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H. V. Poor 3. 8. Thomas B~~~,pDepartment of Electrical Engineering Department of Electrical Engineering
and the Coordinated Science Laboratory and Computer Science
University of Illinois Princeton University
Urbana, Illinois 61801 Princeton, New Jersey 08540

Abstract parison of detector performance for large sample

~ui.iuus4 sizes. In Section 4, four-level quantization La
The problem of opcimtm~ data quantizat ion for considered in detail for two part icular rn—de—

nemoryless signal-detection systems operating in pendant noise processee , and the performance
rn—dependent noise environments is considered. of resulting quantizer designs is compared to
The case where quantizer breakpoints are fixed that of previouc designs for the corresponding
or predetermined is considered first, and , for case where independence was assumed.
this case , existing results for general (un-
quantized ) memoryless detection are modified Co 2. Preliminaries
yield necessary and sufficient conditions for 2.1. ~~~~~~ Statement and Asslaptionsquantizer optimization in terms of asymptotic
efficiency. Necessary conditions are also estab- 

~ noted above , we consider the detectionlished for the optiimon (asymptotically efficient) of a known constant signaL in additive rn-depend.selection of quantizer breakpoints, and expres- ant noise. specifically, we aseuma that we havesions are presented for the comparison of a sequence x — (xj ; 1—1 ... ,a) of real obssrva-quantizer-detector performance on the basis of tions of a process X — tXj; i—I n~ ; and, onasymptotic relative efficiency. ~~~~~~~~~~~~~~ 

-~ the basis of ii , we wish to decide between the
following pair of hypotheses concerning X:1. Introduction

14
~
: X1 — N1 ; i. l,...,n

Signal detection systems frequently involve versus (I)
tnemoryless nonlinear operations on input data, 1i1: ~C1 • N1 +~~ ; i — I  and there are a nuaber of practical advantages
to replacing these detection noauinearities where (N is a zero-mean sicoud-order—sta-
with quantizers. Several authors have considered tionary ~-~ebendenc noise process and P is athe problem of optimally designing quantizers kn~~~ positive constant signal. By rn-dependent,for this purpose , and design criteria have been we mean that there is an integer at such that th~da’,eloped for quantizers to be used in a variety sequences (N , i—I ~) and LN ~ ; ~~~ of signal end noise situations (1- 3]. Nany of are independknt whenever ~ - ~ ~ m (note thatthese previous studies are based primarily on m .0 gives an Independent process]. We willthe assumption of independent sampling, and it assume throughout that f , the cot~~n univariateis the purpose of this paper to extend some of probability density of the noise sequence, isthese previous :esults to the case where there synmatric, continuously differentiable , andis dependence among the observed data samples. strictly positive on the entire real line. Our

study is restricted to the asymptotic (large-To study this problem we consider the large— sample-size) case and, to avoid singularity, wesamp le-size case of detecting known COnstant will consider the local or small-signal limit.signals in additive noise, and model the depend-
ence structure by assuming that the noise process 2.2. Optimum Metnory l.ess Detectionis n-dependent. In general, an optimal detection
procedure for this 3ituation will require a In (4 1, the design of opclamim mamorylesamemorì of length in; however, we will restrict our detectors for the problem of Eq. (1) is con-study to those detectors whi.c~h nay be impLe- sidered. Because techniques similar to those ofseated without memory. The design of general (4 1 wilL be applied in this study, the results(unquantized) cnemorylesa detectors for this s itu- of (4 i are sumearized here.

