AD=ADS5 167

UNCLASSIFIED
oF |

|
AD

ADBS 187

END

DATE
FILMED

7-78

poc

ARINC RESEARCH CORP ANNAPOLIS MD F/6 17/2

APPLICATION OF TACTICAL DATA SYSTEM COMPUTER=PROGRAMMING SPECIF==ETC(U) .

SEP 67 ¢ HCINDOE; C KIMME» D MILESON NOD024=6T7=C-1413
555=01~4~-81

i, %

ADAOSS5167

—

>-
o
(-
(<l }
L
—
e
[i)
=
[——

FGR FURTHER {m/’)«?ﬁ‘ 4 Publication 5.’:5-!‘"-4-31.2-1

@ /

APPLICATION OF TACTICAL DATA SYSTEM
COMPUTER-PROGRAMMING SPECIFICATION
T0 TAOC

September 1967

5 e

— N T 5tz 1

1 e R =
B{;m L5/ 4 J
i

JUN 14 1978

Prepared for
Naval Electronic Systems Command
Department of the Navy L=
under Contract NO0024-67-C-1413 F

i documént has ben ap; ved |
for public relcase and sc]o;Pi:: ’
distribution is unlimited.”

7R 06 *» o9

INF C RESEARCH CORPORATION

AP —

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO,

3. RECIPIENT'S CATALOG NUMBER

£ s T S T AT

'TCATTON OF TACTICAL DATA SYSTEM SOMPUTER-
OGRAMMING SPECIFICATION TO ‘rT\oc

%, TYPE OF REPORT & PERIOD COVERED

'/:v { e Ty 6. PERFORMING ORG. REPORT NUMBER
, 555=01-4~812
mmiz——;:—l/ 8. CONTRACT OR GRANT NUMBER(s)
¢/ McTIndoe T./ Worley A i P
C/F imme, 3 / lﬁ Mpﬁz&-s'(-c-lhn\

< o Yo} 7 10. PROGRAM ELEMENT, PROJECT, TASK
ARINC ResearCh Corpora.tion AREA & WORK UNIT NUMBERS
2551 Riva Road
Annspolis,Maryland 21401
1. CONTROLLING OFFICE NAME AND ADDRESS o
. Naval Electronic Systems Command "| i s e;pg'f
Department of the Navy v~ . T
e 28 7,)
T4. MONITORING AGENCY NAME & ADDRESS(i! diflerent from Canuomng@ & S ECLRL T Nelotr Ao b fabttls report)
Naval Electronic Systems Command :
Department of the Wavy sl
15a, IS)EELAS“IEFICATION/DOWNGRADING

DISTRIBUTION STATEMENT (of this Report)

UNCLASSIFIED/UNLIMITED

DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, if different frcm Feport)

. SUPPLEMENTARY NOTES

.- KEY WORDS (Continue on revarse side if necessary and identify by block number)

20.

\
ABNCT (Continue on reverse side {f necessary and identify by block number)

A computer-program documentetion procedure. to replace conventional flow
diagrams for tactical date systems is summarized. Two types ‘'of graphic docu-
mentation sre deseribed: Program Flow Diagrams and Funétional Flow Charts.‘\

DD , 32’.’.‘”,‘ 1473

EDITION OF | NOV 65 15 OBSOLETE

UNCLASSIFIED

SE CUNHY cL A

“Iq 2547

SSIFICATION Of THIS PV‘I’ (When Data Entered)

/ C

TANTTONAM

AT AT STATIMANTIIT AT rEr A ,

SECURITY CLASSIFICATION OF THIS PAGE(When Daca ntered)

P ——

LR —

S

i

APPLICATION OF TACTICAL DATA SYSTEM
COMPUTER -PROGRAMMING SPECIFICATION
TO TAOC

September 1967

Prepared for
Naval Electronic Systems Command
Department of the Navy
under Contract NOOO24-67-C-1413

by
C. McIndoe
C. Kimme
D. Mileson
T. Worley

This document has been approved '
for public release and sale; ii
distribution is unlimited.

