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FORWARD

This is the first part of a two part report dealing with Techniques

and Applications of Computer-Aided Circuit Simulation . The topics

discussed in Pert I are the backbone of a seminar course, EE 417—2, which

was given Autumn 1973 . Support for the seminar from the General Motors

Research Laboratories is gratefully acknowledged.

During the course of EE 417— 2 the funda mentals ~~~~~ tee iques were

developed. At the same time eight doctoral students used CAD program

SPICE to investigate specific modeling and circuit design problems which

are important in their thesis studies . These specific problems are

coupled with projects supported by the NIH , JSEP and ONE .

A prima ry result of the semina r has been to bring together theoretical

- and expe rimental information on CAD and its application which has thus f a r

been difficult to obtain .

Part I is a concise statement of CAD techniques with examples pertin-

ent to SPICE. Pert II reports the results of the investigations by the

doctoral students involved in the amminar. The titles of the individual

projects are given in the last subsection of Pert I.

The seminar participants are gratefully acknowledged for their

individua l contr ibutions to this report as well as for the collective

feedback provided by the seminar. Special thanks goes to Mr. Peter Slapnicar

and gr . Tak Young who were major  contributors to the ‘seminar via discussions

of CAD techniques and program developments .
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INTRODUCTI ON

The need for computer simulation is steadily increasing in the design of

Integrated Circuits and systems using IC’s. The process dependence of component

parameters and parasitic device effects cannot be adequately breadboarded to

test performance for IC’s. Computer-Aided Circuit Analysis provides an efficient

and flexible means to evaluate the performance of circuit designs prior to the

costly and time—consuming fabrication process. Component values and process—

dependent device parameters can be varied to optimize circuit performance and

improve fabrication yields. However, to effectively use these computer tools,

the user must be able to supply the progra ms with realistic models and model

parameters. Furthermore, a basic understanding of the techniques used for

computer circuit simulation can allow the designer to critically assess the

validity of the simulated results.

This report presents material and examples pertinent to the enlightened use

of sophisticated computer circuit analysis programs for the design of integrated
.1

electronic circuits and systems. The examples chosen for this discussion are

developed with program sPICE.~
’
~ SPICE is a nodal analysis program which offers

nonlinear dc, nonlinear transient and linear ac analysis of electronic circuits

in a single program. Free format input , built—in device models (diodes and bipolar

and field—effect transistors) and circuit nesting features sake the program easy

to use. The sparse matrix structures and the use of implicit integration and

adj oint network techniques help to make SPICE an efficient simulation tool.

Fundamentals of the SPICE program structure will be discussed in the sub-

sections Which follow. The basic analysis approach , data structure considerations

and a method for numerical interaction will be presented. Next, the method of

adjoint network calculations will be developed and applications will be described.

Finally, and most importantly, advanced ~~S and bipolar transistor models will be

1 
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be developed as they are implemented in SPICE . The need for accurate models is

of paramount importance and th. requirements to correctly determine pa ra meters -

f or these models will become clear as one read.s the project reports in subsequent

sections .

2 ’
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COMPUTza—AIDED CIRCUIT ANALYSIS OVERVIEW

To ini t iate the discussion , the circuit example shown in Figure 1 wil l  be

used as a vehicle to illustrate the techniques of computer aided circuit analysis.

The three input waveforms shown in Figure 1 drive the circuit so that:

a)  the dc steady—state bias—point is achieved ,

b) the small signal steady s ta te  behavior is determined (as a function of

frequency), and

c) the transient output waveform is calculated.

Each of these analysis modes requires the solution of the nonlinear set of equations

associated with the transistor. For cases a) and b) the solution with nonlinear

elements must be found only once. For the small signal analysis (case b)) the

subsequent frequency calculations use the mode], values linearized about the bias

point . However, for case c), the transient analysis, the set of nonlinear equations

- must be solved at each time—point in the analysis . The solution of the nonlinear

equations associated with the device model is thus the backbone of computer circuit

sintilation . Efficiency in achieving this solution is a major concern.

The nonlinear dc solution is achieved by iterative solution of the linearized

equivalent circuits. The so—called “linearized equivalent circuit” is constructed

using the first—order terms of the Taylor series expansion of the nonlinearities

about some initial point. This particular iterative procedure — often called Newton—

Raphson ~~~~~~~~~~~ — solves for the unknown voltages in the Taylor—series expansion ,

updates the expansion about the newly found value and continues the process.*

* Reference (2) is included in Appendix I to provide further co ents and references

on techniques of Computer—Aided Circuit Analysis.

3
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Each linearization is made using the solutions from the previous iteration. The

iterations continue until the solution converges to within some specified tolerance

of the value from the previous iteration — for example lO~V at every node. All

energy storage elements are replaced by their dc equiva’ents for the dc

solution. The network equations themselves (with linearized matrix entries for

the model) are solved using a modified form of Gaussian elinination .~
2
~ For SPICE ,

the equations are written based on Kirchhoff ’s Current Law for all the nodes in

the circuit (i.e. nodal analysis). The simplest Gaussian elimination consists of

constructing an upper triangular matrix from the original nodal admittance matrix,

Y, and determining the node voltages , in sequence, starting from the bottom of the

triangular matrix. This final solution method is called backward substitution.

The SPICE implementation uses a matrix transformation to achieve two matrices U and

L which are upper and low triangular with the property that LU ~ 7. The voltage

vector is solved for by simple matrix operations involving L 1 
and U 1. The matrix

operations are easy owing to the triangular structure of the matrices.

The procedures described above are the basis of essentially all nonlinear

computer—sided circuit analysis. For small signal analysis , with frequency as a

variable, the need for iterations is eliminated once the nonlinear dc solution is

found. Specifically, the model is linearized about the dc operating point . The

ac analysis involves arithmetic operations with complex arguments. However, the

basic approach of the L—U transformation ta used to solve for the complex voltage

vector. The energy storage elements have been adde d to the Y matrix as complex

admittancea .

For transient analysis the procedure described for the nonlinear dc bias

solution is used repetitively. Since energy storage elements are now included in

the circuit, the solution of the integral—differential equations must be found.

- 4 
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The solution of the integral—differential equations proceed using numerical

-integration techniques.
(2) 

For example , the branch relationship for an inductor ,

in integral form, is:

t+A

(t.,4) 1
L 
(t) + L ~~~ 

di’

and the integral can be approximated as:

1
L 
(t+1~) — (t) +~~~

v
L 

(t44 )

The choice to approximate the integral using the yet to be determined voltage at

ti4 is a form of implicit integration. Now the branch relation for the inductor

at time t+A has a form equivalent to a current source, i
L
(t), (a constant since

we have just solved for its value) in parallel with a conductance of value A/t

A similar branch relation exists for capacitive elements. The result is that at

. each new time point t.i4, the energy storage elements are replaced with their equiva-

lent circuits which approximate the integral—differential branch relationships .

The nonlinear solution of the circuit equations can then proceed at that time point ,

just as originally described’ for the nonlinear do condition .

Figure 1 and the above discussion have been used only to introduce the elements

of computer—aided circuit analysis. The following subsections will expand these

ideas and illustrate their implementation using the example in Figure 1 and the

algorithms in program SPICE .

5
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MODEL LINEARIZATION

Modeal linearization is the first step in obtaining the nonlinear dc bias

point for an electronic circuit (for example the circuit shown In Figure 1). To

show more precisely how the linearization proceeds, let us begin by considering

the bipolar transistor mode1~
3
~ showin in Figure 2. The equations associated with

the elements are :

1CE — 1s (~~V5~ / — 1) (1)

/ qV1CC — ,,e BC/~~ — 1) (2)

CE — CjE(vBE
) + —

~~~~
— . (3)

qI
CC 

-

- 
C~ C~~(V~~) + —

~~~~
— ‘ (4)

where is the base transport current (i~ — 
~F 1Es — ~~r conventional Eber~-’

Moll motation); F
E 

and V
BC 

are the junction voltages ; C
jE 

and C~~ are the voltage

dependent depletion layer capacitances and and are the forward and reverse

transit times which describe the diffusion capacitances due to minority charge

storage .

The two diodes labeled as I and I in Figure 2 represent the forward
CE/

~F
and reverse contributions to base current , using the exponential relationships given

by equations (1) and (2). The I~~ and terms are the forward and reverse base

transport currents. The linearization of the four exponentially nonlinear elements

shown in Figure 2 is essential to Initiate the iterative solution for the dc bias

point of the circuit shown in Figure 1,. To illustrate the linearization procedu re ,

consider the exponential dIode relationship for tcE/B as Is shown in Figure 3a .
F

6 
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If an initial operating point is chosen, a linearization about that point

can be made by the parallel combination of the current source and , ouductance

shown in Figure 3b. The element values are:

G — ~ (‘CE \ q15 (5)
P110 ~~~ \ ~F / v

— (
~

) 
~~~~~~

_ G~110
V
8~0 

(6)

In equation (6) the first term represents the actual base current for a V
BEO

bias. Performing the same procedure for the other exponential relationships,

the composite linearized dc model is shown in Figure 4. The “0” subsaripts have

been dropped since we will no longer restrict ourselves to the initial values

of the linearization. For the linearization of and ~~~ it should be noted

tha t the conductances are in fact tranaconductance generator elements . The

importance of this result will become appa rent as-the nodal admittance matri x

is generated for the circuit shown in Figure 1. The additiona l terms in Figure
- - 

4 have values given by:

GflR
_ 

~~ 
(
~~\

~
VBC \ ~~1

— ‘CC - GPIR . (8)

°~~~~~~~~ - (‘CE)  

(9)7



~~~~~~~ (‘CC) (10)

The two current genera~ors 
~F

1BEP and could easily have been expressed

in a form more like equation (6) by defining:

- o~, . VBE - (11)

1
CC ‘cc - V

BC 
(12)

It follows immediately that 
~F
’BEF — ‘CEF and 3R T BCR — th us on ly the form

given in Figure 4 is used.

The means for applying the results shown in Figure 4 can now be summarized.

Before each new iteration to solve for the dc bias point of the circuit shown in

Figure 1, the nonlinear equations describing the transistor model are linearized

about the voltages from the previous iteration (or some default values for  the

first  i te ra t ion) .  Figure 4 shows the linear elements used to represent the Bipolar

Transistor. In the next subsection the entering of these model element values into

the 7 ma t r ix  will be demons t rated.

8 
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NODAL CIRCUIT ANALYSIS

A. MATRIX FORMULATION

Having considered the linearization of the bipolar junction transistor model

(as an example of a nonlinear element to be utilized in a circuit design) we can

now proceed to see how the linear elements are entered into a formulation which

can be solved efficiently using numerical techniques . The approach used in SPICE

is to construct and solve the Kirehhoff Current Law equations for each node of the

circuit. The circuit shown in Figure 5 represents the bipolar circuit from Figure 1

with the transistor replaced with its linearized equivalent model shown in FIgure 4 .

All energy storage elements have been removed from the circuit for the dc analysis .

All node voltages are referenced to the ground node (which is numbered “0’). The

current law equations for nodes 1—5 are written below:

Node 1: (GIN
) (

~
GIN

) - 0 0 0 V1 ‘V IN

‘
/ . Node 2: (

~
G,N
) (G

,N*Gp,R
+Gp,F

) 
~~~PIR~ 

0 0 V 2 ‘BCR~ ’BEF

- 

- 

Node 3: 0 (+G
~~

_G
~~

_G
pIR
) (G

c
+Gp,R+G

~~
) 

~~~~~ 
0 V3 

- ‘BCR~~F
1hEF ~~3)

~R BCR

Node 4: 0 0 
~~~~ ~~C

’
~L~ ~

‘
~~L 

V4 0

Node 5: 0 0 0 (—G ) (G ) V I
— 

- L L. _ 5_ 
— 

v.~ -

The currents are taken as being positive out of each node . The terms 1
V1N 

and

are the currents through the voltage sources . These current values are determined

by other circuit elements and since the voltages are constant , the nodes can be

rearranged so as to move them to the bottom of the mat rix .  The f ive equations

were written directly from Figure 5. The following rules can be applied to

write the equations knowing only the nodal connections of the elements. For con—

ductance between nodes I and j  the v5lue is added to the diagona l entries y
11 and

9
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Yj j  
and is subtracted from the off—diagonal entries Yjj and yjj. For a transconductance

the reteren,..e polarities and node numbering shown in Figure 6 can be considered. The

transconductance term is added to the matrix terms 
~jk 

and Yj1 and is substracted

from the y11 and 
~j k terms. This usually results in a non—symmetric matrix structure,

For the case shown in Figure 5, 2.—J—0 for the G.~~ generator , thus only the y32 term

is non—zero. For the G~~ generator i—O so that only the y33 and y32 entries are non-

zero. It follows that equation (13) could have been written directly from a list of

element node connections and prescribed linearized forms for the nonlinear device

models. However , equation (13) , is not necessarily in the most convenient order for

efficient solution of the network equations. The voltages at nodes 1 and 5 are known,

and it is convenient to reorder the matrix to utilize this fact. The Y matrices

encountered in nodal circuit analysis generally contain many zero terms. These zero

terms can easily account for 50—80% of the Y matrix. It is possible to take advantage

of the sparsity of non—zero terms to reduce the memory required to store the Y matrix

and Co reduce the number of numerical operations required to solve the nodal equations.

Appendix II contains a detailed description of one particular I p1ementation~
4
~ of

what has come to be called “Sparse Matrix Techniques” . The following section illustrates

the features of the sparse matrix technique for efficient storage and L—U factorization.

The circuit from Figure 5 is used as an example and the notation is that of Berry~
4
~.

B. SPARSE MATRIX SOLUTION*

The first step is to reorder the rows and columns (as is shown in equation (14))

to: 1) move the known node voltages V1 and V5 Co the bottom of the matrix; and 2) move

V3 to position shown in equation (14!) . The second step was needed to minimize fill—in

during the L—U transformation. The details of checking for fill—in are discussed in

the Appendix. The resulting equations are:

* While the sparse matrix approach can offer computational advantages it can also

obscure the basic solution approach. Because of this conceptual draw—back it is

suggested that the reader skip to equation (17) for the first pass. -

10
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(G
,N+Gp,R+Gp,p) 0 (~~~~~) :(...GIN) 0 

- 

~‘BCR~~’BEF~ 

-

0 (Gc+GL
) O 

~~~~~ ~ 4 0

(+G
~~
_a
~~
_G
p,R) (-%) (G

c
+GpIR+G~~

), 0 0 V3 
- 

~~~ BCR’~ F’BEF 

—
~~ ~R

’BCR~ (14)

0 0 (G
a

) 0 V1

0 (
~

GL
) (0) 0 V 5 

-

The 3 x 3 matrix shown in the uppe r left corne r of equation (14) is the only portion

of interest since V1 
and V

5 are known. What is done next is to create pointers to

the non—zero entries in this 3 x 3 matrix. This is best illustrated by redrawing

the trix with 1 and 0 entries corresponding to non—zero and zero entries respectively.

Corresponding to columns and rows 1—3 of equation (14) the following structure exists:

(15)

A column array is created which contains th. diagonal Y matrix entries and the non-

zero upper and lower triangular matrix entries in a prescribed sequence. Two arrays

of pointers are created to identify the matrix indices of the non—zero terms stored

in the coli i array. This is done in two passes: First pointers to every non—zero

entry in the entire matrix are created , next this is collapsed to a set which points ,

11
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either to tipper or lower tr iangular entries . In the “f irs t pass ” arra y tim

has n entries corresponding to the n—nodes of the circuit .  The ~~~ entry in

IUR indicates the first position in the second array, IIJC, which contains a non-

zero element in the 1th row of the Y matrix . The IUC array contains the column

positions of the non—zero off—diagonal entries in each row of the matrix in sequence.

For the 1th row, ITJR points to the first entry in IIJC. Further entries in IUC

contain subsequent column numbers of matr ix positions . For the 3 x 3 matrix

given In equation (15), the ITJR and ITIC arrays contain the following entries on

th. first pass:

ItIR (l)wl IVC (1) 3

IUP. (2 ) 2  IUC (2) ~~3

IUR (3)~~~ 3 - IUC (3)~~~ l

For example, IUR (3) “points” to IUC (3). The IUC (3) and IUC (4) entries indicate -
~~

that columns 1 and 2 have ron—zero terms in the row. The ‘second pass ’ compares

- ‘ entries corresponding to the upper and lower triangular portions of the matrix.

A set of pointers is then choosen so that the matrix is assumed sysasetric. This

• new set of pointers correctly selects all non—zero entries but in addition may point

to a limited number of zero terms corresponding to the non—symmetrical entries. ‘For

the example given by equation (15) the new pointers are :

IUR (1)~~~1 IUC (1).3

IUR (2) ~~2 tUc (2) ~~3

12
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Notice that only n—i rows are now needed. Considering the upper portion of the matrix,

IUR (2) points to IUC (2) which in turn indicates that the 3rd column of row two

in upper triangle is non—zero . The same pointers refer to the lower triangle in

that the ITJR entries now go column by column and the IUc entries tell the row of

non—zero entries. ‘Thus tUE (2) indicates that in the 2nd column we must go to

ITX (2) to find non—zero entries in the lower triangle of Y. IUC (2)  tells us that

the entry in the 3~~ row of column two is non—zero. To see how the pointers and

column array fit together, let us enumerate the 7 matrix entries in equation (15).

Y1i 0 Y13

0 
~22 y23 (16)

~31 ~32

The overall data structure is:

• pointers colum arrays

TUE (1) 
~~~ 

e A ( l)

TUE (2) — 2 \ y A(2) diagonal entries

(1) 3ç_

-

‘
~~~~ upper triangle entries

ITJC (2) — 3~ ‘~~~~~ )y~~ A(5) )

~ *731 ~~A (6)  )
? lower triangle entries

~32 — A(7) )

The diagonal entries are of known number and location. The index of ItTC tells

the total number of entries in either triangle. Thus the starting location of the

upper triangle in the column array is m+1. For the first lower triangle entry,  the

13 —
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position is at ni.1 incremented by the maximum index for IUC.

This rather long procedure has given us a sparse pointer structure which locates

all non—zero entries in the 7 matrix. Using these pointers, the following algorithm

can be used to ca lculate the L and U matrices such that LU — Y. The procedure must

be executed n times (where n is the number of circuit nodes) dnd the superscript

indicates the 1th or i—i~~ row—column step in the procedure.

u1~ — ~ (i— 1) for all

y (i—l)
for j).i -j Ui1

and ~~~~~ ~~~~~~ — l,~~ u~~ for J and k i

Once the entries in the L and U matrices are known, the selution for node

voltages is straightforward. Namely ,

Y.,~~~LU ,— i  
(17)

Inverting L and meltiplying both aides of (17) by L 1, one obtains :

U, — L 1’i A 1~ (18)

Inverting U and azltiplyl.ng both sides of (18 ) by Tf 1’, the desired voltage vector

is obtained:

— 1 *  —1 —i
v • U  i U L 1 (19)

This procedure is us.d for nonlinear dci and transient analysis with iterative

solutions as mod.la are updated at each new get of node voltages . The procedure

1.4
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is also appropriate for ac analysis using complex arithmetic and linearized model

entries.

The circuit example given in Figure 5 is rather simple and does not give a fair

picture of the storage and computation savings that are possible using the complete

Berry algorithm. A more typical circuit to be analyzed and the resulting matrix

structure are shown in Figures 7a) and b). For this case the number of zero—valued

entries is substantial. The X ’s in Figure 7b) indicate the original Y matrix entries

corresponding to the uncircled node numbers. The 0’s indicate “fill—in” in the L and

U matrices resulting from the decomposition. Figure 7c) shows the matrix structure

for the same circuit but with the nodes renumbered as shown by the circled node numbers.

It is clear from Figure 7c) that fill—in is considerably reduced as is shown by the

substantial decrease in “0” entries • For the example cited in Figure 7 , the following

reductions in arithmetic operation counts can be achieved:

DIV MULT and ADDS

Straight LU decomposition 378 6930 ea

Renumbering and no sparse pointers 134 746 ea
- - Renumbering and sparse pointers 63 169 ea

The reordering aspect of the Berry algorithms is described in Appendix II.

The primary purpose of the discussion of sparse matrix techniques has been to

illustrate the creation of the pointer structure needed for sparse storage and the

steps needed for the L—U factorizarion . A general resul t which can be stated

regarding the computational efficiency of using Sparse Matrix Structures is that the

long operations count (multiplications for example) descreses from n~3 to a number

more nearly proportional to n, where xi is the number of nodes in the circuit.

15
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NUMERICAL INTE~~ATION

As was suggested in the overview, numerical integration approximations are

used to solve the integral—differential circuit equations in the time domain .

The form of the integration rule which is used can make a significant difference

in both the speed and accuracy of the computer—simulated results. If we consider

the integration of a function f(t), three common approximations~
2
~ which can be

made are:

t+A a . f(t)

S f(v)d.r m A . f(t+A) (20)

~ + f(t +6 )J

A The.. integration rules are crll.d Forward—Euler (F— i) ,  Backward—Euler (B—E) and

Trapezoida l (TR) respectively. The first method is an explicit scheme in that it
V

~ s. a known function value to approximate the integral. The Backward—Euler and

Trapezoidal are implicit in that they use a not—yet—determined value of the function

to approximate the integral. The use of the implicit integration rules has been

55 important advance for computer circuit simulation owing to the improved stability

of these methods over Forward—Euler for a given step size. It is well known~
:2)

that th. explicit integration nay proceed no faster than the smallest time constant

of the circuit to maintain a stable solution. In the discussion presented here,

the accuracy and stability properties of B—E and TR integration formulae will be

develope d and compared with that for the F—E method.

First, let us understand exactly how the integration formulae are applied

computer—aided circuit analysis . It has previously been shown that for an inductor

the branch relationship requires that:

16
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(
t+4

i
L
(t+A) — i

L
(t) + 

~ J VL (1 )dT

Hence our numerical approximations to the integral can be applied directly.

The results are:

iL ( t )  + ~ 
v~(t) (F—E)

i (t44) — 
~~~ 

+ 
~ 

v
t
(t+

~
) (B—E) (21)

IL
(t) + 

~~~ 
+ 21. VL

(t+A) (TR )

These three results can be represented as the branch equivalent—circuits shown

in Figure 8a. These element—values are entered in the Y matrix at each time

point and the solutions for t+6 is found using Newton iterations . Note that -. 
-

the current generator values may change as time proc%~ ds. If the program includes

variable time—increments, ~k , then the conduc tances also change value with time.

Constant—valued capacitive elements impose the following branch relationship:

ic
(t) — c~~~~

t) 
(22)

which can be rewritten as:

t+6

~ 

i
c
(1.)d? _ v c(t+A ) — v (t) (23)

Again we can apply the integration rules to obtain the relationships:

17 
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v ( t )  +~~~ 
i~ (t) (F—E)

v (t+A ) — v (t) + A i (t+6) (B—E) (24)
C C

v (t) + ~ i (t) + A i (t.i4) (TR )
C C

These results can be represented as the branch equivalent circuits shown in

Figure 8b. The circuits shown in parentheses are the Norton equivalents which

are more appropriate for nodal analysis.

Thus far, only constant valued energy storage elements have been considered.

Assume that the branch relationship is now defined by the equation:

i
~
(t) 

~~ 
Q(vc

(t
~~ 

- 

(25)

Integrating both sides of the equation yields

- t+A

— Q(v~~
(t+A)) — Q(v~

(t)) (26)

For this case the integral must be approximated , as before, but in addition the

nonlinear Q relationship, mus t be linearized. The result is that Newton—Raphson

iterative procedure must now be applied to nonlinear energy storage elements as

well as to the do transistor model nonuinearization .

A primary result of the preceeding discussion is that equivalent circuits

are creat.d to approximate the integral—differential equations associated with

energy storage elements . These equivalent circuits are used with the standard

iterative matrix solution methods develope d for nonlinear dc analysis to solve for

18
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circuit behavior in the time domain. The question of relative accuracy and

stabili ty of the several integration methods (F— E , B—E and TB) is now discussed

in the context of the simple circuit example- -shown in Figure 9. The voltage

V
R 

is the variable of interest. It is appa rent from the circuit that

- vR (t) a H — vc(t) (27) 
—

so that

vR ( t+?~
) E — vc(t+A) (28)

We can now apply the integration formulae given by equation (24) to approximate

v
0
(t+4). That is, using equation (24) in equation (28):

~ ~c
(t) (F—H)

— E c
(t )  — 

~ (R E) (29)

~~~ i~ (t )  +
~~~~ 

i
0(t+~ ) (TB )

It is true that for any time t (or t+4):

VR
(t )

i
c(t) — i.~(t) R 

(30)

Thus using equation. (27) and (30) in equation (29) one obtains:

~E v (t )  (F—H)

R (t
~~~ 

_ v
R

(t )  — ~ v R (t4~
) 

(31)

A v (t )  + ..A.. (t+.~) (TB )
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These equations can be rearranged to give the following recursive relationships:

v ( t )  (i. — -
~

) (F—E)

v (t+A) — v ( t )  (
~ 

1 ) (B—E ) (32)

VR
(t )  (l 

- 
(TB)

where r~~C. For a step voltage input, the initial val ue of v
~ 

is V R
(0)  — E0.