>__ ation has been considered in (4 1 and here we
apply the techniques of this earlie r study to the Consider memorylegs detectors of the formcorresponding quantizer design problem ,

~..) In Section 2 we state more precisely the , aprobL em to be considered and review previous 
~(g•x) 

~~~ 

g (x~) — (2)
L.zJ pertinent results concerning general nemoryless 

.detection from (4 1 and optimum quancization
from I ]. Section 3 includes the derivation

L.L. of design equations for optimum quanclzar design where g is a meuoryless nonlinearity ; ~(g;x) isfor th. case where the breakpoints are fixed, as the probability with which we accept H1 when ~vaIl as optimization for the general quantizer case ; is observed ; and the randomization ‘1 aM th res-
C..3 and expression s are presented her e for the corn— hold - are chosen to give desired error

PMAe.,tted a.t ~he 191S Jo hn~ rl opti.n.o Con~eJte~t~e. apt l~t6o.tmc~~cn Sc~ejtcr~
~znd Sq4~Cem6 , tIa.tch 29 -31 , 1~~ 3; -to be p ubüohtd ~ i the P-~oceed.~tg4 ~-the Co~~en.ence. 
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probability performance. No te that the class of the solution is given by
detectors of the forte of Eq. (2) is sufficiently
general to contain must teemuryless detectors of g0(x) — Z (c X )/(l+X )c (x) (10)

where equality is in the sense of uniform con—For large-sa mple-size situations , th e per- vergence. Here Ccp v.0,...,.) is a sequence of
formance of detectors is co~~~nly compared on the functions , orthogon~l with respect to f,
basis of asymptotic relative efficiency (ARE). satisfyingFor the situation of Eq. (1.), the asymptotic • _

efficienc y of a detector 0 relative to another lin 
~ 
k(x,y )/f(y)detector 0~ is defined as 1t N-.. .

~~ -.
N

ARE(l ,2) — tin e(~ ,9,n) (3) - ~ 1 p (x)q~ (y)1
2f(x)f(y)dxdy.0 (11)

n — .  v_0 v v  ~I

9 — 0 where
where e(a,9,n) is the relative number of samples . .
02 requires to achieve th. same power (i.e.. 

~~~
j’ fq , (x)q, (y)K(x,y )f(z)dxdy ; v O ,l,... (12)

probability of correct detection) that achieves __

for sample size n wh.n both are operating at an~ th* coefficients c are given byfalse—alarm probability n and the s ignal strength v
is 8. In C 4 j ,  the optimum msmoryless detector c — J’ ~~ p f ; v.0,1 (l3)

‘Iis considered to b. that detector of the form of
Eq. (2) which is the must efficient asymptotically If g is another nonlineari ty in the span of
in the sense of Eq. (3). By conajdering a Se— ; v 0 ,.. .,~ }. then the ARE of 0(g~;’) to
quence of signal strengths 9 K1./n where K >  0, it 0( ~ ; ’)  is given by
can be shown under mild rest~ictions that the
asymptotic effic iency of a detector p(g1;.) of ARE(g01g)”C E c 2 f ( l + A  )]~C E 3 2(1+1 ) ] I (  E c 3 )~
the form of Eq. •(2) relative to another detector v 0  ‘~ ‘~ v 0  ‘~ v ~, V

of the form of Eq. (2) is given by (14)
ARX(g1,g2) ~(g 1)/l~(g2) (4) where P — 

~ 
gp f ; v.0,1 Further

where

~(g) • (f g f ’) 2I~r~ (g) (5) details of these results can be found in C4) .
2.3. Optimum Quantizacion for the 1s4.pendenc

is the efficacy of 0(g;’); the fu~ction f is the (in—0) Case
noise density ; and the quantity C~ (g) is defined
as In this paper we will consider the subclass

of the class of memoryless detectors of Eq. (2)
~~(g)..Var 0(g(X1)1+2E Cov0(~ (X1)1~ (X~~1)) . (6) for which the nonlinearity g is an N-level quan-

tizer, that is, we consider the class of allNote that the subscript 0 denotes quantities detectors of the formcomputed under the signal-absent hypothesis 
~o

We see from Eq. (4) that the must efficient .
~~memoryless detector of the form of Eq. (2) is ‘ ~ E Q(x~) — r (15)

based on a nonlinearity 
~~ 

soLving 0 ;
where Q is an N-level quantizer; and we wish to

— arg (max 11 ~~~ (7) cheose Q in an optimal way for the detection
S

In C 4 ~ it is shown under mild restrictions ~~~~ 
problem of Eq. (1). Note that an N- level quan-
tizer can be para meterized by a pair Q a