ARINC RESEARCH CORPORATION
a subsidiary of Aeronautical Radio, Inc.
2551 Riva Road
Annapolis, Maryland 21401

Publication 555-01-4-812

78 06 14 n29

e R T ———

i
E

© 1967 ARINC Research Corporation

Prepared under Contract NOOO24-67-C-1413
which grants to the United States
Govermment a license to use any
material in this publication for
Government purposes.

L

e

gyt ot e i S I L

ABSTRACT

A computer-program documentation procedure to replace
conventional flow diagrams for tactical data systems 1s
summarized. Two types of graphic documentation are described:
Program Flow Diagrams and Functional Flow Charts.

\Whita Spction r

0

<]

131

—_—

e

ABSTRACT 111
1. INTRODUCTION

2. DETAILS OF THE DOCUMENTATION METHOD
2.1 Description of the Documents
2.2 Preparation of the Documents
2.2.1 Degree of Detail
2.2.2 Overall Program
2.2.3 Major Routines
2.2.4 Major Subroutines
2.2.5 Identification

2.2.6 Program Flow Diagram and Functional Flow Chart
Symbols

2.3 Flow Lines
2.3.1 Direction of Flow
2.3.2 Fixed and Optlonal Sequences
2.3.3 AND-OR Decisions
2.3.4 Notations
2.3.5 Annotated Listings

3. EXAMPLE OF COMPUTER PROGRAM DOCUMENTATION
3.1 Program Flow Diagram (Major Routine)
3.2 Program Flow Diagram (Major Subroutine)
3.3 Functional Flow Chart (Major Subroutine)

4, CONCLUSIONS
e RECOMMENDATIONS

APPENDIX A: CONVENTIONAL FLOW CHARTS FOR A HEIGHT-PROCESSING
SUBROUTINE

= EEPEFEPFPOLOOW O

VW N NN

=
(o]

[
H R R

=
O N

=
|}
=

W —

1. INTRODUCTION

Study of the documentation of computer programming for tactical data
systems reveals many shortcomings in the flow charts and program listings provided
for maintenance and operational use. As a result of these shortcomings, oper-
ational and maintenance personnel must often spend long periods of time studying
these charts in order to clearly understand system functions ~- a great waste of
manpower.

To assist in resolving the problem, this report summarizes an approach to
computer-program documentation that was first described in ARINC Research's
publication Tactical Data System Computer Programming Specification*. The method
replaces conventional flow dlagrams with the Program Flow Diagrams and Functional
Flow Charts discussed in the following chapter. An example of computer-program
documentation according to this method 1is presented in Chapter 3.

#ARINC Research Corporation, Publication 414-O4-4-692.

|
»
4
4

DETAILS OF THE DOCUMENTATION METHOD

2.1 Description of the Documents

The Program Flow Diagrams and Functional Flow Charts required by ARINC Research's
computer-programming speciflcatlon use geometric shapes, symbols, and supplementary
notations to illustrate, on a single sheet, the logical flow of data and the sequence
of operations 1n a digital computer program, routine, or subroutine.
of graphic documentation are described as follows:

Program Flow Diagram - The Program Flow Diagram 1s a basic document that
1llustrates the decision processes and the resultant actions in terms of
design logic. The design logic includes tests and actions; examples of
tests are '"Target Closer Than 200 Miles", "Target Displaying IFF", and
"Target Confirmed"; examples of actions are "Set Drop Track Bit", "Subtract
Range from Previous Range", and "Compute New Target Position'". When multiple

actions are to be performed after a test or serles of tests, optional sequences

must be identified to provide flexibility in the programming process. Thus,
the programmer can attempt various combinations to improve the efficlency of
the program.

Functional Flow Chart - The Functional Flow Chart illustrates the programming
process requlred to satisfy the logic-design requirements of the Program Flow
Diagram, and the options selected. In addition to containing blocks for each
logical decision and actlion, the Functional Flow Chart contains blocks for
programming operations such as masking, shifting, incrementing, clearing,
storing, exclusive CRing, etc. The terminology in the decision and action
boxes 1s an encoding of the respective requirement illustrated on the

Program Flow Dlagram. For example, where the Program Flow Diagram displays
"Set Drop-Track Bit", the Functional Flow Chart displays "Set DT=1", where

DT has been defined as the word section or table that contains drop-track
information.

