x - —

AD-A055 178 AIR FORCE INST OF TECH WRIGHT=-PATTERSON AFB OHIO SCH--éTC F/6 9/2

PRELIMINARY DESIGN FOR MULTIMODE MATRIX PERCEPTION EXPERIMENT S==ETC(U)

DEC 77 S 6 WENSKA
UNCLASSIFIED AFIT/GCS/EE/TT-11 NL

EP A

AD

E

AAO55178

AIR UNIVERSITY
UNITED STATES AIR FORCE

DDC
200 2R
' JUN 16 1978
> OISt
| 3 SCHOOL OF ENGINEERING ¥ &
e
-
| g é WRIGHT-PATTERSON AIR FORCE BASE, OHIO

' 8 06

AF-WP-0-OCT 62 3,500

A il bt i A S N L BT i o

A e 41

- 9

¢ GCS/EE/77-11 ¢

E i

F

E @

bt

i@i

o

|
« PRELIMINARY DESIGN FOR LULTILODE
MATRIX PERCEPTION EXPERIIENT
SOFTWARE
THESIS D D C
GCS/EE/77-11 Stefan G. Wenska .
Captain USAF JUN 16 1978
=
)3
' Approved for public release; distribution unlimited
!
i ; e,
. é
| v &
} ‘ %

T T R P

GCS/EE/77-11

é ;RELIMINARY gESIGN FOR gP-’ﬂJLE['Il\LODE

BATRIX PERCEPTION EXPERIIENT
/‘
5 _SOFTWARE

=

@74@5‘& Ps Thesisy

THESIS

@/T FT T/6TS/EE[1-33

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

ACCESSION for i 55 Fa

wTIS White Section
bog Buff Section [
UNAKHOUNCED a

JUSTIFICATION......ororo

B oottt e
BISTRIZUTION/AVAILE3ILITY GODES
__Oist._ AvAIL and,/or_SPECIAL

Rl | @ =
tefan G. /Wenska/ B.S.

Captain ~ USAF

Graduate Electrical Engineering

, Decemtyer 8977

l = s

Approved for public release; distribution unlimited

| OFh 153

~ew

Preface

This report provides the preliminary structure of the
software for a computer-based system to perform perception
tests using light-emitting diode (LED) displays. Due to
the nature of the testing, the structure was developed to
provide the maximum amount of ease in maintaining and modi-
fying the system. The implementation of the system is not
covered in this report. This report is written for a reader
who possesses a basic knowledge of software development
and of structured design techniques.

I wish to thank my loving wife, Mary, for her undying
support and invaluable assistance in putting together this

report.

Stefan G. Wenska

ii

O et

Contents

Page

PrefaCe....Ol..tl..li.Q.......".....'.......'.......' ll 1
List of Figllres. ® ® 0 00 000 000000000 . ® 00 00 00 0000 000 . % 0000 v
List of Tables. ® @ 0 000 00 00 0o . L] l @ 0 @0 @ 0 00 % 0 Q00 e e 0t e s Vii
Abstract.....'.II........;..;.'.;.'..;.l;‘.;....;‘..l;;l Viii
I L] IntrOductionn @ 0 0 00000 00 P 0P OO O N OSSO OSTPSDN ; e e 0000
BaCkgroundo ® 0 0 00 00 0 9 0 00000000 000000 PO SO E NN
Perception Experiment..cccecocccecscsssssssss
Scope. ® ® 0 00 00 00 0 00 0 000 ® © 0 0 9 0 0 % 0 0 00 s 0o e o0 00 00
Obj ective ® ® 0 9 0 0 0 0 00 000 00 ® 0 0 0 0 9 0 ® 0 00 0 0 0 . L]
Overview. ® © 0 00 0 0 0 0 00 0 00 000 0o ® & 0 5 0 0 0 00 e o 0 0 00 L]

1I. Software Requirements.ec..oeo.. cen um ke

v Problen Defind $200. i .iveesrusssaeis vonne it
] Set-up Phase.....cocceecccccncnnns ceescsssnnas
Execution Phas€e.ceeeececess T S N S

ooy O FrRFLOdDE B

[y

AnalySiS Phase.-..-o..-.--.....-..........--.

[y
oo

’ 111« Preéliminary Degigheecssescisvass Galenins oy

[y
o

Dosdgn FhIlosophy. . ..ccvsiusencsnusnsnnvioasanase
. RDOBEEN BEPPEOROH oo sovivbownionse s bonsss msesnis
- Desi@ MethOd.................--...-......-.-
Design Criteria and Evaluationeececceccececeas

LAV \VIR V]
W N

Iv. Set-up Phase Desigl.ll...o.oo.-oloooo-coooo.o..-

N
O

Jdentify Data Structures..ccsceessesscicsns o
Model the Problem with a Data Flow Dlagram... 31
Design System Using Structured Techniques...

£ wwh
© NP

V. Execution Phase Deslgh..vivrsvescvcvivvssnosnss e

=
©

: Identify Data Structures......cieeeeececesces
3 Model the Problem with a Data Flow Diagram...
Design System Using Structured Techniques....

ni\n
(ol o]

(o))
N

B VI. JAoalyeies Phuse Deslgh...iveiviviivenens TR

(o)
N

: Identify Data Structures......ceeeeveevecens N
: Model the Problem with a Data Flow Diagram...
Design System Using Structured TechniquesS....

O\ O\
W

i
! Contents
i Page
%j VII. Design Evaluation......... S s ke salos P R
,f% 3% v 1)1 5 (ot SR e e e I ST SR
e Set-up Phase Modification.......c.v... At A 73
= Execution Phase Modification..... LT R
;i Analysis Phase Modification.......ceevveuens 75
o OptHRIZRtEIoNn. . vx s avimannass R e e als i 76
1 VIIZ. Results and Conclugions...ocssscessesscannnvsns 77
Results. . c.ocies e O D T T O B E e R e o e P A 77
CONCINGNGIE. v s onn s v inlsn s ah o B dinh e o o im 2w 78
Recommendatiomel. . oo ivonnsssaansoniieassss e 78
BIDLAORTRPET . c cve v ivn dubs ¢on wniaitsne onvsss svomessis s 80
Appendix A: Module Description.........ccceeeeneene % 81
Appetidie By VUSer's GUIGe. ..o vsaine e siions s so s s iisss . 93
Appendix C: Structure Chattd... cesccuveosnssasncssss 112
VRS L iiv i i i e o e i o e s o S e e e e 144
!
1
iv

s
}2 List of Figures

24 igu |
é? o 1re A Symbol Composed of Dot Elements......... et zggg 3
;f, 2 Time Intervals in a Viewing Sequence.......... 11 é
?g 3 Data Flow Diagram BxampleS...:ssscssscconsscs . 25
. L DFD for the Set-up System....c.covevonsnser sde - i
5 Expanded DFD for Validate Parameters...... S5 32 |
6 Set-up System (First-Level Factoring)......... 33
7 Get Valid Set-up Command.....cccceeeeeeees %l 34
8 Get Valid Set-up Parameters
(Erafisaction Center)...ccvisenssasononesss % e 35
9 Get Type I Parameters (General Form).......... 36
E 10 Get Type II Parameter (General Form).......... 38
11 Get Type III Parameter (Stub Module).......... 39
§ 12 Execute Set-up Command (Transaction Center)... 39
13 Execute Item Command (General Form)........... 40
14 Execute Mask COMMENA. cicovvoninsanssnnesusenes Lo
i 15 Execute Print Parameters Command............ &% L1
i 16 Execute Clear Parameters Command............e. L1
E 17 Execute Store Element (General Form).......... 43
E 18 Execute Purge Command (General Form).......... 43
19 Execute Reload Command (General Form)......... Ly
20 Execute List Command (General Form)........... Ly
21 Execute Create Command.......ccoveeevnneecnnnns Ls
e Bxecute Alter Commund, . .ocvorvvevrsinsvesssass 46
23 Execute Bulk Operation (General Form)......... L7 j
; 24 DFD for the Execution System........ceevveuenn 49 |
1 5 DEFY IToT the TeBT BXecutiON.cccvivovserssvnvsnsy 51
| v

3
ﬂé

3
‘ %l

|
i
{

Figure

26
27
28
29
30
31
32
33
34

35

36
3¢
38
3%
Lo
L1
L2

43

List of Figures

Execution System (First-Level Factoring)......

Get Valid Tesb.ccccocscscscvoscssnas
Test Execution (First-Level Factoring)
Get Viewing Sequence........eeeeun
Control Display Sequence...........
Store Sequence Results.............
Store Test ResultsS...ccccecocecncns
DFD for the Analysis System........

Analysis Executive

ooooooooooo

...........

(First-Level and Afferent Branch Factoring)...

Execute Analysis Command

(Transaction Center). :.svesccsssas
Execute Load Data Command..........
Execute Enter Command..............
Execute Confusion Command..........
Execute Collapse Command.....cooeeeeese
Execute Print Command......cocoses.

Output Analysis Results............

PES System Executive

(Firat-Level Factoring)..«.s.sevsvs

Afferent Group Structure...........

vi

ooooooooooo

ooooooooooo

Page
52

53
55
56
58
60
61

63
64

66
67
68
69
20 ;
7 i
72

81
82

i List of Tables

I Past CompoBition. . .covvscssas Tl et T R i 8
4 II Library Operations......crsuoinsnes s e A S 10

J RET Sutol BRBERLEN. « 1o cvvsisinmsasrssissaissns s

: Iv Abstract Data Types - Set-up Phase.........ceue 30
| \') Set-up ComMMENAS. .+ cs csusscsnsossssssssssonnssss 30
' VI Abstract Data Types - Execution Phase....... o L9

T ——

vii

i iy i

e e

g

L

GCS/EE/77-11

‘ Abstract
4
The Multi-Mode Matrix Display Program is testing the

acceptability of using light-emitting diode displays in
USAF aircraft. The preliminary design for the software was
done by following a method which enhances software maintain-
ability. The method uses abstracts data types, data flow
diagrams, and structured design techniques to produce a com-
plete design for the system. The software design is pre-
sented using structure charts together with functional de-
scriptions of all modules and definitions of the interfaces

between modules.

A\

viii

I. INTRODUCTION I

Background

The Air Force is currently investigating ways to improve
aircraft radar display equipment. The present display unit,
the cathode-ray tube (CRT), has two major liabilities. First,
it is bulky and takes up a lot of space. Cockpit space is
already at a premium due to the increased amount of avionics
equipment required for flight. Second, if any component of
the CRT fails, the entire unit fails. This may cause criti-
cal problems during flights within hostile environments where
mahy types of damage (not to mention normal component failure)
to the unit might occur.

To correct these deficiencies, the Multi-Mode Matrix
Display (MMM) project office of the Flight Dynamics Labora-
tories at Wright-Patterson Air Force Base is developing a
light-emitting diode (LED) display unit to replace the CRT
unit that is now in use. The screen of the LED display is
composed of aﬁ array of LED chips connected together in a
checkerboard fashion. The display is controlled by a micro-
processor that receives input signals from the navigation
equipment. This display system will alleviate the pro-
blems of the CRT system. First, the LED unit requires much
less space than that needed by the CRT unit. Second, each
LED chip can be individually bypassed without affecting the

rest of the display. Thus failure of a component can be iso-

lated and not affect the entire display.

AR

Concurrent with the hardware development is the effort
by the MMM office to perform human factors.research on dot
matrix symbology to determine the acceptabiiity of using LED
displays. Specifically, the MMM office is interested in test-
ing and evaluating human perceptions of modified LED display
images. These modifications are done through image rotation,
image vibration, and the introduction of extraneous elements

to the image definition.

Perception Experiment

In order to determine the acceptability of LED displays,
the MMM office must measure the ef-

fect that symbols, composed of dots,

have on human recognition (Fig. 1). e e e
To accomplish this end, the MMM of-
fice has developed a dot-matrix sym- #re RSN
bology .perception test. This test

measures the difference of recogni- o T e A S

tion difficulty between symbols com- Pig 1. A Symbol Com-
posed of Dot Elements

posed of dot elements instead of

line elements. Along with measuring

the recognition of basic symbols, an evaluation of how dyna-

mic factors (rotation, vibration, and symbol degradence) af-

fect recognition must be made.

The test consists of showing a number of symbols to a

subject and recording his responses as to their identifi-

cation. After an acceptable amount of data has been re-

corded, the results are analyzed to determine the degree of
recognition. For the test, the symbols will be limited to
alphanumeric characters.

To provide a statistical soundness for the test, each
symbol is presented in a viewing sequence. This viewing se-
quence consists of four displays: an acknowledgement symbol,
a mask display, a test symbol display (stimulus), and another
mask display. The acknowledgement symbol is a predetermined
pattern alerting the subject to be ready for the next view-~
ing sequence. The mask display is a random pattern of dot
elements. Thus, the perception test consists of a series
of viewing sequences to which the subject responds to the
stimulus within each sequence.

The data to be analyzed is tpe test results. This con-
sists of sequence results, which are recorded during the test
execution, and the test parameters. The sequence results
are the subject's response, his reaction time, the stimulus
identification, and the dynamics, if any, that affected the
stimulus. This data is recorded for each viewing sequence.
The test results are converted to an intermediate form
using confusion matrices and then col;apsed using predic-
tor matrices. The data is then analyzed to determine the

degree of recognition.

Scope

The life cycle of software development has several

stages: conceptual, requirements definition, design, coding

and debugging, testing, and operational. The first two stages
of the development have already been accomplished. The re-
quirements definition of the software system was derived
using a structured analysis technique (Ref 5).

This thesis will begin the design stage of the software
that is required to accomplish the perception experiment.
This preliminary design uses the requirements definition to
develop a structure for the software system. The design of

the individual modules is beyond the scope of this paper.

Objective

Maintenance of software (to include modification) is a
critical consideration in the development of software today.
E It is estimated that better than 50% of all software activi-
? ty in the United States is spent maintaining existing sys-
tems (Ref 10:38). Maintenance costs are increasing annually. |
By 1980, it is estimated that software maintenance costs

will be between 50% and 80% of the total system cost (Ref 1:2). !

Maintainability must be designed into the system from the

i start; it cannot be added on at the end (Ref 9:92). There-
fore, the objective of this preliminary design is to use
techniques that will produce a system Structure that will en-

hance maintainability.

Overview
Chapter II will be an informal presentation of the soft-
! ware requirements. A design philosophy is defined in Chapter

4

g

s

III. This philosophy is developed into a design method that
produces maintainable software structures. A method for eval-
uating the preliminary design structure is given. Chapters
IV, V, and VI demonstrate the use of the design method cho-
sen to deve10p the structure for the three phases of the per-
ception experiment. Each phase of the experiment will be
considered as a separate system. An evaluation of the design
is given in Chapter VII. Finally, Chapter VIII provides the
design results and conclusions. Recommendations for the fur-
ther development of the software are also given.

Three appendixes are included in this paper. Appendix
A contains the descriptions of the modules in the design.
Appendix B is a User's Guide for operating the system. Ap-
pendix C contains copies of all the structure charts that

are used in the design of the three phases.

II. SOFTWARE REQUIREMENTS

Before designing any software system, one must have a
clear picture of what must be done by the system. This pic-
ture is provided by the software requirements. For the per-
ception experiment, the software requirements have been de-
termined in Reference 5. This chapter presents an informal

description of these requirements.

Problem Definition

The system to be designed must perform the perception
experiment. This experiment is broken into three phases:
the set-up phase, the execution phase, and the analysis
phase.

During the set-up phase, the user defines symbols and
tests. A test consists of a group of items which specify
the execution of the perception experiment. The system in-
teracts with the user by providing prompts and error diag-
nostics. It also allows the user to specify several tests.
This gives the user a choice in determining which test to
execute.

During the execution phase, the system executes a test.
The system records response data for later analysis. It al-
lows multiple executions of the test in order to handle sev-
eral subjects.

During the analysis phase, the test results from the

execution phase is reduced into a more useful form and

6

analyzed. The system provides several different options and
reports to satisfy the desires of the user.

The overall system must be easy to use. It must provide
prompts to the user, giving him a choice of legal commands
and the parameters associated with those commands. It must
allow the frequent user to have the option to input the com-
mand and its parameters at the same time, thus saving him
the time required for the individual prompting. Finally,
the system must handle inputs from either a console or a sec-

ondary storage device.

Set-up Phase

The set-up phase is the first phase of the perception
experiment. The endproducts of this phase are two data struc-
tures: the symbol library (SL) and the test library (TL). Two
other data structures, the symbol and the test, are also de- -
fined in this phase. These are used to create the libraries.