So solves Eq. (7) if, and only if. ~o 
(or some

constant multiple of 
~~ 

satisfies the integral where t— (t 01 t 11... ,tM) is an ordered brea kpo ints
equation vector (- — t 0

< t
1

< 
~ 

t~~~~ < ~~~~~~~~~~
S

- j’ K(x ,y)g0(y)dy — $0(x) (8) 1 is a levels vector; and we take

for all x E (-.,~~). Here g -V /f is the opti- ~~~ — when x E(tk l , tk3 ; k t ....1N (16)

lo Thus ~he problem of optimal quantizer design ismum choic. of nonlinear ity for the problem in Eq. one of performance optiattion over a set of
(I) when th, noise process is an independent (2)1—1) resl parameters .
sequence (m—O) ; and the kernel K(x ,y) is given by The problem of optimal quantizer-deteccor

a design for the independent noise (m—0) case of
K(x,y) • Z Cf . 1( Y I x + f 1~~~(YIx)) (9) Eq. (1) has been considered by Eassam in Cl ~~. ~~~~~~~~~~

J—l ‘ Specifically it is shown in E l  ] that , for this 
___________

where f11  is the conditional density of Nj+I 
case, if we fix the breakpoints £ then an opti-
mum (asymptotically—nost-eff icient) choice of

given N1 and vice-versa for f 1~~ . the levels vector j  is given by f !~ t~iO~ 0
Equation (8) is a Fredhoim equation of the — £3

second kind, and under further nild conditions, ~~~~~~~~~~~~~~ -
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t (Were we must introduce the restriction to those
qLO_ C f t k l

) - f(t k))/S f(x)dx ; k 1 ,...,M (17) Q for which 
~~(Q) > 0. Without this property ,

tk_L Eq. (19) does nor hold. Note that this is not a
- ‘a where f is the univariate noise density. Thus, very restrictive limitation since we always have

10 2for each £~ 
the optimum choice of levels ~ can ~

• be written in terms of £ and the problem of choos- 0(Q) � 0, and the case ~~(Q) ’O is of Limited

ing an optimal quantizer Q is reduced to that of interest.)
choosing an optimal breakpoints vector ~LO . ~ Since Q is parameterized by the vectors ~is shown in C ] that the optimum £ for this case and a. the efficacy 11(Q) is a function of (2)1-I)

- - (mu.0) must satisfy reel parameters (note that t0 and tM are ~~~~~
20 r 1°s~0(t~ ) — ..q~ + q~41] I Z  ; k—I,... ,(M—l) (18) so we may write explicitly 1~(Q) I ~(c ,g). Thus

Eq . (21) is equivalent to findi 0 0 0n g Q — ( ~~~,~~~
)

where 9
j0 is from Eq. (17) and the function with

— f ’/ f .  Thus a simultaneous solution to 
(~

0 j0) • arg ( max 11(e ,j)3 (22 )
Eqs. (17) and (18) will yield the optimum quan—
cizer parameters for the independent noise case
of Eq. (1.). Further details nay be found in C i ) .  Note from Eq. (20) that 11(Q) is invariant to

additive constants , thit is 1(Q+3) • 11(Q) for
3, Qpti~~~ Quantization for n-Dependent any constant 3. Note also that f is assumed to

be symastric; thus , we nay, without Loss of gen—
erality, restrict our study to those quantizers

3.1. The Efficacy of Guantizer-Detec tors Q which have zero mean under L~; i.e., we ra-
w. see from the results suamarized in Sec— strict Q to satisfy EØ CQ(X J

)) • J’ Qf • 0.
tion 2 that the optimum memoryless nonlinearity
for detecting a constant signal in n-dependent It can be shown that 11(~ ,j) is given by
noise [Eq . (1)) is given by Eq. (10). Similarly,
the optimum quantizer-detector parameters for the TRt,a) — (s.

t
~L) 2/CaT (_F + !)aJ (23)

independen t noise case (a—O) of Eq. (1) are seen
to be solutions to Eqs. (17) and (18). In this where the superscript T denotes transposition.