2.2 Preparation of the Documents

Program Flow Diagrams and Functional Flow Charts are prepared to illustrate

the following program divisions:

. The overall program, contalning major routines

. The major routines, containing major subroutines

. The major subroutines

The two types

e

TR

3
|
a

| s

Byl

2.2.1 Degree of Detall

The degree of detall is influenced by the problem, by the programming
language to be used, and by the level of program subdivision being flow-charted.
Flow dlagrams that deal with low-level program subdivisions require more detall
than flow charts that deal with the higher levels. Lines connecting the boxes
illustrate the flow within the diagrams, with separate lines used for each basic
flow. When direction of flow is not readlly apparent, arrowheads show the direc-
tion.

2.2.2 Qverall Program

The Overall Program is documented with a Program Flow Diagram contalning
one block for each major routine. One block 1s included for each peripheral
device which provides an input to, or receilves an output from, the computer
being programmed. Major routines within the overall program have a single input
but may have one, or two, outputs. Major routines are subgrouped to identify
subroutines within the major routine, and to illustrate the relatlonship and
flow between the subroutines. A functional flow chart 1s not normally prepared
for the Overall Program.

2.2.,3 Major Routines

Major Routines are documented with Program Flow Diagrams containing one
block for each subroutine (which is, in turn, illustrated by a separate diagram).
These dlagrams also contain decision symbols, where applicable, to illustrate
decision criteria for entry into the subroutine. Flow lines 1llustrate flow
between the subroutines. Functional Flow Charts may be provided at tnls program
level, depending upon the complexity of the program.

2.2.4 Major Subroutines

Major Subroutines are documented with both Program Flow Diagrams and
Functional Flow Charts 1llustrating, by appropriate programming symbols, the
individual decision, the individual action to be performed in the process 1llus=-
trated by the dlagrams, and the tie-ins to the subfunctional diagram(s) that pro-
duce the input, and receive the output.

2.2,5 Identification

Major routines are identified by name only. However, each grouping block
at each level has an identifying number with a decimal indenture used to indicate
subordination of groupings. Numbers between the first and second decimal indicate
major subroutines within major routines. Numbers between the second and third
decimal indicate subroutines within major subroutines. Additional subordinate
numbering is used as required to identify the subordinate groupings within the
subroutines,

(oot o S

W ——

EXPLANATIONS OF SYMBOLS

TABLE 1

—

Symbol I Example

Represents the making available of
data for processing (input), or the

Basic
recording or displaying of processed
data (output)
Data Card (Payroll Punched cards, card files, etc.
Data

Magnetic Tape

Punched Tape

Printcd Document

orrelation
lala

Data entered manually by on-line key-

Manual Input ter Data boards, awitch settings, etc, at time
and Time of processing
|
Data displayed by on=-line printers,
Display video devices, etc. at time of process-

ing

Mass Storage

Ole|l Q1000 d

Magnetic drums, magnetic discs, etc.
with on-line access

Basic

Processing Symbols

Cubtract

Kepresents the performance of an oper-
ation that changos the value, form, or
location of dates

TABLE 1 (continued)

T
l Example ' Notes

'“‘Px'o‘cessirxk Symbols (continued)

Informative data, such as the data
2233"1‘ unit on which the decision is made

or a sense-switch setting, may be
included in a subdivision of the symbol

Data 1s routed to each of two output g
Switeh and paths by setting a switch, either ;
Branch "set" (S) or "normal" (N).

Decision

0

Informative data, such as the sub-
routine label, may be included in a 5‘,
subdivision of the symbol 3

Subroutine

Manual An off-line process geared to the
speed of a human

Operation Transport {

Punch Off-line operation performed on i
Auxiliary- %
Equipment Dara equipment not under direct control of
Operation the central processing unit
On-line operation performed on equip-
lionauxiliary g‘;’;‘s:tign ment under direct control of the central
gg:ﬁg’:’ig}]) processing unit. Informative data, such
ELDAT as names of data being processed, may be

included in a subdivision of the symbol.

