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FORWARD

This is the first part of a two part report dealing with Techniques
and Applications of Computer—Aided Circuit Simulation. The topics
discussed in Part I are the backbone of a seminar course, EE 417-2, which
was given Autumn 1973. Support for the seminar from the General Motors
Research Laboratories is gratefully acknowledged.

During the course of EE 417-2 the fundamentals 1quos were
developed. At the same time eight doctoral students used CAD program
SPICE to investigate specific modeling and circuit design problems which
are important in their thesis Studies. These specific problems are
coupled with projects supported by the NIH, JSEP and ONR.

A primary result of the seminar has been to bring together theoretical
and experimental information on CAD and its application which has thus far
been difficult to obtain. <

Part I is a concise statement of CAD techniques with examples pertin-
ent to SPICE. Part Il reports the results of the investigations by the
doctoral students involved in the seminar. The titles of the individual
projects are given in the last subsection of Part I. !

The seminar participants are gratefully acknowledged for their
individual contributions to this report as well as for the collective
feedback provided by the seminar. Special thanks goes to Mr, Peter Slapnicar

and Mr. Tak Young who were major contributors to the seminar via discussions

of CAD techniques and program developments.
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INTRODUCTION

The need for computer simulation is steadily increasing in the design of
Integrated Circuits and systems using IC's. The process dependence of component
parameters and parasitic device effects cannot be adequately breadboarded to
test performance for IC's. Computer-Aided Circuit Analysis provides an efficient
and flexible means to evaluate the performance of circuit designs prior to the
costly and time=consuming fabrication process. Component values and process~
dependent device parameters can be varied to optimize circuit performance and
improve fabrication yields. However, to effectively use these computer tools,
the user must be able to supply the programs with realistic models and model
parameters, Furthermore, a basic understanding of the techniques used for
computer circuit simulation can allow the designer to critically assess the
validity of the simulated resuilts.

This report presents material and examples pertinent to the enlightened usé
of sophisticated computer circuit analysis programs for the design of integrated
electronic circuits and systems. The examples chosen for this discussion are
developed with program SPICE.(I) SPICE is a nodal analysis program which offers
nonlinear dc, nonlinear transient and linear ac analysis of electronic circuits
in a single program. Free format input, built=in device models (diodes and bipolar
and fieldweffect transistors) and circuit nesting features make the program eaéy
to use. The sparse matrix structures and the use of implicit integration and
adjoint network techniques help to make SPICE an efficient simulation tool.

Fundamentals of the SPICE program structure will be discussed in the sub=-
sections which follow. The basic analysis approach, data structure considerations
and a method for numerical interaction will be presented. Next, the method of
adjoint network calculations will be developed and applications will be deseribed.

Finally, and most importantly, advanced MOS and bipolar transistor models will be
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be developed as they are implemented in SPICE. The need for accurate models is

of paramount importance and the requirements to correctly determine parameters

for these models will become clear as one reads the project reports in subsequent

sections.
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COMPUTER—-AIDED CIRCUIT ANALYSIS OVERVIEW

To initiate the discussion, the circuit example shown in Figure 1 will be
used as a vehicle to illustrate the techniques of computer aided circuit analysis.
The three input waveforms shown in Figure 1 drive the circuit so that:

a) the dc steady-state bias=point is achieved,

b) the small signal steady state behavior is determined (as a function of

frequency), and

¢c) the transient output waveform is calculated.

Each of these analysis modes requires the solution of the nonlinear set of equations
associated with the transistor. For cases a) and b) the solution with nonlinear
elements must be found only once. For the small signal analysis (case b)) the
subsequent frequency calculations use the model values linearized about the bias
point. However, for éase c), the transient analysis, the set of nonlinear equations
must be solved at each time=point in the analysis. The solution of the nonlinear
equations associated with the device model is thus the backbone of computer circuit

simulation, Efficiency in achieving this solution is a major concern.

The nonlinear dc solution is achieved by iterative solution of the linearized
equivalent circuits. The so-called "linearized equivalent circuit' is constructed
using the first-order terms of the Taylor series expansion of the nonlinearities
about some initial point. This particular iterative procedure - often called Newton-

(2)

Raphson iteration - solves for the unknown voltages in the Taylor-series expansion,

updates the expansion about the newly found value and continues the process.*

*
Reference (2) is included in Appendix I to provide further comments and references

on techniques of Computer-dided Circuit Analysis.




- 0l

e

Each linearization is made using the solutions from the previous iteration. The

iterations continue until the solution converges to within some specified tolerance

of the value from the previous iteration - for example 1l0uV at every node. All

energy storage elements are replaced by their dc equivalents for the dc

solution. The network equations themselves (with linearized matrix emntries for

(2)

the model) are solved using a modified form of Gaussian elimination,. For SPICE,

the equations are written based on Kirchhoff's Current Law for all the nodes in

the circuit (i.e. nodal analysis). The simplest Gaussian elimination consists of E
constructing an upper triangular matrix from the original nodal admittance matrix,
Y, and determining the node voltages, in sequence, starting from the bottom of the

triangular matrix. This final solution method is called backward substitution.

The SPICE implementation uses a matrix transformation to achieve two matrices U and
L which are upper and low triangular with the property that LU = Y. The voltage

vector is solved for by simple matrix operations involving l.'-1 and U-l. The matrix

operations are easy owing to the triangular structure of the matrices.

The procedures described Qbove are the basis of essentially all nonlinear
computer—-aided circuit analysis. For small signal analysis, with frequency as a
variable, the need for iterations is eliminated once the nonlinear dc solution is
found. Specifically, the model is linearized about the dc operating point. The
ac analysis involves arithmetic operations with complex arguments. However, the
basic approach of the L-U transformation is used to solve for the complex voltage
vector. The energy storage elements have been added to the Y matrix as complex
admittances. ;

For transient analysis the procedure described for the nonlinear dc bias

solution is used repetitively. Since energy storage elements are now included in

the circuit, the solution of the integral~differential equations must be found.
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The solution of the integral-differential equations proceed using numerical
(2)

integration techniques. For example, the branch relationship for an inductor,

in integral form, is:

t+d

1
iL (t+d) = :i.L (t) + I vL(.l.) dr

.

and the integral can be approximated as:

i (t+d) = i (t) +%VL (t+d)
The choice to approximate the integral using the yet to be determined voltage at
t+d is a form of implicit integration. Now the branch relation for the inductor
at time t+4 has a form equivalent to a current source, iL(t), (a constant since
we have just solved for its value) in parallel with a conductance of value A/L.
A similar branch relation exists for capacitive elements. The result is that at

each new time point t44, the energy storage elements are replaced with their equiva-

lent circuits which approximate the integral-differential branch relationships.
The nonlinear solution of the circuit equations can then proceed at that time point,
Jjust as originally described for the nonlinear dc condition.

Figure 1 and the above discussion have been used only to introduce the elements
of computer—aided circuit analysis. The following subsections will expand these

ideas and illustrate their implementation using the example in Figure 1 and the

algorithms in program SPICE.




MODEL LINEARIZATION

Modeal linearization is the first step in obtaining the nonlinear dc bias
point for an electronic circuit (for example the circuit shown in Figure 1). To
show more precisely how the linearization proceeds, let us begin by considering

)

the bipolar transistor model showin In Figure 2. The equations associated with

the elements are:

Tep = I (eqvaz/m_ -1) ' (1)
Icc = IS (equC/kT =13 (2)
CE = CJECVBE) + 3;%2 © Tp (3)
G B Vgl Ek%g : T;‘ 4

where Is is the base transport current (IS = QFIES = QRICS for conventional Ebers-

Moll notatiom); VBE and vBC are the junction voltages; CJE and ch are the voltage
dépendent depletion layer capacitances and TF and TR are the forward and reverse
transit times which describe the diffusion capacitances due to minority charge
storage.

The two diodes labeled as ICE/ﬁF and ICC/SR in Figure 2 represent the forward
and reverse contributions to base current, using the exponential relationships given
by equations (1) and (2). The ICE and Icc terms are the forward and reverse base
transport currents. The linearization of the four exponentially nonlinear elements
shown in Figure 2 is essential to initiate the iterative solution for the dc bias

point of the circuit shown in Figure 1. To illustrate the linearization procedure,

consider the exponential diode relationship for ICE/B as is shown in Figure 3a.
F
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If an initial operating point V is chosen, a linearization about that point

BEO

can be made by the parallel combination of the current source and conductance

shown in Figure 3b. The element values are:

e (I_c_x_a) s Vsroser (%
Prro T W, C ! KT8,
BEO
Tee
Togro ™ Py Cprro VBEO (6)

BEO
In equation (6) the first term represents the actual base current for a VBEO
bias. Performing the same procedure for the other exponential relationships,
the composite linearized dc model is shown in Figure 4. The "0" subsaeripts have
been dr;ppcd since we will no longer restrict ourselves to the initial values
of the linearization. For the linearization of ICE and Icc it should be noted )
that the conductances are in fact transconductance generator elements. The
importance of this result will become apparent as-the nodal admittance matrix
is generated for the circuit shown in Figure 1. The additional terms in Figure

4 have values given by:




: G, = J 1 (10)
MR SV-' ( CC)
BC
The two current generaiors aFIBEF and BRIBCR could easily have been expressed

in a form more like equation (6) by defining:

.
it il bt S Mo el b a s

9. -G, . (11)
I = I -G e (12)

and BRIB = I thus only the form

It follows immediately that BFI CR CCR’

BEF " lcEF
given in Figure 4 is used.
The means for applying the results shown in Figure 4 can now be summarized.

Before each new iteration to solve for the dc bias point of the circuit shown in

Figure 1, the nonlinear equations describing the transistor model are linearized

"

about the voltages from the previous iteration (or some default values for the

first iteration). Figure 4 shows the linear elements used to represent the Bipolar

Transistor, In the next subsection the entering of these model element values into

the Y matrix will be demonstrated.

E
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NODAL CIRCUIT ANALYSIS

A, MATRIX FORMULATION

Having considered the linearization of the bipolar junction transistor model
(as an example of a nonlinear element to be utilized in a circuit design) we can
now proceed to see how the linear elements are entered into a formulation which
can be solved efficiently using numerical techniques. The approach used in SPICE
is to comstruct and solve tpe Kirehhoff Current Law equations for each node of the
circuit. The circuit shown in Figure 5 represents the bipolar circuit from Figure 1
with the transistor replaced with its linearized equivalent model shown in Figure 4.
All energy storage elements have been removed from the circuit for the dc analysis.
All node voltages are referenced to the ground node (which is numbered "0''). The

current law equations for nodes 1l=5 are written below:

— . -l =t = -
. =G ) :
Node 1: (GIN) ( JINI (o} o o V1 Iv
IN
2: 54 =
Node : -GIN) (GIN+GPIR+GPIF) (-GPIR) 0 0 V2 IBCR+IBEF
3: o » = -~ +8
Node 0 46,6, =Gpr) (G#Gp#G,) (<60 0 ||V, acR” FIBEF
PR BCR
4: - G_+G
Node o) ) (o} ( Gc) ( x L) (-GL) V4 0
Node S: (o] 0 (o) (=G_) (G,) v I
L S L L_J 5] . VLL ]
The currents are taken as being positive out of each node. The terms I and I
VIN VLL

are the currents through the voltage sources. These current values are determined
by other circuit elements and since the voltages are constant, the nodes can be
rearranged so as to move them to the bottom of the matrix. The five equations
were written directly from Figure 5, The following rules can be applied to

write the equations knowing only the nodal connections of the elements. For con-

ductance between nodes i and j the value is added to the diagonal entries yii and

9

(13)

R s R S A e K2




y 13 and is subtracted from the off-diagonal entries y 1j and y 44 For a transconductance
the reference polarities and node numbering shown in Figure 6 can be considered. The
transconductance term.gm is added to the matrix terms Yik and ij and is substracted
from the yil and yjk terms. This usually results in a non-symmetric matrix structure.
For the case shown in Figure 5, 2=J=0 for the GHr generator, thus only the Y32 term
is non-zero. For the GMR generator i=0 so that only the Y33 and y3z entries are non-
zero., It follows that equatioh (13) could have been written directly from a list of
element node connections and prescribed linearized forms for the nonlinear device
models. However, equation (13)’15 not necessarily in the most convenient order for
efficient solution of the network squations. The voltages at nodes 1 and 5 are knownm,
and it is convenient to reorder the matrix to utilize this fact. The Y matrices
encountered in nodal circuit analysis generally contain many zero terms. These zero
terms can easily account for 50-80% of the Y matrix. It is possible to take advantage
of ghe sparsity of non-zero terms to reduce the memory required to store the Y matrix
and to reduce the number of numerical operations required to solve the nodal equations.
Appendix II contains a detailed description of ome particular implementationtb) of
what has come to be called "Sparse Matrix Techniques". The following section illuﬁcrates
the features of the sparse matrix technique for efficient storage and L-U factorization.
The circuit from Figure 5 is used as an example and the notation is that of Berry(a).
B. SPARSE MATRIX SOLUTION*

The first step is to reorder the rows and columns (as is shown in equation (14))
to: 1) move the known node voltages Vl and V5 to the bottom of the matrix; andl2) move
V3 to position shown in equation (145. The secoﬁd step was needed to minimize fill-in

during the L-U transformation. The details of checking for fill-in are discussed in

the Appendix. The resulting equations are:

* While the sparse matrix approach can offer computational advantages it can also
obscure the basic solution approach. Because of this conceptual draw-back it is

suggested that the reader skip to equation (17) for the first pass.

10




i 1 G r’ ' = |
@1x*%p1r*Op1r’ 9 (=Gon) :“C’m) 0 Vo (Ipen*Ipep’ ;
' |
) r | 14
: =6) | ¢ f
k 0 (GC+Gi) o i 6| | vy 0 2
: |
| {
(4-6“ Gm—cpm) (-c,c) (Gc+Gpm+Gm) , 0 0 Vil =~ ('Isca*”rlazr
)
__________ B e e o e e | -
Palpcr’ (14)
3
('GIN) 0 0 (Gm) 0 v, & |
IN
0 (=G,) (0) 0 G v I
— L E_ Ly ?— L vLL 3

The 3 x 3 matrix shown in the upper left corner of equation (14) is the only portion
. of interest since V1 and V5 are known. What is done next is to create pointers to
the non-zero entries in this 3 x 3 matrix. This is best illustrated by redrawing

the matrix with 1 and O entries corresponding to non-zero and zero entries respectively.

Corresponding to columns and rows 1-3 of equation (14) the following structure exists:

1 2 3
1 e 0 1
\ -
2 0 il 1 (15)
™ -~
3 1 1 ~ 2

A column array is created which contains the diagonal Y matrix entries and the non-
zero upper and lower triangular matrix entries in a prescribed sequence. Two arrays
of pointers are created to identify the matrix indices of the non-zero terms stored

in the column array. This is done in two passes: First pointers to every non-zero

entry in the entire matrix are created, next this is collapsed to a set which points J
|




either to upper or lower triangular entries. In the ''first pass' array IUR
has n entries corresponding to the n~nodes of the circuit. The ith entry in
IUR indicates the first position in the second array, IUC, which contains a non-

t
zero element in the i . row of the Y matrix. The IUC array contains the column

positions of the non-zero off-diagonal entries in each row of the matrix in sequence.

For the 1th row, IUR points to the first entry in IUC. Further entries in IUC
contain subsequent column numbers of matrix positions. Por the 3 x 3 matrix
given in equation (15), the IUR and IUC arrays contain the following entries on

the first pass:

IR (1) =1 I1I0C (1) = 3
IR (2) = 2 1IUC (2) =3
IR (3) = 3 e 3) = 1

ITC (4) = 2

For example, IUR (3) ';points" to IUC (3). The IUC.(3) and IUC (4) entries indicate
that columns 1 and 2 have ron-zero terms in the 3*d row. The ''second pass'’ compares
entries corresponding to the upper and lower triangular portions of the matrix.
A set of pointers is then choosen so that the matrix is assumed symmetric. This
new set of pointers correctly seiects all non-zero entries but in addition may point

to a limited number of zero terms corresponding to the non-symmetrical entries. ‘For

the example given by equation (15) the new pointers are:

IR (1) = 1 IUC (1) = 3

IR (2) = 2 IUC (2) = 3

12
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Notice that only n-1 rows are now needed. Considering the upper portion of the matrix,
IUR (2) points to IUC (2) which in turn indicates that the 3rd column of row two

in upper triangle is non-zero. The same pointers refer to the lower triangle in

that the IUR entries now go column by column and the IUC entries tell the row of
non-zero entries, Thus IUR (2) indicates that in the 2nd column we must go to

IUC (2) to find non-zero entries in the lower triangle of Y. IUC (2) tells us that
the entry in the 3rd row of column two is non-zero. To see how the pointers and

column array fit together, let us enumerate the Y matrix entries in equation (15).

ni 0 n3
s Y22 Y23 as
Y31 Y32 Y33
The overall data structure is:
pointers colum arrays
1
IR (1) = 1 = A(1)
IR (2) = 2 y22 = A(2) diagonal entries
y-33 = A(3)
IUC (1) = 3<-————-)y13 = A(4)
£ upper triangle entries
\ \

A
\\ y31 = A(6)
N

% lower triangle entries

N—

y32 = A(7)
The diagonal entries are of known number and location. The index of IUC tells
the total number of entries in either triangle. Thus the starting location of the

upper triangle in the column array is n+l. For the first lower triangle entry, the




position is at n+l incremented by the maximum index for IUC.

This rather long procedure has given us a sparse pointer structure which locates
all non~zero entries in the Y matrix. Using these pointers, the following algorithm
can be used to calculate the L and U matrices sucﬁ that LU = Y. The procedure must
be executed n times (where n is the numbher of circuit nodes) and the superscript

h

indicates the 1t or 1-1“ row=column step in the procedure.

uj_‘j - yf;'-l) for all j>i
(i=-1)
1 = T o e
Y4
1) (1-1) _
and ka-ka lji U for j and k > i

Once the entries in the L and U matrices are known, the selution for node

voltages is straightforward. Namely,

Yv = LUy = 1 Qamn)

1

Inverting L and multiplying both sides of (17) by , one obtains:

U =L M4 & i*- (18)

1

Inverting U and multiplying both sides of (18) by U™, the desired voltage vector

is obtained:

1 1

- E - -
R Ll (19)
This procedure is used for nonlinear d¢ and transient analysis with iterative

solutions as models are updated at each new set of node voltages. The procedure

14
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is also appropriate for ac analysis using complex arithmetic and linearized model
entries.

The circuit example given in Figure 5 is rather simple and does not give a fair
picture of the storage and computation savings that are possible using the complete
Berry algorithm. A more typical circuit to be analyzed and the resulting matrix
structure are shown in Figures 7a) and b). For this case the number of zero-valued
entries is substantial. The X's in Figure 7b) indicate the original Y matrix entries
corresponding to the uncircled node numbers. The 0O's indicate "fill-in" in the L and
U matrices resulting from the decomposition. Figure 7c) shows the matrix structure
for the same circuit but with the nodes renumbered as shown by the circled node numbers.
It is clear from Figure 7c) that fill-in is considerably reduced as is shown by the
substantial decrease in "0'" entries. For the example cited in Figure 7, the following
reductions in arithmetic operation counts can be achieved:

DIV MULT and ADDS

Straight LU decomposition 378 6930 ea
Renumbering and no sparse pointers 134 746 ea
Renumbering and sparse pointers 63 169 ea

The reordering aspect of the Berry algorithms is described in Appendix II.
The primary purpose of the discussion of sparse matrix techniques has been to

illustrate the creation of the pointer structure needed for sparse storage and the

.
|

|
|
I
‘

steps needed for the L-U factorization. A general result which can be stated
regarding the computational efficiency of using Sparse Matrix Structures is that the

long operations count (multiplications for example) descreses from n;3 to a number

more nearly proportional to n, where n is the number of nodes in the circuit.

15
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NUMERICAL INTEGRATION

As was suggested in the overview, numerical integration approximations are
used to solve the integral-differential circuit equations in the time domain.
The form of the integration rule which is used can make a significant difference
in both the speed and accuracy of the computer-simulated results. If we consider
the integration of a function £(t), three common approximations(z) which can be

made are:

t+d & . £(t)
S Eergr ™ | & . £lre6) (20)
t 5 [rm + t(t+A)]

These integration rules are crlled Forward-Euler (F-£), Backiard—Euler (B~E) and
Trapezoidal (TR) respectively. 1he first method is an explicit scheme in that it
unes a known function value to approximate the integral. The Backward-Euler and
Trapezoidal are implicit in that they use a not-yet-determined value of the function
to approximate the integral. The use of the implicit integration rules has been

?n important advance for computer circuit simulation owing to the improved stability
of these methods over Forward-Euler for a given step size. It is well knovn(z)

that the explicit integration may proceed no faster than the smallest time constant
of the circuit to maintain a stable solution. In the discussion presented here,

the accuracy and stability properties of B-E and TR integration formulae will be
developed and compared with that for the F-E method.

First, let us understand exactly how the integration formulae are applied

computer~aided circuit analysis. It has previously been shown that for an inductor

the branch relationship requires that:




t+4A

iL(t+A) = 1L(t) + % vL(T)dv

t
Hence our numerical approximations to the integral can be applied directly.

The results are:

1, () +% v, (£) (F-E)
k A
iL(t-l-A) = -L(t) + i VL(t-l-A) ' (B=E) (21)

A A
iL(t) + 37 vL(t) + 3% vL(t+A) (TR)

These three results can be represented as the branch equivalent-circuits shown

in Figure 8a. These eleuent-values.ate entered in the Y matrix at each time

point and the solutioms for t+d is found using Newton iterations. Note that

the current generator values may change as time proceeds. If the program includes
variable time-increments, 4, then the conductances also change value with time.

E: Constant-valued capacitive elements impose the following branch relationship:

av.(t)
ic(t) = c:-;ﬂ (22)

which can be rewritten as:

t+h
S 1c(f)d1- -Vc(t+A) - Vc(t) (23)
t

Qlw

Again we can apply the integration rules to obtain the relationships:

17




4
vc(t) + = ic(t) (F-E)

[§]
vc(t+A) = vc(t) +% ic(t+A) (B-E) (24)
v (t) +48 i (t) +08 i_ (t+4) (TR)
o] 3¢ © 3 ©

These results can be represented as the branch equivalent circuits shown in
Figure 8b. The circuits shown in parentheses are the Norton equivalents which
are more appropriate for nodal analysis.

Thus far, only constant valued energy storage elements have been considered.

Assume that the branch relationship is now defined by the equation:

=18 g
1o(t) = 2, q(vc(t)) (25)

Integrating both sides of the equation yields

t+d

S 1(r)dr = Qv (t+d)) - afv ) (26)
t

For this case the integral must be approximated, as before, but in addition the
nonlinear Q relationships must be linearized. The result is that Newton-Raphson
iterative procedure must now be applied to nonlinear energy storage elements as
well as to the dc transistor model nonlinearization. '
A primary result of the preceeding discussion is that equivalent circuits
are created to approximate the integral-differential equations associated with

energy storage elements. These equivalent circuits are used with the standard

iterative matrix solution methods developed for nonlinear dc analysis to solve for




circuit behavior in the time domain. The question of relative accuracy and

stability of the several integration methods (F-E, B-E and TR) is now discussed
in the context of the simple circuit example..shown in FPigure 9. The voltage
va is the variable of interest. It is apparent from the circuit that

vp(t) = E - v (t) 27)

so that

vR(t+A) =E - vc(t+A) (28)

We can now apply the integration formulae given by equation (24) to approximate

vc(t+A). That is, using equation (24) in equation (28):

4
z 1c(t) (F-E)
i ity e -g 3 (t+8) (B-E) (29)
£ 5
Gis 5 1a(t) + 4
e 50 L(t+)  (TR)

It is true that for any time t (or t+d):

VR(!:)
1o(e) = ip(t) = = (30)
Thus using equations (27) and (30) in equation (29) one obtains:
Y
70 VR(t) (F=E)
v -

4

£‘C Valt) + 3pg Va(t4d)  (TR)

19




These equations can be rearranged to give the following recursive relationships:

vty (1- £) (F-E)

vR(t+A)- vR(t) ( 1 ) (B-E)
1+:

I
va () ( 27) (TR)

A
1 +32

(32)

where Teac. For a step voltage input, the initial value of v is VR(°) = E .

By applying the formulae given by equation (32) repetitively for n equal A's the

result is:
n
A
Eo (1 - * ) (F-E)
n
r (L (B=E)
VR(nA) = o\ +§ (33)
n
B
Eo 2 (TR)
1 4+ =
2r

The exact solution for this circuit and step stimulation is:

v R(t:) =~Ee (EXACT) (34)

Al

so that for t = nd:

na
#
v R(nA) = Eoe

(EXACT) (35)




Several comparisons can now be made using equations (33) and (35). For a
single step (n=ml) the accuracy can be compared for several values of &4, The results

for 4 = .17 and &4 = r are given below.