By spplying the formulae given by equation (32) repetitively for  xi equal A’ s the

result is:

E0 
~
1_

~~~~

)

fl 

(P—H)

v
R

(n
~~

) — 
E ( 1 

A )  
(B—H )

T

E01 
2v (TB)

The exact solution for this circuit and step stimulation is:

t

v ( t )  a E e  (EXACT ) (34)

so thit f o r ta n A :

nA
- 

v 
R
(nA) — E0e ~ (EXAc’r) (35)
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Several comparisons can now be made using equations (33) and (35). For a

single step (nwl ) the accuracy can be compared for  several values of ~~~. The results

for A — .l,~ and A — r are given below.

F’ .E. B.E.  TB . EXA
ACC~JRACT: I \ a —

( i _ i )  1 1 r~ e
1

\ ¶ l +~~ A1+ —

A — O.l.r 0.90000 0.90909 0. 90476 0.90483

A — ~
- 0.0 0.5 0.333 0.368

Clearly it can be concluded that the trapezoidal approximation gives the most

accurate approximation to the exact solution for a given time step A. - The stability

of the methods can be demonstrated in an approximate sense by seeing for what values

A the solution begins to oscillate wi th odd and even values of n. The results given

below show several things .

F.E. B.E. TB. xi
n / A

A 1
STABILITY: (~ — (1 + 

~~
\

fl ( 
~~

,.
\ 1•/ \

l + ~~~

STABLE FOR O~~ <r O<~

LARG (
~ ~) (_i r F

1 D IVERGENT STABLE STABLE
AND OSC. siir osc.

First , the solutions exhibit oscillations only for F—H and TB when A is greater than
~n

i. and 2.r respectively. The B—H formulation is stable in the sense that the /__ 1(
~i + ~ J
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recursive expression never oscillates in sign. The second coament to be made is

with regard to stability for very large values of A. This consideration shows

that F—E not only oscillates but diverges from the correct answer. Both B—H and

TB are stable. However, for TB the oscillations still persist for conditions

such that A>2t .

Program SPICE uses the trapezoidal integration rule. Thus the solutions

are of the greatest accuracy for the correct choice of time increments . However ,

for increments which are too large ringing can be observed in the waveforms. This

is most often eliminated by decreasing the internal program integration increments

while maintaining the same output plot increments. It might be thought that the

backwar~t euler formulation would be a better approach owing to its unconditional

stability. However , one major drawback should be stated. There is no easy way of

telling when accuracy is degraded due to excessive time—step increments. With

trapezoidal, the oscillation problems occur at about the step increment where accuracy

is also degraded . Thus, by using a proper increment step control both the accuracy

and stability can be maintained for the trapezoidal method.
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ADJOINT NETWORK ANALYSIS

In the preceeding subsections numerical and network analysis techniques

have been described which are the basis of computer—aided circuit analysis.

In this section the principles and application of the adjoint network will

be described . Although the topic may at f i r s t  sound theoretical and unrelated

to practical circuit analysis , in reality the technique is easy to apply and

has had a major impact on integrated circuit design using the computer.

Specifically, adjoint network techniques are used to provide efficient noise
(
~

) 
— 

(6)
analysis , dc and ac sensitivities of circuit outputs to pa ra meter variations

and f inal ly  “design optimization”. One hesitates to use this last term owing

to the many misconceptions as to its meaning. In fact , the adjoint network

can be used along with the standard network techniques to perform two types

of analysis which together might be called design optimization . Sensitivity

analysis is used to determine the gradient of a circuit output with respect

to the circuit parameters . A perf ormance index can be defined and the devia—

tion from this index can be minimized -using the gradient information and some

- - 
a lgorith to seek the minimum. For example, the Fletcher—Powell search algorithm

(7)
is commonly used. This approach is called design optimization . Stated mo re

exactly , one can say that sensitivity analysis is used i teratively with some

search algorithm to minimize an error function. A minimum error should thus

guarantee an “optimum ’ design. Unfortunately, circuit parameter tolerances

about this optimum design can cause a poor production yield. This is

especially true for integrated circuits where exact component values are

difficult to guarantee. For IC’ s it may be more advantageous to define an

optimum design in terms of a production yield. Adjoint network analysis

techniques can be used to perform worst—case and statistical analysis . In

both cases the adj oint network provides an e f f ic ient  means to analyze the

23
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effects of numerous possible circuit variations The added information

from such simulations can lead to an optimum component value and tolerance

assignment. In this case the objective might be to optmize yield. One

can see that the efficient analysis of many possible component values is

*the key to optimizing a design. Use of the adjoint network provides these

needed ana lyses with a minimum Increase in computational expense.

To compute the sensitivities for a variable , say the changes in voltage

across a current source T.~, we assume that an expression for V 1 
can be

written:

V 1 — f ( p 1,p 2 . . - p )  (36)

where the p ’s represent the parameters which give rise to the observed AV
1
.

The change , AV1 is then given by:

— 
~~~ 

‘ 

~~k 
(3~~

and each term represents the sensitivity of V
1 

to the change in parameter

Our task then is to find an expression of the form of equation (37) and

to identify the proper sensitivity terms. Toward this end the adjoint net-

work is now introduced. This mathematical formulation along with the proper

reordering and.identification of terms wi ll facilitate the desired result.

The starting point , for considering the adjoint network Is Tellegen’s

Theorem.~~~ The theorem states that if we have two topologically identical

net work (i.e. th. same graph structure, branch numbers , node numbers and

orientations) — call them 11 and with V
k~
Ik 

and voltage—current

It should also be realized ,that the real key is to have a good design to

- 
begin with . However even initial designs can be ma rked improved by knowing

seitaitivity information.
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identifir-- ’tions respectively — then

EV kGk~~~~

(38)

~k
1k ~ 

0 
-

where b is the total number of branches of the network. Figure 10 shows

the networks 11 and ‘~~~ schematically, along with a network T14~~ which represents

incremental pertubations to the voltage and current vectors of network r~.

All three networks satisfy Tellegen’s theorem and it can be eas ily shown by

application of equation (3$) that A2~ also satisfies the theorem so that:

- (39)
b

EY kA
~~~

1.0

Subtracting the above equation. from one another it follows that:

E [~
v

k
•

k 
‘
~k

’
~
’k] e 0 (40)

This equation is fundamental to determination of sensitivities and the

definition of the adjoint network. -

Cons ider now the possible branch relationships defined by Figure 11

for current sources , voltag, sources , resistors and conductances. Equation (40)

can be rewritten in terms of this notation with summations taken over the

respective number of branches for  each element type .
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E 
[Av~~ 

— ‘Y AI ,,J + 
~~~ 

— ‘v1A11J 
(41)

~E ~
AV
R~R 

— 

~R~~R] 
4. 
~~ 

- Y
0

AT~ ~~i 0

The exact relationship for the change in voltage across a resistor, for example ,

is:

V
R.I

~VR — (RR
+
~
mR) (r R+~~R) (42 )

If the second orde r term in 
~YIR 

is neglected then it follows that: -

AV~ 
~ 

t~ iR
5+R~~I~

using equation (43) in the summation over resistive branches in equation (41)

the result is:

E (~~v~~ç 
— 

~R~
’R) ~~E[~11R1Rc + RR4I~DR — Y~~ t J  (44)

~E [~~‘R~R~~~’R ( ~ c ’ R) I 
-

(a) (b)

The three terms identified as (a), (b) and (c) are now considered. We want

to determine variations based on (a), however term (B) also enters into the

summation and is an unknown quantity. By choosing the relationship in (C)

so that:

(45)

then the second term in equation (44) goes to zero and only the desired term

is left. what has been done is to define the adjoint branch relationship

given by equation (45) so that this happens . Notice that this so—called adjoint
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network satisfies Tellegen ’s theorem with regard to r~ but the branch

relationships may be different . The same result is obtained for conductances

so that:

- — E~~~~GVG
YG 

(46)

G 0

and

~ 

- 
(47)

It can be seen from equations (45) and (47) that resistances and conductances

translate into the same relationships in the adjoint network. Using equations

(44) and (46) in equation (41):

E 1AVV~V 
— YV~Ivj + EI~v1~ — Y1A1 11

+ E ~~R IR R  + 
-.~G~V~Y0 

0

which can be rea rranged so that~

~V~~V 
+ 

~~~ 
-Av

1 1  —

V I

E AVv~v +E-A11Z’1 + E~~ R 1R~R + E ~G0V0Y0 (48 )
V I B 0

It should be noted that all summations on the right—hand side of equation (48)

contain variations in the element values themselves (i.e. AV
V , ~~~~~~ ~~~~~ 

and
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A
~0) while  the variations on the left—hand side of the equation pertain

to either voltages across current sources or currents through voltage

soucres (~V1 and respectively).

I t  is now a f a i r l y  stra ightforward ma t t e r  to show how equation (48 )

can be reduced to the desired result ‘iven by equation (37). We have defined

branch relationships in the adjoint network. By an a ppropriate choice of

stimulations of the adjoint, and 
~~

, the respective ‘h,~, Y~ , &~ and

can be solved for . If we choose all and to be zero except for the

single current source for which we want to determine output voltage sensitivity

we obtain :

_
~

VIn
•In 

— E ~~~~~ + E ~ (49)

V
all other
Y
~~

and
~~1

/ 
are zero + 

~~~
RRIR R  + E-~G0v0Y0

By setting — —1. the form of equation (49) looks very much like that of

equation (37). In fact, the sensitivity of V to changes in for example
In It

is then — — 1R ~R 
To determine these sensitivities one appropriately

k I t
stimulates the adjoint network and solves for the V and ~ vectors- . Since the

original V and I vectors are known, the sensit ivit ies can be constructed.

Several factors must still be discussed before the adjoint network method

is in a form suitable for application in computer aided circuit analysis .

Branch relationships for all elements (i.e. storage elements and controlled

sources) must be defined. In addition , the approach must allow calculation

of sensitivitieg across elements other than the restricted case for voltage

and current sources which is suggested by equation (48). Finally, a neans

28

- - 
- 7----- - - - - _ _ _  

- 
~ - à  ~-~- - - - ttA — 

-.~•~~_••__ - —



for the implementation of the method must be described.

The definition of all elements in the adjoint  is shown symbolically

in Figure 12 . For purposes of nodal circuit analysis the transconductance

element is the single moat important relationship for active circuits which

was not considered in equation (48). For a voltage—controlled current source

with input V
1 
and I~ 0 and output 1

2 — giW1 
with V

2 
arbitrary, the adjoint

relationships are:

— guY2 
(50)

arbitrary

These relationships are shown in Figu re 12.

The application of the adj oint method to calculate variations across

elements other than sources is a straightforward mat ter .  If the current

through some arb i t rary  element is desired , then a zero-valued voltage source

is entered in series into the network and the can be calculated as

described above . Similarly voltages across elements can be calculated by

adding zero-valued current sources in parallel with the elements for which

is desired. The net pesult is that the original circuit is modified

appropriately so that the desired output ports can be st imulated in the

adjoint network to determine sensitivities.

The method of computer implementation for the adjoint is found to be

straightforward. To compute V and f, the adj oint m a t r i x  V is needed . However

since fl and are interreciproca l:

(51)

thus:

— ç  (52)
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and using the L—U factorization:

UTLTY — 
- 

(53)

It should be clear that once L and U have been constructed for the original

network , the aubsequent adjoint ana lysis to solve for V and ~ is conaiderably

less time consuming. In fact to a good approximation, if the original solution

for V takes a unit of time, the subsequent solution for V take .1 unIts .

In conclusion, the adjoint network is an efficient means to compute

circuit sensitivities . The adjoint network results f rom an application of

Tellegen ’s theorem and the proper definition of branch relationships in that

network. The adjoint admittance matrix is obtained simply since:

Y _ Y T _ UTL
T (54)

The operations to obtain U
T and tT are trivial once U and L are known . Thus

the adjoint calculations require a minimal amoumt of additional analysis time.

The sensitivity calculations are the basis for computer circuit optimization

- - using gradient search methods. Sensitivities can also be used to perform noise,

statistical and worst—case analysis.
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BIPOL&R AND ~4D2 TRANSISTOR WDDELING

The linearization of a simple bipolar transistor model~
3
~ was used

ea r lier to demonstrate model implementation for Computer—aided circuit

analysis. In this subsection the specific features of the Gummel—Poon~
9
~

bipolar transistor model and the Shichman~Modges~~
0
~ MOS transistor model

will be discussed. However, to unde rstand the need for such advanc~d model

formulations consider again the simple bipolar transistor model shown in

Figure 2. The collector Current characteristics for this model are shown

in Figure l3a. The additional characteristics in the figure show the

assumed voltage dependences for and and the resulting current gain

dependence on I,~. Finally the transit time is assumed constant with current

level. The junction space—charge capacitances have the familiar voltage

d.p.. - cc:

C
CCV) —, —~~~~ (55)

-

I, -
where C~~ is the zero—bias capacitance , • is the junction potential, in is a

coefficient ranging typically from 1,’2 to 1/3 and V is the junction voltage

(positive for forward bias), When th. experimental behavior of integrated

bipolar transistors is observed, the characteristics are more nearly those

depicted in Figure l3b . Namely, the 1~ vs V~~ behavior shows a non—zero

slope in the normal—active region which is the device output conductance

resulting from base—width modulation. In addition , current gain i~ not

constant with collector current which results from the low.ievel recombinat ion

and high—level Injection effects shown by the and I~ curves as a function

of V
9~ . Finally the high current effect. also increase the t ransi t  time

resulting in a decreased cut—off f requency. The measured junction space—

charge capacitance can still be a dequately modeled by equation (55). To

achieve model behavior for the bipolar transistor which correctly predicts
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the characteristics shown in Figure l3b, second order device effects must be

accounted fo r .

A. T~~ BIPOLAR TRANSISTOR

The Gummel—Poon model incorporates the second
’ order effects described

above within the basic model formulation shown in Figure 2. The transport

current is modified in the Gumme l—Poon node l by dividing by the normaflzed

based cha rge term , 
~~~ ~B is the total majority charge stored in the base

region, Base width modulation tend. to decrease 
~B 

and the collector current

thus increases. High level injection adds majority charge to the base, thus

increasing and decreasing I
~
. The implementation of the Gummel—Poon model

In SPICE defines 
~B in terma of the following parameters:

Vac ~~~Q1 l .e~~-.— + - ~~—-. 0 (56)

- 
S [
~ 

(
~~] + 

~kr [ex
~ (~

) ~~~ (57)

— -
~~ [Qi 

.4~,~

J

(
Q
2 
+ 

~~2] 
(58)

where 1S’ ~~ and VA are defined in Figure l3b for the normal—active case. The

parameters and V
5 

are similarly defined from the reverse-active characteristics.

The I~ intercept is the same for f orwar d and reverse operation by the nature of
(9)

th. transport model formulation. The term represents major i ty  carrier

bail charg. that is added via injection. The term represents space-charge

wid.ning effec ts on Q
3. Equation (56) assumes that changes in base charge are

linear with junetion voltage thereby imp lying constant j unction capacitances.

The reaulting expression for (see FIgure 2) is:

— ~a [ex~ (~
) — exp (59)
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Base current in the SPICE Gummel—Poon model consists of four terms .

The diode terms shown in Figure 2 represent the icieal components . That is ,

these base current terms have an exp(.~~ ) dependence and give curves parallel

to the and ‘B curves for forward and reverse operation respectively.

The iderl components are described in terms of and 
~RM’ the maximum

forward and reverse current gains . The non—ideal components represent space—

tharge, surface and other recombination effects . Their voltage dependence is of the

form exp (
~~

) where n Is the parameter for the base—emitter junction and

is that for the base—collector junction. The transport coefficients are

given in terms of C2I5 
and C4I~ for the normal and reverse terms respectively.

Figure l3b shows the graphical interpretation of ii and C2I5 
for the normal-

active operation mode, The total expression for 1~ Is:

‘B ~~~~ (~.~!) -iJ +C2I5 {exp (~~) _ iJ
(a)

SRM[ (~~S) 1] +-C 415 ~ (~!.~~ )_ i~
j

(b) (60)

The term (a) in equation (60) replaces the ‘CE~~F relationship

in Figure 2 and the (b) term replaces

The end result is that nine parameters— I~ , V~ , V3, C2, ‘k ’ ~~~ C4~ 1kr

and a — model the dc effects of base—width modulation , recombinat ion and
C

high—level injection effects in bipolar transistors , changes in base transit

time owing to high—level Injection are tncorpora~ed via thr expression:

1.~ (effectivw) — ~r Q  (61)
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The complete set of 24 Gummel—Poon paraneters is given in the SPICE user ’s

guide in Appendix I I I .  Of the 24 parameters , 15 are the sane as those

needed for the basic Ebers—Moll model. Thus only an additional nine must

be determined to completely specify the Gummel—Poon model.

B. THE MOS TRANSISTOR

The modeling of MOS transistors for computer implementation is considerably

easier than is bipolar transistor modeling. The incorporation of recombination

and high—level injection eff ects vhiChy~ .e necessary for bipolar devices is

unnecessary for MOS transistors. However , the effect of bulk cha rge on

channel Conduction and channel length (charge) modulation due to drain voltage

are important effects which must be included in second-order computer models .

Additional effects., which can be significant, include bias dependent mobi l i ty

and gate capacitance . However, these parameters are taken as constant in the

Shichnan—Hodges MOS model which is implemented in SPICE . The SPICE model does

include voltage dependent drain and source junction space—charge capacitances .

A 1/2—power—law voltage dependence is assumed.

- 
- The drain current for the MOS is described accurately by the equation:

— 
Z~LC0~ V

~~
_V

FB - — .
~~~~~~~ ) 

V

- 

— ~~~~~~~~~~ 
~F) 

~12 
+ 2fl~) 

31
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(62)

where:

G,S.D,B — are the four terminal subscripts and voltages are positive—

negative as indicated by the subscripts. - 

-
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C — is gate oxide capacitance per unit area

N b — is the substrate doping

20 — Is the strong inversion potential and Is equal to 2kT/q in (NF sub/n i
V
FB 

— is the fiat—band voltage given as ~~ 
— ~~— where:

— is the metal—semiconductor work function

— is the net surface charge .

The other terms have their standard meanings . The so—called “bulk charge ”

contribution to channel conduction is given by the second term in equation (62)

with its 3/2 — power dependence . The gain fa ctor ~ can be modified to include

channel length modulation as follows:

— Z~.iC f i.3 — ~x 
~,L(V) 

(63)
L L~~~~L

A8
-

The voltage dependence of ~L(V) determines the appropriate channel length

variations. It should be commented that mobility variations with bias can

easily be included in equation (63) by using a variable ii.

The SPICE Shichman—Hodges MOS model uses simplified equations to model

the general effects described by equations (62) and (63). To model the “bulk

charge” contribution to conductance the threshold voltage is modified by a

voltage dependent term. In essence the bulk charge effect is taken as a constant

during integration along the channel so that a 3/2 power dependence is not

obtained. That is:

VT — V~5+2O~4QB — V~5+2O~+ 
~~~oxNs1m (v55

+2o~
)
* 

(64)
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If V,~~ is defined to be the zero—V
35 

value of V
T~ 

which would be the

measured threshold for no “back—gate ” bias , then :

I. • 1VTO+Y (~
v
S8
+2o

F) 
— 

(~~ F) 
(65)

the quantities VTO , y and 2O~ are thus input parameters. This is a mixture

of measured and calculated parameters since V,~~ can be measured directly,

‘
~‘ can be determined from a series of “back—gate” bias experiments and 20F

is calculated .

The Shichman—Hodges model assumes that output conductance, —

~I I /
~v ~

V
~~ >V~~AT, is proportional to drain current in saturation 

~‘~~ AT~ ’

That is:

- C
~~AT a AI

~~~ T 
(66)

where lambda is a channel length modulation parameter.  The model implementation

incorporates the effect into the current expression . If we define I~~ as
*t

‘~~ ~~~~~~~~~ ‘~ (‘~GD ~
1
T)] (67)

the drain current expression which corresponds to the appropriate output

conductance given by equation (66) is then:

— 

ID
_ I

~~~(l + x V DS) 
(68 ) 

-

a-
as written, this formulation applies only above threshold and for neither

end of the channel pinched—off . For normal node saturation F2 • O, and for

reverse mode saturation F
1 — 0.
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The (1 + term given ix1 equation (68) can be interpreted as the

equivalent to the 
~L V )  

term in equation (63). If AL (V) is assumed

proportional to V
D~~

then:1~

[1 - ~~~~~ } ~ ~ + ~~~ for AV~~<~~ (69)

where X is the channel length modulation parameter. In essence the

approximation for changes in L with V~~ is equivalent to the linear charge

relationship assumed by usin~~V~ for the Oummel—Poon model.

In summary, the MOS model built into SPICE requires 14 parameters for

it~ complete specification. The dc parameters described by equations (63),

(64), (65) and (66) are 30, y, V,~,0, 20~ and )~. For the charge storage

elements the oxide-capacitances associated with gate—source , gate—drain and

gate—bulk are assuned to be constant. Junction capacitances of the

source—bulk and drain—bulk have a 1/2—power dependence with user specified

zero—bias values. The bulk junction potential and saturation current , as

- 
- - 

well as source and drain series resistance are supplied by the user. The

complete set of parameters for the Shichnan—Hodges model is listed in the

SPICE user’s guide in Appendix III.

- 
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CONCLIJS ION

This section of the report has presented techniques and

model formulations which are basic to a sophisticated computer circuit

analysis program. The examples have been taken from program SPICE which is

being used at Stanford for a number of integrated circuit and system design

problems . In the sections which follow, reports on specific modeling and

circuit design problems will be presented. The emphasis on ac and transient

analysis capabilities is about equal. It will also become apparent from the

reports that modeling and model parameter determination are major factors in

determining simulation accuracy and, in some cases, credibility .

3$
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characterization and Model Parameter H. E. Mussnan

Determinations for Progra m SPICE

Modeling and Application of Uniform L. Gerzberg
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Analysis of a 6 MHz Oscillator Circuit H. V. Allen
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Storage Elements and Characteristic Equations. 
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Figure 5. The Transistor Circuit from Figure 1 for dc

conditions with Linearized Transistor Model.
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Figure 6. Voltage—controlled Current Source Model with Reference
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Figure 7. A circuit configuration~
4
~ and admittance matrix 

structure to illustrate

impact of sparse storage and reordering.

a) the circuit, uncircied nodes are original and circled indicate

renumbered,

b) the matrix structure before reordering . The X’s indicate entries,

the 0’s fill—in.

c) the matrix structure after node reordering. Note the reduced f i l 1—ir ~.
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and Trapezoidal (TR ) Integration Rules.
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Figure 9 CIrcuit Example to Illustrate Accuracy and Stability of

Integration Formulae-
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Figure 10. Three $etworks 1’~~ and “
, + ~~ which Ssti~ fy  Tellegen ’s Theorem .

The Voltage—Current Definitions are Shown for  Each Network.
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Figure 11. Notation for Branch Relationships for a) Voltage Sources ,

. b) Current Sources, c) Resistors, and d) Conductances.
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APPENDIX I

Reprinted from the IEEE Transactions on Circuit Theory, Vol. CT—18, No. 1,
January 1971.

Elements of Computer-Aided Circuit Analysis
WILLIAM J. McCALLA, MEMBER, I EEE, AND DO~4ALD 0. PEDERSON, I:ELLOW , IEEE

Abstract—A aurv.y ii m.d. of SM prrncip.I tsc*.niqu•~. proc.. proach which derives from Bashkow s A-matrix formula-
durss, and rO.i*~fl~~ (list Sm uiid in OmsIfit program, for oomputw. tion (181.
aidad CIrCUIt ifl.iyi ia. Programs (simulators) ir. r.vi.w.d and - . - -

a.facSsd tactura, comp.md for Ot. four m.,o ..c.. ~f ~~~~~ 
The implementations of these two approaches within

ln&yam: Soc., do and iC. nonllnw do. nonhn..r tr.na.eset. and ii,,.., the present generation of circuit analysis programs seem to
pol. *.ro. have had a common origin in the transistor analysis pro-

gram (TAp) (19f-(20 1 developed by IBM. TAP , though rca-
!. INTRODUCTION sonably effective, was short lived and had such severe

S 

EVERAL recent books and papers have cataloged limitations that it was never made available outside of IBM .
and compared many existing and proposed computer- From TAP there evolved three programs: ECAP (21 1. whi ch
aided circuit analysis programs ( l i — E l  I I .  This paper used nodal analysis, and ~-srr-l (22] and PREDiCT [23 [,

is a survey of the principal techniques used in existing pro- which both used a state-variable approach .
grams for the analysis of the four important circuit areas: ECAP performs linear dc. linear at. and piecewise-linear
linear dc and at, nonlinear dc, nonlinea r transient, and transient analyses and is still very much in use. It is con-
linear pole zero. The considerations brought out are based sidered in more detail shortly. NET- I . a nonlinear transient
on over four years experience in using, modifying, and analysis program, is available in the IBM 7090/94 assembly
writing more than twenty programs. languages MAP and PAP. Therefore, this program cannot be

This survey is organized as follows : first an overview is used simply in computer systems having monitor systems.
made comparing nodal and mixed or state-variable meth- NaT-I did, however , inñuencc the development of the pro.
ods of formulating the circuit equations. Linear dc and at gram ciacus (241. This program is considered in more
analysis programs are then considered with emphasis detail in the following paragraphs. PREDICT is also a non-
placed on techniques for solving systems of linear equa- linear transien t analysis program but includes no built-in
tions. Attention is next given to nonlinear dc analysis pro- device models and is incapable of automatically performing
grams and the iterative solution of nonlinear algebraic multiple analyses for several different sets of element values .
equations. The extension to nonlinear transient analysis In addition , it requires separate analysis runs for steady.
follows with an introduction to several numerical integra- state Ida) and transient solutions and suffers from a weak
lion routines used in the solution of the nonlinear differen- numerical integration routine. To overcome these and

• tia.l equations. Finally, four linear pole-zero circuit analysis other deficiencies , the SCEPTRE (25 ] program, which is con-
- - techniques and programs are considered . Throughout the sidered in the following paragraphs, was developed .

paper a number of specific references on computer-aided
circuit analysis and design are cited . In addition , several Nodal Analysis Formulation
general computer-aided circuit analysis references are . - - _ -
included (12 1~1171 For both linear and nonlinear (or piecewise-linear) cir-

cuit problems, nodal equations may be generated by little
II. Cia_culT EQUATION FoRMui~~rIoN more than inspection. The relative simplicity of this ap-

Virtually all presently available circuit analysis programs proach contrasts sharply with the manipulat ions required
start from the same point, an elemental circuit description by the state-variable approach. As an example, consider
supplied to the program via keyboard, punched cards, or the case of a linear circuit. The nodal equations are of the
an interactive graphic display console. This description of form
circwt elements and their interconnections is convened by Yr — I I I )
the programs into a set of circuit equations. Of interest here
are the two major approaches that are now used in formulat- where Y is the nodal admittance matrix, p is the vector of
ing these equations. The first approach is the familiar nodal node voltages to be found, and i is a vector represeruing
analysis while the second is the mixed or state-variable ap- independent source currents. The term Yii in Y represents

the sum of the admittances of all the branches connected to
Manuscript received August Ii. 970. This work was supponett ~ 

node I; Yij is the negative of the sum of the admittances of all
part by Uie Joint Services Electron,cs Program. u,ider Grant AFOSR.68- branches connecting node i and node); and i, is the sum of
I4U nd m . rmY Research Office, Durham. N. C.. under all source currents entering node k. Thus if a resistor of

The suthorn are with the Department of Electrical Engineenng and value R connects nodes S and 7, l,- R is added to y~~ and -.
C mputcr Sciences. Univer sity of Ca1ifornis. Berkeley, Calif. 94720. and subtracted from y~, and y,,, while if a current source of

—— --- --- — ----—
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strength I is directed from node 2 to node 3, 1 is subtracted loop equation for each inductive tree link. Independent
from i2 and added to ( 3. sources are withdrawn as separate erms in the equations

Voltage sources are usually handled in one of two ways. and the equations are normalized with respect to the dc-
• The first is to require that every voltage source appear in ment values associated with each state variable,

series with a resistor so that the source may be transformed For a linear circuit , the preceding procedure results in a
to a Norton equivalent current source, Thesecond approach matrix ecuauon of the form 1351
is a generalization of the ,first but does not depend upon a 

~ + 8. (3)
- series resistor. The approach is most easily introduced in where A is a coefficient matnx relating the state vector xterms of grounded voltage sources. The nodal equations am to its derivative i and 8 is a coefficient matrix coupling thefirst assembled including all elements other than voltages et~ects of the independent source vector a. Any other de-sour~~~ Columns of the admittance matrix corresponding to sired network variables can be expressed in terms of thegrounded voltage source nodes are then multiplied by the ta variables and independent sou rces. For the linearvalue of the source and the result is subtracted from both case, this procedure results in an equation of the formsides of (1). If the current through the voltage source is

required, it may be treated as an unknown in place of the ,p Cx + 0. (4)
known voltage. Otherwise the equation representing the where y l s  a vector of desired output v. riables and C and 0
sum of the currents at the source node may be considered are again coetficient matrices,
redundan t and dropped, thereby reducing the number of For the nonlinear case, 13) and (4) are of the form
unknowns. Floating voltage sources and controlled sources
may be handled by similar column and row operations. S AIx. a. r) 5)

For nonlinear analysis, equations can be formulated in a CIa, a. t) . (6)
manner similar to that used in the linear case. The equations An alternative description is based on extracting the non-may be written symbolically as linear portion of the circuit from the linear portion. This

Y(r, t) — 1(1). (2) allows the state equations (5) and (6) to be written in the
following equivalent form (15) :The interpretation of (2) is that each equation represents a

summing of current contributions at a node. It should be — Is + 8. + S’w (7)
noted, however, that as now formulated the nonlinearities — c~ + D. + D ’w (8)
are restricted to be voltage rather than current dependent g(w)~~ Ex + Fu + F’w. (9)
Fortunately, semiconductor devices such as junction diodes
and bipolar and field-effect transistors are of the voltage- Again. A, 8,8’. C, 0, D’. E, F. and F’ are coefficient matrices.

.~~~
--.

controlled category, and the above restriction is usually not while x and a remain the state variables and independent
severe. source vector, respectively. The vector w represents the con-

As mentioned previously, ac~,r is based on nodal analy- trolling or independent variable set associated with the
sis formulation, Additional nonlinear analysis programs nonlinearities g(w), In the state-variable approach, no
using nodal analysis include Ta_AC [26), srra~c (27], auumpuon is made regarding voltage or current control ,
sYsc~~ (281. and eiAs-3 (29), while linear programs based While the equation formulation proced ure outlined above
on a nodal approach include NATFUQS (301. [31], and from applies in general, details vary from program to program.
USA (321, [331 the programs ACCA, roLY, and TarN . Both cia_cus and SCEPTRE employ V1~~gtiOflS of Bryant ’s
State- Variable ,4,ialysu Fo,midatio,, method [361, [37] as modified by Wilson and Massena [38).

Other programs relying on the sta te-variable approach in-
The primary reason (or using the statc.variable approach du de CORNAP (39 ), (40], BEt.AC [4 ) 1. and C1RPAC [421, (43).

is that it yields a set of first-order linear or nonlinear differ- In all cases, the formulation procedures entail extensive
entim equations in a minimal set of unknowns. ~~~~~~ matrix manipulations. The bookkeeping associated with
a set of such equations explicitly seemed a desirable objeC these manipulations usually requires considerable amounts
live for use with earlier numerical integration algorithms. of core storage. Loops of capacitors and voltage sources
As is brought out in the following paragraph, thø iS 00 and cut-sets of inductors and current sources are accommo-
longer ese~~~ dated by additional manipulations of the state equations. -

Frees an elementary viewpoint, the stata.variable for-
mulation proceeds as follows (341: a proper tree consisting Ill. LiNEAR DC ~ NO AC ANALYSIS

of all voltage sources, as many capacitive branches and as The first of the four circuit analysis areas to be treated is
few inductive branches a. possible, and no current sources linear dc and ac analysis. The desired outputs are the various
is selected. The state variables are chosen to be the capacitive voltages and currents within a circuit, possibly as a function
tree-branch voltages or charges and inductive tree-link cur- of frequency. As virtually all programs of this category use
rents or fiuses, A fundamental cut-set equation is con- a nodal analysis formulation, it is assumed that the circuit
structed for each capacitive tree branch and a fundamental equations to be solved have the form of( 1)- The major tech-

& - - - - -~~~~~~~~~~ -~~~~~ . .- ~~~~---~~~~~~~~~~~~~~~ -- -- - - -~~
_t•-
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niques presently used to solve such Systems of linear equa- from ~~ and (y~ / y~
t
~) e’~I’~ from g~t I Symbolically this

tions include Gaussian elimination , pivoting, LU factoriza- transformation can be represented by the equations
tion. and sparse matrix methods. These techniques are
outlined in the following paragraphs and are followed by ~~~~ 

— eli)

a comparison of the features of several available analysis
programs. 

g~2I — gi~t i  —

A dc analysis can be considered the special case of an ac 
I

analysis performed at zero frequency. However , such an = d~
’> 11 2)

approach is usually not used for two reasons : first , if the ~~ 1

formulation proceeds on a nodal admittance basis, the which y ields the system
infinite admittance represented by an inductor at zero fre-

r quency requires special consideration. Second. where only 4~i~ yW y?~l [v t 1 [1\i

resistive elements and independent and controlled sources ~~~ 10 yW I ( 13)
are present. the circuit equations contain only real coeffi- g~2 i :  Lo 42) l2 i~ (~ 

L421)32 Y 35 V 3 13
cients and hence may bi olved on a computer using only
real variables, I f complex variables are used, the computa- Finally, the unknown’ v2 is eliminated from 4’1j2’ by sub-
tion time may be increased by as much as a factor of 4 be- tracting (y~/y~)~2t from ~~~~~ thus obtaining
cause multip lication and division (both considered long ~~~ ~ ~~zi gui
operations as compared with the short operations of addi-
tion and subtraction) require more time than for long ~~i~2l 

-

operations with real variables. y12)—
Gaussian Elimination 

— 
YW

With the distinction in mind that the system of nodal resulting in the criangularized system
equations (I) involves only real variables in the dc case and
complex variables in the ac case, the solution of (1) can be 

~~~ FYt I ~~~ ~~~1 
~
t’i1 i- i’t’~1

tt~n ~
?h I 0 Y4

~ Y
~~~~I lv s I = Iii.21

j
. (15)

0 yWJ ( u 3j [i ~
3
~U 4 _ Y _ i j  (10)

where Y~ is the in verse of the nodal admittance matr ix. This completes the first step in the Gaussian elimination

Computationa(~iy, the efficiency of this approach ~~ be procedure. Back substitution is now performed to obtain
the final solution as follows :

evaluated in terms of the number of long operations re-
-: quired. It can be shown that the number of long operations 13)required to invert an n x n matrix is ~~~ while the number of V 3

long operations required to compute its prod uct with a vec- (t~2l — y~~v s)tot ’ of dimension it is it 2 . Thus the total number of long oper . V~ —

ations required by this approach is 22

(j 111 — y41~v 3 — y?~V 2) (1 6)
it3 + li 2 V j =

The number of long operations required to obtain a solu- Careful enumeratibn shows that for an nth order system
lion to ( I )  can be reduced by a factor of 3 using Gaussian the number of long operations required by Gaussian elimi.
elimination (441.

This procedure consists of two steps. The first step con- nation is

sists of converting the nodal admittance matrix Y to an n”
equivalent upper triangular matrix. i.e., a matrix with all T + —

zero elements below the diagonaL The second step which is
referred to as back substitution , consists of solving the nth LU Transformation

equation containing only v~ for v,, the it — 1st equation for A modification of Gaussian elimination which is useful
in terms of it,, etc. Gaussian elimination a illustrated when more than one source or nght-hand-side vector i t s

in ( I I )  for a third-order system to be considered is the LU transformation [44]. This pro-
cedure consists of pa rtitioning Y into an upper triangular

[~~~i~ 5,i1
i~ ~~~~ Ftt~ fr~i ij matrix U and a lower tr iangular matrix 1. (usually with ones

~~ ,~ ~~~ I ~ i, on the diagonal) such that

iqij
i :~ v~ ~~ v~,’~j 1 r j 

l i i i  LU V. (17)3 t~ _i

where the superscript I indicates the initial system of equa- This technique is illustrated shortly. The resulting sYstem is

tions. As indicated previously , the unknown v is eliminated solved in two stages. First ,

from equations ~~~~~ and 1~~ by subtracting (y W .y 4 ’ )ti” Ut ’ = L ‘I = 1 1181

—- ~~~~~~~~~~~~~~~~~~~~~ 
‘
~~~~~
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and secondly, formed in double precision at the espense of only one ad-

~ — u — L~ * (19) ditional double precision vector of dimension n. The only .. J
major added expense is computation time.

In this case since both La nd LI are triangular, L and U 1  The most commonly used approach of reducing error
are trivial to compute. Note that (19) is the same back sub- (used by Ralston with the preceding method) is pivoting [45].
stitution performed during Gaussian elimination, while (18) Partial pivoting amounts to scanning the elements of the ith
is also equivaieiu to back substitution. To obtain U the column of the matrix below the diagonal at the edt step
same reduction procedure is performed as in Gaussian in the reduction and determinin g the element of largest
elimination. Thus, in terms of the earlier third-order magnitude. The row of this element is exchanged with the
example, ith row and the reduction is continued. For the example

considered previously, if at the second step IY~ 1 > V?~1. .~iy411 ~ would be chosen as the pivot clement, ~~~ and 1~~ would bei i
= Q ‘~~ f I -  (20) exchanged and y~ 

would be eliminated from é”~° to obtain
Y22 23

L 0 0 Y~~ i ~~~~‘. Thi* technique tends to reduce the magnitude of the
term being subtracted at each step and thus improve ac-Similarly, L is found to be a byproduct of the triangulariza- curacy. Further, it preserves column order and hence thetion procedure. For the example, order in the solution vector s.

11 0 01 Complete pivoting involves finding the largest element in
the as yet unreduced (it — I) x (n — C) submatrix at the ith step.

0 exchanging rows and columns such that it appears on theL = Y?~ 
l ( 21) diagonal in the ith row and column. Since column order is

Y~i
1i1 ~W not preserved except at the expense of additional book-

L y~ j keeping, complete pivoting is seldom used.
The elements of L ate the coefficients in (12) and (14). Sp arse Matrix Techniques
A convenient aspect of the preceding procedure is thAt In view of the ,,3 dependence of the long operations count.

since the diagonal elements of L atE known tO bE l’s, L 
~~~ computation time can be expected to increase significantly - -

U may share the same memory locations originally assigned as larger circu i ts with more nodes are considered. Several -to V . Note further that the long operations count is the same recent papers [46]—[48] have focused attention on taking
as for Gaussian elimination. Once Land U have been com- advantage of sparsity in the nodal admittance matrix. There
puted, (IS) and (19) can be applied repeatedly (or different are basically three associated economies. First. elflcieut
source vectors 1. For in source vectors, the total long opera- means have been found by which only the nonzero entries
lions count becomes - of the matrix need be stored, thus effecting a savings in core

+ ~~ 
memory. Second. it is possible to process only the nonzero

— entries at each step in the triangular reduction. Finally, the- 
- order in which variables are eliminated can be chosen to- - Pivoting

preserve sparsity. The long operations count and computa-Further methods of reducing core requirements and tion time are then reduced. This savings becomes even more
operations counts are brought out below. First, however, significant when the same equations must be solved manymention should be made of error control. As can be seen times, as in mult ifrequency analysis. The optimal order forfrom 112) and (14), a division and a subtraction are required eliminating variables need only be determined once.
at each step in the triangularizauon process. Suppose a By way of illustration (86], in a new program developedcomputer which represents a number accurately to d digits, at the University of California. Berkeley, by Prof. R. Rohrer
performs arithmetic operations correctly to 2d digits. 

~~ and his students, the third technique of optimal ordering
then rounds the result to d digits. It can be shown (44) that together with nonzero storage leads to a long operationthe absolute error resulting from such arithmetic operations ec i nt  more closely proportional to it than to n3. In the
is given by I +0 10” where Otç 0 ~ S. In the floating-point analysis of a typical operational amplifier of 22 nodes, the
notation, the operations of subtraction and division yield number of long operations was reduced from 2660. usingresults where magnitudes are less than those of the operands, Gaussian elimination, to 131)The relative error in the result is larger; thus division and
subtraction steps reduce accuracy. The lower accuracy is Linear DC and AC Analysi.c Programs
felt more severely on computers with smaller word lengths Many linear analysis programs are available including
where d is reduced. One obvious solution is to declare all ECA P . the ACCA portion of LISA. and ROH RE RX. ’ As previ.
variables to be double precision and perform all operations ously mentioned, these programs are based on a nodal
in double precision. However, this significantly increases analysis formulation. Both ACCA and R0HRERX have free
both time and core memory requirements.

One compromise which can be made is described by 
~ ~~~~~~~~ wrlttefl And de~clopc*l in 909 by ihe ICRalston (45). He shows that the critical steps involving Group. Eiectron icn Resitarcfl L.iboralory . Un iv er s ity ti Cah(ornia,

divisions and accumulation of partial sums can be per- BertEicy. 

-~~~~--—-- -~~~.- -—— . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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format input languages as do certain time-sharing versions The form of(2$) suggests that a sequence of iterates might be
of ECAP. The primary advantages of ECAP are that it is well generated by the following:
documented (50) and is available through many commercial
time-sharing companies. Its disadvantages are that it is “ = vt ’1 — (26)
cumbersome to modify and the original input language is
cumbersome to use. Equation (26) is the Newton—Raphson iteration function

ACCA, as part of the larger USA package, shares a general for the scalar case. Note that at the solution 0. gi0)=0 and
input routine and has the advantage of being able to inter- v”~~ = v~’1 as would be expected. The geometrical interpre-
act somewhat with other portions of usa. Its disadvantage tation of (26) is illustrated in Fig. 1 for the simple case of a
is that, if used as part of LISA., it is expensive to load, current source driving an ideal diode. The line tangent to
RoHasax does make partial use of sparse matrix techniques the nonlinearity at the point (v”1. g(v”)) has the slope
and is therefore relatively fast. It presently suffers, how- g’(t’1”). Its intercept with the voltage axis defines the next
ever, from a lack of documentation, voltage iterate in the sequence as shown in the figure.

At the present time efforts are being made to decrease The generalization of the Newton—Raphson procedure
computation time and to incorporate sensitivity and noise to a system of n equations is given by
performance using the adj oint network [51). This work is = ~I CI — J ’(.”)g(s”) i27)of major importance in the development of several com-
puter-aided circuit design packages (521-454]. where the Jacobian J(s) of the function g(.) is given by

IV . NowuNeAl DC ANALYSIS
1891 89~ 89i 1Most nonlinear dc analysis programs are incorporated

into more generai transient analysis programs. Equation I - .I~~~~~~~formulation approaches are divided between nodal and J(.) I - (28)
state-variable analysis. In either approach, the nonlinear do Og~analysis problem reduces to one of solving simultaneous 

~ i .
nonlinear algebraic equations. As described in the following
paragraphs, iterative methods are used. Of particular im- A physical interpretation of the elements of J(.) is brought
portance is the convergence properties of the solution algo- out below.
rithm. Several approaches which ate used in diffes’ent P~0. The direct application of (27) necessitates computing the
grams to improve convergence are examined in thiS inverseofthenxniacobian matrix,Asindicatedpreviously.
section. Finally, various programs are again mp.rcd the operation count for inverting a matrix and multiplying
F WICtiO.IOJ I teration the result by a vector is it3 + it2.

An alternative procedure for obtaining new iterates is toThe solution method used by virtually all of the presently solve the linear system of equationsavailable nonlinear do analysis programs is based on the
Newton— Raphson itera(ion technique. It is one of a broad J(.”)(.” — .“ “ )  g(.”)~ (29)
class of techniques known collectively as functional itera-
lion methods (44j A second alternative procedure often used with nodal

Given a set of nonlinear equation. of the form of(2)~ fi~ 
analysis is to employ the system of equations

the do case the equations m a y  be expressed J ( 4 ~))~i~A i I  J(,4fl) i ~I — gi,l~)), (30)
9(5) — (~2) The right-hand side of (30) is found to have a particu larly

The solution technique is to start from some initial set of simple interpretation as also brought out below.
values ~~ and to generate a sequence of iterates ’ ,“~~ 

“ Gaussian elimination applied to either (29) or (30) re-
,4.) plC* I i , . . . which converge to the solution a. duces the long operation count to (n3/3)+n2 —t it/3 ). An
Newton-Raphson iteration is most easily introduced by even greater advantage is obtainable using sparse matrix

considering the case of a single nonlinear equation methods. The locations of the nonzero elements of the
Jacobian matrix are fixed by the circuit topology and remain

9(v) = ~ 3) unchanged from iteration to iteration. The additional time
The function g(v) can be expanded about some point v0 in ~ required on the first iteration to record the nonzero struc-
Taylor series to obtain ture and determine the optimal variable elimination order

is small in comparison to the total computation lime re-g(v) — g(v~) + (v — voW(s0) + ~ 0 (24) quired as the number of iterations becomes large.
where the prime denotes differentiation with respect to ii. 

~~~~~~~~~ ~uii To Nonlinear DC Analysis
If only irsi-order terms are retained, a rearrangement of

(24) yields A physical interpretation of the Jacobian matrix and the
Newton—Raphson method can be made using the diode

g(v~) circuit of Fig. 2(a). The exponential nonlinearity of the
P = — 

~~~~~~~~ (2,5) diode is linearized about some trial solution voltage l~.

— ~~~~~~~~~~~~~~~~~~~~~~~
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Interins oujteratevalues

— 
~G + g~1)~

1
~ — f1

~ • (37)
.s~’,- 4- t ’•~~ hf,I t .

‘I 
If (30) is compared with (37) the physical interpretations

of the Jacobian and the right-hand side o((30) become more
apparent. The Jacobian consists of the nodal conductance

_
,,
V matrix of the linear elements of the circuit together with the

linearized conductances associated with each nonlinear cir-
cuit element. The vector on the right-hand side of (30)
consists of independent source currents and the Norton

Fit I - Newton- RapMon Isistion. equivalent source currents associated with each nonlinear
circuit element. Thus at each iteration in a nodal analysis,
the linearized conductances and Norton equivalent source

I currents must be recomputed and the linearized nodal
conductance equations reassembled.

op
The application of Newton—Raphson iteration to the

state-variable approach is also straightforward once all

j / ’  
required coefficient matrices have been assembled. Recall
that the equation. formulated by the state-variable method

• . can be put in the form of (7H9). The state vector x may
represent capacitor voltages and inductor currents in which
case the steady-state dc solution is characterized by x =o.
This corresponds to setting the current through capacitors

~~~~ ~
i ;  tm.. 4~ 

and voltages across inductors to zero. Next. (7) may be
- solved for x in terms of wand the result substituted into 9)ci to obtain a system of nonlinear equations in terms of w.

Fig. 2. Nonlinear Sc analyiS. tRI Diode circWL (bi Unearned diode Once is has been obtained x and y can also be obtained.
approunwuon. (ci Unneesid circuit model. Note that since the coefficient matnces involved are con-

stant, the initial manipulation necessary to obtain the single
This is equivalent to a Taylor series expansion as indicated system of nonlinear equations in is need only be performed
previou~Iy where only first-order terms are retained. The once.
expansion is of the form .

