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Er Abstract

\
o
The problem of optimum data quantization for

memoryless signal-detection systems operating in
m-dependent noise environments is considered.
The case where quantizer breakpoints are fixed
or predetermined is considered first, and, for
this case, existing results for general (un-
quantized) memoryless detection are modified to
yield necessary and sufficient conditions for
quantizer optimization in terms of asymptotic
efficiency. Necessary conditions are also estab-
lished for the optimum (asymptotically efficient)
selection of quantizer breakpoints, and expres-
sions are presented for the comparison of
quantizer-detector performance on the basis of
asymptotic relative efficiency. e

Introduction

Signal detection systems frequently involve
memoryless nonlinear operations on input data,
and there are a number of practical advantages
to replacing these detection nonlinearities
with quantizers. Several authors have considered
the problem of optimally designing quantizers
for this purpose, and design criteria have been
developed for quantizers to be used in a variety
of signal and noise situations [l-3]. Many of
these previous studies are based primarily on
the assumption of independent sampling, and it
is the purpose of this paper to extend some of
chese previous results to the case where there
is dependence among the observed data samples.

To study this problem we consider the large-
sample-size case of detecting known constant
signals in additive noise, and model the depend-
ence structure by assuming that the noise process
is m-dependent. In general, an optimal detection
procedure for this situation will require a
memory of length m; however, we will restrict our
study to those detectors which may be imple-
mented without memory. The design of general
(unquantized) memoryless decectors for this situ-
ation has been considered in {4 ] and here we
apply the techniques of this earlier study to the
corresponding quantizer design problem.

In Section 2 we stace more precisely the
problem to bYe considered and review previous
pertinent results concerning general memoryless
detection from (4 | and optimum quantization
from {1l ]. Section 3 includes the derivation
of design equations for Jptimum quantizer design
for the case where the breakpoints are fixed, as
well as optimization for the general quantizer case;
and expressions are presented here for the com-
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parison of detector performance for large sample
sizes. In Section 4, four-level quantization is
considered in detail for two particular me-de~
pendent noise processes, and the performance

of resulting quantizer designs is compared to
that of previous designs for the corresponding
case where independence was assumed.

2. Praliminaries
2.1. Problem Statement and Assumptions

As noted above, we consider the detection
of a known constant signal in additive m-depend-
ent noise. Specifically, we assume that we have
a sequence X = {xy; i=l,...,a} of real observa-
tions of a process X = {X;; i=l,...,n}; and, on
the basis of x, we wish co decide between the
following pair of hypotheses concerning X:

Ho: X1 = N1 3 Eel, ... 8
versus (L)
i ~; o -
Hl. XL NL + s dmilscia,n
where {N.} is a zero-mean second-order-s:u-
tionary *—&ependanc noise process and & is a

known positive comstant signal. By m-dependent,
we mean that there is an integer m such that the
sequences {N_, i=l,...,.} and (N ; i=§,...,®
are Lndependéuc whenever § - >m~ [note that
m=0 gives an independent proces.s]. We will
assume throughout that £, the common univariate
probability density of the noise sequence, is
symmetric, continuously differentiable, and
strictly positive on the entire real lime. Our
study is restricted to the asymptotic (large-
sample-size) case and, to avoid singularity, we
will consider the local or small-signal limit.

2.2. Optimum Memoryless Detection

In (4], the design of optimum memoryless
detectors for the probiem of Eq. (1) is comn-
sidered. Because tachniques similar to those of
(4] will be applied in this study, the results
of [4 ] are summarized here.

Consider memoryless detectors of the form

r].; u >
2(g:x) =(Y , T z(x ) = =% Q)
0 ; i=l <7

where g is a memoryless nonlinearity; 3(g;x) is
the probabilicy with which we accept H, when x
is observed; and the randomization Y and thres-
hold - are chosen to give desired error
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probability performance. Note that the class of
detectors of the form of Eq. (2) is sufficiently
general to contain most memoryless detectors of
interest .,

For large-sample-size situations, the per-
formance of detectors is commonly compared on the
basis of asymptotic relative efficiency (ARE).
For the situation of Eq. (1), the asymptotic
efficiency of a detector ¢1 relative to another
detector 0, is defined as fisd