Each of the data structures is composed of identifiable
elements. A symbol is composed of symbol segments. A sym-
bol library is composed of symbols. In this case, the data
structure, symbol library, is composed of other data struc-
tures--symbols. Similarly, the test library is composed of
tests. The test is made up of items, where each item is de-
fined by a description. A description consists of a quali-
fier (which is optional) and one or more specifications. Ta-
ble I shows the breakdown of the test into its items énd

their descriptions.

b

Table I

Test Composition

ITEM DESCRIPTION
Qualifier Specification
Masks Static Number to be made
Maximum number of ele-
ments per mask
Dynamic Time interval between
lighting elements
Persistence time
Time Parameters MT1 Length of mask display
MD1 Length of interval
ST Length of stimulus dis-
play
MD2 Length of interval
MT2 Length of mask display
PD Length of prompting de-
lay
Stimlist none Indexes from the SL
Rotate Constant Rotation angle
Random Maximum rotation angle
Degrade Add Maximum number of ele-
ments affected
Delete Maximum number of ele-
; ments affected
Displace none Maximum distance from
the center of the
viewing area
Vibrate none Frequency
Distance of movement
Display Options Remove Number of symbols
Redisplay YES or NO
Reinforcement YES or NO
Print YES or NO
Ack. Symbol Index from the SL

Stimlist Order

Random or specified

b

ISR S —

The basic operations for the data structures are re-
trieval, addition, and deletion of elements. Other opera-
tions may augment these. Each of the data structures will
be described in this section.

The symbol library and the test library are similar in
operation. Aside from the difference between element types
in these two structures, each library must maintain an index
table. Each element in the library has a uhique index. The
index is the normal reference to the element. Moreover, each
element in the SL has an identifier associated with it. The
identifier "describes" the element, i.e., during test execu-
tion, if the subject's response to the symbol display and its
identifier match, then the subject has identified the symbol.

The library operations are listed in Table II. Along
with the basic operations are two that deal with the index
table of the library. The "list" operation provides either
the number of entries in the table or a list of the entries
in the table. The "check" operation determines whether the
specified index is in the table.

The test is made up from several items. The user can
specify these items, and in doing so, determines how the
test will be executed. While the user is creating a test,
the items are stored in a data structure called the active
test (AT). (The modifier "active" when used in this context,
denotes that a data structure is being specified. Thus, an
active test is the test while it is being specified. An ac-

tive symbol is the symbol as it is being created.) The items

9

S T o R Al

T

Table II
Library Operations

OPERATION PARAIMETER RESULTS

Add index adds entry to library with the
specified index

Delete index removes entry from library and
updates index table

Reload index copies entry from library to
the active structure

List all lists the entries in the index
table

number counts the number of entries in

the index table

Check index determines if an index is an

entry in the index table

may be user-specified or system-specified (default values).
When the user has specified what he wants, he stores the
contents of the active test into the test library. The
items of a test are described in the following paragraphs.
The masks-item can be qualified as static or dynamic.
In a static mask, the elements are 1lit continuously. 1In a
dynamic mask, the elements are 1lit intermittantly. The
specifications for the static mask option are the number of
masks to be generated by the system and the maximum number
of elements that can be 1it for each mask. The system gen-
erates the static masks and stores both the item with its
description and the static masks in the active test. The
specifications for the dynamic mask option are the time in-
terval between lighting elements and the length of time an
element is to be 1lit (persistence time). The system gener-
ates the dynamic masks during the execution of the test.

10

T T

VIEWING SEQUENCE NT1

mask display 1

MD1- mask delay 1
> Next
ack.| [mask| |stim| |uask| [view, ST - stimulus time
e ... |Seq. MD2- mask delay 2
im 1 NT2- mask display 2
At play

PD - prompting
delay

Pigure 2. Time ‘Intervals in a Viewing Sequence

The time parameters are the times associated with the
viewing sequence (Fig. 2). The six times are the léngths of
time to display each mask, the time intervals between each
mask and the stimulus, the stimulus display time, and the
maiimum time the system should wait for a response before
displaying a prompting message (prompting delay).

The stimlist is the list of indexes of the symbols to
be displayed during test execution. An index may appear in
the 1list more than once. The user can specify that a parti-.
cular order for the symbols be followed or he may allow the
system to generate a random order for their display. During
execution, the system will create a stimulus library which
will be composed of the symbol data structures that corre-
spond to the indexes in the stimlist.

Symbol dynamics can be specified to determine how the
symbol should be displayed. These dynamics items are rota-
tion, vibration, degradence, and displacement. If no dyna-
mics items is specified, the display during execution will
be the basic stimulus display, i.e., displayed as the symbol

was defined during symbol creation. The rotate item is

11

qualified as either constant rotation or random rotation.

For constant rotation, the user specifies a rotation angle.
During the test, each symbol will be displayed rotated by the
specified angle. For random rotation, the user specifies a
maximum angle of rotation. During test execution, the sys-
tem will rotate each symbol by a random angle.

Degradence is the modification of the symbol's appear-
ance through the random addition or deletion of elements.

The degrade item is qualified as add or delete and is speci-
fied by the number of elements to be affected.

The vibrate item is described by the frequency and range
of‘movement that the displayed stimulus is to be vibrated.
This is the only dynamics item that affects the stimulus dur-
ing execution time. Thus, this item will be the most diffi-
cult to implement.

The displace item is described by the maximum distance °
from the center of the viewing area that a symbol can be dis-
placed. If displace has been selected, the symbols will ap-
pear at random locations within the viewing area. These dy-
namics items are not mutually exclusive. Thus a symbol might
appear degraded, rotated, vibrating, and off-centered during
the execution of the test.

The display options items can be used to change the or-
der of the display sequence during execution or to -provide
the subject with feedback during the test. The remove and
the redisplay items affect the display order. If the remove

option is selected, the user specifies the number of consecu-

12

tive times that the subject must correctly respond to a sym-
bol in order to cause that symbol to be removed from the
stimulus library. If the redisplay option is selected, the
system will redisplay the same symbol if the subject responds
incorrectly.

The reinforcement option and the print option affect the
feedback to the subject. The reinforcement option causes the
system to display a correct/incorrect acknowledgement after
each subject response. The print option causes the system
to print the index of the stimulus, the subject's response,
the reaction time, and the display dynamics after each view-
ing sequence.

The final display option is the specification of the in-
dex of the acknowledgement symbol. This symbol will be entered
as an element in the SL. Typically, it is an easily recog-
nizable pattern of elements, such as a "plus" made up of dot -
elements and positioned in the center of the viewing area.

There are two specific applications of the basic data
structure operations which affect the active test. The first
is the clearing operation. This sets all the items in the
active test to their default values. This operation is used
prior to specifying a new test. This cleats any residual
values from the previous test specified. The second opera-
tion is the listing of the items in the active test. When
these items are listed, those descriptions containing de-
fault values are flagged. |

An example of the use of the listing operation would be

13

after the retrieval of a test from the TL. When a test is
retrieved from the library, it is stored in the active test.
It can then be listed to determine what values are in it.
If the user wanted a similar test then he could respecify
those items that he desired different and store the active

test to the library under a different index.

Table III
Symbol Creation
OPERATION PARAMETER RESULTS

Add segment adds segment to the active sym-
bol and displays the change

Delete segment removes segment from the active
symbol and displays the
change

Clear —— removes all segments from the

active symbol and displays a
blank screen

ALTER FUNCTIONS

Rotate angle rotates the display to the
specified angle
Vibrate frequency, vibrates the display
distance
Add/Delete number adds/deletes the specified num-
ber of elements to the dis-
play

The final data structure in this phase is the symbol.
The user specifies symbol segments which are stored in a
structure called the active symbol (AS). While the user is
‘creating a symbol the system enters a "create mode". While
in this mode, the contents of the active symbol are displayed

on the console screen. This enables the user to see the

14

. T T ey

symbol as he creates it.

The operations for the symbol data structure are shown
in Table III. Apart from the basic operations, the system
must allow the user the option to view the symbol as it is
affected by symbol dynamics. During symbol creation, the
user may specify rotation, vibration, or degradence to test
the dynamics.

Similar to the test definition, the user has the option
to start creating a symbol from an already completed one.
When a symbol is retrieved from the library, it is stored in
the active symbol. The user can specify addition and dele-
tion of segments to create a different symbol. This new sym-

bol can be added to the library under a new index.

Execution Phase

The execution phase is the second phase of the percep-
tion experiment. During this phase, the system executes the
test selected by the user and records the data that is neces-
sary for later analysis.

In order to execute the test, the system generates the
displays of the viewing sequence according to the specified
time parameters. Dynamic masks, if applicable, are gener-
ated during mask display time. The stimulus displays are
presented dynamically. Feedback is produced according to
the display options. The system maintains a test history to

keep track of the results that provide for the removal and/or

redisplay of symbols.

15

During execution, there are three different responses
that the subject can give: one normal and two special. The
normal response is the symbol identifier (which can be either
correct or incorrect). Since the symbols are alphanumeric
characters, the subject responds by pressing the key corre-
sponding to the symbol that he believes is being displayed.

The two special responses are the wrong-key indicator
and the I-don't-know indicator. If the subject inadver-
tantly presses a key other than what he intended while re-
sponding to the stimulus, he must press the wrong-key indi-
cator. This notifies the system to flag the response and to
continue the test. The I-don't-know response is used when
the subject does not recognize the symbol that is being dis-
played.

For each test, the system will repeatedly traverse the

stimulus library until the user enters a command to stop the

test. The system will then reset itself in preparation for

the next subject.

Analysis Phase

The analysis phase is the final phase of the perception
experiment. During this phase, the data from one or more
tests is compiled and analyzed. The system can generate
three types of confusion matrices from the data. These
confusion matrices can be based on the subject's responses,
the reaction times, or the percentage of times that a parti-

cular response was given to a stimulus.

16

RN SV

o A collapsing routine, using a predictor matrix, then re-

duces the confusion matrices to a more useful form. The pre- 1

dictor matrix is input by the user and specifies the degree

‘ - »(r(jfﬁ‘ e

of error that an incorrect response has. After the data is
g‘{ collapsed, it can be stored or output to the user. If it is
stored, it can be read'and/or augmented at a later time as

mor . .esting analysis is completed.

III. PRELIMINARY DESIGN

This chapter will discuss the general approach used in
producing the preliminary design of the perception experi-
ment software (PES). It will cover the design philosophy,
the design methodology, and the design evaluation method.
The actual design of the three phases of the problem will be

covered in the next three chapters.

Design Philosophy

The objective of this design is to produce a structure
that is easily maintainable and modifiable. The benefits of
such an objective are numerous: the maintenance and modifica-
tion costs will be lower; the development of the software
will be easier because changes required during the latter
stages of the development will be limited to specific areas .
and therefore be easier to change; the debugging and testing
will be easier; and the program will be more reliable. The :
list of benefits is extensive because designing with the
goal of maintainability affects most of the other program
goals favorably. The most notable exception is program effi-
ciency (optimization). This exception will be addressed la-
ter and shown to have little effect on the preliminary de-
sign (see Chapter VII).

To design maintainability into a program, it is neces-
sary to develop a program structure that localizes changes

within the program. The two components of every program--data

18

and functions--must be handled in a way so that they are al-
ways recognizable. The program functions should be distinct
and identifiable; the program data should be determinable
throughout the program. The structure should not allow com-
munication between unrelated program parts and should mini-
mize communication between related parts. Three concepts
which are considered when designing a maintainable program
are modularity, program structure-problem structure resem-
blance, and information hiding. These concepts provide a
perspective for designing maintainable programs.

Modularity is the breaking of a program into identifia-
ble units (called modules) which interact with one another
during execution of the program. The idea behind modularity

is to break complex, large problem into simpler, but more

numerous, small problem. The effect of modularity is measured

by module coupling and module cohesion.

Module coupling is the measure of communication between
two distinct modules. If this communication is minimigzed,
then changes to the program are less likely to propagate
through the system. Coupling, therefore, affects the deter-
minability of the program data.

Module cohesion is the measure of the internal binding
within a module--the specificity of purpose. A module that
performs only one function (e.g., a module that determines
the sine of a number) is very cohesive. If all the modules
in a program have high cohesion, an error in the program can

be easily pinpointed and corrected. Thus, cohesion relates

19

to the distinctiveness and identifiability of program func-
tions.

The desired design goals, considering these two meas-
ures, are the minimization of coupling and the maximization
of cohesion. However, there is a trade-off here. The more
specific that the modules become (higher cohesion), the
greater the number of modules that will be required--thus
increasing the amount of communication (higher coupling).
Scales depicting the relative difference of degrees of coup-
ling and cohesion have been derived (Refs 7:30; 3:118,179).

Another concept of importance is the program structure-
problem structure resemblance. If both the problem and the
program are structured alike, then modification is made eas-
ier. Changes to the system normally take the form of chang-
es to the problem. These changes must then be converted in-
to changes to the program. If there is a strong correlation
between the two structures, this conversion can be done eas-
ily. The parts of the program that need to be changed will
correspond to the parts of the problem that are changed.
Weak program-problem resemblance can lead to difficulty in
determining the changes that must be made to the program.
Moreover, after the changes have been made to the program,
it will be difficult to determine whether the changes accom-
plished what was desired.

The final concept in the design philosophy is informa-
tion hiding. This concept impacts two areas: system inter-

facing and system decomposition. Normally the system commu-

20

| —

nicates with other systems through the sharing of a data

base. Information hiding is the defining of a set of opera-
tions (called an abstract data type) on that data base so
that - ~h system can access it independent of how the data
base is implemented.

Each abstract daté type has two interfaces--a system
interface and a data base interface. The system interface is
the set of operations that the system uses to access the data
base. The data base interface is the set of operations that
physically manipulate the data; it is dependent of the data
base implementation. The abstract data type hides the data

base from all of the systems using it. Thus, when the data

base structure changes, the system interfaces remain unchanged.

The rest of the abstract data type, including the data base
interface, is modified to reflect the changes. Therefore,
the systems are not affected by the changes to the data base
structure.

This concept also applies to internal data structures
which are accessed by modules within a system. In this case,
the data structure is hidden from the system modules in order
to facilitate changes to it.

The second area is system decomposition. In deciding
how the system should be decomposed, the designer should con-
sider the modules to be like "black boxes". Each module
should perform a specific function but the details of how the
function is performed is hidden from the other modules by a
well-defined interface (Ref 8). In this way, a change of

21

-

the function in one module (e.g., finding an alternate method
to achieve a function) does not cause any change to the other
modules because the interfaces between the modules remain

unchanged.

Design Approach

The perception experiment software is viewed as three
separate systems. There are two reasons to view it in this
manner. First, the perception experiment itself is struc-
tured in this way. At any one time, the user may devote his
efforts to only one phase. The only thing relating the

phases are the data structures which are outputs to one phase

and inputs to another. Thus the software lends itself to

? being structured as three systems with one common structure
! for the communication of the data structures.
% Second, each problem has its own peculiarities with re-

gard to the amount of user-system interaction. The set-up

3 phase is a continual interaction between the user and the

system, where by the messages from each party direct the suc-

ceeding interchanges. The execution phase has very little

. interaction. The user has little control of what occurs

during this pahse. In the analysis phase, the user sets

; up the activities he desires and the system then executes

them. There is interaction but only infrequently. . If a 4

designer were to design the PES as one system, conceptual

! integrity would be sacrificed in accommodating these differ-

ences. By breaking the PES into three systems, each system

22

T il e S A S S A DS e i)

can be designed with maximum conceptual integrity which is
beneficial to system maintenance (Ref 2:48).

Before the preliminary design of the systems, the user-
system interface must be designed. This is done by way of
writing a User's Guide for the system (Appendix B). The
specification of this interface, this early in the design,
does two things. One, the designer has a clearer idea with
regards to what the user expects. Two, the user can see the
software development better at this stage, at a time when
progress visibility is usually limited. The User's Guide
communicates the user's desires to the designer. If a change
is desired or required, it provides a common ground for both

parties.

Design Method

The method to design each of the three systems is out-

lined here:

: 1. Igi?tify the data structures (internal and exter-
nal).

3 2. Model the problem with a data flow diagram (DFD).

3. Transform the DFD into a program structure using
{ structured design techniques.

These steps are discussed in separate'sections that follow.

Identify Data Structures
The first step is to identify the data structures asso-

| ciated with the system. The external data structures are

those that are shared with other systems. The internal data

23

structures are those shared exclusively by modules within the

system. Along with the identification of the data structures,
{if the abstract data types, associated with the structures, should

be defined. This definition of the abstract data type may

not be complete at this time because every operation on the

data structure may not be known. The abstract data type

should be updated whenever a new operation is identified

during the desigﬁ.

Model Problem with a Data Flow Diagram
The second step of the design method is to model the

problem with a data flow diagram. The DFD models the con-
ceptual flow of the data through the problem. The elements

Y P L T T T 7S

of the DFD are transforms and data elements. The transforms
are represented by c¢ircles (or bubbles); the data elements
are represented by labelled arrows that enter and leave the
bubbles (Fig. 3a). There are two operators in the DFD. The
" # " (asterisk) and the " + " (circled plus) are the con-
junctive and disjunctive operators, respectively. The former
denotes that two arrows entering (or leaving) the same bub-
ble are both required for the transform (Fig. 3b). The lat-

ter denotes that an exclusive-OR situation exists (Fig. 3c).

To develop a DFD, one must first consider the problem
in its entirety. All of the data inputs should be listed
toward one edge of a sheet of paper. Then all of the data
outputs should be listed toward the other edge of the same

sheet. The idea is to determine the transforms that are

J 24

< of i

(a) Transform from A into B

ster
: file
records update

ecords

record
_changes summary

(b) Conjunction

E

type A :
blood find & &
Sample type @ iype B
donor Y type O

(e) Disjunction

Figure 3. Data Flow Diagram Examples

necessary to get from the input edge to the output edge.
How the transforms will be implemented is of no concern at
this point. One then proceeds by starting at the input edge
and specifying transforms that the data goes through to get
to the other edge. Another method is to start at the output
edge and determine the transform that has just taken place.
In this manner the diagram would develop backstepping to the
input edge. .

