
IGHT—PATTERSQN
PREI.I MIN*RY DES IGN FOR

WR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5 S7a AFa oHIo sc H~~~T c F ~~~9/z~~~~~~~~~~~~~~~ ç

UN CLASSIFIED

a5r7g.

~J!Ii~~~j

_______________________ ~~~~~ ‘~~~~~~~T’”~~~~~~~ ,,. ~~ .

~~~~~W”~~T!~’fl,. ~-w-

~ (1)
I~1T’F1? r~

.1
AIR UNIVE RSITY

UNITED STATES AIR FORCE

D D C
~~r~nanra

JUN 16 1918

>-. I~1s~J1su U LS1

8 SCHOOL OF ENG INEERING 
c~r~vE

___ C.3 WRIGHT—PATTERSON AIR FORCE BASE, OHIO

1~~~~~

06 ~~
£P-WP- OCT~~~ $ SOO



, GCS/EE/77-11 
-

I

PRELIt.IINARY DESIGN FOR r.iULTI~IODE

~.1ATRIX PERCEPTION EXPERIr.IENT
S OFT WARE

THESIS 
D D C

[~)S?1~~?flfl fl1?JF~
GCS/EE/77-11 Stefan G. Wenska JUN 16 1978Captain USAF Ill

_ _ _ _ _ _ _ _ _ _ _UD~~~i~u v t~E

Approved for public release; distribution unlimited

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ...~., . .. -.—~~~~~ -

.

-—.~.— ~-. “- .

GCS/EE/77’ 11

f7~
_

(p ~~~ELIMINARY ~~~SIGN FOR J~JLTIMODE

J~ATRIX P~ RCEPTION XPERIL~ENT
JOFT WA RE #

(~~~ t~~’~ ‘~“~J
THESIS

(
~4FI T/ ~~�/5E/ 11~L~’J

Presented to the Faculty of the School of Engineering

of . the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

JUSTIFICATION

I
cODES

a~. AW AIL i~ J~~~L

by
‘~~~tefan G ./w enska/ B S.

Captain USAF

Graduate Electrical Engineering

~Q~~~~~*77 1

Approved for public release; distribution unlimited

~

..: ~~~~~~~~~~~~~~~~~~~~~~~

-.-. _p . .
~~~~~~~~~~~~~~~~~~~

Preface

I
This report provides the preliminary structure of the

software for a computer-based system to perform perceptio~i

tests using light-emitting diode (LED) displays. Due to

the nature of the testing, the structure was developed to

provide the maximum amount of ease in maintaining and modi—

fying the system. The implementation of the system is not

covered in this report. This report is written for a reader

who possesses a basic knowledge of software development

and of structured design techniques.

I wish to thank my loving wife, Mary , for her undying

support and invaluable assistance in putting together this

report.

Stefan G. Wenska



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..

~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~ .~—-“~ ~-.--. ,.-.-. ---. —~~--.—- .-..---. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

S. —

Contents

Page
Preface....................... ii

List of Figures...... •............ v

List of Tables...... •........................ ,. vii.

Abstract...... viii
I • Introduction. 1

Background. • 1
Perception Experiment......... 2Scope. 3
Objective. • • . • . 4Overview. 4

II. Software Requirements.. 6

Problem Definition.. 6
Set—up Phase. 7
Execution Phase. 15
.A.rialysis Phase 16

III. Preli.mi.nary Design 18
Design Philosophy.... 18
Design Approach..... 22
Design Method. 23
Design Criteria and Evaluation... 27

IV. Set—up Phase Design....... 29

Identify Data Structures. .. 29
Model the Problem with a Data Flow Diagram... 31
Design System Using Structured Techniques 32

V. Execution Phase Desigri. • . 48

Identify Data Structures 48
Model the Problem with a Data Flow Diagram... 50
Design System Using Structured Techniques.... 50

VI. Analysis Phase Design 62

Identify Data Structures 62
Model the Problem with a Data Flow Diagram... 63
Design System Using Structured Techniques.... 63

iii

—-.-
~~

-. --——- .-.... . - .-.- -- . -.------ - -.-- -

~

nT ’ ~~~~~~~~

. - . . .

.
4

-

Contents

Page
VII . Design Evaluation 73

In troduction . 73
Set-up Phase Modification 73
Execution Phase Modification 74
Analysis Phase Modification 75H Optimization 76

VIII. Results and Conclusions 77
Results 77
Conclusions 78
Recommendations 78

Bibliography 80

Appendix A: Module Description 81

Appendix B: User ’ s Guide 93

Appendix C: Structure Charts 112

Vita 144

H iv

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~~~~~~~~~~~— ~~~~~~~~~~~~ -.-—.----~~~~~~~~~ .- , --~~~~~~~~~~ . -~~-———.-- - -~~~ —.—----



F’~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . - .

~~~

.
.

~~~ 

.. .., 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- .

4 —

List of Figures

Figure Page
1 A Symbol Composed of Dot Elements 2

2 Time Intervals in a Viewing Sequence 11

3 Data Flow Diagram Examples 25

4 DFD for the Set—up System 31

5 Expanded DFD for Validate Parameters 32

6 Set—up System (First-Level Factoring) 33

7 Get Valid Set—up Command 34
8 Get Valid Set-up Parameters

(Transaction Center) 35

9 Get Type I Parameters (General Form) 36

10 Get Type II Parameter (General Form) 38

11 Get Type III Parameter (Stub Module) 39

12 Execute Set—up Command (Transaction Center) 39

13 Execute Item Command (General Form) 40

14 Execute Mask Command 40

15 Execute Print Parameters Command 41

16 Execute Clear Parameters Command 41

17 Execute Store Element (General Form) 43

18 Execute Purge Command (General Form) 43

19 Execute Reload Command (General Form) 14.4

20 Execute List Command (General Form) . 44

21 Execute Create Conunand 45
22 Execute Alter Comniand 46

23 Execute Bulk Operation (General Form) 47
24 DFD for the Execution System 49

25 DFD for the Test Execution 51

V

_...__ . .~~.._..._.. —.-..——-——--—. --. ~~~~~~~~~~~~~~~~~~~~ — —‘ ..—.-~ .—,-~-----.---.-- ,— .- .-. ..

~
.——. -.- ~~~~~~~~~~~~~~~~~~

.- -- ~~~~~~~~~~~~ . ,.-.--. .
~~

.

List of Figures

Figure ____

26 Execution System (First-Level Factoring) 52

27 Get Valid Test . 53

28 Test Execution (First-Level Factoring) 55

29 Get Viewing Sequence 56

30 Control Display Sequence 58

31 Store Sequence Results 60

32 Store Test Results 61

33 DFD for the Analysis System 63

34 Analysis Executive
(First-Level and Afferent Branch Factoring).. . 64

35 Execute Analysis Command
(Transaction C enter) 66

36 Execut e Load Data Command 67

37 Execute Enter Command 68

38 Execute Confusion Command 69

39 Execute Collapse Command 70

40 Execute Print Command 71
-

41 Output Analysis Results 72

42 PES System Executive
(First—Lev el Factoring) 81

43 Afferent Group Structure 82

vi
F .

~

L~...... ~~~~~~~~~~~~~~~~~~ . .—.- .—.---~ —. .. —-.. —.—..-~ .—.-. -..-.-,-.

.:-;i~--—--
~~~~

. 
______ ~~~~~~~~~~

—
~~

--
~~~

—

List of Tables

Table Page

I Test Composition 8

II Library Operations 10

1 III Symbol Creation 14

IV Abstract Data Types - Set-up Phase 30

V Set—up Commands 30

VI Abstract Data Types - Execution Phase 49

1.

~L. .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ .-— ~~



___ _ _ _

GCS/EE/77-11
I.

Abstract

N
The Multi-Mode Matrix Display Program is testing the

acceptability of using light-emitting diode displays in

USAF aircraft. The preliminary design for the software was

done by following a method which enhances software maintain-

ability. The method uses abstracts data types, data flow

diagrams , and structured design techniques to produce a corn-

plete design for the system. The software design is pre-

sen-ted using structure charts together with functional de—

scriptions of all modules and definitions of the interfaces

between modules.

I

viii



I. .Th~ RODUCTI0N

Background

The Air Force is currently investigating ways to improve

aircraft radar display equipment. The present display unit,

the cathode-ray tube ( C R T ) ,  has two major liabilities. First ,

it is bulky and takes up a lot of space. Cockpit spac e is

already at a premium due to the increased amount of avionics

equipment required for flight . Second , if any component of

the CRT fails, the entire unit fails. This may cause criti-

cal problems during flights within hostile environments where

many types of damage (not to mention normal component failure)

to the unit might occur .

To correct these deficiencies , the Multi—Mode Matrix

Display ( MIVflVI ) project office of the Flight Dynamics Labora-

tories at Wright-Patterson Air Force Base is developing a

light-emitting diode (LED ) display unit to replace the CRT

unit that is now in use. The screen of the LED display is

composed of an array of LED chips connected together in a

checkerboard fashion . Th~ display is controlled by a micro-

processor that receives input signals from the navigation

equipment. This display system will alleviate the pro-

blems of the CRT system. First, the LED unit requires much

less space than that needed by the CRT unit. Second , each

LED chip can be individually bypassed without affecting the

rest of the display. Thus failure of a c~omponent can be iso-

lated and not affect the entire display.

14 1



- ---. —- . ,— ~~- -_ _ _

Concurrent with the hardware development is the effort

by the MIVIM office to perform human factors research on dot

matrix symbology to determine the acceptability of using LED

displays. Specifically, the MMIV! office is intercsted in test-

ing and evaluating human perceptions of modified LED display

images. These modifications are done through image rotation,

image vibration, and the introduction of extraneous elements

to the image definition.

Perception Experiment

In order to determine the acceptability of LED displays,

the MMM office must measure the ef-

fect that symbols, composed of dots, _________________

have on human recognition (Fig. 1). . . .
To accomplish this end, the MMIV! of—

fice has developed a dot-matrix sym-

bology .perception test. This test

measures the difference of recogni- . . I S

tion difficulty between symbols corn- Fig 1. A Symbol Corn-
poaed of Dot Elements

posed of dot elements instead of

line elements. Along with measuring

the recognition of basic symbols, an evaluation of how dyna-

mic factors (rotation , vibration, and symbol degradence) af-

fect recognition must be made.

The test consists of showing a number of symbols to a

subject and recording his responses as to their Identifi-

cation. After an acceptable amount of data has been re-

2 .

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . .



~~~~~~~~~~~~~-~~~~~~~---, - ,.--~~-~~ ~~~~~~~~~~~

corded, the results are analyzed to determine the degree of

recognition. For the test, the symbols will be limited to

alphanumeric characters.

To provide a statistical soundness for the test, each

symbol is presented in a viewing sequence. This viewing se-

quence consists of four displays: an acknowledgement symbol ,

a mask display, a test symbol display (stimulus), and another

mask display. The acknowledgement symbol is a predetermined

pattern alerting the subject to be ready for the next view-

ing sequence. The mask display is a random pattern of dot

elements. Thus, the perception test consists of a series

of viewing sequences to which the subject responds to the

stimulus within each sequence.

The data to be analyzed is the test results. This con-

sists of sequence results, which are recorded during the test

execution, and the test parameters. The sequence results

are the subject’s response,~ his reaction time, the stimulus

identification , and the dynamics, if any, that affected the

stimulus. This data is recorded for each viewing sequence.

The test results are converted to an intermediate form

using confusion matrices and then collapsed using predic-

tor matrices. The data is then analyzed to determine the

degree of recognition.

Scope

The life cycle of software development has several

stages: conceptual, requirements definition, design, coding

3 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~--~~


~.--___n,___
~~~~~~~~~~~~~~ 

‘_
~~ T_._.___.___— ~~~~~~~~~~~~~ — .. —-- ,, — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,-

~
—-.--—---

~
,-—-——-- ---—-———- -.

and debugging, testing, and operational. The first two stages

of the development have already been accomplished. The re-

quirements definition of the software system was derived

using a structured analysis technique (Ref 5).

This thesis will begin the design stage of the software

that is required to accomplish the perception experiment.

This preliminary ~design uses the requirements definition to

develop a structure for the software system. The design of

the individual modules is beyond the scope of this paper.

Objective

Maintenance of software (to include modification) is a

critical consideration in the development of software today.

It is estimated that better than 50% of all software activi-

ty in the United States is spent maintaining existing sys-

tems (Ref 10:38). Maintenance costs are increasing annually.

By 1980., it is estimated that software maintenance costs

will be between 50% and 80% of the total system cost (Ref 1:2).

Maintainability must be designed into the system from the

start; it cannot be added on at the end (Ref 9:92). There-

fore, the objective of this preliminary design is to use

techniques that will produce a system structure that will en-

hance maintainability.

Ove~~iew

Chapter II will be an informal presentation of the soft-

ware requirements. A design philosophy is defined in Chapter

4

’ 
- 

.— ---------- _ . ...~~~~... .... -.—. ~~~~~~~~~~~~~~~~~~~~~ . —-~--~



— . . ~~~~ .— - - -.-- .--.--~~~~~~~~~ ...—‘.

III. This philosophy is developed into a design method that

produces maintainable software structures. A method for eval-

uating the preliminary design structure is given. Chapters

IV, V , and VI demonstrate the use of the design method cho-

sen to develop the structure for the three phases of the per-

ception experiment. Each phase of the experiment will be

considered as a separate system. An evaluation of the design

is given in Chapter VII. Finally, Chapter VIII provides the

design results and conclusions. Recommendations for the fur-

ther development of the software are also given.

Three appendixes are included in this paper. Appendix

A contains the descriptions of the modules in the design.

Appendix B is a User’s Guide for operating the system. Ap-

pendix C contains copies of all the structure charts that

are used in the design of the three phases.

5



r 
. — -,----

~

- -.—-

~~~

. .

II. SOFTWARE REQUIREMENTS

Before designing any software system, one must have a

clear picture of what must be done by the system. This pic-

ture is provided by the software requirements. For the per-

ception experiment, the software requirements have been de-

termined in Reference 5. This chapter presents an informal

description of these requirements.

Problem Definition

The system to be designed must perform the perception

experiment. This experiment is broken into three phases:

the set-up phase, the execution phase , and the analysis

phase.

During the set-up phase, the user defines symbols and

tests. A test consists of a group of items which specify

the execution of the perception experiment. The system in-

teracts with the user by providing prompts and error diag-

nostics. It also allows the user to specify several tests.

This gives the user a choice in determining which test to

execute.

During the execution phase, the system executes a test.

The system records response data for later analysis. It al-

lows multiple executions of the test in order to handle sev-

era]. subjects.

During the analysis phase, the test results from the

execution phase is reduced into a more useful form and

6

A

- .-— — .. — .----, ~ —~~ —--
~~ -_,.-

—.--~ -.-—--.-
~~~~~ 

. —
~
-

analyzed. The system provides several different options and

reports to satisfy the desires of the user.

The overall system must be easy to use. It must provide

prompts to the user, giving him a choice of legal commands

and the parameters associated with those commands. It must

allow the frequent user to have the option to input the com-

mand and its parameters at the same time, thus saving him

the time required for the individual prompting. Finally,

the system must handle inputs from either a console or a sec-

ondary storage device.

Set-up Phase

The set-up phase is the first phase of the perception

experiment. The endproducts of this phase are two data struc-

tures: the symbol library (SL) and the test library (TL). Two

other data structures, the symbol and the test, are also de-

fined in this phase. These are used to create the libraries.

Each of the data structures is composed of identifiable

elements. A symbol is composed of symbol segments. A sym-

bol library is composed of symbols. In this case, the data

structure , symbol library, is composed of other data struc-

tures—-symbols. Similarly, the test library is composed of

tests. The test is made up of items, where each item is de-

fined by a description. A description consists of a quali-

fier (which is optional) and one or more specifications. Ta-

ble I shows the breakdown of the test into its items and

their descriptions.

7 

.- - ~~~~~~~~~~~~~~~~ .
-
~~



Table I
Test Composition

IT~~ DESCRIPTION
Qualifier Specification

Masks Static Number to be made
Maximum number of ele-

ments per mask
Dynamic Time interval between

lighting elements
Persistence time

Time Parameters MT1 Length of mask display

MD1 Length of interval
ST Length of Stimulus dis-

play
MD2 Length of interval
MT2 Length of mask display
PD Length of prompting de-

lay
Stimlist none Indexes from the SL
Rotate Constant Rotation angle

Random Maximum rotation angle
Degrade Add Maximum number of ele-

ments affected
Delete Maximum number of ele-

ments affecte d
Displace none Maximum distance from

the center of the
viewing area

Vibrate none Frequency
Distance of movement

Display Options Remove Number of symbols
Redisplay YES or NO
Reinforcement YES or NO
Print YES or NO
Aek. Symbol Index from the SL
Stimlist Order Random or specified