ARE(1,2) = lim e(x,9,n) (3)
n-—-o
8 -0
where e(x,9,n) is the relative number of samples
¢2 requires to achieve the same power (i.e.,
probability of correct detection) that ¢; achieves
for sample size n when both are operating at
false-alarm probability o and the signal strength
is 8. In (4], the optimum memorylass detactor
is considered to be that detector of the form of
Eq. (2) which is the most efficient asymptotically
in the sense of Eq. (3). By considering a se~
quence of signal strengths 8 =K/J/n where x> 0, it
can be shown under mild rascgictions that the
asymptotic efficiency of a detector ;o(gl;-) of
the form of Eq. (2) relative to another detector
@(32;-) of che form of Eq. (2) is given by
ARE(8,.8,) = N(8,>/MN(g,) )

) = ( s£H o)) )

is the efficacy of ¢(g;°); the function f is the
noise density; and the quantity o (g) is defined
as

@
agm-mo[s(xl)}+zj§1cov°£s(x1>.s(xjﬂ)}. 6

where

Note that the subscript O denotes quantities
computed under the signal-absent hypothesis Bo.

We see from Eq. (4) that the most afficient
memoryless detector of the form of Eq. (2) is
based on a nonlinearity 89 solving

8o = arg{max 1 (g)} (¢))
g
In [ 4] it is shown under mild restrictions that
8o solves Eq. (7) if, and omly if, gy (or some

constant multiple of 8g) satisfies the integral
equation

@«
8y0(%) - J_‘. K(x,7)8,(y)dy = 8(x) ®)

for all x € (-=,®@), Here 80 s -£'/f is che opti-

mum choice of nonlinearity for the problem in Eq.
(1) when the noise process is an independent
sequence (m=0); and the kermel K(x,y) is given by

@
K(x,¥) -j:ltfj’l<y|x)+f1'j(y!x)1 )

where fj 1 is the conditional density of N
’

given N, and vice-versa for £ ..
1 1,j

Equation (8) is a Fredholm equation of the
second kind, and under further mild conditions,

J+1

the solution is given by
@«

8oix) = szo(x)-vi.fo(cvxv)/(lﬂv)wV(X) (10)

where equality is in the sense of uniform con-
vergence. Here {[¢ ;v=0,...,®} is a sequence of
functions, orthogonil with respect to £,
satisfying

ua [ [ |K(x,7)/ECy)
Neo o -

N
- £ A0 (09 ()| 8¢ (y)dxdy=0 (11)
\)-O vV v
where

. o
A= e 00, 0KxEAxdy; va0,1,... (12)
- -8

and the coefficients e are given by
c, =l 89, f i ve0,L,... . (1)

If g is another nonlinearity in the span of
{p ; v=0,...,8}, then the ARE of #(8g;*) to
®(¥;+) is given by

L ] 2 L] 2 -« 2
m(so.n-tvz_ocv/(uxv)] -Evtioav(xnv)]/(vao c8,)
(14)

where Bv -f sqavf ; v=0,1,... . Further

details of these results can be found in [4].

2.3. Optimum Quantizaction for the Independent
(m=0) Case

In this paper we will consider the subclass
of the class of memoryless detectors of Eq. (2)
for which the nonlinearity g is an M~level quan-
tizer, that is, we consider the class of all
detectors of the form

fl . a >
$@® =({vy; Tax) =t (15)
0 ; i=0 <rT

where Q is an M-level quantizer; and we wish to
choose Q in an optimal way for the detection
problem of Eq. (l). Note that an M-level quan-
tizer can be parameterized by a pair Q = (t,9)
where _:_-(co,:l....,r.M) is an ordered breakpoints

v.cto; (= = co< :1< o i 5{_1< ty * +@);
g4 € R 1is a levels vector; and we take
Q(x) = q, vhen x €(ty_;,e. ] ; kel,...,M  (16)

Thus “he problem of optimal quantizer design is
one of performance optimation over a set of
(2M=1) real parameters.

