300 152.40
85 2 25.797 —25.713 2.082 210.15

L 90 2 25.842 —25.841 0.000 268.30
95 2 25.972 —25.858 —2.431 327.97
100 2 26.147 —25.719 —4.707 11.99
105 2 25.405 —24.496 —6.134 89.95 

-

110 2 24.700 —23.157 —8.594 150.92
115 2 22.770 —20.577 —9.749 212.65
120 3 21.622 —18.725 —10.811 289.60
125 3 21.618 —17.708 —12.400 332.50
130 3 20.368 —15.603 —13.092 0.72
135 3 19.219 —13.590 —13.590 58.52
140 3 18.288 —11.755 —14.009 108.95
145 3 16.926 —9.708 —13.865 161.14
150 3 15.697 —7.848 —13.594 206.92
155 4 14.397 —6.084 —13.048 273.65
160 4 11.630 —3 .97 8 — 10.929 304.16
165 4 11.513 —2.981 —11.126 347.31
170 4 8.274 —1.437 —8.148 329.34
175 4 10.593 —0.923 —10.553 345.40
180 4 3.329 0.000 —3. 291 290.14
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Appendix G

Table of the Hard Fock Function

The function is defined as

g(~~) ~~~~Je
xP(_

~~
t)W .tt) dt

Table IX

The Hard Fock Function

Modulus A rgument

—1.00 1.861 15.460
—0.95 1.847 12.626
—0.90 1.833 10.077
—0.85 1.818 7.801
—0,80 1.802 5.785
—0.75 1.785 4.016
—0.70 1.766 2.482
—0.65 1.747 1.174
—0.60 1.726 0.079
—0.55 1.705 359.187
—0.50 1.682 358.487
—0.45 1.658 357.971
—0.40 1.633 357.627
—0.35 1.607 357.446
—0,30 1.580 357.419
—0.25 1.552 357.536
—0.20 1.523 357.790
—0.15 1.493 358.172
—0.10 1.463 358.672
—0.05 1.431 359.284
0.00 1.399 0.000
0.05 1.367 0.812
0.10 1.334 1.713
0.15 1.300 2.696
0,20 1.266 3.755
0.25 1.232 4.883
0.30 1.197 6.074
0.35 1.163 7.323
0.40 1.12’~ 8.624 -

1.093
3.53 1.059 11.360
0.55 1.025 12.7~6



E. Modulus Argument
0.60 0.991 14.244
0.65 0.958 15.731
0,70 0.924 17.243
0.75 0.892 18.776
0.80 0.860 20.326
0.85 0.828 21.893
0.90 0.798 23.474
0,95 0.768 25.070
1.00 0.738 26.683

(from Ref 2l:ch. 4)
For more accurate values see Ref 21.
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