8 

.~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ . A



,,— .-.—-—,,
~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -.--—

~~
— . -.-

~~~~~~~~~~~ 
-. .-.. — ----------. .-—.—,

The basic operations for the data structures are re-

trieval, addition, and deletion of elements. Other opera-

tions may augment these. Each of the data structures will

be described in this section.

The symbol library and the test library are similar in

operation. Aside from the difference between element types

in these two structures , each library must maintain an index

table. Each element in the library has a unique index. The

index is the normal reference to the element. Moreover, each

element in the SL has an identifier associated with it. The

identifier “describes” the element , i.e., during test execu-

tion , if the subject ’s response to the symbol display and its

identifier match, then the subject has identified the symbol.

The library operations are listed in Table II. Along

with the basic operations are two that deal with the index

table of the library. The “list ” operation provides either

the number of entries in the table or a list of the entries

in the table. The “check” operation determines whether the

specified index is in the table.

The test is made up from several items. The user can

specify these items, and in doing so, determines how the

test will be executed. While the user is creating a test,

the items are stored in a data structure called the active

test (AT). (The modifier “active” when used in this context,

denotes that a data structure is being specified. Thus, an

active test is the test while it is being specified. An ac-

tive symbol is the symbol as it is being created.) The items

9

~ 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- - .


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

Table II
Library Operations

OPERATION PARAMETER RESULTS

Add index adds entry to library with the
specified index

Delete index removes entry from library and
updates index table

Reload index copies entry from library to
the active structure

List all lists the entries in the index
table

number counts the number of entries in
the index table

Check index determines if an index is an
entry in the index table

may be user-specified or system-specified (default values).

•1 When the user has specified what he wants, he stores the

contents of the active test into the test library. The

items of a test are described in the following paragraphs.

The masks-item can be qualified as static or dynamic.

In a static mask, the elements are lit continuously. In a

dynamic mask, the elements are lit intermittantly. The

specifications for the static mask option are the number of

masks to be generated by the system and the maximum number

of elements that can be lit for each mask. The system gen-

erates the static masks and stores both the item with its

description and the static masks in the active test. The

specifications for the dynamic mask option are the time in-

terva]. between lighting elements and the length of time an

element is to be lit (persistence time) .  The system gener-

ates the dynamic masks during the execution of the test.

10 - 

-“--—,— ..—, .—, -.~ .—-.-.——----. -.-,--.——-.-----,



r

YI~~ING SEQUENCE KT1- mask display 1
_____ ____ _____ ~~1- mask delay 1

Ack . I’a s J ~~~~~~~~~~ 
ST - stimulus time

____  ____  ____  ____  

Seq. MD2- mask delay 2
time MT2- mask display 2
line I I I I I I 1 

PD - prompting
ST MT2 delay

MD1 MD2 PD

Figure 2 • Time Intervals in a Viewing Sequence

The time parameters are the times associated with the

viewing sequence (Fig. 2). The six times are the lengths of

time to display each mask , the time intervals between each

mask and the stimulus, the stimulus display time, and the

maximum time the system should wait for a response before

displaying a prompting message (prompting delay).

The stim].ist is the list of indexes of the symbols to

be displayed during test execution. An index may appear in

the list more than once. The user can specify that a parti-

cular order for the symbols be followed or he may allow the

system to generate a random order for their display. During

execution , the system will create a stimulus library which

will be composed of the symbol data structures that corre-

spond to the indexes in the stimlist.

Symbol dynamics can be specified to determine how the

symbol should be displayed. These dynamics items are rota-

tion, vibration , degradence, and displacement. If no dyna-

mics items is specified, the display during execution will

be the basic stimulus display, i.e., displayed as the symbol

was defined during symbol creation . The rotate item is

11



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

qualified as either constant rotation or random rotation .

For constant rotation , the user specifies a rotation angle.

During the test , each symbol will be displayed rotated by the

specified angle. For random rotation, the user specifies a

maximum angle of rotation. During test execution, the sys-

tem will rotate each symbol by a random angle.

Degradence is the modification of the symbol ’s appear-

ance through the random addition or deletion of elements.

The degrade item is qualified as add or delete and is speci-

fied by the number of elements -to be affected.

The vibrate item is described by the frequency and range

of movement that the displayed stimulus is to be vibrated.

This is the only dynamics item that affects the stimulus dur-

ing execution time. Thus, this item will be the most diffi-

cult to implement.

The displace item is described by the maximum distance

from the center of the viewing area that a symbol can be dis-

placed. If displace has been selected, the symbols will ap-

pear at random locations within the viewing area. These dy-

namics items are not mutually exclusive. Thus a symbol might

appear degraded , rotated , vibrating , and off-centered during

the execution of the test.

The display options items can be used to change the or-

der of the display sequence during execution or to provide

the subject with feedback during the test. The remove and

the redisplay items affect the display order. If the remove

option is selected , the user specifies the number of consecu—

12



— -~~~~~- .  - --~~~~~~~~~~~~~ -- --~~~~~~~~~ . - ~~~~~~~~~~~~~~~ - ——--~~ 

tive times that the subject must correctly respond to a sym-

bol in order to cause that symbol to be removed from the

stimulus library. If the redisplay option is selected, the

system will redisplay the same symbol if the subject responds

incorrectly.

The reinforcement option and the print option affect the

feedback to the subject. The reinforcement option causes the

system to display a correct/incorrect acknowledgement after

each subject response. The print option causes the system

to print the index of the stimulus, the subject’s response ,

the reaction time , and the display dynamics after each view-

ing sequence.

The final display option is the specification of the in-

dex of the acknowledgement symbol. This symbol will be entered

as an element in the SL. Typically, it is an easily recog-

nizable pattern of elements , such as a “plus” made up of dot

elements and positioned in the center of the viewing area.

There are two specific applications of the basic data

structure operations which affect the active test. The first

is the clearing operation. This sets all the items in the

active test to their default values. This operation is used

prior to specifying a new test. This cleats any residual

values from the previous test specified. The second opera-

tion is the listing of the items in the active test. When

these items are listed, those descriptions containing de-

fault values are flagged .

An example of the use of the listing operation would be

13 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ .



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

after the retrieval of a test from the TL. When a test is

retrieved from the library, it is stored in the active test.

It can then be listed to determine what values are in it.

If the user wanted a similar test then he could respecify

those items that he desired different and store the active

test to the library under a different index.

Tabl e III
Symbol Creation

OPERATION PARAMETER RESULTS

Add segment adds segment to the active sym-
bol and displays the change

Delete segment removes segment from the active
symbol and displays the
change

Clear ---- removes all segments from the
active symbol and displays a
blank screen

ALTER FUNCTIONS
Rotate angle rotates the display to the

specified angl e
Vibrate frequency, vibrates the display

distance
Add/Delete number adds/deletes the specified num-

ber of elements to the dis-
play

The final data structure in this phase is the symbol.

The user specifies symbol segments which are stored in a

structure called the active symbol (AS). While the user is

creating a symbol the system enters a “create mode”. While

in this mode, the contents of the active symbol are displayed

on the console screen. This enables the user to see -the

ill. 



__ 
~~~~~~~~~~~~~~~~~~~~~ 

.

symbol as he creates it.

The operations for the symbol data structure are shown

in Table III. Apart from the basic operations, the system

must allow the user the option to view the symbol as it is

affected by symbol dynamics. During symbol creation, the

user may specify rotation, vibration, or degradenc e to test

the dynamics.

Similar to the test definition, the user has the option

to start creating a symbol from an already completed one.

When a symbol is retrieved from the library, it is stored in

the active symbol. The user can specify addition and dele-

tion of segments to create a different symbol. This new sym-

bol can be added to the library under a new index.

Execution Phase

The execution phase is the second phase of the percep-

tion experiment. During this phase, the system executes the

-test selected by the user and records the data that is neces-

sary for later analysis.

In order to execute the test, the system generates the

displays of the viewing sequence according to the specified

time parameters. Dynamic masks, if applicable, are gener-

ated during mask display time. The stimulus displays are

presented dynamically. Feedback is produced according to

the display options. The system maintains a test history to

keep track of the results that provide for the removal and/or

redisplay of symbols.

15

.
~~

. —,-- ,.—-.-
~

,— -,--
~~~-‘.—~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—“S-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

During execution, there are three dif ferent responses

that the subject can give: one normal and two special. The

normal response is the symbol identifier (which can be either

correct or incorrect). Since the symbols are alphanumeric

characters , the subject responds by pressing the key corre-

sponding to the symbol that he believes is being displayed.

The two special responses are the wrong-key indicator

and the I-don ’t-know indicator. If the subject inadver-

tantly presses a key other than what he intended while re-

sponding to the stimulus, he must press the wrong-key indi-

cator. This notifies the system to flag the response and to

continue the test. The I-don’t-know response is used when

the subject does not recognize the symbol that is being dis—

played.

For each test , the system will repeatedly traverse the

stimulus library until the user enters a command to stop the

test. The system will then reset itself in preparation for

the next subject.

Analysis Phase

The analysis phase is the final phase of the perception

experiment . During this phase, the data from one or more

tests is compiled and analyzed . The system can generate

three types of confusion matrices from the data . These

confusion matrices can be based on the subject’s responses,

the reaction times , or the percentage of times that a parti-

cular response was given to a stimulus.

16

_ _ _ _ _ _ _ _ _ _ _  A



_______ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~

—-.—-— - -
~
-—

~~~~~~~~~~
..-------

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- , - .  - -  - - ~~— —I’

A collapsing routine, using a predictor matrix, then re-

duces -the confusion matrices to a more useful form. The pre-

dictor matrix is input by the user and specifies the degree

• of error that an incorrect response has. After the data is

collapsed , it can be stored or output to the user. If it is

- .~ stored , it can be read and/or augmented at a later time as

mor . esting analysis is completed.

.

17 

-•- - 2~~
- -.- -- ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~ ~~~~~~~~. ~~
—---- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• • —•- .•— .— - — —— ----,•—•--•--•,~ —-~ —••-!.-—..-—-—••-.—-. -•-•--.-- .—•-.-.———— --. ,.— — ——•——---w.—- .—.-- —- ~~~ -•.. —•—•——.—- -,— •-—- —.—~ —— . - .—•— .•— .— - —-----. - —•--—

III. PRELIMINARY DESIGN

This chapter will discuss the general approach used in

producing the preliminary design of the perception experi-

ment software (PES). It will cover the design philosophy ,

the design methodology, and the design evaluation method.

The actual design of the three phases of the problem will be

covered in the next three chapters.

Design Philosophy

The objective of this design is to produce a structure

that is easily maintainable and modifiable. The benefits of

such an objective are numerous: the maintenance and modifica-

tion costs will be lower; the development of the software

will be easier because changes required during the latter

stages of the development will be limited to specific areas

and therefore be easier to change; the debugging and testing

will be easier; and the program will be more reliable. The

list of benefits is extensive because designing with the

goal of maintainability affects most of the other program

goals favorably. The most notable exception is program effi-

ciency (optimization). This exception will be addressed la-

ter and shown to have little effect on the preliminary de-

sign (see Chapter VII).

To design maintainability into a program, it is neces-

sary to develop a program structure that localizes changes

within the program. The two components of every program--data

18

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• - - - - - - - ••- -~~~~—-.—,~~~~~ ---~ ~~~~~~~~~~~~~~~~~~~~~—-— -- -~~~~~~~~~~ • . •~~--~~~ 

and functions--must be handled in a way so that they are al-

ways recognizable. The program functions should be distinct

and identifiable; the program data should be determinable

throughout the program. The structure should not allow com-

munication between unrelated program parts and should mini-

mize communication between related parts. Three concepts

which are considered when designing a maintainable program

are modularity, program structure-problem structure resem-

blance, and information hiding. These concepts provide a

perspective for designing maintainable programs.

Modularity is the breaking of a program into identifia-

ble units (called modules) which interact with one another

during execution of the program. The idea behind modularity

is to break complex, large problem into simpler, but more

numerous, small problem. The effect of modularity is measured

by module coupling and module cohesion.

Module coupling is the measure of communication between

two distinct modules. If’ this communication is minimized,

then changes to the program are less likely to propagate

• through the system. Coupling, therefore , affects the deter-

minability of the program data.

Module cohesion is the measure of the internal binding

within a module--the specificity of purpose. A module that

performs only one function (e.g., a module that determines

the sine of a number) is very cohesive. If all the modules

in a program have high cohesion, an error in the program can

be easily pinpointed and corrected. Thus, cohesion relates

19 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —•-— —  •-•--

to the distinctiveness and identifiability of program func-

tions.

The desired design goals, considering these two meas-

ures, are the minimization of’ coupling and the maximization

of cohesion. However, there is a trade—off here. The more

specific that the modules become (higher cohesion), the

greater the number of modules that will be required--thus

increasing the amount of communication (higher coupling).

Scales depicting the relative difference of degrees of coup-

ling and cohesion have been derived (Ref’s 7:30; 3:118,179).

Another concept of importance is the program structure-

problem structure resemblance. If both the problem and the

program are structured alike, then modification is made eas-

ier. Changes to the system normally take the form of chang-

es to the problem. These changes must then be converted in-

to changes to the program. If there is a strong correlation

between the two structures, this conversion can be done eas-

ily. The parts of the program that need to be changed will

correspond to the parts of the problem that are changed.

Weak program-problem resemblance can lead to difficulty in

determining the changes that must be made to the program.

Moreover , after the changes have been made to the program,

it will be difficult to determine whether the changes accom-

plished what was desired.

The final concept in the design philosophy is informa-

tion hiding. This concept impacts two areas: system inter-

facing and system decomposition. Normally the system coinmu-

20

~

~~~~•- -“— ~~~~~~~~~~~~~~~~~~~~
— -



— 
-

~~~~~
--•.-- -

~~~~~~~
—

~~~~~
-

~ —a

nicates with other systems through the sharing of a data

base. Information hiding is the defining of a set of opera-

tions (called an abstract data type) on that data base so

that ‘h system can access it independent of how the data

base is implemented.

Each abstract data type has two interfaces--a system

interface and a data base interface. The system interface is

the set of operations that the system uses to access the data

base. The data base interface is the set of operations that

physically manipulate the data; it is dependent of the data

base implementation . The abstract data type hides the data

base from all of the systems using it. Thus, when the data

base structure changes, the system interfaces remain unchanged.

The rest of the abstract data type, including the data base

interface, is modified to reflect the changes. Therefore,

the systems are not affected by the changes to the data base

structure.

This concept also applies to internal data structures

which are accessed by modules within a system. In this case,

the data structure is hidden from the system modules in order

to facilitate changes to it.

The second area is system decomposition. In deciding

how the system should be decomposed, the designer should con-

sider the modules to be like “black boxes”. Each module

should perform a specific function but the details of how the

function is performed is hidden from the other modules by a

well-defined interface (Ref 8). In this way, a change of’

21

- ~~~~~~~~~~~ - • • - - A

•- .— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
. -i-- - — -•- -.-.-••-— .J.u._uI~~~

the function in one module (e.g., finding an alternate method

to achieve a function) does not cause any change to the other

modules because the interfaces between the modules remain

unchanged .

Design Approach

The perception experiment software is viewed as three

separate systems. There are two reasons to view it in this

manner. First, the perception experiment itself is struc-

tured in this way. At any one time, the user may devote his

efforts to only one phase. The only thing relating the

phases are the data structures which are outputs to one phase

and inputs to another. Thus the software lends itself to

being structured as three systems with one common structure

for the communication of the data structures.

Second, each problem has its own peculiarities with re-

gard to the amount of user-system interaction. The set-up

phase is a continual interaction between the user and the

system, where by the messages from each party direct the suc-

ceeding interchanges. The execution phase has very little

interaction. The user has little control of’ what occurs

during this pahse. In the analysis phase, the user sets

up the activities he desires and the system then executes

them . There is interaction but only infrequently. - If a

designer were to design the PES as one system, conceptual

integrity would be sacrificed in accommodating these differ-

ences. By breaking the PES into three systems, each system

22

- •~~~~~~~~~—--- • -~~~~~-•- •- ----- -•- -~~~~- • ----- - A

- -. - .— —~ -.,- ... -.
~~~~~~~~~~~~~~~~~~~~~~~ 

- - -•---. -

can be designed with maximum conceptual integrity which is
- . beneficial to system maintenance (Ref 2:~8).

Before the preliminary design of the systems, the user-

system interface must be designed. This is done by way of

writing a User ’s Guide for the system (Appendix B). The

specification of this interface, this early in the design,

does two things. One, the designer has a clearer idea with

regards to what the user expects. Two, the user can see the

software development better at this stage, at a time when

progress visibility is usually limited. The User’s Guide

communicates the user ’s desires to the designer. If a change

is desired or required, it provides a common ground for both

parties.

Design Method

The method to design each of the three systems is out-

lined here:

1. Identify the data structures (internal and exter-
nal) .

2. Model the problem with a data flow diagram (DFD).

3. Transform the DFD into a program structure using
• structured design techniques.

These steps are discussed in separate sections that follow.

Identify Data Structures

The first step is to identify the data structures asso—
• 

I ciated with the system. The external data structures are

those that are shared with other systems. The internal data

23 

- -



- 
~~~~~~~~~~~ — - . _ -~~~~~~~~~~n’ --- ---- --.-- --— -

structures are those shared exclusively by modules within the

system. Along with the identification of the data structures,

the abstract data types, associated with the structures, should

be defined. This definition of the abstract data type may

not be complete at this time because every operation on the

data structure may not -be known. The abstract data type

should be updated whenever a new operation is identified

• during the design.

Model Problem with a Data Flow Diagram

The second step of the design method is to model the

problem with a data flow diagram. The DFD models the con-

ceptual flow of the data through the problem . The elements

of the DFD are transforms and data elements. The transforms

are represented by ~ircles (or bubbles) ; the data elements

are represented by labelled arrows that enter and leave the

bubbles (Fig. 3a). There are two operators in the DFD. The

* (asterisk) and the “ + “ (circled plus) are the con-

junctive and disjunctive operators, respectively. The former

denotes that two arrows entering (or leaving) the same bub-

• ble are both required for the transform (Fig. 3b). The lat-

ter denotes that an exclusive-OR situation exists (Fig. 3c).

To develop a DFD , one must first consider the problem

in its entirety. All of the data inputs should be listed

toward one edge of a sheet of’ paper. Then all of the data

outputs should be listed toward the other edge of’ the same

sheet. The idea is to determine the transforms that are

2L1.

r

(a) Transform from A into B

‘aster
• file file

record:~~~ prepare *
reco::mmarY

changes summary
(b) Conjunction

onor X • type A

Figure 3. Data Flow Diagram Examples -

necessary to get from the input edge to the output edge.

How the transforms will be implemented is of no concern at

this point. One then proceeds by starting at the input edge

and specifying transforms that the data goes through to get

to the other edge. Another method is to start at the output

edge and determine the transform that has just taken place.

In this manner the diagram would develop backstepping to the

input edge.

Often it is not clear what the transforms are that con-

$ v.rt the input to the output. It may then become necessary

-
-

to specify a vague, general transform(s) to go from input to

• output . Then by decomposing the general transforms into

sTnsifler , more specific transforms, one develops the DFD.

The process of developing a DFD is an iterative one. At

any time -the designer can go back and decompose a transform

into several smaller , more specific ones. It is better to

overspecify the transforms than to be too general . Once the

DFD has been developed , it is relatively easy to convert this

problem model into a program structure.

Transform DFD to Program Structure

The final step of the design method is to translate

the DFD into a program structure. It has been shown that

those structures whose shapes are transform-centered have

been associated with low maintenance costs and low modifica-

tion costs (Ref 3:25k). By transform-centered is meant the

identification of three types of branches to the structure:

an input (afferent) branch, where the data is brought into

the system and prepared for the main transformations; a cen-

tra]. transforms branch, where the main transformations and

computations of the data take place; and an output (ef’f’er-

exit) branch, where the results of’ the central transforms are

prepared and processed for output. To accomplish this struc-

ture , a design technique called transform analysis was used.

In transform analysis, the afferent data elements, the

efferent data elements, and the central transf’orms must be

identified on the DFD. An afferent data element is the

26

— - - -S- - .

r

highest level of abstraction of a system input . On a DFD ,

there is a data el ement such that if the transform to which

it is input is accomplished , the output of that transform

could no longer be termed a system input . It is this data

element(s) that needs to be identified. Conversely , an ef—

f’erent data element is the highest level of abstraction of

a system output . The transforms between the afferent and

ef’ferent data elements are termed the central transforms.

These are the transforms which convert the inputs into the

outputs. In some systems, the afferent and efferent data ele-

ments are the same, that is, are identified by the same la-

belled arrow on the DFD. These systems have no central trans-

forms.

The identification of these elements provide the first

level factoring (decomposition) of the system. Each element

will, be the head of a branch in the structure. Each branch

must be factored fully to get the complete program structure.

Reference 3 provides guidelines for the factoring of the

affererit and ef’ferent branches. The central transforms

should be factored in a manner consistent with the design

philosophy . The final structure will tend toward having more

executive-type modules higher in the structure chart calling

on the more functional modules, which tend to be lower in the

structure chart .

Design Criteria and Evaluation

This design method will produce a highly maintainable

27

• I

- - ~~~ - ~~~~~~~~~ -— ---

~~--~~
—

system. Step one , identifying data structures, highlights

-

•

the concept of information hiding. Step two , problem model-

ling , aims at providing a strong program structure-problem

structure resemblance. Step three, structured design, pro-

vides a modular program structure. Thus, the design method

chosen for the preliminary design of the PES follows those

concepts needed to achieve the objective.

To measure the effectiveness of the design, it is neces-

sary to measure the relative ease of maintaining it. To

do this, chapter seven will evaluate the design in the fol-

lowing manner. Changes and enhancements to each phase of the

system will be proposed. A description of the changes to the

system will be given. These changes will be rated as to

their impact to the overall system and the difficulty in

implementing them.

28

r

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

---=

~~~~~~~~~~~~~~~~~ 

-

IV. SET-UP PHASE DESIGN

Identify Data Structures

There are two external data structures to this system:

the symbol library and the test library. The, symbol libra-

ry is a set of symbols and its associated index table. The

test library is a set of tests and its associated index ta-

ble. Three functions are required to manipulate these

structures: updating (that is, the deleting and adding of

elements to the library) , retrieval of an element , and exami-

nation of the library index table.

There are three internal data structures: the active

symbol , the active test , and the default value table. The

active symbol and the active test are the working areas for

the creation of symbols and tests. There are three functions

which can be done to these two structures: adding elements,

deleting elements, and listing the elements in the struc-

ture. The clearing of the structure is accomplished by the

deletion of all the elements in the structure. In the case

of the active test , the elements are set to default values.