The problem of optimal quantizer-detector
design for the independent noise (m=0) case of
£q. (1) has been considered by Kassam in [1 ].
Specifically it is shown in [ 1 ] that, for this
case, if we fix the breakpoints t then an opti-
mum (asymptotically-most-efficient) choice of
the levels vector g is given by

e

“iilty Section ]
2t Berton |
al




-2

A A A 2 g 1

. e

BNAL R T T

i

e E e e e

WV wt,ﬂ’w

t

k
0= Li(e ) = Eel/]  £00dx 5 kel ..M (1)

t
k-1
where £ is the univariate noise demsity. Thus,

for each t, the optimum choice of levels g‘o can

be written in terms of t and the problem of choos-

ing an optimal quantizer Q is reduced to that of
choosing an optimal breakpoints vector t£°. It
is shown in [ ] that the optimum t for this case
(m=0) must satisfy

Lo

Lo, _r Lo 2 .
8,05 ) = Lap + qyy1/2 5 keml,en, (01 (18)

where 1‘“ is from Eq. (17) and the function

Bta = £'/£. Thus a simultaneous solution to

Eqs. (17) and (18) will yield the optimum quan-
tizer parameters for the independent noise case

of Eq. (l). Further details may be found in [1].

3. Optimm Quantization for m-Dependent
Noise
3 fficacy of

We see from the results summarized in Sec-
tion 2 that the optimum memoryless nonlinearity
for detecting a constant signal in m-dependent
noise [Eq. (1)] is given by Eq. (10). Similarly,
the optimum quantizer-detector parameters for the
independent noise case (m=0) of Eq. (l) are seen
to be soluctions to Eqs. (17) and (18). In this
section we derive quantizer design equations
analogous to those Eqs. (17) and (18) for the
general case of m-dependent noise using analysis
similar to chat used to derive Eq. (10).

We congider the class of memoryless quan-
tizer-detactors 3(Q;+) of the form of Eq. (15).
As in Eq. (16), cthe quantizer Q is parameterized
by identifying Q = (g,gq) where £ and g are the
breakpoints and levels of Q, respectively.
Adopting the optimality criterion of maximum ARE,

we wish to choose vectors _:_o and 10 so that the

ntizer-Detectors

quantizer Qo = (go,go) is optimum for the prob-
lem of 2q. (l). Within minor restrictions (as in
(4]), the relative efficiency of one quantizer-

detector qs(Ql;-) of the form of Eq. (15) relative

to another quantizer-detector ¢(Q ;+) of the form
of Eq. (15) is given by

are(Qt,0%) = n@bHymaed (19)

where, as in Eq. (15), the efficacy of 3(Q;*)
is given by

1@ = ( atH?el @, (20)

and 1g(Q) is defined by Bq. ( 6). Thus the
optimum M-level quantizer Qo will be given by
0

Q" = arg{ max 7(Q)} (21)

pH
where P‘ is the class of all M-level quantizers

(Here we must introduce the restriction to those
Q for which ag(Q) > 0. Wichout this property,

Eq. (19) does not hold. Note that this is not a
very restrictive limitation since we always have

J’g(Q) 2 0, and the case cg(Q)-O is of limited
interest.)

Since Q is parameterized by the vectors t
and g, the efficacy 7M(Q) is a function of (2M-1)
real parameters (note that £y and ty are fixed)

80 we may write explicitly T(Q) = 7(t,q). Thus

Bq. (21) is equivalent to finding QO = (50.10)
with

%,a%) = arg{ max n(g,0)} (22)
(£,q)

Note from Eq. (20) that 7N(Q) is invariant to
additive constants, that is TM(Q+8) = M(Q) for
any constant 8. Note also that f is assumed to
be symmetric; thus, we may, without loss of gen-
erality, restrict our study to those quantizers
Q which have zero mean under Ho; i.e., ve re-

strict Q to satisfy zo{Q(xj)} =[of =0.
It can be shown that T(t,q) is given by

e = @ 2/a E + pra) (23)
where the superscript T denotes transposition.
Here the vector Af has components

(8f), = (£t - £(ey_ )]s kml,oon 5 (26)

the matrix F = di.ng{fl,...,fn} where

tk =5 f(x)dx ; k=l,...,M; (25)
Cl-1
and the M X M matrix P has entries

m
2
Pk,l-jilLPO[xle(ck-l’ck]’XJ*le(cl‘l’cl})

AR ESECHRPLI SR CRPLN ) S ER € L)

K,2%l,...,M
where Py denotes probability under the signal-
absent hypothesis Hj. Recall that f is the uni-
variate density, m is th- dependence parameter,
and M is the dimension (i.e., number of levels)
of the quantizer.