Often it is not clear what the transforms are that con-

vert the input to the output. It may then become necessary
25

T TG T P (T

T T r———

to specify a vague, general transform(s) to go from input to
output. Then by decomposing the general transforms into
smaller, more specific transforms, one develops the DFD.

The process of developing a DFD is an iterative one. At
any time the designer can go back and decompose a transform
into several smaller, more specific ones. It is better to
overspecify the transforms than to be too general. Once the
DFD has been developed, it is relatively easy to convert this

problem model into a program structure.

Transform DFD to Program Structure

The final step of the design method is to translate
the DFD into a program structure. It has been shown that
those structures whose shapes are transform-centered have
been associated with low maintenance costs and low modifica-
tion costs (Ref 3:254). By transform-centered is meant the
identi;}cation of three types of branches to the structure:
an input (afferent) branch, where the data is brought into
the system and prepared for the main transformations; a cen-
tral transforms branch, where the main transformations and
computations of the data take place; and an output (effer-
ent) branch, where the results of the central transforms are
prepared and processed for output. To accomplish this struc-
ture, a design technique called transform analysis was used.

In transform analysis, the afferent data elements, the
efferent data elements, and the central transforms must be

identified on the DFD. An afferent data element is the

26

highest level of abstraction of a system input. On a DFD,
_ there is a data element such that if the transform to which
;', it is input is accomplished, the output of that transform
could no longer be termed a system input. It is this data

element(s) that needs to be identified. Conversely, an ef-

g ferent data element is the highest level of abstraction of

a system output. The transforms between the afferent and

efferent data elements are termed the central transforms.

| These are the transforms which convert the inputs into the
outputs. In some systems, the afferent and efferent data ele-
ments are the same, that is, are identified by the same la-
belled arrow on the DFD. These systems have no central trans-
forms.

; The identification of these elements provide the first
level factoring (decomposition) of the system. Each element
will be the head cf a branch in the structure. Each branch
must be factored fully to get the complete program structure.
Reference 3 provides guidelines for the factoring of the
afferent and efferent branches. The central transforms
should be factored in a manner consistent with the design
philosophy. The final structure will tend toward having more
executive-type modules higher in the structure chart calling

on the more functional modules, which tend to be lower in the

structure chart.

Design Criteria and Evaluation

This design method will produce a highly maintainable

system. Step one, identifying data structures, highlights
the concept of information hiding. Step two, problem model-
ling, aims at providing a strong program structure-problem
structure resemblance. Step three, structured design, pro-
vides a modular program structure. Thus, the design method
chosen for the preliminary design of the PES follows those
concepts needed to achieve the objective.

To measure the effectiveness of the design, it is neces-
sary to measure the relative ease of maintaining it. To
do this, chapter seven will evaluate the design in the fol-
lowing manner. Changes and enhancements to each phase of the
system will be proposed. A description of the changes to the
system will be given. These changes will be rated as to
their impact to the overall system and the difficulty in

implementing them.

28

v P TP P4 . e -

Iv. SET-UP PHASE DESIGN

Identify Data Structures |

There are two external data structures to this system:
- the symbol library and the test library. The symbol libra- %
' ry is a set of symbols'and its associated index table. The
test library is a set of tests and its associated index ta-
ble. Three functions are required to manipulate these
structures: updating (that is, the deleting and adding of

elements to the library), retrieval of an element, and exami-

i nation of the library index table.

There are three internal data structures: the active

% symbol, the active test, and the default value table. The

i active symbol and the active test are the working areas for
the creation of symbols and tests. There are three functions
which can be done to these two structures: adding elements,
deleting elements, and listing the elements in the struc-
ture. The clearing of the structure is accomplished by the
deletion of all the elements in the structure. 1In the case
of the active test, the elements are set to default values.
The default value table contains default values for the
items in the test. The abstract data types associated with
these data structures are given in Table IV.

¢ The user-system interface is also defined in this step.
The 1list of commands used in the set-up phase is given in
Table V. The types are differentiated by the number of

) parameters required for each command (see Appendix B).

29

Table IV
Abstract Data Types -

Set Up Phase

DATA STRUCTURE

OPERATION

Symbol Library

Test Library

Active Symbol

Active Test

Default Value Table
Item

store symbol
delete symbol
get symbol i
count indexes
list indexes
check index 1

store test
delete test
get test
count indexes
list indexes
check index 1

store segment
delete segment

store item
delete item
get item

get item

store qualifier
store specification
get qualifier

get specification

The Type I commands require more than one parameter.
Type II commands require only one parameter and the Type III

commands do not require any parameters.

Table V

Set Up Commands

The

TYPE 1 TYPE II

TYPE 111

TIME PARAMETERS
STIMLIST
DISPLAY OPTIONS
MASKS

ROTATE SYMBOL
VIBRATE SYMBOL
STORE SYMBOL
PRINT PARAMETERS

PURGE SYNMBOL
RELOAD SYMBOL
LIST SYMBOLS

STORE PARAMETERS
PURGE PARAMETERS
RELOAD PARAMETERS
LIST PARAMETERS

DISPLACE SYMBOL

BULK LOAD/STORE DEGRADE SYMBOL _

CLEAR PARAMETERS
CREATE SYMBOL
END SET UP

30

s @ Updated
— "\results/ Structures

Nt

| EFFERENT
DATA
ELEMENT

Figure 4. DFD for the Set-up System

Model the Problem with a Data Flow Diagram

The inputs for the system are the user requests--com-

mands and parameters. The outputs are the updated libraries.
The afferent data elements are the valid command and the

valid parameters. The efferent data elements are the results

of the executed commands (Fig. 4). The central transform is
: the execution of the particular command.

There are two transforms that are marked with aster-
isks. These asterisked transforms are transaction centers
and they represent a class of similar transforms. For in-
stance, the transform "validate parameters" is the‘general
form for the twenty-two types of parameters possible (one

; for each command). A complete description of the validate

function is shown in Figure 5. This figure shows all of the
1rt 31

Valid Time Parameter

Valid Mask
Parameter

22

@ ollect'

parame-
ters

Bulk Store Parameter Valid Bulk Store

Figure 5. Expanded DFD for Validate Parameters

possible paths of validation that may be taken, depending
on the command that was input previously. To develop a
structure chart for this type of data flow, a design strate-

gy known as transaction analysis was used (Ref 6:301-308).

Design System Using Structured Techniques
This section describes the development of the struc-

« ture charts for the set-up phase. A description of struc-
ture charts is given in Reference 6. A symbol that is unique
to this text is the small circle located in the upper right-

hand corner of some of the module boxes. This designates

32

Set-up
Executive

E{id] sgfid Exccute §tore
Set-up | Sct-up Set-up Set-up
Cot&nﬂc_i___ Parumeters Command Results

Interface

IN | oUT

b O valid commnd
2 wv2lid command valid parumeters
3 vnlid conwmand, valid parameters updated data structures, endflag :
L ujdated dizta struclurves -

Figure 6. Set-up System (First - Level Factoring)

that the module is a function of an abstract data type.

The first-level factoring was accomplished by creating
a module for each of the afferent elements, the central
transform, and efferent element (Fig. 6). The next step
in developing the structure chart is to factor fully each
first level module.

The GET VALID SET UP COMMAND module was factored using
the transform analysis technique (Fig. 7). This technique
causes the higher level modules of the structure to do more
decision making while the lower level modules to be more

functional.

k! Get |
é ‘ valid
| Set-up :
4 Command
) § i
£ ™
6§ *
& l Twe
Sk e L e AL
= Z el
| Get e Validate P
: Set-up Set-up ! Out“ut
Command Command I P i
2 i _\ L__ LY
8// \

9

\

\h
/// \

——

e) "déxiv'e'ri:“'_‘l
| Console To
{ 1/0 ; Xnternal__J
bos oo pdmsel) Lroes .

Interface

IN | cuT

5 aeee -command
6 command valid command, okflag
7 error message e
8 request message input line
9 input line command

Figure 7. Get Valid Set-up Command

The GET VALID SET UP COMMAND module interacts direct-
ly with the CONSOLE OUTPUT module because it makes the deci-
sion whether to pass on the command to the SET UP EXECUTIVE
or to call on GET SET UP COMMAND in order to request another
‘ command (e.g., if the command is valid, it passes the command
on; if the command is invalid, it calls on CONSOLE OUTPUT to

output an error diagnostic before attempting to get another

-

command). Due to the high interactiveness of the system,

34

| —

many of the modules communicate with CONSOLE OUTPUT modules.

The GET VALID SET UP PARAMETERS module is a transaction
center (Fig. 8). The factoring of this module shows that it

is an executive-type module that calls on one of the 22 pos-

sible get-valid-parameters modules. This structure, although

it looks unwieldy, is manageable because the twenty-two
branches will share many of the same lower-level functional
modules.

Each of the get-parameters modules for the ten Type I
commands (from Table V) are structured in the form shown in
Figure 9. The six modules marked with asterisks must be
tailored to the specific type of parameter being sought.
All of the other modules are shared within this transaction

structure. The modules, CHECK ALPHA, CHECK INTEGER, CHECK

f Cet
GCet Cet 1" et JSa
Time List . Mask : g;mt?,:f SRS L g‘:ik
Parameters Parameters j | Parameters| | pairameters Pu':;eters
— .. ——.—.~ c———
Interface
IN) OUT
.1o P ; Q—— \ " valid parameters

Figure 8. Get Valid Set-up Parameters (Transaction Center)

35

B R e S i ol s

(umxog TexoUdd) saejeurexed I odAy 39D °6 aand8tg

A}
f H a1qzy | aTqel!
ST i qel|

“ I m%a...w _ xaemwm xouMH Teay xe9a3ur vydTY

i - A S 29

L# 30|10 woeyy i | O u._oo.,_m._ e i osun

RY \ \\
/ \\
N, \\
wrog
Teuzajur 0/1
ol aTosu0)
" 332AU0D
\, \
o,) a4
2j0ue
R P a030meeg 0
| % 93EPTTEA I odAy L
L: * 399
/A/...
o]
sa9jewcIey
199710
* 100
4
| sze30ueIRg
i _ . 1 2dSg
A P 100
i 3 [AR |
L o
e ra T > e - S e e -
oy, - = —

Interface
IN OuT
A parameter number valid parameter
B valid parameter valid parameters
C Parameter number parameter
D error message ————
E parameter number, para- valid parameter, okflag
meter
F request message input line
G input line parameter
H - L parameter okflag
M parameter, parameter okflag
number

Figure 9 continued

REAL, CHECK SL INDEX TABLE, and CHECK TL INDEX TABLE, might
not appear in the structures to which they do not apply
specifically. For example, the VALIDATE TIME PARAMETERS
module would only call the CHECK INTEGER module since all of
the time parameters are integers. In a general form struc-
ture chart, the interfaces will be labelled by alphabetic
characters instead of numerals.

A Type II command has only one parameter. Therefore,
the module COLLECT PARAMETERS is not needed for these com-
mands. The general structure chart for these commands is a
compressed form of the structure chart shown in Figure 9
(Fig. 10).

The Type III commands require no parameters. The struc-
ture for these commands is a stub (Fig. 11); that is, the
stub immediately returns to the calling module and does no

37

Lo
B |

4
$
e
£y
i3
E'y

e

A
’.___4___! UL
Get Validate
Tvpe 1I Type II gonsol ¢
Parameter Parameter P
— e —_
Q B s \)
\\‘
/ ! el . S SO, LN
Convert heck i Check
e To } Check SL Ol i o)
Internal Integer Index Index
Forn kJ able | rable
Interface
IN ouT
N parameter request ' parameter
0 parameter valid parameter, okflag
P error message me—
Q request message input line
R input line parameter
S - U parameter okflag

processing.

eliminated by having the transaction center, GET VALID SET

Figure 10.

Get Type II Parameter (General Form)

They are shown in the structure but could be

UP PARAMETERS, check for them.

The central transform module, EXECUTE SET UP COMMAND,
is also a transaction center. The factoring of this module
is handled in the same way as the afferent transactioﬁ cen-
ter (Fig. 12).

each possible command.

It has 22 branches emanating from it, one for

- 38

Get
Type III
Parameter

Figure 11. Get Type III Parameter (Stub Module)

The commands whose execution consists of storing items
into the active test (except for the MASKS command) have the
general form shown in Figure 13. The MASKS command must
determine whether static masks need to be generated prior
to storing the item into the active test (Fig. 14).

Other commands affecting the active test are the CLEAR
PARAMETERS command (Fig. 15) and the PRINT PARAMETERS com-

mand (Fig. 16). These commands show the operations--store

Execute
Set-up
Command
A
’l')\
i
N
32
33 34 35 53
\ ..
Trocate : (Exe
D I [E’“}CUF‘-‘ Brocute Execute {Execute
Paraneters | ! Stimlist Mask T Bulk
Comcamd J | Command Command | ég:";g}ld g
s - et " uman ‘Command
Interface
IN ouT
32 - v
53 valid parameters updated structures

Figure 12. Execute Set-up Command (Transaction Center)

39

%

e e

<r_‘_,,,«.,..,..,

A P m——

Execute
Item £
Command
Aff&’,,,/f,/,/” “\\\-Blﬂi\\\~
Store QO
Item Console
In Active Output
Test
Interface
IN OUT
AAA valid item updated structure
BBB user message ----

Figure 13. Execute Item Command (General Form)

Execute
Nask
Command

56

Store Make Wy
IItem In o Static gggsgie
Active Mask File AL
% ITest e
\\460
>
Generate gStore ()'
Static | f;tazig |
Mask Mask In I
ﬂh lActive Test
Interface
IN ouT
56 item updated active test
57 4item description doneflag

58 user message
59 static mask request

60 static mask

static mask

doneflag

Figure 14.

Execute Mask Command

AT

24

Execute
Print
Parameters
Command\\\\\ﬁi\\\\
Get
Item From Console
Active Output
Test
Interface
IN ouT
64 item request item
64 item message ——

Figure 16. Execute Print Parameters Command

Execute
Clear
Parameters
ommand
Store ‘
g:;ault O Ite@ In O Console
Yalue Active Output
Test
Interface
IN ouT
61 item request default value item
62 default value item updated active test
63 item message ———

IPRCSRVERT e

Figure 15. Execute Clear Parameters Command

b1

and get--of the abstract data type AT.
Figures 17, 18, 19, and 20 show the structure charts of

the execution of commands affecting the libraries. The use 3
of abstract data types in creating the AS,.AT. SL, and TL
simplified the designing of these structures.

The EXECUTE CREATE COMMAND module has an afferent and
a central transform branch (Fig. 21). The EXECUTE ALTER
module can be further decomposed (Fig. 22). In this decom-
position, a new data structure is identified--the active dy-
namics list. This stores the dynamics that affect the active
symbol during symbol creation.

The bulk operations have the general structure chart
shown in Figure 23. These operations allow the loading or
storing of the libraries to mass storage.

The final command to execute is the END SET UP. This
command is processed by a module that returns an end-flag
to the.set-up system executive. This causes control to re-
turn to the overall system executive.

The efferent branch in Figure 6 (the STORE SET UP RE-
SULTS module) was not needed. All of the results were han-
dled as part of the execution of the various commands. This
branch could be used to pass a final hessage to the user

prior to leaving the set-up mode of operavion.

L2

3 Execute
3 Store
i ! Element
i
| Store O
! Element Console
] In Output
2 __Library |
Interface
IN ouT
V index, element updated library
+ W user message ————
F

Figure 17. Execute Store Element (General Form)

T o

Execute
Purge
Command
l 1/39/////// \\\\\\x;\\
Delete O
Element Console
From Output
Library]
; Interface
1 IN ouT
3
¥ - X index updated library
: Y user message ———

o Figure 18. Execute Purge Command (General Form)
i

| s

2 AA BB
M

Get O [Store : :
Element Element I§)' rAEOnsole
From Active Output
Library lStructure

Interface

IN ouT
2 index element
AA -element updated structure
BB user message ————

Figure 19. Execute Reload Command (General Form)

Execute

List

C mgagd

\(
V4
66 58
67
e

Count (@) List
Indexes | Indexes o Console
In In Output
Library Library

Interface

IN ouT
66 ---- number of indexes
67 -=--- index information
68 index message -

Figure 20. Execute

List Command (General Form)

Ll

e

Get ! {Validaze . Store Zxecute
Irput | i snput i Cuzzus i | Segment | i { Alter
i i | it |___! '
i) \
\ 78 5%,
|
i
éonsa:e '
I/¢ :
Interface
IN ouT
69 -—-—- valid input
70 wvalid input e
9 asas input
72 input valid input

73 error message
74 - 76 valid input
77 request message
78 input line

79 - 80 display direc-
tions

updated structure
input line
input

Figure 21. Execute Create Command

Ry

e a—

| validate |
| Irput

|

i"Convert
NG

| Inserval
{ Perz

i e nd

Interface
IN ouT
81 ---- valid command
82 ---- parameters
83 valid command, para- doneflag
meters
84 —-ee command
85 command valid command
86 error message P
87 item -
88 item request p—
89 ‘display directions ———
90 command request input line
91 input line command
Figure 22. Execute Alter Command

k6

i
\

e

!
\ §i e 3
kx| Exccute ‘
£ Bulk f
0 Opcration
&5
=N
& 3 b
T "’@ 3
s ”! DD
S RO
| Execute - Execute
3! SL TL
i Operation Operation
LHENE W AT 1

i
PF\ GG HH
\ |
N A T ‘—"O
o Do Store/Get
g;:;g{(:et 1/0 Test

Interface
IN our
CC file number updated SL
DD file number updated 97,
EE element element
FF file number, element
clement
GG file number, clement
element
e HH element elcment

Figure 23. Execute Bulk Operation (General Form)

il e e e il

Sl e

V. EXECUTION PHASE DESIGN

Identify Data Structures

There are three external data structures to this system:
the test library, the symbol library, and the test results
file. The TL supplies the test for the system to execute.
The SL supplies the symbols to be used during the test. The
test results file is created by the system. It contains
all of the sequence results and the test used for execution.