F.E. B.E. TR. EXAET
ACCURACY: A - 5
A 3L l = — T
(1 - —) 3 2T e
% 1 +=2 1
& v 27
A = 0,17 0. 90000 0.90909 0.90476 0.90483
A =7 0.0 0.5 0.333 0.368

Clearly it can be concluded that the trapezoidal approximation gives the most
accurate approximation to the exact solution for a given time step A. The stability
of the methods can be demonstrated in an approximate sense by seeing for what values

A the solution begins to oscillate with odd and even values of n. The results given -

below show several things.

F.E. B.E. TR. n
A
_aY} L & L= 5
STABILITY: = a i
1l +— A !
T 1+5= }
T
STABLE FOR | O<d<r o<is 0<A<2T
n
E s 1 n
' FOR VERY (— -) < (-1
3 LARGE * (—) )
: A i
A1 DIVERGENT STABLE STABLE ;
% AND OSC. BUT OSC.

First, the solutions exhibit oscillations only for F-~E and TR when & is greater than

; n
v and 2r respectively. The B~E formulation is stable in the sense that the ( X )

I +=




recursive expression never oscillates in sign. The second comment to be made is
with regard to stability for very large values of A. This consideration shows
that F-E not only oscillates but diverges from the correct answer. Both B~E and
TR are stable. However, for TR the oscillations still persist for conditions
such that A>2Tt.

Program SPICE uses the trapezoidal integration rule. Thus the solutions
are of the'greatest accuracy for the correct choice of time increments. However,
for increments which are too large ringing can be observed in the waveforms. This il
is most often eliminated by decreasing the internal program integration increments
while maintain;ng the same output plot increments. It might be thought that the
backward euler formulation would be a better approach owing to its unconditional
stability. However, one major drawback should be stated. There is no easy way of
telling when accuracy is degraded due to excessive time-step increments. With
trapezoidal, the oscillation problems occur at about the step increment where accuracy
is also degraded. Thus, by using a proper increment step control both the accuracy

and stability can be maintained for the trapezoidal method.
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ADJOINT NETWORK ANALYSIS

In the preceeding subsections numerical and network analysis techniques
have been described which are the basis of computer-aided circuit analysis.
In this section the principles and application of the adjoint network will
be described. Although the topic may at first sound theoretical and unrelated
to practical circuit analysis, i; reality the technique is easy to apply and
has had a major impact on integrated circuit design using the cbmputer.
,Specifically, adjoint network tgchniques are used to provide efficient noise

(e
(s) dc and ac sensitivities of circuit outputs to parameter variatiomns

" analysis,
and finally "désign optimization'. One hesitates to use this last term owing
to the many misconceptions as to its meaning. In fact, the adjoint network
can be used along with the standard network techniques to perform two types
of analysis which together might be called design optimization. Sensitivity
analysis is used to deteryine the gradient of.a circﬁit output with respect
to the circuit parameters. A performance index can be defined and the devia-
tion from this index can be minimized using the gradient information and some
algorith to seek the minimum. For example, the Fletcher-Powell search algorithm
is commonly useg?) This approach is called design optimization. Stated more

' exactly, one can shy that sensitivity analysis is used iteratively with some
search algorithm to minimize an error function. A minimum error should thus
guarantee an ''optimum' design. Unfortunately, circuit parameter tolerances
about this optimum design can cause a poor production yield. This is
especially true for integrated circuits where exact component values are
difficult to guarantee, For IC's it may be more advantageous to define an
optimum design in terms of a production yield. Adjoint network analysis
techniques can be used to perform worst-case and statistical analysis. In

both cases the adjoint network provides an efficient means to analyze the
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effects of numerous possible circuit variations The added information
from such simulations can lead to an optimum component value and tolerance
assignment. In this case the objective might be to optmize yield. One
can see that the efficient analysis of many possible component values is
the key to optimizing a design.* Use of the adjoint network provides these
needed analyses with a minimum increase in computational expense.

To compute the sensitivities for a variable, say the changes in voltage
AVI across a current source IT' we assume that an expression for VI can be
written:

VI = f(pl,p2 AP pp) ; (36)

where the p's represent the parameters which give rise to the observed AVI.

The change, NVI is then given by:

P
2,
v, = E 3, Sp, (37)
il

and each term %ﬁk represents the sensitivity of VI to the change in parameter
pk. Our task then is to find an expression of the form of equation (37) and
to identify the proper sensitivity terms., Toward this end the adjoint net=-
work is now introduced. This mathematical formulation along with the proper
reordering and.identification of terms will facilitate the desired result,
The starting point, for considering the adjoint network is Tellegen's

® The theorem states that if we have two topologically identical

Theorem,
network (i.e. the same graph structure, branch numbers, node numbers and

&
orientations) - call them T and T with VT, and Yk-qk voltage-current

»
It should elso be realized that the real key is to have a good design to
begin with., However even initial designs can be marked improved by knowing

sensitivity information,
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identifi< tions respectively =~ then

b
X ® o\
Z"kk-

kml
b
2
kml

where b is the total number of branches of the network. Figure 10 shows

> (38)

L}
(=}

the networks 1§ and ﬁ'schemﬂtically, along with a network n+dn which represents
incremental pertubations to the voltage and current vectors of network mn.
All three networks'satisfy Tellegen's theorem and it can be easily shown by

application of equation (38) that 47N also satisfies the theorem so that:

5 )
Z it =
‘ kml
1 > (39)

b
IR
k=l

Subtracting the above equations from one another it follows that:

[ |
o

[ |
o

/

b

Z [Avkek -var] =o (40)
il

This equation is fundamental to determination of sensitivities and the
definition of the adjoint network.
Consider now the possible branch relationships defined by Figure 11
for current sources, voltage sources, resistors and conductances. Equation (40)
. can be rewritten in terms of this notation with summations taken over the

respective number of branches for each element type.
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2 [Avvd)v - wvuv] + z [AVI'DI - YIAIII (41)
v 1
+Z [AVR¢ 2 YRAIR] + Z [AVGQDG 5 YGAIG] =0

R . G

The exact relationship for the change in voltage across a resistor, for example,

is:
v Hv = (Rn*“a) (IR+AIR) : (42)

If the second order term in ARRAIR is neglected then it follows that:

I\'g
e IR ARR"H!MR (43)
using equation (43) in the summation over resistive branches in equation (41)

the result is:

2 (4v4% - ailp) Z[Ma R'r * RR8Ig%y - Ya‘ua] g

R

i E [ABRI B + A1y (Rn°a 2 Ya)l
e g,
(a) (b) (e)
The three terms identified as (a), (b) and (c) are now considered. We want
to determine variations based on (a), however term (b) also enters into the
summation and is an unknown quantity., By choosing the relatiomnship in (c)
so that:

A
Yn = Rﬁ?n (45)

then the second term in equation (44) goes to zero and only the desired term
is left, Wwhat has been done is to define the adjoint branch relationship

given by equation (45) so that this happens, Notice that this so-called adjoint
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network ﬁ satisfies Tellegen's theorem with regard to n but the branch

relationships may be different. The same result is obtained for conductances

so that:
¢ - =
Z(AVG : ‘!’GAIG) - Z 86.V.Y, (46)
G G
and 4 :
-
G ™ GGYG (47)

It can be seen from equations (45) and (47) that resistances and conductances
translate into the same relationships in the adjoint network. Using equations

(44) and (46) in equation (41):

Z[Avv°v ; Yv“vj * Z[szpx - YIMII
1

v

i Z AR T8, + ) ~8GgVoYg = ©

. G
which can be rearranged so that:
EYVAIV + E -AVI°I -
v 1
LAy + L 01Ty + FARRIE, + 30 ~8GgV oY s
v 1 R G

It should be noted that all summations on the right-hand side of equation (48)

contain variations in the element values themselves (i.e. AVV, AII. ARR and




AGG) while the variations on the left-hand side of the equation pertain
to either voltages across current sources or currents through voltage
soucres (AVI and AIV respectively).
It is now a fairly straightforward matter to show how equation (48)
can be reduced to the desired result given by equation (37). We have defined

branch relationships in the adjoint network. By an appropriate choice of

stimulations of the adjoint, Yv and GI; the respective Qv. YI, OR and YG
can be solved for. If we choose all %v and 0& to be zero except for the |

single current source for which we want to determine output voltage sensitivity

we obtain:
o ® 4
av, |- ZAvvq’v + ZAIIYI (49)
n n
¥ 1 g

all other
!v and ¢I
are zero + RZAR"RIRQ’R * Z-AGGVGYG =

By setting ¢I = -1 the form of equation (49) looks very much like that of
n

equation (37), 1In fact, the sensitivity of vI to changes in RR for example
n k
is then 25 =1 8§ ., To determine these sensitivities one appropriately
Ly R L
k

stimulates the adjoint network and solves for the ¥ and § vectors. Since the

original V and I vectors are known, the sensitivities can be constructed.
Several factors must still be discussed before the adjoint network method

is in a form suitable for application in computer aided circuit analysis.

Branch relationships for all eleiﬁnts (i.e, storage elements and controlled

sources) must be defined. In addition, the approaqh must allow calculation

of sensitivitiegs across elements other than the restricted case for voltage ;

and current sources which is suggested by equation (48), Finally, a means
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for the implementation of the method must be described.

The definition of all elements in the adjoint is shown symbolically
in Figure 12. For purposes of nodal circuit analysis the transconductance
element is the single most important_rolationahip for active circuits which
was not considered in equation (48). For a voltage-controlled current source

with input V_ and I1 = 0 and output 12 = gmV_ with V_ arbitrary, the adjoint

1 1 2

relationships are:
!2 =0
§ =en¥, (50)

Yl, arbitrary

These relationships are shown in Figure 12.

?he application of the adjoint method to calculate variations across
elements other than sources is a straightforward matter, If the current
through some arbitrary element is desired, then a zero—valuéd voltage source
is entered in series into the network and the AIV can be calculated as
S described above, Similarly voltages across elements can be calculated by
. adding zero-valued current sources in parallel with the elements for which

AVI is desired. The net result is that the original circuit is modified
appropriately so that the desired output ports can be stimulated in the
adjoint network to determine sensitivities.

The method of computer implementation for the adjoint is found to be
straightforward. ToO compute Y and §, the adjoint matrix ? is needed, However

since 0 and'ﬁ are interreciprocal:

l ? = {T (51)




and using the L-U factorization:

L’y = 3 | ' (53)

It should be clear that once L and U have been éonstructed for the original
network, the subsequent adjoint analysis to solve for ¥ and P is considerably
less time consuming. In fact to a good approximation, if the original solution
for V takes 2 unit of time, the subsequent solution for Y take .l units.

In conclusion, the adjoint network is an efficient means to compute
circuit sensitivities. The adjoint network résults from an application of
Tellegen's theorem and the proper definition of branch relationships in that

network, The adjoint admittance matrix is obtained simply since:

A
Y=Y =Lt %

The operations to obtain UT and LT are trivial once U and L are known. Thus

the adjoint calculations require a minimal amount of additional analysis time.
The sensitivity calculations are the basis for computer circuit optimization
using gradient search methods. Sensitivities can also be used to perform noise,

statistical and worst-case analysis.
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e 4

BIPOLAR AND MOS TRANSISTOR MODELING

(3

The linearization of a simple bipolar transistor model was used

earlier to demonstrate model implementation for computer-aided circuit

analysis, In this subsection the specific features of the Gummel-Poon(g)

bipolar transistor model and the shichmnn—Hodges(lo) MOS transistor model
will be discussed. ’However, to understand the need for such advanced model
formulations consider again the simple bipolar transistor model shown in
Figure 2. The-collector current characteristics for this model are shown
in FPigure 13a. The additional characteristics in the figure show the
assumed voltage dependences for IB and Ic and the resulting current gain

dependence on Ic. Finally the transit time is assumed constant with current

level. The junction space-charge capacitances have the familiar voltage

depe.: ce:
o/
CV) = (1—(;.)“ (55)
3
where cJo is the zero-bias capacitance, § is the junction potential, m is a

coefficient ranging typically from 1,2 to 1/3 and V is the junction voltage
(positive for forward bias). When the experimental behavior of integrated
bipolar transistors is observed, the characteristics are more nearly those
depicted in Figure 13b, Namely, the Ic vs VcE behavior shows a non-zero
slope in the normal-active region which is the device output conductance
resulting from base-width modulation. In addition, current gain is not
constant with collector current which results from the low-lievel recombination
and high-level injection effects shown by the Ic and IB curves as a function
of VBE' Finally the high current effects also increase the transit time
resulting in a decreased cut-off frequency. The measured junction space-—

charge capacitance can still be adequately modeled by equatiomn (55). To

achieve model behavior for the bipolar transistor which correctly predicts
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the characteristics shown in Figure 13b, second order device effects must be
accounted for,
A. THE BIPOLAR TRANSISTOR

The Gummel-Poon model incorporates the second\order effects described
above within the basic model formulation shown in Figure 2. The transport

current is modified in the Gummel-Poon model by dividing I_, by the normalized

S

based charge term, Q.. Q. is the total majority charge stored in the base

B B

region, Base width modulation tends to decrease QB and the collector current
thus increases. High level injection adds majority charge to the base, thus

increasing QB and decreasing Ic. The implementation of the Gummel=-Poon model

in SPICE defines QB in terms of the following parameters:

<+

v v
Q1 =1 +VB_C_ +V;.E P (56)
A B
I qv I qVv
0 =gt o (S| o 2 fome (528)
)3 kr
Q, =k[a, +/a,2+ 4 (58)
3 - 1 1 2
vhoroIs, Ik and VA are defined in Figure 13b for the normal-active case. The

parameters Ikr and VB are similarly defined from the reverse—-active characteristics,

The Is intercept is the same for forward and reverse operation by the nature of
the transport model tornulation.(g) The Qz term represents majority carrier
base charge that is added via injection, The Ql term represents spaces«charge
widening effects on QB' Equation (56) assumes that éhangea in base charge are

linear with junction voltage thereby implying constant junction capacitances.

The resulting expression for ICE-ICC (see Figure 2) is:
e qv qVv
x X (_.ss) - exp (526 50
g toe ® 3, [oxp T exp \ =% (59)
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Base current in the SPICE Gummel-Poon model consists of four terms.

The diode terms shown in Figure 2 represent the ideal components., That is,

these base current terms have an exp(%%) dependence and give curves parallel

to the Ic and IE curves for forward and reverse operation respectively.

The iderl components are described in terms of BFM and B the maximum

RM’

forward and reverse current gains. The non-ideal components represent space-

charge, surface and other recombination effects. Their voltage dependence is of the

form exp (%%T) where ne is the parameter for the base-emitter junction and

nc is that for the base-collector junction. The transport coefficients are

given in terms of CZIS and C4IS for the normal and reverse terms respectively.

Pigure 13b shows the graphical interpretation of ne and CZIS for the normal-

active operation mode, The total expression for IB is:

1. (QV \ qV
S BE BE
IB . [exp o/ 1 + CZIs exp (H:E?) 1

M
W
(a)
- 1 qV qV
2o () -]+ cay (o (500
+ — |exp + Q.1 exp 1
BRM kT 4'S nckT
e ————— N ——
(b) (60)

The term (a) in equation (80) replaces the ICE/sF relationship

in Pigure 2 and the (b) term replaces ICC/BR.

The end result is that nine parameters--— I

s' Var Vg

and nc--model the dc effects of base-width modulation, recombination and

Cor Ips Bgs Cgo Iy

high-level injection effects in bipolar transistors. Changes in base transit
time owing to high-level injection are incorporated via the expression:

ff(offectivc) = ?FQB (61)
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The complete set of 24 Gummel-Poon parameters is given in the SPICE user's
guide in Appendix III. Of the 24 parameters, 15 are the same as those
needed for the basic Ebers=Moll model. Thus only an additional nine must
be determined to completely specify the Gummel-Poon model,
B. THE MOS TRANSISTOR

The modeling of MOS transistors for computer implementation is considerably
easier than is bipolar transistor modeling. The incorporation of recombination
and high-level injection effects whichwere necessary for bipolar devices is
unnecessary for MOS transistors. However, the effect of bulk charge on
channel conduction and channel length (charge) modulation due to drain voltage
are important effects which must be included in second~order computer models.
Additionn% effects,which can be significant,include bias dependent mobility
and gate capacitance. However,thegse parameters are taken as constaht in the
Shichman~Hodges MOS model which is implemented in SPICE. The SPICE model does
include voltage dependent drain and source junction space-charge capacitances.

A 1/2-power-law voltage dependence is assumed.

The drain current for the MOS is described accurately by the equation:

1, = zuzox ‘( VesVrs = % - _‘:g_a_ ) Y ou
ap "§ esengsub [(VDB % 2’?) & '(vsa % 2¢F) 3/2]
ox
————
ﬁy (62)
where:

G,S,D,B - are the four terminal subscripts and voltages are positive-

negative as indicated by the subscripts.
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e —— A 2 e - e —————

- is gate oxide capacitance per unit area

ox

ik - is the substrate doping
29 - is the strong inversion potential and is equal to 2kT/q ln [N

F Q sub/ni
v - is the flat-band voltage given as 9 i where:

FB MS Cox

GMS - is the metal-semiconductor work function

Q - is the net surface charge.

SSs
The other terms have their standard meanings. The so-called "bulk charge"

contribution to channel conduction is given by the second term in equation (62)
with its 3/2 = power dependence. The gain factor 8 can be modified to include

channel length modulation as follows:

ZucC 1
B = ox N ARl (63)
I [ 1'"ALL.V ]

%

The voltage dependence of AL(V) determines the appropriate channel length

variations. It should be commented that mobility variations with bias can
easily be included in equation (63) by using a variable u.

The SPICE Shichman-~Hodges MOS model uses simplified equations to model
the general effects described by equations (62) and (63), To model the 'bulk
charge” contribution to conductance the threshold voltage is modified by a
voltage dependenf term. In essence the bulk charge effect is taken as a constant
during integration along the channel so that a 3/2 power dependence is not

obtained. That is:

*
2 2 2 :
Vo o= Vgt ”p‘%’L = Vo204 V2o e N_ (Vsa*wr) (64)
ox
ox
e —————

ay




If vTO is defined to be the zero-vsB value of VT’ which would be the

measured threshold for no ''back-gate™ bias, then:

Vp = VoY [(stz’p )é -1 (2‘01")% (65)

the quantities V__, y and 29F are thus input parameters. This is a mixture

TO

of measured and calculated parameters since V can be measured directly,

TO
Y can be determined from a series of ''back-gate' bias experiments and ZGF

is calculated.
The Shichman~Hodges model assumes that output conductance, GDsAT =

is proportional to drain current in saturation (I Y

/
a]:D'av DSAT

DS‘VDS>VDSAT’
That is: 3

AI (66)

G ° ‘=
DSAT DSAT

where lambda is a channel length modulntioh parameter., The model implementation

incorporates the effect into the current expression. If we define IDo as*:
2 2
8o (v -v) -(v -v)
Imﬂz—[ GS T GD T (67)
é?1 e?z

the drain current expression which corresponds to the appropriate output

conductance given by equation (66) is then:

ID-IDO(l + ”’ns) (68)

» .
as written,this formulation applies only above threshold and for neither

end of the channel pinched-off. For normal mode saturation F, = O, and for

2

reverse mode saturation Fl = 0,
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The (1 + XVDS) term given in equation (68) can be interpreted as the

equivalent to the T term in equation (63), 1If AL(V) is assumed

1-
proportional to vDS then:L

1 =V DS DS

1
[__.._.]z 1 + \V__ for \V_.<A (69)
DS

where A is the channel length modulation parameter. In essence the
approximation for changes in L with VDS is equivalent to the linear charge
relationship assumed by usiug'vA for the Gummel-Poon model.

In summary, the MOS model built into SPICE requires 14 parameters for
its complete specification. The dc parameters described by equations (63),

(64), (65) and (66) are Bo, v, 2DF and A\. For the charge storage

VTO'
elements the oxide—=capacitances associated with gate-source, gate-drain and
gate-bulk are assumed to be constant. Junction capacitances of the
source-bulk and drain-bulk have a 1/2-power dependence with user specified
zero-bias values. The bulk junction potential and saturation current, as

well as source and drain series resistance are supplied by the user. The

complete set of parameters for the Shichman-Hodges model is listed in the

SPICE user's guide in Appendix III.
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CONCLUS ION

This section of the report has presented techniques and

model formulations which are basic to a sophisticated computer circuit

analysis program. The examples have been taken from program SPICE which is

being used at Stanford for a number of integrated circuit and system design

problems. In the sections which follow, reports on specific modeling and

circuit design problems will be presented.

analysis capabilities is about equal, It will also become apparent from the
reports that modeling and model parameter determination are major factors in

determining simulation accuracy and, in some cases, credibility.

38

The emphasis on ac and transient

el e s

e s it



APPLICATIONS REPORT TITLES

" Project Investigator
Characterization and Model Parameter H, E. Mussman

Determinations for Program SPICE

Modeling and Application of Uniform L. Gerzberg

Distributed RC Devices

Lumped Model Assessment N. Chan
Analysis of a 6 MHz Oscillator Circuit H. V. Allen
. i for Ultrasonic Applications

Computer-Aided Design of Micropower S. R, Combs !

Operational Amplifiers J

High Voltage D~MOS Level Shifting Circuits M. D. Pocha

Feasibility and Limitations Study of a T. R. Gheewala
Low Power, High Sensitivity Photo

Detector

39




) Ly

"

REFERENCES :

L. W. Nagel, D. O. Pederson

"Simulation Program with Integrated Circuit Emphasis"

16th Midwest Symposium on Circuit Theory, April 12, 1973, waterloo, Ontario.
W. J. McCalla, D. O. Pederson

“Elements of Computer-Aided Circuit Analysis"”

IREE Trans. Circuit Theory, CT-18, p. 14-26, January 1971,

W. J. McCalla, W. G. Howard

"BIAS=3 = A Program for the Nonlinear DC Analysis.of Bipolar Transistor
Circuits”

IEEE Jour. Solid—SCaté Circuits, SC-6, p. 14-19, Febtﬁaty 1971,

R. D. Berry

"An Optimal Ordering of Electronic Circuit Equations for a Sparse Matrix
Solution"

IEEE Trans. Circuit Theory, Cr-18, p. 40-50, January 1971,

R. Rohrer, L. Nagel, R. Meyer, I. Weber

"Computationally Efficient Elecgronic-Circu¥t Noise Calculations”

IEEE Jour. Solid-~State Circuits, SC-6, p. 204-213, August 1971,

S. W. Director

"Survery of Circuit Oriented Optimization Techniques"

IEEE Trans. Circuit Theory, CT=18, p. 3=10, January 1971.

B. A. Wooley

"Automated Design of DC~Coupled Monolithic Broadband Amplifiers"”

IEEE Jour. Solid-State Circuits, SC-6, p. 24=34, February 1971.

40




8.

10.

C A Desocer, E S. Kuh

Basic Circuit Theory

New York: McGraw=Hill, 1969, Chapter 9, section 4, p, 392-396,

H. K. Gummel, H. C. Poon

“An Integrated Charge Control Model of Bipolar Transistors'

Bell System Tech. Jour. vol. 49, p. 827-852, May/June, 1970.

H. Shichman, D. A. Hodges

""Modeling and Simulation of Insulated-Gate Field=Effect Transistor

Switching Circuits"”

IEEE Jour. Solid-State Circuits, SC-3, p. 285-289, September 1968.




Figure 1. Bipolar Transistor Circuit uxample to Illustrate MYodal

Circuit Analysis using UTICL.
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Figure 2. a) The Exponential Diode Relationship for the Base Current
due to ICE/:E with Notation used for Linearization,
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Figure 4. The Complete Linearized Bipolar Junction Transistor Model

with Parameter Values to be Determined as Indicated.
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Figure 5. The Transistor Circuit from Figure 1 for dc

conditions with Linearized Transistor Model.
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Figure 6, Voltage-controlled Current Source Model with Reference

Directions and Node Numbers.
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Pigure 7. A circuit configuration( and admittance matrix structure to illustrate

impact of sparse storage and reordering.

a) the circuit, uncircled nodes are original and circled indicate

renumbered,

-

b) the matrix structure before reordering. The X's indicate entries,

the O0's fill~in,

c) the matrix structure after node reordering. Note the reduced fill=-in.
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Equivalent Circuit Interpretations of the Integration Formula
for an Inductor for Forward Euler (F-%), Backward Zuler (2-7)

and Trapezoidal (TR) Integration Rules.
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Figure 8 b) Equivalent Circuit Interpretation of the Integration Formula,
for a Capacitor for Forward Euler (F-E), Backward Euler (B-E)
and Trapezoidal (TR). The square bracketed circuits are the

4 S equivalent forms appropriate for nodal analysis.
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Figure 9 Circuiﬁ Example to Illustrate Accuracy and Stability of

Integration Formulae.
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Three Networks n,ﬁ and T, + AT which Satisfy Tellegen's Theorem.