‘1 Convergence

+ (V — V0)ç!~ 
For the nonlinear do analysis approach just outlined, the

~ (31) problem of convergence to a solution is now considered.
Proofs that an algorithm will converge depend upon a

= I,(s~’0l~’? — I) 4 (V — Vo)~/.e”
eét
~ (32) 

priori knowledge of an initial guess sufficiently close to the
solution. Because this knowledge is usually not present in a
nonlinear dc analysis. all techniques incorporated into

= ~~ + (V — 
~~~ (33) anal ysis programs for improving convergence of the

Newson—Raphson Iteration technique are supported by
where ton is recognized as the current through the diode purely empirical justification.
c.or ru~punding to the voltage V~, and g~ is recognized as The exponent ial nonlinearities usually associated with
the dynamic cond uctance corresponding to the voltage diodes and bipolar transistors are single-valued mono-
V~. Since the diode characteristic as d scnbed ~ ~~) tonically increasing continuous functions. However, these
has now been linearized, the diode ‘naY be modeled in terms expressions are strongly increasing functions. For large
of a Norton equivalent current source ~~~ in parallel reverse bias, the slops approaches zero, while for largewith the conductance g~~. As can be seen from Fig. 2(b). forward bias the exponential tends to in finity. Convergence
I~~ is given by may be slowed or the Iteration procedure may be stopped

1IMIO = I~ — goo Vr,. (34) when numbers exceed a computer -imposed limit. An ap-
proach commonly used to prevent such overl)ows is illus-

Hence, (32) may be written in terms of ~~~ as trated in Fig. 3 again for a simple diode characteristic. As
previously indicated, at a t rial junction voltage v”1. the

— 900 1” + t ono- characteristic is modeled in terms of a linearized approzi-
The nodal equation for the complete linearized circuit of mation as shown. A new iterate value t1~~ ” greater than
Fig. 2(c) ~ u” must correspond to a solution on the linearized char-

acteristic at the point I’. Two choices for a new trial operat-
(C + = 1- — l~~~. (36) ing point are immediately available, The first is to update

—~ ~~~~-‘- -~~ ~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- ‘ . ,Vanl inear DC ,4na/v.vis Programs
- Both NE T-I and its predecessor TAP formulate the dc

- // equations separately from the transient situation. Further.
-, both programs consider the linear and nonlinear portions

of a network separately for dc analysis. The linear port ion
- 
- is analyzed using a modification of Kron s method of/ tearing (601. Nonlinearities are treated as a set of side con-

- 
.‘‘ ‘ straints, and Newton.-Raphson iteration is used.

In SCEPTRE different trees are chosen for dc and transient
analyses. A modified Newton—Raph son procedure (61 J is

FIg. 3. Selection 01 new toRi operat ing uiosnt . used which ensures that the true operating point on an
exponential is approached from below. This amounts to

with voltage by proceeding vertically to a new point on the updating with current whenever junction voltage increases.
exponential characteristic. This is the standard Newton— Both cixcus. using the state-variable approach, and
Raphson iteration and can be carried out by a straight- TRAC. using nodal analysis, employ Newton—Raphson
forward evaluation of the exponential function. The second iteration while updating with voltage in the third quadrant
choice, which prevents the overflow problem, is to update and updating with current in the first quadrant. Ii i As-3.
with current by moving back horizontally to the exponential using nodal analysis and Newton—Raphson iteration , up-
charactenstic. This is done by computing the logar ithm of dates with current in the first quadrant when a junction
the current corresponding to the point 1, and results in the voltage increases and with voltage when it decreases. In thc
selection of point I as the new trial linearization point. Note third quadrant B1AS- 3 always updates with voltage while
that this procedure, which is particularly suited for June- modeling the exponential characteristic in terms of a line
tion diode and bipolar transistor circuits, can be uscd with through the origin rather than a tangent. This does not
both nodal analysis and state-variable analysis. This modi- affect the dc solution and yet insures that if a junction volt-
fled Newton—Raph son method can be used with other non- age becomes positive, the new trial linearization po int will
linear devices but does require that they are described by lie in the first quadrant.
functions which have an explicit inverse and for which both TRAC . CIRCUS. and BIAs- 3 converge reasonably well on
the function and its inverse are single-valued and con- most moderately sized circuits of up to 40 nodes. Nonlinear
tinuous. For diodes and transistors the vanishing slope in models built into TRAC include junction diodes and bi polar
the reverse direction is usually handled by placing a small transistors. The program ’s input format is cumbersome
leakage conductance across each ju nction. while, as supplied by the Harry Diamond Laboratory .

Broyden (55] has recently proposed a variation of the ‘rR.apC includes several assembly language subroutines which
Newton—Raphson technique. The method incorporates may require translation. CIRCUS has the advantage of a free
two modifications. The norm of the vector g(r). which must format input language . zener-diode. tunnel-diode. unijunc-
tend to zero as a solution is approached, is never allowed to tion . and junction fIeld-effect transistor models in a stored
increase. The method also avoids computation of the in- library . I t is. however , a much more complex program to
verse Jacobian matrix at each iteration. Instead , an arbitra ry imp lement and modify. au*s-3 is relatively small but is
approximation to the matrix is chosen at the first Iteration limited to nonlinear dc analysis of bipolar transistor circuits.
and then successively u pdated. Branin and Wang (56] have scap’rxa is by far the most flexible program in that models
applied the method to nonlinear dc problems, including may be built by the user, nested, and recalled as necessa ry .
statistical analysis. More recently. Broyden (57 1 has con- The price of this flexibility is size and complexity as the pro-
eluded that enforced norm reduction is not always ad- gram consists of over I 5 000 statements. Its dc solution has
vantageous and that an adaption of his method used n also been known to suffer from poor convergence proper-
conjunction with a particular form of Davidenko ’s method t~~~ .
(58] may converge more rapidly. In addition . Brown (59] One recen t program should also be mentioned. The
has proposed a variation of the Newton—Raphson technique oic~~ portion of SYSCAP is an extremely general dc analysis
in which an inequality constraint is applied to the norm of program. It is large and is currently available on ly to users
the vector —J ‘(s)q(s). of Control Data Corporation’s crRexNET remote batch

Three termination criteria are commonly used. The first system.
is to stop iterating when the absolute difference between V . NONLINEA R TRANSIENT ANALYSISeach unknown voltage or curren t iterate and its previous
value is reduiced below some preset minimum. The second The genera l procedure for the transient analysis of a
is to stop when the relative error, defined as the absolute nonlinear circuit is to evaluate the state of the circuit at a
difference divided by the value of the iterate, is reduced to a given point in time and to extrapo late ahead to a new time~
preset minimum. Finally, an approach sometimes used with point.
nodal analysis is to require that the sum of the currents at The computation tune required for such an analysis pro-
each node be reduced to a preset minimum. All of the ap- gram is directly proportional to the number of time incre-
proaches have advantages and disadvantages n specific merits into which the analy sis (simu lation ) time must he
cases and none is superior in general. divided. The total simulation lime is usually a multip le of

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ — t2iI~~~~~
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the largest time constan t ( smallest eigenval ue) associated - . 

-with the circuit linearized at a time point. On the other
hand, for a large class of programs including NET- I • CIRCUS.
and SCEPTRE, the length of a time step h in order to retain
solution accuracy is determined by the smallest time con 

-

___________________

stant (largest eigcnvalue ) within the circuit. Physically in- ‘fl .

terpreted. this implies that if high-frequency devices are
used in a low-frequency application, the computation time -
for an adequate simulation may be excessive. To understand ‘‘  

~~ ~~~~how this problem is alleviated in programs such as TRAC ,, ,w.~_~~~~7~~~Yow. I,.~i ’ )

and cIRPAC , it is necessary to examine the numerical inte- ~~~~~~~~~~~~~~~~~~~~ 
‘ ‘

~~~~~~~
‘
~~

gration process and the associated problem of stability.
Before proceeding, however, the use of the term numerical .

integration should be clarified. Strictly speaking, integration
is associated with finding the area under some known func- Fi g. 4. Numerical integration. ci Forward E uler method.
tion. The nonlinear t ransient analysis problem is one of ob- Ib ) Improved pradictot~corrector method.
ta m ing the solution to a set of first-order nonlinear differ-
ential equations of the form (5). For the nonlinear situation, average value of the derivatives at t and z + h in (41). This
(5) can be written results in what is called the trapezoidal integration method

1(t) f(.r(t)). (38) h
x(t + h) = 1(t) + 

~ 
[1(1(t)) + f(x( t + h))] . (42)

The notation indicating the dependence of f(x(:)) on utt) -
has been dropped for convenience. Some initial condition Equation (4 1) can be used to provide an initial approxim’~-

— 1(0) = (39) lion to .s(t+h) and thus f (x (:+ h)) ,  This is made clr—...c~ if
(41) and (42) are rewritten as follows:

must be specified a priori or found as the result of a dc x ,(t + h) — hf(x,(:)) + x~(t) (43)
analysis. Because of the similarity of the formulas used in
obtaining a solution to (38) to numerical integration for- x,(c + h) — ;~t) + ~ [ f (z~’ ÷ f(x,(t ÷ Ii))]. (44)
mulas, the term has come to be loosely applied to both
numerical processes. Equations (43) and (44) constitute a predictor—corrector

- - pair, the prethetor equation (43) providing x,(t+h) as an
E.xplicit Integrati on explicit function of x,(t) and the corrector equation (44)

- - 

. Suppose at some point in time that 1(t) is approximated by providing x, (t+ h) as an explicit function of x,(tJ and
x,(t + li). This method is illustrated in Fig. 4(b). The increased

x(t + i1i) — x(c) accuracy which can result in relation to the forward Euler
h 

- (40) method is apparent as is the possibility of using more com-
plex predictor—corrector pairs [62].

I f ( 4 l )  is substituted into (38), the result can be rearranged
into the form Imp licit integra tion

Consider now an alternative approach. The appro,uma-x(t + Ii) hf(x(t)) + 1(1). (41) tion to the derivative 1(t) could just as easily have been
made at t +h . In t his case (41) becomesHere 4t +h) is defined ex plicitly in terms of 1(t). The flu-

tactical integration procedure defined by (41) is known as 1(t + h) hf(x(t + h)) + 1(r). (45)the forward Euler method (16] and is illustrated in Fig. 4(a).
If 1(t) is the exact solution to (381, it is easy to visualize the This is kno wn as the backward Euler integration formula.
gross errors which can result from choosing h too ~~gn. Since 1(c) is known, (45) represents an implicit equatton in
The similarity of the right-hand side of(4 1) to a truncated the unknown x (t+h). This equation may be solved for
Taylor series expansion about t suggests that the error in itt +h) by the Newton—Raphson method previously con-
x(t + h) will be proportional to h2 multiplied by the second sidered and the process repeated at each point in time. This
deri vative of x(z) evaluated someplace between t and t +h. procedure is called implicit numerical integration. The

The forward Euler method defined by (4 1) is so low in tra~~~oidal integration formula (42) is also an implicit
accuracy that it is seldom used. Nonetheless, it serves to integration formula.
illustrate the idea that while the exact solution to (38) must All of the methods discussed thus far are of the general
be continuous, the computed solution is at best a piecewise- form
linear approximation to the exact solution, 

I
In Fi g. 44a1 the difference between the exact solution and 

~(t + Ii ) 
~~ 

a11(t — (It) 
~- h ~ b,itt — j h) . ~46)

the computed solution suggests the plausib ility of using the o , -  - I 

-
~~~~~~ --- 
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It is convenient to introduce an alternate notation. Without difference equation. The roots of the difference equation are
loss of generality it can be assumed that the time step h is found by conversing the difference equation into an alge-
constant and thus that t=nh . The notational change is braic equation. u n  some cases the z transform can be used.)
defined such that If the order of the difference equation exceeds the order oi

1(t + h) = x((n + 1)/i) = x.~1. (47) the original differential equation, here assumed to be first
order, then all but one of the solutions to the difference

Equation (46) can now be written as (48) equation are parasitic. Stability requ~res that all parasitic
solutions have magnitudes less t han unity. Those parasitic
solutions whose magnitudes exceed unity represent growing

a,x~~1 + Ii ~ ~~~~~ (48) solution modes whic” can be excited by local truncationi_ a  I— — errors and thus dominate the correct solution.
Methods used in which b _ 1  =0 such as (41) or (43) and (44) Through a transformation, the solutions to the differ-
are termed explicit integration methods wh ile methods used eace equation can be related t~, the eigenvalues of the circuit
in which b 1 *0 such as (42) or (45) are termed implicit at each time point and the time step It. For explicit integra-
integration methods, don and Ruage—Kutta methods.5 the time step h must

inevitably be held smaller than a constant divided by the
Rwige—Kuua Integration largest elgenvalue at the present time point in order to keep
A third class2 of integration methods differs from the the parasitic solutions small. The constant involved is usu-

preceding two classes in that the interval between i and c+h ally less than ten [43]. On the other hand, for implicit mclii-
is divided into subintervals. These routines, which are ods, it is found that this requirement m a y  be relaxed by
referred to as Runge-Kutta methods (451, seek to establish a three or more orders of magnitude [63]. As brough t out
very good approximation to an average derivative in the earlier, an iterative method such as Ncwton— Raphson must
subinterval. A fourth-order Runge—Kutta procedure is be used to determine the state of the circuit at t + It. The
given by . additional computation time required to solve the nonlinear

system of equations at a time point is more than offset by
x(t + It) — 1(t) + (f ~ + 2f~ + 213 + f,J (49) the comparatively large steps in simulation time which may

be taken between points. Note that in this regard both the
where backward Euler and the trapezoidal methods are found to

be stable for all positive values of It when the eigenvaluesf ~ = 1(1(t), t) (~~~~~ ) lie in the open left half-plane. This does not mean that cir-
cults such as oscillators and multhibracors whose elgenval-

ft i(xtt~ + ~f1,t + (SOb) ties may lie in the right half-plane cannot be analyzed hut
rather that the maximum value which h may be allowed to

/3 — i(itt~+ ~~~~ + (SOn) assi’r’se must be reduced.

Truncation Error
ía — i(x~t~ + h f3, £ + (SOd) Stability of a numerical integration method implies only

that parasitic sokstions when excited will not grow with
time. Thus stability only guarantees that as tune is allowedIn addition, both higher and lower order Runge-Kutta

methods are available, to go infinity, the computed sOiution will converge to the
exact solution. At finite times the solutions may differ sig-

Stability of Nwnericai Integrat ion nificantly due to truncation error. The error term asso-
With the preceding material as background, the problem elated with the forward Euler method mentioned previously

of step-size determination with regard to stability can be is an example. In that particular case, the error is associated
considered (15). In this context, stability refers ~ 3t t~ the with It2 multiplied by the second derivative or curvature of
response of the physical circuit but rather to whether or not x(O. Thus in regions where the response is rapidly varying,
the errors generated at each step of the numerical mntegra- h may have to be chosen many times smaller than stability
lion process tend to decay (stable) or grow (unstable) as considei’Etiot%S require. The time step It can be increased
the solution progresses in time. when the response is slowly changing.

The study of stability is carried out by substituting the In general, when a higher order integration formula is
differential equation of interest into the particular form of used, the truncation error may be made proportional to
the integration formula being considered and generating a higher derivatives. Similar to a Taylor series, higher order

terms tend to zero. The order of an integration formula can
be determined in the following way. If linear differential

An altunsetive duuiSeaDon scheme is based on the number of pie-
510(is th is polnis at ethicS vsluu, of 5)1) or Sit) are required to compute eq%*Etiofls whose solutions are polynomials of finite order
Si +h) . Single-atap methods reqwje values onl~ at times greater than or are considered, the order of the polynomial of largest degree

• equal tot.  Multatup mithoda may requrr, vaju ti sit — fi, s— 2*. etc. in tita
tuniS, ItS Run 51-Ku ti* m thod deacnbed here isa  s,nØe.step method.
Ii is aho poetibls to um Run —K.uia methods in a muliissep manner ~~ Here only second or high er order methods are implied where or det
conudenng subinte,vals of width * in * total intervsl of width i.A where is defined in the subsection on truncation error. For first-order methods
I,> I .  no parasitic soiutioni SlUt.
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for which (44 ) is exact is the order of the method , Without where r~( z) is taken to be the ditterence between the node
further ju stification. It IS stated that backward Euler is first voltages t , I t l  and r .~ ), The trapezoid al Itsiegratton formula
order while trapezoidal integration is second order. 142) applied to the te it -t taiid siU~ oh l )3  )iclds

A difficulty with higher order methods is that the num ber
/tot parasitic solutions to the stability difference equauon is ~ [i~((- i _h, - i -  i~) t ) ~ =C [t lt i- l i t — t I l l —  t , i t  ,- hi) ’- t 1( L) ] .  54)

increased with the order , and the restrictions on it become -

increasingly severe. A compromise must be made between This equation can be rewritten to obtaici
using highly stable methods with larger truncation errors ,

~
.

and less stable methods with reduced truncation errors. An i, (r + h) = ~~ -‘ [r 1it + Is) — r ,)t + I i ) }
approach used by several writers [64 J— (66J is £0 vary the
order of the method as the calculation proceeds, based on
an examination of the eigenval ucs or, equivalently, the rate — 

~~ 

— i.’ t t) ]  — i~(t) .  (55)
at which the response is varying. The aim , of course, is tO This last exp ression can be represented in terms of an
use as high an order method as possible consistent with equivalent conductance 2C, h in parallel with a currentstability (64 ). source between nodes i and j of value —(2C /hi ) [ u 5 ( t )— t’~(t) ]

~VonIioear Transient Analysis Progrwns — i,( t). t3oth clemetits are readily handled in terms of nodal
With the exception of the Runge—Kutta approach , the analysis.

numerical integration formulas considered thus far and Other reactive circuit elements are handled by TRAC in a
generalized in terms oI(48) have all been linear in the sense similar manner, The modified Newton—Rapflson method
that the value ~~~~ is expressed as a linear combination of used for dc analysis and previously described is used at each
function values and derivatives, Pope (671 and Fowler and time point. While nearly as fast as CiI PAC. TL*C does not
Warten [68 ) have developed modifications of predictor— incorporate the same sort of variable step-size feature and
corrector methods in which an exponential term is included, truncation error control. Rather the user has the option of
This approach allows a larger step size to be used in com- specifying up to ten tune intervals and the mazimum step
parison with straight predictor—co rrector or Runge—Kutta size to be allowed in each tune interval. Thus, where it is
methods and ha~ been used in both scaPiae and i~ us. known that a switching transient is about to occur, the user
The approach does not allow the dramatic increase in time can force a smaller step size to be imposed. An advantage
steps which is possible with an implicit method. SCEPTRE of Titi~c is that it is readil y available , Further , it isa relatively
includes two additional integration routines, a trapezoidal small program which Consists of oniy 2000 statements .
predictor—corrector method similar to (43) and (44) and a Recently, a motithied version ot~ TRAC known as TRACAP

- - fourth order Runge—Kutta method similar to (49) and (50). Slid released as a part of the svsc~# package lisa been
CIRPAC . though not generally available outside of Bell announced. Like oic~ its dc counterpart , TRACAP is only

Telephone Laboratories, demonstrates the advantages of’ available to users of Control Data Corporation ’s remote
implicit integration methods. The program uses the second- batch service CYBERNET. A version of TIt~~C known as

order implicit integration formula [431 MThAC which handles magnetic cores has also been devel-
oped (27) .

i — — ~x,_ + ~x. ÷ ~hix,, 151) The transient portion of SCAr IS restricted to circuits in
‘which nonlinear elements are described by fixed piecewise-

which is given here without j ustification. The step size It. linear models. Ideal switches arc used to move from one
which is allowed to vary, is kept as large as possible consis- linear segment of a model to another in accordance with
ten t with riain taining a small local truncation error , the direction of current through a sensing brunch. The use
Shichman [43J reports that crnp*c typically runs up to of this portion of the program is quite cum bersome if
ten times faster than cixcus and up to twenty times faster piecewise-linear reactive elements are included. Implicit
than an earlier version of cia,,~c which used a predictor— integration is used. Jcorrector routine. As to the future. NE’r-114 a completely revised version of
The programs-considered to this point use state-variable ‘tar-I (in i’ORTRAN) is under extensive test. S

formulations where the presence of a first-order differential VI. Lirts.i.a Pot.a-Zaao ANALYSISequation is made readily apparent. The TR*c program a
which employs nodal analysis uses a trapezoidal implicit Linear pole-zero circui t analysis is considered as a rep-
integration method . The formulation can be conveniently arate topic because of the number of differen t techniques
illustrated for the case of a linear capacitor where the i—u used and the specialized problems involved relative to fre-
characteristic is given by quency-domain analysis. Natura lly . ihe poles and zeros of

the t ransfer function, once obtained, can provide the same -du~it — C — . (5~) freq uency response information as the ~Inear ac analysis
dt -programs previously considered. However, in many prob-

In integral lorni, 52) can be rewritten as ems it is the poles and zeros themselves which are of prime
interest to the circuit designer. - f

ii ‘iel. it v i  sew ver sion oi ss-r -l by A. Malmberg, now beingdevtioped .
r i~(I) dt = — u1(t) 1 (53)

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~~~~~~~ -~~--— ~_i~~~~~~~~~~ • - -~~~~ ~~~~~- ~~~~~
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Slate- Variab(e and Eigemialue Approach admittance matrix represents a polynomial ins, the complex
The CORNAP program written by Pottle has found wide- frequency variable. For single input single output , the

spread use. As mentioned previously it employs a state- transfer function is
variable formulation leading to a set of equations of the o,(s) det Y_(sl (59)
form of(3) and (4). In the complex frequency domain these 7~ (s) = 

i _ (s)  — det flsf
equations take the form

Y,,,,(s) is the minor of the element y_(s), the poles of
ax = Ax + Bu (5k) 7’,,~,(s) are the zcros of det i(s). The zeros of T_(s) ate the
y = Cx + Os. - (56b) zeros of det Y_(s). The iterative root-finding method of

Muller is applied directly to des i(s) and des Y_(s). InThe output vector y becomes Muller’s method, the determinant is initially evaluated at
y — [C(si — A) ~~ + 0].. (57) three points and modeled by a quadratic . A zero of this

quadratic is then used in place of one of the original evalua-For the single-input—single-output case, the circuit transfer tion points. This procedure is continued and a sequence offunction T(s) is given by better and better approximations to each zero of the deter-

T(s) = = C(sI — Ar ~ + 0 (58) 
minant is developed. The amount of determinantat evalua-
tion time appears excessive; however, the accuracy isis~s)
excellent. Further , it is possible to program this approach

where D is a scalar, The poles of the transfer function very effectively to reduce greatly the computation time.
(natural frequencies of the circuit) are given by the zeros of nuj. sic,’ a program of this type, is faster for large circuitsdet (a! — A). than CORNAP. more accurate requiring only single precision,

In an early version of cORNAP the recursive method of and uses significantly less core. Finally, where element
Leverner (69), also known as the Souriau-Frame algo- 

~niuesareto bevari and~~miyses i’epeated.a large ssvinpritlun (70), was used to construct the adjo int of (si—A) in time may result because previous solutions can be usedand the characteristic polynomial associated with A. to supply good initial estimates of new solutions.
Muller ’s method (71 1 was then used to find the zeros of the
polynomial. The recursive method however was particu- Laplace Expansion Approach
larly sensitive to roundoff errors which severely limited By a straightforward Laplace expansion of the deter-
accuracy. minant of the nodal admittance matrix i(s), the coeffi-

In the present version, use is made of the fact that the cleats of the characteristic polynomial can be obtained.
zeros of det (si — A), which are the zeros of the characteristic Muller’s method can then be used to solve for the zeros of
polynomial and the poles of T(s), are also the eigenvalues the polynomial. An approach of this type is used in the
of the matrix A. The QR algonthm of Francis (72 1-174) is pot.y portion of Lts~; however, it is severely limited by the
used to compute these eigenvalues. effects of roundoff error and is limited to circuits of less

The transmission zeros of a circuit transfer function 
~~ than 12 nodes.

obtained by making use of the fact that the zeros of the Larger circuits can be handled effectively with programs
transmission function of a feedback network placed around of this type if a restriction is made to active RC circuits.
an ideal amplifier of infinite gain are the poles of the closed- Several polynomial manipulations are then eliminated and
loop transfer function. The transfer function T(s) is con- accuracy and speed are improved. Program SPRAGUE R has
sidered to be placed around such an ideal amplifier. State been found to be accurate and fast for circuits up to 19
equations describing this inverse system (751 are obtained nodes.
in terms of’ the original A. S C, and 0 matrices. The esgen-
values of the inverse system are then the zeros of the original Nodal An iysis- Eigenvalue Approach
system. The eigenvalue approach based on a nodal equation

CORNAP can handle up to 32 state variables (eigenvalues) formulation can be used for circuits restricted to active RC
but does require a 64 x 64 double pr ecision matnx plus an elements. The nodal admittance matrix has the form
additional 32 x 64 double precision matrix. The core re-
quirements are thus large and it has been noted that accu- )~s) — G + aC. (60)
racy is questionable for some large circuits of the order of Eigenvalue programs of this type have been developed both
64 branches and 24 itO . at M.I.T. (30), [311 and at the Technical University of
A recent paper by Sandberg and So (761 describes an Denmark (771. The M.I.T. program requires the user to

alternate approach for obtaining transmission zeros. The enter the elements of the matrices G and C of (60) directly:
approach still makes use of the QR algorithm for finding however, a topological input routine can easily be added.
elgenvalues.

Iterasuze Technique ‘ FLeNL as a pro~~vn written and devvmped in i 969 by the IC Group.
Electronics Research L,aboricory. -Univensity ol California. BerkeleyThe ram portion of USA uses a very accurate iterative 

SPRAGUI 5 ~ ~~~~~~ am en and developed in SItS by the ICprocedure to find the natural frequencies of a circuit. A Group. Electronics Research Lahor siory. University of California.
nodal formulation is used and each term of the nodal Berkeley.-

~~ ..-—-~~~- -~~ - - - -~~~~- - - - -  -~~ -~~~~~-~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~~— .~~~
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(G+sC) to det (t~~~ 
A _31) where I is the identity matrix of bipolar dnd iicId~ fl~vt i runslalor itiode ls arc included

The method is based on the transformation of det undertaken here. However. several arttdcs on the modeling

and C and ( “ are matrices of rank less than or equal ton  in (82 )— (W5 1.
the order of Y(s). The transformation is carried out such RInsMENcEs
tha t the zeros of the original determinant are unchanged. 

~~ F. F Kuu m d i .  F K.mu.cr. E4A . ~~~~~~ ..1.wim-vms hi’ Diqual Coin-
The zeros of the alternate determinant , however , are also the piacr. ‘mew Yor k Wiley. SW,
cigenvalucs of C~’~’. The QR method is used to compute (2 1 ~ I. Herskoaitz. Ed.. Cioiipu.r,..i mm4.d bunqrwed Cu’ruii Design.

‘Sew ‘,or k . .M ctj r aw-H i ll.  i~i.t hese elgenval ucs. The transmission zeros are obtained by 
~ F F ~~~ w. ~j . Magouvu . Jr.. Ed .. & ump uirr Oriented Circua

applying thesame procedure to ~_ (s). Den#i. Englewucid Cliffs. ‘S Prent ice -Hal l. 1969.
li the ran k of C is equal to ‘i, CC can be obtained by ‘~i H F.mik . “Cumpuier pfogrnnlc or u r cuci dealgo . ’ b.7-cs,o- T’ev*nol .

New i urk i. vol 
~~~. pp ~4-~~’, Juice 900 ..applying a variation of Gaussian elimination known .is 

~~ ~ Citrisii.inicn . ‘CompuLer ~iicied design — I the mimn ’mmichine
Gauss—Jordan reduction to C and performing the same merger . ffkvti ’rmws . vol. 39 . pp I I U - 123. Scpiember 9. 966

operation on G. Gauss—Jordan reduction differs from (6( I DUtiautiafl. ‘Check design pro gra m .iwiiil .cb thiv . ’ EJm’i-,,an. Dv, .
v ol. 4 . pp. ‘6—aU. October I I  - 1900Gaussian elimihation an that a matrix is diagonalized and (71 R. H. D,ckhaw. “Comp arison ui’ three computer-nailed design pro-

then normalized to obtain the identity matnx. This requires qsams. ’ Electre- Ti ’chnoi.. voi. ‘8. pp 88-89 . J a nuary 967

elimination of elements above the diagonal as well as thOu [~( —- - “Computer-aided design -- VI  ~onip ,iiii ig the big two pro-
below, lithe rank of C is less than it, then redundant rows ~~~~~ ff/rru’owus . ccii. .10. pp .i- 9i) . February 967.