Here the vector Al has componentssection we derive quantizer design equations
• analogous to those Eqs. (17) and (18) for the (Al) k — Cf( t k - f(t k l )]; k l ,... ,$; (24)

genera l case of n-dependent noise using analysis
similar to that used to derive Eq. (10) . the matrix F • diag~f 1 f)13 where

We consider the class of memorylees quan— 
rtk f(x)dx ; k.1,.. .,M; (25)tizer—detectors 0(Q;’) of the form of Eq. (15). 

~k 
—

As in Eq. (16), the quantizer Q is parametarizad tk_l
by identifying ‘~ 5 (~~) where £ and ~ are the
breakpoints and levels of Q, respectively, and the it x N matrix ~ has entries

Adopting cits optimality criterion of maximum ARE,
we wish to choose vectors £~ 

and a° so that th*
qu.antizer Q0 — (

~
0 .a°) is optimum for the prob + P

O(X lE (tL l , tl]~X J+lE(tkI , tk])]; (26)
tem of Eq. (1). Within minor restrictions (as in
C 4 ] ) ,  the reLative efficiency of one quantizer-
detector d(Q~

’;’) of the form of Eq. (15) relative where denotes probability under the s ignet—
absent hypothesis H0. Recall tha t f is the uni-

to another quant~zer-detaccor o( Q ’;~
) of the form variate density , te is th ’ dependenc, parameter ,

of Eq. (15) is given by and N is the dimension (i.e., number of levels)

ARE(Q1,Q2) • 11(Q’)/11(Q2) (19 ) 
of the ~uantiaer.

3.2. Results for fixed Brepkpo ints - Optimum
where , as in Eq. (15), the efficacy of 0(Q; .) moice of Levels
is given by A. in the independant noise case of 1

— ( Q f ’ ) 2 fo~ (Q), (20) it is convenient to cons ider first the situation
where the breakpo ints vector £ is predetermined

and r~(Q) is defined by Eq. ( 6 ) .  Thus the or fixed. te re we are free to choose only the

optimum N—leve l quant izer Q0 will b. given by 
levels , and in this case we look for optimum

0Levels a by searching far a solution a to
— argC max 1~(Q)3 (2 1) sat isfy

a0 
• ar$( sax 

~ ~‘S.,&)) (27)
where P is the class of all N -level quaneizers a 1

To do so , we assu me that the matrix (~ +~~~~) is

3

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ ~ -~~-
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• positive definite , where V and P are from Eqs. could be derived by applying the Schwarz in-
(25 and (26), respective ty*. Within this rescric- equality to the efficacy 1(Q). The approach here

- • tion, a necessary condition for a solution to Eq. is used because of the analogy to that for th.
(27) is that continuous nonlinearity case.

grad 11(e,a)I 
• 0 (28) Even if (F+I) is not positive definite, Eq.

a a—a° (30) still has a solution given by
This leads to th. condition 0 10 +Lo(u.) + (.!+?)a° — 0 (29) 9. a - !t(.~ 

+ I~
) 9. (36)

where the superscript + denotes the generalized
• 

- where ~~~, ~~, and ~ are defined by Eqs. (24) inverse. Equation (36) can be verified by direct
through (26). [Note that the dependence on £ of substitution into Eq. (30) if we note that the

• ~~~, F, g’ and ~0 is implicit in Eq. (29).] !qua— matrix (t ) (J+.~)+ is the projection onto the
• tion (29) can also be shown to be a sufficient

condition for ~ 0 to solve Eq. (27). 
range space of (I+,~). Note however that, if (F+~)
is not positive definite, then the necessity of