The internal data structures are the viewing sequence,
the response data, the sequence results, the individual items
of the test, and the stimulus library. The viewing sequence
is a data structure containing the acknowledgement symbol,
two masks (or the dynamic mask parameters), and a test sym-
bol. The response data is a structure that contains the
test history for determining the removal and/or redisplay of
a symbol. The items of the test are the time parameters,
the mask parameters, the stimlist, the display options, and
the symbol dynamics. The display options is further broken
down into the acknowledgement symbol index, the redisplay
option, the remove option, and the feedback options. The
symbol dynamics is broken into two classes: vibrate dynamics,
which affects the symbol during display time, and all the
other dynamics, which are termed static dynamics because they
affect the test symbol prior to the display time. The stim-
ulus library is the set of symbols corresponding to the stim-

list. The sequence results are the results of each viewing

L8

Table VI
Abstract Data Types - Execution Phase

DATA STRUCTURE OPERATION
Test Results store test
store sequence results

Sequence Results

Response Data

Viewing Sequence

Stimulus Library

get test
get sequence results

store/get response

store/get reaction time
store/get dynamics

store/get stimulus identifier

store/get stimulus identifier
store/get previous symbol
store/get symbol history

store/get acknowledgement
symbol

store/get mask parameters

store/get stimulus

store/get symbol
delete symbol

sequence. The abstract data types for those structures which

have not been already identified is given in Table VI.

The user-system interface is small in this system. It

consists of three commands: EXECUTE, STOP TEST, and END EXE-

CUTION lMODE. Apart from these commands, the user has little

Stored
Results

Figure 24.

DFD for the Execution System

k9

R

control over the execution of the test.

Model the Problem with a Data Flow Diagram

The data flow model for the execution phase system con-
sists of two diagrams: the DFD for the entire system and the
DFD for the test execution. In the entire system depiction,
the afferent data element is the test that is to be executed
(Fig. 24). The efferent data element is the test results.
The central transform, execute-test, is a system in itself.

The data flow model for the test execution is shown in
Figure 25. The model was developed by starting at a known
data element in the problem and working backwards until a
data structure (internal or external) was reached. The
viewing sequence was the starting point. From this point,
three lines of flow were derived--the acknowledgement symbol
flow, the test symbol flow, and the mask parameters flow.
Each line was followed until reaching the test that specifies
the execution.

The afferent data elements are the viewing sequence and
the time parameters. The efferent data element is the test
results data. The central transforms include the displaying

of the sequences and the handling of the responses.

Design System Using Structured Techniques

The system was factored into three first level modules;

these represented the afferent, efferent, and the central

transform branches (Fig. 26). Each branch was then factored

50 !

1
UOT3NO9XT 388 9Y3 I0F (JId °GZ Landty

sojweusg sy - T
. Hiyy xoon opaeen @ asey ojamg @
’ tdetp
wa1dg o114 Awrdepg (*OFUVUAP

Toqukg 3sey \ VATY

bt .s:.a
190, o ah :
R A owena | ® Ll K a{ “Siew) Yy
osure dyweulp
~J030p # 309,
. £xe1qy7 toquig
S1030wRIwg
Kerdsyq xsey Toquts e
Toquts JusweFpe usweSpay
bl . v:oS.u- :ol.n 9 cuto 2%,
12330 o114 Aerdetq toquks v.nlo.ﬂ c uy
J0j0weIRy %
L EE1 owry
R 1 4 /
»:u.an Toauks ®ouanbag eowenbes
JUSEITpe Ao Y ® Suymatp !a.u« A
%0
& sousnbes *
bl 714 Av1ds1q 1ewy opamg @)\ S*TdeTP j
12139 » oyweulkp sotweus(10
e s g ov3eie | ey
yS®Y SO7 0 outw
Soyweulp -J039D,
- srns

51

InquIdav " x eoTenik]
retds o114 Aetdsiq i puey -
usea0g Asey dyweuiq : ! i
wieqg Aeydsyg S o : sudte ®3g esuodsey
i Toquig . ?mn.:f *
. ! ’ 2 upe
e Q33 .

: : ™ulig -1930p,
e : P worisivey worsdo Awrderoey——{ uo “M“. ooq
u3vq 83 Tnsey 39!
Pt WAL IRRATTY ; s - 9
llﬂn h\"wu.w : 05t73do o “ @ MN-.M’«“ {oire .b"o'.ﬂ e .Qg.ﬂ_
rerepdp\ascpdry g % : * u_.»“u-u .
¥ -3030
eSesson —— M..u_"ﬂ"“.c-n = uot3do eromey .o-nmmmw Isey
oyl Smm— |
u Xo%QPed\ _ ouor] e

1877

ISTY |
peaspag Po3aLIg (D
; -
e 0-3 iseg
3930 [g Ketop uoyydo
9 SR Jessop\ outu "
STeends Supsdword \ -1930p,

sseu
uoty
-o_low.hn aaov:!. iseg

A1e1qyq Toqukg
E

A AR L5 0l et L3 S .t 0 M A ol et i " i

Execution
Executive
. :
#
- -
92 9k ;
93 :
Get. : Test ’Store
Valid Execution Test . k
Test __J Executive Results %
Interface
IN ouT
92 ——ea valid test, results file
number
93 valid test test results
94 test results, ———
results file
number
Figure 26. Execution System (First - Level Factoring) 1

to provide the complete system structure.

The afferent branch (GET VALID TEST) was factored by
successively bringing inputs into the system (Fig. 27). At
the different levels, the modules communicate with the user
through tie numerous CONSOLE OUTPUT modules. Most of the
system-user communication is limited to this branch.

The central transform branch, being a system in itself,
was factored using a transform analysis approach. The TEST
EXECUTION EXECUTIVE module was factored into four modules
representing the afferent, efferent, and the central transform

branches (Fig. 28).

52

189y

PTTEBA 39D

*LZ dandtyg

e 0/1
.n‘..._.,.-”u : ﬂour.“o

i
)
i

[sezepur

 Toaufs *xoy

i FSTINTAS

o
|

(1414

I 359y
$ 938DTT2A |
it

L

|
(===

f oTqey _
_ nov.,m a9faiur :
1O wooun | ASSUD
U Couhe gy
i 813
\ .
.w.:.. "0 i _i e i k T R R B SR
330 1 xapur | xopur I anas :
® \ - andin)
Tosuo) ; _llo:v.af _ 399 . . atoswoy !
~ =i — e s me—e . s —— eif= s
Sl N / \
~£p 2 \
s : T
:I/: ...
\
N ¢ /
S S e
' XapuT ‘ IT
arding _ H %39} 353
®70su0) ! PTITA _ wozg * !
wood Lo 390 (Ossszzen; [
// !
.20t .
N 003
II, P 4
101 / ; /
2 5] ¥
- (st
T 383y |
30y ¢ | 309
l s ikl
\\\\
e

puT=ecs

9D

€Cct

—a v

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Interface

IN

test

error message
index

error message
file number
test

indexes

error message
command

error message
index

error message
file number request
input line
command request
input line
index

index

OUT

test, endflag
valid results file number

valid test, okflag
valid command, endflag
test

valid index, okflag
valid file number
file number

indexes

okflag

command

valid command, okflag
index

valid index, okflag
input line

file number

input line

command

okflag

okflag

Figure 27 continued

The factoring of the first afferent branch (GET TIME

PARAMETERS) was trivial because it is an operation of the

abstract data type--test (i.e, get-item). This branch was

54

3
4 Test
: Execution
23 Executive
;? £ LN
.7“ |
2'6; 120 123
a 121 122
| -
4 // \
P ,////// \\\\
Get | GCet Centrol f
Times (Viewing Display Stove
Parameter | Sequence Sequence ‘1equencc
FEane | Results
: Interface
.
3 IN ouT
120 <est time paruameters
121 test viewing secaquence
© 122 time parameterc, viewing se- sequence results, storflas~
quence A
123 sequence results sequence results file
E Figure 28. Test Execution (First - Level Factoring)
not factored any further.

f The factoring of the GET VIEWING SEQUENCE module demon-
strates the relative ease that transform analysis provides

é when decomposing an afferent branch (Fig. 29). There is

| almost a one to one correspondence between the data elements
; and transforms of the DFD to the modules in the structure

: chart.

;~ The central transforms were designed into one.module,

CONTROL DISPLAY SEQUENCE (Fig. 30). The two functions of

v

the central transforms--displaying sequences and handling
1 responses--needed to be coordinated. If the display is one
1 that needs updating (i.e., due to the vibration option), then
1 55

A

"

-

4

aouanbag SutmaTp 399

*62 2anItg

e e o el e e s R e e
' ! asay ECEMEEE Y | o
i 28TT . | ©OXy 383T uovad) 57 wox:
oyT . p233330 UCPUTY Toqufs
Mo L e sen. © Tam. O 189
.///. A : , "
i ~. v
neT ;//:/./ R T
i s TUUTTUTUTT MRieg ecuods | ageg woxd | T Teyeq esuois
1817 Axeaqy1 Ketdsypoy * -oy wezg | uotado | er0w0Y -0y T34
: EY-ER angnutys sutuseseq 1 _eaeg Rerd i Retdstpey | supaazeq IR Brous g
i %99 21wax) ! _ (O-=stoew 309 O EL TR C 325
e 5 ‘e / 5
. i
e N 941
~ e N um
(2124 // S // /.
l// ~. ll! / H
f ! 1S o woxs 1597, woxg i | e o
| sotuwrufg| ' S opiTul-~ sotueculyq | ! Axexqyr! M.E?m : TOQuAS Teulte
i P L Tomzoy wopuey ' | satmwras. | Aetdsypey | o axeg (YA
i o ,O. 301 C Iy | aoom % 399, |, eutmaalrC . 1%
/ \ / ¢ R NG e S 3
: V50T Ry ; A .-
_ \) Bet V%4 " s »1
27t 1~3 \ i S 9€1 sct
ot / ; ' \ o
' s \ / / ; - e
NG \ \ \ \ L
- - P @ e A — e o A e i | e s e
} 3s «....4. . sorweuln 8OTTUAQ ... 18" 1597,
Mm.«.«. ouumww oﬁm.w ; | T0quAso.\.-.m BOLZL YORUl
=) 109 0g=fs c3hs *¥oY
.0 xmau 1ed e e i) o a 283 m.; .u jes
: - ; 7 :
; 5 21 821 Lzt
\ R{% ; :
198 [0 N €T \
\ / b A _ h
d adis Vlc\) <.||r..u..o,m.ﬂ~.m.l.
Toquss ! Lau 8D
3soy i -n0uNIY,
i 399 _ e 200,
~ L m . -l \\. <
‘gzt) _ Pl
R szt e
e i
o .\\\ .
2
esuandag!
PuagenTh
1ar |
o R TS e . TR e :

124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
1 139
. 140

141
j 142
143
gL
: 145
] 146
4 147
i 148

149
‘ 150
% 151
§ 152
E 153
154

index

static dynamics symbol

.remove signal, redisplay sig-

nal, stimulus library

random dynamics, normal dy-
namics

static mask
remove option, remove data

redisplay option, redisplay
.data

test list
index

random list option, ordered
list

Interface

1IN

ouT

acknowledgement symbol
test symbol

mask display items
index

acknowledgement symbol
symbol

test symbol

static dynamics

mask item

static mask set
remove signal

symbol

redisplay signal
stimulus library
random dynamics
normal dynamics
static dynamics

static mask
static mask set
remove option
remove data
remove signal
redisplay option
redisplay data
redisplay signal

stimulus liﬁrary
test list

symbol

random list op@ion
ordered list

test list

Figure 29 continued

57

souanbeg AetdsTg TOI3UO)

*0€ @aan3tg

Zmriczo
0/1 ‘ 91czu9)
0703u) ‘.
23AUDD >
. L [A4 i3
6Lt sé1 s
g yoew
. asuodsoy 1suodsoy ferdete sruruic I3 ei=ls
03TRTT=A 109 210700 e3ma2usg fev76sTs feslsyn
91
91
65t 89t 591 ot

N7 ToqNR
esuadan: s1Insay .LG2uadpat
ssasex PITEA —waro
g 12D Keids

T
L 3 51
021
sinsoy 8
agyantag
nan
§53
e5%
.oo:a‘_.un.w
.
L " R .4 3 SR 1) . ¥ 2 7 «
b e S e et A e skt s —

155

156
157

158

159
160

161
162
163
164
165
166

167
168

169
170
171
172
173
174
175
176
177
178
179
180
181

Interface

IN

viewing sequence, time
parameters

test symbol, stim-
ulus time

mask item, mask times
acknowledgement symbol

valid response
symbol

display symbol
static mask set
mask item

acknowledgement symbol
display

response

error message
valid response
sequence results
remove data
redisplay data
vibrate option
stimulus display
static mask display
dynamic mask display
prompting message
input line

feedback message

ouT

sequence results, stopflag

valid response,
stopflag
sequence results

display symbol

response

valid respnse,
okflag, stopflag

sequence results
input line
response
feedback option

Figure 30

continued

59

G e 3 e S e o S T S i £ Ik i s

Store
Sequence
Results
18 83
Format Create
Sequence Test
Results Results
Interface
IN ouT
182 sequence formatted results
results
183 - formatted test results
results

Figure 31. Store Sequence Results

the control must continually shift between the waiting for a
response and the updating of the display file.

The efferent branch of the test execution is the storing
of the'sequence results to form the test results. When the
command STOP TEST is input by the user, the test results
will be passed on to the execution executive (Fig. 31).

The efferent branch of the execution system stores the
test results in a file to be output later (Fig. 32). The
results from several executions of the test can be stored

in the same file.

60

<

Store Test
Results

N\
S

Create

Format Test

Res

ults File
Results

184 ----
185 test results

186 formatted test

Interface

IN

results, results

file number

ouT

doneflag

formatted test
results

Figure 32.

Store Test Results

VI. ANALYSIS PHASE DESIGN

Identify Data Structures

There are two external data structures to this system:
the test results file and the collapsed data file. The test
results file was output from the execution system. It is
used in the analysis phase to provide the necessary data for
the creation of the confusion matrices. The collapsed data
file stores the data after it has been processed with the
predictor matrices.

There are two types of matrices used during this phase:
the confusion matrix and the predictor matrix. The confu-
sion matrix can be of three types: response based, reaction
time based, and percentage based. The values in the matrix
are determined from the test results. The predictor matrix
has user-determined values that specify the degree of error
of an incorrect response. The information in these two ma-
trices are combined using a collapsing function. This deter-
mines an overall degree of error in the recognition of the
test symbols. Reference 5 contains examples of confusion
and predictor matrices which will not be presented here
(Ref 5:18-19).

The user-system interface consists of six commands:
LOAD DATA, CONFUSION, PRINT, COLLAPSE, ENTER, and END ANALY-
SIS. These commands and their options are explained in

Appendix B, User's Guide.

62

DATA ELEMENT

Figure 33. DFD for the Analysis System

Model the Problem with a Data Flow Diagram

The inputs for this system are the user commands and
the test results. The outputs are the results from the col-
lapsing routine. This produced a simple model for the prob-
lem (Fig. 33). This model is similar to the model for the
set-up phase. The afferent data element is the valid user
command. The efferent data element is the results from the
execution of the commands. The central transform is a trans-

action center, controlling the execution of the commands.

Design System Using Structured Technigues

The first level factoring of the system executive and
the factoring of the afferent branch are shown in Figure 34.
The procedure for deriving the first level modules is the
same procedure that has been used in the previous designs--
one module for each of the different branches. Further, the
afferent module has been decomposed using the transform
analysis technicue.

The ZXECUTE ARALYSIS COLiAND module (transaction center)

63

e A A

' Analysis

! Exzecutlive
r>
187 188 189
Get ‘
Vo lid Exccute Outr-gt_h
gz:}ng;,g" e';:‘;i:.? i
Gef 'o \Valzdate Con..ole
Aniy..ix Analyris Output
Comaand J iComna.nd _]
s
193 194
——COnsoI;—] {Convert
1/0 ! ,i:temal
] Lrom
Interface
IN ouT
187 ~--- valid command
188 valid command collapsed data
189 collapsed data ————
190 ~=-- command
191 command valid command, okflag
192 error message ———
193 request message input line
194 input line command
Figure 34. Analysis Executive (First - Level and Afferent

Branch Factoring)

64

controls the entry into the specific execute-modules (Fig. 35).
The reason for not having an afferent get-parameters module

.;‘ for the system (as was done in the design of the set-up

| phase system) is that some of the commands are not executa-
ble until others have been completed. For example, the CON-
FUSION command cannot be done until after the LOAD DATA com-
mand has been done. Thus the transaction center screens the
commands prior to the calling for their execution.