Q ( W Ii. Magnuwn . J r .  Co mp uter- .ccdnd . lesign—V iii:  picking
and columns exist in C and C and must be eliminated (77). tr an sie nt .usalyvca pr ogr ams. Eksiro,n~~. vv 4. .10. pp. 84—8 7 . Apnl

This method again requires only sufficient core to store 7. 967
the nodal admittance matrix and is very fast. However, ~ 

[10 1 0. K. Pr itchard. “A survey 01’ ir.cissccnt i.itcuit analysis programs. ’
/967 NASA Computer. .iule,i .crtv it Design Senii,su, Proc.. pp.

a relatively new method and its relative accuracy has yet si- 104.
to be determined, though it should be better than that of the ( i i i  0 F Dtmwsoii . F F . Kiio. and W 0. MIign UsUIi . J r .  “Ccimpu ter-

aided design 04 electron ic circuits—n user s v lewpo,nL ’ Pr oc. JE~ E.Laplace expansion approach. vol. 55 . pp. 946-1954 . November 1967
An extension to active RLC networks has also been de- [12 1 F. H. Brims. Jr.. “Ma chin e analysis ui network s and its applica-

scribed (78). Inductive elements are replaced by ideal icons.” I B M Developm ent Lab.. Poughkeepsie. N. V.. Tech. Rep.
TR 80.555. 962.gyrator—capacitor equivalent circuits. The effectiveness of 113 1 —, ‘Computer-aided design—tV - analyringcircu iis by the fl uiD-

this extension to the preceding method has not yet been ben,.” Ekctronics. vol. .10. pp. 118-ID), January 9. i967 .
evaluated, however. [ 1 4 1  Pr oc. IEEE i Special i ssue on Computer-Aided Design ). vol. 55.

November 1967.
Summary [15 1 D. A. Calabsit, Ccimpuser.Aimkd .Vriworlc Design, preliminary ed.

New York ; McG raw-Hi ll. 968 .
A number of techniques which are used for computing ~io~ L. P. H uelsman. Digital Cvvepwcatoiis et &iasv Circuit Theory.

the poles and zeros of circuit transfer functions have been New York; McGr aw-Hil l . 1965.

considered. Though each approach requ ires more extensive [111 Cornell Electrical Engineenng Cuni.. Biennial Cu ff. Proc . on
Computerized Electronics. August 969.

computations than are required to compute responses in (181 1’. R. Baalikow . “The A mains. new network Jeacnption. ’ Traits.
the frequency domain, the additional insight obtained from (~L Circuit Tluvrv. vol. CT4. ~~ 1 1 7 - i  IS’. September 1957

a knowledge of the poles and zeros often merits the addi- (1 9 1 N. 0. Brooks m d  H. S. Long. ‘A program b r  computing the ir an-
scent response of transistor switch ing cirvuiis—cverAe .” IBM Devel.

tional effort. In all cases, the order of the circuits which can opewni Lab .. Pougbkeepsie, N Y . Tech. Rep. TR 80.700. 1959.
be analyzed is significantly less than that which can be (20 1 F. H. Brans n . J r.. “ D.C analytin portion oi’ PeTA,—a program for

handled with the freq uency-domain program described amsalyaseg trannmsiur swit ching ~cr euIU. ” iBM Development Lab..
Pougflkecpsie. N. V . .  Tech. Rep. TR Uti .70l . 1950.

earlier. (2I~ “1620 electronic circ ui t .tnal ysis program [EcAPII Ib2O ’EE .02X 1
No mention has been made of programs using a topolog- caner ’s minimal.” IB M App ilcation Pr ogr a m File H20.iJ l 7O.I . 963

ical tree enumeration formulation. While accurate (791- 
[221 A. F. Mal mberg . F. L Cvt r nwell. .cnci F ‘S. tinter . “.rr.I network

analysis program.” Los Alamo s Seseniiflc Lab.. Los Alamo s. N .(80) and useful for sensitivity studies because of the explicit Sien .. Rep. LA-) I I S . 7090,94 vers Ion. Asgiaci 196$
form of the coefficients of the polynomials, these programs [23 1 ‘ Automated digital computer program lia r determ ining responses UI’

have been found to be coo slow to be of interest and ~~~ electronic vysiems to t r a ns ieni nutlear radi ation IP R E DIC T I .  I BM
Space Guidance Center, Oswego. N V.. IBM Fi le 64-521-5 . Julylimited to very small circuits. Similar conclusions have been 964

found to apply to programs based on flowgraph methods (24~ L 0. Mdiimsn. W . A. Maueria. sand It . H. D,ckhaut. .~CitCtct~~~
(SI). digital computer program for transi ent anal ysis o electronic circuits

— user ’s g.iide.” Boeing Co.. Seattle. Wash.. Natty Diamond Lab.

vu. ~4Q,JJ5~Øt4 Rep. AD-346.l. January 967.
[23 1 H. W . Mather n, S. R. Sedoec. and I . R . Scum . “A utomated digit al

In the preceding sections of this paper, the basic elements computer program ior determining responses of electronic circuits
to t r anvieni nuc lear radiation iseopTaai . ’ IBM Space Guidanceof computer-aided circuit analysis have been reviewed with Center . Oswego. N Y .  IBM File 66.923-611 February 967

emphasis on those techniques and routines necessary for (26 1 E. 0 Johnson. C. 1 Klet ner. L. K . Mc ” Iurr ,i y . E. L. Steele. and
the adequate simulation of four basic classes of circuits: F. A. Vasicitl o. ‘Tr an cient radicii io,i a fl aIyccs by compu ter proitram
linear dc and ac. nonlinear dc. nonlinear transient , and rind . ’ Auionetics Div . North Americ an Rockwell Corp . A nti-

heim. C mi i i . .  Tech. Rep issued by Hurr y Diamond Labs,. June 1 96$ .
linear pole zero. One topic not considered but very impor- :11 0. Nitzan and J K . Herndon . . .,~ I cay — a comout er progr am for
tant is the development of devtce models suitable for analysis ,n urcui ts including ma gn et ic .0ye5 . Sianiord Research

I n v i , i uie. ~ienl o Park , C alul ..  SRi Proj eci s44)i’~ Rep 0. June 1969computer-aided circuit analysis. An overview of modeling 
~~ “ maui cc ’ , vu. . system oi circ uii ~n aIscc ,  pro gr ams. ’ Au toneiucs Div .would, in itself, require a full paper and thus cannot be North Amer ica n R ockw el l  Corp . 909
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An Optimal Orderin g of Electronic Circuit
Equations for a Sparse Matrix Solution

ROBERT D. BERRY

Abst,aci—$riaes. matrix ererag. end aoivdon tscflmau.s era used analysis is used, the resulting admittance matrix of the
.ateiiaiveiy in solving vary lore. evasion of h undreds of linear snue- circuit is virtually always sparse ; that is, less than $0 percent
(lint which ~~~~ in this sn.lyala of multlgly interoom.eet.d pfiyeic.l
systeme. N... u nique. linus a/ta lies, .v.riook.d ~~ ~n. ~~~~~~ of the matrix elements are nonzero.
of relatively small electric networks son th ough sneEr usa can result Many authors have w ritten on the subject of solutions of
ii vary signIfIcant Imefeusm.nts in comouw stereo, requirements
and sa.eueloe time,, ma Urn. sa,iflsa I. ~~~~~~~~~ notiea,~~. 

_ ~~~~ SYS1CmS of equations (II-’ [3 ~. Results have indicated
many solutions tor tin, earn. ciroWi witsi etnorsqt pavsm .t.s ’ valsins that time savings of orders of magnitude can be achieved

rscuir.d. for solution of large networks. This paper describes a solu-
A Oa,ticular sisme m.*rla t.rae.. v.srdaelsQ. oW 5eliitlol, todts don algorithm which was specifically developed for nodalrEq.. Is descroWl, A nods rnsen*eflng aiqus’itlim wIUch is sq.mfl-

tally directed at Omsarving tin, mats. auucsvrs of nodal admittsfno. analysis of electric circuits, The algorithm takes advantage
matrices during tile aelutlesi liv Gaussian sllmlestlosi 4. ds.cvlbed lii of the sparse n*ture of typical network admittance matnces
dated, Conugeatae now eli foe this ~~~~~~ arlii. see included .10111 to obtain the voltage solution vector by Gaussian ekznsna-mitts soecitho ciriuit esamples which cancer. tins rsintlws camouta’
tiofiel effort required for essr.. asletic. vemue full melts .01.1105 , tion, Storage is allocated for only nonzero term s of the

admittance matrix and Gaussian elimination proceeds
I. IN’I’800UCT1ON through only these terms, thereby allowing efficient analysis

‘~‘e AT ANY circuit analysis programs that are in wide- of much larger circuits than was previously possible.
spread use today are limited by the necessary A R*TRA N my program utilizing the sparse storage and
storage requirements of the admittance or liii- solution algoflthms has been wntten and is currently in use

pedance matrix and are inefficient in obtaining the solution in a linear ac analysis program. It can handle (00 node
to the set of equations describing the network. If nodal circuits in less than 30 000 words of storage on the campus

CDC 6400 computer. ’ The 29-node circuit shown in Appen-
Manuscript r.csived june 17 . 970; revised August 10. 1970.
The authot i wish lbs Naval Weapons Center , China Lake, Calif. This program was developed by gr~duaW students in the Deportment

93555, of Engisns.nng, University of California. Berkeley. dunng l ’569-l970.

LIii.,. 
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dix ll required j ust 3.5 s toobta ifl7l complete so(ut ionsa ta The pointer system for these last two sections cakes ad-
like number of freq uency poin ts. The tune includes the re- vantage of the symmetric structure , so that one set of point.
loading of the admittance matrix for each of the 71 fre- era serves both of the triangular portions.
quency points. The pointers are set up in two stages. In the first stage, the
The paper is divided into three sections- and has Appen- nonzero structure of the nodal admittance matnx is re-

discs. Section II describes the system of pointers developed corded by the pointer system as the individual network dc-
for rapid access of the nonzero elements of any network. rnents and their respective node connections are transferred
Section 111 describes the decomposition and optimum re- from data cards to the program. Based upon this structure.
num bering scheme to preserve the sparse matrix structure a node renumbering is effected which attempts to minimize
during Gaussian elimination (4J on the admittance matrix, the num ber of operations required for triangular decompo-
Section IV describes the decomposition and solution algo- sition of Y by Gaussian elimination. After completing the
rithms which operate only upon the nonzero terms of the renumbering, the pointer system for the lower and upper
matrix. Appendix I includes the flow charts for the ren uni - triangular portion of Y l.a changed to correspond to the new
bering scheme. Appendix II illustrates two circuit examples. node numbers. Storage of admittance terms in the second

and third sections of the columnar array A is to be basedII. ADMrT1’ANCE MATatx STORAGE upon the renumbered system, while the diagonal section ~The admittance matrix Y for a typical ten-node electric to be arranged according to the ori ginal node numbers .
circuit contains fewer than 50-percent nonzero terms. As the Only the pointers associated with the upper triangular array
number of circuit nodes increases the percent age of non- of the renumbered system of equations are retained. Num-
zero terms drops, so that at (00 nodes typical circuits con- hers of the lower triangular portion can be located by using
cain 5-percent nonzero terms. For efficient utilization Of symmetry and the upper pointers.
high-speed memory and to allow for practs~al solution of - The pointers consist of two integer arrays. The fIrst array
very large circuits, storage is allocated for only the flO5lzei’O cua contains N integer numbers where N is the number of
terms of the admittance matrix. These terms are collapsed circuit nodes. The number stored in position k of this array 

-Into the columnar array A. An efficient set of pointers for represents the starting location in the second pointer array
locating these terms in the array is an absolute necessity. isic of terms associated with row k of the admittance matrix.
The matrix is symmetric except for terms associated with In stage one the second array includes the column location

solid-state device equivalent circuits, For the most part, of all nonzero off-diagonal terms in each row of the original
these terms are structurally symmetric but numerically non- Ymatrix. In stage two the positions in the first pointer array
symmetric. Pointers locate nonzero terms and therefore can and all of the numbers of the second pointer array corre-
take advantage of structural symmetry, even though nu- spend to the new node numbers. Every nonzero term that
menc symmetry does not exist. will occur in the final decomposed form of the upper in-
The columnar array A of nonzero terms is organized into angular matrix is identified by this final pointer set. At this

the three sections shown in the following table , stage the position in the second pointer array directly corre-
sponds to the position in the collapsed admittance array of

The 5ns swsson o(ths 4 stray is reserved 4 ( l)— y ,1
for iii, dla1onal tennis of the adessitance A(2)— y~5 the term identified. As an example to illustrate the pointer
mama (100 allowed). Pns,sios, k contains A( 3)—y ~~ system, consider an admittance matrix with the following
the ~~ ilissosal term : ths,sfor~. so pattern of nonzero terms before node renumbering, where
pointer sycan a nececasy. ‘ the jr1, are the nonzero terms :

- 1y11 0 Yt 3 0 Y us l
- lo Y 22 Y23 0 I

The sesond weison of the A ansy is re- .4(100) I Y i i  Yia Y33 (‘ii 0
ierved for ths nonnsro off-diagonal terini A(l0I) ’.y , ,  I 0 Y42 y~ y~ 0
of the upper triangular portion o( the ad- A ( i0 2)— y 11
nittance mains (400 total allowed). - 1, Yii  0 0 0 y~~j
These terms are stored by rows, -

- The pointer arrays before node renumbering would con-
- A(nn)—Y._~. Lain the following num bers.

Row L~~~Ioi’ Column Identifier Term identified
The third hectsosi of the A array is re- .4(5001
ierved for the nonzero off.disgossal terms A1501)— y 11 IuWl)—l tucll) o3 v 3
o( the loweririangulsr portion ofthe ad’ •4(5’°2~~~ YiI 1u112)—3 1102) .5
mitIasum maim (400 total eIIOwcdl. - iu* 13)—5 uc*3) .-3
These terms ate stored by columns. - iua l4)—t iuO4 ) — 4

- Vail) ’. 0 iuc(5) .1
A( m+400)—y,,,, 1 u*16 ) — I l  tuc(6) — 2

- iuc 7l 4 i ,,
- tuc(S) .2
- tucl9l ‘.3

.4(900) tuc( l0) I

-

~

- . - . -

~

-

~ 
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After node renumbering the admittance matrix might The matrix U is an upper triangular maim:
assume the following form:

Ytt 0 0 Yt* Yi~ ~~i i  ~~t 2  ~~i,  
u 14

o Yzz Y23 Yz~ 
0 0 U 22 t423 ~ 24

0 ~33 .1133 ~~~~ 
0 . 0 0 1433 1134

0 0 0 ~~Yes Y*i .1143 Ye.. ~~
Yet 0 0 Ye* )‘~~ A full matrix decomposition will be illustrated to show the

The numbers within the pointer arrays would be the 101. steps involved in .~ triangular decomposition by Gaussian
lowing with the admittance terms in the A array as shown elimination, The product of the L and U matrices shown is
on the right. the following:

L U is y

1 0 0 0 U I I  ~~I 2  ~~i3  ~~I4 Y t i  Ytz Yii Yi*

~2t  ~ 0 0 0 
~22 ~~~~ ~24 _ Y~t Y22 Y23 Y24

131 132 1 0 -0 0 1433 1434 Yet  Y32 Y3 3 Y34 -

141 142 143 1 0 0 0 u~ Y*j Y42 Y~i h-a

IUa4l) ’. I iu c(I)— 4 .4 ( iOI )— y~5 
By examination

iua(2)= 3 iuc(2)..’ S .4( 102)—y 15
iUa(3)—5 uc(3)—3 .4(103) ’.y33 U s i  Yti
n 1a14)—ó tuc(4).4 .4(i04) — ).~, U isiUi(5)’.7 ucts)—4 A(l05)—y, t Z 12

iuc(6)—S A(I06)—y ~~ 145 3 Y 13

~~ 
- -

S is al 
By multiplying the rows of L by the first column of U, we

- 
. sma a ItIc(ño( the ao~~~o lormio. o~thssoe otam A(5o3) y,~ 

see that
uema id 1 ~~’ in row (cci- stored Ui A(I00 +j) sad the 4(504)—y.~i )  4 of the admittsace raw Iocetiago(thsiicn o A(50S)—y.~ t 21 U i t  ~ Yzi or is

- ., 
. 

- iain ,ueed in A(500+j) . 4(506)-,,.,
~3i U ts  Y3t or 13j  y3 1/U 11

hi or 141 is Y.s11t4 11 .
III, D,coaopostrsoei Aim Noo€ Rm4USIISRING

The ant  step toward obtaining the soluttosi vector sin the The remainin u and l values in terms of y and pre-
set of equations Yxis b involves triangular decomposition - - 

d alol’ Y, the symmetrically structured admittance matrix, by ~~ Y erm e.~ an ~~ v ties are

Gaussian elimination. This technique involves the breaking
down o(Y intoaproduct o(two unique macnces,Land l z i U tz + 1 422 Y32 or ~ 22 is Y22 12 I ~~ i2

U, where Yis LU, The matrix L is lower triangular in form 133 1453 + U 33 = Y33 or 
~~23 Y23 — ‘2 t ~~t3

wish lasth e value o(every diagonal elemeat, 121 14t4 + 1434 is y34 or 4 24 ~ Y24 — 1 21 U 14

1 0 0 0 Y32 — ‘31~~12
3i~ t2 + 1321422 is y32 or 132

21 0 0 1433

‘31 ‘32 1 0 .v42. —
1 1 1 4i~~l2 + 431433 is y42 or 42

45 42 42 U 33

13~
uu + 1321423 + U33 y33 or I4~~ ,1133 — 13 5 1413 — 132 1423

‘3t~~i4 ‘~‘ ‘32~~24 + 1434 — y,~ or 54 34 is Y34 — t 3 i U t 4 132 1424
142 1423

41 14t 3  + 42~~23 + 43 1433 is y43 or ~ 
is

1433

141014 + 142024 + 153024 + u~ — y45 or u~ — y45 — 14~u~ — 1421424 — 143034.

~ 
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The first row of U and the first column of L are obtained The decomposition proceeds by row—co lumn steps until
quite easily. In programming it is very desirable to replace all the elements of U and L are determined and replace the
the values of the Yii with the values of either the UIj or the ~ elements of Y in storage. In general, at the ith row—column
as they are determined. Also, as each l~ is determined the step, the ith row values of U are determined from the eq ua-
remaining values of y4 in the ith row for k> I are chan ged tion
by subtracting from them the prod uct ~~~~ After this
first row and first column step of the decomposition, the Uii = ~~ for all j  ~ i

values in the Y storage locations will be the following: and the ith column values of L are determined from the
equation

f 14i t  ~~t 2  145 3  U 54~ yii~ lt
121 iii) ~,ui ~ is 1, — .JL_ , for all ~~~ i.

[1 31

~ ~ I This technique is associated with Doolittle (41.
~~ -V43 ‘&~ ~~ The sparse matrix decomposition uses the Doolittle

where method but only carries out the operations that result in a
finite change in an element value stored in the Y array.

YW Y~~ 
— l35~13 ~ 22 A finite change in a stored value occurs under just two cir-

= y~3 — 1~~u~ is cumstances. The first arises when solving for the 1,, term
- 

Y24 — ‘21 U 14 is 14 
just mentioned and occurs whenever the y~

’ 5 ’  term is
nonzero. (The diagonal term ~~ is always finite in the ad-

— ‘3 1~~I 2  mittance matrix), The second circumstance arises j ust after
= — 135 5453 the determination of a finite 1~ term when all of the y~

Y’3’2 Y34 — 3i~~14 
terms for k>i are changed to y~ by the relationship

Y~~~~Y42 ’’14,Ui2 - Y~~~~~Y’is~~ ’ 1 j ~11a, -

Y~d Y43 — 145 1413 Once 1,, is determined to be nonzero , a change between
y~ .1~44 145 14 4 y~ and y%~

’ will occur only when u~1, is also nonzero. A
node renumbering scheme is effected which attempts to

Note that the values yW, YW. and y
~J 

are equal to 14 organize the nonzero terms of the original admittance

~ 23, and ~~ respectively. 133 and 142 are obtained from matrix in such a fashion as to cause the second circumstance

i’W and y~ , respectively, by simply dividing by the ~~~ 
to arise only when y~ç “ is already nonzero. Otherwise an
additional nonzero entry will occur in the matrix and will - -element u~~: increase the total computational effort required for the

- decomposition.- - 132
~ 22 There are three basic parts to the renumbering algorithm.

All parts search the nonzero structure recorded by the stage
142 — — .  one pointer system described previously. The algorithm

takes advantage of structural symmetry whenever possible- 
to speed up the renumbering process. An array NUM0FV isJust as in the first row—column decomposition step, alter set up which records the total number of nonzero off-

each !,~ is obtained the remaining values of U~ in the ith diagonal terms associated with each node. NuMon ’(k)
row for k >2 are changed by subtracting the product li2 1425 equais the total number of these terms that would appear infro m them. The values now found in the Y storage array the Y array in row k.are the following: Part I of the algorithm searches this array once to see if

~~ ~~~ 
U 13 1414} 

there are any nodes with only one nonzero off-diagonal

~~ 
term. If one is found, it is numbered I and the array NUMOFF

24 is altered. The off-diagonal term of this new node I will be
[1

3k 132 YW Y~?2 I located in some column ). Because of the symmetric struc-
‘4~i 

1 ~~ ,Lz) I
- 

42 43 45~~ ture. there will also be an off-diagonal term in row j,
column 1. During the course of the decomposition, thesewhere two mentioned off-diagonal terms will become t1~~ and 1,,,

— 132u23 respectively. The only yfl’ term that will be altered during
— 1335434 the first row—column step of the decomposition will be the

Yjj term, which wi ll change to
— 

is y~ —

~~ 
— (42 024. — Yjj  —

____________________ - -
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All of the other 14
~k and ~ fo rk>  I terms are zero. next and no chan ge in the structure of the Y array would

- Since all diagonal terms, i.e.. all i’,,, are always non- occur during the decomposition. The j and k row would
iero to start with , there will be no additional nonzero terms have I removed from the effective number of off-diagonal
created at this step of the decomposition. In searching for terms , and if this caused the edective number to drop to I in
a node to number 2, we can remove fro m consideration either row j  or k. then that particular row would be re-
both of the nonzero terms 

~~~ 
and 1.~. Neither of t hese terms numbered next. -

will be used again during the course of the decomposition. As each node is checked , an array 1i1L1 is set up which re-
To simulate their removal the array Mu MO FF is changed by cords the num ber of new positions that would become non-
red ucing the recorded number of off-diagonal terms associ- zero if that particular node were renumbered next.
ated with node) by I . If. by this reduction of I . the effective Alter checking all of the nonrenumbered nodes tbr those
number of off-diagonal terms associated with node j is now which can be decomposed Without causing an increase in
one or fewer, then ttsejth node will be numbered 2 and the the nonzero terms , a check is made to see if any were re-
process repeated. A single sweep through the array NLJ MOFF numbered before the last entry into the Part II algonthm.
will rapidly pick off every node that has only one or fewer If any nodes were renum bered, the algorithm is repeated
effective off-diagonal terms. Decomposition of these single because now the effective number of nonzero off-diagonal

- off-diagonal term equations will cause no new nonzero terms is different from the time Part II was first entered. It is
terms in the matrix, still possible that additional nodes can be renumbered that
A typical example showing the working array after the will not increa se the nonzero terms dunng decomposition.

first row—column decomposition step is shown in the follow- When a complete Part 11 search is made without finding any
ing, R.ow one has just one nonzero off-diagonal term. The nodes for renumbering, then Part 111 is entered. AL this
array NUMOVF conta ins the effective number of nonzero off- point , every remaining node would cause a change in the
diagonal terms shown on the right after (is subtracted from nonzero structure if it were to be renumbered next. The
row 5: array situ , indicates how many new nonzero terms would

be created during the decomposition if the node in question
154,, 0 0 0 ~~ 0 1 SUM0FF(1) is I were to be renumbered next.
I 0 Y~ 0 y24 0 Y24 I NUMOFI42) is 2 Part Ill finds the node that would cause the fewest new
o 0 ,i33 0 