The default value table contains default values for the

items in the test. The abstract data types associated with

these data structures are given in Table IV.

• The user-system interface is also defined in this step.

The list of commands used in the set-up phase is given in

Table V. The types are differentiated by the number of

parameters required for each command (see Appendix B).

29

— — ---- —-- ~~~ • -•-•--~~--=~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________

Table IV
Abstract Data Types - Set Up Phase

DATA STRUCTURE OPERATION

Symbol Library store symbol
delete symbol
get symbol
count indexes
list indexes
check index

Test Library store test
delete test
get test
count indexes
list indexes
check index

Active Symbol store segment
delete segment

Active Test store item
delete item
get item

Default Value Table get item
Item store qualifier

store specification
get qualifier
get specification

The Type I commands require more than one parameter. The

Typ e II commands require only one parameter and the Type III

commands do not require any parameters.

Table V
• Set Up Commands

TYPE I TYPE II TYPE III

TIME PARAMETERS STORE PARAMETERS CLEAR PARAMETERS
STIMLIST PU RGE PARAMETERS C REATE SYMBOL

• DISPLAY OPTIONS RELOAD PARAMETERS END SET UP
MASKS LIST PARAMETERS
ROTATE SYMBOL PURGE SYMBOL
VIBRATE SYMBOL RELOAD SYMBOL
STORE SYMBOL LIST SYMBOLS
PRINT PARAMETERS DISPLACE SYMBOL
BULK LOAD/STORE DEGRADE SYMBOL

30

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
•

S a

AFFERENT DATA ELE~IENT~~

EL~ ’1ENT

Figure Li.. DFD for the Set-up System

Model the Problem with a Data Flow Diagram

The inputs for the system are the user requests--com-

mands and parameters. The outputs are the updated libraries.

The afferent data elements are the valid command and the

valid parameters. The efferent data elements are the results

of the executed commands (Fig. 1i.). The central transform is

the execution of the particular command.

There are two transforms that are marked with aster-

isks. These asterisked transforms are transaction centers

and they represent a class of similar transforms. For in-

stance, the transform “validate parameters” is the general

form for the twenty-two types of parameters possible - (one

for each command). A complete description of the validate

function is shown in Figure 5. This figure shows all of the

31

slidat.
• time

params

Tim. Paz ameter Valid Ti.. Para m.ter
valid ate

Mask mask Valid Mask
Para meter pa ram s Parameter

Stialiet Parameter (~~~~113t Valid Stialiet Parameter •

0
~~~~~~~~~~

• Bulk Store Para meter Valid Bulk Store
Paraamt.r

• alidat e
k stor

parsa.
1

Figure 5. Expanded DFD for Validate Parameters

possible paths of validation that may be taken , depending

on the command that was input previously. To develop a

structure chart for this type of data flow, a design strate-

gy known as transaction analysis was used (Ref 6:301—308).

Design System Using Structured Techniques

This section describes the development of the struc—

• ture charts for the set-up phase. A description of struc-

ture charts is given in Reference 6. A symbol that is unique
to this text is the sm~1l circle located in the upper right-

hand corner of some of the module boxes. This designates

32



_______ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Set—up
Executive

Interface

~~

I valid conuaan d

2 valid cori~aAd valid par~~ eter3

3 v~ lid co’~~and , vali t p~ir~~eters updated d~tta ~tructurc~~. ~~fi~~
-

~ U~dTht.Ci UI~~ U a tr ’ I C LU L~~~

Figure 6. Set-up System (First - Level Factoring)

that the module is a function of an abstract data type.

The first-level factoring was accomplished by creating

a module for each of the afferent elements , the central

transform, and efferent element (Fig. 6). The next step

in developing the structure chart is to factor fully each

first level module.

The GET VALID SET UP COMMAND module was factored using

the transform analysis technique (Fig. 7). This technique

causes the higher level modules of the structure to do more

decision making while the lower level modules to be more

functional.

33

~

_ _ ~~~~~~~
_ _

~~~~~~~~~~. - ----—-—-~~ —-- -~~~-~~~ - -  —



— 
_ 

— ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
.- --——. 

--

1~ et
I Vali d

Set-up -

L~~mmand

Get r lidate
Set—up Set-up -

I Command Command J L ~ ~~~~~~~~~~ 

L_ .~___ I

__;
/ \\\~

\
\

I Convert
Console I To
I/O I - Internal

L ~~~_J

Interface

IN CIUT

5 ---- command

6 command valid command . okfla~
I

7 error message —- --
8 request n~essag.e inpu t line

9 input line command

Figure 7. Get Valid Set-up Command

The GET VALID SET UP COMMAND module interacts direct-

].y with the CONSOLE OUTPUT module because it makes the deci-

sion whether to pass on the command to the SET UP EXECUTIVE

or to call on GET SET UP COMMAND in order to request another
• command (e.g., if the command is valid, it passes the command

On; if the command is invalid, it calls on CONSOLE OUTPUT to

output an error diagnostic before attempting to get another

command). Due to the high interactiveness of the system,

I -

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


—
—w -~~~~~ -_ —,- — - —

many of the modules communicate with CONSOLE OUTPUT modules.

The GET VALID SET UP PARAMETERS module is a transaction

center (Fig. 8). The factoring of this module shows that it

is an executive-type module that calls on one of the 22 pos-

sible get-valid-parameters modules. This structure, although

it looks unwieldy, is manageable because the twenty-two

branches will share many of the same lower-level functional

modules.

Each of the get-parameters modules for the ten Type I

commands (from Table V) are structured in the form shown in

Figure 9. The six modules marked with asterisks must be

tailored to the specific type of parameter being sought.

All 01’ the other modules are shared within this transaction

structure. The modules, CHECK ALPHA, CHECK INTEGER, CHECK
—a

Icet -
I Valid
[Set_uP

Get I I G et I G Get 1 Get

~~ ar aet~~~j [~~~~metcr s] ~~~~meters~ [~~~~i~terzJ
. . •

~~~~~ete.j

Int.rfac.

IS OUT 
-

10 — 31 ---- - valid parameters

Figure 8. Get Valid Set-up Parameters (Transaction Center)

35

- 
~~~~~~~~~~~~~~~~~~~ .~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

- - _ --- -~~~ .~ _ --.- -. _ -—-----

/ ~~~~~
,f O E-. .4~~

/
/

/

/

14)
J I/ L~~~~~~

r k~J]

iTT
_ _

_ _

/ S
- --

~fi~1 .
36

-
~~~~~~~~~~~

Interface
- 

- 
IN OUT

A parameter number valid parameter
B valid parameter valid parameters

C Parameter number parameter
D error message

E parameter number , para- valid parameter , okflag
meter

F request message input line
G input line parameter
H - L parameter okflag
M parameter, parameter okflag

number

Figure 9 continued —

REAL , CHECK SL INDEX TABLE, and CHECK TL INDEX TABLE , might

not appear in the structures to which they do not apply

specifically. For example, the VALIDATE TIME PARAMETERS

module would only call the CHECK INTEGER module since all of

the time parameters are integers. In a general form struc-

ture chart, the interfaces will be labelled by alphabetic

characters instead of numerals.

A Type II command has only one parameter. Therefore,

the module COLLECT PARAMETERS is not needed for these com-

mands. The general structure chart for these commands is a

compressed form of the structure chart shown in Figure 9

(Fig. 10).

The Type III commands require no parameters . The struc-

ture for these commands is a stub (Fig. 11); that is, the

stub immediately returns to the calling module and does no

3?



r~t 1
I Va lI d
ITy pe II I
LPa~~met

7R

~

\ 

_ 
_  _

r~~~~
suie 1 [~~ nvert —

~ r Ch0Ck 1 ~~~ C 
~~~~~ö] ~~~~internal I Integer jl ndex Imlox

L.-__~ J L!~~~~_J L
_____ L!~

b1e

Int erf ace

IN OUT

N parameter request - parameter
0 parameter valid parwiieter , okflai~
P error Ine~sage

Q request message input line

R inpu t line parameter
S - U parameter okfiag

Figure 10. Get Type II Parameter (General Form)

processing. They are shown in the structure but could be

eliminated by having the transaction center, GET VALID SET

UP PARAMETERS, check for them.

The central transform module , EXECUTE SET UP COMMAND,

is also a transaction center. The factoring of this module

is handled in the same way as the afferent transaction cen-

ter (Fig. 12). It has 22 branches emanating from it, one for

each possible command .

- 3 8

~~~~~ 
_
—~ - --— ----- —_~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - -- ---—-------- -- -- - -_- ---~~ —-—- — --- - - - — - -  -— ~~



~ -- —--—~~~~~~~~-~~~~~- - - - - --~~
- - - 

I Get
Type III
LParameter

Figure 11. Get Type III Parameter (Stub Module)

The commands whose execution consists of storing items

into the active test (except for the MASKS command) have the

general form shown in Figure 13. The MASKS command must

determine whether static masks need to be generated prior

to storing the item into the active test (Fig. 1k).

Other commands affecting the active test are the CLEAR

PARAMETERS command (Fig. 15) and the PRINT PARAMETERS corn-

mand (Fig. 16). These commands show the operations--store

I Execute
I Set-up

Command

[

Tzc~cute I ~~~~ I 
[

~~xcc ut e 1 [~~~1 
xec t~~~

Cous~ar~d j Co~~and Command I I ~tore-—______ 
--  _J Command_ —

Interface

IN OUT
32 - 53 valid parameters updated otructures

Figure 12. Execute Set-up Command (Transaction Center)

39

~

- - -—

~

--- ---- ;-

~

----

~

L- ~~~~~~~



Execute
I Item
Command

Store
Item Console
In Active Output
Test _____________

Interface
IN OUT

AAA valid item updated structure

BBB user message

Figure 13. Execute Item Command (General Form)

execute
Command

56 
I

~~~~~~~~~~~~ 

7

~~~~~~~t:;:;il~~
j 

_

rGenerat~~~1 r.~~ore
I Static Static
I i~aak Mask In
L~~~~~~~ [~~~~ v e T ~~~~

Interface

IN OUT
56 item updated active test
57 item descri ption doneflait
58 user message

59 static mask request static masic
a 60 static m ask

Figure 1k. Execute Mask Command

ft 

- -



- - ~~~~~~ “— - ---- — -—-- - -- --~~---—-- —— -

Execute
Print
Parameters
Command

Get
Item From Console
Active I Output
Test 

____________

Interface
IN OUT

6k item request item

6k item message ----

Figure 16. Execute Print Parameters Command

Execute
Clear
Parameters

I g~ ~~~~~In ~~ Console

L~l~e [Active 
[~~~

tPut

Interface
IN OUT

61 item request default value item
62 default value item updated active test
63 item message ----

Figure 15. Execute Clear Parameters Command 

--~-~~ - - - - _ - - -



-_ , - - - - - -

~~

-

~

‘—

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

and get--of the abstract data type AT.

Figures 17, 18, 19, and 20 show the structure charts of

the execution of commands affecting the libraries. The use

of abstract data types in creating the AS , AT , SL , and TL

simplified the designing of these structures.

The EXECUTE CREATE COMMAND module has an afferent and

a central transform branch (Fig. 21). The EXECUTE ALTER

module can be further decomposed (Fig. 22). In this decom-

position, a new data structure is identified--the active dy-

namics list. This stores the dynamics that affect the active

symbol during symbol creation.

The bulk operations have the general structure chart

shown in Figure 23. These operations allow the loading or

storing of the libraries to mass storage.

The final command to execute is the END SET UP. This

command is processed by a module that returns an end-flag

to the. set—up system executive. This causes control to re-

turn to the overall system executive.

The efferent branch in Figure 6 (the STORE SET UP RE-

SULTS module) was not needed . All of the results were han-

died as part of the execution of the various commands. This

branch could be used to pass a f inal message to the user

prior to leaving the set-up mode of opera-~ion.

- : 42

.— ---

~

--—- ----~ — - - - - - -~~ --- - -~~_----—-- -- - -
-
- - - — - -- — -_ -~~~~~-_ - ---

- —-- - - - - --~-- -— --—-—-- --- _ - —- - -_-~~~~~~~__—---- -- - - - - _ - - -- - - V------

I - i

Execute
Store
Element

Store 0
Element Console
In Output
ibra

Interface
IN OUT

V index , element updated library
W user message

Figure 17. Execute Store Element (General Form)

I

H cut
~~1

Command

Delete 0 IElement Console

L outI~t
Interface
IN OUT

- X index updated library
Y user message

Figure 18. Execute Purge Command (General Form)

11.3

—~-_-- ------— _- - --- --- ------ -- —- ----------

Execute
Reload
Command

Z AA BB

0

L~
;
~~~r e J  L soieH

Interface

IN OUT

Z index element

AA -element updated structure

BB user m essage

-l

Figure 19. Execute Reload Command (General Form )

_

1~~unt ~~~ f List Qj
I Indexes I Indexes j Console
t I n  I u n  I Outpu t
( Library __J 

~~~~~ I _________

InterXace

IN OUT

66 ---- number of indexes

67 ---- index information

68 index message ---— —

Figure 20. Execute List Command (General Form)

44 —

--

~

-

~

- - I

~

-~~~~~~~~~~~~~~~~ _—— ~~~~~~ - -- - - -

U

C ~ H ~~~ i ~e
- - ~~~~

/

~

I
/ 6:

~~~~ ~
-i I

Coaso . II/O ~~ter~ai 
-

Interface

IN OUT
69 ---- valid input
70 valid input ----
71 ---- input
72 input valid input

73 error message

7&’ — 76 valid input updated structure

77 request message input line
78 input line input
79 - 80 display direc-

tions

Figure 21. Execute Create C omnu nd

~~~~~~~~~~~


I~

4

~~~~~~~~~~~~~~ 

S2~ 

~~~~~~~~~~~~

A s s

~

Paraz.terst

/ ;~~\ /~~~~ \
I [~ a i I ~a~. ~~~~ r r e ~~~~~i r~~~

—
~j

I i — :- -

_ _ _

I _ _ _ _ _ _
_ _ _

Interface

IN OUT
81 ---- valid command

82 ---- parameters

83 valid command 1 para- doneflag
meters

84 ---- command

85 command valid command

86 error message ----
87 item

88 item request

89 -display directions

90 command request input line
— 91 inpu t line command

Figure 22. Execute Alter Command

46

--—-- --— ---- - - ----- --- -- - - - - - - ------- - - — - --‘-—-- - —~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - --—--—— -—- - -—--------

_ _ _ __ _ _ __ _ _ __ _ _

~~P a t ~~j

~~
Oro/Get01 L J L01~

/G5to1

Inte rface

IN OUT

CC file number updated ~L
DD file nu,.ibcr updatc~d ~iT ,

EE element element
F? file xmui nb cr , elementclen~etmt
CC lile n,’mbor , clement

e1 eammtt

flU element element

Figure 23. Execute Bulk Operation (General Form)

47

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—~~~---~~~--- - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V. EXECUTION PHASE DESIGN

Identify Data Structures

There are three external data structures to this system:

the test library , the symbol library , and the test results

file. The TL supplies - the test for the system to execute.

The SL supplies the symbols to be used during the test . The

test results file is created by the system . It contains

all of the sequence results and the test used for execution.

The internal data structures are the viewing sequence ,

the response data , the sequence results , the individual items

of the test , and the stimulus library. The viewing sequence

is a data structure containing the acknowledgement symbol ,

two masks (or the dynamic mask parameters), and a test sym-

bol . The response data is a structure that contains the

test history for determining the removal and/or redisplay of

a symbol . The items of the test are the time parameters,

the mask parameters , the stimlist , the display options , and

the symbol dynamics. The display options is further broken

down into the acknowledgement symbol index , the redisplay

option , the remove option , and the feedback options. The

symbol dynamics is broken into two classes: vibrate dynamics ,

which affects the symbol during display time , and all the

other dynamics , which are termed static dynamics because they

affect the test symbol prior to the display time. The stim-

ulus library is the set of symbols corresponding to the stim-

list. The sequence results are the results of each viewing

48

~ 

- -. - -- -~~~~~~~~ --~~~~~~ --~~~~~~~~-



~ -~ -- -~~~~~~~~~~~~~~~ --~~-~~ - 

Table VI
Abstract Data Types - Execut ion Phase

DATA STRUCTURE OPERATION

Test Re sults store test
store sequence results
get test
get sequence results

Sequence Results store/get response
store/get reaction time
store/get dynamics
store/get stimulus identifier

Response Data store/get stimulus identifier
store/get previous symbol
store/get symbol history

Viewing Sequence store/get acknowledgement
symbol

- - store/get mask parameters
store/get stimulus

Stimulus Library store/get symbol
delete symbol

I

sequence. The abstract data types for those structures which

have not been already identified is given in Table VI.

The user-system interface is small in this system . It

consists of three commands: EXECUTE, STOP TEST , and END EXE-

CUTION NODE. Apart from these commands, the user has little

T ~ 
- A?fli~mer DATA ~~~~~~~ ______

~~

Figure 24. 3F.D for the Execution System

49 
- 

~~~~ - - -——---— ----— -~ -- - - - - - - - — -


- -
- ~~_ — C-~~

— - - - ~~~- —----,----- - - —7--- - - “‘~~~~~ - - -
~~~~~~~

T_
~ -~~~ -- —

control over the execution of the test .

Model the Problem with a Data Flow Diagram

The data flow model for the execution phase system con-

sists of two diagrams: the DFD for the entire system and the

DFD for the test execution . In the entire system depiction ,

the afferent data element is the test that is to be executed

(Fig. 24). The efferent data element is the test results.

The central transform , execute—test , is a system in itself.

The data flow model for the test execution is shown in

Figure 25. The model was developed by starting at a known

data element in the problem and working backwards until a

data structure (internal or external ) was reached . The

viewing sequence was the starting point. From this point ,

three lines of flow were derived--the acknowledgement symbol

flow , the test symbol flow , and the mask parameters fl ow .

Each line was followed until reaching the test that specifies

the execution .

The afferent data elements are the viewing sequence and

the time parameters . The efferent data element is the test

results data . The central transforms include the displaying

of the sequences and the handling of the responses.

Design System Using Structured Techniques

The system was factored into three first level modules~
these represented the afferent , efferent , and the central

transform branches ( Fig. 26) . Each branch was then factored

50 

—
- - ~~~~~~~- - - ~~~~~ - --~~~~~--~~~~ — - ~~~~~~~~ --- - - -~~



— 

~~~~~~~ ~~~~

4
a

.1 .
~

. ~ ~i. L ~ I~-~
Z~~ i~ ~ 4 ‘I~-

~~ ~l” I
~

‘
~~~ ‘~I~ “ P

~ •k g

d ~ /\1 ‘ I ~. I - ,~~_ I _l I 0
I’.- - - 

~~ ~
.— 

~~~~ • , -
~~ . i.~ c i .

~~~~~~~~~~~ f I~~~~~~~~~~~~ 
- I ~.. I(~~~ \ (nil 1 / -N  ~( - ~~~ I \~ i~ I : I~ —‘—-- I’. .. . • 0  I _~ —

~JJ I Y
~~~~~ 

- ~ / 1z ~ g
• ~~~~~~~~~~~~ \ “ / / ~g \~k / ~~~~~~~~ ~~~~~~

V

cJ3’ - hi
a £

d

- I
— ~~~~~~~~~-

li2
I

* * - •~~
.~~~~

~ U

~ - i .e— U

I ~~
P

- -
~~~~~~ ~~~I. g *

l~ 
•

~~ 
I * .a~~~~~~5 I .~I *

• r ~~~~~~~~~

h 
“ 

•~

~~ ~~ : ~i)
~ ~~~~~~~~~~~~~~

c- 

~~~ ~~~: 
i~ ~~~~~~

•

- 51

-- . -

~

-

~

—--

~

-~~~~~~~~~~~
-
~~~~~~-—.--—-- -~~~~~~~~~-— — -- - -.-- --~~~-~~ ~~~—— ~~~~— —--- - - - -  - - --~~~~~~~~~~~~~~~~~~~~



~~~~~
__

~~~~~ ~~~~~~~~~~~~~~~~~~~ ‘.---- --- -— ~~~_ - -77- _,.~~~~~—---—- .-— - 
~~~~~~~~~ .~~~~~~. T~~~

Execution
Executive

92

_ N

[get Test 1 I Store
Valid Execution Test -

-
Test Executive j Results

Interface

IN OUT

92 — ——- valid test, results file
number

93 valid test test results

94 test results.
results file
number

Figure 26. Execution System (First - Level Factoring)

to provide the complete system structure.