3.2, Regults for Fixed Breakpoints - Optimum
Choice of Levels

As in the independent noise case of [ ],
it is convenient to consider first the situation
where the breaskpoints vector £ is predetermined
or fixed., Here we are free to choose only the
levels, and in this case we look for optimum

levels g by searching for a solutiom 10 to
satisfy

1° = arg{ max " (e,2)} 27
g4¢nR

To do so, we assume that the matrix (F + P) is




i

posicive definite, where F and P are from Eqs.

(25 and (26), reSpec:ively . Within this restric-
tion, a necessary condition for a solutiom to Eq.
(27) is that

grad T](E,g_)l =Q (28)
q 0
This leads to the condition
o + @+’ = 0 (29)

where Af, F, and P are defined by Eqs. (24)
through (26). [Note that the dependence on t of
Af, F, P and g0 is implicit in Eq. (29).] Equa-
tion (29) can also be shown to be a sufficient
condition for 10 to solve Eq. (27).

Since the noise density £ i{s assumed to have
support (-e @), the terms (El""’fu) on the diag-

onal of the matrix F are all positive. Thus, F is
invertible and Eq. (29) can be rewritten in a
more intuitively appealing form:

0 0
£t g g (30)
where the M x M matrix X = g'Lg has entries
Ky * P j/f 3 kyawl,... M (31)
»

and P .4 and E an from Eqs. (25) and (26), and
»

the vector g_ - E‘ (Af) has componencs

Q0= -(a8) /£, =[E(e, )= f(:kn/f £(x)dx;
k-l

k=l,...,M (32)
is the optimum choise of levels for the indepen~
deat noise (m=0) case from Eq. (17). Comparing REq.
(30) to the integral equation (Eq. (8)] of Sec~
tion 2, we see the analogy between the quantized
(fixed-breakpoints) case and the countinuous
nonlinearity case.

The positive definiteness of (F+P) implies
that (I+K) is invertible (I is the M x M identity
matrix). Thus we have the solution

@ -a+rplde (33)

Using the identity

g+ ter-xaept o
Eq. (33) becomes =
9-0 = s..Lo_ KT+ K lgzo (35)

Note that Eq. (35) is directly analogous to
the continuous nonlinearity solution given by Eq.
(10) of Subsection 2.2. Note also that Eq. (35)

*It is easily shoun that, with Q=(t,q) and [Qf=0,
ve bave o2@ = g (g4p)q 2 0

where F lnd P are from Eqs. (25) and (26) respec-
tively. T.'hus the matrix (F+P) is at least non~
negative definite. Note furcher that if the ker-
nel K(x,y) from Eq. (7) is a positive definita
kernel, then (F+P) will be positive definite

for all . This latter case holds, for example,
for Gaussian noise processes.

could be derived by applying the Schwarz in-
equality to the efficacy 7M(Q). The approach here
is used because of the analogy to that for the
continuous nonlinearity case.

Even if (F+P) is not positive definite, Eq.

(30) still has a solution given by
=g -xq+p'd° (36)

where the superscript + denotes the generalized
inverse. Equation (36) can be verified by direct
substitution into Eq. (30) if we note that the
matrix (I+K)(J+K)* is the projection onto the
range space of (I+K). Note however that, if (F+P)
is not positive dcﬂnite, then the necessity of
Eq. (28) is not assured and the expression of Eq.
(19) cannot be used for all quantizers Q. (since

O(Q) will equal zero for some Q.]

ults for F reakpoints-Efficac
Expressions
The efficacy N(Q) = N(t,g) of a quantizer-
detector »(Q;*) can be computed from Eq. (28).
For fixed t, 7M(t,q) is maximized when g = g°,
the solution from Eq. (33). Combining Eqs. (23)
and (33) we have that, since (E+P) is invertible,

agx 1e0 = Ueg) = @O e N
For the independent noise (m=0) case, we have
P= 0, and Eq. (36) reduces to

n(s.g°)-(A§)’1-" s
-E f[f(ck V- f(tk)] /r “ £(x)dx}

which agrees with previously esfa%ushcd results
for this case [1 ].