• Since the noise density f is assumed to have Eq. (28) is not assured and the expression of Eq.
• support (-.,.), th, terms (f 1,. .. ,fQ on the diag— (19) cannot be used for all quantizers Q. [Since

omal of the matrix F are all positive. Thus, ~ is ~ (Q) will equal zero for some Q.)
invertible and Eq. (29) can be rewritten in a
nora intuitively appealing formu 3.3. Results for Fixed Sreakpoints-Efficacy

Express ions
10 0 0

a - a — a (30) The efficacy 11(Q) ~ 1R,~,a) of a quantizer-
where the N x it matrix E~ — r”t r has entries detector ~(Q;.) can be computed from Eq. (9).For fixed t , 

~~~~~~~ 
is maximized when a — a

• 
— 

~k,I’~ k k,L—l ,. ..,M (31) the soluti n from Eq. (33). Comb ining Eqs. (23)
and (33) we have that, since (T+I) is invertible,

and Pkl and are from Eqs. (25) and (26), and

the vector a2° — !“1(
~
L) has components 11(~,~) — 11(.~,a0

) — (~~)
TCF+P]~

L(~i) (37)

to
— _ (Af)k/f k.{f(tk,,l)_f(tk)]/j~~ 

f(x)dx; 
For the independent noise (m—0) case , vs have
F’ 0, and Eq. (36) reduces totk..l

k—t ,...,M (32)
is the optimum choise of levels for the indepen— it
dent noise (n—0) case from Eq. (17). Comparing Eq. E c[f(tk..L ) f (tk)]

hI.f
k f ( x)d x }

(30) to the integral equation C~q. (8) ] of 5cc- C
tion 2, we see the analogy between the quantized which agrees with previously es~a~1ished results
(fixed—breakpoints) case and the continuous f or this case Li ].
nonlinearity case. The asymptotic efficiency of the quantizer-

• The positive definiteness of (F4~~) implies detector using Q°— (~,a°) relative to a quantizer-that (t+ji) is invertible (I is the it x N identity detector using Q— (t ,q,) is given by the ratio of
matrix). Thus we have the solution their efficacies

a0 — (J + ~()_ 1
~9.
b0 (33) ARE(Q0,Q) — ~(~,a°)/11(l~a) (38)

Using the identi ty Again since t is such that (F’s.?) is invertible,
-l 

— - ~(r + K)~
1 

(34) 
Eqs. (23), (3~) and (38) imply that

[(Af)T ~~~~
_
~(~~)]CaT(!+.?)a]Eq. (33) becomes3a !~~~ 

~~()
_l
~~0 (35) 

ARZ (Q0 ,Q) — 
[(~~ )T~,]

2 (39)

Note that Eq. (35) is directly analogous to Specifically, the improvement gained by using
the continuous nonlinearity solution given by Eq. over the independent-noise levels ~~° ..!~‘(g)
(10) of Subsection 2.2. Note also that Eq. (35s is given by

*tt is easily shown that, with Q (
~,a) and J’Qf’ O, ARE (Q0 

Q
IO

) 
~~~~~~~~~ _ _ ‘( I(4.V4 ”(V+~f ~(At)]