The afferent branch (GET VALID TEST) was factored by

successively bringing inputs into the system (Fig. 27) . At

• the different levels , the modules communicate with the user

through the numerous CONSOLE OUTPUT modules. Most of the

system—user communication is limited to this branch.

The central transform branch , being a system in itself ,

was factored using a transform analysis approach. The TEST

EXECUTION EXECUTIVE module was factored into four modules

representing the afferent, efferent, and the central transform

branches (Fig. 28).

HI 52

-~~~-~~-~~~~-—-~~~~~

—— -- — ——-~~~~~~~- ---——--— - ~~~-•— -—~~~~— - --- --- --- - --- •, -- ---~~~~~~-7 -~~-- — - —----—-—-~~~~~

I 0 :141 1,.
- U . , -- I u. .

~‘/ L.

- - _
; -

• ‘0 : I
I ’ - 0 -

/ /44 NI
/ — g, - - - -

iTT.i1 4.
-

-

Ic,
~~~~~ ~~~~f ” , 1’ 4.4 - / ~: •.l~ -

.10 ~~ ~~~~~~~ - 0 0 )
- -  - - / (~~t ll1 ... I

~
— - - -- ‘  4..~~I~~ • / -

t~~~~~.5- /..-.
/

~~ 
H?/ --.7 

- --
--

-
- 

~~~~—-~ i °~-~~ I. ~~~~ 
— -

~~/
‘ . $_ —

__

+‘

,~~
‘

~~ E
___ / ~- . . -

-, u-
1

~
-

—

~
I— -1.;4* N

/ ~~ ~~

~
±!-.J

/
/

~ ~~~

/
I
~~~~~~~

N
N
:N 

~~~~~~~I . ,

/ ~~ 4. ,4- ---
-

- 1~1/ ~~~~~~~~~~~~~~~~~ ~~
—

\r
-

-

~r~-- -

~~j ,•i~‘
~ ~~~~ -

-
-

- oI.i.. -~ -
-

L~~~
? -

~
- -.. - -

•
,‘

- -

~ “ !~ - - — ~~~-- -•--- —
-

-
-, - 4iiJ I

‘.1:-u I :•u
~

\ L~~ I- - .14. -
•‘ ~— -

~1J~
I ‘ - -

•

j ot. I - - - - —

I .. 0 :

*:z)
• •. ,-.

53

-

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ~~—
-

-- - -

~1

Interface

IN OUT

95 ---- test , endflag
96 ---- valid results file number
97 test valid test, okflag
98 error message -

99 ---- valid command, endflag

100 index test -

101 ---- valid index, okflag

102 error message
103 file number valid file number

10~4- ---- file number

105 test indexes
106 indexes okflag

107 error message
108 ---- command

109 command valid command , okflag

110 error message
111 ---- index
112 index valid index okflag
113 error message
1114. file number reque3t input line
115 input line file number
116 command request input line

• 117 input line command

118 index okflag

119 index okflag

-

-
Figure 27 continued

The factoring of the first afferent branch (GET T~~E

PARAI~ETERS) was trivial because it is an operation of the

abstract data type--test (i.e. get-item). This branch was

54

~

- -- -~~~~~~~~~~ — • - - ~~~~~ -- - - - —-—--- -~~~~~-— ~~~~~~- -
~~

--
~

----—
~ —

~~~~ - -
~—--

4

r~~~~~iExecu t ion
Execut ive -

120 123
121 122

H r~~~~i r5ct c&~tr~i

[
~~~rameter t 

~~~~~~~

Interface

IN OUT
120 test time paxTreterc

121 test viewin~ cenucnce
- 122 time parameter s , viewing Ce— sequence results , ~~~~~~~quen ee —

~~~

123 sequence results sequence rewalts fii~

Figure 28. Test Execution (First - Level Factoring)

not factored any further.

The factoring of the GET VIEWING SEQUENCE module demon-

strates the relative ease that transform analysis provides

when decomposing an afferent branch (Fig . 29) . There is

almost a one to one correspondence between the data elements

and transforms of the DFD to the modules in the structure

chart .

The central transforms were designed into one module,

CONTROL DISPLAY SEQUENCE (Fig. 30). The two functions of

the central transforms--displaying sequences and handling

responses--needed to be coordinated. If the display is one

that needs updating (i.e., due to the vibration option), then

55
-

- - - ----- ———--~-— --— --•------

- ‘
~~~~ ‘ TT T~

-
~~ 

- __ _— “~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_
~~ 

-

—

• - - - ,- ...I
- 0
- ,l / I- 

~~~ 
/ I _ _

‘.-, ~ -~~ •~
14 i I . - ~~~~~~~~~~~~~~ • /

- - ~~~~~~ ~
J ~~ ~~~~~~ , 0- - _41 4_ -1 ‘~ •‘ - 1I ot ’ l ;~ j •no ;-c ’., ~ 1 3

~~~ ‘i - - 
-‘ ‘  .

/
p - - , , f lf l,

- ‘ - .14 - 
— -• 

~~_ • •‘ - I —- - - -  - - ~,0.-u.0 - I 
_

~~ ~/ ./
- .1.2 1 — -,

/ q /~ -
~~~~~~~~~~ o /‘ I . - ,... - - 

~
,.

;~ / - : -
— // ~o •,

u,~,.1 ... 01..,: t.,

— ~~~~i I - - -
- -o

-, -— (-S ‘
~~Io - I.

-
-—

- ~~~~~~~~~•- I
u • - 1r..

~~~~~~ 
r~~~~~i ~

. 
- - - - 

(3 
/ 

Ull ..1

- 4-. - U~~ / :

I - ~~ ~

- 

/ ~~
-- -

~~~
.1 o~~~,r.. / /

-~~~~~ I~ / / : 91
‘.

-
~~~~. I 

- 

9° . / ‘ / P.~~ -
“-‘ a OI,f l  - .4 / ~~ / I

‘ .4 .. -- -  - - —  \ • I - -
~~~~ if / / I . 1

--

-

—
. ~

. ~1

~~

/ •?
~i ~

0

II I. • I) . 4 4 I ~~~--~~ , ~ 0’— - .
~

- ‘.‘

~~~~~~
— ,/ -

- - ‘ 

~~~~~ 
N

~~~~ 

‘-
.
•

----- . 
r - -

~~
_• /,•-

~
_ 

~~~~~- ‘

~~~~~~ ~~- H ~
e/ ‘0

~
l
~~~

’-
~~~~ 

~~~~- I~~~U( - )  - c4.Cc.-
‘.0

- f l U -
-

~~
• -
‘S -

•
- . • --- - -

I - I - -

‘ 1 ~~~~‘ ‘‘ - - -
-

III - I II ~~~~~ — - . I \..
~

- -
. . 1 I - .4~~~

I ~~~~~~~~
- -

~~
- • .2 I

I- I ll’ - .4 - 4. N - .

“N ‘
~
“

~~~
‘ _ - ‘

~~~ ~~~~
-~~~~~

- I - - — ___--_s’ ~~~ I

I , •. .~~~. ‘14 4 I ’.~ U I
- - .

4•~~~,• \ •
~ .~~.,111.4141 , .~ .~

-4 ,. ,, ,’.

5-
- N O

-4 • •1

I1•- . U~~.

56

-

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



r ~~~~~~~~~~~~~~~~~~ 

. .~~~~~ - 
-
~~ 

• -  — 
~~~~~~~

-

Interface
- IN OUT

124 ---- acknowledgement symbol
125 ——— - test symbol
126 mask display items
127 ---- index
128 index aàknowledgement symbol
129 - symbol
130 static dynamics symbol test symbol
131 ---- - static dynamics
132 ---- . mask item
133 —--- static mask set
lyi. .

remove signal
135 - remove signal , redisplay sig- symbol

na) , stimulus library
136 ---- redisplay signal
137 ---- stimulus library
138 ---- random dynamics
139 ---- - normal dynamics
1-40 random dynamics , normal dy- static dynamics

namics
1-41 --- - static mask
1112 static mask static mask set
1-43 ---- remove option

remove data
145 remove option , remove data remove signal
1~46 ---- redisplay option
1117 ---- redisplay data
148 redisplay option , redisplay redisplay signal

data —

149 test list stimulus library
150 —--- test list
151 index symbol —

152 ---- random list option
153 ---- - ordered list
1511. random list option , ordered test list

list

Figure 29 continued

57

—4- - — - —----- - ~~~ —- - -- -- -~~——,--~~~~~_ - ----- -- - - - - -— --- - --- ----— —-- - --

_______________ - - -— - -— —

. I— I’

- - -
fi ll. -.

Ii...: ._‘
,~~.‘ 0

C Cf i n I-,- I i 0 I :--,
11.4 N I

. 4

I
. ..

.1. 1
011
‘a ,45 111111

.4 0

o
‘1) 0’.4

/ 4),)

~91 —
~
-

~~~~ UI
‘—I4. -j o

-, p4
.4 -s

I ~S ~- h
).X 1’-

~; ~;~~• f-I-1-.i ‘1
I

.4.,
U. I

4.1 -4IS 3 .3 Q
_ _  0

j~~l i 
-
~~ •1~ 

- 0
‘ ,1.’i ~ ~ I—1 ~ .1 II I P • ~J i I  I ‘~~‘~ I

I~~~~~I I ~.2 I
L~.2_J

•i-I4.
.4 I ItS I t o

2 I~I1
• ~~~-1 -

U • .1 15.
.1 ~-, 0.-j:~ .1

~i :~.1 5.-l IZ.- -I~~t 
(I) 43 13 54 -

- - ‘0  ‘.5 4 . 3 4 .0
.4 ,) :I) 

~~ 
,•,

I.) 4 0  -.4 . I -)  33
,~
5

L1~~Ii j  15 “ .1
ia II ~1 h f ’ .

5114 -1
hJ•)

(5. .0
.ts • .4.3

4, ,.4 • . 3 . ’II 0 ‘5’ ‘. 1
.‘.*‘ il -3 ‘II1 1 1 4 11

~~~~~ 
-

, : .

58

— -

~

- - ~~ - - - - - - -

- — - - - --—— - -----•—- ----.—---. .-— - -•-- - --- -- - - ____________________________

Interface

IN OUT

155 viewing sequence, time
parameters

156 ———- sequence results , stopflag
157 test symbol , stim-

ulus time
158 mask item , mask times
159 acknowledgement symbol
160 ---- valid response,

stopflag
161 valid response sequence results
162 symbol dis play symbol
163 display symbol
16L4. static mask set
165 mask item
166 acknowledgement symbol

display
167 —— - — response
168 response valid respnse ,

okflag, stopflag
169 error message

170 v,ali d res ponse sequ enc e results
171 sequence results

172 remove data
173 redisplay data

17L1. vibrate option

175 stimulus display

176 static mask display

177 dynamic mask display
178 prompting message input line

179 input line response
180 ---- feedback option
181 feedback message

Figure 30 continued

59

_ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- - -

-
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~C C ”

Store
• Sequence

Re su]. t s

I I 
18 83

Format Create
Sequence Test
Results Results

Interface

IN OUT
182 sequence formatted results

results
183 - formatted test results

results

Figure 31. Store Sequence Results

I

the control must continually shift between the waiting for a

response and the updating of the display file.

The efferent branch of the test execution is the storing

of the sequence results to form the test results. ~‘Jhen the

command STOP TEST is input by the user, the test results

will be passed on to the execution executive (Fig. 31).

The efferent branch of the execution system stores the

test results in a file to be output later (Fig. 32). The

results from several executions of the test can be stored

in the same file.

~



- -  - -- - - - - — - - 
~~~~~~~~~~~~~~~~~~~~~~~~

— I

~i

It
Store Test
Results

I

- 1861814. 185

\
-- ‘5

lear 0 -
- f&~~ te

Response Format ITost
Data Results IFile

- ~~~sults

Interface
-

IN OUT

184 ---- doneflag
185 test results formatted test

results
186 formatted test

results, results
file number

Figure 32. Store Test Results

I

61

- ~~~~~~~~~~~ -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _

- -

~~~~~~~

VI. ANALYSIS PHASE DESIGN

Identify Data Structures

There are two external data structures to this system:

the test results file and the collapsed data file. The test

— results file was output from the execution system. It is

used in the analysis phase to provide the necessary data for

the creation of the confusion matrices. The collapsed data

f i le stores the data after it has been proce ssed wit h the

predictor matrices.

There are two types of matrices used during this phase :

the confusion matrix and the predictor matrix. The confu-

sion matrix can be of three types: response based, reaction

time based, and percentage based. The values in the matrix

are determined from the test results. The predictor matrix

has user-determined values that specify the degree of error

of an incorrect response. The information in these two ma-

trices are combined using a collapsing function. This deter-

mines an overall degree of error in the recognition of the

test symbols. Reference 5 contains examples of confusion

arid predictor matrices which will not be presented here

( Ref 5:18-19).

The user-system interface consists of six commands:

LOAD DATA , CONFUSION , PRINT , COLLAPSE , ENTER , and END ANALY-

SIS. These commands and their options are explained in

Appendix B, User ’s Guide.

62 

- - - - - - - -~~~~~~~~~~~~ ~~~~~~—~~~~~~ --~~ - - -—- - --- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -.-•.-—-.f-—•’ —‘-~~~ ~1’~~~~~~~~ -.- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 33. DFD for the Analysis System

Model the Problem with a Data Flow Diagram

The inputs for this system are the user commands and

the test results. The outputs are the results from the col-

lapsing routine. This produced a simple model for the prob-

lem (Fig. 33). This model is similar to the model for the

set-up phase. The afferent data element is the valid user

command. The efferent data element is the results from the

execution of the commands. The central transform is a trans-

action center , controlling the execution of the commands.

Design System Using Structured Techniques

The first level factoring of the system executive and

the factoring of the afferent branch are shown in Figure 34.

The procedure for deriving the first level modules is the

same procedure that has been used in the previous designs--

one module for each of the different branches. Further, the

afferent modul e has ‘been decomposed using the transform

analysis technique.

The EXECUTE AI ALYSIS CCLA~AND module (transaction center)

I/~ 
63 

- 

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—~~~~~~~~ -- -~~ —--- - - --- - -  - — -  ~~~~~~ -~~~~~~---- --- --- -~~~~~~ - - ~~~~~~ --


F”-. ’ -s --- — - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ “ T ~~~~~
- -
~~~~~~~~~~~~

- . ‘

—

189

I Execute [ utput

~~~ ~_I - 

[~~~~~~~r~~~

[~~~~t ~Yalidate 1 Console
I Anã y~is A n.~lyr i s I Outpu t

~~~~~~~ 
j - Comr~a~id 

- 
,j 

—

1— 1 Convert
Console I To
I/O I I internal

~~J L~°~”

Interface

IN OUT

187 ---- valid command
188 valid command collapsed data

189 collapsed data
190 ---- command
191 command valid command, okflag

192 error message
193 request message input line
1.94 input line command

Figure 34. Analysis Executive (First - Level and Afferent
Branch Factoring)

64

- I~~
! 

I

—- - —



—‘- ----—-—-- 1--.,-.-~ r------’-~ - - ~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ --  -- — - — ~~~--. .-,.- ~~..-. - -_ - -- -_ -- -—. -.--- ,.-

controls the entry into the specific execute-modules (Fig. 35).

-

- The reason for not having sri afferent get-parameters module

for the system (as was done in the design of the set-up

phase system) is that some of the commands are not executa-

ble until others have been completed. For example, the CON-

FUSION command cannot be done until after the LOAD DATA com-

mand has been done. Thus the transaction center screens the

commands prior to the calling for their execution.

The decomposition of each of the execution modules was

very similar. There was an afferent branch in each which

was used to get the parameter needed to perform the function.

The central transform branch handled the function and returned

its results to the transaction center . These decompositions

• are shown in Figures 36 , 37, 38 , 39, and 11.0. The EXECUTE

END ANALYSIS COr.Ir~AND is a stub module and does not perform

any function other than returning an end-flag

The decomposition of the efferent branch (OUTPUT ANALY-

SIS RESULTS) is shown in Figure 41. The results can be

stored or output to the user.

65

~

-—

~

- - - -

- - -~~~~~~~ -~~~~~~~~~~~~~~~--— - --

F

-
~~~~ ih l _

- < 0

0

~I~~~~~~~ 4 
0

— •rl •rl
0
N 

_ _ _  ~~~~~~~~~~ 
C)

E E ~~~~ 
C)

~ ~~~~ ~~II1 I~J ! I

_ _  

C)

\ .3-I .,-’
— ~•4~~ 4 0

w
Es C)

0)
_ _ _  

0)
+‘ 0 0  ci)
ciS S,~~ o r ! )  ~.r4~~~~~~•r4

I I + ~~~’~~~-l~~~.4 1 0
•4~~1 

I I O) G) +~ I ~I I W cd I ~c
~~~1U I I +~ P4 5 I (1)

u•\ ’O C~-~~~~ O \ O ~~~~
~~ o~ 0 0
i 1 y1 .4 ~.l C\Z C\I

V

I ~I

66

--- -- -

~

--

~

- - -rn—-

~

-

~

- - ------- - - - ~~~~~~ - ---

-:

Got ~~ Valida t l 1 [‘ fi~~
’ver t

[~~urnbor~~J
Nu,~~er j Output f L __J

1 “Convert 1
Console ‘to
I/O j lnte rnal

IForm

I

Interface

IN OUT

202 ---- valid file number
203 valid file number test data
2011. ---- f i le number
205 file number valid file number,

okf lag
206 error message
207 file number . input data
208 input data test data
209 request message input line
210 input line file number

Figure 36. Execute Load Data Command

67

- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~ —- _-L~~~~~~~ -- -

- - - -_---- - ----‘------ - - - - - -- ~~~ ‘,__ —‘--- ,-- -------- - -—-“-,- “---.—.- __- -----‘,-

-

~~~~

Get I
Next I flake
Row 

- L Matrix

21)

215 21 217

• L~:T;ii] [
~~i ~~~218 219

E~.ir1i1 r~ I Interface

IN OUT

211 ---- row
212 row predictor matrix
213 ---- valid element
214 valid element row

215 ---- element
216 element valid element, okflag

217 error message

218 request message input line

219 input line element

Figure 37. Execute Enter Command

68

— _ _ii _._ -
~~~~

- -
~~

--- -- -_ -_ -——-
~
-’--_-_-_--

~
- - --- - - - - - - - - - - - -- - --

~-- —-----.—‘ —‘-- - - - - ~ lI4


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

1!xeeut.
I Confusion
~~~~aand

- I o.tI Confusion I Confusion
I Option [astrix

_ _

Get I Validate 1 I Process Generate
Confusion I Confusion COflSO1~ Test ICOnfusion
Option [~Ptia n L ~ Data