The Voltage-Current Definitions are Shown for Each Network.
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Figure 11. Notation for Branch Relationships for a) Voltage Sources,

b) Current Sources, c) Resistors, and d) Conductances.
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Figure 12, Symbolic representation of the T and ?] networks and the

meaning of individual elements in each network (and corres-

--\ pondences ),
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Bipolar Transistor Device Characteristics and Parameter Definiti:
a) for the first-=order (Ebers=Moll) model,

b) for the Gummel-Poon (second~order) model with parameters as

defined,
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Elements of Computer-Aided Circuit Analysis

WILLIAM J. McCALLA, MEMBER, IEEE, AND DONALD O. PEDERSON, FELLOW, [EEE

Abstract—A survey is made of the principel techniques, proce-
dures, and routines that are used in present programs for computer-
aided circuit anaiysis. Programs (si s) are d and
for the four major classes of circuit
anafysis: linear dc and ac. de. ¢ ¢ and linear
pole zero.

I. INTRODUCTION

EVERAL recent books and papers have cataloged
S and compared many existing and proposed computer-

aided circuit analysis programs (1 ]-[11]. This paper
is a survey of the principal techniques used in existing pro-
grams for the analysis of the four important circuit areas:
linear dc and ac, nonlinear dc, nonlinear transient, and
linear pole zero. The considerations brought out are based
on over four years experience in using, modifying, and
writing more than twenty programs.

This survey is organized as follows: first an overview is
made comparing nodal and mixed or state-variable meth-
ods of formulating the circuit equations. Linear dc and ac
analysis programs are then considered with emphasis
placed on techniques for solving systems of linear equa-
tions. Attention is next given to nonlinear dc analysis pro-
grams and the iterative solution of nonlinear aigebraic
equations. The extension to nonlinear transient analysis
follows with an introduction to several numerical integra-
tion routines used in the solution of the nonlinear differen-
tial equations. Finally, four linear poie-zero circuit analysis
techniques and programs are considered. Throughout the
paper a number of specific references on computer-aided
circuit analysis and design are cited. [n addition, severai
general computer-aided circuit analysis references are
included (12}-{17].

II. CircuIT EQUATION FORMULATION

Virtually all presently available circuit analysis programs
start from the same point. an elemental circuit description
supplied to the program via keyboard, puached cards. or
an interactive graphic display console. This description of
circuit elements and their interconnections is converted by
the programs into a set of circuit equations. Of interest here
are the two major approaches that are now used in formulat-
ing these equations. The first approach is the familiar nodal
analysis while the second is the mixed or state-variable ap-

Manuscript received August 11, 1970. This work was supported in
part by the Joint Services Electronics Program, under Grant AFOSR-68-
1488, and 1n part by the U. S. Army Research Office. Durham. N. C., under
Contract DAHCO04-67-C-0031.

The authors are with the Department of Electrical Engineering and
Computer Sciences. University of California, Berkeiey, Caiif. 94720.

proach which derives from Bashkow's 4-matrix formuia-
tion (18].

The implementations of these two approaches within
the present generation of circuit analysis programs seem to
have had a common origin in the transistor analysis pro-
gram (TAP) (19}-(20] developed by IBM. TAP, though rea-
sonably effective, was short lived and had such severe
limitations that it was never made available outside of IBM.
From TAP there evoived three programs: ecap (21 ], which
used nodal analysis, and NET-1 [22] and PREDICT (23],
which both used a state-variable approach.

ECAP performs linear dc, linear ac. and piecewise-linear
transient analyses and is still very much in use. It is con-
sidered in more detail shortly. NET-1, a nonlinear transient
analysis program, is availabie in the IBM 7090/94 assembly
languages MAP and Fap. Therefore, this program cannot be
used simply in computer systems having monitor systems.
NET-1 did, however, influence the development of the pro-
gram CIRCUS [24]. This program is considered in more
detail in the following paragraphs. PREDICT is also a non-
linear transient analysis program but inciudes no built-in
device models and is incapable of automaticalily performing
multipie analyses for several different sets of element vaiues.
In addition, it requires separate analysis runs for steady-
state (dc) and transient solutions and suffers from a weak
numerical integration routine. To overcome these and
other deficiencies, the SCEPTRE [25] program, which is con-
sidered in the following paragraphs, was developed.

Nodal Analysis Formulation

For both linear and nonlinear (or piecewise-linear) cir-
cuit problems, nodal equations may be generated by little
more than inspection. The relative simplicity of this ap-
proach contrasts sharply with the manipulations required
by the state-variable approach. As an example, consider
the case of a linear circuit. The nodal equations are of the
form

Yo=i (1)

where Y is the nodal admittance matrix, v is the vector of
node voltages to be found, and i is a vector representing
independent source currents. The term y, in Y represents
the sum of the admittances of all the branches connected to
node i; y;; is the negative of the sum of the admittances of all
branches connecting node i and node j; and i is the sum of
all source currents entering node k. Thus if a resistor of
value R connects nodes 5 and 7. 1/R is added to ys and y--
and subtracted from yq, and v+, while if a current source of
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strength / is directed from node 2 to node 3, / is subtracted
from i, and added to i,.

Voltage sources are usually handled in one of two ways.
The first is to require that every voitage source appear in
series with a resistor so that the source may be transformed
to a Norton equivalent current source. The second approach
is a generalization of the first but does not depend upon a
" series resistor. The approach is most easily introduced in
terms of grounded voltage sources. The nodal equations are
first assembled including all elements other than voitages
sources. Columns of the admittance matrix corresponding to
grounded voltage source nodes are then mulitiplied by the
value of the source and the result is subtracted from both
sides of (1). If the current through the voltage source is
required, it may be treated as an unknown in place of the
known voitage. Otherwise the equation representing the
sum of the currents at the source node may be considered
redundant and dropped, thereby reducing the number of
unknowns. Floating voitage sources and controlled sources
may be handled by similar column and row operations.

For nonlinear analysis, equations can be formulated in a
manner similar to that used in the linear case. The equations
may be written symbolically as

Y(v, 1) = i(t). (2

The interpretation of (2) is that each equation represents a
summing of current contributions at a node. It shouid be
aoted, however, that as now formulated the nonlinearities
are restricted to be voitage rather than current dependent.
Fortunately, semiconductor devices such as junction diodes
and bipolar and field-effect transistors are of the voitage-
controlled category, and the above restriction is usually not
severe.

As mentioned previously, ECAP is based on nodal analy-
sis formulation. Additional nonlinear analysis programs
using nodal anpalysis include TRaC (26], MTRAC (27),
SYSCAP (28], and Bias-3 [29], while linear programs based
on a nodal approach include NATFREQS (30], [31], and from
LISA (32], [33] the programs ACCA, POLY, and TRFN.

State-Variable Analysis Formulation

The primary reason for using the state-variable approach
is that it yields a set of first-order linear or nonlinear differ-
ential equations in a minimal set of unknowns. Deriving
a set of such equations explicitly scemed a desirable objec-
tive for use with earlier numerical integration algorithms.
As is brought out in the following paragraph, this is no
longer essential.

From an elementary viewpoint, the state-variabie for-
" mulation proceeds as follows (34]: a proper tree consisting
of all voltage sources, as many capacitive branches and as
few inductive branches as possible, and no current sources
is selected. The state variables are chosen to be the capacitive
tree-branch voitages or charges and inductive tree-link cur-
rents or fluxes. A fundamental cut-set equation is con-
structed for cach capacitive tree branch and a fundamental
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loop equation for each inductive tree link. Independent
sources are withdrawn as separate terms in the equations
and the equations are normalized with respect to the ele-
ment values associated with each state variable.

For a linear circuit, the preceding procedure results in a
matrix equation of the form (351

X = Ax + Bu (3)

where A is a coefficient matrix relating the state vector x
to its derivative £ and B is a coefficient matrix coupling the
effects of the independent source vector u. Any other de-
sited network variables can be expressed in terms of the
state variables and independent sources. For the linear
case, this procedure results in an equaton of the form

y=Cx+ Du 4

where y is a vector of desired output varables and C and D
are again coefficient matrices.
For the nonlinear case, (3) and (4) are of the form
x = Alx,ut) (5)
y = Cl(x, u,1). (6)

An alternative description is based on extracting the non-
linear portion of the circuit from the linear portion. This
allows the state equations (5) and (6) to be written in the
following equivaient form (15]: '

£ = Ax + Bu + B'w N
y=Cx+Du+D'w (8)
g(w) = Ex + Fu + F'w. 9)

Again, A, B,B',C,D, D', E, F,and F’ are coefficient matrices,
while x and « remain the state variabies and independent
source vector, respectively. The vector w represents the con-
trolling or independent variable set associated with the
nonlinearities g(w). In the state-variable approach, no
assumption is made regarding voltage or current control.
Whiie the equation formulation procedure outlined above
applies in general, details vary from program to program.
Both CIRCUs and SCEPTRE employ vaiiadons of Bryant's
method [36], [37) as modified by Wilson and Massena (38).
Other programs relying on the state-variable approach in-
clude CORNAP (391, (40}, BeLAC (41 ], and CIRPAC [42], [43].
In all cases, the formulation procedures entail extensive
matrix manipulations. The bookkeeping associated with
these manipulations usuaily requires considerable amounts
of core storage. Loops of capacitors and voltage sources
and cut-sets of inductors and current sources are accommo-
dated by additional manipulations of the state equations.

[II. LiNearR DC AND AC ANALYSIS

The first of the four circuit analysis areas to be treated is
linear dc and ac analysis. The desired outputs are the various
voitages and currents within a circuit, possibly as a function
of frequency. As virtually all programs of this category use
a nodal analysis formulation, it is assumed that the circuit
equations to be solved have the form of (1). The major tech-
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niques presently used to solve such systems of linear equa-
tions include Gaussian elimination, pivoting, LU factoriza-
tion, and sparse matrix methods. These techniques are
outlined in the following paragraphs and are followed by
a comparison of the features of several available analysis
programs.

A dc analysis can be considered the special case of an ac
analysis performed at zero frequency. However, such an
approach is usually not used for two reasons: first, if the
formulation proceeds on a nodal admittance basis, the
infinite admittance represented by an inductor at zero fre-
quency requires special consideration. Second. where only
resistive elements and independent and controlled sources
are present. the circuit equations contain only real coeffi-
cients and hence may be olved on a computer using only
real variables. If complex variables are used, the computa-
tion time may be increased by as much as a factor of 4 be-
cause muitiplication and division (both considered long
operations as compared with the short operations of addi-
tion and subtraction) require more time than for long
operations with real variables.

Gaussian Elimination

With the distinction in mind that the system of nodal
equations (1) involves only real variables in the dc case and
complex variables in the ac case, the soiution of (1) can be
written

o=Y i (10)

where Y ™' is the inverse of the nodal admittance matrix,
Computationaliy, the efficiency of this approach can be
evaluated in terms of the number of long operations re-
quired. It can be shown that the number of long operations
required to invert an n x n matrix is n®, while the number of
long operations required to compute its product with a vec-
tor of dimension n is n. Thus the total number of long oper-
ations required by this approach is
n® + n?

The number of long operations required to obtain a solu-
tion to (1) can be reduced by a factor of 3 using Gaussian
elimination [44].

This procedure consists of two steps. The first step con-
sists of converting the nodal admittance matrix Y to an
equivalent upper triangular matrix, i.e, a matrix with all
zero elements below the diagonal. The second step which is
referred to as back substitution, consists of solving the nth
equation coataining only v, for v,, the n— Ist equation for
v,-, in terms of v,, etc. Gaussian elimination is illustrated
in (11) for a third-order system

1). 1) 1) 1) 1

AN By S A i
Dof gt ) - | i

&Y Ve V| (| = [ (1
1. 1) 1) (1) ah

LA S P 7 B P B Y ‘)J'

where the superscript | indicates the initial system of equa-
tions. As indicated previously, the unknown v, is eliminated
from equations &% and &Y' by subtracting (y4/y{')é\"’
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from &% and (y4)/y{Y) & from &Y. Symbolically this
transformation can be represented by the equations

oY = &»

a8 ST y‘zlljgm
3 ™8z v !
1
1)
&P =& - Y‘T:‘i’ o (12

which yields the system
e [y(lll’ 7 e [‘11“1.
=

a9:10 B e =8 (D
s9:l0 S ]
Finally, the unknown' v, is eliminated from &% by sub-
tracting (y3/y2)€Y from £'%, thus obtaining

J(lh - ‘112) = ‘(‘ll

<

3

‘113) - 12)
3 2] ,V‘ 31£ 2)
!‘_‘)ﬂf;)—,@"z (14)
resulting in the triangularized system
s [ A A8 fe] [0
eP: |0 yH yE| e =8} (13)

e:lo o Wln |®

This completes the first step in the Gaussian elimination
procedure. Back substitution is now performed to obtain
the final solution as follows:
3
5
-
& = i)
Y 11}

yi2
= i - Y‘lls’"ls' = V\lzl”z)_ (16)

11

Careful enumeration shows that for an nth order system
the number of long operations required by Gaussian elimi-
nation is

n? n

e

e
LU Transformation

A modification of Gaussian elimination which is useful

when more than one source or right-hand-side vector i is
to be considered is the LU transformation [44]. This pro-
cedure consists of partitioning Y into an upper triangular
matrix U and a lower tnangular matrix L (usually with ones
on the diagonai) such that

LU =Y. (n

This technique is illustrated shortly. The resulting system 1s
solved in two stages. First,

Ur=L"'i=i* (18)
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and secondly,
v=U"'i*. (19)

In this case since both L and U are triangular, L' and U™
are trivial to compute. Note that (19) is the same back sub-
stitution performed during Gaussian elimination, while (18)
is aiso equivalent to back substitution. To obtain U the
same reduction procedure is performed as in Gaussian
elimination. Thus, in terms of the earlier third-order
example,

Y ¥
U=0 & »3| (20)
0 o0 3

Similarly, L is found to be a byproduct of the triangulariza-
tion procedure. For the example,

0 0

S i
=

1 0/

S
The elements of L are the coefficients in (12) and (14).

A convenient aspect of the preceding procedure is that
since the diagonal elements of L are known to be 1's, L and
U may share the same memory locations originally assigned
to Y. Note further that the long operations count is the same
as for Gaussian elimination. Once L and U have been com-
puted, (18) and (19) can be applied repeatedly for different
source vectors i. For m source vectors, the total long opera-
tions count becomes :

II’

e 2l
B e

==

(21)

-
]
-

1

2|S

<

Pivoting

Further methods of reducing core requirements and
operations counts are brought out below. First, however,
mention should be made of error control. As can be seen
from (12) and (14), a division and a subtraction are required

. at each step in the triangularization process. Suppose a

computer which represents a number accurately to d digits,
performs arithmetic operations correctly to 2d digits. and
then rounds the result to d digits. It can be shown [44] that
the absolute error resulting from such arithmetic operations
is given by | +¢ 1074 where 0< ¢ < 5. In the floating-point
notation, the operations of subtraction and division yield
results where magnitudes are less than those of the operands.
The relative error in the result is larger; thus division and
subtraction steps reduce accuracy. The lower accuracy is
feit more severely on computers with smaller word lengths
where d is reduced. One obvious solution is to declare all
variables to be double precision and perform all operations
in double precision. However, this significantly increases
both time and core memory requirements.

One compromise which can be made is described by
Ralston [45]. He shows that the critical steps involving
divisions and accumulation of partial sums can be per-
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formed in double precision at the expense of only one ad-
ditional double precision vector of dimension n. The only
major added expense is computation time.

The most commonly used approach of reducing error
(used by Ralston with the preceding method) is pivoting [45].
Partial pivoting amounts to scanning the elements of the ith
column of the matrix below the diagonal at the ith step
in the reduction and determining the element of largest
magnitude. The row of this element is exchanged with the
ith row and the reduction is continued. For the exampie
considered previously, if at the second step |y3|> |y, '
would be chosen as the pivot element, £’ and £’ would be
exchanged and y'3} would be eliminated from £ to obtain
&. This technique tends to reduce the magnitude of the
term being subtracted at each step and thus improve ac-
curacy. Further, it preserves column order and hence the
order in the solution vector ».

Complete pivoting involves finding the largest element in
the as yet unreduced (n — i) x (n — i) submatrix at the ith step,
exchanging rows and columns such that it appears on the
diagonal in the ith row and column. Since column order is
not preserved except at the expense of additional book-
keeping, complete pivoting is seldom used.

Sparse Matrix Techniques

In view of the n® dependence of the long operations count,
computation time can be expected ta increase significantly
as larger circuits with more nodes are considered. Several
recent papers [46]-(48] have focused attention on taking
advantage of sparsity in the nodal admittance matrix. There
are basically three associated economies. First, efficient
means have been found by which only the nonzero entries
of the matrix need be stored, thus effecting a savings in core
memory. Second, it is possible to process only the nonzero
entries at each step in the triangular reduction. Finally, the
order in which variables are eliminated can be chosen to
preserve sparsity. The long operations count and computa-
tion time are then reduced. This savings becomes even more
significant when the same equations must be solved many
times, as in multifrequency analysis. The optimal order for
eliminating variables need only be determined once.

By way of illustration (86], in a new program developed
at the University of California, Berkeley, by Prof. R. Rohrer
and his students, the third technique of optimal ordering
together with nonzero storage leads to a long operation
count more closely proportional to n than to n°. In the
analysis of a typical operational ampilifier of 22 nodes, the
number of long operations was reduced from 2660, using
Gaussian elimination, to 130.

Linear DC and AC Analysis Programs
Many linear analysis programs are available including
ECAP, the ACCA portion of LiSA. and ROHRERX.' As previ-

ously mentioned, these programs are based on a nodal
analysis formuiation. Both AcCA and ROHRERX have free

' ROMRERX IS a program written.and deveioped in (969 by the {C
Group, Electronics Research Laboratory, Umversity of Califorma,
Berkeley.




format input languages as do certain time-sharing versions
of Ecap. The primary advantages of ECAP are that it is well
documented [50] and is available through many commercial
time-sharing companies. Its disadvantages are that it is
cumbersome to modify and the original input language is
cumbersome to use. i

ACCA, as part of the larger LISA package, shares a general
input routine and has the advantage of being able to inter-
act somewhat with other portions of LisA. [ts disadvantage
is that, if used as part of LISa, it is expensive to load.
ROHRERX does make partial use of sparse matrix techniques
and is therefore relatively fast. It presently suffers, how-
ever, from a lack of documentation.

At the present time efforts are being made to decrease
computation time and to incorporate sensitivity and noise
performance using the adjoint network (51]. This work is
of major importance in the development of severai com-
puter-aided circuit design packages (52]-(54].

IV. NONLINEAR DC ANALYSIS

Most nonlinear dc analysis programs are incorporated
into more general transient analysis programs. Equation
formulation approaches are divided between nodal and
state-variable analysis. In either approach, the nonlinear d¢
analysis problem reduces to one of solving simuitaneous
nonlinear aigebraic equations. As described in the following
paragraphs, iterative methods are used. Of particular im-
portance is the convergence properties of the solution aigo-
rithm. Several approaches which are used in different pro-
grams to improve convergence are ecxamined in this
section. Finally, various programs are again compared.
Functional Iteration

The solution method used by virtually all of the presently
available nonlinear dc analysis programs is based on the
Newton-Raphson iteration technique. It is one of a broad
class of techniques known collectively as functional itera-
tion methods [44].

Given a set of nonlinear equations of the form of (2), for
the dc case the equations may be expressed

g(v) = 0. (22)

The solution technique is to start from some initial set of
values ¢'” and to generate a sequence of iterates - - o'" = "),
o™, o** "), - - - which converge to the solution &.
Newton—Raphson iteration is most easily introduced by
considering the case of a single nonlinear equation

g(v) = 0. 23

The function g(v) can be expanded about some point v, in a
Taylor series to obtain

9(v) = gvo) + (v — vo)g'(v) + - =0 (29)

where the prime denotes differentiation with respect to v.
If only first-order terms are retained, a rearrangement of
(24) yields

g'(vo)

V= Py ~

(25)
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The form of (25) suggests that a sequence of iterates might be
generated by the following:

AR} [ U 9(0‘") “ 2
ot o prE) (26)
Equation (26) is the Newton-Raphson iteration function
for the scalar case. Note that at the solution 8, g(?)=0 and
v"* Y =y as would be expected. The geometrical interpre-
tation of (26) is illustrated in Fig. I for the simpie case of a
current source driving an ideal diode. The line tangent to
the nonlinearity at the point (v, g(v'")) has the siope
g'(v"™). Its intercept with the voltage axis defines the next
voltage iterate in the sequence as shown in the figure.
The generalization of the Newton—Raphson procedure
to a system of n eguations is given by

ot = g J-l(.ul)g(,m) 27)
where the Jacobian J(v) of the function g(v) is given by

dv, dv, dv,

Jo)=| - i} (28)
e 99,
oo, av,] .

A physical interpretation of the elements of J(e) is brought
out below.

The direct application of (27) necessitates computing the
inverse of the n x n Jacobian matrix. As indicated previously,
the operation count for inverting a matrix and multiplying
the resuit by a vector is n> +n?.

An alternative procedure for obtaining new iterates is to
solve the linear system of equations

J(@")(e" = 0" V) = g(s'"). (29)

A second alternative procedure often used with nodal
analysis is to employ the system of equations

J(@)e"* Y = J(o)'™ — g(o'™). (30)

The right-hand side of (30) is found to have a particularly
simple interpretation as also brought out below.

Gaussian elimination applied to either (29) or (30) re-
duces the long operation count to (n%/3)+n*—{(n/3). An
even greater advantage is obtainable using sparse matrix
methods. The locations of the nonzero elements of the
Jacobian matrix are fixed by the circuit topology and remain
unchanged from iteration to iteration. The additional time
required on the first iteration to record the nonzero struc-
ture and determine the optimal variable elimination order
is small in comparison to the total computation time re-
quired as the number of iterations becomes large.

Newton-Raphson Applied To Nonlinear DC Analysis

A physical interpretation of the Jacobian matrix and the
Newton-Raphson method can be made using the diode
circuit of Fig. 2(a). The exponential nonlinearity of the
diode is linearized about some trial solution voltage V5,
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Fig. 2. MNonlinear dc anaiysis. (a) Diode circuit. (b) Linearized diode
pproxi (¢) Linearized circuit modai.

This is equivalent to a Taylor series expansion as indicated
previously where only first-order terms are retained. The
expaasion is of the form

a1
Ip=1 +(V = V)2
= Dv-v. ¢ o W lyur, (31)
= LT+ (V= VST (3D
Vr
= lpo + (¥ ~ Voloo 33)

where [y, is recognized as the current through the diode
corresponding to the voltage V;, and gp, is recognized as
the dynamic conductance corresponding to the voitage
V,. Since the diode characteristic as described by (33)
has now been linearized, the diode may be modeled in terms
of a Norton equivaient current source [pyo in parallel
with the conductance gpo. As can be seen from Fig. 2(b),
Ipno is given by

Ipno = Ipo = dpoVo- (34
Hence, (32) may be written in terms of /pyo as
Io = gooV + lono- 33

The nodal equation for the compiete linearized circuit of
Fig. 2(c)is

(G + goo)V = I ~ Ipne (36)

In terms of iterate values
(G +ggWort =1 - I3, (37

1f (30) is compared with (37) the physical interpretations
of the Jacobian and the right-hand side of (30) become more
apparent. The Jacobian consists of the nodal conductance
matrix of the linear eiements of the circuit together with the
linearized conductances associated with each nonlinear cir-
cuit element. The vector on the right-hand side of (30)
consists of independent source currents and the Norton
equivalent source currents associated with each nonlinear
circuit element. Thus at each iteration in a nodal analysis,
the linearized conductances and Norton equivalent source
currents must be recomputed and the linearized nodal
conductance equations reassembled.

The appiication of Newton-Raphson iteration to the
state-variable approach is also straightforward once all
required coefficient matrices have been assembled. Recall
that the equations formulated by the state-variable method
can be put in the form of (7)49). The state vector x may
represent capacitor voltages and inductor currents in which
case the steady-state dc solution is characterized by x=o0.
This corresponds to setting the current through capacitors
and voltages across inductors to zero. Next, (7) may be
solved for x in terms of w and the result substituted into (9)
to obtain a system of nonlinear equations in terms of w.
Once w has been obtained x and y can aiso be obtained.
Note that since the coefficient matrices involved are con-
stant, the initial manipuiation necessary to obtain the singie
system of nonlinear equations in w need only be performed
once.

Convergence

For the nonlinear dc analysis approach just outlined, the
problem of convergence to a solution is now considered.
Proofs that an algorithm will converge depend upon a
priori knowledge of an initial guess sufficiently close to the
solution. Because this knowledge is usuaily not present in a
nonlinear dc analysis. all techniques incorporated into
analysis programs for improving coavergence of the
Newton—-Raphson iteration technique are supported by
purely empirical justification.