The acynpcosic eff:.ct.ency of the quantizer-
detector using Q“=(t,q ) relative to a quantizer-
detector using Q=(t,q) is given by the ratio of
their efficacies

are@%,Q) = 1(e.a" /Mt (38
Again since t is such that (F+P) is invertible,

Eqs. (23), (37) and (38) imply that

o LenE® tenlld @0
ARE(Q,Q) = 5 T .2 (39)
Liab)d
Specifically, the improvement gained by using 10

over the independent-noise levels g.“- '_lf-l(Lf)
is given by T Sl «i -
0 yto, KeDT@D) DXEE " F+pF Yab)]

areQ’,Q -
Lo en)? al)

If the breakpoints t are chosen so thac
they partition the real line into equiprobabil-

ity segments (under Ho). then g-%__;, and we have




g { ;i the function g, =-f'/f; and the (M~1)XM matrix
- g lee) 1+ A 1cas T (140 aF)) L has entries *°
&3 B ARE(Q,Q°)| = Ea e ¥
ot -t ( af
: L. S @) b NP LIRS VL qup(°1’p,/°”k)| (48)
3 (41) 5 t=
'".l : Note that Eq. (4l) implies that, for 5-5“‘“, : 3 5 )
| (L+2r_) (L+Ar_,) (2(q) - qp,,)E(t)]
Wl Q0 Lo m,
& (Tﬁgx—)i ARE(Q,Q*%)| 2 o g (42) for k=l,...,(m-1) and ¢=1,,..,M .
5 4 min 5'5‘qut max Here 8, 4 is the Kronecker delta and the matrix
i P is frém Eq. (26).
3 where xnx is the maximum eigenvalue of K and Thus, coshining !qﬁ' (33& 'Bd (67} AR e
y )\mm is the minimum aigenvalue of X. (Note that all optimal quantizer Q“ = (tY,q”) will be a
| the right-hand side of Eq. (42) 3’ trivially true S61UL100 0 the aqusrions
since we have by definition of QU that D= 0
.: s on(s )=Lg (49)
b ARE(Q,Q°%) 2 12 (1 +A,, )/(1 + M pa)] ¢ i
{ 0 -1 to
3.4, Choosing Optimum Breakpoints 1 =D g Z (39)

where the quantities g° , XK and [ are computed
for £ = t” from Eqs. (31) - (33) and (48). That
is, under the above assumptions, Eqs. (49) and

E We turn now to the problem of choosing an
optimal set of breakpoints t. An overall optimum

choice of iqunncizet QO = Qo,g_o) will be one for (50) are necessary conditions that must be sat-
which N(t,q) is a maximum over all possible isfied by an optimum (most-efficient) quantizer
) choices of t and g. From the results of Subsec- for a memoryless decision between the hypothe-
i tion 3.2 we have that, for fixed &, chs optimal sis pair of Eq. (1). Given that t” is optimal
i choice of levels is made by choosing g~ from Eq. and (F+P) is positive definite, Eq. (50) is suf-
’ (33)0”"“”“““8 to 5. Writing explicitly ficient for &0 to be optimal; however, the suf-
g =q (t) to emphasize the dependence on t of the ficiency of Eq. (49) can be determined analyti-
solution from Eq. (33), we have cally only for special cases, and a numerical
0 test must be used in the general case.
max (6,0 = (L2 (D). (43) Note that for the independent-noise (m=0)
: 1 case, the entries of the matrix L become
e Thus, as in the independent noise case of Subsec= k=l (M-1
4 tion 2.3, the problem of maximizing 7(t,q) over L =[5 + 5 1/2 o
(£,9) can be reduced to that of maximizing k,4 k,2 k+l,4 fal o
ﬂ(_c_,g.o(g)) over t; that is, we look for 50 to and the matrix P is identically zero. Thus, for
solve this case, Eqs. (49) and (50) reduce to Egs.
L+ S8 0 (17) and (18) so that Eqs. (49) and (50) agree
£ arg{m:x N(E,a (9)} (44) with the previously established results for

and the overall_optiml quantizer will be given SHLS CAS.-

0 0 0 4, Example - 4-level Quantization
b ® €L £)).
1 SRR Example 1 - Gaussian Noise
To illustrate the results cf Section 3, we
consider the particular problem of designing &4-
level quantizers (M=4) for use in detecting
known signals in m-dependent Gaussian noise.