227\ 228

I Convert
Console ITo
I/O I Internal

Interface

IN OUT
220 ---- valid option
221 valid option , test confusion matrix

data
222 ---- option
223 option valid option , okflag
2214. error message
225 test data , valid confusion dataoption
226 confusion data confusion matrix
227 request message input line
228 input line option

Figure 38. Execute Confusion Command

69

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~ -----
--~~~~ --_ --~~~~~~



- - _
~~

___-~w----—- -~~~~~-~~~r~~~’- - -~I,’- ___.__ 
~~~~~~~~~~~~~~ _ r”.-~~

._ ~~~~~~~~~~~~~~~~~~~~~~~ - — -—----i— ~‘~‘~1 - . __..~~~: ‘ ~~~~~~~~~
“

~~
-—-“

si Execute
Collapse
Command

229 -
2)0

Get
-

Valid Perform
Collapse Collapse
Option Punctl.on

231 232 23

Got Validate
Collapse Colla pse Console
Option Option Output

2 235

Convert
Console To
I/O Internal -

Form

Interface

IN OUT
— 229 ---- valid option

230 valid option , predic- collapsed data
tor matrix , confu-
sion matrix

231 —--— option
232 option valid option , okflag
233 error message

2311. request message input line

235 input line option

Figure 39. Execute Collapse Command

70

---~~~~~

~~~~~~~~ ---~~~--- -

. 

-
~~~~~~
- ---

~~~~~~~~~
- --



4 —

[Ex.cut.
Print
Command

7Z
~~N[mid 1 Print

- ‘  I ~~ t~~ j Matrix

(1~~k 1 F~ont5 
~~“] 1i~ 1 r~= 1

243\
~~~~~~~~
N

-

1 [~~onv.r t
Consol. I ~~~~~~~~~~~~~~~~I/O

Interface

IN OUT

236 —--- valid option
237 valid option, matrix
238 -—-- option
239 option valid option , okflag
240 error message
241 matrix formatted matrix
242 formatted matrix ----
243 request message input line
211.1$. input line option

Figure 40. Execute Print Command

-~
71

- —__

—

Li, Output
Analysis
Results

2115 2117
2116

Store Format Output
Collapsed For To
Data Output User

Interface

I- - IN OUT
2115 collapsed data collapsed data file
211.6 collapsed data format-ted data
21,7 formatted data

Figure 41. Output Analysis Results

-
4 F

72

—~ —- __ _ _ _ _ __ __ ~~_ _ _s_ -_ - - - — - - --S--- --- ~~~

~ ‘ -~ r,
~-—-~----“~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

VII. ~~~IGN EVALUATION

Introduction

The perception experiment software is being developed as

a system for use in perception testing. Thus it will undoubt-

edly undergo many changes and enhancements throughout its

lifetime. An interactive system, such as this one , must be

easily maintainable.

The method that was used to produce the preliminary

design of the PES produces a structure that is maintainable.

To measure this mainatinability , several changes and en-

hancements will be proposed for each phase. The am ount of

change required in the system will be assessed . Finally, the

question of optimization will be addressed.

Set Up Phase Modification

The kinds of changes to this phase of the problem would

be changes such as adding a new command , deleting a command ,

changing the function of a command , changing the limits for

the parameters of a command , al-id changing the structure of

any of the data bases. -

The transaction centered strategy used to design this

system , allows the first three types of changes to be hand—

led quite easily and with little effect to the rest of the

system. To add a new function would entail changing the

VALIDATE SET UP CO~~1AND module in the first afferent branch

)f the system (to allow this new command to be valid) and

73

- - -- - - ---— - - - - -


~~~~
-- - - -

~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
________ _______

changing the transaction centers (GET VALID SET UP PARA-

-
-

METERS and EXECUTE SET UP COMMAND) to reflect the addition.

The new function can be placed into the existing structure

without affecting any other module. The same three modules

are the only ones that will realize that a command has been

deleted.

The changing of the function of a command and of the

limits of its parameters will be isolated entirely within

the two branches coming from the transaction centers. In

fact , the changed limits can be handled by changing only

one module (CHECK LIMITS).

To add or delete a command , or to change its function,

will probably cause changes to the data structures. Since

• these structures are to be designed as abstract data types,

the effect of the changes , except for data operation pro-

cedures , will be imperceptible to the rest of the system.

Execution Phase Modification

The types of changes to the execution phase would be

the expanding of the response-directed options, the elimina-

tion of the dynamically visible options (vibrations and dy-

namic masks) and the allowing of the user to specify the

number of test symbols to be shown.

The expanding of the response-directed options would

cause changes in two areas. First, the data structure,

response data , would have to be expanded to maintain more

test history. This will have no effect to the system

7L~.

-
~~~~~~~ ~~~~~~~~~~~ - _ .- ~~--_~~~~~~~~~~ -— -- .- -— ~~~~~—- -- - —-----

~~~~~~~~~~


-“—— ~~—,——--._. ~ ‘ ‘ .

because response data is sri abstract data type. Also

in this area will be an addition of a module to the PROCESS

RESPONSE module. This new module would determine the data

for the response data file. Second , assumingt he test has

been modified~ modules would have to be added to the affer-

ent branch of the GET TEST SYMBOL module. This case would

only be done if the new option would affect the symbol list.

In both cases , the modularization of the system has prevented

the change from causing widespread changes.

The elimination of the dynamics options is a definite

possibility. The changing of the display while waiting for

a response is a problem that has not yet been investigated.

To eliminate them from the system would entail deleting the

associated modules and modifying the one or two modules with

which they communicated . There should be no other changes to

the system.

If the user is provided the option to specify the num-

ber of test symbols to be shown, the only module affected

would be the CONTROL DISPLAY SEQUENCE module. Since the

transform has been structured so that this module coordin-

ates all activities associated with the display sequence ,

the rest of the system will not be affected by the new op-

tion.

Analysis Phase Modification

The changes to the analysis phase would be similar to

those in the set-up phase. These changes would be in the

75

—~~~~~~~~~ -~~~~~~~~~~~~~~~ -
-

~~~~~~~---~~~~~~~~~~~~~ -~~ - - A



~~~~7.- r i —~~~~~

adding of new capabilities to the analysis. The addition of

functions , as in the set-up phase modifications, would cause

changes only to the transaction center and to the validate

module. The only other type of change would be a require-

merit for more, and varied, types of output reports. Here ,

the change to a system would be limited to the efferent

branch of the system.

Optimization

This preliminary design provides a structure that al-

lows the designer the maximum flexibility in decision-making

during the rest of the design and implementation stages. It

provides a complete structure chart in which the modules are

as functional as possible.

If the designer must optimize (and there are many that

are against such a practice (Ref L$. :v i i)) , this structure

will make him aware of how he is affecting the system. This

allows him the maximum choice of areas to optimize. If he

is optimizing space, he can see the modules that can be most

easily recomposed without affecting the system. If he is op-

tirnizing for speed , he can determine those critical areas

that are executed the most and redesign those areas. Since

the areas have been designed for minimal communication, care-

fui. redesign of those areas should cause only a few- changes.

76

—---- _- ~~- -

—,-~~ ~~~- - -—-- _ ~~~~~~~.-~- ----~-~~--~~-~~-- -

VIII. RESULTS AND CONCLUSIONS

This chapter discusses the results obtained from the

software design and the conclusions drawn from these results.

It also provides recommendations for the further design and

implementation of the perception experiment software.

Results

The design for the perception experiment software was

accomplished by following a well-defined structured method

in a rigorous , - disciplined mariner. The requirements defini-

tion for the probl em was presented informally in Chapter II.

Knowledge of the problem requirements is necessary to form a

sound foundation on which to design a program structure. A

design philosophy emphasizing program maintenance was used

to develop the tools with which to build the program struc-

ture.
•
The tools were in the form of a design method which,

when rigorously followed , produces art easily maintainable

structur e (Chapter III) . The program structure for the

three phases of the probl em was built using this design

method (Chapters IV , V , and VI) . The structure was evalu-

ated in Chapter VII and shown to be easily maintained and

modified.

The application of structured design techniques re-

sulted in a program design which will be easy to implement,

maintain, and modify. Most of the modules in the design are

singly functional and easily understood. The use of

77

-~~~~~~~~~~~~~- --— - -

abstract data types for the data structures within the

system greatly facilitated the design effort as well as

enhanced the maintainablilty of the system.

Conclusions

The most important factor in designing a system is to

have a clear idea of what is required . Without this know-

ledge , it is nearly impossible to develop a workable program .

The next most important factor is to develop a good design

prior to any coding being done. This design must be accom-

plished in a methodical mariner. Typically, a designer cannot

haphazardly design a program and then expect someone else

to have an easy time maintaining it. Structured design

provides a methodical approach to producing programs that

anyone can maintain . It is only after the complete program

structure has been designed that detailed module design and

coding of the program should begin .

Recommendations

The perception experiment software is in the design

stage of development . The following recommendations are

provided as guidelines for the further development of the

system.

The abstract data type interfaces for all of the data

structures in the system must be defined prior to coding.

Without this definition, it will be impossible to produce any

meaningful code. The three systems can be coded concurrently

78

-
-

~

-- ------- - —-- -
~~~-

- - ----~~—~~
---

if the interfaces of the data structures that are shared

between the systems are defined first.

Finally , the software should be implemented using top-

down methods in coding and testing. In this way, the system

interface testing is accomplished throughout the coding

- - stage. Implementation using a top-down approach starts at

- - a single point, but parallel coding becomes possible as the
- lower-level compon ents are developed .

I

79 

I



-‘- ‘--- —.— 

Bibliography

1. Boehm , B. W. Software En gineering. TR~! Systems Engin-
eering and Integration Division, Redondo Beach, Calif.:
(October 1976).

2. Brooks, F. P. The Mythical Man-Month. Reading, Mass.:
Addison-~1eslay Publishing Company , 1975.

3, Constantine, L. L. and E, Yourdon. Structured Design.
New York: Yourdon Inc., 1975.

4. Jackson, M. A. Principles of Program Design. New York:
Academic Press Inc., 1975.

5. Liebeck, R. A. Software Design for Multimode Matrix
Display Perception Tests (Thesis). (December 1976).

6. McGowan C. L. arid J. R. Kelly. Top-Down Structured Pro-
gramming Techniques. New York: Mason/Charter Publishers,
Inc., 1975.

7. Myers, G. J. Reliable Software Through Composite Design.
New York: Mason/Charter Publishers, Inc., 1975.

8. Parnas, D. L. “On The Criteria To Be Used In Decomposing
Systems Into r-’Iodules ” . Communications of the ACM, 15:
1053— 1055 (December 1972).

9. Ross , D. T . ,  et al. “Software Engineering: Process, Prin-
ciples, and Goals.” Computer: 89-99 (May 1975).

10. Yourdon, E. “Structured Maintenance--Approach Trains User
to Read Alien Code.” Computerworld, 32: 38 (12 September
1977).

H 80

- — A



_ _ _ _ _ _ _ _ _ _ _  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A

MODULE DESCRIPTION

- I System Description

The perception experiment software was developed as

three separate systems. Implicit in this development is the

idea that an overall system executive would coordinate the

phase executives (Fig. 42). The SYSTEM EXECUTIVE, after re-

ceiving a valid command, passes control to one of the three

phase executives. This module and its subordinates control

the entire perception experiment system.

The GET VALID COMMAND module has a structure that appears

[
~~ecutive]

~~~~~~~~~~~~~~~~7 

\;ç~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

uet. Set Up Executive Analysis
Valid Executive Execution Executive
Comnand 

___________ ____________ ____________

Interface

IN O~T

1 ——-- valid command

2 set up command set up parameters

3 set up parameters test results

4 test results

Figure 42. PES System Executive (First - Level Factoring)

- 

- 81

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-- -~~~ —- —--~~~~- - -



41
r00~ *Valid

[
Obiect

Get * Validate * Console
Object Object Output

(N
Consolel Convert
I/o To
- Internal

Form

Interface

IN OUT

1 —— —— object

2 object valid object , okflag

3 error message

4 request message input line

5 input line object

Figure 43. Afferent Group Structure

throughout the entire system (Fig. 43). This structure wifl

be termed an afferent group . It will be described in gener-

a]. terms which will apply to all afferent groups in the sys-

tem. The modules marked with asterisks are the modules that

change for a particular application.

- 82

_ i
F,

A



______________________ ~~~~ —.. ~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The GET VALID OBJECT module provides a valid object to

its calling module. It gets an object from the GET OBJECT

module and determines its validity. If the object is invalid ,

an error message will be output through CONSOLE OUTPUT. In

this case, the GET VALID OBJECT module will call the GET OB-

JECT module again, in an attempt to get a valid object.

The GET OBJECT module provides the appropriate request-

obj ect message through the CONSOLE I/o module. The input line

will be sent to CONVERT TO INTERNAL FORM. This takes the

input line and converts it to a form recognized throughout

the system.

The VALIDATE OBJECT receives the object arid , depending

on the application , determines its validity. It then returns

the obj ect to GET VALID OBJECT with a flag as to its validity.

This afferent group , as it applies to the SYSTEM EXECU-

TIVE , would be described like this. The GET COMMAND module

would request the user to enter a system command. This com-

mand is converted to a usable form (by CONVERT TO INTERNAL

FORM) and passed to the GET VALID COMMAND module. This mod-

ule would pass the input command to the VALIDATE COMMAND mod-

ule. This module would ensure that the command was either a

SET UP, EXECUTE, or an ANALYZE command as defined in Appendix

B. If it was , an okflag would be returned and GET VALID COM-

MAND would pass the valid command upwards. If it was not

valid, a not-okflag would be returned. GET VALID COMMAND

would provide the user with an error message through CONSOLE

OUTPUT. It would then invoke GET COMMAND to request another

83 —

- -- —---- _- - - - -~~~~~—---~ ~~~~~~~~ -~~~~
-

~~~~~
- _~ - -_ =~------ - -~~~~~

_-=_
~~
— —---._--

~~~
—- -

~~

--

~~

input.

Set—up Phase Description

The SET UP EXECUTIVE invokes its subordinates to execute

the set-up commands (Fig . 6) . A valid command would be any

one of the SET UP commands in Appendix B. When it receives

a valid dommand from the afferent group , GET VALID SET UP

COMMAND, no validation has been done on the paremeters that

might have been entered with the command. These are passed

to the transaction center GET VALID SET UP PARAMETERS. After

getting the parameters , the SET UP EXECUTIVE invokes the EXE-

CUTE SET UP COMMAND transaction center. The EXECUTE SET UP

COMMAND module will return an updated data structure to the

phase executive. An end-flag will be returned when the com-

mand END SET UP is entered by the user. The SET UP EXECUTIVE,

upon receiving the end-flag will output an appropriate mes-

sage to the user and return control to the SYSTEM EXECUTIVE.

The GET VALID SET UP COMMAND module (Fig. 7) is an af-

ferent group. When it is invoked by the SET UP EXECUTIVE , it

will return one of the valid set-up commands. The GET SET

UP PARAMETERS (Fig. 8) and the EXECUTE SETUP COMMAND (Fig. 12)

are transaction centers that are almost purely executive in

function. lIhen invoked, they determine the appropriate

module to call on to execute the command.

Those commands that have more than one parameter associa-

ted with them have COLLECT PARAMETERS modules that are shown

in Figure 9. The GET TYPE I PARAMETERS creates the test-item

84


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~

—

by successively getting valid parameters from the affer-

ent group, GET VALID TYPE I PARAMETER and passing them to

COLLECT PARAMETERS. The GET VALID TYPE I PARAMETER module

will request specific parameters from the GET TYPE I PARA-

METER module. This will cause the output of the appropri-

ate parameter-request message. The VALIDATE TYPE I PARA-

METER module can call on numerous submodules to determine

validity. The CHECK ALPHA module checks to see that the

parameter consists of alphabetic characters and returns a

flag if it is not. The CHECK INTEGER and CHECK REAL mod-

ules ensure that the parameter is an integer or a real

number , respectively. The CHECK SL INDEX TABLE and the

CHECK TL INDEX TABLE are operations of the abstract data

types symbol li brary and test library , respectively. The

CHECK TPYE I LIMITS module will check that the parameter

is within the limits prescribed by the user.

The structure of the GET VALID TYPE II PARAMETER mod-

ule is similar to the srtucture of the commands with more

than one parameter (Fig. 10). The main difference is that

the GET VALID TYPE I PARAMETER (of Figure 9) functions have
been incorporated into the head of the structure. This was

possible because there is only one parameter needed.

For the commands without any parameters , the structure

of the GET TYPE III PARAMETER consists of a stub (Fig. 11).

In this case , control is returned immediately to the calling

module.

The EXECUTE SET UP COMMAND module (Fig. 12) calls



~‘ r _ -T ~~ 
— - -

~~~ 
— — -

~~~
---

~

on one of 22 modules to execute a particular command. The

modules affecting the active test are depicted in Figure 13.

The EXECUTE ITEM COMMAND module will call on the STORE ITEM

IN AT module. This is a function of the abstract data type

AT. The user message is a review of the parameters that

were just stored.

The EXECUTE MASK COMMAND module determines which option,

static or dynamic , has been chosen (Fig. lLi.). If static was

selected, then LIAKE MASK FILE is invoked. This stores the

static masks as items in the AT. If dynamic was selected ,

the item is immediately stored in the AT. The user mes-

sage details the action taken. The MAKE STATIC MASK FILE

calls GENERATE STATIC MASK and STORE STATIC MASK IN ACTIVE

TEST until the specified number of masks are made.

The EXECUTE CLEAR PARAMETER COMMAND module will make

repeated calls to GET DEFAULT VALUE and STORE ITEM IN AT

(Fig, 15). In each call, it will request a different de-

fault value for the different item in the AT. GET DEFAULT

VALUE arid STORE ITEM IN ACTIVE TEST are operations of the

abstract data types, default value table and active test , re-

spectively. The user message will denote that default values

are in the AT.

EXECUTE PRINT PARAMETERS COMMAND will request the items

by the options (i .e . ,  MASKS , STI?IIIST , ALL) from the GET ITEM

FROM ACTIVE TEST (Fig. 16). The item message that is output

contains the requested items.

EXECUTE STORE ELEMENT will store either a symbol from

86

-
~~~~~

- -
~~~~~~~

- —-~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - A



F N
*D—A055 178 AIR FORCE INST OF TECH WRIGHT—PATTERSON AFB OHIO SCH—ETC F/G 9/2

PRELIMINARY DESIGN FOR MULTIMODE MATRIX PERCEPTION EXPERIMENT S—ETC CU)
DEC 77 S 6 WENSKA

UNCLASSIFIED AFIT/GCS/EZ/77 11 NL

‘78

U

L~



the AS or a test from the AT into the respective library

(Fig. 17). The user message will reflect the action being

taken.

The EXECUTE PURGE COM~.IAND invokes the DELETE ELEMENT

FRO1~.I LIBRARY module to remove an element from the library

(Fig. 18). The user message reflects this change.

EXECUTE RELOAD C0~~1AND takes an element from the appro-

priate library (using GET ELEMENT FROM LIBRARY) and stores

it in the active symbol or active test (Fig. 19). The mes-

sage to the user will notify him that the reloading opera-

tion is complete.

EXECUTE LIST COMLIAND searches the library index table to

determine the response to the user’s request (Fig. 20). The

abstract data type functions are shown by COUNT INDEXES IN

LIBRARY and LIST INDEXES IN LIBRARY . The message to the

user is the information desired by the user.

The EXECUTE CREATE C OMMAND module with its subordinates

enables the creation and display of the active symbol (Fig. 21).

The afferent group GET VALID INPU T will return a legal cre-

ate mode command or a symbol segment . The EXECUTE INPUT

will receive the input and determine the action to be taken.