The decomposition of each of the execution modules was

very similar. There was an afferent branch in each which
was used to get the parameter needed to perform the function.
The central transform branch handled the function and returned
its results to the transaction center. These decompositions
are shown in Figures 36. 37, 38, 39, and 40. The EXECUTE
END ANALYSIS COMMAND is a stub module and does not perform
any function other than returning an end-flag .

The decomposition of the efferent branch (OUTPUT ANALY-

SIS RESULTS) is shown in Figure 41. The results can be

stored or output to the user.

(a93u9) uoTIOoBSUB) purwWO) STSATBUY 93noexy *GE aanIty

.
o e3essaw J0aI9 1T0Z :
FeTipue ===l 008
" -—— XTa3eu 667
XTJI}BW UOTSNJ
Blep posderTroo -u0d ‘xTJjeuw J030Tpead g4I
XTJ3BU UOTSNIUOD BIBD 3893 /L6T
XTajeu Jxo03o1paad --== 9671
BlRD 1593 ==== G681
&LN0 NI
90BJI9qUT
puBuwo) e puBwwO : \O
stortoy e Aurad esdvrron uoYenzuo P e ““mm j i
e3noexg e3noexg o3noexg o3noexy synoexy e3noe

T . e

.

)5 i s 5 A b S

Q
Get
Test
Data
204 20\ %\
1 Bl Convert
th Validate : =
Mo | (R || S St | | Eovernn
| orm
209 210
gonvert
L °
(I:?oxaole :.2 :1: 2aey
Interface
IN ouT
202 ---- valid file number
203 wvalid file number test data
204 —--- file number
205 file number valid file number,
okflag
206 error message -—
207 file number input data
208 input data test data
209 request message input line
210 input line file number

Figure 36. Execute Load Data Command

67

Execute
Enter
Command ,

211
Get
Next Make
Row Matrix
o WIS
21) 21h
Get ks
g;:;ent Row J
215 216 217
* ——— \~--_
F"';::] Validate Conscle
Elcment Element Output
218 219
A R
Convert
Congole To
1/0 E\teml
Form |
Interface
IN ouT
211 ---- row
212 row predictor matrix
213 -=-- valid element
214 valid element row
215 ---- element
216 element valid element, okflag
217 error message ————
218 request message input line
219 input line element

Figure 37. Execute Enter Command
68

Get Validate Consol |Process Cenerate
Spoten | |Songaston || owtput’ ne o
227 228
Convert
Console To
1/0 Internal
Form
Interface
IN ouT
220 ---- valid option
221 wvalid option, test confusion matrix
data
222 ---- option
223 option valid option, okflag
224 error message ———
225 +test data, valid confusion data
option
226 confusion data confusion matrix
227 request message input line
228 input line option

Figure 38. Execute Confusion Command

’ gt

229
230

231
‘_ 232
’ 233
234
235

Execute

Collapse
Command
229 230
Get
Valid Perform
Collapse Collapse
Option ~ Function
23 232 23
Get Validate
Collapse Collapse ggzso%e
Option Option pu
2 235
Convert
Console To
0 Internal
Form
Interface
IN ouT

valid option, predic-
tor matrix, confu-
sion matrix

option
error message
request message

input line

valid option
collapsed data

option

valid option, okflag
input line

option

Figure 39.

70

Execute Collapse Command

i 3
koc;ato
& Print
38 Command
{1; ’
‘ 236 237
Get o
valia Print .
Print Matrix ;
Option :
238 240 241 242
239
Get Validate Format
C 1 A. Console
g;?i.:n o’;ﬁ'{:,, 0:?;:: Crh(::put Output
: 263 FIN
gonvort
g%uoh é: o
Interface
IN ouT
: 236 ---- valid option
237 wvalid option, matrix ————
238 ---- option
239 option valid option, okflag
E 240 error message ————
? 241 matrix formatted matrix
242 formatted matrix v
243 request message input line
‘ 244 input line option
| Figure 40. Execute Print Command
‘ ’

Output
Analysis
Results
2u5 247
246
Store Format Output
Collapsed For To
Data Output User
Interface
IN ouT
245 collapsed data collapsed data file
246 collapsed data formatted data
247 formatted data ——

Figure 41. Output Analysis Results

72

VII. DESIGN EVALUATION

Introduction

The perception experiment software is being developed as

a system for use in perception testing. Thus it will undoubt-

edly undergo many changes and enhancements throughout its
lifetime. An interactive system, such as this one, must be
easily maintainable.

The method that was used to produce the preliminary
design of the PES produces a structure that is maintainable.
To measure this mainatinability, several changes and en-
hancements will be proposed for each phase. The amount of
change required in the system will be assessed. Finally, the

question of optimization will be addressed.

Set Up Phase lodification

The kinds of changes to this phase of the problem would
be changes such as adding a new command, deleting a command,
changing the function of a command, changing the limits for
the parameters of a command, and changing the structure of
any of the data bases.

The transaction centered strateéy used to design this
system, allows the first three types of changes to be hand-
led quite easily and with little effect to the rest of the
system. To add a new function would entail changing the
VALIDATE SET UP COMMAND module in the first afferent branch

of the system (to allow this new command to be valid) and

73

_———

changing the transaction centers (GET VALID SET UP PARA-

METERS and EXECUTE SET UP COMMAND) to reflect the addition.

;§ The new function can be placed into the existing structure
without affecting any other module. The same three modules
are the only ones that will realize that a command has been
deleted.

The changing of the function of a command and of the
limits of its parameters will be isolated entirely within
the two branches coming from the transaction centers. In
fact, the changed limits can be handled by changing only
one module (CHECK LIMITS).

To add or delete a command, or to change its function,
will probably cause changes to the data structures. Since

3 these structures are to be designed as abstract data types,
' the effect of the changes, except for data operation pro-

cedures, will be imperceptible to the rest of the system.

Execution Phase Modification

The types of changes to the execution phase would be
the expanding of the response-directed options, the elimina-
?; tion of the dynamically visible options (vibrations and dy-
namic masks) and the allowing of the user to specify the
number of test symbols to be shown.
The expanding of the response-directed options would
cause changes in two areas. First, the data structure,
response data, would have to be expanded to maintain more

test history. This will have no effect to the system

: il | 74

because response data is an abstract data type. Also
in this area will be an addition of a module to the PROCESS
RESPONSE module. This new module would determine the data

for the response data file. Second, assumingthe test has

adatis

been modified, modules would have to be added to the affer-
ent branch of the GET TEST SYMBOL module. This case would
only be done if the new option would affect the symbol list.

In both cases, the modularization of the system has prevented
the change from causing widespread changes.

The elimination of the dynamics options is a definite
possibility. The changing of the display while waiting for
a response is a problem that has not yet been investigated.
To eliminate them from the system would entail deleting the
associated modules and modifying the one or two modules with
which they communicated. There should be no other changes to
the systen.

If the user is provided the option to specify the num-
ber of test symbols to be shown, the only module affected
would be the CONTROL DISPLAY SEQUENCE module. Since the
transform has been structured so that this module coordin-
ates all activities associated with the display sequence,
the rest of the system will not be affected by the new op-

tion.

Analysis Phase Modification
The changes to the analysis phase would be similar to
those in the set-up phase. These changes would be in the

75

adding of new capabilities to the analysis. The addition of
functions, as in the set-up phase modifications, would cause
changes only to the transaction center and to the validate
module. The only other type of change would be a require-
ment for more, and varied, types of output reports. Here,
the change to a system would be limited to the efferent

branch of the system.

Optimization

This preliminary design provides a structure that al-
lows the designer the maximum flexibility in decision-making
during the rest of the design and implementation stages. It
provides a complete structure chart in which the modules are
as functional as possible.

If the designer must optimize (and there are many that
are against such a practice (Ref 4:vii)), this structure
will make him aware of how he is affecting the system. This.
allows him the maximum choice of areas to optimize. If he
is optimizing space, he can see the modules that can be most
easily recomposed without affecting the system. If he is op-
timizing for speed, he can determine those critical areas
that are executed the most and redesign those areas. Since
the areas have been designed for minimal communication, care-

ful redesign of those areas should cause only a few changes.

VIII. RESULTS AND CONCLUSIONS

This chapter discusses the results obtained from the
software design and the conclusions drawn from these results.
It also provides recommendations for the further design and

implementation of the perception experiment software.

Results

The design for the perception experiment software was
accomplished by following a well-defined structured method
in a rigorous, disciplined manner. The requirements defini-
tion for the problem was presented informally in Chapter II.
Knowledge of the problem requirements is necessary to form a
sound foundation on which to design a program structure. A
design philosophy emphasizing program maintenance was used
to develop the tools with which to build the program struc-
ture. The tools were in the form of a design method which,
when rigorously followed, produces an easily maintainable
structure (Chapter III). The program structure for the
three phases of the problem was built using this design
method (Chapters IV, V, and VI). The structure was evalu-
ated in Chapter VII and shown to be edasily maintained and
modified.

The application of structured design techniques re-
sulted in a program design which will be easy to implement,
maintain, and modify. Most of the modules in the design are
singly functional and easily understood. The use of

77

abstract data types for the data structures within the
system greatly facilitated the design effort as well as |

enhanced the maintainablilty of the system.

Conclusions

The most important factor in designing a system is to
have a clear idea of what is required. Without this know-
ledge, it is nearly impossible to develop a workable program.
The next most important factor is to develop a good design
prior to any coding being done. This design must be accom-
plished in a methodical manner. Typically, a designer cannot
haphazardly design a program and then expect someone else |
to have an easy time maintaining it. Structured design
provides a methodical approach to producing programs that
anyone can maintain. It is only after the complete program
structure has been designed that detailed module design and

coding of the program should begin.

Recommendations

The perception experiment software is in the design 1
stage of development. The following recommendations are
provided as guidelines for the further development of the
system.

The abstract data type interfaces for all of the data

structures in the system must be defined prior to coding.
Without this definition, it will be impossible to produce any

meaningful code. The three systems can be coded concurrently

78

s g ’v:f"““vﬁ{'*" e SR LNt -y B

if the interfaces of the data structures that are shared
between the systems are defined first.

Finally, the software should be implemented using top-
down methods in coding and testing. In this way, the system
interface testing is accomplished throughout the coding
stage. Implementation using a top-down approach starts at

a single point, but parallel coding becomes possible as the

lower-level components are developed.

10.

Bibliography

Boehm, B. W. Software Engineering. TRW Systems Engin-
eering and Integration Division, Redondo Beach, Calif.:
(October 1976).

Brooks, F. P. The lMythical Man-lMonth. Reading, Mass.:
Addison-Weslay Publishing Company, 1975.

Constantine, L. L. and E. Yourdon. Structured Design.
New York: Yourdon Inc., 1975.

Jackson, M. A. Principles of Program Desizn. New York:
Academic Press Inc., 1975.

Liebeck, R. A. Software Design for lMultimode liatrix
Display Perception Tests (Thesis). (December 1976).

McGowan C. L. and J. R. Kelly. Top-Dovmn Structured Pro-
gramming Techniques. New York: Mason/Charter Publishers,
Inc., 1975.

Myers, G. J. Reliable Software Through Composite Design.
New York: lason/Charter Publishers, Inc., 1975.

Parnas, D. L. "On The Criteria To Be Used In Decomposing
Systems Into lodules". Communications of the ACL, 15:
1053-1055 (December 1972).

Ross, D. T., et al. "Software Engineering: Process, Prin-
ciples, and Goals." Computer: 89-99 (liay 1975).

Yourdon, E. "Structured [Maintenance--Approach Trains User
to Read Alien Code." Computerworld, 37: 38 (12 September

1977).

80

Appendix A
MODULE DESCRIPTION

System Description

The perception experiment software was developed as
three separate systems. Implicit in this development is the
idea that an overall system executive would coordinate the
phase executives (Fig. 42). The SYSTENM EXECUTIVE, after re-
ceiving a valid command, passes control to one of the three
phase executives. This module and its subordinates control

the entire perception experiment system.

The GET VALID COINMIMAND module has a structure that appears

System
Executive
1
2 3 y
Gel Set Up Executive Analysis
Valid Executive Execution Executive
Comnand
Interface
IN jOUT
1 ———— valid command
2 set up command set up parameters
3 set up parameters test results
4 test results P———

Figure 42. PES System Executive (First - Level Factoring)

81

e

|
Get ¥*
Valid
Object
1 3
2 E
Get 3 Validate = Console
Object Object Output
-
Console Convert 1
I/0 To
- Internal
Form
Interface]
IN | OUT j
1 =-——-| object]
2 object valid object, okflag :
3 error message ———— 1
4 request message input line
5 input line object

Figure 43. Afferent Group Structure

throughout the entire system (Fig. 43). This structure will
be termed an afferent group. It will be described in gener-
al terms which will apply to all afferent groups in the sys-
! tem. The modules marked with asterisks are the modules that

change for a particular application.

82

The GET VALID OBJECT module provides a valid object to
its calling module. It gets an object from the GET OBJECT
module and determines its validity. If the object is invalid,
an error message will be output through CONSOLE OUTPUT. In
this case, the GET VALID OBJECT module will call the GET OB-
JECT module again, in an attempt to get a valid object.

The GET OBJECT module provides the appropriate request-
object message through the CONSOLE I/0 module. The input line
will be sent to CONVERT TO INTERNAL FORM. This takes the
input line and converts it to a form recognized throughout
the systenm.

The VALIDATE OBJECT receives the object and, depending
on the application, determines its validity. It then returns
the object to GET VALID OBJECT with a flag as to its validity.

This afferent group, as it applies to the SYSTEM EXECU-
TIVE, would be described like this. The GET CONMMAND module
would request the user to enter a system command. This com-
mand is converted to a usable form (by CONVERT TO INTERNAL
FORM) and passed to the GET VALID COMMAND module. This mod-
ule would pass the input command to the VALIDATE COMMAND mod-
ule. This module would ensure that the command was either a
SET UP, EXECUTE, or an ANALYZE command as defined in Appendix
B. If it was, an okflag would be returned and GET VALID COM-
MAND would pass the valid command upwards. If it was not
valid, a not-okflag would be returned. GET VALID COMMAND
would provide the user with an error message through CONSOLE

OUTPUT. It would then invoke GET COMMAND to request another

83

G B A B 3 A B) A S S5 A 525348 el i 5 8Bl 3k

input. 3

Set-up Phase Description

The SET UP EXECUTIVE invokes its subordinates to execute
the set-up commands (Fig. 6). A valid command would be any
one of the SET UP commands in Appendix B. When it receives

a valid dommand from the afferent group, GET VALID SET UP

COMIAND, no validation has been done on the paremeters that
might have been entered with the command. These are passed
to the transaction center GET VALID SET UP PARALMETERS. After
getting the parameters, the SET UP EXECUTIVE invokes the EXE-
CUTE SET UP COIIMAND transaction center. The EXECUTE SET UP
COMMAND module will return an updated data structure to the
phase executive. An end-flag will be returned when the com-
mand END SET UP is entered by the user. The SET UP EXECUTIVE,
upon receiving the end-flag will output an appropriate mes-
sage to the user and return control to the SYSTENM EXECUTIVE.

The GET VALID SET UP COMMAND module (Fig. 7) is an af-
ferent group. When it is invoked by the SET UP EXECUTIVE, it
will return one of the valid set-up commands. The GET SET
UP PARAMETERS (Fig. 8) and the EXECUTE SETUP CONMMAND (Fig. 12)
are transaction centers that are almosf purely executive in
function. When invoked, they determine the appropriate
module to call on to execute the command.

Those commands that have more than one parameter associa-
ted with them have COLLECT PARAMETERS modules that are shown
in Figure 9. The GET TYPE I PARAMETERS creates the test-item

84

by successively getting valid parameters from the affer-
ent group, GET VALID TYPE I PARAIETER and passing them to
COLLECT PARAIETERS. The GET VALID TYPE I PARAMETER module
will request specific parameters from the GET TYPE I PARA-
METER module. This will cause the output of the appropri-
ate parameter-request message. The VALIDATE TYPE I PARA-
METER module can call on numerous submodules to determine
validity. The CHECK ALPHA module checks to see that the
parameter consists of alphabetic characters and returns a
flag if it is not. The CHECK INTEGER and CHECK REAL mod-
ules ensure that the parameter is an integer or a real
number, respectively. The CHECK SL INDEX TABLE and the
CHECK TL INDEX TABLE are operations of the abstract data
types symbol library and test library, respectively. The
CHECK TPYE I LIMITS module will check that the parameter
is within the limits prescribed by the user.

The structure of the GET VALID TYPE II PARAMETER mod-
ule is similar to the srtucture of the commands with more
than one parameter (Fig. 10). The main difference is that
the GET VALID TYPE I PARAMETER (of Figure 9) functions have
been incorporated into the head of the structure. This was
possible because there is only one parameter needed.