~~~~ 
0 r4uM0FF(3) I nonzero terms by searching the array ~~~~ In case more

o Y43 0 
~~ 

3145 o I NuM0FF)4) = than one node would cause the same fewest new nonzero

l ,~ o )l~~~ 3134 ~ o I Nuw)FF(5) — 2 terms, the node among these with the most number of
effective nonzero off-diagonal terms recorded in NtJMOFF isI. 0 ~~ 0 0 0 y64j MUM0FV(6) is I
of new nonzero terms created during the decomposition

Part IL of the algorithm searches the remaining nodes at this step is still a minimum, but also the number of terms
(those not renumbered in Part I) for nodes which can be removed from the nonrenumbered portion is the largest
decomposed without increasing the number of nonzero possible , subject to the first constraint. By this choice the
terms. Suppose rn—I nodes were renumbered by the Part I sum of the numbers in the array NUMOFF is minimized .
search and suppose node I has associated with it two non- After the choice is made and a node renum bered , the
zero off-diagonal terms (Nu1iOF$i)—2) in the portion of new nonzero topology caused by decomposition of that
the matrix that has not been renumbered yet. Let these n~~ l equation is recorded in the system of pointers . The
terms be YiJ and Y~- Should we choose to renumber this array NUMOFF is kept up to date by adding I to the row in
node as node in. the decomposed terms would become which each new nonzero term caused by the decomp osition
~~~ 

and si,~. By symmetry there would also baa calculation of that node appears . Also, as in all prior renumbering in
of the finite terms 1~ and 4... Two terms in row j and two Part and Part II . the array NUM0FF is altered by subtracting
terms in row k would be altered by the decomposition. i from the appropriate rows containing the nonzero off-
These terms are diagonal terms of the node just renumbered. If . by thi s sub-

is y~7~~’ — 1~ a,,, t ractson . an effect ive nu mberof l od’-diagonal termsappears
pt p-is — 

in any of the nonrenumbered rows, that row is immediately
renumbered next. After the bookkeeping operations have

— ‘i,,~4,, been completed for renum benng of a row from Part III ._ 
— i,_u,,~. Part II is entered at the beginning. The search proceeds from

this point as if ii were the first entry into II. Fi g. ( illustrates
The first and fourth terms are on the diagonal and are al- the matrix Y at an intermediate ‘.sage of renumbering. The

ready nonzero. The second and third terms are off-diagonal .1’ represent the locations of all nonzero terms of an ad-
but are in symmetric locations. Therefore , only one of these mittanc e mat nx for a 23-node circuit. The numbers around
terms need be checked to see if it is nonzero. If y~,r should the immediate borders of the matrix represent t h e  -node
happen to be nonzero, then the node would be renumbered numbers supplied by the designer. The order in which the
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‘Tact

Fig. I. Fig. 2. Past I of the node renumbenng aigonthns.

numbers appear is the arrangement for decomposition at Once all the values of L and U are determined by the
an intermediate stage of the ren umbering. The numbers at decomposition, the process of forward and back substitu.
the far right are the current numbers in the array NUMOF F. t ion is employed to obtain the solution vector x. The steps
Note that in the first ten rows these numbers indicate the involved are the following:
number of nonzero off-diagonal terms in the upper tn- Yx ban gular portion of the array. The renumbering is complete
to this tenth row which lies ju st above the dashed horizontal LU is Y
line. The two dashed lines outline a square lower right corner L.a = b, ~~~ ~ L ’ b
array which is referred to as the nonrenumbered portion o~’ Ux a i x U’ ‘L ~bthe matrix. The extreme right-hand numbers opposite the ‘

rows in this smaller array indicate the number of nonzero The C” and U ’  macrices are never really determined in
off-diagonal terms that lie within this lower right corner solving for the a or a vectors just mentioned. Forward
array. If any nonrenunsbered node was renumbered I I . it substitution is used to find a and back subststution is used
would have this number of terms in the upper triangular to determine x. A slight modificat ion to the standard
matrix U. forward substitution technique is convenient because the

-~ - : For the tenth row , node 3 was selected instead of node 10 nonzero terms of the L matrix are stored by column. The
because either one would cause two new nonzero terms dur- modified forward substitution process proceeds by columns
ing decomposition. but node 3 had more off-diagonal terms instead of by rows and results in the same number of opera-
in the nonrenumb ered portion. The two zeros at the inter- tions as the row approach. Elements of the : vector replace
sections of nodes 8 and 5 indicate the two locations for elements of the b vector as they are determined. The follow-
these new nonzero terms. ing is an example of the modified forward substitution tech-

After all of the nodes are renumbered into the order in nique for a 4  x 4 fu lL matrix :
which the nodal equations will appear in the admittance r
matrix , the stage one pointers are reorganized. In the reor- - 

0 0 0 :~ b 1
gsnization all of the pointers are changed to correspond to ~:i 

I 0 0 :~ b 2
the new system ofequat ion numbers aodinc lude all nonzero 135 ‘32 1 0 :~ b3
terms that will ultimately be f ound in the upper triangular 145 ‘42 143 1 :~ b4
matrix U. Terms of the lower triangular matrix 1. are located
by symmetry. The first column step is

LV. SPA RSE MATRIX Soiursos b1

The node voltage vector can now be obtained by direct b2 —

solution using Gaussian elimination with the sparse matrix is —

technique. Because c~ the renumbering, the nonzero terms — 1, — -
of the admittance matrix are located in the columnar array ‘ ‘ ‘~~‘

in the order in which decomposition will proceed , by rows The second column step is
in the upper triangular portion and by columns in the lower. ..
This stor age arrangem ent was selected to allow for very
efficient decomposition process ing and completely ehm- = :13 ( 52 2 2

m ates the need for any further search for nonzero terms. is ~~“ — ~~~~

~
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Fig, 3. P~tt It of the nod. renumbeflng slgoflthin.

The third column step is Just as in the sparse matrix decomposition, only those
operations that cause a finite change in a stored value in the

as is a’321 b vector are carried out.
is a’12’ — 143 z 3. The back substitution used to determine the final solution

vector x is a standard technique proceeding from the final
The fourth column step is ith row equation backward to the first row. The technique

for a 4 * 4 lull matrix example is illustrated as:
24 4 - 1153 U 53 ~~~ x~

0 U~~ U23 U,4 x2
In general, 0 0 U 33 u 34 x~

~ 2~~
- ~ — ~~ 0 I) 0 u4.1 X 4 .~
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Fig. 5. Subroutine renumber called irom Part l and Part 11 01
Fig. 4 Part In of the node renumhenng algor ithm. the node renumbering ilgorithm

Proceedingbackward from the fourt h equation we get th e - V SIT MM A RY
following answers: The t ime savings that hove resulted from using the de-

scathed sparse matrix techniques in lieu of a standard full
is matrix alFnnthm is very si~niflcant for obtainin g a ftc-

U 44 quency response to even relativel y small circuits in the IS-

~ 
:~ — u ,,1x4 to 30-n odc categ ory The str uct ur e of non,ero terms and

U 33 the node r enumber ing is determined just onec for ans gnen
— ii r — u.4 c circuit. The most sign i ficant rime savings result when m any

x3 is solutions for either d ifferent circuit parameter values or
U22 dilfer ent excitation S frequencies are required . An idcal

~ • :~ — u,2 x 2 — u 1 1 x 3 — application for the sparse matrix and renumbering algo-
- rithm arises in automated network design in which a search

for optimum circuit parameter values is carried out in the
In general frequency domain (5 j .

‘I The standard triangular decompos ition 1w Gau ssian
— u,~x,, eliminat ion reauires on the order of ,~3 3 multipl icat ion-

I - addition operations. The sparse matrix decomposition re-
U 14 qu ires some number prop ortional to n operations hut is

ver y dependent upon the nonzero structure of a given cir-
As in all previous sparse matrix modifications to ihc cuit Empirical results based upon the anal ysis of tvp icul 20-

- standard techni ques, only th ose mult ip l icat ion and - i dc l i -  to ~fl-node integra ted circuit amplifier s has indicated this
tion operations involving nonzero quant ities are carried numb er saries from ‘Irt In l fui. hut other circuit examples
out. The elements of .c replace the elements of: in -~tnr1iee that would fall both a l’u-*ve and below this range could he
as they are determined, found.

~~~~~~ _ 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. 7 Easapl. I. (al The iarcuit. I b i The admietanux matrix using the
i’ s.. no uncucted node numbers. (ci The admittao*x matrix using the circled

node numbers dctensuned by the renumbering algoridim.
ye.

NITUS?ft APPeNDIX I
Fig. 6. SubeouUas inuert tailed From PalS 1104 the node The node renumbering algorithm is broken down into

renumberIng algorithm . the three parts described in Sect ion III. Flow charts for
- - - - these three parts are given in Figs. 2—I . The two subroutinesThe forward-substitution and back-substitution ooera- -

- - 
- called from these flow charts are shown in Figs. 5 and 6.tions are also proportional to n and dependent upon non- The computer variables are defined as follows :zero structure, Nearly one half of the total solution effort

is expended in these last two algorithms. Additional time LOAD equals the next node number to be assigned
savings of up to a factor of 2 could be achieved under some during renum bering; starts at I and pro-
circumstances, if the node renumbering also takes into ac- ceeds sequentia lly to .V.
count the sparse solution efficiency of the forward subeti- N number of nodes in the circuit excluding the
tution and back substitution. Many times in a frequency reference node.
response only one or two node voltages are desired. If these cowaa(j ) array containing the original node num bers
nodes are numbered last, the back substitu tion could be in the order in which decomposition will
stopped in its firs t stages after these desired voltages are proceed.
determined . Normally only one excitation source exists in Nooa(J) array complementary to IoRIseR(j ). i.e. . if
the circuit. The b vector (current vector) consists of nearly ioan€Rlj) is k , Nooa(k) s.f .
all zero values. If the nodes associated with the nonzero /a ii. s o array indicating the starting location of
values were to be numbered next to last, the forward sub- terms in luc lk) associated with row j of the
stitution could begin near the right-hand side of the L matrix.
matrix and need only proceed through the final few nodes. I CCI / array indicating the column location of the
Unfortunately, by arbitrarily numbe ring certain nodes term stored in Al 100 --j) or the row location
last, the decomposition efficiency will most likely suffer , of the term stored in A(500 -s-j).
However , it has been shown experimentally that the total NuMocP(J) array indicating the effective number of
solution effort and the computer time will be reduced by nonzero off-diagonal terms left in row j  at
one third to one half in most cases when this scheme is em- any simulated stage of the decomp osition:
ployed. the j is the onginal node number. 

*.- ..-~~ ~~~~~~~~~~~~ nil4
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i b, CI
Fi g. 2 Example a) The cir cuit . h i The : i I (ml t t . t f l c , ’ 0,0105 u~t ne the uncircied node numherx IC) The jdmuitance

main . uxut e th e circled node nnml’ei’s ,Iete r mined 1w he renumi.ennp ai8onthm.

1FILL(j ) arra y indicating the number cii’ new nil n , . r t~ sparse mama algori ihm . and the sparse matrix algonthm
terms that would be created in the L or ( with the node renumbering algonthm. In both circuits the
matrix if currently numbered row t was ~ci he reference node s numbered zero and all terms In the ad-
renumbered as row number t o~n. mitt ance matrix associated with the zero node are dropped.

INSERTS flag indicating whether or not insertion in to  The re sulting nons ingular mat rix is partitioned as
the pointer arrays of a potential new non . r . -t r i r
zero term caused by decomp’sitlon ~Pin~iId }‘~ I’.~. V0 ]  i~
be earned out ; if it equals I then the incer - Lv., Y’.J LV ,] L’. —

tion is done , otherwi se I t ~N not. 
hall others dum my integer variables and integer arra ys w crc

Y,, square arra y of nodal adm iit anc c terms cot-
APPENDIX II responding to nodes of unknown volta g e :

Figs. ‘7 and 8 are two circuit examples that  comr ’arc the Y,, square array of nodal admittance terms ~~tr-
computational effort required for triangular decomposition responding to nodes of ItrOunded Inclcpen-
by Gaussian elimination usin g a full m at r is a l gori th m. he dent vol ta g e sources :
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}~ and Y~ intersections of the above two sets ; renumbering before sparse decomposition, these operations
v~ and 15 unknown voltage and independent current are reduced to 15 divisions, 25 multiplications, and 25 V

source vector associated with the Y_ nodes; additions.
u, and I, voltage source and current source vector In example 2. Fig. 8, the full matrix decomposition re- 

V

associat ed with the Y~ nodes; quires 378 divisions , 6930 multiplications , and 6930 addi- - -I

i~ unknown current vector of currents through tions. This compares with 134 divisions. 746 multiplica-
the grounded independent voltage source. tions, and 746 additions for sparse decomposition without

- - renumbering and 63 divisions, 169 muLtiplications, and 169 I -The node voltage vector v5 is to be determined by Gaus- . - . - -

sian elimination on the set of equations additions with renum bering before sparse decomposition.
REFERENCes

= — Y,.O~ (II E. C. Ogbuobäi. W . P. Tinn ey. and i. W . Walker. “Sp.raity-direc*ed
dacompoa.uon for Gauusian elimination on injuricla,” 1969 Power

It is the Y matrix that is shown in the two examples. 1~ duaUY Computer Applicauona Cool. pp. 215-225.

Figs3 7 and 8. The X indicate the nonzero terms of Y_ 121 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
before decomposition. The zeros indicate terms which are IEEE.. vol. 55. pp. 1801-1601. November 967.

zero in Y_ but change to finite values during the deconiposi- (31 F Gu~*avaon. W . Liniger. and It. Willoughby. “Symbolic generation

ion into LU form. In example 1. Fig. 7. the standard full.
matrix decomposition requires 55 divisions, 385 multip li- 141 L Pos. An ln:roii~ctdei to Numerical Linear Algebr a. New York :

cations, and 385 additions. By using the sparse matrix Qiford. 1965. pp. 60-65. 99-102.

technique without renumbering, the decomposition requires (SI

19 divisions, 41 multiplacanons, and 41 additions. With 330-337, August 1969.
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¶~~PA RTUEN T CF ELFCT RICAL ENGINEER ING

.1 P F R~ R FT I Jt1Jt~ 72
Q n CIJTTON

pqO~~R A ~ SP ICE  ~AS 1)EVPL. O P€0 A T  THE UMIVERS (1’Y OF CA L IFCP NIA , BFPKELEY .
Tl~t~ GFNF RAL CAPARI L LTIF S OF SPICE ApE O~ SCR (BED BELO W AN D (N TI- F AuGUST 1971
ISSUF OF TH~ IE IE  JCU’~NA L OF SOL ID’ ST A T E CIRCU ITS. SPICE IS E Q U IV A L E N T  TO
4 T~-fP(~ GEN E~ 4T! 0N v~ R 5 ~ QN CF ~RDGRAM CANCF R (DESC R IBED IN TIi~ JOUR N AL ART ICLE ) .

UN1~IE PSL T Y OF CALI FCR P ’ I.4
COL L E G E  OF FNGIN EER NG

— D E PA R T M E N T  CF ELEC TRI CA L EN C -IN E ER ING
AND COMPUT ER SCIENCES

I. ~ ~A GFL B M Ay 72
i~ C PFoE~~S’~~’

US ERS GU IDE FOR SP ICE 1

SP ICF IS A G~ NER ~ L PU RPO SE C I R C U I T  S IMULAT I C H PPCG RAM FOR NON L INEA R DC ,

~4CNL !N~~AR T R A N SIENT ,  A¼fl L I N E A R  AC ANALYS I S. C I R C U I T S  MAY C CNIAIN RESISTORS,
CA °A C ITCR S , 1 t ~JDU C TU RS , IM O F P FND E NT VOL TA GE AND C U R R F N T  SOURCE S. V O LTA G E
CFP~NO FN T C U R R E N T  SOURCE S. AN r THE FOUR MOST COMMC ~ SE MICONC u cTOR DEVICES:
RJTS. D IOD ES , JFE T S AN D MO SFETS .

SPIC e HAS BU I LT —I N MO DE LS FCR THE SEMICUNDUCT OP. DEV ICES , A ND  THE USER
SP € C I F I F S  ONLY THE P EPT I NE NT  MOD EL PAR AME TER V A LUES. TWO MODELS ARE A V A I L A B L E
F17 R T HE 3JT . THE SIMPLER MODEL IS 945CC ON THE EBE RS— ~ OLL MO D EL AN D INCLUDES
C HA R GE STORAG E EFFECTS , OHM IC RESISTANC E S , AND A CUR R ENT OFPFNC ~ N T OUT P U TV . C O M C L C T AN C F . 6 MOD EL BAS ED CM THE INTE GRA L CHA RGE MODEL OF GUMMEI. 4It~ V3 POOH IS
AL SO A V A ILA B L E FOR PROB LE MS W I-ICH RE QUIRE A M ORE SOPHIST ICATED P J T MODE L. TH~~
0100€ M O D E l. CAN R E U SED FOP EIT HER JUNCTION D IODES DR SHOTTKY SAPP IER DIODES.
THE J P C y  A ND MOS FET NDOELS A R E ROTH BA S ED ON THE PET MODEL OF SHIC I-MAN AND
HOCC ES.

PRCGRAP ’ L I M T T A T I C N S

2CC M OCE S , INCLU D I NC , IN T E R N A L  OEV ICF NODES. EACH NONZ ERO CHM(C RES I STAN C E
IN A D EV ICE W I L L  GENERAT E AN IN T E RNAL NCIOF . FOR E X A M P L E ,  A C I R C U I T
WITH 35 USER SPECIFIED NODE S AN O 10 BJT S W I T H  NCNZFRO 945 F AN D
COLLECTOR RESISTANCES WILL C C N TA I N  55 HOCFS .

50 fl~ v TCF S ISJTS , D IODES , JEE TS , A ND M USFETS ).

25 TNDEP ~~ND,ENT v O L T A G E  CR CU R RE NT SOU RC ES. ONLY 5 INDE PE ND ENT SOURCES C1~N
9C T IM O  DEP ENDENT FOP TRANSIE NT ANALYSIS.

200 TOTAL CLE M E N TS, I NCL LD ING DEV ICES AN D I N OF OENO ENT SOURC e S.

ID OU T PUT VAR I AB LES. A t i  OUTP U T V A R IA B L E  IS E I T H e R A NODE TO NODE V D L T A G f
D R A CURRE N T THnCU GH AN IND E PEND ENT VOLT A G C SOURCE. Cl T P j T  V 6 R I A E L E S
M AY PC PR INT ED IN T A B U L A R  FORM , Ot.OT TED 65 l INE P R I N T E R  PLOTS. DR BO TH .
CN ILY 5 OUTPUT V A R I A B L E S  CAN BE USEO IN THE A C S MA LL S T C ’ ~~L A N A L Y S I S .

10 S~ TS OF MO D EL PAR A M e T E R S  FOR 0EV ICES.

~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
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PAGE 2

T Y P C S  OF A N A L Y S I S  -

CC A N A L Y~~IS

THE DC A NA L Y S I S  Pf l RT ICN OF S P I C E  DET ERMINES THF DC O P E R A T I N G  PO INT OF THE
CIRCUIT WITH INDUCTORS SHORTED AND CAPAC I TORS OPENED. A DC A N A L Y S I S IS
A U T O MA T ICALLY PERFORM ED PRIO R TO A T R A N S I E N T  A N A L Y S I S  TO DET E RM I NE THE T R A N S I E N T
I N I T I A L  CO NDITIONS , A NJ PR IO R TO AN A C SMALL SIGNAL A N A L Y S I S  TO D E T E R M I N E  THE
L I N EA R I Z E D .  SMALL SIGNA L MO OELS FCR NO N L INEAR DEV I CES . .  IF RE QU f~~TFC, THE DC
SM ALL SIGNAL VA L U E  OF A TRANSF E R FUNCT ION (RATIO CF OUTPUT V A R I A B L E TO INPUT
SCLRC~~), I NPUT R E S I S T A N C E , A N D  CUTP IJT RESISTANCE W i L L  ALSO 8€ CCM PUTED AS A PAR T
OF THE SMALL SIGNAL OP E RATING POINT.  THE DC A N A L Y S I S  CAN ALSO 5F USE D TO

V GEN ERAT E CC TRAN SFER CURVES. A SPECIFIED INDEPENDENT VOLTAGE OP CURRENT SOURCE
IS STEPPED OVER A USE’) SPECIFIED RANGE AND THE DC OUTPUT V A R I A B L E S  A RE STORF O
FOR EACH S E~ UFNT IA L  SOURCE VALUE.  THE DC ANALYSIS OPTIONS A RE SPECIFIED ON THE
.DC CONTROL C ARD (PAGE 15).

—— AC SMALL SIGNAL ANALYS I S ‘

THE AC SMALL SIGNAL PORTION CF SPICE COMPUTES THE AC OUTPUT V A R I A B L E S  AS A
FUNCT ION (iF FREQUENCY . THE PROGRAM FIRST COMPUTES THE DC OPERATI N G POINT OF THE
CI RCUI T ANC CETER M INES L I N E A R I Z E D ,  SMALL SiG N AL MODELS FOR ALL CF THE NONL INEAR
DEVICES IN THE CIRCUIT. THE RES ULTANT LIN E AR CIRCUIT IS THEN A N A L Y Z E D  OVER A
LS ER S PECI F i ED RA P4GE OF FRE QUENCIES. THE DESI RED OUTPUT OF AN AC SMALL SIGNAL
AN ALYSIS IS USUALLY A TRANSFER FUNCTION (VOLTAGE GA I N ,  TRANSINP ED A N CE , ETC). IF
THE CIRCU IT HAS ONLY ONE AC INPUT, IT IS CONVENIENT TO SET THAT INPUT TO UNITY
AND ZERO PH ASE , SO THAT OUTPUT V A R I A B L E S  HAVE THE SA M E  VA LUE AS THE TRANSFER
FUNCTION (iF THE OUTPUT V A R I A B L E  W I T H  RESPECT TO TIlE INPUT.

I. ,
THE GENERATION OF WPII TF NOISE BY RESISTORS AND SE MIC ONO UCTC R D E V I C E S  CA N

ALSO BE SIMULATED W ITH THE AC SMALL SIGNAL PORTION OF SPICE. EQUIVALENT NOISE
SOURC E VALUES ARE DETE RM INED f t J T C M A T I CA L L Y  FROM T HE SMALL SIGNAL OPE RATING POINT
CF THE CIRCUIT , AND THE CON1 R IBUT I~)N OF EAC H NOISE SOURCE IS A DOE C AT A GIVEN
SUMM I NG POINT. THE TOTAL OUTPUT NOISE LEVEL AND THE EQUIVALENT IN PUT NOISE
LEVEL ARE D E TE RMINED AT EACH FREQUENCY POINT. THE OUTPUT AN D INPUT NOISE LEVELS
AR E N ORMAL I ZED WITH RESPECT TO THE SQUAR E ROOT OF THE NOI SE BA N D W I D T H  AND HAVE
THE U N I T S  VO LTS/RT HZ OR AM PS/ PT HZ. THE OUTPUT NOISE AND EQUIVALE N T INPU T
N OISE CAN BE PR I NTED OR PLOTTED IN THE SAME FASHION AS OTHER OUTPUT V A R I A B L E S .

THE FPEQUF NCY RAN G E AND THE NOISE ANALYSIS OPT ICNS ARE S P E C I F I E D  ON THE
.A C CONTRO L CARD (PAGE 15).