EXECUTE INPUT call s on STORE SEGMENT , which stores a segment

into the activ6 symbol and causes the system to display the

change; CLEAR SYMBOL, which removes all segments from the AS

and clears the display screen; and EXECUTE ALTER, which pro-

cesses the ALTER commands.

The EXECUTE ALTER module has its own transform-centered

87



-.

design (Fig. 22). The afferent group GET ALTER COi.~?.iAND pro-

vides a valid ALTER command. The GET ALTER PARAr.~ETERS is a

transaction center sharing modules with the branches of the

set-up phase dynamics commands. EXECUTE ALTER COUNAND di-

rects the changes in the active dynamics list to determine

the display.

The EXECUTE BULK OPERATION shows that the same structure

is valid for both the BULK LOAD and BULK STORE operations

(Fig. 23). This module calls on EXECUTE SL OPERATION or

EXECUTE TL OPERATION which does the mass loading/storing

of the libraries.

Execution Phase Description

The EXECUTION EXECUTIVE calls on three modules to exe-

cute a test (Fig. 26). As an executive, it acts as a commu-

nication center for passing data structures and coordinating

test execution activities.

The GET VALID TEST module calls on the GET TEST module

and the VALIDATE TEST module in order to determine a valid

test (Fig. 27). The GET TEST module uses two afferent

groups--GET VALID COIvWIAND and GET VALID TEST INDEX-- to de-

terrnine which test is to be executed. It retrieves the test

through the GET TEST FROM TEST LIBRARY module • The VALIDATE

TEST checks to see that all the indexes used in the test ( the

stimulus list and the acknowledgement symbol index ) are pre-

sent in the symbol library index table. If not , an error

message is output and control will return to GET VALID TEST .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

____________ - -

— - -~~~~ ~ ~~~~~~~~~~~~ ——

This module will then attempt to get another test.

The TEST EXECUTION EXECUTIVE coordinates the actions

during the test itself (Fig. 28). It uses the GET TItlE PARA-

METERS module to get the time values that will be used to time

the viewing sequences. GET VIEWING SEQUENCE, CONTROL DISPLAY

SEQUENCE, and STORE SEQUENCE RESULTS are invoked in a loop

to provide for test execution.

GET VIEWING SEQUENCE is an afferent module which gets

the displays needed in a viewing sequence (Fig. 29). The

GET ACKNOWLEDGEMENT SYMBOL gets the symbol by first calling

GET ACK SYI.IB INDEX FROM TEST to get the index. It then in-

vokes GET SYMBOL FROM SL to get the acknowledgement symbol.

The GET TEST SYMBOL calls on the GET SYMB OL module to

get the next symbol to be shown; it then applies the static

dynamics to it. The GET SYMBOL module chooses the next sym-

bol to be shown. Depending on the redisplay and removal

options, this module will provide either the next symbol in

the stimulus library (unless it is a removal symbol) of the

previous symbol shown (according to the redisplay option).

The GET STIMULUS LIBRARY creates the library by getting

the list of symbols (already modified by randomness, if ap-

plicable) and getting those symbols from the symbol library.

The GET TEST LIST module gets the list to be used for

the test by getting the ordered list and the randomness op-

tion from the test. These are passed to MAKE LIST which ap-

plies randomness as required.

The GET REMOVE SIGNAL and the GET REDISPLAY SIGNAL will

89

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- —~~~~~~~~~

get the respective option from the test. If there is an op-

tion, the DETERMINE REMOVE/DETERMINE REDISPLAY module will

be invoked to check the response data to determine if the

option applies to the next symbol to be shown.

The GET STATIC DYNAI.~ICS module gets the dynamics that

affects the symbol prior to display time.

GET MASK DISPLAY PARAMETERS will get either the two

static masks that are needed (GET STATIC MASK SET) or the

dynamic masks parameters needed to generate the masks (GET

DYNAMIC PARAMETERS).

The CONTROL DISPLAY SEQUENCE coordinates the actions of

displaying a sequence and handling the subject response

(Fig. 30). This must be done to ensure that a display is

maintained while waiting for a subject to respond.

The DISPLAY SEQUENCE module coordinates three subordi-

nates to display a viewing sequence. The DETERMINE MASK DIS~

PLAY shows either a static or a dynamic mask. PREPARE TEST

SYMBOL displays the symbol while applying the vibrate dyna-

mics to it.

GET SEQUENCE RESULTS uses the GET VALID RESPONSE affer-

ent group to determine the action to be taken. A valid re-

sponse may be either a response to the symbol, a special re-

sponse, or the STOP TEST command. If one of the responses

is received, PROCESS RESPONSE updates the response data

structure. If the STOP TEST command is received, a flag is

sent to the TEST EXECUTION EXECUTIVE and the appropriate ac-

tions will be taken. DETERMINE FEEDBACK provides the

I’

-

! 

90 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~ -~ - - - -~~~~~~~~~~~~~ =-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

feedback message to the subject based on the reinforcement

option and the print option.
-

~. The STORE SEQUENCE RESULTS module is shown in Figure 31.

This creates a file for each test. The STORE TEST RESULTS

(Fig. 32) for the test execution is activated after the stop—

flag is received by the EXECUTION EXECUTIVE. The modules

take the stored sequence results and stores them as a test.

If the test is executed several times, the module will store

the results of each test in the test results file.

Analysis Phase Description -

The ANALYSIS EXECUTIVE uses the GET VALID ANALYSIS COM-

MA1~D afferent group to get a command for execution (Fig. 3k) .
These commands are listed in Appendix B. Collapsed data re-

sults can be outputted via the OUTPUT ANALYSIS RESULTS module.

EXECUTE ANALYSIS COI.~IAND is a transaction ccnter which calls

on the various execute-command modules to perform the function

(Fig. 35). This command structure ensures that a command

can be executed prior to relinquishing control (e.g., at-

tempting to generate a confusion matrix prior to loading the

data is not allowed). Error messages to this effect are

output to the user.

EXECUTE LOAD DATA COLfl~!IAND uses the afTerent group GET

I VALID FILE NUMBER to determine the file designator of the

test results file (Fig. 36). It then accesses the data

through the GET TEST DATA module.

EXECUTE ENTER COMMAND allows the user to specify a

p.
•-

~~~

‘---— —.---- - ---— —— —-—- _-_—--_- ~
---—~~~ 

. — - --—- -

predictor matrix (Fig. 37). This module calls on GET NEXT

ROW which provides the row data for the matrix. MAKE MATRIX

takes each row and forms the matrix. GET NEXT ELEMENT and

- 
- MAKE ROU function in a like manner but on a smaller scale.

EXECUTE CONFUSION COMMAND uses the afferent group GET

- - VALID CONFUSION OPTION to get the type of matrix to be gener-

ated-—response, reaction time, or percentage (Fig. 38). The

GET CONFUSION MATRIX module then gets the data required in

order to generate the confusion matrix. This dat a is passed

to GENERATE CONFUSION MATRIX .

EXECUTE COLLAPSE COMMAND handles the collapsing of the

confusion matrix data (Fig. 39). GET VALID COLLAPSE OPTION

is an afferent group which gets either a rank option or an

absolute distance option. The PERFORM COLLAPSE FUNCTION then
b

handles the collapsing of the confusion matrix based on the

option.

EXECUTE PRINT COMMAND uses the afferent group GET VALID

PRINT OPTION to determine what type of matrix the user de-

sires output (Fig. kO). It calls on PRINT MATRIX to handle

the actual formatting and outputting of the matrix.

OUTPUT ANALYSIS RESULTS formats and outputs the col-

lapsed data from the execution of the COLLAPSE COMMAND (Fig.L1.1).

This module also has the option of storing the data for later

use.

92

F 

~~~~~~~~ - —- - --~~~~~~~ —-~~— --~~~~ —----~~~


- ----r- —-‘---- -, - --- ..~~-—-— - -, --- --- ‘--- - ----— -_-~~~.*~~_,-__-- -~~~- -- - - -- -~ -- ~~~—-- ~-.—-~~-- --

Appendix B

USER ’S GUIDE

Introduction

The purpose of this appendix is to define the user-

system interface. In -this way both the designer/implemen-

tor and the suer have a definite document to refer to when

discussing the system. This appendix is not meant to be an

endproduct but strictly an interface definition. In this

way, the system becomes visible to the user.

Since the perception experiment software system is in-

teractive, the commands listed in this appendix are those

which are indicated as necessary to implement the system at

this time. The appendix should be updated at any time that

the user or designer feels that an update is warranted.

Syntax

The commands are divided into four main areas: system

mode, set-up mode, execution mode, and analysis mode. A

brief description of each mode will be given. This will

be followed by the commands allowed during that mode. Exam-

ples are given for clarification. In most cases, it should

be remembered that the system will be outputting messages to

the user, providing him with the most options available to

him. Also, for the frequent user, the commands and the

parameters may be entered at the same time. To denote this,

the portion of the input line which must be entered will be

93

underlined.

For example, if the user wants to store a particular

symbol in the symbol library, he inputs a command which

has the form

STORE SYMBOL, index

The underlined portion of the command indicates that the

user must input that first part of the command--STORE SYI~1BOL.

Should he stop there, the system will request that the user

enter an index. However, the user has the option to enter

the command with an index, that is, STORE SYMBOL, 99.
If there is more than one parameter for a particular

command, the user can enter all, or some, of the parameters

when he enters the command. The system will execute the

command if all of the parameters are entered and if they

are valid. If a parameter is found invalid, the system will

output an error message arid begin outputting prompts to get

the rest of the parameters for the command.

System Mode

This is the basic mode of the system. When the program

is run, the system enters this mode which controls the entry

into the other three modes. There are four possible commands

in this mode:

SET UP, setcom, parms This enters the system to
the set-up mode to begin
executing set-up commands.

where

setcom is a legal set-up mode command.

914.

~~W ~~
—--

~~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

parms - are the parameters for the command.

EXECUTE , testno , fileno This enters the system to
the execution mode to exe-
cute test and store the re-
sults in a file.

ANALYZE, fileno This enters the system to
the analysis mode to begin
analyzing the results in a
file.

where

testno is the test index of the test to be exe-
cuted.

fileno is the identification of the file contain-
ing the test results, i.e., responses , re-
sponse times, etc.

EXAMPLES

SET UP This enters the system in-
to the set-up mode.

SET UP , PURGE SYMBOL This enters the system to
the set-up mode and corn-
mands that a symbol (to be
specified) be deleted from
the symbol library.

EXECUTE This enters the system in-
-

to the execution mode.

EXECUTE , 3, TAPE7 This enters the system to
the execution to begin ex-
ecuting test 3 arid store
the results in file TAPE7.

ANALYZE , TAPE? This enters the system to
the analysis mode to begin
analyzing the data in file
TAPE?.

ri~

p --

~~~

- - - -

~ ~~~~~~ 

- - - -

~~~~~~~~~~

—

~~~~~~~~~~~~ 

- --

~~~~~~~~~~~~~~~

- - - --

~

~~

-—-

~~~~~~~~

- 

Set—up Mode

This section describes the commands necessary to create

and manipulate the data structures involved in setting up a

perception test. The commands are divided into five cate—

gories: symbol , symbol library, test, test library, and bulk

loading. The only command in this mode that does not fall

into one of these categories is the following:

END SET UP This returns control to
the system mode.

Symbol

This section contains the commands necessary to create

and manipulate symbols. The user creates a data base which

will be called the active symbol (AS). The system keeps

track of the development of the active symbol and displays

it throughout its creation.

CREATE SYMBOL This places the system in-
to the “create mode”.
This must be input prior
to creating a symbol.

CLEAR SYMBOL This initializes the AS in
order to begin creating a
new symbol. The system
will place a null entry in-
to the AS and display a
blank screen.

~~
Q elem , ... This adds elements to the

AS and displays them.

DELETE elem , ... This deletes elements from
The AS and removes them
from the display. -

END CREATE This terminates the create
mode.

~ 

-~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- - s- - rzz. .~~-~~ - —
~~—-- — — — ‘ — - — - - - ——------ ——— .

where

elem is the element description.

The above commands are the basic commands used in sym-

bol creation. While in the create mode , the system will

continually display the contents of the AS. The descrip-

tion of the parameter “elem” depends on the implementation

of the system. The elements could be described as ordered

pairs, position numbers on a grid, or some other scheme for

identifying them. In the following examples, it is assumed

that the elements are described by position number.

EXAMPLES

CREATE SYMBOL This sequence of commands creates
CLEAR SYMBOL a symbol composed of two elements,
ADD 1 located at positions 1 and 3. At
ADD 2, 3, 14. the end of the fourth input line,
DELETE 2 the AS will contain four elements

which will be displayed. After
END CREATE the sixth input line, the AS will

contain only two elements.

Du ring the create mode, the user has the option of

viewing the AS as it is affected by display dynamics. This

allows him to view the symbol as a subject might see it

during an actual test. The commands which allow display dy-

namics during symbol creation are: -

ALTER SYMBOL This places the system in-
to the dynamics mode. This
command must be input prior
to inputting a dynamics
command.

ROTATE, ang This rotates the AS dis-
play.

97

~~~-.- - ----- ---— -- -- - .— - - _ _

~~~

- - -

p — —

~~~~~~~~~~

--
~~~~~ 

— -

~

—

~~~~ 

-

~~

--- -

~~~~~~~~~~~~

- --

~~~~

—,-

~ 

-—

~~~~~~~~~ 

-

~~~~~~~~ ~~

-

~~

- -

~~~~~~~~~

--- -

~~~

-

~~~

-—--

~

-

~

ADD , elemno This adds elements ran-
domly to the display.

DELETE , elemno This deletes elements ran-
domly from the display.

VIBRATE , freq , dist This vibrates the display.

where

ang is the angle of rotation in degrees.

e].emno is the number of elements that the user
wishes to affect.

freq is the frequency of vibration.

dist is the distance in grid units.

The dynamics commands affect the display only; that is

the commands do not affect the contents of the AS. Except

for the ADD and DELETE commands, the commands are not mutu-

ally exclusive; that is the display can be vibrated while it

is rotated. The display will be affected until the appropri-

ate end-command is input.

END ROTATE This returns the symbol
display to its unrotated
state.

END ADD This removes the extra el-
ements.

END DELETE This replaces the elements
that were removed.

END VIBRATE This causes the vibration
to stop.

END ALTER This command returns con-
trol from the dynamics mode.
This command must be input
prior to resuming normal
create mode operation.

98

-

~

-

~

- - - - - - -~~~~~~~~~~ -- --- - . - - ~~~~~~~~ - ---~~~—--- --~~~~--- — - -~- - -

p
~~~~~

- - - - -

~ 

— -

~~~

--—— —-—— _ _ _ _ _ _ _ _ _ _ _ _

EXAMPLES:

ALTER SYMBOL This sequence of commands will cause
ROTATE , 30 the display to be affected in the
ADD following way: first, the display
5 will be rotated 30 degrees counter-
END ROTATE clockwise; then 5 elements will be
END ALTER randomly lit; then the display (with

the 5 additional elements) will be
rotated back to its original state;
finally , the 5 elements will be re-
moved and the display will appear as
it did before the ALTER command.

Symbol Librar~y

This section describes the commands necessary to mani-

pulate the symbol library. These commands allow the user to

mod ’y the data structure as well as interrogate it as to its

contents.

STORE SYMBOL , indx , id This enters a copy of the
AS into the symbol library ,
with a unique index and a
descriptive identifier.

PURGE SYMBOL, indx This deletes the symbol
identified by the index
from the symbol library.

RELOAD SYMBOL, m dx This takes a copy of the
referenced symbol from
symbol library and places
it into the active symbol .

where
-

m dx is an integer representing an entry to the
symbol library index table.

Id is an alphanumeric character representing the
description of the entry in the symbol library.
This character will be the correct response
when the symbol is displayed during test exe-
cution.

99

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -



— 
-

~~~~~ 

-~~~~~~~~~ ~~~~~~ - ~~~~~~~~~~~~~~~

For those commands, the system will insure that the

index is valid prior to executing the command. For the STORE

SYMBOL command , the index will be checked to see that it has

not been used by a symbol already in the symbol library. If

- - the user attempts to enter the symbol with an index already

in use, the system will produce an error diagnostic arid re-

quire the user to enter the command again. For the PURGE

SYMBOL and the RELOAD SYMBOL commands, if the index is not

of a symbol in the library, an error diagnostic is output

and the command is ignored. The purpose of the reload is to

view a particular symbol in the library or to provide a start-

ing base for a new symbol to be created. When the RELOAD

SYMBOL command is given, the system clears the AS prior to

copying the reloaded symbol.

EXAMPLES: (assuming that the symbol library contains the fol-
lowing index-identifiers: 1-A , 2-B, 3-C, k-E)

STORE SYMBOL , k, A This causes the diagnos-
tic of “duplicate index-
es” to be output and the
command must be re-entered.

STORE SYMBOL, 5, A This enters the AS into the
library with an index, 5,
and an identifier, A. There
is no problem with symbols
sharing the same identifier.

RELOAD SYMBOL , 2 This sequence demonstrates
CREATE SYMBOL the use of the RELOAD corn-
DELETE 5, 7 mand to provide a starting
ADD 14 base for a new symbol.
6 , 8 First, symbol 2 is placed
END CREATE into the AS after it has
STORE SYMBOL , 6, E been cleared. Then after

entering the create mode ,
the AS is modified. Finally

100

A

the AS is entered into the
library as a new symbol
with an index , 6 , and an
identifier, E.

In order to manipulate the symbol library, it is ne-

cessary to keep track of what is in the library. The system

maintains an index table and an identifier table for this

purpose. The user can interrogate these tables with the

following command:

LIST SYMBOLS , opt This causes the desired
information to be output.

where

opt is the option desired. It can be either NUMBER

or ALL. If it is NUMBER , the system will output the number

of symbols currently stored in the library. If it is ALL,

the system will output a list of the indexes and the corre-

sponding identifiers of all the symbols currently in the

symbol library .

EXAMPLES: (assum e that the situation stands as it would be
immediately after the last example.)

Command Output

LIST SYMBOL, NUMBER 6
LIST SYMBOLS, ALL 1-A , 2-B, 3-C , 4-E,

5-A , 6-E

(note: the output shown here reflects the substance of
what is output by the system. The format of the
output depends on implementation.

Test

This section contains the commands necessary to create

a test. The user creates a data structure which will be

101

— - • -~-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- - - ~~ - - A

p - -—--—-—--- —.~~~~~~~ -. -~~~.. - --—- -.----- - —~~--- —--— - —-- --- —--~~~ - - --- - ---~-~~~~~ -.-,-- -, —--- - ‘-~~-- --~~~~~~~~----~- -~ —

called the active test. The system keeps track of the de-

• velopment of the active test.

b

CLEAR PARAMETERS This initializes the AT
in order to begin creating
a new set. The system will
place default values into
the AT. This should be the
first command before speci-
fying any items. However,
like symbol creation, the
user can begin specifying
a test item using a start-
ing base of a reloaded
test.

TIME PARAMETERS , intv . This specifies the time in-
tervals in the viewing se-
quence.

where

intv are integer values representing the time in-
tervals in milliseconds. The interval options
are:

MT1=int1 where int1 is the first
mask display time.

IVlDl int2 where irit2 is the time bet-
the first mask and the stim-
ulus.

ST int
3

where m t 3 is the stimulus
display time.

?
~~2

intk where intk is the time bet-
ween the stimulus and the
second mask.

MD2 int
5 where int

5
is the second

mask display time.