For the commands without any parameters, the structure
of the GET TYPE III PARAMETER consists of a stub (Fig. 11).
In this case, control is returned immediately to the calling
module.

The EXECUTE SET UP COMMAND module (Fig. 12) calls

85

i o i i

on one of 22 modules to execute a particular command. The
modules affecting the active test are depicted in Figure 13.
The EXECUTE ITEM CONIIAND module will call on the STORE ITEN
IN AT module. This is a function of the abstract data type
AT. The user message is a review of the parameters that
were just stored.

The EXECUTE MASK COIMIMAND module determines which option,
static or dynamic, has been chosen (Fig. 14). If static was
selected, then IIAKE [MASK FILE is invoked. This stores the
static masks as items in the AT. If dynamic was selected,
the item is immediately stored in the AT. The user mes-
sage details the action taken. The IMAKE STATIC MNASK FILE
calls GENERATE STATIC MASK and STORE STATIC INASK IN ACTIVE
TEST until the specified number of masks are made.

The EXECUTE CLEAR PARAMETER COIMMAND module will make
repeated calls to GET DEFAULT VALUE and STORE ITENM IN AT
(Fig, 15). In each call, it will request a different de-
fault value for the different item in the AT. GET DEFAULT
VALUE and STORE ITEl IN ACTIVE TEST are operations of the
abstract data types, default value table and active test, re-
spectively. The user message will denote that default values
are in the AT.

EXECUTE PRINT PARAMETERS COIMMAND will request the items
by the options (i.e., MASKS, STIMLIST, ALL) from the GET ITEN
FROM ACTIVE TEST (Fig. 16). The item message that is output
contains the requested items.

EXECUTE STORE ELEMENT will store either a symbol from

86

-I/
[

AD=-A055 178 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2
PRELIMINARY DESIGN FOR MULTIMODE MATRIX PERCEPTION EXPERIMENT S=-=ETC(U)
DEC 77 S 6 WENSKA
UNCLASSIFIED AFIT/GCS/EE/T7-11
2;_‘F

4D

the AS or a test from the AT into the respective library
(Fig. 17). The user message will reflect the action being
taken.

The EXECUTE PURGE COITIAND invokes the DELETE ELEMENT
FROM LIBRARY module to remove an element from the library
(Fig. 18). The user message reflects this change.

EXECUTE RELOAD COIMIMAND takes an element from the appro-
priate library (using GET ELENMENT FROM LIBRARY) and stores
it in the active symbol or acfive test (Fig. 19). The mes-
sage to the user will notify him that the reloading opera-
tion is complete.

EXECUTE LIST COMVAND searches the library index table to
determine the response to the user's request (Fig. 20). The
abstract data type functions are shown by COUNT INDEXES IN
LIBRARY and LIST INDEXES IN LIBRARY. The message to the
user is the information desired by the user.

The EXECUTE CREATE COIMMAND module with its subordinates
enables the creation and display of the active symbol (Fig. 21).
The afferent group GET VALID INPUT will return a legal cre-
ate mode command or a symbol segment. The EXECUTE INPUT
will receive the input and determine the action to be taken.
EXECUTE INPUT calls on STORE SEGIMENT, which stores a segment
into the active symbol and causes the system to display the
change; CLEAR SYMBOL, which removes all segments from the AS
and clears the display screen; and EXECUTE ALTER, which pro-
cesses the ALTER commands. '

The EXECUTE ALTER module has its own transform-centered

87

il

e AL
R

e i

design (Fig. 22). The afferent group GET ALTER COIMAND pro-
vides a valid ALTER command. The GET ALTER PARAIMETERS is a
transaction center sharing modules with the branches of the
set-up phase dynamics commands. EXECUTE ALTER COMIAND di-
rects the changes in the active dynamics list to determine
the display.

The EXECUTE BULK OPERATION shows that the same structure
is valid for both the BULK LOAD and BULK STORE operations
(Fig. 23). This module calls on EXECUTE SL OPERATION or
EXECUTE TL OPERATION which does the mass loading/storing

of the libraries.

Execution Phase Description

The EXECUTION EXECUTIVE calls on three modules to exe-
cute a test (Fig. 26). As an executive, it acts as a commu-
nication center for passing data structures and coordinating
test execution activities.

The GET VALID TEST module calls on the GET TEST module
and the VALIDATE TEST module in order to determine a valid
test (Fig. 27). The GET TEST module uses two afferent
groups--GET VALID COMMAND and GET VALID TEST INDEX-- to de-
termine which test is to be executed. It retrieves the test
through the GET TEST FROM TEST LIBRARY module. The VALIDATE
TEST checks to see that all the indexes used in the test (the
stimulus 1list and the acknowledgement symbol index) are pre-
sent in the symbol library index table. If not, an error

message is output and control will return to GET VALID TEST.

88

F & e ™ 7 e ¥ L e o ¥ S cce _— eiaia i e " "1
4

1

{

{

This module will then attempt to get another test.

The TEST EXECUTION EXECUTIVE coordinates the actions
during the test itself (Fig. 28). It uses the GET TIIME PARA-
METERS module to get the time values that will be used to time
the viewing sequences. GET VIEWING SEQUENCE, CONTROL DISPLAY
SEQUENCE, and STORE SEQUENCE RESULTS are invoked in a loop

to provide for test execution.

GET VIEVUING SEQUENCE is an afferent module which gets

the displays needed in a viewing sequence (Fig. 29). The

GET ACKNOWLEDGEMENT SYMBOL gets the symbol by first calling

GET ACK SYIIB INDEX FROM TEST to get the index. It then in-

vokes GET SYIBOL FROM SL to get the acknowledgement symbol.
The GET TEST SYNBOL calls on the GET SYIMBOL module to

% get the next symbol to be shown; it then applies the static

dynamics to it. The GET SYIBOL module chooses the next sym-

R

bol to be showvn. Depending on the redisplay and removal
options, this module will provide either the next symbol in
the stimulus library (unless it is a removal symbol) of the
previous symbol shown (according to the redisplay option).
E : The GET STIIULUS LIBRARY creates the library by getting
the list of symbols (already modified by randomness, if ap-
1 plicable) and getting those symbols from the symbol library.
The GET TEST LIST module gets the list to be used for
yhe test by getting the ordered list and the randomness op-
i tion from the test. These are passed to MAKE LIST which ap-

? plies randomness as required.

! The GET REMOVE SIGNAL and the GET REDISPLAY SIGNAL will

89

get the respective option from the test. If there is an op-
tion, the DETERMINE RENMOVE/DETERMINE REDISPLAY module will
be invoked to check the response data to determine if the
option applies to the next symbol to be shown.

The GET STATIC DYNAIMICS module gets the dynamics that
affects the symbol prior to display time.

GET MASK DISPLAY PARAMETERS will get either the two
static masks that are needed (GET STATIC MASK SET) or the
dynamic masks parameters needed to generate the masks (GET
DYNAMIC PARAMETERS).

The CONTROL DISPLAY SEQUENCE coordinates the actions of
diéplaying a sequence and handling the subject response
(Fig. 30). This must be done to ensure that a display is
maintained while waiting for a subject to respond.

The DISPLAY SEQUENCE module coordinates three subordi-
nates to display a viewing sequence. The DETERMINE IIASK DIS-
PLAY shows either a static or a dynamic mask. PREPARE TEST
SYNBOL displays the symbol while applying the vibrate dyna-
mics to it.

GET SEQUENCE RESULTS uses the GET VALID RESPONSE affer-
ent group to determine the action to be taken. A valid re-
sponse may be either a response to the symbol, a special re-
sponse, or the STOP TEST command. If one of the responses
is received, PROCESS RESPONSE updates the response data
structure. If the STOP TEST command is received, a flag is
sent to the TEST EXECUTION EXECUTIVE and the appropriate ac-
tions will be taken. DETERMINE FEEDBACK provides the

90

feedback message to the subject based on the reinforcement

option and the print option.

Al v

il oo
e i adatin o b

The STORE SEQUENCE RESULTS module is shovn in Figure 31.

i o

This creates a file for each test. The STORE TEST RESULTS
J (Fig. 32) for the test execution is activated after the stop-
flag is received by the EXECUTION EXECUTIVE. The modules
take the stored sequence results and stores them as a test.
If the test is executed several times, the module will store

the results of each test in the test results file.

Analysis Phase Description

The ANALYSIS EXECUTIVE uses the GET VALID ANALYSIS COli-
MAND afferent group to get a command for execution (Fig. 34).
These commands are listed in Appendix B. Collapsed data re-
sults can be outputted via the OUTPUT ANALYSIS RESULTS module.
EXECUTE ANALYSIS COITMAND is a transaction center which calls

on the various execute-command modules to perform the function
(Fig. 35). This command structure ensures that a command
can be executed prior to relinquishing control (e.g., at-
tempting to generate a confusion matrix prior to loading the
data is not allowed). Error messages to this effect are

output to the user.

EXECUTE LOAD DATA COITIAND uses the afferent group GET
.VALID FILE NUMBER to determine the file designator of the
test results file (Fig. 36). It then accesses the data
.‘ through the GET TEST DATA module.
EXECUTE ENTER COIMMAND allows the user to specify a

:f 91

SIS RPN PERVE R N E TP

); predictor matrix (Fig. 37). This module calls on GET NEXT
‘i ROW which provides the row data for the matrix. INMAKE MATRIX
.E’ takes each row and forms the matrix. GET NEXT ELELENT and
i?r MAKE ROU function in a like manner but on a smaller scale.

EXECUTE CONIFFUSION COIIMAND uses the afferent group GET
VALID CONFUSION OPTION to get the type of matrix to be gener-
ated--response, reaction time, or percentage (Fig. 38). The
GET CONFUSION IATRIX module then gets the data required in
order to generate the confusion matrix. This data 1is passed
to GENERATE CONFUSION IATRIX.

] EXECUTE COLLAPSE COMIAND handles the collapsing of the
confusion matrix data (Fig. 39). GET VALID COLLAPSE OPTION
is an afferent group which gets either a rank option or an
absolute distance option. The PERFORI1 COLLAPSE FUNCTION then
handles the collapsing of the confusion matrix based on the
option.

EXECUTE PRINT COIMAND uses the afferent group GET VALID
PRINT OPTION to determine what type of matrix the user de-
sires output (Fig. 40). It calls on PRINT MATRIX to handle
the actual formatting and outputting of the matrix.

OUTPUT ANALYSIS RESULTS formats and outputs the col-
lapsed data from the execution of the COLLAPSE COMIAND (Fig.41).

This module also has the option of storing the data for later

3 use.

o

3
|
i

Appendix B

USER'S GUIDE

R e o
Wiy o it 2

Introduction

v

The purpose of this appendix is to define the user-
system interface. In ‘this way both the designer/implemen-
tor and the suer have a definite document to refer to when ;
discussing the system. This appendix is not meant to be an ,
endproduct but strictly an interface definition. In this
way, the system becomes visible to the user.

Since the perception experiment software system is in-
teractive, the commands listed in this appendix are those
which are indicated as necessary to implement the system at
this time. The appendix should be updated at any time that

the user or designer feels that an update is warranted.

Syntax

[The commands are divided into four main areas: system

mode, set-up mode, execution mode, and analysis mode. A

brief description of each mode will be given. This will

be followed by the commands allowed during that mode. Exam-]
Ples are given for clarification. In most cases, it should

be remembered that the system will be outputting messages to

2 the user, providing him with the most options available to

him. Also, for the frequent user, the commands and the

5 parameters may be entered at the same time. To denote this,

the portion of the input line which must be entered will be

i

93

|
l -

2 underlined.
For example, if the user wants to store a particular
symbol in the symbol library, he inputs a command which

! has the form

& STORE SYMBOL, index

The underlined portion of the command indicates that the
user must input that first part of the command--STORE SYMBOL.
Should he stop there, the system will request that the user
enter an index. However, the user has the option to enter
the command with an index, that is, STORE SYMBOL, 99.

If there is more than one parameter for a particular
command, the user can enter all, or some, of the parameters
when he enters the command. The system will execute the
command if all of the parameters are entered and if they
are valid. If a parameter is found invalid, the system will
output an error message and begin outputting prompts to get

the rest of the parameters for the command.

System lMode
This is the basic mode of the system. When the program
is run, the system enters this mode which controls the entry
into the other three modes. There are four possible commands
in this mode:
SET UP, setcom, parms This enters the system to
the set-up mode to begin
executing set-up commands.

where

: setcom is a legal set-up mode command.

ok

parms

- are the parameters for the command.

EXECUTE, testno, fileno This enters the system to

the execution mode to exe-
cute test and store the re-
sults in a file.

% ANALYZE, fileno This enters the system to

where

testno

fileno

EXAMPLES
SET UP

the analysis mode to begin
analyzing the results in a
file.

is the test index of the test to be exe-
cuted.

is the identification of the file contain-
ing the test results, i.e., responses, re-
sponse times, etc.

This enters the system in-
to the set-up mode.

SET UP, PURGE SYMBOL This enters the system to

EXECUTE

the set-up mode and com-
mands that a symbol (to be
specified) be deleted from
the symbol library.

This enters the system in-
to the execution mode.

EXECUTE, 3, TAPE? This enters the system to

the execution to begin ex-
ecuting test 3 and store
the results in file TAPE?.

ANALYZE, TAPE?7 This enters the system to

the analysis mode to begin
analyzing the data in file
TAPE?7.

95

» RN

A i

Set-up lMode

This section describes the commands necessary to create
and manipulate the data structures involved in setting up a
perception test. The commands are divided into five cate-
gories: symbol, symbol library, test, test library, and bulk
loading. The only command in this mode that does not fall
into one of these categories is the following:

END SET UP This returns control to
the system mode.

Symbol

This section contains the commands necessary to create
and manipulate symbols. The user creates a data base which
will be called the active symbol (AS). The system keeps
track of the development of the active symbol and displays

it throughout its creation.

CREATE SYMBOL This places the system in-
to the "create mode".
This must be input prior
to creating a symbol.

CLEAR SYMBOL This initializes the AS in
order to begin creating a
new symbol. The system
will place a null entry in-
to the AS and display a
blank screen.

ADD elem, ... This adds elements to the
AS and displays them.

DELETE elem, ... This deletes eléments from
The AS and removes them
from the display.

END CREATE This terminates the create
P . mode.

where
elem is the element deécription.

The above commands are the basic commands used in sym-
bol creation. While in the create mode, the system will
continually display the contents of the AS. The descrip-
tion of the parameter "elem" depends on the implementation
of the system. The elements could be described as ordered
pairs, position numbers on a grid, or some other scheme for

identifying them. 1In the following examples, it is assumed

that the elements are described by position number.

f EXAMPLES

|

‘ CREATE SYMBOL This sequence of commands creates

, CLEAR SYMBOL a symbol composed of two elements,
ADD 1 located at positions 1 and 3. At

, ADD 2, 3, &4 the end of the fourth input line,

P DELETE 2 the AS will contain four elements

g L which will be displayed. After

: END CREATE the sixth input line, the AS will

contain only two elements.

During the create mode, the user has the option of
viewing the AS as it is affected by display dynamics. This
allows him to view the symbol as a subject might see it
during an actual test. The commands which allow display dy-

; namics during symbol creation are:

ALTER SYMBOL This places the system in-
to the dynamics mode. This
command must be input prior
to inputting a dynamics
command.

- ROTATE, ang This rotates the AS dis-
4 play.

T b ALY S fot s sl RGN %y b o il i et

ADD, elemno This adds elements ran-
domly to the display.

23 DELETE, elemno This deletes elements ran-
?; domly from the display.
: VIBRATE, freq, dist This vibrates the display.
where
ang is the angle of rotation in degrees.
elemno is the number of elements that the user
wishes to affect.
freq is the frequency of vibration.
dist is the distance in grid units.

The dynamics commands affect the display only; that is

the commands do not affect the contents of the AS. Except

] for the ADD and DELETE commands, the commands are not mutu-

ally exclusive; that is the display can be vibrated while it

is rotated. The display will be affected until the appropri-

ate end-command is input.

END ROTATE This returns the symbol
display to its unrotated
] state.
END ADD This removes the extra el-
ements.
END DELETE This replaces the elements
4 that were removed.
END VIBRATE This causes the vibration
to stop.
END ALTER This command returns con-

trol from the dynamics mode.
This command must be input
prior to resuming normal

| create mode operation.

98

e

EXAMPLES::

b
k! ALTER SYMBOL This sequence of commands will cause
& ROTATE, 30 the display to be affected in the
¥ ADD following way: first, the display
¥ 5 will be rotated 30 degrees counter-
& END ROTATE clockwise; then 5 elements will be

END ALTER randomly lit; then the display (with

the 5 additional elements) will be
rotated back to its original state;
finally, the 5 elements will be re-
moved and the display will appear as
it did before the ALTER command.