The exponential nonlinearities usually associated with
diodes and bipolar transistors are single-valued mono-
tonically increasing continuous functions. However, these
expressions are strongly increasing functions. For large
reverse bias, the slope approaches zero, while for large
forward bias the exponential tends to infinity. Convergence
may be slowed or the iteration procedure may be stopped
when numbers exceed a computer-imposed limit. An ap-
proach commonly used to prevent such overtlows is illus-
trated in Fig. 3 again for a simple diode characteristic. As
previously indicated, at a trial junction voitage v”, the
characteristic is modeled in terms of a linearized approxi-
mation as shown. A new iterate value v'** "' greater than
v™™ must correspond to a solution on the linearized char-
acteristic at the point 1. Two choices for a new trial operat-
ing point are immediately available. The first is to update




Fig. 3. Selection of new trial operating point.

with voltage by proceeding vertically to a new point on the
exponential characteristic. This is the standard Newton—
Raphson iteration and can be carried out by a straight-
forward evaiuation of the exponential function. The second
choice, which prevents the overflow problem, is to update
with current by moving back horizontally to the exponential
characteristic. This is done by computing the logarithm of
the current corresponding to the point 1° and results in the
selection of point | as the new trial linearization point. Note
that this procedure, which is particularly suited for junc-
tion diode and bipolar transistor circuits, can be used with
both nodal analysis and state-variable analysis. This modi-
fied Newton—Raphson method can be used with other non-
linear devices but does require that they are described by
functions which have an explicit inverse and for which both
the function and its inverse are single-valued and con-
tinuous. For diodes and transistors the vanishing slope in
the reverse direction is usually handled by piacing a small
leakage conductance across each junction.

Broyden (55] has recently proposed a variation of the
Newton-Raphson technique. The method incorporates
two modifications. The norm of the vector g(v), which must
tend to zero as a solution is approached, is never allowed to
increase. The method also avoids computation of the in-
verse Jacobian matrix at each iteration. Instead, an arbitrary
approximation to the matrix is chosen at the first iteration
and then successively updated. Branin and Wang (56] have
applied the method to nonlinear dc problems. including
statistical analysis. More recently, Broyden [57] has con-
cluded that enforced norm reduction is not always ad-
vantageous and that an adaption of his method used in
conjunction with a particular form of Davidenko's method
(58] may converge more rapidly. In addition, Brown (59]
has proposed a variation of the Newton-Raphson technique
in which an inequality constraint is applied to the norm of
the vector —J ~'(v)g(v).

Three termination criteria are commonly used. The first
is to stop iterating when the absolute difference between
each unknown voitage or current iterate and its previous
value is reduced below some preset minimum. The second
is to stop when the relative error, defined as the absolute
difference divided by the value of the iterate, is reduced to a
preset minimum. Finally, an approach sometimes used with
nodal analysis is to require that the sum of the currents at
each node be reduced to a preset minimum. All of the ap-
proaches have advantages and disadvantages in specific
cases and none is superior in general.

i o ——— e e = = -
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Nonlinear OC Analysis Programs

Both NET-1 and its predecessor Tap formulate the dc
equations separately from the transient situation. Further.
both programs consider the linear and nonlinear portions
of a network separately for dc analysis. The linear portion
is analyzed using a modification of Kron's method of
tearing (60]. Nonlinearities are treated as a set of side con-
straints, and Newton—-Raphson iteration is used.

In scepTRe different trees are chosen for dc and transient
analyses. A modified Newton-Raphson procedure (61] is
used which ensures that the true operating point on an
exponential is approached from below. This amounts to
updating with current whenever junction voltage increases.

Both CIrcus, using the state-variable approach, and
TRAC, using nodal analysis, empioy Newton-Raphson
iteration while updating with voltage in the third quadrant
and updating with current in the first quadrant. BiAs-3.
using nodal analysis and Newton-Raphson iteration. up-
dates with current in the first quadrant when a junction
voltage increases and with voltage when it decreases. In the
third quadrant Bias-3 always updates with voltage while
modeling the exponential characteristic in terms of a line
through the origin rather than a tangent. This does not
affect the dc solution and yet insures that if a junction volit-
age becomes positive, the new trial linearization point will
lie in the first quadrant.

TRAC, CIRCUS, and BIAS-3 converge reasonably well on
most moderately sized circuits of up to 40 nodes. Nonlinear
models built into TRAC include junction diodes and bipolar
transistors. The program’s input format is cumbersome
while, as supplied by the Harry Diamond Laboratory,
TRAC includes several assembly language subroutines which
may require translation. CIRCUS has the advantage of a free
format input language, zener-diode, tunnel-diode. unijunc-
tion, and junction field-effect transistor models in a stored
library. It is, however, a much more complex program to
implement and modify. BiAs-3 is relatively small but is
limited to nonlinear dc analysis of bipolar transistor circuits.

SCEPTRE is by far the most flexible program in that models
may be built by the user. nested, and recalled as necessary.
The price of this flexibility is size and complexity as the pro-
gram consists of over |5 000 statements. [ts dc solution has
also been known to suffer from poor convergence proper-
ties.

One recent program should also be mentioned. The
DICAP portion of SYSCAP is an extremely general dc analysis
program. It is large and is currently available only to users
of Control Data Corporation’s CYBERNET remote batch
system.

V. NONLINEAR TRANSIENT ANALYSIS

The general procedure for the transient analysis of a
nonlinear circuit is to evaluate the state of the circuit at a
given point in time and to extrapolate ahead to a new time .
point.

The computation time required for such an analysis pro-
gram is directly proportional to the number of time incre-
ments into which the analysis (simulation) time must be
divided. The total simulation time is usually a multiple of
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the largest time constant (smallest eigenvaiue) associated
with the circuit linearized at a time point. On the other
hand, for a large class of programs including NET-1, CIRCUS,
and SCEPTRE, the length of a time step 4 in order to retain
solution accuracy is determined by the smaliest time con-
stant (largest eigenvalue) within the circuit. Physically in-
terpreted, this implies that if high-frequency devices are
used in a low-frequency application, the computation time
for an adequate simulation may be excessive. To understand
how this problem is alleviated in programs such as TRAC
and CIRPAC, it is necessary to ¢xamine the numerical inte-
gration process and the associated problem of stability.

Before proceeding, however, the use of the term numerical
integration should be clarified. Strictly speaking, integration
is associated with finding the area under some known func-
tion. The nonlinear transient analysis problem is one of ob-
taining the solution to a set of first-order nonlinear differ-
ential equations of the form (5). For the nonlinear situation,
(5) can be written

x(t) = f(xtr)). (38)

The notation indicating the dependence of f(x(t)) on u(t)
has been dropped for convenience. Some initial condition

*(O)y=o = X0) = 1o (39)

must be specified a priori or found as the result of a dc
analysis. Because of the similarity of the formuias used in
obtaining a solution to (38) to numerical integration for-
mulas, the term has come to be loosely applied to both
numerical processes.

Explicit I megrau'on'
Suppose at some point in time that x(t) is approximated by

_ M+ h - x0)

x(t) 5 (40)
If (41) is substituted into (38), the resuit can be rearranged

into the form
x(t + h) = hf(x(t)) + x(¢). (41)

Here x{t +h) is defined explicitly in terms of x(¢). The nu-
merical integration procedure defined by (41) is known as
the forward Euler method (16] and is illustrated in Fig. 4a).
If £(¢) is the exact solution to (38), it is easy to visualize the
gross errors which can result from choosing h too large.
The similarity of the right-hand side of (41) to a truncated
Tayilor series expansion about ¢t suggests that the error in
x(t + h) will be proportional to h* muitiplied by the second
derivative of x{t) evaluated someplace between t and t +h.

The forward Euler method defined by (41) is so low in
accuracy that it is seldom used. Nonetheless, it serves to
illustrate the idea that while the exact solution to (38) must
be continuous, the computed solution is at best a piecewise-
linear approximation to the exact solution.

In Fig. 4a) the difference between the exact solution and
the computed solution suggests the plausibility of using the
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Fig. 4. Numerical integration. (a) Forward Euler method.
(b) Imp predictor—corrector method.

average value of the derivatives at ¢ and t++h in (41). This
results in what is called the trapezoidal integration method

h
(e + h) = =(0) + 3[S((0) + f(xte + W] @D

Equation (41) can be used to provide an initial approxim-.-
tion to x(¢+h) and thus f(x(z+h)). This is made cle~.z. if
(41) and (42) are rewritten as follows :

x,(t + h) = hf(x.(¢) + x.(t) (43)

x(t + h) = x.(1) + ;[[(_x,.’r:) + flx,(t + h)]. (44

Equations (43) and {44) constitute a predictor—corrector
pair, the predicior equation (43) providing x,(t+h) as an
explicit function of x(t) and the corrector equation (44)
providing x.(t+h) as an explicit function of x.(t) and
x,(t +h). This method is illustrated in Fig. 4(b). The increased
accuracy which can result in relation to the forward Euler
method is apparent as is the possibility of using more com-
plex predictor—corrector pairs (62].

Implicit Integration

Consider now an aiternative approach. The approxima-
tion to the derivative x(t) could just as easily have been
made at ¢ + . In this case (41) becomes

x(t + h) = hf(x(t + h) + x(2). (45)

This is known as the backward Euler integration formula.
Since x(¢) is known, (45) represents an implicit equatioa in
the unknown x(t+h). This equation may be solved for
x(t+h) by the Newton-Raphson method previously con-
sidered and the process repeated at each point in time. This
procedure is called implicit numerical integration. The
trapezoidal integration formula (42) is also an implicit
integration formula.

All of the methods discussed thus far are of the general
form

!
(t+h =Y ax(t—ih)+h Y bxit - jh). (46)

i=0 j==1
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It is convenient to introduce an alternate notation. Without
loss of generality it can be assumed that the time step A is
constant and thus that t=nh. The notational change is
defined such that

x(t + h) = x((n + 1)h) = x,, . @7

Equation (46) can now be written as (48)

1
T by @9

[y
Taey = Z ax,—; + h
i=0 ==t

Methods used in which b_, =0 such as (41) or (43) and (44)
are termed explicit integration methods while methods used
in which b_,#0 such as (42) or (45) are termed implicit
integration methods.

Runge-Kutta Integration

A third class? of integration methods differs from the
preceding two classes in that the interval between ¢t and t+h
is divided into subintervals. These routines, which are
referred to as Runge-Kutta methods [45], seek to establisha
very good approximation to an average derivative in the
subinterval. A fourth-order Runge-Kutta procedure is
given by A

x(t + h) = x(t) + 2—'(!. +2h+ 25+ ) (49
where
S = f(x(2).0) (50a)
fi= [(x(t) + gjl,: + g) (50b)
h h
fi= ](x(t)-#if,,t +E) (50¢)
faw I(x(t) rhfyt+ ’5‘) (50d)

In addition, both higher and lower order Runge-Kutta
methods are available.

Stability of Numerical Integration

With the preceding material as background, the problem
of step-size determination with regard to stability can be
considered [15]. In this context, stability refers not to the
response of the physical circuit but rather to whether or not
the errors generated at each step of the numerical integra-
tion process tend to decay (stable) or grow (unstable) as
the solution progresses in time.

The study of stability is carried out by substituting the
differential equation of interest into the particular form of
the integration formula being considered and generating a

1 An aiternative classification scheme is based on the number of pre-
vious time points at which values of x(1) or (/) are required to compute
x{1 +h). Single-step methods require vajues only at times greater than or
equal to 1. Multistep methods may require values at 1 — A, ¢ — 24, etc. [n this
sense, the Runge-Kutta method described here is a single-step method.

It is also possible to use Runge-Kutta ina

considering subintervals of width A in a total interval of width mh where
n>\.
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difference equation. The roots of the difference equation are
found by converting the difference equation into an alge-
braic equation. (In some cases the z transform can be used.)
If the order of the difference equation exceeds the order of
the original differential equation, here assumed to be first
order, then all but one of the solutions to the difference
equation are parasitic. Stability requires that all parasitic
solutions have magnitudes less than unity. Those parasitic
solutions whose magnitudes exceed unity represent growing
solution modes whic™ can be excited by local truncation
errors and thus dominate the correct solution.

Through a transformation, the solutions to the differ-
ence equation can be reiated to the eigenvalues of the circuit
at each time point and the time step A. For explicit integra-
tion and Runge-Kutta methods,’ the time step 4 must
inevitably be heid smaller than a constant divided by the
largest eigenvalue at the present time point in order to keep
the parasitic solutions small. The constant involved is usu-
ally less than ten (43]. On the other hand, for implicit meth-
ods, it is found that this requirement may be relaxed by
three or more orders of magnitude [63]. As brought out
cariier, an iterative method such as Newton—Raphson must
be used to determine the state of the circuit at ¢+h. The
additional computation time required to solve the nonlinear
system of equations at a time point is more than offset by
the comparatively large steps in simulation time which may
be taken between points. Note that in this regard both the
backward Euler and the trapezoidal methods are found to
be stable for all positive values of 4 when the eigenvalues
lie in the open left half-plane. This does not mean that cir-
cuits such as oscillators and multivibrators whose eigenval-
ues may lie in the right half-plane cannot be analyzed but
rather that the maximum value which 4 may be allowed to
assume must be reduced.

Truncation Error

Stability of a numerical integration method implies only
that parasitic solutions when excited will not grow with
time. Thus stability only guarantees that as time is allowed
to go infinity, the computed soiution will converge to the
exact solution. At finite times the solutions may differ sig-
nificantly due to truncation error. The error term asso-
ciated with the forward Euler method mentioned previously
is an example. In that particular case, the error is associated
with 4> muitiplied by the second derivative or curvature of
x(¢). Thus in regions where the response is rapidly varying,
h may have to be chosen many times smaller than stability
considerations require. The time step & can be increased
when the response is slowly changing.

In general, when a higher order integration formula is
used, the truncation error may be made proportional to
higher derivatives. Similar to a Taylor series. higher order
terms tend to zero. The order of an integration formula can
be determined in the following way. If linear differential
equations whose solutions are polynomials of finite order
are considered, the order of the polynomial of largest degree

* Here only second or higher order methods are implied where order
is defined in the subsection on truncation error. For first-order methods,
no parasitic solutions exist.
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for which (48) is exact is the order of the method. Without
further justification, it is stated that backward Euler is first
order while trapezoidal integration is second order.

A difficuity with higher order methods is that the number
of parasitic solutions to the stability difference equation is
increased with the order, and the restrictions on A become
increasingly severe. A compromise must be made between
using highly stabie methods with larger truncation errors
and less stable methods with reduced truncation errors. An
approach used by several writers [64)-{66] is to vary the
order of the method as the calculation proceeds, based on
an examination of the eigenvalues or, equivalently, the rate
at which the response is varying. The aim, of course, is to
use as high an order method as possibie consistent with
stability [64].

Nonlinear Transient Analysis Programs

With the exception of the Runge-Kutta approach, the
numerical integration formulas considered thus far and
generalized in terms of (48) have ail been linear in the sense
that the value x, ., is expressed as a linear combination of
function values and derivatives. Pope (67] and Fowler and
Warten [68] have developed modifications of predictor-
corrector methods in which an exponential term is included.
This approach allows a larger step size to be used in com-
parison with straight predictor—corrector or Runge-Kutta
methods and has been used in both SCEPTRE and CIRCUS.
The approach does not allow the dramatic increase in time
steps which is possible with an implicit method. SCEPTRE
includes two additional integration routines, a trapezoidal
predictor—orrector method similar to (43) and (44) and a
fourth order Runge-Kutta method similar to (49) and (50).

CIRPAC, though not generally available outside of Bell
Telephone Laboratories, demonstrates the advantages of
implicit integration methods. The program uses the second-
order implicit integration formula (43 ]

Iy = — i‘u-l + i"‘w + i’h“luol (51)

which is given here without justification. The step size A,
which is allowed to vary, is kept as large as possible consis-
tent with maintaining a small local truncation error.
Shichman [43] reports that CIRPAC typically runs up to
ten times faster than CIRCUS and up to twenty times faster
than an earlier version of CIRPAC which used a predictor—~
corrector routine.

The programs considered to this point use state-variable
formulations where the presence of a first-order differential
equation is made readily apparent. The TRAC program
which empioys nodal analysis uses a trapezoidal implicit
integration method. The formulation can be conveniently
illustrated for the case of a linear capacitor where the i-v
characteristic is given by

5 dv, 2
b= C - (52)
In integral form, (52) can be rewritten as

t+ A (el
J i(t)dt = Cj' dv(e) = v,(0] (53)
'
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where v (1) is taken to be the difference between the node
voltages v.(0) and v (e). The trapezowdal integration formula
(42) applied (o the lett-hand side ol 133) yiclds

f
;l Lide+m+iqn]=Cleat +m—cn—vc+h)+v0)]. (54)
This equation can be rewritten Lo obtaird

c
it +h) = T[mt +h =l + )

2C,
= [eat) = 0] = ile). (55)

This last cxpression can be represented in terms of an
equivalent conductance 2C/h in parallel with a current
source between nodes i and j of value —(2C/h)[vi(t)—v ()]
—i(t). Both elements are readily hundled in terms of nodal
analysis.

Other reactive circuit elements are handled by TRAC in a
similar manner. The modified Newton-Raphson method
used for dc analysis and previously described is used at each
time point. While nearly as fast ay CIRPAC, TRAC does not
incorporate the same sort of variable step-size feature and
truncation error control. Rather the user has the option of
specifying up to ten time intervals and the maximum step
size to be allowed in each ume interval. Thus, where it is
known that a switching transient is about to occur, the user
can force a smaller step size to be imposed. An advantage
of TRAC is that it is readily available. Further, it is a relatively
smail program which coasists ot oaly 2000 statements.

Recently, a moditied version of TRAC known as TRACAP
and refeased as a part of the SYSCAP package has been
announced. Like DICAP its dc counterpart, TRACAP is only
available to users ot Control Data Corporation’s remote
batch service CYBERNET. A version of TRAC known as
MTRAC which handles magnetic cores has also been devei-
oped (27].

The transient portion of ECAP is restricted to circuits in
which nonlinear elements are described by fixed piecewise-
iinear models. Ideal switches are used to move from one
linear segment of a model to another in accordance with
the direction of current through a sensing branch. The use
of this portion of the program is guite cumbersome if
piecewise-linear reactive elements are included. Implicit
integration is used.

As to the future, NET-(I* a completely revised version of
NET-I (in FORTRAN) is under extensive test.

VI. LINEAR POLE-ZERO ANALYSIS

Linear pole-zero circuit analysis is considered as a sep-
arate topic because of the number of different techniques
used and the specialized problems involved relative to fre-
Qquency-domain analysis. Naturally, the poles and zeros of

the transter tunction, once obtained. can provide the sume .

frequency respoase intormation as the linear ac analysis
programs previously considered. However, in many prob-
lems it is the poles and zeros themselves which are of prime
interest to the circuit designer.

* NET-1L is a new version of NET-1 by A. Maimberg, now being developed.
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State-Variable and Eigenvalue Approach

The CORNAP program written by Pottle has found wide-
spread use. As mentioned previously it employs a state-
variable formulation leading to a set of equations of the
form of (3) and (4). In the complex frequency domain these
equations take the form

sx = Ax + Bu (56a)
y =Cx + Du. - (56b)

The output vector y becomes
y =[C(sl = 4)"'B + D]u. (57

For the single-input-single-output case, the circuit transfer
function T(s) is given by
= y—(s—) = - =l
T(s) ) C(sl — 4)"'B+ D (58)
where D is a scalar. The poles of the transfer function
(natural frequencies of the circuit) are given by the zeros of
det (sl — A).

In an early version of CORNAP the recursive method of
Leverrier [69], also known as the Souriau-Frame algo-
rithm (70}, was used to construct the adjoint of (si—A)
and the characteristic polynomial associated with A.
Muller’s method (71] was then used to find the zeros of the
polynomial. The recursive method however was particu-
larly sensitive to roundoff errors which severely limited

In the present version, use is made of the fact that the
zeros of det (sl — A), which are the zeros of the characteristic
polynomial and the poles of T(s), are also the eigenvalues
of the matrix 4. The @R aigorithm of Francis [{72}-{74] is
used to compute these eigenvalues.

The transmission zeros of a circuit transfer function are
obtained by making use of the fact that the zeros of the
transmission function of a feedback network piaced around
an ideal amplifier of infinite gain are the poles of the closed-
loop transfer function. The transfer function 7(s) is con-
sidered to be placed around such an ideal amplifier. State
equations describing this inverse system (75] are obtained
in terms of the original 4, B, C, and D matrices. The eigen-
values of the inverse system are then the zeros of the original
system.

CORNAP can handie up to 32 state variables (eigenvaiues)
but does require a 64 x 64 double precision matrix plus an
additional 32 x 64 double precision matrix. The core re-
quirements are thus large and it has been noted that accu-
racy is questionable for some large circuits of the order of
64 branches and 24 nodes.

A recent paper by Sandberg and So (76] describes an
alternate approach for obtaining transmission zeros. The
approach still makes use of the QR algorithm for finding
eigenvalues.

[terative Technique

The TRFN portion of LISA uses a very accurate iterative
procedure to find the natural frequencies of a circuit. A
nodal formuiation is used and each term of the nodal
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admittance matrix represents a polynomial in s, the compilex

frequency variable. For single input single output, the
transfer function is

v.(s) det Y .(s)

T(5)=— .

)= = Get W5 G

Yu(s) is the minor of the element y,_(s), the poles of
T (5) are the zoros of det Y(s). The zeros of T, (s) are the
zeros of det Y (s). The iterative root-finding method of
Muller is applied directly to det Y(s) and det Y_(s). In
Muller’s method, the determinant is initially evaluated at
three points and modeled by a quadratic. A zero of this
quadratic is then used in piace of one of the original evaiua-
tion points. This procedure is continued and a sequence of
better and better approximations to each zero of the deter-
minant is developed. The amount of determinantal evalua-
tion time appears excessive; however, the accuracy is
excellent. Further, it is possible to program this approach
very effectively to reduce greatly the computation time.
FRANK,® a program of this type, is faster for large circuits
than CORNAP, more accurate requiring only singie precision,
and uses significantly less core. Finaily, where element
values are to be varied and analyses repeated, a large savings
in time may result because previous solutions can be used
to supply good initial estimates of new solutions.

Laplace Expansion Approach

By a straightforward Laplace expansion of the deter-
minant of the nodal admittance matrix Y(s), the coeffi-
cients of the characteristic polynomial can be obtained.
Muller’s method can then be used to solve for the zeros of
the polynomial. An approach of this type is used in the
POLY portion of LisA; however, it is severely limited by the
effects of roundoff error and is limited to circuits of less
than 12 nodes.

Larger circuits can be handled effectively with programs
of this type if a restriction is made to active RC circuits.
Several polynomial manipulations are then eliminated and
accuracy and speed are improved. Program SPRAGUE® has
been found to be accurate and fast for circuits up to 19
nodes.

Nodal Analysis-Eigenvatue Approach

The eigenvalue approach based on a nodal equation
formuiation can be used for circuits restricted to active RC
elements. The nodal admittance matrix has the form

Ns) = G + sC. (60)

Eigenvalue programs of this type have been developed both
at MLLT. (30}, [31] and at the Technical University of
Denmark (77). The M.LT. program requires the user to
enter the elements of the matrices G and C of (60) directly:
however, a topological input routine can easily be added.

% FRANK is a program written and dev=tdped in 1969 by the [C Group.
i B b L

Ele y.-U y of Califormia, Berkeley.

® SPRAGUE is a program written and developed in 1968 by the IC
Group, Electronics Research Laboratory, University of California,
Berkeley.
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The method is based on the transformation of det
(G+35C) to det (GC™*—sI) where | is the identity matrix
and G and €~ are matrices of rank less than or equal to n
the order of Y(s). The transformation is carried out such
that the zeros of the original determinant are unchanged.
The zeros of the alternate determinant, however, are also the
eigenvalues of GC~'. The QR method is used to compute
these eigenvalues. The transmission zeros are obtained by
applying the same procedure to ¥, (s).

If the rank of € is equal to n, GC™' can be obtained by
applying a variation of Gaussian elimination known as
Gauss-Jordan reduction to C and performing the same
operation on G. Gauss-jordan reduction differs from
Gaussian elimination in that a matrix is diagonalized and
then normalized to obtain the identity matnx. This requires
elimination of elements above the diagonal as well as those
below. If the rank of C is less than n, then redundant rows
and columns exist in G and € and must be eliminated (77].

This method again requires only sufficient core to store
the nodal admittance matrix and is very fast. However, it is
a relatively new method and its relative accuracy has yet
to be determined, though it should be better than that of the
Laplace expansion approach.