TRANSIENT ANALYSIS

THE TRANSIENT ANALYSIS PCR T ION OF SPICE COMPUTES THE TR A N S I E N T  OUTPUT
VAR I AB LES AS A EUNCIIOP4 OF TIM F OVER A USER SPECIF IED TIME INTE RVAL. THE
INITI AL CCNOI T IONS AR E AU TC NA T I CA L L Y DETERMIN ED BY 4 DC A NALYS IS. ALL SOURCES
W H ICH ARE NOT TIME DEPENDENT (FOR EXAMP LE, POWER SUPPLIES ) ARE SET TO T HFIR CC
VALUE. FOR LARG E SIGNAL SIN USOIDAL SIMULATIONS , A FO UR IE R A N A L Y S I S  OF THE
OUTPUT WAV E FO RM CAN BE SPECIFIED TO O B TAIN THE FREQUENCY D O M A I N  FCU R IER
COEF F ICIENTS. THE TRANSIENT TI ME INTERVAL  AND THE FC I IR IER A N A L Y S I S  OPTION S
A R E SPEC IF 1ED UN THE .TRAN CCNT RQL CARD (PAGE 16).

- ~~~~ VV V~~~~~~~~~~ VV ~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _
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PAGE 3

A NALYSIS AT DIEF~ RE NT TEMPERATURES

ALL INPUT C A T A  FOR SP ICE  IS  ASSUMED TO HAV E BEEN M EASU RED AT 27 CEG C
(300 CEG K ) . THE SIM U L A T I O N  ALSO AS SUM ES A NOMINAL TEMPERATURE OF 27 DEG C.
TI-S CIRCUIT CAN ~E S IM U L A T F O  AT UP TO 5 D IFFERENT T EM PERATURE S BY L SING A • TEM P
CC NT Q CL CARD (RAGE 15).

TE MPERA T U R E  APPEA R S EXPL ICITLY IN THF EXPONENTIAL TERMS OF THE BJT AND
DIO DE MODEL EQUATIONS. IN A DOI TION , SATuRAr I0N CURRENT S HAVF A BUI LT—IN
TEMPE RATURE DEP ENDENCE. THE TEMPF PA TU PE DEPENDENCE CF THE SATURATION CU RP FNT V

TN THE RJT M ODELS IS D E TERMINED BY:

IS h E MP ) 10 * (TEMP**3) * EXP (— Q * EG / (K * T E M P J 3 ,

WHE R E K IS RC1 LT ZMA NS CONSTANT , Q IS THE ELFCTRON IC CHARGE, IC) IS A CONSTANT , AND
FG IS THE ENERGY GAP WH ICH IS A MODEL PAR AMETER. THE TEMPERATURE DEPFNCENCF OF
TI4F SA T IRAT ION CUR RENT IN THE JUNCTION DIODE MODEL IS DET E RMT NFC BY:

IS (T~~M P) a (~ S (TEMP ** (3/M)) * EXP ( Q  * EG / ( K * TEM P ) ) ,

W H ERE N IS  THE E M I S S I O N  C O F F E I C I E N T ,  WHICH IS  A MCDEL P A R A M E T E R ,  AN D THE OTHER
SYMB CL S HAVE THE SAME MEANI NG A S ABOVE.  Fo R SHQTT KY BARRIE R C T C C F S ,  THE
TEMPERATURE DEPFNCENCE OF THE S A T U R A T I O N  CURR ENT IS DETERMINED B Y:

IS h E M P) ID * ( T F M P* * (2 / N) )  * EXP (—Q * EG / (K S TEMP)).

CC NVE RCENC E

BO TH OC AND T RA NS IF ’ 4 T SOLUTIONS ARE OBTAINED BY AN I T E R A T I V E  PROCE SS W H ICH
IS T ER M I NATED WHEN THE NODE VO L TAGE S CONVERGE TO W I T H I N  A TOLE RAN C E OF 0.1
PERCENT liP 50 MI C ROV OL T S,  WHICHEVER IS LARGER . A LT I4CUG H THE P A R T I C U L A R
ALGORITHM USED IS SPICE HAS BEEN FOUND TO BE VERY R E L I A B L E ,  IN SC ME CASES IT
W I L L  FAIL TO CONVERGE TO A SOLUTION. WHEN THIS HAPPENS , THE PPCG RAM W I LL PRINT
OUT TI- F LAST  NODE VOLTAGES A NC TERMINATE THE JOB. THE NODE V O L T A G E S  THAT ARE
PR I NT E D AP E NOT N E C E S S A R I L Y  CO RRECT OR EVEN CLOSE TO THE CORRECT SOLUTION.

FA I L U R E TO CONVERGE IN THE DC A N A L Y S I S  IS USUALLY DUE TO A N ERR O R IN
SPEC IFY ING C I R C U I T  C V ) NNE CTTC N S ,  ELEMENT VALUES,  OR MODEL P A R A M E T E R  VALUES.
R E G F N E Q A T IV F  S W I T C H I N G  C T R C L T T S  OR C I R C U I T S  W I T H  PO S I T IV E  F E E D B A C K  PRO B ABLY W E L L
NCT CO NV ERG E IN THE DC A NA LYS I S. FAIL UR E TO CONVERGE TN THE TRAN S I E N T  ANALYSIS
CA N A L E C  BE DUE TO A T I M E  STEP WHICH IS TOO LARGE. SPICE P R E S E N T L Y  DOES NOT
HAV E AN AUTO MAT IC TIME STEP CO NTROL , AN D SIGNIF ICANT ERROR ANO /CP N CNCONVER GCN C E
CAN RESUL T I F THE TIM C STEP IS LARGE COMPARED TO THE CIRCUIT  T IME C C N S T A N T S .

~
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INPUT FORMA T

THE I H PUT FORMAT FUR SPICE IS OF THE FREE FORMAT TYPE . F IELCS ON A CARD
AR E S E P 8 R A T F ’ ~ ~Y ONE OP MOR E BLANKS, A COMMA, OR AN EQUAL (= 1 S IGN. SPACES
PRECEDING OR FOLLOW I NG A C CMM A OR EQUAL SIGN ARE IGNORED. A CAR D M A Y  BE
CO NTI NUED LNTO THE FOLLOWINC CARD BY PUNCHING A + BEFORE THE F I R S T  FIEL D ON THE
CON T I N UA T I O N  CARD. -

A NAME F IE LD NLST 6EGIN WITH A LET TER (A THRU Z) ANC CANNOT CONTAIN
CO MMA S OR PLAN IcS. CN LY THF FIR ST SEVEN CHARA CTERS CF THE NAME A RE LSFD .

A N UM B ER FIELD M A Y ~E AN INT EGER FIE L D (12 , —44), A FLOAT ING POINT F IELC
(3.14159), E IT HER AN INT EGER OR A FLOAT ING POINT NUM B ER - FOLLOWED BY AN INTEGER
EXPON ENT (L F— 14 , 2 .65E3), OP EITHER AN INTEGER OR A FLOATI N G POINT NUM BER
FC L LC W FD BY fiNE OF THE FCLLC WIN G SCALE FACTORS:

G 1.CE9
MEG t .OF6
K 1.0F3
M L.O E— 3
U 1.OE— 6
N 1.0E—~

V 
P 1 .OE—1 2

LETTE RS IMMEDIATELY FOLLOWING A NUMBER THAT ARE NOT SCALE FACTORS ARE IGNORED,
AN D LETTERS IMM€ c A rEL y FOLLOWING 4 SCA LE FACTOR A RE iGNORED. HENCE, 10, ZOV,
1OV CL TS , AN D 13HZ ALL REPRESENT THE SAME NUMBER , A ND H , MA, MSEC, AND MMHOS ALL
REPRESENT THE SAME SCALE FACTOR . NOTE THAT 1000, tOCO .O, 1000HZ, 1F3 , 1.0E3,
1K HZ , AN D 1K ALL REPRESENT THE SAME NUMBER. V

C I R C U I T  D E S C R I P TION

THE CIRCUIT TO ~E ANA LYZ E D (S DESCRIBE D TO SPICE B~ A SET CF ELEMENT
V 

CARDS. WH ICH DEFINE THE CIRCUIT  TOPOLOGY AND ELEM ENT VALUES ,  ANC A SET OF
V 

C C N T R C L  CA RDS , w HIC H DEFINE THE MCOEL PAR AM ETERS AN D THE RUN CO NTROLS.  THE
FI RST CAR D IN THE INPUT DECK MUST BE A T I T L E  CARD , A NC THE L A S T  CARD MUST BE A
.ENC CARD. T 1$€ ORDER OF THE REMA IN ING CARDS IS ARBITRARY ,

NODE NUMBE R S MUST BE INTEGERS. THE DATUM HOOF MUS T BE ,wuM eERF c 0 (ZERO).
NODES NEED NOT BE NUM BERED SEQUENTIALLY. THE CIRCUIT CANNOT CC NT AI N 4 LOOP OF
V flLT AG F SOURCES AND /OR INDUCTCqS AND CANNOT CONTA iN A CUTSET OF CURREN T SOURCES
A P4C /CR CAPACIT O RS.  EACH NODE IN THE CIRCUIT, INCLUD I NG THE DATUM NODE , MUST
t’ A V F  AT LEAST TWO CCNNECT IONS.

- — _ __ _~~~~~~~~~~~~~~~~~~~~ V 
V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ELE MENT CAR CS

****S R ESISTORS , CAPACITORS ,  INDUCTORS

GENERAL FOR M R X X X X X X  N i N? VALUE
CXX *XX X N I N2 VALUE
LXX X XX X NI N2 VALUE

V E XAM PLFS R1 3 12 17 1K
V CG000 13 0 lOP

LUI NKS 42 69 LU

MI AND N? ARE THE TWO ELEMENT NODES. THE ORCER OF THE NODES FOR THESE
ELE MENTS IS UNIMPORTANT . VALUE ES THE RE SISTANCE ~OP~F4S), THE CAPACITANCE
(PARAD E ), AND THE INDUCTANC E (HENRiES ). RESPECTIVELY. THIS VALUE C ANNO T BE
N E G A T I V E  OP ZERO.

•**** VOLTA GE CCN TROLLEC CURREN T SOURCES

GEN E R AL FCR M IXX X X X X V N+ N— NC. NC— VALUE DELAY

EXA MPLE S IS QR S V 13 12 14 12 1.OM
- 1GM V 1 20 4 20 —2 .OM 3.O NS

THE LETTER V MUST BE IN THE FIELD FOLLOWING THE EL EMENT NAME . N. AND N—
ARE THE PO SITIVE ANO NEGATIVE NODES , RESPECT IVELY. CURREN T FLC)NS FROM THE
POSIT IVE NODE, T~~ U THE SOURCE , TO THE NEGAT IVE NODE. NC. AND NC— ARE THE

- 
•~~- P O S I T I V E  AND NEGAT IVE CCNT R CLL IKG NOCFS , RESPECTIVELY. VALUE IS THE

TR ANSCONOUC T4NC E (MI-CS).

IN THE AC ANA LYSIS THE TPANSCONDUCTA N CE CAN BE M ODI F IEC BY AN OPTIONAL
DELAY (LINEAR PHASE) OPERATOR . THE 0EL~~Y (SECONDS) IS APPENDED AFTER THE VALUE .
IF A DELAY , TO, IS I NCLUDED , THE CO MPLEX , FRE QUENCY CEPENDENT VALUE OF
TRAN SCCNDUCT 4NCF IS D ETE RM INEC BY:

GM ~ VA LUE • EX P (—J S 6.28316 * FR EQ * TO)

THE DELAY IS IGNORED IN THE DC AND TRANSIENT ANALYSES .

F 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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*55*5 IND E PENDENT SOU RC E S

GE NERAL F ORM V A X XX X X N+ N— CC DCVA L AC ACVAL PHASE
IX X A X ~ X N+ N— CC DCVAL AC A CVA L PHASE

EXA MPLES 
- 

VCC 10 0 DC 6
IZEN ER ii 15 DC ÔOO MA
VI N ii 2 DC 0.001 AC I
t IN 21 23 AC 0.333 45.0
VM EA S 12 9

Ms IS THE POSITIVE NOPE AND N— IS THE NEGATIVE NODE. NOTE THAT VOLTAGE
SOURCES NF F’ NOT BE GROUNDED . CURRENT FLOWS FROM THE POSITIVE NODE, TI-RU THE
SOURCE , TO THE NEGATIVE NODE.

OCV A L IS THE DC VALUE OF THE SOURCE. THE SOURCE IS SET TO T I- IS VALUE F -D R
DC A N A L Y S I S  AND , IF MO T IME DEPENDENCE IS ATTACHE D , IN THE TRANSIENT ANALYSIS.

— IF THE DC SOURCE VALU E IS ZERO , THE LETTERS DC AND THE DC VALUE CAN BE OM ITTED.

ACV A L IS THE AC VALUE ANC PHASE (S THE AC PHASE. THE SOURCE IS SET TO THIS
VALUE (S THE AC ANALYSIS. THE ARBITRARY PHASE FACTOR CAN BE OMITTED. IF THE
SOURCE IS NOT AN AC SMALL SIGNAL INPUT , THE LETTERS AC AND THE AC VALUES ARE
C M ( T T EC.

A SOURCE MAY RE G IVEN A TIME DEPENDENCE FOR THE TRANSIENT ANALYSIS BY
APP ENDING ONE OF THE THREE PR ED EF INE D FUNCTIONS : PULSE, EXPONENTIAL. AN O
SINU SOIDAL. I~ PARAMET ERS CTHER THAN SOURCE VALUES AR E OM ITTED OR SET TO ZERO ,
THE DEFAULT VALUES SHOWN WILL BE ASSUMEO . TSTEP IS THE PR INTING INCREMENT (TIM E
S T E P ) ,  AND T ST OP ES THE PENAL TIME (PAGE 15).

• 1. PULSE PULSE V I V2 ~O TB TF PW PER

EXAM PLE y IN 3 0 PULSE —L 1 2145 2145 2NS 5ONS IQONS

P A R A M E T E R S  AND DEFAULT VALUES

Vt IN ITI AL VALUE ——
V2 PULSED VALUE —

TO CELAY TIME TSTEP
TB R ISF TIME TSTEP

FA LL TIME TS•TEP
PW WIDTH ISTOP
PER PE RIOD TSTOP

A SINGLE PULSE (S DESCRI BED BY THE FOLLOWING PIECEWISE L I N E A R  TABLE.

TINE V A LUE

O VI
TO VI
T O u R
TD+ TR +PW V2 -

V i
151CR VI

_ _ _ _ _ _ _ _  
- 

_ _ _ _
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- 
2. EX PCNEN TTAL FX P V t V2 701 TAU t T02 TAU2

E XA MPLE V IM 3 3 EXP —4 —1 ZNS 3ONS 6ONS 4ONS

PARAMETE R S AND DEFA ULT VALUES

V t  I N IT I A L  VALUE
V 2 PULSED VALUE —

TO t R I S E  DELAY TIME TS T EP
TAU t RISE TIM E CCNS TAN T TSTEP
TO2 FALL DELAY TIME TSTEP
TA U2 FALL TI ME CONSTANT TS T EP

TIME VALUE

0 TO 101 V i
lOt TO TO? V l i . (V 2 — V j ) ( t — E X P ( ( T — T D L ) / T A U I ) )
T02 TO YSTOP VL .(V 2—VtI (l— EXP (— (T—TD1) /TAU III+ (V t—V2 )(t—E XP( (T T02)/TAU2 )I

3. SINUS OIDAL SIN VO VA FREQ TC THET A

EX A MPLE VI M 3 0 SIN 0 1 IOOMEG iNS LEIO

PAR AMETERS ANC DE FAU LT VALUES

VO OFFSET
V A AMPLITUDE —

FRE Q FREQUENCY ((N (42) 1/TSTOP
TO DELAY TSTEP
THETA DAMPING FACTOR 0

TIME VALUE

0 TO TO VO
T O TO TSTOP VO . VA * EXP (— (T— TD) * THETA) * SINE (6.28318 * ER EQ * T )

SOURCE S MA Y BE GIVEN ANY COMBINATION OF VALUES (DC , AC, CR TRA N S IEN T ), AND
THESE VALUE S HAY BE SPECIF IED IN ANY ORDER AS LONG AS THEY FOLLOW THE PROPER
KEY WORD.

EX AMPLES YIN 13 12 SIN 0 1 1OMEG DC 0.1 AC I 45
12 19 0 CC 0 PULSE 0 1 AC 0.5
VE Q 12 0 DC 0.5 EXP 0.5 0.9 IONS 4ONS iONS 40N $ AC I 
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5*5*5 BIP OLA R J UNCTION T R A N S I S T O R S

GENERAL FORH Q X X X X X X  NC 148 NE MNA NE A R E A

EXAMPLE CAM P33 7 9 1 MCDI 2 .0

NC IS THE COLLECTOR NODE , M B IS THE BASE NODE, NE IS THE E M I T T E R  NO CE, V

M’4A$€ (5  THE MflDE L NAME ( P A G E  9)  AND AREA I S  THE A R EA FACTOR. THE ARE A FACTOR
IS EQUIVALENT TO THE MUM~~ER OF P A R A L L E L  DEV ICES.  AN AREA FACTOR OF 2.0
IM P L I E S  THAT TWO TRAN S I STOR S C~ THE SAME MOOEL ARE CCNNECTEC IN P ARALLEL. IF
T I-F A R EA  IS O M I T T E D ,  AN A R E A  FACTOR OF 1.0 IS ASSUMED.

V ~~~~~ JUNCTION DIODES

GEN ERA L FOR M C X X X X X X  MS N— MNAME AR EA V —

EXA MPLE C~ R Ifl C -E 8 10 D IODEL

N+ IS THE POSITIVE NODE, N— IS TI-F NEGATIVE NODE, MN AME IS THE MODEL MANE V

( PA G E  5 ) ,  AN (~ AREA (5 THE A R E A  FACTOR (SEE B JTS ,  A B O V E ) .

***** JUNCTION FIELD EF FECT TRANSI STORS

GENFR A L FORM J X X X A X X  ND MG NS MN A ME A R E A  V

EXA MP LE - J i 7 2 3 JMI

NO IS TI-F CR 4114 NODE, NG IS THE GA TE NODE, MS IS THE SOURCE NODE, MNANE IS
THE MODEL NA ME (PAGE 9 ) ,  ANO AREA IS THE AREA FACTOR (SEE  B J T S ,  A R C V E ) .

***** MO SFF T S

GEN ERA L FCRM 
- 

MX XXXXX NO MG NS NB MN AM E AREA

EXAMPLE M3 1G 2 3 ~. 7 MLONG

NP IS THE D R A I N  NODE, MG (S THE G A T E  NODE, MS IS  THE SOU RCE NCCE , NB IS THE
BULK ( SUBST RATE) NODE, MNAMF (S THE MODEL NAME ( PAGE 9 ) ,  AND AREA I S  THE AREA V

FACTOR ( SEE - B JTS ,  A B CV E) .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~
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5*5*5 .MDOEL CARD

GENERAL FOR M .MOOEL HNA ME TYPE PNAMEL ZPVA L I PNAM E2 = PVA L2

EXAM PL E .MODEL MOD 1 NPN BFa5O IS~~iE—i 3 VA ~~5O

THE .MODEL CA RC S P E C I F IE S  A SET OF MODEL PARAMETERS THAT W I L L  BE USED BY
CNE CR MOR E DEVICES.  MNA MF IS THE MODEL NAME, AN D TY PF IS CNE CF TI- F FO LLOWING
TEN TYPES:

11PM MEN EBER S—I4 OL L 3.0 MODEL
PNP DN P EB E R S— MOLL 9.0 MODEL
NGP N P N GUMME L—POON PJT MODEL
POP PNP GUMMEL— PCCN B it MODEL
0 JUNCTION DIODE MODEL
SBO SHOTTKY 3AR R E E R DIODE MCDEL
NJF N CHANN FL JFET MOC EL
PJF P CHANNEL JFET HCDEL
P4N0 N CHANNEL M O SFE T MODEL
PMQ P CHANNEL M OSFE T MODE L

PARAMETER VA LUES ARE DEFINED BY APPEND ING THE PARAMETER NAME, AS GIVEN
BEL C W FOR E ACH MCDEL TYPE , FOLLOWED BY AN EQUA L SIGN AND THE PARAMETER VALUE.
MODEL PARAM ETERS THAT ARE NOT GIVEN A VALU E ARE ASSIGNED THE DEFAUL T VA LUE
GI VEN BELOW FO R EACH MODEL TYPE . -

MODEL PARAMETER VALUES CAN ALSO BE SPECIFIED AS A STRING CF N UMBERS IN THE
ORCER GIVEN BEL OW FOR E ACH MODEL TYPE . THE FOLLOWING MODEL SPEC IFIcAT r0N (S
EQUIVAL ENT TO THE PREVIOUS MODEL CARD EXAMPLE:

EXA MPL E .MOOEL MOO t NPN 50 , , , . . , . , , . L E- 13 , , ,5 0
V 

—~~~~~ CIODE MODELS (BOTH JUNCTION AN D SBD)

THE CNLY DIFF E RENCE BE TWEEN THE JUNCTION DIODE M CDEL AND THE SHOITNY
BA RR IER DIODE MODEL IS THE TEMPERA TURE OEPENCENC E OF SATURATION CURRENT (SEE
PAGE 3). THE DC CHARACTERISTICS OF TI-F DIODE ARE DETERMINED BY TI-F P A P A M E T E R S
IS AN D N. AN OHMIC RESISTANCE, RS, IS INCLUDED . CHARGE STCRA GE EFFECTS ARE
MODELED BY A T RA NSIT  TI M E ,  TI, *140 A NONLINE AR DEPLET ION LAYER CAP AC ITAN CE W HICH
VA R IES AS T HE — 1/2 POWER OF JUNCTION VCLT A GE AND IS DE F INED BY THE PARAMETER S
CJC AND PHI. THE ENERGY GAP , EG , AFFECTS ONLY THE T EMPERATUR E CE PENOEN CE OF THE
SATU R ATION CURRE N T (SEE PAGE 3).

NAME PARA METER DEFAULT TY PICA L

1 PS OHMIC RESIST AN CE 0 10
2 TI TRA NSIT TIME 0 C .1NS
3 CJO ZERO B IAS JUNCTION CAPACITANCE C 2PF
4 IS SATURATION CURRENT I.OE—14 I.OF— 14
5 N EM ISSION CO EFFICIENT 1 1.0
6 PH! JUNCT ION POTENTIAL 1 0.6
7 EG ENERGY GAP 1. 11 SI 1.11 FOR SI

0.69 SBC 0.69 FOR SRD
- 0.67 FOR GE

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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EBEP S— POLL BJT MOOELS (BOTH NPN AND PNP)

THE FB ERS—NC LL BJT MODEL USES THE DC EBER S—MOLL MODEL AS A BA SIS. THE CC
CHA RAC T E R I S T I C S  OF THE DEVICE ARE DETERMINED BY TI-F PA RAMETFP S BE ARC ) ~R , TI-F
F C RWAR C AND RF~~FRSE CURRENT GAIN S , VA, WHICH DETERMINES THE OUTPUT COND UCTANCE,
AND TH~ SA TUR A T ICN CUR RENT , IS. THREE OHMIC RESISTANCES , RB, PC,  A ND R E ,  HAVE
SEEK INCLUDED . B ASE CHA RGE STORAGE IS MODELED BY F O RWARD AND REV ERSE TRANSIT
TIMES, TF AND TR , AND NCNL INEA R DEPLETION LAYER CA PAC i TANC E S WHICH VARY AS THE
— 1/2 POWE R OF JUNCTION VOLTAG E ANC ARE DEFINED BY THE PARAMETERS CJE, PE , CJC ,
AND PC. A CO NSTANT COLLECTOR—SUBSTRATE CAP ACITANCE , CCS, IS ALSO I NCLUDED . THE
ENE RGY CAP , EG , AFFECT S CNLY THE TEMPERATUR E DEPENDENCE OF THE SATURATION

V CURRENT (SEE PA GE 3).

NA ME PARAM E TE R DEFAULT TYPICAL

1 BF FO RW A RD BETA 100 100
2 BR REV ERSE BETA - 1 0.1
3 R B  BASE OHMIC RESISTANCE 0 100
4 RC COLLECTOR CHM IC RESISTANCE 0 10
5 RE EM ITTER OH M IC RESISTANCE 0 1
6 CCS COLLECTOR— SUBSTRATE CAPACITANCE C 2PF
7 TF FQP~~4PQ TR ANS IT TIME 0 C.INS
8 TR REVERSE TRANSIT T IME - 0 iONS
9 CJF ZERO BI AS B—E JUNCT ION CA PAC 1TAN C F 0 2PF
10 CJC ZER O B IAS 8—C JUNCT I ON CAPAC ITANC E 0
ii IS SATURATION CURRENT 1.OE 14 I.OE—14
12 RE 8—E JUNCTI O N POTENTIAL 1. 0.7
13 PC 0—C J uNCT!CN PCT ENTIAL 1 0.5 —

14 VA EARL Y VOLTAG E INFINITE 50
15 EG ENERGY GAP 1.11 1.11 FOR SI

V 0.67 FOR GE

GUMM!L— PCCN 8JT MCDE LS (90TH MPN AND P1W )

THE INTEGR AL CHARGE MO DEL OF GUMM EL AND P0CM IS A MORE COMPL ICATED AND M ORE
COMPLETE BJ T MODEL FOR PROBLEMS WHICH REQUIRE ACCURATE BJT MODELS. THE DC MODEL
IS DEFINED BY TI-f PARAMETERS SEM , C2 , 1K , AND NE , WH ICH DETERMI N E THE F O R W A R C
CU RREN T GAI N CHARACTERI STICS , BRN , C4, (KR , AN D NC , W HICH DETER MINE THE REVERSE
CURRENT GA IN C ,IARACTER I STICS , VA AND V B , WH ICH DETER M INE THE OUTPUT CONDUCTANCE
ED’ FORWAR D AND REVERSE REGIONS , AND THE SATURATION CURRENT , IS. THREE 

V

OHM IC RESISTANCES, RB , PC , AN D RE, ARE INCLUDED. BASE CHARGE STORAGE IS MOCELE D
BY FORWAR D AND REVER SE TRANSIT TiMES, IF AND IR , AND NONLINEAR CEPL ET ICN LAY E R
CAP ACITANCES I,(IICH ARE CETFRM(NF O BY CJE, PE , AND Hf FOR THE B—t JUNCTION, AND
CJC . PC, AND MC FOR THE 8—C JUNCTION . A CONSTANT COLLE CTO R—SUBSTRATE
CAP ACITANCE , CCS, IS ALSO INCLUOEC. THE ENERGY GAP, EG, IS INCLU CEC AS IN THE
SIM PLER BJT MCD FL.

~ 

~~ ~~~~~ ~~~~~~~ V V~~ 
~~V4 L ~~ .V ~V V
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NAME PARAMETER DE~ A U LT T YP I C A L

1 PF M SAT CUR RENT / IDEAL 8—E SAT CURRENT 100 100
2 8PM SAT CURRENT / IDEAL B—C SAT CURREN T 1 0.1
3 RB BASE OHM IC RESISTANC E 0 100
4 RO COLLECTOR C I-M IC RESISTANCE 0 10
5 RE EMITTER OHM IC RESISTANCE 0 1
6 CCS COLLECTO R— SUB STRATE CAPACITANCE 0 ZPF
7 TF F ORw A RD TRANSIT TIME 0 C.1NS
8 TP REVERSE TRANSIT TIME 0 IONS
9 CJF ZERO B I A S  B—E JUNCT I ON CAPACITANC E 0 2PF

10 CJC ZERO BIAS 8-C JUNCTION CA PAC ITANCF 0 IPF
11 IS SATUR ATION CURRENT 1.OE—14 I .OF—14
12 VA FOR W A R D  EARLY VOLTAGE INFINITE 50
13 V~ REVERSE EARLY V OLTAGE INF INITE 50

V 14 C2 N ONIDEAL B— F SAT CURRENT/SAT CURRENT 0 10.0
15 1 K FO RWARD KNEE CURRENT INFINITE 1OMA
16 NE 8—F EMI SS ICN COEFFICIENT 2.0 1.5
17 C4 NC N IOEAL B—C SAT CURRENT/SAT CURRENT 0 1.0
18 IKR REVE RSE KNEE CURRENT INFINITE LOOM A
19 NC B—C EM (SSICN COE FFICIENT 2.0 1.5
20 PE B—E JUNCTION POTENT I AL 1.0 0.7
21 Hf B—E GRADING COEFFICIENT 0.5 0.33
22 PC 8—C JUNCT ICN POTENT I AL 1.0 0.5
23 MC B—C GRAD ING COEFFICIE NT 0.5 - 0.33
24 EG ENERGY GAP 1.11 1.11 FOR SI

0.67 FOR GE

V —— JFET MODELS (BOTH N AND P CHANNEL)

‘ - -  THE JFET MODEL IS DERIVED F ROM THE FET MODEL OF SH IC I-MA N AND HCDGES . THE
CC CHAR ACTE RISTICS ARE DEFINED BY THE PARAMETERS VTO AND BETA, W HICH D E TERMINE
THE VAR IA TIC N OF DRAIN CURRENT WITH GAT E VOLTAGE , LAMBD A , W HICH DETERMINES THE -

- - 

OUTPUT CONDUCT ANCE, AND IS, T H E SA T U R A T I O N  CU RR ENT O F THE TWO GATE
JUNCTIONS. TW O OHMIC RESISTANCES , RD ANO RS, ARE INCLUDED . CHARGE SICRAGE IS
MOD ELED BY NO NL INEAR DEPLET ICH LAYE R CAPACITANCES FOR BOTH GATE JUNCTIONS WHIC H
VA RY AS TI-F —1 /2 POWER OF JUNCT ION VOLTAGE AND ARE DEF INED BY THE PARAMETER S
CGS , COO, AND PB.

NAME 
V 

PAR AMETER DEFAUL T T’Y P IC A L

1 V TO THRESHOLD V CLT AG E —2.0 —2.0
2 BETA TRANSCONDUCT AN CE PARAMETER 1.OE—4 1.OE—4
3 LAMBDA CHANNE L LEA GT H MODUL ATION PARAMETER 0 0.01
4 RD CRA IN OHMIC RESISTANCE 0 100
5 P5 SOURCE OHMIC RE SIST ANCE 0 tOO
6 CGS ZERO B IAS C—S JUNCTION CAP ACITANCE 0 2PF
7 CGD ZERO BI A S  C—C JUNCTION CAPACITANC E 0 ZPF
8 PB GATE JUNCTION POTENT I AL 1 3.6
9 IS GATE JUNCT ION SATURATION CURRE N T 1.OE— 14 1 .OE—I4

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :L V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V~~~~~~~~~~~~~~~~~~ V V V ~~~ 
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Mc5~~~y .~IOOELS ( B OT H N AND P CHA NNEL S )

THE MO SFET MODEL IS ALS O CER IVE D FROM THE FET M CCEL OF SHICH I-AN AN D
M000FS . TI-F flC CHARACTERISTI C S OF THE MOSF ET ARE DE F INED BY THE PARAMETERS
VYC , BET A, AND LAM SCA , WH !CH A RE IDEN TI CAL TO THE PARAMET E R S FOR TI- F JFET, PHI
AN C GA M MA, W H ICH DETERMINE THE V A R IAT ION OF THRE SHOLC V OLTAGE MIII- SUBSTRATE
V C L T A G E ,  A N D I S ,  T HE SATUR A T ICN CURREN T OF THE TWO SUBSTRATE JUN CTIONS. CHARGE
STORAC F (S MOOELEO BY THREE CCNST ANT CAPACITORS. CGS , CGC , AN D COB ,  AND
N CN LI M FAR DEPLET ION LAYER CAPACITANCES FOR BOTH SUB STRATE JUNCTIONS WHICH VARY
AS THE —1/2 POt~ER (IF JUNCT ICN VOLTAGE AND ARE DETERMINED BY THE PAR AMET ERS CEO ,
CB S , AN C PB .

NAM E PARAM ~ TF R DEF AU LT TY P I C A L

I VT O THRES HOLD VOLTAGE 2.0 2.0
2 PHI SURFACE POTENTIAL 0.5 0.5 V

3 BETA TRAN SCON CUCTANCE PARAMETER 1.OF— 4 1 .OE—4
4 GAM MA BULK THRESHOLD PARAMETER 0 0.5
5 LAM BD A CH4~ NfL LEN G TH MODULATION PA RAM ET FR 0 0.01 -

6 RD DRA IN OHMIC RESISTANCE 0 100
7 PS SOURCE OHMIC RESISTANCE 0 100
8 COS GATE—SOURCE CAPACITANCE 0 IPF
9 COD GATE—DRAIN CAPACITA N C E 0 IPF

1 0 COB GATE— B ULK CAPACITANCE 0 IPE
11 CBD ZERO B I A S 8—C JUNCTION CAPACITANC E 0 IPE
12 CBS ZERO BI AS 8—S JUNCTION CAPACITANC E 0 1PE
13 PB BULK JUNCTION POTENT IAL 1 0.6
14 IS BULK J(JNCT1CN SATURAT iON CURRENT 1..DE—14 I.OE—14
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CONT RO L. CA RDS

***** TITLE CARD

EXAMPL E OP A MP C IRCUIT  JOE J STU DENT EECS 241

THIS CAR D MLST BE THE FIRST CARD IN THE INPUT CECK . ITS CONTENTS ARE
P RINT E C V F R B A T IM  AS THE HEAD ING FOR EACH SECTiON OF OUTPUT.

**$** .ENO CAR D

GENE FA L FORM .ENr,

THIS CARD MUS T ALWAYS BE THE LAST CARD IN THE INPUT DECK. NCT E THAT THE
PER IOD IS AN INT E GRAL PAR T QF THE NAME. IF THE .ENO CARD IS OMITTED, THE NEXT

— JOB WILL SF R E A D  IN AS PART OF THE JOB MISSING THE .END CARD , AND NEITHER JOB
W I L L  BE RUN SUCCESSFULLY.  -

*~~~*** COMM~ NT CARD

GENER AL PCR~ * ANY COMME N TS

EX AMPL E * R F = L K  GAIN SHOULD BE 100

THIS CA RD IS PRINTED OUT IN THE INPUT L IST ING BLT IS OT H ER W ISE  IGNCRFD.

***** NO PRINT CARD V

V GENERA L FORM .NP 
V

TH IS CARD SUPPRES S ES T I-F SUMMARY OF INPUT DATA THAT IS NORMALLY PRINT E D
AFTER READING TI- F INPUT DECK. IT DOES NOT SUPPRESS TI- F LISTING fl~ THE I N P U T
DECK CR ANY ERROR MESSAGES THAT MAY OCCUR.