Symbol Library
This section describes the commands necessary to mani-
pulate the symbol library. These commands allow the user to
mod‘'‘y the data structure as well as interrogate it as to its
contents.
STORE SYMBOL, indx, id This enters a copy of the
AS into the symbol library,
with a unique index and a
3 descriptive identifier.
PURGE SYMBOL, indx This deletes the symbol
identified by the index
] from the symbol library.
] RELOAD SYMBOL, indx This takes a copy of the
1 referenced symbol from
symbol library and places
it into the active symbol.
where
indx is an integer representing an entry to the
symbol library index table.
id is an alphanumeric character representing the
description of the entry in the symbol library.
This character will be the correct response

when the symbol is displayed during test exe-
! cution.

99

L SR it) A

For those commands, the system will insure that the
index is valid prior to executing the command. For the STORE
SYMBOL command, the index will be checked to see that it has
not been used by a symbol already in the symbol library. If
the user attempts to enter the symbol with an index already
in use, the system will produce an error diagnostic and re-
quire the user to enter the command again. For the PURGE
SYMBOL and the RELOAD SYIMBOL commands, if the index is not
of a symbol in the library, an error diagnostic is output
and the command is ignored. The purpose of the reload is to
view a particular symbol in the library or to provide a start-
ing base for a new symbol to be created. When the RELOAD
SYMBOL command is given, the system clears the AS prior to

copying the reloaded symbol.

EXAMPLES: (assuming that the symbol library contains the fol-
lowing index-identifiers: 1-A, 2-B, 3-C, 4-E)
STORE SYMBOL, 4, A This causes the diagnos-
tic of "duplicate index-
es" to be output and the
command must be re-entered.

This enters the AS into the
library with an index, 5,
and an identifier, A. There
is no problem with symbols
sharing the same identifier.

STORE SYMBOL, 5, A

RELOAD SYMBOL, 2 This sequence demonstrates
CREATE SYIBOL the use of the RELOAD com-
DELETE 5, 7 mand to provide a starting
ADD 4 base for a new symbol.

6, 8 First, symbol 2 is placed
END CREATE into the AS after it has

STORE SYMBOL, 6, E

been cleared. Then after
entering the create mode,
the AS is modified. Finally

T T ST T L W CLL T

bl

G ‘. 7),;_‘ ¢ i __u‘t:
N

the AS is entered into the
library as a new symbol
with an index, 6, and an
identifier, E.

In order to manipulate the symbol library, it is ne-

cessary to keep track of what is in the library. The system

maintains an index table and an identifier table for this
purpose. The user can interrogate these tables with the
following command:

LIST SYMBOLS, opt This causes the desired
information to be output.

where

opt is the option desired. It can be either NUIBER
or ALL. If it is NUMBER, the system will output the number
of symbols currently stored in the library. If it is ALL,

the system will output a list of the indexes and the corre-
sponding identifiers of all the symbols currently in the
symbol library.

EXAMPLES: (assume that the situation stands as it would be
immediately after the last example.) ;

Command Output 4

LIST SYMBOL, NUMBER 6

LIST SYMBOLS, ALL i-A, 2-B, 3-C, 4-E, ;
5"A » 6-E

(note: the output shown here reflects the substance of
what is output by the system. The format of the
output depends on implementation.

Test

This section contains the commands necessary to create

a test. The user creates a data structure which will be

peee

101

CLEAR PARAMETERS

TIME PARAMETERS, intv.

where

are:

MT1=1nt1

MD1=1nt2

ST=int

velopment of the active test.

called the active test. The system keeps track of the de-

This initializes the AT

in order to begin creating
a new set. The system will
place default values into
the AT. This should be the
first command before speci-
fying any items. However,
like symbol creation, the
user can begin specifying
a test item using a start-
ing base of a reloaded
test.

This specifies the time in-
tervals in the viewing se-
quence.

intv are integer values representing the time in-
tervals in milliseconds. The interval options

where int1 is the first
mask display time.

where int2 is the time bet-

the first mask and the stim-
ulus.
where int3 is the stimulus

display time.

where intu is the time bet-
ween the stimulus and the
second mask.

where int_ is the second
mask display time.

where int6 is the prompting

delay. This is the maximum
time that the system should
wait for the subject to

where

" s e N Sstapae A b

where

A ——

indxs

ENDLIST

opt

STIMLIST, indxs, ENDLIST

respond before displaying
a prompting message.

This specifies the symbols
desired for the test.

are valid indexes of symbols in the symbol

library.

denotes that the last symbol index has been

entered.

DISPLAY OPTIONS, opt

This allows the user to
sgecify execution time
display options.

are parameters denoting various display op-
tions. The options are:

ASI=opt1

RMV=opt

RDP=opt3

RIF= optu

SLO=opt

where 0pt1 is the index of

the symbol used as the ac-
knowledgement symbol in the
viewing sequence. (type in-
teger)

where opt2 is the number of

consecutive times that a
symbol must be correctly
identified before it is re-
moved from the stimulus
list. (integer)

where opt3 determines the

immediate redisplay of an
incorrectly identified sym-
bol. (YES or NO)

where optu determines the

use of reinforcement feed-
back after each response.
(YES or NO)

where 0pt5 determines the

randomness of the stimulus

list order. (YES or NO) 1If
YES, the stimulus list will
be displayed in a random

N S e

i

TR S

order. If NO, the list

will be displayed in the
order specified in the
command STINMULUS LIST. g

A e e e Y

PNT=opt6 where opt6 determines if

the print option is used.
(YES or NO)

g

MASKS, mkopt This allows the user to
specify the type of mask
used during the viewing
sequence.

where

mkopt determines the mask factors. These factors
are:

TYP=opt1 where opt, is the mask
type. (STATIC or DYNAMIC)

PR1=opt2 where opt2 is one of the

following : if TYP=STATIC, j
the number of masks to be :
generated; if TYP=DYNANIC,
the interval, in millise-
conds, between lighting el-
ements. (integer)

PR2=opt3 where opt3_is one of the

following: if TYP=STATIC,
the maximum number of ele-
ments 1lit in each mask;

if TYP=DYNAMIC, the dura-
tion, in milliseconds, of
the 1it elements. (integer)

ROTATE SYMBOL, rdm, ang This specifies the rotation i
of the symbols as they are
displayed during test exe-
cution.

DEGRADE, option, maxno The specifies the modifica-
tion of the symbol display
by the addition/deletion
of extraneous elements. |

| VIBRATE SYMBOL, freq, dist This specifies the vibra-
tion of each symbol as it
is displayed during test

104

.....

execution.

DISPLACE SYMBOL, rng This specifies the maximum

displacement of the sym-
bols from the center of the
viewing area during test

execution.
where

rdm is a randomness option. (YES or NO)

ang is one of the following: if rdm is YES; the

maximum angle of rotation in degrees; if rdm
is NO, the constant angle of rotation for each
symbol. (integer)

option denotes the addition/deletion of elements.

(ADD or DELETE)

maxno is the maximum number of elements that can

be affected. (integer)

freq is the frequency of the vibration in cycles

per second. (integer)

dist is the distance of the vibration in grid

units. (integer)

mg is the maximum range that the symbol can be

displaced from the center of the viewing area
in grid units. (integer)

PRINT PARAMETERS, option This allows the user to
determines the contents of
the AT.

where
option is the item desired: MASK, TIME, STIMLIST,
DYNAMICS, OPTIONS, and ALL. More than one
item can be selected, i.e.,
PRINT PARAMETERS, MASK, OPTIONS
EXAMPLES :
CLEAR PARAMETERS This sets all the items in

the AT to their default
values.

TIME PARAMETERS, ST=3000, This sets the stimulus dis-
PD=6000

play time to 3 seconds and
the prompting delay to 6
seconds. If this were the

105

TIME PARAMETERS, MT1=3000,

ST=4500

STIMLIST, 1

2, 4, 3
6, 5, 1
ENDLIST

DISPLAY OPTIONS
ASI=9

SLO=YES
RMV=3, RDP=YES

MASKS, TYP=STATIC
PR1=14

ROTATE SYMBOL, NO, 45

PRINT PARAMETERS, ALL

PRINT PARAIMETERS, TIME,

DYNAMICS

106

only TIME command, the
other values would remain
at their default values.

This sets the first mask
display time to 3 seconds
and changes the stimulus
display time to 4.5 se-
conds.

This sequence will create
a stimulus list of seven
symbols, with symbol 1
appearing twice.

This sequence sets the ac-
knowledgement symbol to
symbol 9; the stimulus
list order will be random;
a symbol will be removed
from the list if it is cor-
rectly identified 3 conse-
cutive times; and if a
symbol is misidentified,
it will be redisplayed im-
mediately.

This sequence will generate
14 static masks.

This specifies that each
symbol will be displayed
rotated at the same angle,
45 degrees counter-clock-
wise.

This will cause a display
of all the items in the
active test. Default values
will be flagged.

This will cause a display
of the time parameters and
the dynamics parameters
currently in the AT. De-
fault values will be
flagged.

e it o o

Test Library

This section describes the commands necessary to mani-
pulate the test library. These commands allow the user to

modify this data structure as well as examine its contents.

STORE PARAMETERS, indx This enters a copy of the
AT into the test library
with a unique index.

PURGE PARALIETERS, indx This deletes the test refer-
enced from the test libra-
ry.

RELOAD PARALETERS, indx This copies the refer-
v enced test from the li-
brary into the AT.
where

indx is an integer representing an entry in the
test library.

For these commands, the system will insure that the
index is valid prior to executing the command. For the STORE
PARAMETERS command, the index will be checked to see that it
has nét been used by a test in the library already. If the
user attempts to enter the test with an index already in use,
the system will produce an error diagnostic and require the
user to enter the command again. For the PURGE PARAMETERS
and RELOAD PARAMETERS commands, if the index is not in use,
an error diagnostic is outputted and the command is ignored.
The purpose of the reload is to view a particular test in
the library or to provide a starting base for a new test
to be created. When the RELOAD PARAMETERS command is given,

the system clears the AT prior to copying the reloaded test.

107

Av,—-.c

-

In order to manipulate the test library, it is neces-
sary to keep track of what is in the library. The system
maintains an index table for this purpose. The user can

examine this table with the following command:

LIST PARAMETERS, opt This causes the desired
information to be output.
where
opt is the option desired. It can be either

NUMBER or ALL. If it is NULBER, the system
will output the number of tests currently
stored in the library. If it is ALL, the
system will output a list of the indexes of
all the tests currently in the test library.

Bulk Loading and Storing

This section contains the commands necessary for the
use of secondary storage devices in creating the symbol and
test libraries. This provides the user with the capability .
of creating the libraries and storing them on a secondary
storage device. Then the libraries could be read from the

device at a later time.

BULK STORE, typ, fileno This stores a library in
a file on a secondary
storage device.

BULK LOAD, typ, fileno This loads a library from
a file on a secondary stor-
age device.
where

typ is the type of library being transfefred.
(SYMBOL or TEST)

108

fileno is the file number on the storage device.
EXAMPLES :

BULK LOAD, SYMBOL, FILE5 This sequence loads the

BULK LOAD, PARAMETER, FILE6 two libraries. Then a

LIST PARAMETERS, ALL check is made to deter-

mine which sets are in
the test library.

Execution liode

This section describes the commands required to exe-
cute the perception test. There are few commands in this
section because this mode is primarily concerned with the

execution of tests. The commands for this mode follow.

STOP TEST This terminates the test
just given. The command
is input prior to the
viewing of the first mask
of a viewing sequence
(that is, during the ac-
knowledgement symbol). The
system then outputs a re-
quest for ID information
in preparation for another
test.

END EXECUTION LIODE This returns the system to
the system mode.

Analysis llode

This section describes the commands required to analyze

‘ test results. The following is a summary of the commands

used during the analysis mode.

LOAD DATA, fileno

CONFUSION, opt

PRINT, opt

COLLAPSE, op

ENTER, matval

This allows the user to
specify the results to be
analyzed.

This allows the user to
specify the type(s) of con-
fusion matrix to be gene-
rated. Opt can be RESPONSE,
REACTION TIIME, or PERCEN-
TAGE which will cause the
corresponding confusion ma-
trix to be generated.

This allows the user to
specify which confusion
will be output. Opt has
the same values as in the
CONFUSION command.

This allows the user to
specify a predictor matrix
and perform a collapsing
routine based on a given
rank number or a given ab-
solute distance range, de-
pending on the value of

" Op" i

This is used to enter the
matrix values of the pre-
dictor matrix.

This returns control to the
system mode.

is the file number of the results to be ana-

is the option for the type of confusion ma-
trix which the user desires to be generated

END ANALYSIS
where
fileno
lyzed.
opt
or printed.
op

specifies the desired collapsing routine. The
values of op are the following:

RANK, num

ABSDIS, rmg

where num specifies the
rank number on which to
collapse the confusion ma-
trix.

where rng specifies the

R A

)
]
)
i
!

it ot L it s S O e NS ot (A

matval

absolute distance range
on which to collapse the
confusion matrix.

are the matrix values of the predictor ma-

triz.

111

Appendix C

e ,,{;,,,_,“' G TR

ek ¢ N

STRUCTURE CHARTS

O

This appendix contains a list of all of the structure

o

L TR

charts developed in the preliminary design.

Daa LES

1
v

. ‘MM{’I*&W,’#}}- AL

el

ook i

o

B o 2 Sk ARSI i 5 A e i

valid commanh

E W v o=

valid command, valid parameters

updated data structures

valid commang

valid parumeters

updated data structures, endflag

Set-up
Executive
L
3
SELEED — % B
Vé'atld valid gxecute I Store
et-up AE 0 et-up Set-up
Conlniﬁd 1 E;_;g;gtcrs__‘ Command l Results
Interface
IN| OuT

Figure 6.

Set-up System (First - Level Factoring)

113

0 ® v 00\

V-li
Set-up

00-1no

/

7 6 ~J
A - S et e =
| Get Validate i !
! Set-up . Set-up Congole
i Command [;;-nand I Output i
s i o

S
"

"Convert
COnsolo To

y Internal
Llomm

Interface

IN
command
error message
request ressage

input 1iide

out

‘command

valid command, okflap
input line

command

Figure 7. Get Valid Set-up Command

v
A]

¢ - r’#%;“ln‘ﬁr;-*"'ﬁa';;M' ot

< GCet et
Get Get Get i T Bulk
Time List Mask : Symbol : S el e Store
Parameters Parameters Parameters| | paramcters ' | Parameters
Interface
IN | ouT
10 - 31 ---- valid parameters

Figure 8. Get Valid Set-up Parameters (Transaction Center)

,.Eﬁg““ l f Ex:cute]. Exccute gz:g:ze Bu;:ufe
4 z . Stimlist mack P
; g::;;":;"_‘l : Command Command gz::r::}xd o Ll gt“or"e .
3 Interface
3 [l
X IN our

32 - 53 valid parameters updated structures’

Figure 12. LI[xecute Set-up Command (Transaction Center)

T

(wzod TeIdUS)) saejaureaed I odAj 399

*6 °an3td

SITUTT
I 9d7y

03U

o.nnan._ a1qey!
QUL | XODIY Teay aeRojur eydTy
11! 13 29y9
O weuy | [O soeuy; : APRUD Xo9u9
/ ../ / o
A .
| .
o wiog — e
7 TeuIej Uy o/1 !
N e oy | 9TOSU0) _
y 3I2AUO0D | i
- u B
Je30uRIRg andang _
I edAg aTosu0) i
93EDTTEA oy T

sJejewcIe]
#* 30971T0D

nuouosu..cml
e adly
» 300

T i e e e T

.