PD int6 where m t 6 is the prompting
delay. This is the maximum
time that the system should

• wait for the subject to

102

- —~~~~~ - - - - - —-- ~~
--- rn

~~~~
---

~ --~~ 
— - -

~~~~~


. . r a - t . Z_Z~
—

~~~~~~ ~•~~~~••‘~•‘ ••••~•~• • ~ •••••~~• ••~~~~~~

respond before displaying
a prompting message.

STIMLIST , indxs, ENDLIST This specifies the symbols
desired for the test.

where

indxs are valid indexes of symbols in the symbol
H library.

ENDLIST denotes that the last symbol index has been
entered.

DISPLAY OPTIONS, opt This allows the user to
specify execution time
display options.

where

opt are parameters denoting various display op-
tions. The options are:

ASI opt1 where opt1 is the index of

the symbol used as the ac-
knowledgement symbol in the
viewing sequence. (type in-
teger)

RMV opt2 where opt
2 
is the number of

consecutive times that a
symbol must be correctly
identified before it is re-
moved from the stimulus
list. (integer)

RDP upt
3 

where opt
3 
determines the

immediate redisplay of an
incorrectly identified sym-
bol. (YES or NO)

RIF opt4 where opt4 determines the
use of reinforcement feed-
back after each response.

• (YES or NO)

SLO opt
5 

where opt
5 
determines the

randomness of the stimulus
list order. (YES or NO) If
YES , the stimulus list will
be displayed in a random

-

~~~~~ 103

~

-~~~ -~~~~~

___________________________ __________ - — - -- - ~~~~~~~~~~~

order. If NO , the list
will be displayed in the
order specified in the
command STIMULUS LIST.

PNT=opt6 where opt6 determines if

the print option is used.
(YES or NO)

MASKS , mkopt This allows the user to
specify the type of mask
used during the viewing
sequence.

where

mkopt determines the mask factors. These factors
are:

TYP opt1 where opt1 is the mask
type. (STATIC or DYNAMIC)

PR1=opt2 where opt2 is one of the
following : if TYP STATIC ,
the number of masks to be
generated; if TYP DYNA1~iIC ,
the interval, in millise-
conds, between lighting el-
ements. (integer)

PR2 opt
3

where opt
3
is one of the

following: if TYP STATIC,
the maximum number of ele-
ments lit in each mask;
if TYP DYNAMIC , the dura-
tion, in milliseconds, of
the lit elements. (integer)

ROTATE SYMBOL , rdm , ang This specifies the rotation
of the symbols as they are
displayed during test exe-
cution.

DEGRADE , option, maxno The specifies the modifica-
tion of the symbol display
by the addition/deletion
of extraneous elements.

VIBRATE SYMBOL, freq , dist This specifies the vibra-
tion of each symbol as it
is displayed during test

104

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _



-_~~~~~~~~~~~~~~~ -~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ - • •-~~~~~~~~~~~~~ -.-~~~~

,
~~~~~~~~ - r ~~~~ ---- - -- -,~~~~~~~~~~~~~~~ - - -  -

execution.

DISPLACE SYMBOL , m g  This specifies the maximum
displacement of the sym-
bols from the center of the
viewing area during test
execution.

where
- - rdm is a randomness option. (YES or NO)

ang is one of the following: if rdm is YES; the
maximum angle of rotation in degrees; if rdm
is NO , the constant angle of rotation for each
symbol. (integer)

option denotes the addition/deletion of elements.
(ADD or DELETE )

maxno is the maximum number of elements that can
be affected. (integer)

freq is the frequency of the vibration in cycles
per second. (integer)

dist is the distance of the vibration in grid
units. (integer)

m g  is the maximum range that the symbol can be
displaced from the center of the viewing area
in grid units. (integer)

PRINT PARAMETERS , option This allows the user to 
-

determines the contents of
the AT.

where

option is the item desired : MASK , TIME , STIMLIST ,
DYNAMICS , OPTIONS , and ALL. More than one
item can be selected , i.e.,

PRINT PARAMETERS , MASK , OPT IONS

EXAMPLES :

CLEAR PARAMETERS This sets all the items in
the AT to their default
values.

TIME PARAMETERS, ST 3000, This sets the stimulus dis—
PD6000 play time to 3 seconds and

the prompting delay to 6
seconds. If this were the

105



p ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

only TIME command , the
other values would remain
at their default values.

TIME PARAMETERS , MT1 3000 , This sets the first mask
ST=4500 display time to 3 seconds

and changes the stimulus
display time to 4.5 Se-
conds.

STIMLIST , 1 This sequence will create
~~ 

., a stimulus list of seven

~~~
‘

~~~

‘ ~ symbols, with symbol 1
ENDLIST appearing twice.

DISPLAY OPTIONS This sequence sets the ac-
AS1 9 knowledgement symbol to
SLO=YE S symbol 9; the stimulus
RIIV=3, RDP=YES list order will be random;

a symbol will be removed
from the list if it is cor-
rectly identified 3 conse-
cutive times; and if a
symbol is misidentified ,
it will be redisplayed im-
mediately.

MASKS , TYP=STATIC This sequence will generate
PR1 14 14 static masks.

ROTATE SYMBOL , NO , 45 This specifies that each
symbol will be displayed
rotated at the same angle,
45 degrees counter-clock-
wise.

PRINT PARAMETERS , ALL This will cause a display
of all the items in the
active test . Default values
will be flagged.

PRINT PARAMETERS , TIME , This will cause a display
DYNAMICS of the time parameters and

the dynamics parameters
currently in the AT. De-
fault values will be
flagged.

106



p —-‘ fl-—---— - --- - ---,- - -- - —-—- --—•- — ---—-- —

~~~~~~~~ 

- - -- - -- - - —-- — —-—-- - - -- - •-- -.---•

Test Library

This section describes the commands necessary to mani-

pulate the test library. These commands allow the user to

modify this data structure as well as examine its contents.

STORE PARAMETERS , indx This enters a copy of the
AT into the test library
with a unique index.

PURGE PARAI IETERS , indx This deletes the test refer-
enced from the test libra-
ry.

RELOAD PARAMETERS, indx This copies the refer-
enced test from the li-
brary into the AT.

where

iridx is an integer representing an entry in the
test library.

For these commands, the system will insure that the

index is valid prior to executing the command. For the STORE

PARAMETERS command, the index will be checked to see that it

has not been used by a test in the library already. If the

user attempts to enter the test with an index already in use,

the system will produce an error diagnostic and require the

user to enter the command again. For the PURGE PARAMETERS

and RELOAD PARAMETERS commands, if the index is not in use,

an error diagnostic is outputted and the command is ignored.

The purpose of the reload is to view a particular test in

the library or to provide a starting base for a new test

to be created. When the RELOAD PARAMETERS command is given,

the system clears the AT prior to copying the reloaded test.

107

~~~~~~~~~~~~~~~~~~~~ -



In order to manipulate the test library, it is neces-

sary to keep track of what is in the library. The system

maintains an index table for this purpose. The user can

examine this table with the following command :

LIST PA RAMETERS , opt This causes the desire d
information to be output .

where

opt is the option desired. It can be either
NUMBER or ALL. If it is NUMBER , the system

- will output the number of tests currently
stored in the library. If it is ALL , the
system will output a list of the indexes of
all the tests currently in the test library.

Bulk Loading and Storing

This section contains the commands necessary for the

use of secondary storage devices in creating the symbol and

test libraries. This provides the user with the capability .

of creating the libraries and storing them on a secondary

storage device. Then the libraries could be read from the

device at a later time.

BULK STORE , typ , fileno This stores a library in
a file on a secondary
storage device.

BULK LOAD , typ , fileno This loads a library from
a file on a secondary stor-
age device.

where

typ is the type of library being transferred.
(SYMBOL or TEST)

108

~~~~~~~~~~~~~ -- -- -
~~- -~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—- -- -— —~~~ •

.
~~ - --—~~~~~~~~~ —-- - -~~ - - — - - - — ~~ -~~~ -——~~~ -~~~~ - — - - - -


~~~~~~ -——--- ‘------ -—~~ -—----- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - “-—----

~-~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~~~~

—---- -.-
~
—. -——

~~
—-,—•. - —

fileno is the file number on the storage device.

EXAMPLES :

BULK LOAD , SYMBOL, FILE5 This sequence loads the
BULK LOAD , PARAMETER , FILE6 two libraries. Then a
LIST PARAMETERS , ALL check is made to deter-

mine which sets are in
- the test library.

Execution Mode

This section describes the commands required to exe-

cute the perception test. There are few commands in this

section because this mode is primarily concerned with the

execution of tests. The commands for this mode follow.

STOP TEST This terminates the test
just given. The command
is input prior to the
viewing of the f i r s t mask
of a viewing sequence
(that is, during the ac-
knowledgement symbol). The
system then outputs a re-
quest for ID information
in preparation for another
test.

END EXECUTION MODE This returns the system to
the system mode.

Analysis Mode

This section describes the commands required to analyze

• test results. The following is a summary of the commands

used during the analysis mode.

109

— r~~~. ~~~~~~~ - - 4

~

LOAD DATA, fileno This allows the user to
specify the results to be
analyzed.

CONFUSION , opt This allows the user to
specify the type(s) of con-
fusion matrix to be gene-
rated. Opt can be RESPONSE,
REACTION TIME , or PERCEN-
TAGE which will cause the
corresponding confusion ma-
trix to be generated.

PRINT , opt This allows the user to
specify which confusion
will be output. Opt has• the same values as in the
CONFUSION command .

COLLAPSE , op This allows the user to
specify a predictor matrix
and perform a collapsing
routine based on a given
rank number or a given ab-
solute distance range , de-
pending on the value of
•1
~~p

Il

ENTER , matvaj. This is used to enter the
matrix values of the pre-
dictor matrix.

END ANALYSIS This returns control to the
system mode.

where

fileno is the file number of the results to be aria-
lyzed.

opt is the option for the type of confusion ma-
trix which the user desires to be generated
or printed .

op specifies the desired collapsing routine. The
values of op are the following:

RANK , num where num specifies the
rank number on which to
collapse the conAision ma-
trix.

ABSDI S , m g where mg specifies the

110

1 I

- — -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- --—

~~~~~~~~~~~~~~~
- - - -—

j

absolute distance range
on which to collapse the

• confusion matrix.

inatval are the matrix values of’ the predictor ma-
trix.

-i

111

______________________________ - -~~~~ ~~~~~~~~~~~~~~ — - — —-- -

Appendix C

STRUCTURE CHARTS

This appendix contains a list of all of the structure

charts developed in the preliminary design.

I

112

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 



___________________________________________
-— -~~ - - -—-~-•~ —•--- -- -.‘

~
—,——‘• - 

~~~~ ~~~~~~~ 
_

~
_ __— —w—-—

_ ____ _
~~~~~~~~ 

- -  -.-—-——

- 1 

- 

-

1L!~LJ _ _ _ _ _

-1 Interface

IN OUT

I valid co1iua~u~d

- ~~
- 2 valid co~ mar&d 

- 

vafld parun~eter s

1 3 vnlj d co’rn and , vai id pa rameters upd ated data ~tructur e& . ~~~~~
• 

4 upd atcd data structures

Figure 6. Set—up System (First — Level Factoring)

- 

-~ 113

- - -~~~~~~~ - - - ~~~~~~~~~~~~ —~~~~~~~~~~~ -- -- ~~~~~~~~- • - - - ---— - - - -- -
~~~~~~~~~~~ --

--—
~~~~~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~
-——

~~~~
——• -

~~~~~~ 


- -

~~~~~~

-

~~~~~~~~

-

~~~~~~~~~~~~~~

-

~~~~~ 

- • - -•- ~-~~~~ - ~~r~~~~’- - - - — • -- - -

— I

,a1;d~~~~1Set-tIp
-

-

F
V

6

$
Get I alldrIt. 1
~oeiman~d

• L~~t°
1 8 / \ 9

-

~~~ 

- ___

- 
_ /

F • I ‘ Cá ,ivc,’rt - -
Console To

- 
I: I/o I Internal

L~~’• . ~

- 
- 

. In terface

III OUT

5 _ co.u’~and

6 command valid commaud , okV3ia ~
- 7 error ma~7F.age -- - - -

8 rcquo ;t I~o~ cuee input li_no

9 inpu t I i:i.- command

Figure 7. Get Valid Set-up Command

-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -~ - - - - - - - —  —-—-- - 

I

I Valjd I
(Set-up

~~ 
ters

~~~~~~ ii 12 13\

\

_ _ _ _

\

[Get 1 St
Get I Get •

Get Rotate I • Bulk
1 Time I List Mask Symbol • Store
LP*r~~

td1
~ [~~~

metcrs Parameters
- Parsaet.rs

Interface
- IN OUT

- 10 — ~i --—- val id parameters

Figure 8. Get Valid Set-up Parameters (Transaction Center)

~~cecut e
Set-up
Command

•

__

_

_ _

-
Execute [~~~~ute [E~ii~ute

Paran.ter:j
~~~~~~~~~~~~~~~ L!~~~~~ 

[ç nand 1 !ecamand

Inte rface

DI OUT

32 - 53 valid parameters updated structures

Figure 12. Execute Set-up Command (Transaction Center)

115

-—-

~

- -  -•- _ - -~~~~~~~~~ ~~—--~~~~- --- - _ • - ~~~~- - - -—



‘ - I

/ 1 ;

E~~~~~~~~~ L~~ 
I

• l e l 
_ _  

•1•’— \ _____  / I ,.. 41 I S•’• _ ____\ F *  ~‘ 
S 0C \\ I ~~( ~

-
~~I-1 ~~~~~~~~~~~~~~ ~,o

I ~ 
L___J “I ~~ 

c:t

~~~
i
~~~~Zii~~

-- - —

~

-:—-— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-_ - - -- -- ~



_____________ ~~~~~“~~
“ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

Interface
—4’

IN OUT
A parameter number valid parameter
B valid parameter valid parameters
C parameter number parameter

D error message

E parameter number , para- valid parameter, okflag
meter

F request message S

input line

G input line parameter
--H parameter okfla~
I parameter okflag

J parameter
-

okflag

K parameter okflag

L parameter okflag

N parameter , parameter okflag
number

117

- ~~~~~~~
- -

~~~~~~~~~~~~~~
- -

~~~~~~~~ - - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~
--

~~~~~~~~
•
~~~~~~
-

~~~~~
-•

~

~~~~~~~~~~~~~~ ~
-

~
----- -

~~~~~~~ te~~~~~~~~~ Eji:~ t1

_/ R\ _ _
~~~~~soj 

u;~i Li~
i:!er 1 i~icr I!J i~

]
Interface

IN CUT
I! parameter reque st parameter
0 parameter valid parameter , okfl. u~
P error neasago

Q request message input line -
N inl,u t line parameter
S - \I para meter okflaR

Figure 10. Get Typ e II Parameter (General Form)

118 

- — - - - - — - - - - -~~~~~~~~~ --~~~-— - -- - - -—.- -~~~~ _ -  — -~~-- - - - -~



_______________________________ _______ —- --
.

- -

~ 

.IT~

I Execute
I Item

[
Command

Store • O  IItem Console
In Active Output
Test 

_ _ _ _ _ _ _ _ _ _ _ _

Interface
IN OUT

AAA valid item updated structure
BBB user message

11 Figure 13. Execute Item Command (General Form )

LA ct ~v e J

/
,,

j a
~v r ~~~

J 

‘~~ 6O

~~iore -
~Stat ic . Static I

i.:t~k .In
L~~. _ _ _  

_ _

Tnterface

IN OUT
56 it *m upd? tcd r~~ive test

~~ i tci~ c :cti ~ t~ -u ___________

~u usnr i.~~~.. - - ————
‘~9 •:ta~j~ r - - ‘ f.;~~’ l- ~ :~ st c. t tc ~~~~~~~

a Li i  ‘ e  ~~~ (i C’ I iCf) i .

Figure iLl.. Execute I~iask Command

119

- -



-~ - -~~-—~~ -~~~- -—-•-~ ~~~~~~~~~~~~~~~~~~~~~~~ -

-
- - Execute

Print
Parameters
Command

Get- - Item From - Console
I Active Output
L~est _____________

Interface
IN OUT

61i. item request item
611. item message

Figure 16. Execute Print Parameters Command

Execute
- Clear

Parameters

[
~~~;aui~~~

j
~~~~~~~~ 01 

[

~ onsoie 

—]

Interface
IN OUT

61 item request default value item
62 default value item updated active test
63 item message --——

Figure 15. ~xecute Clear Parameters Command

120

-n.~ n - - tfl.~ - ~~~~~~~~ -- ~~~~~~~~~~~~ - _ - _ _ ; _
~~~~

_ —. _ ~~~~~ _ S.-- fl— --— .-- .- --- — - - - — - - -

~ - --~ ---~ -—-- - _ _ ,

~~~~ 
I— .- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

Execute
Store
Element

1
Store 0

Element Console
In Output

Interface
IN OUT

V index, element updated library
W user message

-

Figure 17. Execute Store Element (General Form)

I

4 z~.xecute I

Purge
Command

Delete o IElement Console
From -Output

~Library _ _ _ _ _ _ _ _ _ _ _ _

- Interface
-

IN OUT
X index updated library
Y user message ----

Figure 13. Execute Purge C ommand (General Form)
-

121

I!

r

- -
~~

--- - ---- - -
~
---— -----

~
-- - - - -

I Reload I

Z AA BB -

N- - et Store Q I
-

~~‘lement Element In I Console
roin Active I I Output
ibrary [~~~ ieture 1 L~

Interface

- OUT

Z index element

AA element updated structure

-. BB user message

Figure 19. Execute Reload Command (General Form)

[Execute

I List 01 II Indexes I Inde xes j Console
I in I 1(1 Output
[Librar~:__J ~~~~~ I L

Interface
- IN OUT
66 -—-- number of indexes

67 ---- index information

68 index message

-
Figure 20. Execute List Command (General Form)

122

- - - - - -- - 114

- - ~~~
-. - .

H va.. .~

74

i ~~~~~ ::e~ r ~
— , ~~~~~~~~~~~

-I Cu~p~i: - ~~~~~~~~~

I
I

i~~~~~~~~~~~~~ : i

i

79
\

/

Console C~~~ oLeI/C : e~~a~.
_ _ _ _ I

_ _ _ _

Interface

IN OUT -

69 ---- valid input

70 valid input ----
71 ---- . input

72 input valid input
73 error message

711. — 76 valid input updated structure
77 request message input line

78 input line input
79 - 80 display direc- ----

tions

Figure 21. Execute Create Comm~arid

123

~ —_ — ---~~- - -—_ —- --—------ —- _~~11;~~~~~~~~~~ 1*____ - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ — -

4~ts? I
-
~~~~ ___________

~~~~~~~~~~~~~~~ t $2J ~~~~~~~~~~~~~~~~~~~~~3~~~~~~~~~~~~~

_
Ga. I Cst -I A .;sr I ~ .t.r ~.i~er

L Psmst.rsI ~~

8~ 65 1 86 ~~~~~~~~~~~~~~~~~~~~ ea

Va~~ I~a . Cors:1 1 1 ori~:—~;i ~~~ .J~i

I

Interface

IN OUT
81. ---- valid command

82 ---- parameters

83 valid command , para- donefla~meters

8k ---- command

85 command valid command

86 error message ---- -

87 item
88 item request

89 display directions ----
90 command request inpu t line

91 inpu t line command

Figure 22. Execute Alter Command - — —
_ _ _ _ _ _ _ _~~~~

_-;.;__~~~~~~
•

~~~~ __ 
— ------ —-- - 

-- -- —---_-- —- -—



__________—-

1~~~~~eI Bulk I
Operation

CC PD

Execu te -

1SL I T tOperation 
L~~

r*t j0fl

----i-
-

~/ ~~~/~~~~~~~~~~~~~~~~~~~~~~

[
~~o~~ cet0j 

[~ - I [~~ /cet01

Interface -

IN (JUT

CC file nuu’,ber upda ted Si.
DO file nuu bt~r uj4n ts d ~ ‘1.

EN eluu.n t element
PT file i,um bcr . o)cs~entelsm.i. t
GG lile - •- i -  . leavnt

NM •lem.. t Plem5IIt

Fi€ure 23. xecute Bulk Operation (General Form)

I

125 

~~~~~~~~~- - -  ~~~~-- - - -~~~~ ~~~~~~~~~~~~~~---- -

Execution

~ii Executive

92 94
93

Get J Test Store
Valid I I Execution Test
Test LExecut

~
e I Results

-

Interface

IN OUT

92 --—- valid test, results file
. 1 number

93 valid test test results

94 test results,
results file
number

I

Figure 26. Execution System (First - Level Factoring)

126

~~-~~~~
- - - - ----- - -

I ..
.s ,..