An extension to active RLC networks has also been de-
scribed [78]. Inductive elements are replaced by ideal
gyrator-capacitor equivalent circuits. The effectiveness of
this extension to the preceding method has not yet been
evaluated, however.

Summary

A number of techniques which are used for computing
the poles and zeros of circuit transfer functions have been
considered. Though each approach requires more extensive
computations than are required to compute responses in
the frequency domain, the additional insight obtained from
a knowledge of the poles and zeros often merits the addi-
tional effort. In all cases, the order of the circuits which can
be analyzed is significantly less than that which can be
handled with the frequency-domain program described
earlier.

No mention has been made of programs using a topolog-
icai tree enumeration formuiation. While accurate (79}
[80] and useful for sensitivity studies because of the explicit
form of the coefficients of the polynomials, these programs
have been found to be too slow to be of interest and are
limited to very small circuits. Similar conclusions have been
found to apply to programs based on flowgraph methods
(81].

VII. ConcLusioNn

In the preceding sections of this paper, the basic elements
of computer-aided circuit analysis have been reviewed with
emphasis on those techniques and routines necessary for
the adequate simulation of four basic classes of circuits:
linear dc and ac, nonlinear dc, nonlinear transient, and
linear pole zero. One topic not considered but very impor-
tant is the development of device models suitable for
computer-aided circuit analysis. An overview of modeling
would, ‘n itself, require a full paper and thus cannot be
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undertaken here. However, several articles on the modeling
of bipolar and lield-effect transistor models are included
in [82}-(85].

REFERENCES

(1) F. F. Kuoand J. F. Kuiser. Eds.. Svstems Analvsis by Digual Com-
puter. New York: Wiley, 1966

(2] G. J. Herskowuz. Ed., Computer-Awed Inteyrated Circunt Design.
New York . McGraw-Hill. 196X,

(3] F F Kuoand W. G. Magnuson, Jr., Ed.. Cumputer Oriented Circuit
Desiyn. Englewoud Cliffs. N. J.. Prenuce-Hall. 1969.

(4] H. Faik, "Computer programs (or circuit design.” Electro-Technol.
(New York), vol. 77, pp. 34=37, June 1906,

(5] O Chrisuansen. “Computer-aided Jesign— 1. the man-machine
merger.” Electronics, vol. 39. pp. 110-123. September 19, 1966

{6} J. Dunanaa. “Check design program avaiabiny,” Eleciron. Des..
vol. 14, pp. 76-80, October 1 1. i960.

! (7] R. H. Dxckhaut, “Comparison of three computer-aided design pro-

grams.” Electro-Technol., vol. 78, pp. 8889, January 1967

(8] — . "Computer-aided design— V1. compunng the ‘big two’ pro-
grams.” Electromcs, vol. 40. pp. 7490, February (967,

9] W. G. Magr Je.. “Computer-aided design—VIIIL: picking
transient analysis programs.” Electromcs, val. 40, pp. 8437, Apnl
17, 1967.

(10) G. K. Pnichard, “A survey of trunsient circuil analysis programs,

1967 NASA Computer-Aided Circuit Desyn Semunar Proc., pp.

97-104.
(11] D. F. Dawson, F. 7. Kuo. and W. G. Magnuson. Jr., “Computer-
aided design of el 4 user’'s P> ™ Proc. [EEE.

vol. 55, pp. 1940-1\»4 November 1967.
(12] F. H. Branin. Jr., “Machine analysis ol networks and its applica-

tions,” [BM Develop Lab.. P N. Y., Tech. Rep.
TR 00855, 1962.
(13] ——, "Computer-aided design— [V : analyzing circuits by the num-

bers,” Electronics. vol. 40. pp. 88-103, January 9. 1967.

(14] Proc. [EEE (Special lssue on Computer-Aided Design), vol. 55,
November 1967.

(15] D. A. Calahan, Computer-Aided Network Deswn, prelimmnary ed.
New York: McGraw-Hill, 1968.

{16} L. P. Huel Digqetal Comp
New York: McGraw-Hill, 1968.

(17] Cornell Electrical Engineering Cont..
Computenzed Electronics, August 1969.

(18] T. R. Bashkow. “The A matrix, new nciwork description.” Trans.
[RE Circuit Theory, vol. CT<, pp. {17-(1Y, September {957.

(19] N. G. Brooks and H. S. Long, * A program for compuun; the tran-
sient resp: of PETAP." IBM Devei-

Poughkeep N. Y. Tes.h Rep. TR 00.700, 1959.

(20]) F. H. Brunn. Jr “D-C analysis pomon ot PETAP—A program for
analyzing IBM D Lab.
Poughkeepsie. N. Y Tech. Rep TR 00.701. 1960.

(21] 1620 electronic circuit analysis program [ecap|(1620-EE-02X]
user's manual,” IBM Appication Program File H20-0170-1. 1965.

[22] A. F. Maimberg, F. L. Cornweil, and F. N, Hoter, “NET-1 network
analysis program.” Los Alamos Scienutic Lab.. Los Alamos. N.
Mex.. Rep. LA-3119, 7090/94 version. August 1964

23] Automated digital computer program (or determining responses ol
clectronic systems (o transient nuclear radiation (PREDICT).” [BM
Space Guidance Center. Oswego, N. Y., IBM File 64-521-5, July

w Busic Circuw Theory.

Bicnmal Conf. Proc. on

1964.
(24| L. D. Muliman, W. A, \huenn and R. N chkhnut. *CIRCUS—2a
digital p

of
—user’s g.ude,” Bo-mg Cn Seattie, Wash.. Harry Diamond Lab.
Rep. AD-346-1. January 1967.
H. W. Mathers, S. R. Sedore. and J. R. Seuts, “Automated digital
computer program for determining responses of electronic circuits
to transient nuclear radiation (SCEPTRE).” IBM Space Guidance
Center, Oswego. N. Y . IBM File 66-928-611. February 1967
E. D. Johnson. C. T. Kiemner. L. R. McMurray. E. L. Steefe. and
F. A. Vassallo, “Transient radiwtion analysis by computer program
(TRAC),” Autonetics Div.. North American Rockwell Corp.. Ana-
heim. Calif.. Tech. Rep. issued by Harry Diamond Labs., June (968.
D. Nuzan and J. R. Herndon, “MiRAC —4 computer program for
analysis of circuits including magnetic cores, ” Stantord Research
Institute. Menlo Park, Calit., SRI Project 6408, Rep. 6. June 1969
TNARISYSCAPR, system ol circuit analysis programs.” Autonetcs Div .
North American Rockwell Corp.. 1969

(251

{26

{271

1%




26 .

[29] W. J. McCalla and W. G. Howard. “Bias-3, a program for the non-
linear dc analysis of bipolar transistor circuits,” /970 Int. Solid State
Circuits Conf. Dig.

(30] P. E. Gray and C. L. Searle, “"NATFREQS (FORTRAN)," in Electronic
Principles, Physics, Models, and Circuits. New York: Wiley, 1969,

Appendix C.

(31] W. H. Ohm. 'Apphauons of computer- -aided circuit dmgn and
analysis.” S.B. thesis, N of Tech gy. Cam-
bridge. June 1968.

(32] K. L. Deckert and E. T. Johnson, “User's guide*for LisA,” IBM,
San Jose. Calif.. 7094-1BM0001, August 1967.

{33] ——. "tL1sa—a program for linear sy lysis.” [BM, San Jose,

Calif.. presented at WESCON. Los Angeles, Calif., August 1966.

(34] C. A. Desoer and E. S. Kuh, Basic Circuit Theory. New York:
McGraw-Hill. 1969, ch. 12.

(35) E. S. Kuh and R. A. Rohrer, “The state-variable approach to net-
work analysis.” Proc. IEEE. vol. 53, pp. 672-686. July 1965.

(36] P. R. Bryant, “The order of complexity of electrical networks,"
Proc. Inst. Elec. Eng.. monograph 33SE, vol. 106C, pp. 174188,
June 1959.

IEEE TRANSACTIONS ON CIRCUIT THBORY, JANUARY 1971

tems of nonlinear equations,” Dokl. Akad. Nauk SSSR. vol. 88.
pp. 601602, 1953.

(591 G. C. Brown, “DC analysis of nonlinear networks,”
vol. 5, pp. 374-375. August 1969.

(60] G. Kron. *A method of solving very large physical systems 1n casy

stages.” Proc. IRE, vol 42, pp 680-686. Apnl 1954.

(61] R. H. Dickhaut, *
effects caiculations.” Boengoc D2-90571. 1964.

(62] R. W. H ing, Numerical Methods for Scientisis and Engineers.
New York: Mcan—Hlll 1962.

[63] I. W. Sandberg and H. Shichman, " Numenml integration on systems
of stiff nooli differentiat " Bell Syst. Tech. /.. vol. 47.
pp. 511-527, Apnl 1968.

[64] C. W. Gelr. “Numerical integr of suff ordi e |
equations,” Department of Computer Science, Umvem(y of lllinoss.
Urbana, Rep. 221, 1967.

{65] W. Liniger and R. A. Willoughby, * *Efficient numencal integration

of suff sy of ordinary diffe q " IBM Watson
Research Center, Yorktown Heights, N. Y., Res. Rep. RC-1970.
1968; SIAM J. Numer. Anal., vol. 7, pp. 47-66. March 1970.

Electron. Lett .

for radiation

(37] —. “The explicit form of Bashkow's A matrix,” Trans. /RE [66] P. M. Russo, “On the time domain analysis of lincar time-invariant
Circuit Theory (Correspondence), vol. CT-9, pp. 303-306, Septem- networks with large timeconstant spreads by digital computer.™
ber 1962. this issue, pp. 194-197.

(38] R.L. Wilsonand W. A. Massena, **An extension of Bryant-Bashkow (67] D. A. Pope, “An exponential melhod of numerical integration of
A matnx,” [EEE Trans. Circuit Theory (Correspond vel. dinary differential eq * Comm. ACM, vol. 6, pp. 491493,
CT-12. pp. 120-122, March 1965: August 1963.

[39]) C. Pottle. “State-space techniques for general active network analy-
sis,” in Systems Analysis by Digital Computer. F, F. Kuo and J. F
Kaiser, Eds. New York: Wiley, 1966, ch. 3.

[40]) —, A ‘textbook’ computenzed state-space network analysis
algorithm,” /EEE Trans. Circuit Theory (Correspondence). vol.
CT-16. pp. 566-568. November 1969.

(41] C. A. George, “BELAC user's manual,” General Electric Co.. Utica,
N. Y., Tech. Info. Ser. R69EMLI |, August 1969.

- .

[68] M. E. Fowler and R. M. Warten, “A numencal technique for ordi-
nary differential equations with widely separated eigenvalues.” /BM
J. Res. Develop., pp. 537-543, September 1967.
(69] A. S. Householder, The Theory of Matrices in Numerical Analysis.
Waltham, Mass. : Blaisdell, 1964, pp. 166-168.
(70] L. A. Zadeh and C. A. Desoer, Linear System Theory.
McGraw-Hill, 1963, pp. 303-305.
(71]) D. E. Mnller “A method I‘or solvmg algebraic equations using an
" in ical Tables and Other Aids (o

New York:

[42] H. Shich: of dc sol for bipolar
networks.” /EEE Tmu Circuit Theory, vol. CT-16. pp. 460-466,
November 1969.

{43] —. ““The integration system of a nonlinear network-analysis pro-
gram,” IEEE Trans. Cireuit Theory, vol. CT-17, pp. 378-386, August
1970.

(44) E. Isaacson and H. B. Keller, Analysis of Numerical Methods. New
York: Wiley, 1966.

(48] A. Raiston, 4 First Course in Numerical Analysis. New York:
McGraw-Hill, 1965.

[46] N. Sato and W. F. Tinney, “Techni for exploiting the i
of the network admittance matrix.” /EEE Trans. (Power App. Syu.),
vol. 82, pp. 944-950, December 1963.

(47] W. F. Tnmy lnd.l \V Wllker Dlrec! solutions of sparse ncnvofk

triangular factor * Proc.
IEEE, vol. 55, pp 1801~1809, November 1967.
(48] Sparse Matrix Symp. Proc IBM Rep. RA-1, March 1969.
(49] R. D. Berry, **An opti gof ic circuit equations for
a sparse matnix solution.™ this mue, pp. 40-50
(50) R. W.Jensen and M. D. Lnebemm\. {BM Elrtlmm Circuit Analy-

sis Program: Techniques and App Engl d Cliffs, N. J.:
Prentice-Hall, 1968.
(51] S. W. Director and R. A. Rohrer, “The g lized adjoint ch

Compuuation, vol. 10, pp. 208-215, 1956.

(72] J. G. F. Francis, “The Q-R transformation—{,” Compus. J., vol. 4,
pp. 265-271, October, 1961, “The Q-R transformation—II.”
Comput. J., vol. 4, pp. 332-345, January (262.

(73] J. H. Wilkinson, The Algebraic Eigenvaiue Problem. New York:
Oxford, 1965, ch. 8.

[74) B. N. Parlett, “The LU and QR algorithms,” in Mathemarical Meth-
ods for Digital Computers, vol. 2, A. Raiston and H. S. Wilf, Eds.
New York: Wiley, 1967, ch. 5, pp. 116-130.

[75] R. W. Brockett, “*Poles. zeros, and feedback : state space interpreta-

* tion.” [EEE Trans. Automatic Control, vol. AC-10, pp. 129-135.

April 1965.

(76] 1. W. Sandberg and H. C. So. “A f-eig lues app h
to the lysis of linear sy " [EEE Trans. Circutt
Theory, vol. CT-16, pp. 509-517, November l969

(77] E. V. Sorensen, “Circuit analysis by al o I
to be published.

{78] R. E. Parkin, “A state variable method of circuit analysis based on a
nodal approach.” Bell Sysi. Tech. J.. pp. 1957-1970. November
1968

(79] D. A. Calshan. “Linear network analysis and realization digital
and instruction manual.” Unwersity of lllinows

and network sensitivities,” /EEE Trans. Circuit Theory, vol. CT-16,
pp. 318-323, August 1969.

[52) ——, “Automated network design—the frequency-domain case,”
IEEE Trans. Circuit Theory, vol. CT-16, pp. 330-337, August 1969.

(53] A. J. Broderson, S. W. Director, and W. A. Bristol. “'Simultaneous
automated ac and dc design of linear integrated circuit amplifiers,”
this issue, pp. 50 SK.

(54) B. A. Wooley. “The computer-aided design optimization of inte-
grated broadband amplifiers,” /970 /ISSCC Dig. Tech. Papers, pp.
74-75.

Dullmn. vol 62. February 1965.

(80] E. V. Sorensen, “A preliminary note on the analytical network pro-
gram anel.” Laboratory of Circuit Theory, Technical University of
Denmark, Lyngby, Rep. LKT23, 1967.

(81] L. P. McNamee and N. Potash, “A user's and programmer's manual
for NAsap,” University of California. Los Angeles, Calif.. Rep:
68-38, August (968.

[82] D. A. Hodges and H. Shichman. “Modeling and simulation of
insulated-gate field-effect i switching s.” IEEE J
Sohd-Sum C:muu vol. SC 3, pp. 285-289. September (968

(58] C.G. Bmydcn. **A class of methods for solving li imul
ous equations.” Math. Comp.. vol. 19, pp. 577-593, October 1965.
(56] F. H. Branin, Jr and H. H. Wang, 'A fast reliable iteration method
for de analy " Proc. IEEE. vol. 55. pp. 1819~

1826, Nomber 1967.

[57] C. G. Broyden. “A new method of solving nonlinear simuitaneous
equations,” Comput. J.. vol. 12, pp. 94-99, February 1969.

(58] D. F. Davidenko. "On a new method of numerical solution of sys-

(83] D. Fr hik ky and L Vadasz. * Compuler-aldcd design
and characterization of digital MOS integrated circuits.” /EEE J
Solid-State Circuits, vol. SC<4, pp. 57-64, Apnil 1969

(84] H. K. Gummei and H. C. Pooa, “An integral charge control model
of btpoln " (to be published

[85] F. A. L [ | ttr and diode models for
network—an:(ysu prognms. in this issue, pp. (22-128.

(86] R. D. Berry, private communication.




APPENDIX II

Reprinted from the IEEE Transactions on Circuit ' heory, Vol. CT-18, No. 1,

January 1971.

An Optimal Ordering of Electronic Circuit
Equations for a Sparse Matrix Solution

ROBERT D. BERRY
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tions which arise in the of
systems. These techniques have often been overiooked in tmmnh
of small even their use can resuit
in very sig i in ge requir
and execution times. The time savings is particularly noticeable when
many solutions for the same circuit with different parameter velues
are required.
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matmnmmm of nodel
matrices during the by G is deacribed in
detail. Computer flow charts for the renumbering are included siong
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tional effort required for sparse solution versus full metrix solution.

[. INTRODUCTION
ANY circuit analysis programs that are in wide-
spread use today are limited by the necessary
storage requirements of the admittance or im-
pedance matrix and are inefficient in obtaining the solution
to the set of equations describing the network. If nodal
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The author is with the Naval Weapons Center, China Lake. Calif.
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analysis is used, the resulting admittance matrix of the
circuit is virtually always sparse; that is, less than 50 percent
of the matrix elements are nonzero.

Many authors have written on the subject of solutions of
sparse systems of equations (1 }-(3]. Results have indicated
that time savings of orders of magnitude can be achieved
for solution of large networks. This paper describes a solu-
tion algorithm which was specifically developed for nodal
analysis of electric circuits. The algorithm takes advantage
of the sparse nature of typical network admittance matnices
to obtain the voitage solution vector by Gaussian elimina-
tion. Storage is allocated for only nonzero terms of the
admittance matrix and Gaussian elimination proceeds
through only these terms, thereby allowing efficient analysis
of much larger circuits than was previously possible.

A FORTRAN Iv program utilizing the sparse storage and
solution algorithms has been written and is currently in use
in a linear ac analysis program. It can handle 100 node
circuits in less than 30 000 words ot storage on the campus
CDC 6400 computer. ‘' The 29-node circuit shown in Appen-

' This p by gr dents in the Department
of Enpnnnng Lmv«my of Cahl‘omn Berkeiey, during 1969-1970.
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dix II required just 3.5 s to obtain 71 complete solutions at a
like number of frequency points. The time includes the re-
loading of the admittance matrix for each of the 71 fre-
quency points.

The paper is divided into three sections-and has Appen-
dixes. Section II describes the system of pointers developed
for rapid access of the nonzero elements of any network.
Section III describes the decomposition and optimum re-
numbering scheme to preserve the sparse matrix structure
during Gaussian elimination (4] on the admittance matrix.
Section IV describes the decomposition and solution algo-
rithms which operate only upon the nonzero terms of the
matrix. Appendix I includes the flow charts for the renum-
bering scheme. Appendix I illustrates two circuit examples.

II. ADMITTANCE MATRIX STORAGE

The admittance matrix Y for a typical ten-node electric
circuit contains fewer than 50-percent nonzero terms. As the
number of circuit nodes increases the percentage of non-
zero terms drops, so that at 100 nodes typical circuity con-
tain S-percent nonzero terms. For efficient utilization of

high-speed memory and to allow for practical solution of .

very large circuits, storage is allocated for only the nonzero
terms of the admittance matrix. These terms are collapsed
into the columnar array A. An efficient set of pointers for
locating these terms in the array is an absolute necessity.

The matrix is symmetric except for terms associated with
solid-state device equivalent circuits. For the most part,
these terms are structurally symmetric but numericaily non-
symmetric. Pointers locate nonzero terms and therefore can
take advantage of structural symmetry, even though nu-
meric symmetry does not exist.

The columnar array A of nonzero terms is organized into
the three sections shown in the foilowing tabie.

The first section of the A array isreserved ™ A(l)=y,,
for the diagonal terms of the admittance ~ 4(2)=y;,

matrix (100 alk d). Position k i A(Q)=yy,y
the y,, diagonal term: therefore, no .
pointer system is necessary.

Alm)ymy,,

The second section of the 4 array is re-  4(100)
served for the nonzero off-diagonai terms ~ A(101)=y,,
of the upper triangular portion of thead-  A(102)=y,,
mittance matrix (400 total allowed). £

These terms are stored by rows.

Alm)y=y,_,,

The third section of the A4 array is re-  A(500)
served for the nonzero off-diagonal terms A(S501) =y,
of the lower trianguiar portion of the ad- A(502) =y,
mittance matrix (400 total allowed). .

These terms are stored by columns.

Alm+400)=y, _,

A(900)
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The pointer system for these last two sections takes ad-
vantage of the symmetric structure, so that one set of point-
ers serves both of the triangular portions.

The pointers are set up in two stages. In the first stage, the
nonzero structure of the nodal admittance matrix is re-
corded by the pointer system as the individual network ele-
ments and their respective node connections are transferred
from data cards to the program. Based upon this structure,
a node renumbering is effected which attempts to minimize
the number of operations required for triangular decompo-
sition of Y by Gaussian elimination. After compieting the
renumbering, the pointer system for the lower and upper
triangular portion of Y is changed to correspond to the new
node numbers. Storage of admittance terms in the second
and third sections of the columnar array A4 is to be based
upon the renumbered system, while the diagonal section is
to be arranged according to the original node numbers.
Only the pointers associated with the upper triangular array
of the renumbered system of equations are retained. Num-
bers of the lower triangular portion can be located by using
symmetry and the upper poiaters.

The pointers consist of two integer arrays. The first array
IUR contains / integer numbers where V is the number of
circuit nodes. The number stored in position & of this array

represents the starting location in the second pointer array

1uc of terms associated with row & of the admittance matrix.
In stage one the second array includes the column location
of all nonzero off-diagonal terms in each row of the original
Y matrix. In stage two the positions in the first pointer array
and all of the numbers of the second pointer array corre-
spond to the new node numbers. Every nonzero term that
will occur in the final decomposed form of the upper tri-
angular matrix is identified by this final pointer set. At this
stage the position in the second pointer array directly corre-
sponds to the position in the collapsed admittance array of
the term identified. As an example to ilfustrate the pointer
system, consider an admittance matrix with the following
pattern of nonzero terms before node renumbering, where
the y,, are the nonzero terms:

yu 0 ys 0 Yis
0 Y22 Y23 Yaa O
Ysi Y3z Y33 Ve O
0 Yaz Va3 VYaa O
ysi O 0 0 Yss

The pointer arrays before node renumbering would con-
tain the following numbers.

Row Locator Column Idenufier Term Identified
UR(l)=( wo(l) =3 Yis
UR(2)= 3 we2) =5 Pis
IUR(3)=$§ wad) =3 Vay
UR(4)=§ wcd) =4 Vie
UR(S)= {0 we(s) =1 yn
TUR(6) = ([ uc(6) =2 ¥y
wa?) =4 279
e(8) =2 Ve
uc(9) =3 Vay
we(10) = | v
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After node renumbering the admittance matrix might
assume the following form:
yu 0 0 Yie is
0 Yz Y23 Y2e O
0 Y3z Vi3 Vi O
Yar Va2 Vaz Vaa Vas
ya1 O 0 Ysa Vss
The numbers within the pointer arrays would be the fol-

lowing with the admittance terms in the 4 array as shown
on the right.