we bave 2 T• 0o (
~~ 

— 
~~~~~~~~~~~ 

0 E T!~
4(a&)] 2 

(60)
where ~ and ! are from Eqs. (25) and (26) rasper- If the breakpoints £ are chosen so thattively. Thus the matrix (T+P) is at least non— they partition the real line into equiprobabil-
negative definite. Note furt~aer that if the ker-
nel K(x,y) from Eq. (7) is a positive definite ity segments (under U0), then !41, and we have
kernel, then (F+P ) will be positive definite
for all . This latter case hoLds , f or example,
for Gaussian noise processes.

4
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the function g —-f’/f ; and the (M-l)XN matrixto

ARE(Q°,Q1°)I — ~~~~~~~~~~~~~~~~~~~ has antrie,

£“Sequi [(~~)T(~~~]
2 

Lk L k L +5k+l~~
]/2+ (48)

• (41) 
( E Q ~~~

P
P f

/btk I

‘4 Note that Eq. (41) impLies that, for £~~ qui~ [2(q~ - q~~1)f(t~)] 
-

•(I  + ~( l + X  )
_________ 

� ARE(Q

0,Q1°)~ a (I + ~~ (42) for k.l (rn-i) and 1—1,... ,M -• ( l + X ain~ £mt max ’ ti ere i is the t~ronecker delta and the matrixsqui g is f~6~ Eq. (26).where is the maximum eigenvelue of and Thus , combining Eqs. (33) sad (47), an over-
I is the minimum eigenvalue of K. [Note that all optimal quantizer Q ‘ (

~ ,g~ ) will be a• mm 
solution to the equationsthe right-hand side of Eq. (42) is trivially true

since we have by definition of Q0 that 0 0
(.~~ ) —~~a (49)

ARE(Q°,Q1°) a 1 a (I + 1mth~
1
~

1 + Imax~~ and
• 3,4, Choosing Optimum Breakpoints 9,

0 
— (j+~L) ’Y° (50)

where the
0
quantities ~~~~ K and J, are computedWe turn now to the problem of choosing an 

for £ — £ from Eqs. (31) — (33) and (48). That
• optimal set of breakpoints £~ 

An overall optimum is under the above assumptions , Eqs . (49) and
choice of quantizer Q0 ‘ (~

0,a0) will be one for (50) are necessary conditions that must be sat-
which 1~(t ,9,) is a maximum over all possible isfied by an optimum (most-effic ient) quantizer
choices of ~ and ~~

. From the results of Subsec— for a memoryless decision between the hypothe—
cion 3.2 we have that , for fixed £~ th3 

optimal sis pair of Eq. (1). Given that £ is Optimal
choice of levels is made by choosing a from Eq. and (F’s.?) is positive definite , Eq. (50) is suf-
(33) corresponding to £~ 

Writing explicitly ficient for a° to be optimal; however, the suf-• j0—~
°(

~
) to emphasize the dependence on £ of the ficiency of Eq. (49) can be determined analyti-

solution from Eq. (33), we have cally only for special cases , and a numerical
test must be used in the general case. -

•

max 11(~,a) — 11(.~..~
3(t’). (43~ tiota that for the independent-noise (m—0)

9. case , the entries of the matrix L become
Thus, as in the independent noise case of Subsec- k—l (M 1tion 2.3, the problem of maximizing 1(~,a,) overcan be reduced to that of maximizing 1’k,Z 

— t
~k,L 

+ Sk+1j312 
~~~~ ,~~

over 
~
; that is , we look for £~ 

to and the matrix ~ is identically ;ero. Thus , for
solve this case, Eqs. (49) and (50) reduce to Eqs.

£
O 

— arg(isax (.~.,a
°(.~))) (44) (17) and (18) so that Eqs. (49) and (50) agree

with the previously established results for£ this case.and the overall optimal quantizer will be given

by Q0 
~ (~

0
,9.
0
(~))~ 

4, Example - 4-Level Quantization
Example 1. - Gaussian Noise

To took for solutions to Eq. (44), we Ta— To illustrate the results of Section 3, westrict the noise process to be such that the consider the particular problem of designing 4-matrix (F’s.?) is poettive definite for every level quantizers (M—4) for use in detecting
choice o’~ £. For this case, we have from Eq. ~~own signals in n-dependent Gaussian noise.(37) that

— (~ •f )T (% + P)
1(df) (45) 

Specifically, we assume that the noise pro-
cess (N1;i—l ,. . . ,n} of Eq. (1) arises from uni-

~hac 
condition for £

0 to maximize (45) is form samp ling of a stationary Gaussian process
N(t). We assume that N(t) has zero mean unit

grad 1(~,a0(.W) 0 — 0 (46) variance , and autocorrelation ~(r)~~(N(t)N(t+?)3

Using the identity p (i’ ) — (51)

given by { (I - J ID) ; rJ S 0

+I)’
~

f
~
tk - (f+?) L

~
(P+P)/

~
tk] (F+?)