Annotation Symbols

Used for the inclusion of comments or
explanatory notes. The broken line is
extended, in the most convenient direc~
tion, to the appropriate poilnt on the
flow line

N = 160 Indicates a speclal condition exists
Assertion at a certaln point
|
|
For use in updating; should not appear
Insertion N\ (R to EC on final charts

Represents data transmission from one
location to another., Arrows indicate
direction of flow

W —

i

s

2.2.6 Program Flow Diagram and Functional Flow Chart Symbols

Symbols are used on Program Flow Diagrams and Functional Flow Charts to
represent the functions of a data processing program or system. Basic symbols
are established for the functions that are ordinarily included in high-level flow
charts; i.e., input/output, processing, and annotation. Specialized symbols --
within these categories -- are established for the detalled functions that are
ordinarily included in low-level (subroutine) flow charts. The symbols, which
are listed and explained in Table 1, are in accordance with MIL-STD-682, Flow
Chart Symbols for ADP Systems.

2.3 Flow Lines

Stralght lines (vertical or horizontal) are used to show the flow of control
or of data between the symbols on a flow dlagram. Symbols requiring two output
lines normally have both output lines perpendicular to the input line., None of
the lines -- input or output -- are considered to be an inherent part of any symbol.

2.3.1 Direction of Flow

Horizontal flow diagramming 1s required. Directional flow of inputs and
outputs 1s left to right, unless otherwise indicated. A connection of lines to
the grouping boxes 1ndicates program sequence. Lines passing left to right
through a grouping box indicate that the declsion or action listed in the box
must be performed before the program can proceed. Lines entering a grouping
box from the top, or from the left, with no line leaving the right of the box,
indicate an actlon that must be performed at this time. However, subsequent
program operations within thls subroutine are not dependent on the results of
this action.

2.3.2 Fixed and Optional Sequences

Fixed sequences and optional sequences are lllustrated on the Program Flow
Dlagram as follows:

(1) Actions that must be performed sequentially:

Set: Set: || Set:
Track to
et aBI4 shed -T Symbol Change Bit Correlation Gates

(2) Sequences of actions that may be performed in optional sequence:

Calculate: _4 Calculate: = Calculate:
Gy = X~ Xp1 ™ dy Uy ™ My = Ry Gy = %, Taa
Calculate: = Calculate: Calculate:
A
e N M L T M i Tt el TR

Optional sequences are prohibited on Functional Flow Charts since they 1llustrate
the order in which the options have been exercised.

(3) Actions that must be performed at this time in the program but can be
performed in any sequence (the person doing the coding may find an opportunity
to improve program efficiency by changing the sequence of action):

Calculate:

dy = Yn =

Calculate:

2.3.3 AND-OR Decisions
Flow llines 1llustrate acticns assoclated with AND and OR decision as follows:

(1) OR decision:

Y[ﬁ Y Y

Track Friendly- 2
Quality Track IFgegzack
Test Test

5|] |

On Program Flow Diagrams, the illustration implies optional sequence; on
Functional Flow Charts, the actual testing sequence is from left to right,

! with the first test provided in the left symbol.

(2) AND decision:

Y
IFF-Track
Test
Y N
Friendly-
Track Test
J
Y N
Track-

Quality Test

N

2.3.4 Notations

Internal consistency 1s maintalned in Program Flow Diagrams and Functional
Flow Charts by adherence to the following rules:

All text words have 1nitlal capitals, with the remaining letters in
lower case.

References to programs and data units, when they are the names used in
the computer program, are all in capital letters.

References to hardware labels appear as found on the hardware.

No question marks are placed at the end of the text in a decision box;
the symbol 1tself 1ndicates a question.

Text 1s condensed to fit within the symbols; abbreviations are avoided
where possible.

Mathematical notation is minimized unless expressing complete equatilons.
Where possible, text 1s in ordinary English in terms that can be easily
understood.

Questions are phrased (in decision boxes) so that they can be answered
with a "Yes" or "No". Other responses are permissible; e.g.,>, <, = ,
and combinations thereof. If the decislons are expressed in English
words, the first letter of each word 1s capiltalized.

Action 1llustrated by an action box 1s indicated by a statement of the
action in the upper left corner of the box; i.e., Set:, Subtract:,
Compute:, Increment:, etc, The actlon to be performed 1s indicated on
the following lines within the box.