L (74
1 0 0 Offuy, wu, uy,
l}l 1 0 offo Uy Uy
Iy, l,l 1 00 0 Uyy
(o o ey JUHGIEE (0
UR(1)= | we(l)=4 A(101) =y,
UR(2)=3 We2)=$ A(102)=y,,
UR(3)=$ we(3)=3 A(103)= y,,
UR(4) =6 UC4) =4 A(104) =y,
un(S)=7 wes)=4 A(105)= yy

wed)= 5 A(106) =y,

Thefirst pointerarray un(k) The second pointer array A(501)=y,,
indicates the starting loca- 1UC()) indicates the column  A(502)=ys,
tioa in 1UCY) of the location of the term  A(503)=y,,
terms identified in row (col- stored in 4(100+)) and the A(504)=y,,
umn) k of the admittance row location of the nonzero  A(505)=y,,
matrix. term stored in A(500+/). A(506)=y,,

11I. DeCOMPOSITION AND NODE RENUMBERING

The first step toward obtaining the solution vector x in the
set of equations Yx=b involves triangular decomposition
of Y, the symmetrically structured admittance matrix, by
Gaussian efimination. This technique invoives the breaking
down of Y into a product of two unique matrices, L and
U, where Y = LU. The matrix L is lower triangular in form
with 1 as the value of every diagonal element,

1 0 0 o
Ly 1 0 0
By Byt 0l
ls e Ty

Lyguys + lsqups + usy = y33 or

lyyuyg + l3guyq + Use = y3q OF
lagys + laglay + loguyy = yay or

laglye + laglyy + laglye + Ues = Yau OF
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The matrix U is an upper triangular matrix:

Uy Uy Uye
Uzy Ue
0 Uy Uye
0 0 Ugs

cocox
=
=
~

A full matrix decomposition will be illustrated to show the
steps involved in a tniangular decomposition by Gaussian
climination. The product of the L and U matrices shown is
the following:

= Y
Ure Yuu Yz Y3 Ve
Ua| _ | Y21 Y22 Y23 V2
Use Yir Y3z Vi3 Ve
Ues Yar Yaz Va3 Vs
By examination
U1y =Y
Uz = Y12
Uy = Vs
Uiy = Jia

By muitiplying the rows of L by the first column of U, we
see that
Ly = y21 or lay = yay/uy
lyuyy =y or {31 = Vafuyy

Lty = yar or Lo = Yay/ups

The remaining u;; and ;; values in terms of y;; and pre-
viously determined /,, u,;, and u,, values are

laguy; + ugy = yy; OF upy = yy3 ~ lyuy,
layuy3 + tyy = yy3 OF uyy = yy3 ~ LUy
lyglye + U = Y24 OF Upy = ypu = lyiys
Va2 = by
bty + lygléyg = yy 00 Uy = =—=—"—=
U2
Yoz = laatyy
lagyz + laglay = ygg or I = =—=——=
U2
uyy = yyy = lyuy3 = l33us,
Use = Y3a = I3 gtre = lyaus,
Va3 = layuys = lagutzy

lg =
U3

Uea = Yaa = loltya = laguigy = loyisa.
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The first row of U and the first column of L are obtained
quite easily. In programming it is very desirabie to replace
the values of the y;; with the values of either the u; or the /;;
as they are determined. Also, as each /;, is determined the
remaining values of y, in the ith row for k> | are changed
by subtracting from them the product l;,u,,. After this
first row and first column step of the decomposition, the
values in the Y storage locations will be the following :

Uy Uy Uy Uge
1) ufl) 1)
Ly v A8 A
1) (1) 1)
Iy 42 A8 A2
1) (1 (1)
Lo Y43 ,V(u v
where
1
V42 = yag = lyuy2 = uy;
L
9 = ya3 = Ly = uys

1)
= Yaq = lygthyg = uyy

A2 = y3z = l3uy2
W3 = Y33 = by
Y82 = Y34 = l31uya
)'fz’ = Yoz = laguyz
(1) o =]
Va3 = Va3 a3
L = Yau — laguye
Note that the values yt, 43, and y{) are equal to u,,,
uy3, and u,,, respectively. /3, and I ; are obtained from
¥4 and y{), respectively, by simply dividing by the pivot
element u,,:
et
Uz
laa = ﬁ
U2

Just as in the first row—column decomposition step, after
each [, is obtained the remaining values of u, in the ith
row for k> 2 are changed by subtracting the product [;;u,,
from them. The values now found in the Y storage array
are the following:

Uyp Uy Uyy Uge
3y uzz uz3 Uz

Iyy by A3 AL

i la Y3 Y2
where
Y = A = luas
W = A = Ly
8 = v = lauas

Y& = Yl = lauze
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The decomposition proceeds by row—column steps until
all the elements of U and L are determined and replace the
elements of Y in storage. In general, at the ith row—column
step, the ith row values of U are determined from the equa-
tion

uy =y, forallj 2 i

and the ith column values of L are determined from the
equation

yﬂ'l’
ly="2—, forallj>i

This technique is associated with Doolittle [4].

The sparse matrix decomposition uses the Doolittle
method but-only carries out the operations that result in a
finite change in an element value stored in the Y array.
A finite change in a stored value occurs under just two cir-
cumstances. The first arises when solving for the [; term
just mentioned and occurs whenever the y4~" term is
nonzero. (The diagonal term uj; is always finite in the ad-
mittance matrix). The second circumstance arises just after
the determination of a finite /;; term when all of the yi§~ "
terms for k> i are changed to i by the relationship

=
}"/2 —J Y‘n i 11:“«- ;

Once I, is determined to be nonzero, a change between
¥4 and y~ " will occur only when uj is also nonzero. A
node renumbering scheme is effected which attempts to
organize the nonzero terms of the original admittance
matrix in such a fashion as to cause the second circumstance
to arise only when y},” " is already nonzero. Otherwise an
additional nonzero entry will occur in the matrix and will
increase the total computational effort required for the
decomposition.

There are three basic parts to the renumbering algorithm.
All parts search the nonzero structure recorded by the stage
one pointer system described previously. The algorithm
takes advantage of structural symmetry whenever possible
to speed up the renumbering process. An array NUMOFF is
set up which records the total number of nonzero off-
diagonal terms associated with each node. NUMOFF(k)
equals the total number of these terms that would appear in
the Y array in row k.

Part I of the algorithm searches this array once to see if
there are any nodes with only one nonzero off-diagonal
term. If one is found, it is numbered | and the array NUMOFF
is altered. The off-diagonal term of this new node 1 will be
located in some column ;. Because of the symmetric struc-
ture, there will also be an off-diagonal term in row
column 1. During the course of the decomposition, these
two mentioned off-diagonal terms will become u,; and [,
respectively. The only yi}' term that will be altered during
the first row—column step of the decomposition will be the
y;; term, which will change to

1)
Vi = vy = Ly
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All of the other uy, and |,, for k> | terms are zero.

-Since all diagonal terms, ie., all y;;, are always non-
zero to start with, there will be no additional nonzero terms
created at this step of the decomposition. In searching for
a node to number 2, we can remove from consideration
both of the nonzero terms u, ; and /;,. Neither of these terms
will be used again during the course of the decomposition.
To simuiate their removal the array NUMOFF is changed by
reducing the recorded number of off-diagonal terms associ-
ated with node j by 1. If, by this reduction of [, the etfective
number of off-diagonal terms associated with node j is now
one or fewer, then the jth node will be numbered 2 and the
process repeated. A single sweep through the array NUMOFF
will rapidly pick off every node that has only one or fewer
effective off-diagonal terms. Decomposition of these single
off-diagonal term equations will cause no new nonzero
terms in the matrix.

A typical example showing the working array after the
first row—column decomposition step is shown in the follow-
ing. Row one has just one nonzero off-diagonal term. The
array NUMOFF contains the effective number of nonzero off-
diagonal terms shown on the right after | is subtracted from
row 5:

uy, 0 0 0 ugy O NUMOFF(1) = 1|
0 ya2 0  ye 0 yy NUMOFF(2) = 2
0 0 yy3 0 y35 O NUMOFF(3) = |
0 ya2 0 yuu yas O NUMOFF(4) = 2
Isp O ys3 yse W3 O NUMOFF(5) = 2
0 y2 0 0 0 g NUMOFF(6) = 1.

Part II of the algorithm searches the remaining nodes
(those not renumbered in Part I) for nodes which can be
decomposed without increasing the number of nonzero
terms. Suppose m— | nodes were renumbered by the Part I
search and suppose node i has associated with it two non-
zero off-diagonal terms (NUMOFF(i)=2) in the portion of
the matrix that has not been renumbered yet. Let these
terms be y;, and y,. Should we choose to renumber this
node as node m, the decomposed terms would become
u,; and u,,. By symmetry there would also be a calculation
of the finite terms [/, and /,,. Two terms in row j and two
terms in row k would be altered by the decomposition.
These terms are

i = V7Y = Lthey
P = <
m" yﬂ‘” a l.-l‘"
A = 27" = Lt

The first and fourth terms are on the diagonal and are al-
ready nonzero. The second and third terms are off-diagonal
but are in symmetric locations. Therefore, only one of these
terms need be checked to see if it is nonzero. If yi¥ = ' should
happen to be nonzero, then the node would be renumbered
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next and no change in the structure of the Y array would
occur during the decomposition. The j and & row would
have | removed trom the etfective number of otf-diagonal
terms, and if this caused the effective number todrop to | in
either row j or k, then that particular row would be re-
numbered next. .

As each node is checked, an array (FILL is set up which re-
cords the number of new positions that would become non-
zero if that particular node were renumbered next.

After checking all of the nonrenumbered nodes tor those
which can be decomposed without causing an increase in
the nonzero terms. a check is made to see if any were re-
numbered before the last entry into the Part I algorithm.
If any nodes were renumbered, the algorithm is repeated
because now the effective number of nonzero off-diagonal
terms is different from the time Part I1 was first entered. It is
still possible that additional nodes can be renumbered that’
will not increase the nonzero terms during decomposition.
When a complete Part I search is made without finding any
nodes for renumbering, then Part Il is entered. At this
point, every remaining node would cause a change in the
nonzero structure if it were to be renumbered next. The
array IFILL indicates how many new nonzero terms would
be created during the decomposition if the node in question
were to be renumbered next.

Part [II finds the node that would cause the fewest new
nonzero terms by searching the array (FiLL. In case more
than one node would cause the same fewest new nonzero
terms, the node among these with the most number of
effective nonzero off-diagonal terms recorded in NUMOFF is
numbered next. The reason for this choice is that the number
of new nonzero terms created during the decomposition
at this step is still a minimum, but also the number of terms
removed from the nonrenumbered portion is the largest
possible, subject to the first constraint. By this choice the
sum of the numbers in the array NUMOFF is minimized.

After the choice is made and a node renumbered. the
new nonzero topology caused by decomposition of that
nodal equation is recorded in the system of pointers. The
array NUMOFF is kept up to date by adding | to the row in
which each new nonzero term caused by the decomposition
of that node appears. Also, as in all prior renumberning in
Part 1 and Part i1, the array NUMOFF is altered by subtracting
1 from the appropriate rows containing the nonzero off-
diagonal terms of the node just renumbered. If, by this sub-
traction, an effective number of 1 off-diagonal terms appears
in any of the nonrenumbered rows, that row is immediately
renumbered next. After the bookkeeping operations have
been completed for renumbenng of a row from Part [II,
Part [1 is entered at the beginning. The search proceeds from
this point as if it were the first entry into (I. Fig. | illustrates
the matrix Y at an intermediate stage of renumbering. The
X represent the locations of all nonzero terms of an ad-
mittance matrix for a 23-node circuit. The numbers around
the immediate borders of the matrix represent the node
numbers supplied by the designer. The order in which the
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Fig. 1.

numbers appear is the arrangement for decomposition at
an intermediate stage of the renumbering. The numbers at
the far right are the current numbers in the array NUMOFF.
] Note that in the first ten rows these numbers indicate the
number of nonzero off-diagonal terms in the upper tri-
angular portion of the array. The renumbering is complete
to this tenth row which lies just above the dashed horizontal
line. The two dashed lines outline a square lower right corner
* array which is referred to as the nonrenumbered portion of
the matrix. The extreme right-hand numbers opposite the
rows in this smaller array indicate the number of nonzero
off-diagonal terms that lie within this lower right corner
array. If any nonrenumbered node was renumbered 11, it
would have this number of terms in the upper triangular
matrix U.

For the tenth row, node 3 was selected instead of node 10
because either one would cause two new nonzero terms dur-
ing decomposition, but node 3 had more off-diagonal terms
in the nonrenumbered portion. The two zeros at the inter-
sections of nodes 8 and 5 indicate the two locations for
these new nonzero terms.

After all of the nodes are renumbered into the order in
which the nodai equations will appear in the admittance
matrix, the stage one pointers are reorganized. In the reor-
ganization all of the pointers are changed to correspond to
the new system of equation numbers and include all nonzero
terms that will ultimately be found in the upper triangular
matrix U. Terms of the lower triangular matrix L are located
by symmetry.

IV. SPARSE MATRIX SOLUTION

The node voltage vector can now be obtained by direct
solution using Gaussian efimination with the sparse matrix
technique. Because ¢! the renumbering, the nonzero terms
| of the admittance matrix are located in the columnar array
! in the order in which decomposition will proceed. by rows
F in the upper triangular portion and by columns in the lower.
This storage arrangement was selected to allow for very
; . efficient decomposition processing and completely elim-
!k inates the need for any further search for nonzero terms.
)

;
:
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Fig. 2. Part | of the node renumbering algorithm.

Once all the values of L and U are determined by the
decomposition, the process of forward and back substitu-
tion is employed to obtain the solution vector x. The steps
involved are the following:

Yx=b

LU=Y

Lz=b, ie,z=L"b

Ux =z, ie.x=U"'L'.

The L' and U~ matrices are never really determined in
solving for the z or x vectors just mentioned. Forward
substitution is used to find z and back substitution is used
to determine x. A slight modification to the standard
forward substitution technique is convenient because the
nonzero terms of the L matrix are stored by column. The
modified forward substitution process proceeds by columns
instead of by rows and resulits in the same number of opera-
tions as the row approach. Elements of the z vector replace
elements of the b vector as they are determined. The follow-
ing is an example of the modified forward substitution tech-
nique for a 4 x 4 fuil matrix:

t 0 0 0]z [bl
Gy b 0 Oz b,
Ly i 1 0f|z i by|
YRR PP PP U B Lbe
The first column step is

3 =by

A = by = 12

P = by = ly2

2 = by = 12

The second column step is

2, =2
:(,2! = :4J||
@ =

~ ly;2,

~ lgz2;.
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' Fig. 3. Part Il of the node renumbering aigonthm.

The third column step is - Just as in the sparse matrix decomposition, only those
operations that cause a finite change in a stored value in the
2y = 2P b vector are carried out. ‘

The back substitution used to determine the final solution
vector x is a standard technique proceeding from the final
nth row equation backward to the first row. The technique
for a4 x 4 full matrix example is illustrated as :

=P~ laszs.

The fourth column step is

A3y %
Ze =3 Uy Uy U3 Ue Xy "l)
.
0wy uyy U Xy LH
= ;
In general, 0 0 Uyy Ui Xy 2y
2V & Y < 2, 0 0 0 ue Xe &
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Fig. 4. Part (1] of the node renumbering algonthm.

Proceeding backward from the fourth equation we get the
following answers:

Ze

Xy = —

Uga
I3 = Uy
Xy = ————

Uy,

33 = UaaXy = UseXy
xz - -
U

Iy = Uy gXy = Uy yXy = X,

X, =
Uy,

In general
L]
5= ¥ uyx,
X, = JRI=L v
X =
Uy

As 1n all previous sparse matrix modifications to the
standard techniques. only those muitiplication and addi-
tion operations involving nonzero quantitics are carried
out. The efements of x replace the clements of = in storuge
as they are determined.
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Subroutine m;umber called trom Part | and Part Il of
the node renumbering algorithm.

V. SuMMARY

The time savings that have resulted from using the de-
scribed sparse matrix techniques in lieu of a standard full
matrix algorithm is very significant for obtaining a fre-
quency response to even relatively small circuits in the [5-
to 30-node category. The structure of nonzero terms and
the node renumbering 15 determined just once for any given
circuit. The most significant time savings result when maanyv
solutions for cither different circuit parameter values or
different excitation frequencies are required. An ideal
application for the sparse matrix and renumbering algo-
rithm arises in automated network design in which a scarch
for optimum circuit parameter values is carried out in the
frequency domain [5].

The standard triangular decomposition by Gaussian
climination reauires on the order of n' 3 multiplication-
addition operations. The sparse matrix decomposition re-
quires some number proportional to n operations but is
very dependent upon the nonzero structure of a given cir-
cuit. Empirical resuits based upon the analysis of typical 20-
to ¥0-node integrated circuit amplifiers has indicated this
number varies from 4n to 16a. but other circuit examples
that would fall both above and below this range could be
found.
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RETURN

Fig. 6. Subroutne insert called from Part [1 of the node
renumbering algonthm.

The forward-substitution and back-substitution opera-
tions are also proportional to n and dependent upon non-
zero structure. Nearly one half of the total solution effort
is expended in these last two algorithms. Additional time
savings of up to a factor of 2 could be achieved under some
circumstances, if the node renumbering also takes into ac-
count the sparse solution efficiency of the forward substi-
tution and back substitution. Many times in a frequency
response only one or two node voltages are desired. If these
nodes are numbered last, the back substitution could be
stopped in its first stages after these desired voltages are
determined. Normally only one excitation source exists in
the circuit. The b vector (current vector) consists of nearly
all zero values. If the nodes associated with the nonzero 5
values were to be numbered next to last, the forward sub-
stitution could begin near the right-hand side of the L
matrix and need only proceed through the final few nodes.
Unfortunately, by arbitrarily numbering certain nodes
last, the decomposition efficiency will most likely suffer.
However, it has been shown experimentally that the total
solution effort and the computer time will be reduced by
one third to one half in most cases when this scheme is em-

ployed.

.
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Fig. 7. Example 1. (a) The circuit. (b) The admittance matrix using the
rcied node

(¢) The ad matrix using the circled
node b d by the benng aigorithm.
APPENDIX [

The node renumbering algorithm is broken down into
the three parts described in Section III. Flow charts for
these three parts are given in Figs. 2—4. The two subroutines
called from these flow charts are shown in Figs. 5 and 6.

The computer variables are defined as follows:

LOAD equals the next node number to be assigned
during renumbering; starts at | and pro-
ceeds sequentially to V.

N number of nodes in the circuit excluding the
reference node.

array containing the original node numbers
in the order in which decomposition will
proceed.

array complementary to IORDER(), i.e., if
IORDER(j) =k, NODE(K) = .

array indicating the starting location of
terms in 1UC(k) associated with row j of the
matrix.

array indicating the column location of the
term stored in A(100+ ) or the row location
of the term stored in 4(500+)).

array indicating the effective number of
nonzero off-diagonal terms left in row j at
any simulated stage of the decomposition:
the j is the original node number.

IORDER()

NODE()

TUR(/)

wegy)

NUMOFF(j)
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Fig. & Example 2. (a) The circunt. (b The admuttance matrix using the uncircled node s () The ad e

matnx using the circied node numbers (determined by the renumbenng aigonthm.

IFILL()) array indicating the number of new nonsero
terms that would be created in the L or [’
matrix if currently numbered row ; was (o be
renumbered as row number LOAD.

INSERTS flag indicating whether or not insertion into
the pointer arrays of a potential new non-
zero term caused by decomposition shouid
be carried out: if it equals | then the inser-
tion s done. otherwise it is not.

all others dummy integer vanables and integer arravs

Appennix [

Figs. 7 and 8 are two circuit examples that compare the
computational effort required for triangular decomposition
by Gaussian elimination using a full matrix algorithm. the

sparse matrnix algorithm, and the sparse matnx aigorithm
with the node renumbering algorithm. [n both circuits the
reference node is numbered zero and all terms in the ad-
mittance matrix associated with the zero node are dropped.
The resulting nonsingular matrix is partitioned as

Falbd i b o O

Y., squarearray of nodal admittance terms cor-
responding to nodes of unknown voltage:

Y., square array of nodal admittance terms cor-
responding to nodes of grounded indepen-
dent voltage sources :

where
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Y, and Y, intersections of the above two sets;
v, and i, unknown voitage and independent current
source vector associated with the Y, nodes;
v,and i, voltage source and current source vector
associated with the Y, nodes;
i, unknown current vector of currents through
the grounded independent voltage source.

The node voltage vector v, is to be determined by Gaus-
sian elimination on the set of equations

Ynn”u =i, - yllvf

It is the Y,, matrix that is shown in the two examples,
Figs. 7 and 8. The X indicate the nonzero terms of Y,
before decomposition. The zeros indicate terms which are
zero in Y,, but change to finite values during the decomposi-

tion into LU form. In exampie 1, Fig. 7, the standard full.

matrix decomposition requires 55 divisions, 385 muitipli-
cations, and 385 additions. By using the sparse matrix
technique without renumbering, the decomposition requires
19 divisions, 41 multiplications, and 41 additions. With
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renumbering before sparse decomposition, these operations
are reduced to 15 divisions, 25 multiplications, and 25
additions.

In example 2, Fig. 8, the full matrix decomposition re-
quires 378 divisions, 6930 muitiplications, and 6930 addi-
tions. This compares with 134 divisions, 746 multiplica-
tions, and 746 additions for sparse decomposition without
renumbering and 63 divisions, 169 muitiplications, and 169
additions with renumbering before sparse decomposition.
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USFRS GUINE FOR SPICF 1

SPICF IS A GENERAL PURPASF CIRCUIT SIMULATICN PRCGRAM FPR NCNL INEAR DC,
NCNLINF AR TRANSIENTs AND LINFAR AC ANALYSISe CIRCUITS MAY CCNTAIN RESISTORS,
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BF TIMS DEPENDENT FOR TRANSIENT ANALYSIS.
290 TOTAL FLEMENTS, INCLULDING DEVICES AND [NOFPENDENT SOURCFS.
10 CUTPUT VAR[ABLES. AN CUTPUT VARIABLE IS EITHER A NODE TC ACDE VOLTAGH

OR A CURRENT TH2CUGH AN [NOEPENCENT VGLTAGE SODURCF, (CLTPUT VARIARBRLES
MAY RE PRINTED [N TABULAR FQORM, PLOTTED AS LINE PRINTER PLOTS, DR 8NTH,
CMLY S5 QUTPUT VARTABLFS CAN BF USED [N THE AC SMALL STCNAL ANALYSIS.

10 SFTS NF MOQCEL PARANFTERS FOR ODEVICES.




G o e

PAGE 2

TYPES OF ANALYSIS

————— v — ——— ——— -

—-==== [C ANALYSIS

THE DC ANALYSIS PNRTICN OF SPICE CETFRMINES THF DC OPERATING PCINT OF THE
CIRCUIT WITH INNDUCTORS SHORTFD AND CAPACITORS OUPENED. A OC ANALYSIS IS
AUTCMATICALLY PERFQRMEND PRIGR TO A TRANSIENT ANALYSIS TO DEVTERMINE THE TRANSIENT
INITIAL CONCITIONS, AND PRICR TC AN AC SMALL SIGNAL ANALYSIS TO OFTERMINE THE
LINFARIZED, SMALL SIGNAL MODELS FCR NONLINEAR DEVICES. [IF REQUESTEC, ThE OC
SMALL SIGNAL VALUE OF A TRANSFFR FUNCTION (RATIO CF CUTPUT VARIABLF TO INPUT
SCLRCF), INPUT RESISTANCE, ANDR CUTPUT RESISTANCE wiLL ALSO BE CCMPUTED AS A PART
OF THE SMALL SIGNAL OPERATING POINT. THE OC ANALYSIS CAN ALSO BF USED TO
GENFRATE CC TRANSFER CURVES. A SPECIFIED INDEPENDENT VOLTAGE OR CURRENT SOURCE
[S STEPPEN OVER A USEN SPECIFIED RANGE AND THE DC NQUTPUT VARIABLES ARE STORFD
FOR EACH SEQUFNTTAL SOURCE VALUE, THE OC ANALYSIS OPTIONS ARE SPECIFIED ON THF
+NC CCNTROL CARD (PAGF 15).

——=  AC SMALL SIGNAL ANALYSIS

THE AC SMALL SIGNAL PORTION CF SPICE COMPUTES THE AC OUTPUT VARIABLES AS A
FUNCTION OF FREQUENCY. THE PROGRAM FIRST COMPUTES THE DC OPERATING POINT OF THE
CIRCUIT ANC CETERMINES LINFARIZED, SMALL SIGNAL MCNDELS FCR ALL CF THE NONLINEAR
DEVICFS IN THE CIRCUIT. THE RESULTANT LINEAR CIRCUIT IS THFN ANALYZED OVER A
LSER SPECIFIED RANGE OF FRFQUFNCIES. THE DESIRFD CUTPUT OF AN AC SMALL SIGNAL
ANALYSTS IS USUALLY A TRANSFER FUNCTION (VOLTAGE GAIN, TRANSIMPEDANCE, ETC). I[F
THE CIRCUIT HAS ONLY ONE AC TNPUT, [T [S CONVENIENT TO SEY THAT INPUT TO UNITY
AND ZERO PHASF, SO THAT QUTPUT VARIABLES HAVF THE SAME VALUE AS THE TRANSFER
FUNCTICN GF THF OUTPUT VARIABLF WITH RESPECT TO THE [NPUT,

THE GENERATION OF WHITF NOUSE BY RESISTORS AND SEMICONOUCTCR DEVICES CAN

ALSO BE SIMULATED WITH THE AC SMALL SIGNAL PQRTION OF SPICE. EQUIVALENT NOISF
SOURCE VALUES ARE DETERMINED AUTCMATICALLY FROM THE SMALL SIGNAL CPERATING POINT
CF THE CIRCUIT, ANO THE CONTRIBUTION OF EACH NOISE SOURCE IS AODDEC AT A GIVEN
SUMMING POINT., THE TOTAL CUTPUT NOISE LEVEL AND THE EQUIVALENT INPUT NOISE
LEVEL ARE DETERMINED AT EACH FREQUENCY PCOINT. THE OUTPUT AND INPUT NOISE LEVELS
ARF NORMALIZED WITH RESPECT TO ThE SQUARE ROOT OF THE NOISE BANCWIDTH AND HAVE
THE UNITS VOLTS/RT HZ OR AMPS/RT HZ. THE OUTPUT AROISE AND EQUIVALENT [NPUT
NOISE CAN BE PRINTED OR PLOTTED IN THE SAME FASHICN AS OTHER QUTPUT VARTABLFS.