To look for solutions to Eq. (44), we re-
strict the noise process to be such that the
matrix (F+P) is positive definite for every
choice of t. For this case, we have from Eq.

(37) chat
’ 0 5 -1 Specifically, we assume that the noise pro-
ME,a (B) = (M) (F + 8) "(af) 45 cess [NL;L-l,...,n} of Eq. (1) arises from uni-
e:h::cuury condition for £” to maximize (45) is form sampling of a stationary Gaussian process
0 N(t). We assume that N(t) has zero mean unic
grad MN(t,q (Q)I o 0 (46) variance, and autocorrelation p(T)=E{N(t)N(t+™)]
£ E=t given by
Using the identity Bory o (1- ’T,/D) » IT’ S D 1)
a(zﬂ’)"'/l::k = (§+g)'1[3(§+g)/ack3 E+l 0 oIt >0

where D > 0. The samples are taken at intervals
of length D/(m+l), and, at this sampling rate,
[NL;L-l,...,-] {s m=dependent. For this case,

Eq. (49) can be shown to hold if

0
G40 & =1 &% )
0 0 0 T the elements of the matrix X of Eq. (31) are
where the vector g_“ (t )-(gzo(:l),...,gzo(tx_l)) i given by

»
i
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i ‘[j}_:_lw(x.y;oj)]dxdy}/{o(ckm(ck_l)]
t t *
k-1 2-1 (52)

vhere w(x,y;c) is the bivariate density function
of two standard jointly Gaussian random variables
with correlation coefficient p; ¢ is the Gaussian
distribution function; and

Dj'a’.jn/(ﬂﬂ)) = (1-3/(m+l)) ; j=l,...,m (53)

Here, the optimum quancizer Qo-(_go.go) for

the case M= (i.e., 4-level quantization) is char-
acterized by

0 o] 0
=q, = i -qz-ﬂg>0
and (54)
0o_ .0 B S e
“tp =t . czco. :l-:3>0

Since T(Q) is independent of scale (i.e., Tl(u%)-
Q) for |a| # 0), we may thus characterize Q

completely by specifying the upper breakpoint tg
and the levels ratio (q?/qg). Table I gives

values of these parameters for several values of
the dependence parameter m. Note that m=0 gives
the independent case. Also given in Table I are

values of ARE(Q”,Q%°) and ARE(Q?,£.d.) where Qf°
denotes the =0 quantizer and °‘f.d.' denotes the
linear detector (i.e., Eq. (2) with g(x) = x)

which is the optimum memoryless detector for this

case (4] m(QO,on) is a measure of the improve-
ment gained by these techniques over that system
designed by merely ignoring the dependence,and

m(Qo.z.d.) is a measure .of the degradation in
performance due to quantization.

Example 2 - Cauchy Noise
As & second example consider the noise

3 A
process [Ni, 1_1[1‘(2’;.),‘_1 where =

T(z) = can(merf(z/y2)/2) and (2.} _,
process identical.to the process {N‘.}

is a Gaussian
®  of Ex-
a1 Of EX
ample 1. This will yieid a Cauchy noise process
with univariate density f(x)-{ﬂ(lﬂz)]-l. The op-
timum 4-level quantizer for [Ni}:d will also
satisfy EBq. (54) and its parameters are given in
Teble II. Note chat, here, there are two equiva-
lent optimal quancizers for the a=( case. These

are denoted by Q‘i° and Q"°. respectively, and per-
formance of QO relative to each of these is given
in Table II.

Noce that 12 < 0 for some values of m, this
is consistent with results for the unquancized
memoryless case for this example as discussed
tn (4],
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Iable I, &4-Level Quantizer Parameters

for Gaussian Noise
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Iable II. 4-Level Quantizer Parameters

for a Cauchv Noise Process

o | g |adad [are®,qt®) | are(e®. %)

10 1.88 -.227 3.81 2.80

0,10.254 2.92 1.00 1.00
3.94 342 1.00 1.00
3.94 -.238 2.53 2.16
2.13 -.0802| 2.90 2.31
2.12 -.237 3.50 2.63
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