2,3.5 Annotated Listings
Annotated listings Jescribing program implementation are also required in
addition to Program Flow Diagrams and Functional Flow Charts. ARINC Research [
Publication 414-04-4-692 presents the requirements for preparing such listings.
Examples from this publication are given in the followling chapter.

I ——

10

|

3. EXAMPLE OF COMPUTER PROGRAM DOCUMENTATION

The following documents are examples of computer documentation introduced
in ARINC Research Publication 414-04-4-692:

+ Program Flow Diagram (Major Routine)

Major Subroutine Program Flow Diagram (with Functional Description of
Logic Flow)

+ Major Subroutine Functional Flow Chart

They represent the type of computer program documentation that replaces the
conventional flow chart shown 1n the Appendix. The three documents are discussed
in turn in the following sections.

3.1 Program Flow Diagram (Major Routine)

The Program Flow Diagram shown in Figure 1 provides a visibility of the i
Major Routine (Tracking) that is not available from the documentation shown in
the Appendix. The interrelationships of the 18 major subroutines are also
clearly illustrated; the Tracking Routine 1s identified by name only, whereas
each of the major subroutines 1s ldentified by name and number.

P

3.2 Program Flow Diagram (Major Subroutine)

The Program Flow D!agram shown in Figure 2 1s an example of a Major Sub-
routine Flow Diagram; a diagram such as thls 1s prepared for each major sub-
routine., In thils case, the dlagram is for subroutine number 13 (Height Processing
Subroutine). Subroutine 13.1 describes height processing for surface targets,
while 13.2 shows heilght processing for air targets. Within subroutine 13.1 are
sub-subroutines 13.1.1, Height Zone; 13.1.2, Surface Counter; and 13.1.3,
Establish Surface Track. Similar sub-subroutines are shown for subroutine 13.2.

Understanding of the program 1s enhanced by providing brief functional
descriptions of each numerically ldentified subroutine. The functional
description of logic flow for subroutine 13 (shown in Figure 3) demonstrates
how easily this understanding can be achieved by using such documentation.

3.3 Functional Flow Chart (Major Subroutine)

The Functional Flow Chart shown in Figure 4 is similar (but not identical)
to the Program Flow Diagram of Figure 2, which 1s designed to illustrate the
logical method by which the number 13 Height Processing Subroutine was implemented.
Subroutines within the number 13 subroutine are identified with regard to thelr
logical implementation. An annotated listing (not shown) is also required to
further define the manner of logic implementation. This documentation provides
a method for identifying and controlling program changes so that only the specific
program steps requiring changes are affected.

il

NOUSTIRRUN USRS VINSTIFCE-t

INILAOY WOIVN
“NVYIVIO MOTJ WYNI0Ud 10 31dNVX]

1 3903

MYMOVIO MOT4 MYMOOMd INILAON ONINIVML

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED T'0 DDC

INILA0NENS ONISSROONd
4NOIIN ¥O4 WMYNOV!Q MOT4 NYEOONL

INILNONENS YOIVH

“WY¥IVIO MOT4 WYE30¥d 30 314NVXI

Z 3uN9

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COFY FURNISHED TODD0 o

WOVEJ 1DVINAS HSITAVIST £°1°E0

IHOUTH IOV NS 11y
INLLIOMEAS HNISST xMd INOLIN 0 1

ol i s

e
SIS e

e 1%

e TP £

5

|
i
1
|

13. Height-Processing Subroutine

The computer-detector performs the height-finding process by measuring
the time-difference between the direct path and the multi-path return
echo. Results of the CD test are stored in the Helght Accumulator. In
addition to the multipath target feature, other criteria are established
for Helght Processing. Condltlions are provided in Figure 2, 13.2.

Sub=Subroutines

13.1 Surface Height

13.1.1 Height Zone

13.1.2 Surface Counter

13.1.3 Establish
Surface Track

Confirmed surface targets (O height) are processed
in this grouping (Figure 2, 13.1). Requirements
for confirmed surface targets are as follows:

(a) Target not locked with front tag
(b) Target not locked with rear tag
(c) No manual height entered

(d) Valid one echo report

(e) Surface counter indicates five valid single
echo returns

In this section the target 1s tested for position
within the height-finding zone. The helght-finding
zone 1s defined as further than 20 miles, but closer
than 200 miles. When the criteria is met, the tar-
get in Helght Finding Zone Bit 1s set as shown in
Figure 2, 13.1.1.