THE FREQUFNCY RANGF ANC THE NOISE ANALYSIS QPTICNS ARE SPECIFIED ON THE
«AC CCNTROL CARD (PAGE 15).

—==— TRANSIENT ANALYSIS

THE TRANSTENT ANALYSIS PCRTICON QF SPICE COMPUTES THE TRANSIENT GUTPUT
VAR [ABLES AS A FUNCTINN OF TIMF OVER A USER SPECIFIFD TIME INTFRVAL. THE
INITIAL CCNOITIONS ARF AUTCMATICALLY QETERMINED BY A DC ANALYSIS. ALL SOURCES
WHICH ARE NOT TIME DEPFNDENT (FOR EXAMPLE, POWER SUPPLIES) ARE SET TD THEIR CC
VALUE. FOR LARGE SIGNAL SINUSCTIDAL SIMULATIONS, A FCURIER ANALYSIS CF THE
NUTPUT WAVEFNRM CAN BE SPECIFIED TO OBTAIN THE FREQUENCY DOMAIN FCURIER
COEFFICIENTS. THE TRANSIENT TIME [NTERVAL AND THE FCURIER AMALYSIS OPTIONS
ARE SPECIFIEN N THE .TRAN CCNTROL CARD (PAGE 16).

o
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———  ANALYSIS AT OIFFFRENT TEMPERATURFS

ALL INPUT CATA FOR SPICE IS ASSUMEN TO HAVE BFEN MEASURED AT 27 CEG C
(300 CFG K)o THE SIMULATION ALSO ASSUMES A NOMINAL TEMPERATURE OF 27 DEG C.
THE CIRCUIT CAN 8F SIMULATFD AT UP TO 5 DIFFERENT TEMPERATURES RY LSING A ,TENMP
CCATRCL CARD (RAGE 15).

TEMPERATURE APPEARS FXPLICITLY IN THF EXPONENT[AL TERMS OF THE BJT AND
DIONF MNDEL EQUATIONS. IN ADCITION, SATURATION CURRENTS HAVF A BUILT-IN
TEMPERATURE NFP FNDENCE. THE TEMPFRATURE DEPENDENCE CF THE SATURATION CURRFNT
IN THF RJT MODELS (S NETERMINED RY:

IS (TFMP) = [Q * (TEMP*%x3) *x EXP (-Q * EG / (K = TEMP)),
WHERF K [S ROLTZMANS CONSTANT, Q IS THE ELFCTRONIC CHARGE, [0 [S A CONSTANT, AND
FG IS THE ENERGY GAP WHICH IS A MQDEL PARAMETER. THE TEMPERATURE DEPFMNCENCF OF
THE SATLRATION CURRENT IN THE JUNCTION CIODE MODEL (S DETERMINFC BY:

IS (TEMP) = [0 * (TEMP®%(3/N)) * EXP (~Q * EG / (K *= TEME)),
WHERE N IS THE EMISSION COFFFICIENT, WHICH [S A MCDEL PARAMETER, ANC THE CTHKFER
SYMBCLS HAVE THFE SAME MEANING AS ABOVE. FOR SHOTTKY BARR[ER CICLES, THE
TEMPERATURF DEPENCENCE OF THE SATURATION CURRENT IS OETERMINED BY:

IS (TEMP) = 10 * (TEMP*%(2/N)) * EXP (~-Q * EG / (K * TEMP)).

CCNVERGENCE

BOTH NC AND TRANSTFNT SOLUTIONS ARE OBTAINED BY AN [TERATIVE PROCESS WHICH
IS TERMINATED WHEN THE NODF VOLTAGES CCNVERGE TO WITHIN A TOLERANCF OF 0.l
PERCFNT QR S50 MICROVOLTS, wHICHEVER (S LARGER. ALTHCUGH THE PART[CULAR
ALGCRITHM USED IS SPICE HAS BEFN FOUND TO BE VERY RELIABLE, IN SCMF CASES IT
WILL FAIL TC CONVERGE TO A SOLUTICN. WHEN THIS HAPPENS, THE PRCGRAM WILL PRINT
QUT TKF LAST NODF VOLTAGES ANC TERMINATE THE JOB. THE NODE VOLTAGFS THAT ARE
PRINTEC APE NOT NECESSARILY CCRRECT OR FVEN CLOSE TC THE CORRECT SOLUTION.

FAILURE TO CONVERGE IN THE OC ANALYSIS IS USUALLY DUE TG AN FRROR I[N
SPECIFYING CIRCUIT COANECTICNS, ELEMENT VALUES, OR MODEL PARAMETER VALUES.
REGFNERATIVF SWITCHING CIRCLITS OR CIRCUITS WITH POSITIVE FEECRACK PRORABLY wILL
NCT CCNVERGE IN THE OC AMNALYSIS. FAILURE TO CONVFRGE IN THE TRANSIENT ANALYSIS
CAN ALSC BE ODUE TO A TIME STEP WHICH IS TOO LARGE. SPICE PRESFANTLY DOES NOT
HAVE AN AUTOMATIC TIME STEP CCNTROL, ANO SIGNIF[CANT ERROR ANO/CR NCNCONVERGENCE
CAN RFSULT [F THE TIMF STEP [S LARGE COMPARED TO THF CIRCUIT TIMF CCNSTANTS.
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INFLT FORMAT

THE IMPUT FORMAT FOR SPICE IS OF THE FREE FURMAT TYPE, FIELCS ON A CARC
ARE SEPARATEN Hy (ONE OR MORF BLANKS, A COMMA, OR AN EQUAL (=) SIGN. SPACES
PRECEDING OR FOLLOWING A CCMMA NR EQUAL SIGN ARE IGNCRED. A CARD MAY BE
CONTINLED CNTO THE FOLLOWINC CARD BY PUNCHING A + BEFORE THE FIRST FIELD ON THF
CONTINUATICN CARD.

A NAME FISLD MLST BEGIM WITH A LETTER (A THRU Z) ANC CANNCT CONTAIN
COMMAS OR PRLANKS. CNLY THF FIRST SEVEN CHARACTERS CF THE NAME ARE LSFD.

A NUMRER FIELD MAY RE AN INTEGER FIFLD (l2+-44), A FLOATING POINT FIELL
{3.14159), FITHER AN INTEGFR OR A FLOATING POINT NUMEER -FOLLOWED BY AN INTEGER
EXFCNFENT (1F-14, 2.,65€3), OR EITHER AN INTEGER OR A FLCATING POINT NUMBER
FCLLCWED RY ONE OF THE FQLLCWING SCALE FACTORS:

1.CES
EG 1. 0F6
1.CF3
l.0€-3
1.0€6-6 !
1.0€=-9
1.06-12

VZCTXIXTO

LETTERS [MMFOTATELY FOLLOWING A NUMBER THAT ARE NOT SCALE FACTORS ARE IGNORED,
ANO LETTERS [MMECIATELY FOLLOWING 4 SCALE FACTOR ARE IGNORED. HENCE, 10, 10V,
10VCLTS, AND 1Q0HZ ALL REPRESFNT THE SAME NUMBER, AND M, MA, MSEC, AND MMHOS ALL
REPRESENT THE SAME SCALE FACTOR. NOTF THAT 1000, 10C0.0, LOCOHZ, LF3, 1.0E3,
1KKZ, AND 1K ALL REPRESENT THE SAME NUMBER.

CIRCLIT DESCRIPTION

THE CIRCUIT TO 3F ANALYZEO (S OESCRIBEC TO SPICE RV A SET CF ELEMFNT
CARCS., WHICH NDEFINE THE CIRCUIT TOPOLOGY AND ELEMFNT VALUES, ANC A SET CF
CCNTROL CARNS, wHICF ODEFINE THE MCDEL PARAMETERS ANND THE RUN CONTROLS. THE
FIRST CARD IN TFHE INPUT DECK MUST BE A TITLE CARD, ANC THE LAST CARC MUST BE A
«ENC CARD. THE ORDER OF THE REMAINING CARDS [S ARBITRARY,

NODE NUMBERS MUST BE I[NTEGERS. THF DATUM NODE MUST BE NUMBERFC 0 (ZERQ).
NOCES NEED NOT BE NUMBERED SEQUENTIALLY. THE CIRCUIT CANNOT CCNTAIN A LCOP OF
VOLTAGF SOURCES ANN/OR INDUCTCRS AND CANNQOT CONTAIN A CUTSET OF CURRENT SOURCES
ANC/CR CAPACITORS. EACH NODE IN THF CIRCUIT, INCLUD ING THE DATUM NCODE, MUST
HAVF AT LEAST TWO CCNNECTIONS.

4
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ELEMENT CARCS

*#¢32% RESISTORS, CAPACITORS, [NNUCTORS

GENERAL FOPRM RXXXXXX N1 N2 VALUE
CXXXXXX N1 N2 VALYE
LXXXXXX NI N2 VALUE

EXAMPLES R13 12 17 1K
CGOOO0 13 0 10P
LLINKS 42 &9 LU

N1 AND N2 ARE THE TwO ELEMENT NONDES. THE ORCER OF THE NODES FOR THESE
ELEMENTS IS UNIMPORTANY, VALUE IS THE RESISTANCE (O+MS), THE CAPACITANCE
(FARACS), AND THE INOUCTANCE (HENRIES)s RESPECTIVELY. THIS VALUE CANNOT BE
NECATIVE OF ZERQO.

sxs%%  VOLTAGE CCNTROLLEC CURRENT SOQURCES
GENEFRAL FCRM IXXXXXX V N+ N= NC+ NC- VALUE DELAY

EXAMPLES ISORS V 13 12 14 12 1.0M

THE LETTER V MLST BE IN THE FIELD FOLLOWING THE ELEMENT NAME. Ne¢ AND N-
ARE THE PCSITIVF AND NEGATIVE NODES, RESPECTIVELY. CURRENT FLOWS FROM THE
POSITIVE NODE, THRU THE SOURCE, TC THE NEGATIVE NANE. NC+ AND NC- ARE THE
PCSITIVE AND NEGATIVE CCNTRCLLING NOCES, RESPECTIVELY, VALUE IS THE
TRANSCONODUCTANCE (MEQS) .

IN THE AC ANALYSIS THE TRANSCONOUCTANCE CAN BE MODIFIEC BY AN CPTIONAL
DELAY (LINEAR PHASE) OPERATOR. THE OElLAY (SECONOS) [S APPENDED AFTER THE VALUE.
IF A DELAY, YO, IS INCLUDED, THE COMPLEX, FREQUENCY CEPENDENT VALUE OF
TRANSCCNDUCTANCF IS DETERMINEC BY:

GM = VALUE * EXP (-J * 6.28318 * FREQ * TG} .

THE DELAY [S IGNORED [N THF DC AND TRANSIENT ANALYSES.
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**s2%  INDFPENDFNT SOURCES

GENERAL FPRM VAXXXXX N+ N- CC DCVAL AC ACVAL PHASF
IXXXXXX N+ N= CC DCVAL AC ACVAL PHASE

FEXAMPLES vCC 10 0 DC 6
[ZENER 13 15 DC 600MA
VIN 13 2 DC 0,001 AC 1
TIN 21 23 AC 0.333 45.0
VMEAS 12 9

N+ [S THF POSITIVE NODE AND N- [S THE NEGATIVE NGDE. NITE THAT VOLTAGF
SOURCES NFFC NNT BE GROUNOEN. CURRENT FLOWS FROM THE POSITIVE NODE, THRU THE
SOURCE, TO THE NEGATIVFE NOODE.

DCVAL IS THF NC VALUE OF THE SOURCE., THE SOULRCE [S SET TC ThIS VALUE FOR
DC ANALYSIS ANO, [F NO TIME DEPENDENCE IS ATTACHEC, IN THE TRANSIENT ANALYSIS.
IF. THE NC SCURCE VALUE [S ZERO, THE LETTERS DC AND THE OC VALUE CAN BE OMITTED.

ACVAL IS THE AC VALUE ANC PHASE [S THE AC PHASE. THE SOURCE IS SET TO ThiIS
VALUE S THE AC ANALYSIS. THF ARBITRARY PHASE FACTOR CAN BF OMITTED. IF THE
SOURCE IS NQOT AN AC SMALL SIGNAL INPUT, THE LETTERS AC AND THE AC VALUES ARF
CMITTELC.

A SOURCE MAY RE GIVEN A TIME DEPENCENCE FOR THE TRANSIENT ANALYSIS BY
APPFENDING CNF OF THE THRFE PREDEFINED FUNCTIONS: PULSE, EXPONEATIAL, AND
SINLSOTICAL. [F PARAMETERS CTFER THAN SQURCE VALUES ARE QMITTEN OR SET TC ZERQ,
THF DEFAULT VALUES SHOWN WILL BE ASSUMED. TSTEP IS THE PRINTING INCREMENT (TIME
STEP), AND TSTOP IS THE FINAL TIME (PAGE 15).

l. PLLSE PULSE V1 V2 TD TR TF Pw PER
EXAMPLE VIN 3 0 PULSE =1 1 2NS 2NS 2NS S50ONS 10QONS

PARAMETERS AND ODEFAULT VALUES

vi INITIAL VaALUE Satvee
v2 PULSED VALUE o
70 CELAY TIME TSTEP
TR RISF TIME TSTEP
TF FALL TIME TSTEP
PW WIDTH TstTae
PER PERION TSTOP

A SINGLF PULSE IS DESCRIBED BY THE FOLLOWING PIECEWISE LINEAR TABLE.

TIME VALUE
Q vl
0 vl
TD+4TR vz
TN¢TR+P W v2
TO+TR4PWeTF vl

TST0P vi

e e ki g
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2. EXPCNENTIAL EXP V1 V2 TNl TAUl TD2 TAuU2

EXAMPLE VIN 3 0 EXP =4 —~1 2NS 30NS 60NS 4ONS

PARAMETERS ANO CEFALLT VALUES

vl INITIAL VALUE o

v2 PULSED VALUE —

101 RISE NELAY TIME TSTEP
TAUL RISE TIME CCNSTANT TSTEP
02 FALL NELAY TIME TSTEP
TAU2 FALL TIME CONSTANT TSTEP
TImMe VALUE

0 70 D1 Vi

101 TO TD2 V1ie(Vv2-Vvl) (1-EXP(=(T~-TD1)/TAUL))
T02 TO TSTOP VL0I4(V2=V6)(l=FXP(=(T=TOLI)/TAUL}I+(VI-V2)(1-EXP(~(T-TD2)/TAU2))

3. SINLSOIDAL SIN VO VA FREQ TC THETA
EXAMPLE VIN 3 0 SIN 0 1 100MEG INS LElO°

PARAMETERS ANC DEFALLT VALUES

vo CFFSET ===

VA AMPLITUDE —

FREQ FREQUENCY (IN HZ) 1/7STop
T0 DELAY TSTEP
THETA DAMPING FACTOR Ul

TIVE VALUE ;
0 70 TO vo

TD TQ TSTOP VO + VA & EXP(=(T-TO) * THETA) * SINE (6.28318 * FREQ = T)

SOURCES MAY BE GIVEN ANY COMBINATION OF VALUES (0C, AC, CR TRANSIFNT), ANO
THESE VALUFS MAY BE SPECIFIED IN ANY ORDER AS LONG AS THEY FOLLOW THE PRQOPER
KEY WORO.

EXAMPLES VIN 13 12 STN Q 1 L1OMEG OC 0.1 AC 1 45
IZ 19 0 OC 0 PULSE 0 1 AC 0.5
VEQ 12 0 OC 0.5 EXP 0.5 0.9 LONS 4ONS 7ONS 4ONS AC 1

7
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ssvxx  QIPNLAR JUNCTICN TRANSISTORS
GENERAL FCRM QXXXXXX NC NB NE MNAME AREA
FXAMPLE CAMP33 7 9 1 MOD1 2.0

NC IS THE COLLECTOR NNDE, NB [S THE BASE NODE, NE IS THE EMITTER NOCE,
MNAME [S THE MODEL NAME (PAGF 9) AND ARFA IS THE AREA FACTOR., THE AREA FACTOR
IS FQUIVALENT TO THE NUMBER OF PARALLEL DEVICES. AN AREA FACTOR QF 2.0
[MPLIES THAT TWO TRANSISTORS (OF THE SAME MOOEL ARE CCNNECTEC IN PARALLEL. IF
THF AREA IS OMITTEN, AN AREA FACTOR OF 1.0 IS ASSUMED.
#3393+ JUNCTION DIOCES
GFNERAL FORM OXXXXXX N¢ N— MNAME AREA
FXAMPLE CBRINCGE 8 10 DIQDEL

N+ IS THE POSITIVE NODF,s N- IS THF NFGATIVE NODE, MNAME [S THE MODEL NAME
(PACE S)y AND AREA [S THF AREA FACTOR (SEE BJTS, ABOVE).

*sssx  JUNCTION FIELC EFFFCT TRANSISTORS
GENFRAL FORM JXXXXXX ND NG NS MNAME AREA
EXAMPLE - J1 7 2 3 JMl

ND IS THF CRAIN NONDE, NG IS THE GATE NODE, NS IS THE SOURCE NOCE, MNAME IS
THE MODEL NAME(PAGE 9), AND AREA IS THE AREA FACTOR (SEE BJTS, ABCVFE).

sesss  MOSFFTS
GFNFRAL FCRM MXXXXXX ND NG NS NB MNAME AREA
EXAMPLE M31G 2 3 4 7 MLONG
ND 1S THE CRAIN NOOE, NG [S THE GATE NODE, NS IS THE SQURCE NCCE, NB IS THE

BLLK (SUBSTRATF) NOOE, MNAME [S THE MOCEL NAME (PAGE 9), AND AREA [S THE AREA
FACTOR (SEE BJTS, ABCVE).
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*s%s%  _MODEL CARD
GENERAL FORM MODEL MNAME TYPE PNAMEL=PVALL PNAME2=PVAL2 ...
EXAMALE +MODEL MOD1 NPN BF=50 IS;IE‘IB VA=S50
THE .MONEL CARC SPECIFIES A SET OF MODEL PARAMETERS THAT WILL BF USED By

CNE CR MORE NEVICES. MNAME IS THE MODEL NAME, ANO TYPF [S CNE CF THF FOLLOWING
TEN TYPES:

NPN NFN EBERS-MOLL 84T MODEL
PNP PNP EBRERS-MOLL BJT MODEL
NGP NPN GUMMEL-POCON RJT MOOEL
PGP PNP GUMMEL-PCCN 8JT MGCOEL

0 JUNCTION CIODE MOCEL

S80 SHOTTKY 3ARRIER DIQDE MCDEL
NJF N CHANNFL JFET MOCEL

PJF P CHANNEL JFFT MCDEL

NMQO N CHANNEL MOSFET MQOEL

PMQ P CHANNEL MOSFET MQDEL

PARAMETER VALUES ARF DEFINED BY APPENDING THE PARAMETER NAME, AS GIVEN
BELCW FOR FACH MCDEL TYPE, FOLLOWED BY AN EQUAL SIGN AND THE PARAMETER VALUE.
MODEL PARAMETERS THAT ARE NOT GIVEN A VALUE ARE ASSIGANED THE DEFAULT VALUE
GIVEN BELOW FOR EACH MOCEL TYPF.

MODEL PARAMETER VALUES CAN ALSO BE SPECIFIED AS A STRING CF NUMBERS IN THE
ORCER GIVEN BELOW FOR EACH MQOCEL TYPE. THE FOLLOWING MQOEL SPECIFICATION (S
EQUIVALENTY TO THE PREVIQUS MOCEL CARD EXAMPLE:

EXAMPLE * «MODEL MCD1 NPN 5099999900990 lE=134,44950

CIODE MODELS (BCTH JUNCTION AND SBD)

THE CNLY DIFFERENCE BETWEEN THE JUNCTION OICDE MCDEL AND THE SHOTTKY
BARRIER DIONE MODEL [S THE TEMPERATURE OEPENDENCE OF SATURATION CURRENT (SEE
PAGE 3)e THE DC CHARACTERISTICS OF THF DIODE ARE DETERMINED BY THE PAPAMETERS
IS ANC Ne AN OHMIC RESISTANCE, RSy IS INCLUDED. CHARGE STCRAGE EFFECTS ARE
MODELED BY A TRANSIT TIME, TT, AND A NONLINEAR DEPLETION LAYER CAPACITANCE wWwHICH
VARIES AS THE -1/2 POWER OF JUNCTION VCLTAGE AND [S CEFINED BY THE PARAMETERS
CJC AND PHI. TFE ENERGY GAP, FG, AFFECTS ONLY THE TEMPERATURE CEPEADENCE NF THE
SATURATIOM CURRFNT (SEE PAGE 3).

NAME PARAMETER DEFAULT TYPICAL
1 RS ORMIC RESISTANCE Q 10
2 T TRANSIT TIME 0 C.1INS
3 cJo ZERO BIAS JUNCTION CAPACITANCE Q 2PF
4 1S SATURAT ION CURRENT l.06-14 lL.0E~14
S N EMISSION CCEFFICIENT 1 1.0
) PHI JUNCTION PATENTIAL 1 0.6
7 €G ENERGY GAP 1.11 SI l.11 FOR SI

0.69 SBC 0.69 FOR SAN
0.&47 FOR GE
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————e-  FBERS-NMAOLL BJT MODELS (BATH NPN AND PNP)

THE FBERS-MOLL BJT MODEL USES THE DC EBERS~MCOLL MODEL AS A B8ASIS. THE CC
CHARACTER[STICS OF THE DEVICE ARE DETERMINED BY THE PARAMETFRS BF AND BR, THF
FCRWARC ANO RFVFRSE CURRENT GAINS, VA, WHICH DETERMINES THE OUTPUT CCNOLCTANCE,
ANC THE SATURATICN CURRENT, IS. THREE OMMIC RESISTANCES, RBe PC, AND RE, HAVE
BEEN INCLUCFED. BASE CHARGE STORAGE [S MODELED BY FCRWARD AND REVERSE TRANSIT
TIMES, TF AND TR, AND NCNLINEAR DEPLETION LAYER CAPACITANCES wHICH VARY AS ThE
=172 POMER OF JUNCTICN VOLTAGE ANC ARE CEFINEN BY THE PARAMETERS CJE, PE, CJC,
AND PC. A CONSTANT COLLECTOR-SUBSTRATE CAPACITANCE, CCS, IS ALSO INCLUDFD. THE
ENERGY GAP, EG, AFFECTS CNLY THE TEMPERATURE DEPENDENCE OF THE SATURATION
CURRENT (SEF PAGE 3).