•
~~~~~

- (JU

, -‘ 6 1
-

- 
~~

/ . M  NC-- ----i/’l ‘L ~~~~~~j

1
L 

~~~~~~~~ 

~~
/ ‘ :~

-— —.
~ - .. -.q.. C 3 t . , 4~~.lg~, ~~~~

_

J~~~~~~
. / i __

-. .. U -/
;- /

/ -
I. -

~~~ 
L.~~... / . 2 — 4,

- -

i I__ / ~~~~~~~~~~~~ 
- —

0~ / r - --- : - E-l

_ _ _  
/ ~~~~~~~~ 

- 
/
, 

~.i-2 
-

— 
.3
_—_, 

~ 

- _ .  _ I• 
~~zI

4 , 

— - - 
- 

- 
,

- - -

~~~~

‘ r~ H — 1
~~~~~~~~~~~~

L1
- - - -- - -

-‘H
4
~~-—~~ 

- 
- 

- •

/ ~U~~• 4 - ~~-l - -  - 

.1-I

\ r ,/ •~~.. I
‘I ~411 O

• •t • 11 .. i:~ -- - I
II I) . )  •. O , ~~. _, - 

~~ c-j Ie Q  -. - .4 0 I, 44 .4 — -
- ui-. - - ~~~~~~~ - - - 4

~~~~~~~~ 0~~~~~~ 

I

• ~
/ ~ -

-
S

~~~~~~~~~~~ ~~. — - - -;~~~ 
I

-
- ~;~ ;~~~- •-, -

~~~~ 
- -

, I‘ a -
- _ t -•

_ • - .4:—
- ~. ~

• I4 ’ r • - - C a . , -I —
— •

— I —• —

a
•

- • ‘ • I

127
-

~~~~~~~~ 11~~~~~~~~~ _. _ _ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - 

I 

- —  

~~

_ _ _

~ 

- -



— ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- j-
~~~~~~~~~~ --~~~

~~ ---~~~~~~~~~~~~~--— ~~—-~~~~~~--- ~-—~~~~~~~~- - -,

Interface
IN OUT

95 -—-- test , endf].ag

~- 1
96 ---- valid results file number
97 test valid test, okfla~
98 error message

99 ---- valid command, endflag

100 index test
101 ---- valid index , okflag
102 error message ---- -
103 file number valid file number
104 ---- file number
105 test - indexes

106 indexes okflag
107 error message ----
108 ---— command
109 command ~~

-‘ valid command , okflag
110 error message

/

111 ---- index
112 index valid index, okflag

113 error message

114 file number request input line - -

115 input line file number

116 command request input line

117 input line command

118 index okflag

119 index okflag

Figure 27 continued

128

_____ —
~~~ - -~~~-~ ~~~~~~~~~~~~~~ - ~~~ -—- -- -- - -~~-- ~~~~-~~ --~~---— -----~~-

Execution
Executive

120 123
121 122

- Get Get Control Stor- Times Viewing Display Se u:ncePara meter Sequence Sequence Re ults

Interfac e

H -

- - ~- 120 t•it 
- 

time param eters
— 

- 121 test viewing sequence
- 122 time parameter s, viewing se— sequence result., sto~ fla~quen c. -

123 sequenc. results - sequence results file

Figure 28. Test Execution (First - Level Factoring)

129 -

IL _
__ :



p 
r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- e

- 

- 
-~~~ 

-, 

~~~~~~~~~~~ Io~ i /i
~~~~t

... 

~~~~~~ 
—

- . •
~~~~

•

~~~~~~~ 1
L.

- ~~~
- - •.:~

-
~ .~

- ..:;~~~
I

- - - I I
~~~~~~~ -pI. UQ$;~ • ,Q4 : _ C , . , ‘S• • _4

.
• ,

_
~

• .14 
i •: — , .

- -- ~~ - - — - —- - I - UO..IC’
~~~~~~~ 0 - I I, -

C —— - - - • -~ no I - •d o : — - :_Q o~~~I‘0 •‘

~ .I I ~~/ -. c! I
‘
I,..I. e - - - •

U ‘.I
~~

U~~~_
I.

-

I
: ,,/ :o~~;

QI~~..I ••~ eu;,- ’e.

:‘ ~—-—
~ :~~~~~!g -

0•~~~~~~ •-

--
•

~~~~~
-- •-- - — 

~~~~~~~~~~ ~~~~~~~ 
r---- --~i~~ -

I
,

-- -- -.

~~~~~~ 0 •. 
~~ / 

0L1 1

• - • - - lU .. - -- - - - 0 •  /~~ -

F” — n~~~~ /
~~r ~~~

_ 
~~~~~~ ~~~~ Ii .~:

—-
~~

II - .)

1/ I C,
\ ~~~~~~~~~~~~~~ / ,~

- -
- -

•

~~~~~~~• .4., ~~~~~~~ SA •- - - - 

~~~~~~~ -~~~~ ~~U~~~~q.N 1~’€i 4 - - - - £). II
• ~~

- -
-
a
,

,~
-

•
.:i ~~~~
’ ~~~~ I~~~~~~~~~~ ’ - -0 S. .I4

0
~~~0 4.4 .

~~~.~ 
• . I-iI - • -

- -

• °~~~:C
- - - L.-’~ — - - - -

- ‘
~~~c~~~- - 

~.
_

~~ - -4 ‘0 - II.) c4-p — 
- • ;~ ~~~~~~S. - S— - 

-
0 -

- - ~~~~~. -
-— — 

~~~ 

I

~~~~
‘~I \

\ ~ C ’ ’ 444 J I ‘ I~~ QI _-‘

I-)-. . -- h  -
I—- .

~~ 
:~~~~~~~

- 
• .-, -

~‘ 
•C~i :1I

d l
•‘ - °~~. - -

-~ 0 I•  4’ - 4 : 4 l  - ~ .~ .4 - - -

S
. 11144 1..

• ‘S f l
I~I-p -

/ 1  
~1~0 

~~~~ — - -~~~~~~~-- —~~~~~ _ - - -~~~~——— - -~~~~~~~~--— -~~~-- - -~~~~- -~~~~~~ -~~- --
~~ - -

— r~~~ ~~~ a ~- - TLT ’ ___

Interface
-

. IN OUT

124 —- —— acknowled gement symbol
- - 1 125 --—- test symbol

126 ---- mask display item s
127 ---- index
128 index aãknowledgement symbol
129 ---- symbol
130 static dynamics symbol test symbol
131 - static dynamics
132 ---- mask item
133 -——— etat ic mask set
134 ---- - - -

remove signal
135 - remove signal , redisplay sig-. symbol

nal, stimulus library
136 ---- redisplay signal
137

- stimulus library
138 ---- random dynamics
139 ---- - normal dynamics
lkO random dynamics, normal dy- static dynamics

nain ics
141 - static mask
142 static mask static n~~sk set
143 s—-- remove option
144 ---- remove data
145 remove option , remove dat a remove signal
146 ---- redisplay option
147 ---- redisplay data
148 redisplay option , redisplay redisplay signal

data
149 test list stimulus library
150 ~~~~~

__ test list —
151 index symbol
152 ——— — random list option

• 153 ———- • ordered list
151, random list option , ordered test list

h a t

Figure 29 continued

-

131

- ___________

~~— - - - ~~~ --- —------~~~--- --

44 —

4 4 ’ .

/ A~~~ lI I ’ l . ’ ~~! a l
II .-~~~ .4J I ’ ” ~~~I

41 444

Il ~ ;: L ‘~j -~ ~ I lull. I’ .
I 4 1 4 4 4 (4 i
I U-,

• n I
“a: • 0

0

/

I ~~~~~

-

I /
~~~~~ 

- C/)

1)

4;1

0 0 0
____ I U .Ul

— 4. ,,

I • .5-I

I 1~~~3 ,x ~

I ~~~~~~ o_______ 4.
I— IS
‘0.4 0

144 •I-. o
_ _  

-.

~~

- 

?. 

_ _

132 
-

- ‘S.

~ 

~~~~~~ ~~—-— ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~ — - — ~~~~ -~~~~~~


-CI-- - _ ‘ -~~~~~~~~~~~~~~ _____ ~~~~~~ ‘

— Interface

IN OUT

155 viewing sequence, time
parameters

156 ——-- sequence results , sto’pflag ’
157 test symbol , stim-

ulus time -

158 mask item, mask times ----
159 acknowledgement symbol ---- -

160 ---- valid response,
stopflag

161 valid response sequence results
162 symbol display symbol
163 display symbol ----
164 static mask set -—--
165 mask item
166 acknowledgement symbol

display
167 ---- resp onse
168 response valid respnse,

okflag, stopflag
169 error message

170 valid response sequence results

171 sequence results

172 remove data
173 redisplay data ----

I 174 vibrate option
175 stimulus display
176 static mask display ---- -

177 dynamic mask display ----
178 prompting message input line

179 inpu t line response
‘ 180 ---- feedback option
181 feedback message ———-

Figure 30 continued

_ _ _ _ _

pr ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
--

~~~~~~~
-
~~ --~-~~

44

Sequence
Results

182 183

Format Create
Sequence Test

‘— I Results Results

Interface
IN - OUT

182 sequence formatted results
- r esults

183 formatted test results
results

l

Figure 31. Store Sequence Results

U

- 
- 134 

—_ - — - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ _ ~~-~~~~~~~ -- -----



Pr -. —-—--‘----—-~----- 
______ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~ L~~~~~~~~ -~~-~- --r---S-

s Store Test
Results I

01 186
185

lear 0 - 
- ~~~ ate

- 
- Response Format ~T~st - -

ata Results ~File
- 
_____________ ~ esults

Interface 
-

IN OUT

1811 ---- doneflag
185 test results formatted test

results
186 formatted test

results, results
file number

Figure 32. Store Test Results

-a

S.

135

A



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ii

H 

[!~~~~
i

~
!s 

_ _ _ _ _ _ _ _

- 

I _ _

Val idate Conaole
I An*y~it j - 

- /t n~ lyriz I Output
~~~~~I.1an4 J ~Cof&0~rt(l J L_____ -

[Console To
I/O J lnt.rnal

P~rm

Interface

IN OUT

187 ---- valid command
• 188 valid command collapsed data

189 collapsed data
190 ---- command

191 command valid command , okflag

192 error message
193 request message input line

194 input line command

Figure 314. ~tnalysis Executive (First
- Level and Afferent

Branch Fac toring)

136

-- - -~

_
~1~

-
~~~~~~~~~~~~~~~~~~~~~~ 

I~~~ - - - -------•-- -— - — —~-— -- ---— I — -

rl 
-

• 
_ _ _

.
~~~~~~~~~~

a S.l~~~4~~~~N

if f i 2Tii’.T1~II~~~_ _ _ _

g
•-4 0 •r4 .rI

5-i S-i 0
+~~~+‘ 0 ’ ~~• f la~uu S E

‘0 ~~~ 1-l~~+‘ 0 0 0
- S

‘~~~ a m
I-i

I I P ’ ~~~-~~~S-i 1 0
i i m o -i- i 1.-i
I I 0 5-i I
I I +~ E l 0

~~~~O C ’-~~~ ~~~O a-4
~~~~~~~~~~~~~ ~~~o o  ~ -

1-I a-I i—I a-4 a-I C~,Z C\1 ~~

hi

~

-~~~~~~~--~~~~

__ 131______
- -

- - - - -_- - - -~~~~--- — I - — - - - - -

FZx.âut .
I Load
I Data
Lc~~ and

_ _
I C.t 1 I
Valid I Got

i_ pa,.. J L
Test

IIuab.r Data

_ _ _ _ _ _ _

2O~~~~~~~~~~~~~~~~~~~~~~~

Oct ~ Valida t 1 (i~~vert

ruabor] [~~~~~~ er
I

j C

L
?O

___]

2
~~~~
\\~~

I— I FConveI ’
Console I T0
i/o I Intermal

J Form - -

Interface

IN OUT

202 ---- valid file number
203 valid file number test data
204 —--- file number
205 file number valid file number,

okf lag
206 error message ----
207 file number input data
208 input data test data
209 request message input line

210 input line file number

‘1
Figure 36. Execute Load ~ata ComEland

138 

—~~~~~~~ - — - — - -~~~~~~~~ 
A



—

r~~~~~~ iI Ilext I I T4ak e
Row [ Matrix

21~ z11~
’\
\

r~k. — 

1
- Elcniciit OW

215 21 21?

p 
_ _ _ _  _ _ _ _

1 1 nver~~~1I ~on~~1e I To
I i/o I interna l - -

1!orm

Interface

IN OUT

211 - row
212 row predictor matrix
213 ---- valid element

214 valid element row
215 —— -- element
216 element valid element, okflag -

217 error message ----
218 request message input line

• 
219 input line element

- Figure 37. execute ~nter C ommand

139 

—-- - - ~~ -~~~ -.-—~~~~ --~~--- - - -—- — -‘• -- -~~~~--- -



- 
_
~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - -
~ --- - - - -~~~~~~~~~

-

-~~~ ~~~~~~~ -- - - - --- —

44

kzec Lt.
IContu3ion
~Comsand

- . Valid - GetI Matrix 1Confusion Confuaion

IGst ~Validate 1 I Process Generate

[
~~~fusion 

~~~~ I ~~~ 
?sst {COflZUSiOfl

F Convert
I Console I T o
I I/O Internal -

I t !orm

Interface

IN OUT
220 ---- valid option
221 valid option, test confusion matrix

data
222 —--- option
223 option valid option , okflag
224 error message ----
225 test data, valid confusion data

option
226 confusion data confusion matrix
227 request message input line

-

228 input line option

Figure 38. ~xecute Confusion Cor~mand

140

- - ~~~~~~~~~~~~- - -
~~~~~~~~~~~

-- — - - _ ~~~~~~~~~~~
- - - -—- - -

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


p

-
.

4

Execute
Collap se
Command

229
-

230

Get -Valid Perform
Collapse Collapse

- - Option Punc tion

231 232 23

Cit Valida te
Collapse Collapse Co nsole
Option - Option Output

2 235

Convert
Consol e To
I/o Internal

Form

Interface

IN OUT

229 ---- valid option

230 valid option , predic- collapsed data
tor matrix, confu-
sion matrix

231 —--- option
232 option valid option, okflag

233 error message ----
2314. request message input line
235 input line option

Figure 39. ~xecute Collapse Cor~inand

_ _ _

-~~~~~ - C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t Execute
I Print
I. Command

Get - I
Val id I Print
Print I Matrix
Option _j 

___________

_ _ _  

241/ 

_I ~~t~on ~I ~~~~~~~~~~~~ ] ~~~~ 1 [-~c: I I ~ I
243\

’

~~~~~
\

N
[Convert.. IT o

‘Jo • I Internal
— (Porn

Interface

IN OUT

-

- 236 ---- valid option

237 valid option , matrix
238 ---- option

239 option valid option, okflag

240 error message
2/fl matrix formatted matrix
242 formatted matrix

243 request message input line
244 input line option

Figure 40. ~xecute Print Coimnand

-

!~
r ~~

- ‘
~
—

~~
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- — - - - -
~~

- —

~~~ 

-

I Analysis I
44 Results

2115 247• 246

• Store F Format 1 Output
Collapsed I For To
Data L0utPut User

Interface

IN OUT
- 

245 collapsed data collapsed data file
2146 collapsed data formatted data
247 formatted data

Figure 41. Output Analysis Results

143

- —_S____ - -~~~~~~~~~~~~~~ -~~~ -- - - -- - --~~- -— -— -- -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



____________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

4

VITA
I

Stefan G. ~enska was born on 23 October 1948 in Hono-

].ulu, Hawaii. He graduated from the United States Air Force

Academy in June 1970. He went to pilot training at Columbus

AFB, Mississippi. After receiving his wings, he fl ew the

C-13O aircraft at Pope AFB, North Carolina until June 1976.

- 
During this tour, he had several two-month TDY’s to Taiwan,

- Thailand , Germany , and England . In June 1976 , he entered

the Air Force Institute of Technology .

-~ Permanent Address: 45-115E Waikalua Rd.
- 

- Kaneohe , Hawaii 96744

C

- I

~~ ~~~~~~
—-

~~~
- --

~~
--

~~~~~~~~~~~ 
-~~~~_~~

___ _ i~ ----~~
- 

----~~~ ----— — - - -~~~~ --- --_ - - -~~- • - - - - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—--•

~~~~~~
-
~

-
~~~

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wli.n Data Enf.r.d)

DE
~’~~~

I I i i ~~~~i~~~A 1 I (4 4kl ~~~~~~
- READ INSTRUCTiON S,~ r~j r~ U ~~~~~~um~~ra I ~~ I l~~ I~ U BEFORE COMPLETING FORM

I, REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENrS CATA L OG NUMBER

GCS/EE/77—1 1 _____________________________
I

- 4. T ITLE (mid Subufi.) S TYPE OF REPORT C PERIOD COVERED

Preliminary Design For Multimode Matrix M~ Thesis
Perception Experiment Software

~~. PERFORMING ORG. REPORT N U M B E R

7. AUTI4OR(.) S. CONTRACT OR GRANT NUMBER(a)

Stefan G. Wenaka
Captain USAF

9. PERFORMING ORGANIZAT ION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT , TASK
AREA C WORK UNIT NUMBERS

Air Force Institute of Technology)
(AFrr/EN)
Wright—Patterson AFB, Ohio 45433 ___________________________

II~ CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Flight Dynamics Laboratory December 1977
(AFFDL/FGR) 13. NUMB EROF PAGES

Wright—Patterson AFB, Ohio L5L33
15.4

14. MONITORING AGENCY NAME & A DDRESS(iI diIMr.nf from ConiroIlin4 OlilcI) IS. SECURITY CLASS. (of thia raport)

Unclassified
ISa. OECLASSI FICAT ION/D OWNGRA DING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of fbi. Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of Ui. abatra ct .nt.r.d In Block 20, ii dIff.rent from R.port)

IS. SUPPLEMENTARY NOTES
Approved oç~~144~c release; lAW AFR 190—17

JE~~A~J F. GUES , Captain , USAF
Dire~tor of Information

19. KEY WORDS (Con fi nu. on r.ve,a. aid. if n.c.a.ar~ mid id.ntify by block numb.r)

Software Design
Software Maintainability
Structured Design

20. ABSTRACT (Continu. an r•vara• aid. II n.c*aaar,’ mid Id•ntify by block numb•r)

The Multi—Mode Matrix Display Program is testing the acceptability of
using light—emitting diode displays in USAF aircraft. The preliminary design
for the software was done by following a method which enhances software main—

• tain.ability. The method uses abstract data types, data flow diagrams, and
structured design techniques to produce a complete design for the system. The
software design is presented using structure charts together with functional
descriptions of all modules and definitions of the interfaces between modules.

DD ~~~~~~~ 1473 EDITION OF I NOV CS IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (ITh.n beta Ent.,~~~

-—
— A