Rules for counting valid echo for surface counter
are:

(a) Ignore targets in obscuration zone (front or
rear tag set).

(b) Increment valid echos.

In this grouping the front and rear tag are tested
for target location outside obscuration zone, the
surface counter is tested to verify that the surface
count 1s less than 5, and then the surface counter i
incremented by one as shown in Figure 2, 13.1.2.
Subsequently, the surface counter is tested for
being equal to five.

In this sectlion the surface counter is tested for
adequate correlation of valid surface echos (sur-
face counter equal to five) and, provided that
manual height has not been entered, establishes the
target as a surface target by setting present height
to O and previous height to maximum. This ensures

a difference between present height and previous
helght greater than 700 feet, thus preventing false
returns from establishing this track as an alr track
as shown in Figure 2, 13.1.3.

FIGURE 3

FUNCTIONAL DESCRIPTION OF
LOGIC FLOW FOR SUBROUTINE 13

14

"

OFY FURNISHED T0 DDC

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM C

sutwoy uTesecaly ST IO WV A0T4 [WEOTIcUNg

‘IVID MO TVHOLLONRS 0 TNdwvid

¥ 3%

j\

(@ ~(w) sl
1308
——— e ~

o, S-«»Md. 1°2°sT
- mﬁﬁ 4

283umoy sowang 2 1°SY |

0z<
(S0aM)a- (M)A],

p

- [(s0@0x-(0)x]

02<
(Soa)x-(N)x],
2

S0z ASTON [1ST_|

e

buyynodans IuTeescosd BTN 0°ST

4. CONCLUSIONS

Computer program documentation prepared in accordance with ARINC Research
Publication 414-04-4-692 provides extensive improvements in:

» Program visibility
+ Program identification

« Program understanding

« Identification of logic implementation and change control

Sanlas Fe ealod oo sty <

17

S

|
|
|
1
|
q
|
g
q
{

§. RECOMMENDATIONS

It 1s recommended that:

ai

i
i

+ Computer program documentation for new tactical data systems be procured
in accordance with the requirements of ARINC Research Publication
414-04-4-69

+ Computer program documentation for existing tactical data systems be
augmented with Program Flow Diagrams and Functional Flow Charts from the
publication cited above, particularly in areas of:

ERRL S

3 r?A:x,‘

TS T

4 « Low reliability

; + High malntenance requirements

+ Frequent occurrence of changes

! + Exceptlonally inadequate existing documentation

|
i
|
{

iaks S EV N TIES NI NRIRATEY PSR

APPENDIX

CONVENTIONAL FLOW CHARTS
FOR A HEIGHT-PROCESSING SUBROUTINE

q (ago0) }
Singl 8t
! Echo? : H, ?rﬁz |8, - Hy|< 700 Ft.2 4 E
Ahi
& Y N]
P -
3 Is N)
Target <200 Miles? 3
Y Clear Valid Set Valid]

Altitude Bit Altitude Bit o

Is
Target > 20 Miles?

\E
—

g 0 E
. Y ;
E]
E:
|
B Set Target in Front Tag N 3
i Height Zone Bit Bit Set? E
Y
Is Front v Is Rear Tag Y
Tag Bit Set? Bit Set?
:
F N N
E
i
i Is Rear Y Radar Hit N
Tag Bit Set This Time?
| ~ Y
1 AKOO (28 AKOO

—

FIGURE A-1

FLOW CHART FOR HEIGHT-PROCESSING SUBROUTINE

s

—_

‘%WW:“'&-«:«-‘ .

e

i e e I i AN it 8 2

(1A
),

Is Surface More Than
Counter < 5% One Echo?
N
Y Y
Set Hl = ek
Increment ‘
Surface Counter
Decrement
Surface Counter
Is Surface N
Counter = 5%
Y Is Valid Alt.
Bit Set
Is Manual Y N

Height Entered

N

Clear Surface
Counter

Set H2 =0

Is Manual
Height Entered?

N

Set H1 = Max.

Set H, = H.

w
no

o 1

C AKOO _)

FIGURE A-1 (continued)