1 0 ; ~! > D
where D > 3. The samples are taken at intervalsEq. (49) can be shown to hold if of Length D/(m+l), and , at this sampling rate ,

~~~~ 
(~ 0) — !- 

0~~0) (47) (Nj;i l ,. . .,.) is n—dependent. For this case ,

the elements of the matrix jI of Eq. (3 1) are
where the vector 

~ Lo (~
0
)—(g10(t~),. .. ,g10(t~~1))r; given by

5 
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t Ck-I 1-1 References(52)
• where w(x ,y ;~ ) is the bivariate density function 1. S. A. Kasiam, “Optimum quantization for sign~of two standard Jointly Gaussian random variables detection ,’ ~~EE Trans . Comun., cON-iS.

with correlation coefficient p ; 8 is the Gaussian pp. 479 484, 1977.
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acterized by generalized quantizers for binary decis ion
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pp. 893—900 , 1971.and (54) 4. H. V. Poor and S. B. Thomas, “As ymptotical Ly
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Since 7~(Q) is independent of sca le (i.e., Coed. on information Sciences and Systems ,1~(Q) for ~~ ~ 0), we may thus characterize Q 
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co mpletely by specifying the upper breakpo int t~ 
S. C. E. Noether , Elements of Nonparametric
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and the levels ratio (q~/q~). Table I gives
values of these parameters for several values of Table I. 4-Leve l Quantizer Parameters
the dependence parameter m. Note that m 0  gives 

— _____ 

for Ga?’iaian Noise
the independent case. Also given in Table I are
va lues of ARE (Q0,Q~°) and &RZ (Q0,L.4.) wh ere 

a t~ (q~/q~ ) £U(QO,QLO) ARE(Q°,t.d.)
denote , the n.0 quantizer and ‘L.d.’ denotes rk= 0 0,982 3.34 1.00 .882linear detector (i.e., Eq. (2) with g(x) C x) 1 1.03 3.40 1.000 .935
which is the optimum memo ry less detector for this 2 1.09 3.46 1.002 .953
case [6) ARE (Q

0,Qf o) is a measur e of the improve— ~ 1.19 3.44 1.005 .972
10 1.24 3.40 l.006 .981

ment gained by these techniques over that system 1$ 1.26 3.38 1.007. .983
designed by merely ignoring the dependence,and 25 1.27 3.38 1.001 .986
ARE(Q°,L.d.) is a measure of the degradation in
performance du. to quantization. table II. 4—Level Quantizer Peramet er s
Example 2 - Cauchy Noise for a Cauchv Noise Process

As a second example consider the noise — —
0 0

process (Nj~i..1(T(Zgii_i whe re a ~~~ (q
4/q~) ARE (Q0,Q~°) AREQ°,(4°)

t(z) — tam(i~erf (z/q 2)/2) and is a Gaussian 01 0.254 2.92 1.00 1.00
proceas identical, to the process (w

~
)
~,1 

of Lx - 02 3.94 .342 1.00 1.00
ample I. This will yield a Cauchy noise process 1 3.94 - .238 2.53 2.14

with univsriate density f(x).u(1T(1+e2)) ~. The op— 2 2.13 .0802 2.90 2.31

t imom 4—leve l quant izer for (N~3 _1 will also 5 2.12 ..237 3.30 2.63

satisfy Eq. (54) and its parameters are g iven in lO 1.88 .227 3.81 2.80
Table II. Note that, he re , th ere are ti~ equiva- — ________ __________ ___________

Lent optimal quantizers for the m—0 case. These

are denoted by q~ 0 and Q~°, respectively, and per-
formance of relative to each of these is given
La Table II.

Note that < 0 for some values of •, thi s
is consisten t with results for the unquencixed
memo rvl ess case for this example ma discus sed
in [4~.
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