116

0 w >

m O

B DR 4 - Q W

Interface

parameter number
valid parameter

parameter number
error message

parameter number, para-
meter

request message
input line
parameter
parameter
parameter
parameter
parameter

parameter, parameter
number

IN OUuT

valid parameter
valid parameters
parameter

valid parameter, okflag

input line
parameter
Okflag
okflag
okflag
okflag
okflag
okflag

Get

Yalid
Type 11
Paramete
e
N 0 \
Get Validate
Consgole
Type 11 Type 11
Parameter Paramcter Output
Q R
Convert cﬁ';ék '
‘I’/"g““ To Check SL o Fn. o
Internal Integer ndex Index
Form 'able ' Table
Interface
IN or
N parameter request parameter
0 parameter valid parameter, okflag
P error message conn
Q request message input line
R input line parameter
S -'U parameter okflag

Figure 10. Get Type II Parameter (General Form)

Execute
Item
Command
AA/\BK
' Store - QO
Item Console
In Active Output
Test
Interface
IN OUuT
AAA valid item updated structure
BBB user message ~----

Figure 13. Execute Item Command (General Form)

Execute

Mask

Comn:and
AR

/ T
! , 56 _
e

| - [Swors G iaro by
i Item In C)f Static g""sole
| Active Mack File Usput
3 ; LTest i 2 o _J
g LA LT L
| N
1 l 59 ™. 60
i
! —— o —_—
) iGenorate !Store ()!
: Static .1 Static J
; sk i hask In !
i bk e] LActive Test
t‘
Interface
X w ouT {
56 itsm updated active test :
57 dtew ceveription deneflag :
! ST uUSer modsdnge ———
4 59 static raoh reatiect gtatic nasi !
el sbalic nnnr donefls

Figure 14. Execute liask Command

*a

1] gt S

et i

-

Execute
Print
Parameters
Get
Item From - Console
Active Output
Test
Interface
IN ouT
64 item request item
64 item message ———

Figure 16. Execute Print Parameters Command

[—————

Execute
Clear
Parameters
Command
=
2 & X
Get BAREE LR
Default ; em In Console
Yalue i Active Output
¢ Test
Interface
IN oUT
61 item request - default value itenm
62 default value item updated active test
63 item message ———

Figure 15. 1Ixecute Clear Parameters Command

120

A G e A

Execute
Store
Element

/

V index, element

Store O
Element Console
In Output
|_Library |
Interface
IN ouT

updated library

: W user message ———
-
: Figure 17. Lxecute Store Element (General Form)
(5 —
i xecute !
i Purge !
5 Command 4
t | e i
F K//’/ !
o |
: | i Delete (O [;
i i Element y Console ;
3 : ! From i -Output
i { Library #
Interface
! IN ouT
e X index updated library
Y user message ——— '

" SRR

Figure 13.

ixecute Purge Command (General Form)

121

) s BE L B il

o n—

Reload

Execute

Command

AA

BB

i

\
N

Store
Element
Active

Structure

-—

InOJ Console

Output

IN

2 index
AA element

BB user message

Interface

OouT
element

updated structure

Figure 19. Execute Reload

Command (General Form)

List

Count ES} List
Indexes i Indexes
In In
| Library ___J

68 index message

Execute

Cqmmand

Library

Console
Output

Interface

IN ouT
66 ---- number of indexes
67 === index information

- Figure 20. Ixecute List Command (General Form)

122

e

Farapent

AR 2o i

TR S S s
s LIRS

Lyl
X o
o

Validaze
nput

Console

69
70
71
72
73
74
77
78

Interface

IN

valid input
input

error message
- 76 wvalid input
request message

input line

79 - 80 display direc-

tions

ouT

valid input
input

valid input
updatéd structure
input line

input

Figure 21. Execute Create Command

s
e

b |

e

R

P

W —

| Exeaute
! Alter |
i ok
:_ N
(3] 82! &3
Gat Cet :
Aizer Alter
Cammand Esn:.ours’
Eessmee
sa,/’///;s! 86 87
//// f
P ——- —
Get : | ‘{az'.da:o 9:.—.;;1. ! §E?.E‘-_ \7,
Cez=and i | Irput Cutzut o :
!] ey |
[}
Interface
IN OuT

81
82
83

84
85
86
87
88
89
90
91

valid command, para-

meters
command
error message
item
item request
display directions
command request

input line

valid command
parameters

doneflag

command

valid command

input line

command

e sty 4

Figure 22.

Lxecute Alter Command

124

SR AL (b Ve

L34

Operation

Execute Execute
SL TL
Operation Operation
el &
.
N\,
PP\ GG HH
\\\\ /
—_— — ———
Do Store/Get
Storc/Get [__ §
Interface
IN T
CC file number updated SL
DD file nuuber updated ¥,
EE element elcment
FF file number, clcment
clem1.t
| GG rile wmuer, clement
. elemons
HH elemont elcment

Figure 23. Cxecute

Bulk Operation (General Form)

125

'4. Execution
54 Executive
v w Ve -
92 o
93
Get Test Store
Valid Execution Test
Test Executive Results
Interface
IN ouT
92 -—-- valid test, results file
number
93 wvalid test test results
94 test results, ——
: results file
: number

Figure 26. Execution System (First - Level Factoring)

126

3891 PTTBA 39D

*L2 2andtyg

oTqEy _
novsu afeuy
O xv.ru %30ty

— e

,..i\.n.,.l.
w2y
1 Terwan:

/az ot: PRt
g ' \
: \ y :
Bt . R R e R IR
AR ¢ UEOPLY 91 . and3ng | spuy | ; : ;
¢TI eronuog | oTostog rwprres b { sndimsi g
cy . PITITA ! 109 ! eTOSUD .
s LR R i ol TelEL e ; % SBEA RN
% -y —— {Easy ~ My | e . S 25 SRR .
N _/ s N 4
N . ~.En stk : . 5
NS e o 23 :
. / / B | ECT
/ b
N S e L 23 e | 2
3 <3 o
“ﬂopu\.n B aoquny || aequny [sun : i gudins
SSTIEYIS ! ot | - O1Yd, | ®Tosuo) _ 0.3 | o
N |o. W0 e ./wou." e — net 10 3583 209 3
: yo3 ! cot . ; o
Lo - A ; ot %3 .20t ~ “oot 4 il
-~ 1 . L 66 =
v ? N 11
// . . N) ot = e
i 10 / D
o eyl Ny e L
—'T.ﬁuvl] I won-s...g_ i ./\\/‘_
i 359§ . | -uanwmm H et !
g 2 SEREuIv {_.prTeA 308 T
SN

M///////

~._t6

_ e
'96 sy -
| \\
s L
350},
PrI=L *s
309

J R et S SN o S A SN o N MO o 5ttt S 0 S

2? Interface

i IN ouT

f% 95 see- test, endflag

F | 96 ---- valid results file number

_ 97 test valid test, okflag

- 98 error message -———

| 99 ---- valid command, endflag
100 index test
101 ---- valid index, okflag
102 error message ————
103 file number valid file number
104 ---- file number
105 test ; : indexes
106 indexes okflag
107 error message ————
108 ---- command
109 command 0 valid command, okflag
110 error message ———
111 ——-- index
112 index valid index, okflag
! 113 error message ———-
| 114 file number request input line

; 115 input line file number
116 command request input line
117 input line command

‘ 118 index okflag

5 119 index | okflag

Figure 27 continued

3 .-“VY%i‘.i;K,“'-"r;:wm»‘. o V 3 '_ -

i
!
| Test
! Execution
Executive
! < s
}
b 120 123
€ 121 122
1
‘: ¥ e .
. Get GCet Centrol
: Times Viewing Display §:°::n“
Parameter Sequence Sequence chults
Interface
120 test : ; time parameters
121 test : viewing zequence
122 time parameters, viewing se- sequence results, stopflag
quence
b 123 sequence results : sequence results file ;
_’V ‘.\
Figure 28. Test Execution (First - Level Factoring)
.o]
E
|
|
|
i
|
|
|
| vl
F,

s

{ ' 129 ‘ {

aouenbag SUTMATA 389 °*6Z 2andtg

. ' mu.ou. i U iiee
. g ! wox: .
\ i SEYY . WedR eiR toqufs h

baaia e Sy R - e - T

— e — .. . - —r
e G X st
s) ~ ; |
'\m e N {4 4 ot]
e /ll N 4 :
™ : o TTUTUTUTT lMReieg ecusdd | ageg ummm. : !o.__.:
3 Bt Aae. Ketdaypoy XY unY 1CTE
u:um uaaswuun.,- i ou«nﬂn“uo“ , T3ng Aoyd | Aetdstpey | suriameg
1) divoay L ™ ».O-:u?. 10D ,O L s]
; e LS / ? /x\ P L
. . N i X, ont Vet s et
= i e T L Lot \ ! -
Tpnered L4 d ;
oss /// ,I/ vy // . L% \\
— ey NECa .1// T e .m.;.....,\:
i i i * Axeaqyr’ e?rs ' - Toquis el
: B oo B s | enpreric | Aerdsipey see;; r.cumm
¥ e w9 C 18 | W20 TSR0 -c\u\n:a £ e e T T
" / ¥ N ! ; S ; - 5
=
E ..,L.cu L gt &$©r + e a1
\ 4 B 14
2 h & \ 7 : o
k. £ cet \ g ol - . A
; / \ . - Tk i
3 L / \ H \ \ = -
- Seer SNl \ 7 .IIH..« 5 m: % S o v e L,
S ! sojmmuAn : :Ag TS 8 3
r 2108 #577 no..m : hu»..du ojamg : 172343 ;23 Wwwwvimr i
4 dfsas @93z 3 2900 opy %09 c - aqo...nu «”.‘ra sw..
e O wsmx 1e) AR = S 5 AYERERSE . N A
. . : : A 3
, - v
: & kﬁ
/
:) : R B
(1% xt \ o€z S
\ \ 7
vk./ .Vlt evee’a e
toqu/s |
sT17 - asey
: Leiisse ! 3 309 _
” %3 .wOU.- At — i J
. Iﬂd — |\\\ 42t
g i 1141 —
e = \\
esuendang!
Pugeets
aor,
e
B
—— A
— -
pr o= S bt R 2 i SRR Y ST BF gl - ~ “‘\ : ;

T Y

R T

T T YT S T T TR Y T I A R T
- .

124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140

141
142
143

144

145
146
147
148

149
150
151
152
153
154

Interface

. IN OouT

index

static dynamics symbol

-remove signal, redisplay\sig-

nal, stimulus library

RE PRy e

random dynamics, normal dy-
namics

static mask
remove option, remove data

redisplay option, redisplay
data

test list
index

random list option, ordered
list

acknowledgement symbol
t test symbol

mask display items
index

acknowledgement symbol
symbol

test symbol

static dynamics

mask item

static mask set
remove signal

symbol

redisplay signal
stimulus library
random dynamics
normal dynamics
static dynamics

static mask
static mask set
remove option
remove data
remove signal
redisplay option
redisplay data
redisplay signal

stimulus library
test list

symbol

random list option
ordered list

test 1ist

R

Figure 29 continued

i3

eousnbag Aerdstg TOIUOD

‘ot

aandtg

; w30
3 eI Ay (44 .
2 [I CEDE)
2133Au0)
6Lt set
32Trcey . rsuodsoy daoy 2rydete
®:7:a010C 031TPITTA 109 mﬁonuou
9t it
oL: 925 “5
r‘
3ansoy
PITFA
% 2
139 £Arrds 3
3 lllrl/mna
o3t
sainsoy
esyaniag
=20

i e
oguendes
f2:4310
FCREULE]

="

DR S

132

o - —— S f—— . —— —_ s et S B 0+ et el

|
v
E o |
A |
il
il
%1
Y
B
3|
B3 |
£
A
27
¥
e |

155

156
157

158
159
160

161
162
163
164
165
166

167
168

169
170
171
i 192
1173
174
175
176
177
178
179
180
181

Interface

IN

viewing sequence, time
parameters

test symbol, stim-
ulus time :

mask item, mask times
acknowledgement symbol

valid response

symbol

display symbol

static mask set
mask item

acknowledgement symbol
display

response

error message

valid response
sequence results
remove data
redisplay data
vibrate option
stimulus display
static mask display
dynamic mask display
prompting message
input line

feedback message

ouT

sequence results, stopflag

valid response,
stopflag
sequence results

display symbol

.‘j
response

valid respnse,
okflag, stopflag

sequence results

input line
response
feedback option

Figure 30

continued

S e gt v OB el

i i

Store

Sequence
Results
182

Format

Sequence

Results
Interface
IN | OuT

182 sequence

results

183 formatted

results

183

Create
Test
Results

formatted results

test results

Figure 31.

|
i

Store Sequence Results

A

Store Test

Results
186
.
lear Ol Create
esponse Format Test
ata Results File
Results
Interface
IN ouT
184 ---- doneflag
185 test results formatted test

186 formatted test

results, results

file number

results

Figure 32.

Store Test Results

]

Analysis
Executive
a
187 188 18
Y
‘v;-:;“ Exccute Output
Analycis Analycis Analycic
Command Cormand Rerults
g pr—
190/
/ 191 192
_l ad
Get | |validate N Diamae |
Andysie | Analyris ! Output
Comirand J | Command
SR \— =
193 \;E_—
| € t
Console] !T:"“r
1/0 ! Internal
| Porm
Interface
IN ouT

187 ---- valid command
188 wvalid command collapsed data
189 collapsed data -———- |
190 ---- command !
191 command valid command, okflag
192 error message ———— i
193 request message input line ;
194 input line command

Figure 34. Aanalysis Executive (First - Level and Afferent

Branch Factoring)
136

(I93uUe) UOTIOBSUBL]) PpUBWWOD sysATeuy 93N09xXy *GE danidtyg

———— 98essaw J0aa® 7102
. FeTypus R k.
Sl XTajeuw 661 | :
XTJI3BW UoTSNg : I
ejep pasdeylroo -u0d ‘xtajeuw J030tTpaad g6t
XTJI}eu UOTSNIUOD B1Bp 3893 [L6T
XTJI3ew J0301paad —e== OBT
BlEp 1593 o R ©) 1
INo NI
9oeJI9UT
pUewwo) pusEwO
andyng ik b eedertos uotsnzuo aorud . pe :
oTosuUd) oynowxg o3noex3 e3noexg eynoexy oyndexz e3noe

Sév

W T T e P S RN
it B WBH R AT B i

Sbilcikiin iow X el G e iy EE

‘?: -
H
8
8
t
&
&
5
¥
| 203
' Got
3t Test
| Data
£ 204 z;;\\\;h
|
3 re el i [Convert
] il ™ | consate g B O
Number Number L‘OH'P" Pu | Form
’ 2 21
gonvcrt »‘:‘;\,.’
o
g%sole }.::; "
,‘,
1 Interface
IN ouT !
L valid file number ’
203 wvalid file number test data
204 —--- file number
205 file number valid file number,
okflag
206 error message -——
207 file number input data !
208 input data test data |
E 209 request message input line :
i 210 input line file number

Figure 36. Execute Load Data Comnand

G e

T T T T TR,

e
EE Ml = sl

o o == -

Hake
Matrix

-
Make
Row
e

215
r - —— — \--
Get Validate Conscle
Elenent Element Output
e Yg
BT T Cor;;ert
Conuole
[1/0 [%Eternal
g e Form |
Interface
IN ouT
211 ---- row
212 row predictor matrix
213 ---- valid element
214 +valid element row
215 ---- element

216 element

217 error message
218 request message
219 input line

valid element, 6kflag
input line
element

Figure 37.

iExecute inter Command

139

Get
Confusion
Matrix
225 226
Get Vandaf.e Cansole Process Cenerate
i | | || SR e
227 228
Convert
Console To
1/0 Internal
Form
Interface
| IN ouT
|
: 220 ---- valid option
221 valid option, test confusion matrix
data
222 —--- option
223 option valid option, okflag
224 error message ———
225 +test data, valid confusion data
option
226 confusion data confusion matrix
227 request message input line
: 228 input line option

Figure 38. CZxecute Confusion Command

140

E

|

E)
)

X ‘_r‘"'..'.' ~e

\‘ .
Execute
Collapse
Command
229 230
Get
Valid Perform
Collapse Collapse
Option A Function
23 232 23
g.{]. Yalldate Console
ollapse Collapse
Option . Option Output
2 235 :
Convert
Console To
1/0 Internal
Form
Interface
IN ouT

229
230

231
232
233
234
235

valid option, predic-
tor matrix, confu-
sion matrix

option

error message
request message
input line

valid option
collapsed data

option

valid option, okflag
input line

option

Figure 39. Lixecute Collapse Command

141

e

i

=

Print

Matrix
238 240 261 242
239
Get Validate Format
Consol g Console

Option O Cutput it Output

: 243 204
gonvcrt
g;rolsolc ?E;: Al
Interface
IN ouT

236 -~-- valid option
237 wvalid option, matrix -
238 ---- option
239 option valid option, okflag
240 error message ————
241 matrix formatted matrix
242 formatted matrix -
243 request message input line
244 input line option

Figure 40. ixecute Print Command

142

Output

User

Store - Format

Collapsed For

Data Output
Interface
IN ouT

245 collapsed data
246 collapsed data
247 formatted data S

collapsed data file
formatted data

Figure 41. Output Analysis Results

et it s

Stefan G. Wenska was born on 23 October 1948 in Hono-

lulu, Hawaii. He graduated from the United States Air Force
Academy in June 1970. He went to pilot training at Columbus
AFB, Mississippi. After receiving his wings, he flew the
C-130 aircraft at Pope AFB, North Carolina until June 1976.
During this tour, he had several two-month TDY's to Taiwan,
Thailand, Germany, and England. In June 1976, he entered
the Air Force Institute of Technology.

Permanent Address: 45-115E Waikalua Rd.
Kaneohe, Hawaii 96744

INESRPIRES S B

BT S TPYRCTIE I CHE PU SR e s}

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE O s
I, REPORT NUMBER 5 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
GCS/EE/77-11
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Preliminary Design For Multimode Matrix MS Thesis
Perception Experiment Software €. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Stefan G. Wenska
Captain USAF
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Air Force Institute of Technology/
(AFIT/EN)
Wright-Patterson AFB, Ohio 45433
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Flight Dynamics Laboratory December 1977
(AFFDL/FGR) 13. NUMBER OF PAGES]
| Wright-Patterson AFB, Ohio 45433 s
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
Unclassified
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

F 18. SUPPLEMENTARY NOTES

. pproved or c release- IAW AFR 190-17
3

: F. Captaln, USAF

; D;r c ion

19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

Software Design
Software Maintainability
; Structured Design

20. ABSTRACT (Continue on reverse aide If necessery and identify by block number)

The Multi-Mode Matrix Display Program is testing the acceptability of

4 using light-emitting diode displays in USAF aircraft. The preliminary design
E | for the software was done by following a method which enhances software main-
tainability. The method uses sbstract data types, data flow diagrams, and

' structured design techniques to produce a complete design for the system. The
E software design is presented using structure charts together with functional
descriptions of all modules and definitions of the interfaces between modules.

DD ,5on'7s 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
.-

d