NAME PARAMETER DEFAULT TYPICAL
1 8F FORWARD BETA 100 100
2 B8R REVERSE BETA 1 0.1
3 RB BASE OHMIC RESISTANCE 0 100
4 RC COLLECTOR CHMIC RESISTANCE 0 10
5 RE EMITTER QHMIC RESISTANCE Q 1
) cCS COLLECTOR~SUBSTRATE CAPACITANCE Q 2PF
7 TF FORWARD TRANSIT TIME 0 C.INS
8 TR REVERSE TRANSIT TIME Q 10NS
9 CJE ZERN BIAS B—E JUNCTIGON CAPACITANCE 0 2PF
10 cJC ZERQ BRIAS B-=C JUNCTION CAPACITANCE 0 1PF
11 IS SATURATION CURRENT 1.0€~14 1.0€6~14
12 PE B8=E JUNCTICN POTENTIAL 1 Q0.7
13 PC 8-C JUNCTICN PCTENTIAL 1 0.5
14 va EARLY VOLTAGE INFINITE 50
15 EG ENERGY GaAP l.11 1.11 FOR SI
. 0.67 FOR GE

—————  GUMMEL~PCCN BJT MCDELS (80TH NPN AND PNP)

THE INTEGRAL CHARGF MOCEL OF GUMMEL AND POON IS A MORE COMPLICATED AND MORE
COMPLETE B8JT MODEL FOR PROBLEMS WHICH REQUIRE ACCURATE BJT MODELS. THE DC MODFL
1S OEFINED BY THE PARAMETERS B8FM, C2, 1K, AND NE, WHICH DETERMINE THE FORWARC
CURRENT GAIN CHARACTERISTICS, BRM, C4, [KRy AND NC, WHICH DETERMINE THE REVERSE
CURRENT GAIN CHARACTERISTICS, VA AND VB, WHICH DETERMINE THE OUTPUT CONDUCTANCE
FCR FORWARC AND REVERSE REGIONS, AND THE SATURATION CURRENT, [S. THREE
OHMIC RESISTANCESs RBs RCs ANC RE, ARE INCLUDED. BASE CHARGE STORAGE [S MOCELED
8Y FORWARC AND REVERSE TRANSIT TIMES, TF AND TR, AND NONLINEAR CEPLETICN LAYER
CAPACITANCES WHICH ARE CETERMINFO BY CJE, PE, AND ME FOR THE B-C JUNCTION, ANO
CJCe PCo AND MC FOR THE 6=C JUNCTION. A CONSTANT COLLECTOR-SUBSTRATE
CAPACITANCF, CCS, IS ALSO INCLUOEC. THE ENERGY GAP, EGy [S INCLUCEL AS IN THKE
SIVPLER BJT MCDFL.
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NAME PARANMETER DEFAULT TYPICAL
: 1 RFM SAT CURQENT/IDEAL B—E€ SAT CURRENT 100 100
2 BRM SAT CURRENT/IDEAL B-C SAT CURRENT 1 0.1
3 RB BASE OHMIC RESISTANCE (¢] 100
4 RC COLLECTCR CHMIC RESISTANCE Q 10
5 RE EMITTER OHMIC RESISTANCE 0 1
6 CcCs COLLECTOR-SUBSTRATE CAPACITANCE 0 2PF
7 TF FORWARD TRANSIT TIME 0 C.1INS
8 TR REVERSE TRANSIT TIME 0 10NS
9 CJF ZERO RIAS B—E JUNCTION CAPACITANCE 0 2PF
10 CJcC ZERQ BIAS B-C JUNCTION CAPACITANCF 0 1PF
11 IS SATURATICON CURRENT l.0E~-14 1.0E-14
12 VA FORWARD EARLY VOLTAGE INFINITE 50
13 va REVERSE EARLY VOLTAGE INFINITE 50
14 c2 NONIDEAL B—E SAT CURRENT/SAT CLRRENT 0 10.0
15 1K FORWARD KNFEE CURRENT INFINITE 10MA
16 NE B-E EMISSICN CCEFFICIENT 2.0 l.5
17 C4 NCNIDEAL B-C SAT CURRENT/SAT CURRENT 0 1.0
18 IkR REVERSE KNEE CURRENT INFINITE 100MA
19 NC 8-C EMISSICN COEFFICIENT 2.0 1.5
20 PF B-E JUNCTICN POTENTIAL 1.0 0.7
21 ME 8-E GRADING CDEFFICIENT 0.5 0.33
22 PC 8=C JUNCTICN POTENTIAL 1.0 0.5
3 23 MC 8-C GRADING COEFFICIENT 0.5 : 0.33
1 i 4 24 EG ENERGY GAP lell lell FOR SI

0.67 FOR GE
. . ——=~— JFET MODELS (BOTH N AND P CHANNEL)

Be - THE JFET MODEL IS DERIVED FROM THE FET MODEL OF SHICHMAN AND HCDGES. THE
N CC CHARACTERISTICS ARE DEFINED BY THE PARAMETERS VTO AND BETA, WHICK DETERMINE
e THE VARIATICN OF DRAIN CURRENT WITH GATE VOLTAGE, LAMBDA, WHICH DETERMINES THE
QUTPUT CONDUCTANCE, AND IS, THE SATURATION CURRENT OF THE TWO GATFE
JUNCTICNS. TwWD OHMIC RESISTANCES, RD AND RSy ARE INCLUOED. CHARGE STCRAGFE IS
MODELED BY NONLINEAR DEPLETICN LAYER CAPACITANCES FOR BOTH GATE JUNCTIONS WHICH
VARY AS THE -1/2 POWER OF JUNCTICN VOLTAGE AND ARE DEFINED BY THE PBRAMETERS
CGSy CGD, AND PB.

NAME PARAMETER DEFAULT TYPICAL

1 vio THRESHQLD VCLTAGE -2.0 ~2.0

2 BETA TRANSCONOUCTANCE PARAMETER 1.0E-4 L.0E-4

3 LAMBODA CHANNEL LEANGTH MODULATION PARAMETER o} 0.01 ]
4 4 RD CRAIN OHMIC RESISTANCE 0 100 |
! 5 RS SOURCE OMMIC RESISTANCE c 100 {
g 6 CGS ZERO BIAS G-S JUNCTION CAPACITANCE 0 2PF
. 7 CGD ZERQ BIAS G-N JUNCTION CAPACITANCE 0 2PF

8 P8 GATE JUNCTION POTENTIAL 1 0.6

9 1S GATE JUNCTICN SATURATION CURRENT 1.0F-14 l.0E-14
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-==== MCSFET MOOELS (BCTH N AND P CHANNELS)

THE MOSFET MODEL IS ALSU CERIVED FROM THE FET MCCEL OF SHICHMAN ANC
HODGFS. THF NC CHARACTERISTICS OF THE MOSFET ARE DEFINED BY THE PARAMETERS
VTC, BFTA, AND LAMBCA, wHICH ARF IDENTICAL TO THE PARAMETERS FOR THE JFET, PHI
ANC CGAMMA, wHICHr DETERMINE THE VARIATION OF THRESHOLC VOLTAGE wiTk SURSTRATE
VCL.TAGE, ANN IS, THE SATURATICN CURRENT OF THE TWO SUBSTRATE JUNCTIONS. CHARGE
STORAGF [S “OOFLED BY THREE CCNSTANT CAPACITORS, CGSs CGLC, AND CGEB, AND
NONLINFAR DEPLETION LAYER CAPACITANCES FOR B30TH SURSTRATE JUNCTIONS WHICH VARY
AS THE -1/2 POwWER OF JUNCTICN VOLTAGE AND ARE OETERMINED BY THE PARAMETERS CED,
CBS, ANC PR,

NAME PARAMETFR CEFAULT TYPICAL

1 vTo THRESHOLD VOLTAGE 2.0 2.0

2 PHI SURFACE POTENTIAL 0.5 0.5

3 BETA TRANSCONCUCTANCE PARAMETER 1.0E-4 1.0E-4

4 GAMMA BULK THRESKOLD PARAMETER 0 0.5

5 LAMBCA CHANNEL LEANGTH MODULATION PARAMETFR (o] 0.01

) RO DRA I[N OHMIC RESISTANCE 0 1Cc0

7 RS SOURCE OHMIC RESISTANCE g 100

8 CGS GATE~SQURCE CAPACITANCE 0 1PF

9 CGD GATE—~ORAIN CAPACITANCE Q 1PF

10 CGB CATE—~AULK CAPACITANCE 0 1PF :
11 cso ZERO BIAS B-C JUNCTICN CAPACITANCE 0 1PF A
12 CRS ZERO BIAS B-S JUNCTION CAPACITANCE Q 1PF i 4
13 PB BULK JUNCTION POTENTIAL 1 0.6
L4 is BULK JUACTICN SATURATION CURRENT 1.0E-14 1.0E-14 3
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CCNTRGL CARDS

- e e - — —

*%xs3% TITLF CARD
EXAMPLE 0P AMP CIRCUIT JOE J STUDENT EECS 241

THIS CARD MLST BE THE FIRST CARD IN THE INPUT CECK. I[ITS CCNTENTS ARE
PRINTEC VFRBAT(M AS THE HEADING FOR EACH SECTION OF CUuTPUT.
*s93x  _END CARC
GENEFAL FORM « END

THIS CARD MLST ALWAYS BE THE LAST CARO IN THE INPUT DECK. NCTE THAT THE
PFRIOD IS AN INTFGRAL PART OF THE NAME. [IF THE .END CARD [S OMITTFC, THE NEXT
JOB wILL BF READ IN AS PART OF THE JOB MISSING THE .END CARC, AND NEITHER JQOB
wWILL BF RUN SUCCESSFULLY. ’
*x%3%  COMMFMT CARD
GENERAL FCRM™ * ANY CCMMENTS
EXAMPLE * RF=1K GAIN SHOULD BE 100

THIS CARD IS PRINTED OUT IN THE INPUT LISTING BLT IS QTHFERWISE IGNCRFD,

ss#4%  NO PRINT CARD
GENERAL FORM NP

THIS CARD SUPPRESSES THE SUMMARY OF INPUT DATA THAT [S NORMALLY PRINTED
AFTER READING THE INPUT DECK. [T DOES NOT SUPPRESS THE LISTING OF THE INPUT
DECK CR ANY ERRQR MESSAGES THAT MAY CCCUR.
sssex  _TEMP CARD
GEKERAL FORM JTEMP TF1 TE2 ...

THIS CARD SPECIFIES THRE TEMPERATURES AT WHICH THE CIRCUIT IS TC BF
SIMULATED. TEl, TE2y, «eo ARE THE DIFFERENT TEMPERATURES, IN CEGRFES C. A
MAXTMUM OF FIVE TEMPERATURES ARE ALLOWFD. TEMPERATURES LESS THAN -223.C DEG C
ARE [GNOREN.
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ss¥9s _QUTPUT CARD

GENERAL FCRrW™ «OUTPUT vXXXXXX Ne N—-
«OUTPUT IXXXXXX VYYYYYY
+OUTPUT NCISE

EXANPLES <auUTPUT VMIXER 13 27
«OUTPUT TBASELl VL7

ThIS CARD DEFINES AN CUTPUT VARIABLF, FOR VCLTAGE CUTPUTS, THE NAME MUST
BEGIN WITH A Vv, AND N¢ ANC N~ ARF THE POSITIVE ANC NFEGATIVE MODF CF THE QUTPUT
VOLTAGE. FIR CUKRENT QUTPUTS, THE OUTPUT NAMFE MUST BEGIN wITh AN |, ANC VYYYYYY
IS THF NAME NF THF INDEPENDENT VCLTAGE SOURCE THAT THF CURRFNT IS FLOWING IN.
PCSITIVFE CURRENT FLCWS FRCM THE POSITIVE NOCFE, THRNUCH THE SOURCF, TO THE
MEGATIVF NJBDE. THE DUTPUT VARIABLE NAME NQISE [S RESERVED FCR THF ANCISF
ANALYSIS, AND THE OLTPUT NOISE AND EQUIVALENT INPUT NCISE CAN BE PRINTED AND
PLCTTEC IN THF SAME FASHION AS CTHER OQUTPUT VARIABLES.

OLTPUTS CAN BE PRINTED IN TABULAR FORM NR PLOTTELR AS L INFE PRINTER PLOTS.
THERE ARE FIGHT DIFFERENT NPTIONS wHICH CAN BE PRINTEN AND/OR PLOTTED:

cc 0C TRANSFER CLRVE OUTPUT
R TRANSIENT ANALYSIS OLTPUT

RE AC ANALYSIS QUTPUT, RFAL PART ,
™ AC ANALYSIS OUTPUT, IMAGINARY PART : ;
MA AC ANALYSIS OUTPUT, MAGNITUDE

PH AC ANALYSIS QUTPUT, PHASF

nu NIISF ANALYSIS CUTPUT, TOTAL CUTPUT NOISE VCLTAGE 1 :
IN NOISE ANALYSIS OUTPUT, EQUIVALENT INPUT NOI SE i

AN OUTPUT CAN BF PRINTED OR PLOTTED BY APPENDOING THE LETTERS PRINT QR PLAT,
FOLLOWED BY ANY COMBINATION OF THE EIGHT QUTPUT OPTICNS, TO THF ,CUTPUT CARD:

EXAMPLES <QUTPUT V13 13 0 PRINT MA DC TR

7 «OUTPUT [IN VIN PRINT PH RE DOC
«OUTPUT VOUT 17 2 PLOT MA TR PRINT OC
«OUTPUT 112 V13 PLOT PH DC
«OQUTPUT VTHREF 3 0 PRINT NC PLCT TRAN
«QUTPUT NOISE PRINT IN PLOT QU

THFE PROGRAM WILL AUTCMATICALLY ODETERMINE THE MINIMUM AND MAXIMLM VALUFS OF
THE OUTPUT VARIABLE AND SCALE THE PLOT TQ FIT THESF LIMITS, THF AUTOMATIC
SCALING FFATURE CAN BE OVERIDCEN BY ‘SPECIFYING PLCT LIMITS AFTER THE QUTPUT
NPTICN, THE PLOT LIMITS APPLY ONLY TO THF OPTION THAT THEY FCLLCh.

EXAMPLE .OUTPUT V12 12 O PLCT MA PH =20 30 TR 0 S
IN THI'S EXAMPLE, THE PROGRAM WILL DETERMINE LIMITS FOR THE MACNITUDE PLOT,

BUT WILL PLOT TEHE PHASE BETWEEN -20 OEGRFES AND 30 DEGRFES, AND wiLL PLOT THE
TRANSIENT RFSPONSE BETWFEN C VCLTS AND S5 VOLTS.
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*%3e% _NC CARD
GENEFRAL FORM «NC OP OUTPUT INPUT TC ELNAME VSTART VSTOP VINCR

EXAMPLES .0C CP
«NC TC VIN 0 5 0.5
«0C (P VvOQUT VIN TC VIN O 5 0.5

FOR THE SMALL SIGMAL TRANSFER FUNCTION, OUTPUT IS THE CUTPUT
VARTABLE AND INPUT IS THE INPUT SOURCE. THE PROGRAM WILL CCMPUTE THE DC SMALL
SIGNAL VALUE CF THE TRANSFER FUNCTION (DUTPUT/INPLT), INPUT IMPECANCE, AND
OUTPUT IMPEMANCE. [IF THE TRANSFER FUNCTION VALUE IS NOT OESIRFO, CMIT THF
OLTPLT AND INPUT SPECIFICATIONS. IF THE DC OPERATING POINT IS NOT CESIRED,
CMIT THE LFTTERS OP, HOWEVER, A DC OPERATING POINT WILL ALWAYS BE COMPUTED
PRICR TC AN AC SMALL SICGNAL ANALYSIS OR A TRANSIENT ANALYSIS.

FCR TRANSFER CURVES, ELNAME IS THE NAME OF THE VARIABLE SCURCE, VSTART (S
THE STARTING SOURCE VALUE, VSTOP IS THE FINAL SOURCE VALUE, AND VINCR IS THE
INCREMENT, THF TOTAL NUMBER CF PCINTS TO BE COMPUTEC CANNOT EXCEED 101. [IF A
TRANSFER CURVE IS NCT OESIREDy CMIT THE LETTERS TC ANO THE TRANSFER CURVE
PARAMETERS.

*9% «AC CARD
\ .

GENERAL FORM «AC DEC ND FSTART FSTOP NOISE GUTPUT INPUT NUMS
«AC OCT NO FSTART FSTOP NOISE OUTPUT INPUT NUMS
«AC LIN NP FSTART FSTOP NOISE CUTPUT INPUT NUMS

EXAMPLES «AC DEC 10 1 1CKHZ
«AC DEC 20 1 100KHZ NOISE VOUT VIN 10
«AC DEC 10 1 LOOMEG NOISE vOUT val-

DEC STANDS FOR DECADE VARIATION, AND ND IS THE NUMBER OF PCINTS PER
DECADE. OCT STANDS FOR UCTAVFE VARIATICNs AND NO IS THE NUMBER CF PCINTS PER
OCTAVF. LIN STANDS FOR LINEAR, AND NP [S THE NUMBER OF POINTS. FSTART [S TtHE
STARTING FREQUENCY, AND FSTOP [S THE FINAL FREQUENCY. THE TOTAL NUMBER OF
FREQUENCY POINTS TO BE CCMPUTER CANNOT EXCEED 101.

FCR NCTSE ANALYSIS, QUTPUT [S THE NAME OF A VOL TAGE OUTPUT VARI[ABLE. THIS
CUTPUT, WHICH MULST BE A VOLTAGE, WILL BE USED AS THE SUMMING PCINT. INPUT IS
THF NAME OF AN INOEPENDENT VOLTAGE OR CURRENT SOURCE. THE TOTAL CUTPUT NCISE IS
DIVIDED BY THF TRANSFER FUNCTICN (OUTPUT/INPUT) TC OBTAIN THE ECUIVALENT INPUT
NCISE LEVEL. NUMS [S THE SUMMARY INTERVAL. AT EVERY NUMS FREQUENCY POINTS, THE
INNIVICUAL CONTRIBUTIONS CF EACH ELEMENT ARE PRINTED OUT. IF NUMS IS OMITTED
OR SET TO ZFROs NO SUMMARY PRINTCUT WILL OCCUR. FOR REASONS CF REDUCING
PRINTOUT, NUMS SHOULD BF AS LARGE AS POSSIBLE. [IF THF NOISE ANALYSIS IS NOT
NESIREC, OMIT THE LETVERS NOISE ANC THE NOISE ANALYSIS SPECIFICATICANS.
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ssexx  _TRAN CARD
GENERAL FCRM .TRAM TSTEP TSTOP TSTART FOUR CUTFUT FREC

EXAMPLFS «TRAN 1INS LlOONS
«TRAN LNS 1CCONS S500NS
«TRAN INS 1CONS FOUR VOUT LOOMEG

TSTEP IS THE PRINTING INCREMENT BETWEEN TIMEPGINTS, TSTCP IS THE FINAL
TIMFPOINT, AND TSTARY [S THE INITIAL TIMEPOINT. [IF TSTART IS CMITTED, IT (S
ASSUMER TC RF ZERO. THE TRANSIENT ANALYSIS ALWAYS BEGINS AT TIME ZERO., [N THF
INTFRVAL (ZFRO, TSTART), THE CIRCUIT IS ANALYZED (TO REACH A STEACY STATE), 3uT
NC CLTPLTS ARE STNREN. IN THE INTERVAL (TSTART, TSTCP), THE CIRCUIT IS
ANALYZFC AAND NUTPUTS ARE STCRFC. THE NUMBER OF TIMEPCINTS IN ThHE INTERVAL
(ZERC, 1STOP) CANNQOT EXCEFD 100l, AND THE NUMBER QF TIMFPOINTS IN THE
INTFRVAL (TSTART, TSTUP) CANNCT EXCEED 101.

FOR FOURIER ANALYS[S, CUTPUT [S THE QUTPUT VARIAPLE AND FRFQ IS ThE
FUNFCAMENTAL FREQUENCY. TRE FCURIER ANALYSIS [S PERFORMED NVER THF [NTERVAL
(TSTOP-PERICD,TSTDP), WHERE TSTOP IS THE FINAL TIMF SPECIFIED, AND PERIOD IS
CNF PERICC OF THE FUNDAMENTAL FRECUENCY. THF DC CCMPCNENT AND THE FIRST NINE
CCMPCNENTS ARE CFETERMINED. FOR MAXIMUM ACCURACY, THE NUMBER CF PFRICDS IN THF
INTFRVAL (TSTART,TSTOP) SHOULC 8E AS SMALL AS POSSIBLE (BUT NEVER LESS THAN
CNE)e. THIS INSURES THAT THE ANUMBER NF TIMEPOINTS IN CNE FUNDAMENTAL IS AS LARGE
AS PCSSIBLF. [IF THE FNURIER ANALYSIS [S NCOT DESIRED, OMIT THE LETTEPS FOUR AND
THE FOURIER SPECIFICATICNS.

FOR SOME PRUBLEMS, TO AVOIC NUMERICAL INSTABILITY IN THE INTEGRATION
ALGCRITHM, 1T MAY BF NECESSARY TO SPECIFY AN INTERNAL TIME STEP WHICH IS SMALLER
THAN THE PRINTING [NCREMENT (TSTEP). EXAMPLES OF THIS TYPE NF PRCBLEM ARE
ASTABLE MULTIVI3RATORS, SWEEP CIRCUITS, AND OTHER HIGHLY NONL INFAR CIRCUITS
WHICH FAVE WIDFLY SEPARATEN TIME CONSTANTS. SPICE ALLOWS THE USER TO SEGMENT
ThE TIME INTERVAL INTO FRCM CNE TC FIVE SUBINTERVALS AND SPECIFY A CIFFERENT
TIMF STEP FOR SACH SUBINTERVAL. THE INTERNAL TIME STEPS AND SUBIATZRVAL
ENCFCINTS ARE SPECIFIFD AFTER THE STARTING TIME (TSTART) AND BEFORF THE FOURIER
ANALYSTS OPTIONS:

GENFRAL FORM ,TRAN TSTEP TSTOP TSTART Dl El D2 €2 ... D5 E5 FOLR CLTPUT FREQ
EXAMPLE «TRAN LINS L1OCNS O O.LNS LONS 0.S5NS LOOAS

D1 IS THE FIRST INTERNAL TIMESTEP AND El IS THE ENOPOINT OF THE FIRST
SUBINTERVAL, D2 IS THFE SECCND INTERNAL TIMESTFP AND F2 [S THE FAOPCINT OF THF
SECCNND SUBINTERVAL, AND SO CN. [IN THIS EXAMPLE, THE PROGRAM wILL USF AN
INTEQNAL TIME STEP OF O0.LNS FCR ThE INTERVAL (0,1ONS) AND AN INTERNAL TIME STEP
OF C.5NS FOR THF INTERVAL (lONS,LO00NS), CUTPUT IS STILL STCREC EVERY LNS. THE
TOVTAL AUMEBER OF TIMEPQINTS TO RE COMPUTED CANNOT EXCEED 1001.

EXAMPLF «TRAN ILS 100US 0 Q.lUS LOOUS
IN THIS EXAMPLE, THE PRCGRAM WILL USE AN [NTERNAL TIME STEP OF C.ILS OVER TkE

ENTIRE TRANSIENT [NTERVAL BUT WILL STCRE OQUTPUT ONLY AT 1US I[NTERVALS. HENCE,
THE PROGRAM STCRES AND OLTPUTS EVERY TENTH TIMEPOINT,
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EXAMPLF CATA NECKS

-————— e e s e W

THE FOLLOWING CECK CETERMINES THE CC OPERATING PCINT AND SMALL SIGNAL
TRANSFER FUNCTION OF A SIMPLE OIFFERENTIAL PAIR,

SIMPLF DIFFFRFNTIAL PALIR
VCC 7 ¢ OC 12

VEE 8 0 DC -12

VIN 1 O

RS1 1 2 1K

RS2 € 0 1K

Q1 2 2 4 MOD1

Q2 5 6 4 maCl

RCL 7 3 10K

RCZ 7 5 10k

RE 4 8 10K

«MQOEL MONL NPN 3F=50 VA=50 [S=1.0E-12 RB=100
.CLT VCLT 5 0

«CC CP vOLT VIN

«ENOD

THE FCLLOWING CECK DETERMINES THE DC TRANSFER CURVE ANC THE TRANSIENT
PULSFE RESPONSF DOF A SIMPLE RTL INVERTER. THF INPUT IS A PULSE FRCM O TO S5 VOLTS
WwITk DELAY, RISE, AND FALL TIMES CF 2NS AND A PULSF WIDTH OF 30MS. THE
TRANSTENT [NTERVAL IS O TO 100NS IN LNS STEPS.

SIMPLE RTL INVERTFR

VC€C 4 0 OC S5

VIN 1 0 PULSF QO S 2NS 2NS 2NS 30ONS
R8B 1 2 10K

QL 2 2 0 Q1

RC 4 5 1K

«CLTPUT VC 3 0 PRINT NC PLOT TR O §
«MCDEL Q1 NPN 3F=2C RB8=100.TF=0.1INS CJC=2PF
«CC TC VIN C 5 C.l

«TRAN INS 1OONS

«END

THE FOLLCWING CSCK CETERMINES THE AC SMALL SIGNAL RESPONSE QOF A CNE
TRANSISTOR AMPLIFIER (OVER THE FREQUENCY RANGE OF LHZ YO LOOMEGHZ.

CNE TRANSISTCR AMPLIFIER
v€C 5 0 DC 12

VEE 6 0 DC -12

VIN1 0 AC 1

RS 1 2 1K

Q1 2 2 4 x33

RC 5 3 500

RE 4 6 1K

CBYPASS 4 0 1lUFD

«OUT V3 3.0 PLOT MA PH
«AC CEC 10 1HZ 100MEGHZ
+MCCEL X33 NPN BF=30 RB=50 VvA=20
«ENC

/%




External Models in SPICE

SPICE allows external, user-defined models. This feature is particularly
convenient when a large circuit includes several identical subcircuits such as
operational amplifiers or logic gates. The external model card is defined by a
.MODEL card, a set of element cards (which may include any legal SPICE element
except reference to another external model), and a .FINIS card. The .MODEL
card format is

.MODEL model name X node 1 node 2 . . . node N

The .MODEL card introduces subsequent cards as a definition of an external model.
All subsequent cards up to the next .PINIS card are treated as a single definition.
These cards are conventional element and device cards and refer to the node numbers
that appear in the introducing .MODEL card. Note that with the exception of node
zero, the node numbers that are used in the definition of an external model are
dummy node numbers and may be given the same number as used within the circuit to

be analysed.

Reference to an external model is similar to reference to a built-in model.
However, the names of devices described by an external model must begin with the
letter X (just as transistors device names must start with the letter Q). Thus
one writes

X device name nl n2 v @ o NR model name

The nodes nl thru nn are actual circuit nodes. They are paired with the ncde numbers
of the external ,MODEL definition on the basis of position alone. The first node

in the model card is paired with the first node in the device card, the second with
the second and so on.
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