~~~~~~ .TEMP CAR D

GE N ERAL FOR M .TEM P TEL TE2

EX AMPLE .TEMP —55.0 25.0 125.0

THIS C ARD SPECIFIES THE TEMPERATURES AT WH ICH THE CIRCUIT IS IC SF
S IMULATED. T E l ,  T EZ , ... ARE THE DIFFERENT TEMPERATURES, IN C EG R FE S C. A
M A X I M U M  1W FIV E TEMPERATURES A RE ALLOWED. TEMPERATURES LESS TI-AN —223. 0 DEG C
ARE IGNORED .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~
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~~~~~~~~ .QUTPUT CARD

GENER AL FCK ’~ .CIUTPUT V~~~X X X X  ~~+ N—
.IJUTPU T !X~~X X X X V Y Y Y Y Y Y
.OUTPUT NOISE

EX*~
.PLrS .OUT PUI VMIXER 13 27

.flUTPL~T TBASE L VI?

THIS CAR F
~ DEFINES ~~ OUTPUT VA RIA BL F. FUR VCIT AGE OUTPUTS, THE P’.AME MUST

BEGI N W ITH A V, ANfl N. ANC N— ARE THE POSITIVE ANC MF.GA T IVE NODE CF THE OUTPUT
V (’LTAC.E. FOR CURRENT OtilpijiS, THE OUTPUT NAMF NL~5T ~EG1 N ~i,ITI’ AM I, ANC VYYYYYY
IS TI4F NAME r~p THE INDEPENDENT VOLTAGE SOURCE THAT THE CURRFNT jc FLOW ING IN .
PCSITt V~ CURREN T FLOWS FROM THE POSITIVE MOCE, THRflUCH THE SOuRCE , TO THE
NEGATIV E NJDE. T H~ OUT PUT VAR IA BLE MANE NOISE IS RESERVED FOR THE NOISE
ANALY SIS, AND THE OLTPUT NOISE AND EQUIVALENT INPUT NOISE CAN BE PR !NTfl5 AND
PLCTTFC IN IHF SAME FASHION AS CTHER OUTPUT VA RIA BICS .

OLTPUTS CAM BE PRINTED IN TABULAR FORM OR PLOTTEC 4$ L INE PP INTER PLOTS.
THERE ARE FIGHT DIFFERENT OPTIONS WHICH CAN aE PRINTED AND/OP PLOTTED:

CC DC TRANSF ER CLR~ E OUT PUT
TR ANS IENT AN ALYS IS OLTPUT

RE Ac ANALYSIS OUTPUT, REAL PART
fl4 AC ANALYSIS OUTPUT, IMAG INARY PART
MA AC ANALYS IS OUTPUT, I’AGNITUOE
PH AC ANALYSIS OUTPUT, PHAS E
(,u NOISE ANALYSIS CUTPUT , TOTAL CUIPUT NOISE VCLTAGE
IN NOISE ANALYSIS OUTPUT, EQUIVALENT INPUT NOI SE

AN OUTPUT CAN BE PRINTED OR PLOTTFO BY APPEND ING THE LETTrRS PRINT OR PLOT ,
FOLLOWED BY ANY COMBINATION OF THE EIGHT OUTPUT OPT I CNS , TO THE .OUTPUT CARD :

EXA MPLES .QUTPUT V1 3 13 0 PRINT MA DC TR
.OUTPUT fIN V IN PRINT PH RE DC
.OUTPUT W5UT 17 2 PLOT MA TR PRINT CC
.OUT PUT 113 V13 PLOT PH DC
.OUTPUT VTHREF 3 0 PR I NT DC PL CT TRAM
.OUTPUT NOISE PRINT I N PLOT CU

THF PROGRAM W ILL AUT OMA TICA LLY DETERMINE THE M INIMUM ANO MAX !MLM VALU ES OF
THE OUTPUT VAR IA BLE AND SCALE THE PLOT TO FIT TH€SF LI MITS. THE AUTOMATIC
SCALING FEATUR E CAN BE OVEQIDCEN BY SPECIFYING PLCT LIM ITS AFTER THE OUTPUT
OPTION. THE PLOT LIMITS APPLY ONLY TO THF OPTION THAT THEY FOLLCW .

EXAM PLE .OUT PUT VU 12 0 PLCT MA PH —20 30 IR 0 5

IN THIS EXA MPLE, THE PROGRAM WILL DETERMINE LIMITS FOR THE MAGN ITUDE PLOT ,
BUT W ILL P1~ T TI-~ PHASE BETWEEN —20 OEGR~ ES AND 30 DEGRFES, AND W ILL PLOT THE
TRAN !ICNT RFSPPNSE BETWEEN C VCLTS A ND 5 VOLTS.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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.OC CA PO

GFNEPAL FOR M .flC OP OUTPU T INPUT IC ELNAME VSTART VSTOP VINCR

EXA MPLES .OC CP
.~)C IC yIN 0 5 0.5
.OC OP YOUr VIM rc VIM 0 5 0.5

FOR THE SM ALL SIGNAL TRANSFER FUNCTION , OUTPUT IS THE CUTPUT
VARIABLE AND INPUT IS T H E INPUT SOURCE. THE PROGRAM WILL CCMPUTE THE DC SMALL
SIGNAL VALUE CF THE TRANSFER FUNCTION (OUTPUT/INPt,T), INPUT IMPECANCE, AND
OUTPUT IMPE CANCE . IF T~-E TRANSFER FUNCTION VALUE IS NOT DESIRED, CW IT THE
OLTPLT AND INPUT SPECIFICATIONS . IF THE DC OPERATING PO INT IS NOT CESIRED ,
CMIT THE LFTTERS OP. HOWEVER , A DC OPERATING POIP~T WILL ALWAYS BE COMPUTED
PRIOR TC AN AC SMALL SIGNAL ANALYSIS OR A TRANSIENT ANALYSIS.

FCR TR ANSFER CURVES, ELNAME IS THE NAME OF THE VARIABL E SCURCE . VST4RT IS
THE START ING SOURCE VALUE, VSTOP IS THE FINAL SOURCE VALUE , AND VINCR IS THE
INC REMENT. T4~ TOTAL NUMBER CF PCINTS TO BE COMPUTEC CANNOT EXCEED 101. IF ~
TRAN5F FR CURVE IS Nd DESIRED , OMIT THE LETTERS TC AND THE TRANSFER CURVE
PARAMETER S.

•*$** .AC CA RD

GENERAL FORM .AC DEC NO FSTAR T FSTOP NOISE OUTPUT INPUT NUNS
.AC OCT NO FSTART ESTOP NOISE OUT PUT INPUT NUNS
.AC LIN NP FSTART FSTOP NOISE CUIPUT INPUT NUNS

EXAMPLES .AC DEC 10 1 1CKHZ
.AC DEC 20 1. 100KHZ NOISE VOUT yIN 10
.AC DEC 10 1 LOOMEG NOISE VOUT V2L’

DEC STANDS FOR DECADE VARIAT ION , AND ND IS THE ?~UM8ER OF PCINTS PER
DECADE. OCT STANDS FOR OCT AV E VAR IATION , AND NO IS THE NUMBER CF PCI NTS PER
OCT AVF. UN STANDS FOR LINEAR, AND NP (S THE NUMBER OF POINTS. FSTAR T IS T~~E
STARTING FREOUCNCY , ANI) FSTOP IS THE FINAL FREQUENCY. THE TOTAL NUMBER OF
FRE QUENCY POINTS TO BE CCMPUTEC CANNOT EXCEED 101.

FCR NOISE ANALYSIS, OUTPUT IS THE NAME OF A VOLTAGE OUTPtJ T VAR IABLE. THIS
OUTPUT, WHICH MLST BE A VOLTAGE, WILL RE USED AS THE SUMMING ~CIN T. INPUT IS
THF NAME OF AN INDEPENDENT VOLTAGE OR CURRENT SOURCE. THE TOTAL CUTPUT NOISE IS
DIVI DED BY THE TRANSFER FUNCTICN (OUTPUT/INPUT) TO OBTAIN THE ECUIVA LENT INPUT
NO ISE LEVEL . ~4UMS IS THE SUMMARY INTERVAL. AT EVERY MOMS FREQUENCY POINTS, THE
TNO!V (CUAL CONTRIBUTIONS CF EACH ELEMENT ARE PRINTED OUT. IF NUNS IS OMITTED
OR ~ET TO ZERO , NO SUMMARY PRINTOUT WILL OCCUR. FOR REASON S CF REDUCING
PRINTOUT, NUNS SHOULD BE AS LARGE AS POSSIBLE. IF THE NOISE ANALYSIS IS NOT
OFSIRFC, OMIT THE LETTERS NOISE ANO THE NOISE ANALYSIS SPECIFICATIONS.

- -~~~ ~~~—-—~~~~‘ ~—~~~~~~ - ~~~___~ _~~~_5_a—~ - —
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.TPA N CA RD

GE NE RAL FORM .TRAN TSTEP TSTOP TSTART FOUR CUTFUT FRF~

~XAMP tFS .TRAN INS LOOMS
.IRAN INS ICCONS 500NS
.TRA N iNS ICONS FOUR VOUT IOOMEG

TSTEP IS THE PRINTING INCREMENT BETWEEN TIM€ PCINTS, TSIrJP IS THE FINA L
TTMFPOINT, AND TSIART ~S THE INITIAL TT MEPOINT. IF TSTART IS CMITTED, IT IS
ASSUMED IC P~ ZERO. THE TRAN SIENT ANALYSIS ALWAYS BEG INS AT TIME ZERO. IN THE
INTERVA L (Z ERO,  ISTART ), THE CIRCUIT IS ANALYZED (TO REACH A STEACY STATE ), ~UT
NC CLIPLTS AR 5 STORED. IN THE INTERVAL (ISTART, TSTCP), THE CI RCUIT IS
A NALY ZFC AND OUTPUTS A RE STORED . THE NUMBER OF T IMEPOINTS IN THE IN TERVA L
(ZE RO , 1STOP) CANNOT EXCEED 1001, AND THE NUMBER OF TIMFPOTNTS IN THE
INTE RVAL (TSTART , ISTOP ) C ANNOT EXCEED 101.

FOR FOURIER ANA LYSIS , OUTPUT IS THE OUTPUT VA R IAP L E AND FRFQ IS THE
FUNOAMENTAL FREQUENCY. THE FCURIER ANALYSIS IS PERFORMED OV ER THE INTERVAL
ITSTOP—PER I CD.TSTOP), wHERE TSTOP IS THE FINAL TIME SPECIFIED , AN D PE R IOD IS
CNF PE RIO D OF THE FUNDAMENTAL FRECUENCY . THE DC CCMPCNENT AND THE FIRST N(’~E
CCMPCNENTS ARE DETERMINED. FOR MAXIMUM ACCURACY , THE NUMBER CF PFPIPDS IN THE
INTF RVA L (TSTART,TSTOP) SHOULC PE AS SMALL AS POSSIBLE (RUT NEVER LESS THAN
ONE). THIS INSU RES Tr441 THE NUMBER OF TI MEPO INTS IN CNE FUNDAM ENTAL IS AS LARGE
AS POSSIBLE. IF THE FOURIER ANALYSIS IS NOT DESIRED, OMIT THE LET’E°S FOUR AND
TH E FOURIER S P EC ( F IC A T I C N S .

FOR SOME °RLJBLEMS, TO AVOI D NUMER ICAL INSTABI LITY IN THE INTEGRATION
ALGCRTIHM, iT MAY SF NECESSARY TO SPECIFY AN INTERNAL TIME STEI~ ~ I1ICH IS SMALLER
THAN THE PRINTING INCREMENT (‘STEP). EXAMPLES OF THIS TYPE OF PROBLEM ARE
ASTASLE MULTIV I3RATCRS , SWEEP CIRCUITS, AND OTHER HIGHL Y NONL INFA R CIRCUITS
WHICH HAVE W IOCLY SEPARATED TIME CONSTANTS. SPICE ALLOWS THE USER TO SEGMENT
THE TIMF INTERVAL INTO FRCM ONE TO FIVE SUBINTERVAL S AND SPECIFY A DIFFERENT
TIM E STEP FOR EACH SURINTERVAL . THE INTERNAL TIME STEPS AND SUe!NT~ RV AL
ENCFCINTS A PE SPECIFIED AFTER THE START ING TIME (TSTART ) AND BEFOR F THE FOURIER
ANA LYSIS OPTIONS:

GEN ERA L FOR M .T~ A N 1515P TSTOP TST ART Cl El D2 E2 ... 05 E5 FOL. R C LTP UT FR EC

EX AMPLE .TRAN iNS LOOM S 0 O .1NS IONS O.5NS LOONS

01 IS THE FIRST INTERNA L TI MESTEP AND El IS THE ENDPOINT OF THE FIRST
SUBINTERVAL , 02 IS TI4~ SECCNO INTERNAL TI MESTFP AND F2 (S THE ~NOPOINT OF THE
SECCNI) SUBINTERVAL , AND SO CM . IN THIS EXAMPLE, THE PROGRAM W ILL USE AN
INTERNAL TIME STEP OF 0.LNS FC R THE INTERVAL (O,IONS) AND AN INTE RNA L TINE STEP
OF C.5P4S FOR THE INTERVAL (LONS,IOONS). OUTPUT IS STILL STOREC EVERY iNS. THE
T I3T~ L NuM~ FR tIE TIMEPOINTS TO BE COMPUTED CANNOT EXCEED 1001.

FXA ~ P1F .TRAN 1t.S IQOUS 0 O.LUS lOCUS

IN 114(5 EXAMP LE , THE PRCGRAP ~‘tLL USE AN INTERNAL TI M E STEP OF C. ILS OVER THE
ENTI RE TR ANSIENT INTERVAL BUT W ILL STORE OUTPUT ONLY AT IUS INTFRVA LS . HENCE,
THE PROGR AM STCPCS AMO OLT~ UTS EVERY T~ NTH TIMEPO INT.

_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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E XAMPLF DATA CEC~(S

THE EflLLO~~ING CECK CE TERMIN FS THE CC OPERATING PCINT AND SMA LL SIGNA L
TR ANSFER EUNCTION OF ~ S I M P L E  D I P F E R E N T !A L  P A i R .

SI 1’PL F D (FF RFNTTAL PAIR
V C C 7 C O C L2
yE! 8 0 DC —12
V IN 1 0
RS 1 1 2 IX
P52 6 0 IX
01 3 2 4 MOOt
02 5 6 4 MDCI
PCI 7 3 10K
R C2 7 5 10K
~~C 4 8 LOX
.MCOEI. MCD L NPM ~F=50 V A=50 ISaL.OE—L2 RB~ tOO
•Q1,..T V C LT 5 0
.CC CP VOLT yIN
.FNO

THE FCLLOW IMG DECK DETERMINES THE DC TR ANSFER CURVE ANC THE TRANSIENT
PULSE RESPONSE OF A SIMPLE RTI INVERTER. THE INPUT (S A PULSE FRCM 0 TO 5 VOLTS
WITH DELAY , RISE , AND FAL L TIMES CF 2NS AND A PULSE WIDTH OF 3011S. THE
TRANSIENT INTERVA L (S 0 TO lOOMS (N INS STEPS.

SI MPLE RTL INVERTFR
VCC 4 0 0 C 5
yIN 1 0 PIJLSF 0 5 21¼ S 2N5 2NS 3ONS
RB 1 2 lOX
01 3 2 0 01

/~ PC 4 5 1K
.CLTPUT VC 3 0 PRINT DC PLOT TR 0 5
.MCUEL 01 MPN 3Fs2C R8aLOO .TF O.1NS CJCa2PF
.CC IC VIM C 5 C.I
.TRAN iNS LOOMS
. E N D

THE FOLLOWING CECK DETERM INES THE AC SMALL SI (NAL RESPONSE OF A ONE
TP 6NSI5TO~ AMPL IFIER OVER THE FREQUENCY RANGE OF 1HZ TO IOOI4EGP4Z.

CNE TR ANS ISTOR AM PLIFIER
VCC 5 0 DC 12
VEE o 0 DC —12
VIM 1 0 AC 1
RS 1 2 1K
01 3 2 4 X 33
PC 5 3 500
RE 4 6 IN
C BYP AS S 4 0 1UFD
.CUT V 3 3 0 PLOT MA PM
.AC DEC 10 1HZ LOONEGHZ
.NCC E%. X33 NPN 6F~ 3O RRzSt) yAa 2O

• .ENC

• ‘S
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External Models in SPICE

SPICE allows external, user—defined models. This feature is particularly
convenient when a large circuit includes several identical subcircuits such as
operational amplifiers or logic gates. The external model card is defined by a
.MODEL card , a set of element cards (which may include any legal SPICE element
except reference to another external model), and a .FINIS card. The .~IODEL
card format is

MODEL model name X node 1 node 2 . . • node N

The .MODEL card introduces subsequent cards as a definit ion of an external model.
All subsequent cards up to the next .?INXS card are treated as a single def~ ni t ion .
These cards are conventiona l element and device cards and refer to the node numbers
tha t appear in the introducing .~IODEL card . Note that with the exception of node
zero , the node numbers that are used in the definition of an external model are
dummy node numbers and may be given the same number aa used within the circuit to
be analysed .

Reference to an external model is similar to reference to a bu i l t—in  model.
However, the names of devices described by an external model must begin with the
letter X (just as transistors device names must start with the letter Q) .  Thus
one writes

X device name nI. n2 . . . an nodel name

The nodei nl thru an are actual circuit nodes. They are paired with the node numbers
of the external .MODEL definition on the basiS of position alone . The first node
in the model card is paired with the first node in the device card , the second with
th. second and so on.
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