
t0N I! M H*N I~~~~s 6 flItS

ACIENBACH. M F KANNINEN 
MECHANICS. (U)

I”

___

END
bATE
FILW

— —  7- 78
one

i

a



FOR FVRT E~R TRA~

CRACK TIP PLASTICITY IN DYNAMIC

FRACTURE MECHANICS V

by

3. D. Achenbach

Department of Civil Engineering
Northwestern University
Evanston, Illinois 60201

and V

M. F. Kanninen

Applied SOli
~ a~~:

l
~~~

iCS Section j
~$ 

14 ~~
Columbus , Ohio 43201

V
~ Off ice of Naval Research

N000l4-76-C-0063 (Northwestern)

and

N00014-77-C-0576 (Battelle)

0~
H

APRIL 1978
V

. 
LU

NU -SML-TR . No. 78-1

~~~~~~~

LL

Approved for public release; distribution unlimited

- ~~~~~~~
- 

— —

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ A



r~
_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~

—--

~~~~~~~~~~~

UNCLASSIFIED
SECURITY CLASSI PICATION OF THIS PAGE (Whari Oat. Znt•r•d)

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~A I~~~ READ INSTRUCT IONSi~~ rui~ I L1~J~~.UM~~I~ IA I I~JI~ ‘~ “~~~~ BEFORE COMPLETING FORM
I~~~ tPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

~±t{NU-SML-TR-~~~ 78-~j  V

TITLE1’aid &ibdU.) TYP E OF REPORT & PERIOD COVERED

( 
~~~ RAcK TIP PLASTICITY ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~nterim r€.p4 

i,,, /
j _~~~~HAN CS • - / 6. ~ r~~~~ iNO OR G. REPORT NUMBER

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Q~ I~ 
~~~%l4~~6~~~~~~~/~Northwester )

— 1 N00014-7/-0576 (Battelle) -~t,.
9. PERFORMING ORGANIZATION NAM~~~~~D AODRESS 10. PROGRAM ELEMEN T; PROJECT . TASK

Northwestern University, Evanston, Ill. 60201 ~
and Battelle, Columbus, Ohio 43Z01 ~~ 

—
~

I~~ CONTRO LLING OFFICE NAME AND ADDRESS / ~f ~~~~UflT IJL 1

Off ice of Naval Research ~ Apr ~~ 178 / ~Structural Mechanics Program 11 u~~~..n sr~~~~~~s

~~~~~~~~~~~~~~~~~~~~~~~~~~~ VA. 22217 22
14. MONITORING AGENCY NAME & ADORESS(IS df f l.ron t from Controilin4 OWe.) IS. SECURITY CLASS. (of thu r.port)

U NCLASSIFIED

IS.. DECLA SSIFICATIOPI/ DOW NGRA OING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thi. R.p ort)

Approved for public release ; distribution unlimited

‘AT. I?. DISTRIBUTION STATEMEN T (of li. aba tract .nt.rod hi Block 20. II dill .r.n t f r om R.perf)

IS. SUPPLEMEN TARY NOTE~\ 
(

To be presented at\I$’ Office of Naval Research International Symposium on
Fracture Mechanics,,~ eorge Washington University, Washington , DC. 20052 ,
September 11-13 , 1778.

l~ . KEY WORDS (Continua on varai aid. it nacaawy aid id.ntlty by block numb.,)

plasticity
rapid crack propagation

• dynamic effects
• ar-tip stress fields

20. RACT (Contima. on rsvara• aid. It n.c...ay aid ldaitifr by block numb.,)

The objective of this work is to develop a procedure by which crack tip
plasticity can be taken directly into account in rapid crack propagation. To set
the s tage , a background descr iption of linear elastic dynamic fracture mechanics
is first given. Existing solutions for dynamic crack propagation and for quasi-
static crack grow th accompanied by crack tip plasticity are reviewed. It is
found that existing dynamic plastic fracture solutions are essentially confined t
strip yield (Dugdale model) plastic zones that are collinear with the crack.

~~~~~~~~

DD , ‘~,, 1473 EO~T1ON OF I NOV 6* IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE cWlt.n DaIa 

~
tIç.r.

~

_ _ _  _ _ _ _  _ _  

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ ~~~~~~ w~ ______________________ — ___________



~~~~~~~~~~~~~~~~~~~~~ 1~ CLASS IFIED
sicuip~ ry CL ASSIFICATION OF TNIS PAGE(Whai 0.1. Istsi~sd)

The ultimate goal of the research reported in this paper is to provide the
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‘loading behind the crack tip is specifically allowed. This formulation leads to
a set of three first order ordinary differential equations that are nonlinear
with variable coefficients. Therefore, a numerical solution was necessary. The

7 results show that s, the order of the crack tip singularity,and 
~ , the angle

defining the position of the plastic unloading interface, while h?ghly dependent
on the slope of the stress-strain curve in the plastic regime, are much less
dependent on the crack speed. Specifically, f or a given crack speed , bo th ~sI
and g increase with the slope of the plastic portion of the stress-strain curve.
For a~given bilinear relation, Is i decreases modestly with crack speed while e
increases. Possibly of most signtficance, it appears that the change in the
order of the singularity with crack speed may be considered to be negligible if
the changes in the crack speed are not too large. If borne out by the analysis
of the Mode I problem now in progress, this finding will greatly simplify the
computation of dynamic crack propagation/arrest events.
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CRACK TIP PLASTICITY IN
DYNANI C FRACTU RE MECHANICS

.1. D. Achenbach
Department of Civi l Engineering
Northwestern University
Evanston, Ill inois 60201

N. F. Kanninen
Appl ied Solid Mechanics Sec tion
Bat tel le
Columbus, Ohio 43201

INTRODUCTION AND SUMMARY

Dynamic fracture mechanics encompasses all problems involving crack grow th
initiation, propagation, and arres t in wh ich , for an acceptable solution,
inertia forces must be included In the equations of motion of the cracked
body . At present, dynamic fracture mechanics solutions are largely confined
to conditions where linear elastic fracture mechanics (LEFM) is valid.
These are appropriate when the plastic deformation attending the crack tip
is small enough to be dominated by the elastic field surrounding it. Prob—
lems of crack growth initiation under impact loads and of rapid unstable
crack propagation and crack arrest can be treated with LEFM by using dynam—
ically computed stress intensity factors and experimentally determined

• dynamic fracture toughness values. However, as in static conditions, there
are many tough, duc tile mater ials f or which LEFM canno t be conf idently
applied . Currently, there is little alternative: a dynamic plastic frac-
ture methodology does not now exist. Indeed, ~ork in developing a plastic
fracture mechanics treatment of the slow stable crack growth under quasi—
static monotonically increased loading has not yet come to maturity .

The objective of this work is to develop a procedure by whi n crack
tip plasticity can be taken directly into account in rapid crack propaga-
tion. To set the stage, a background description of linear elastic dynamic
fracture mechanics is first given. Then, existing solutions for dynamic
crack propagation and for quasi—static crack growth accompanied by crack
tip plasticity are reviewed. It is found that existing dynamic plastic
fracture solutions are essentially confined to strip yield (Dugdale model)
plastic zones that are collinear with the crack. In addition, such models
do not contain the effect of material unloading. It has been concluded
that more realistic treatments of crack tip plasticty via an incremental
plasticity formulation for a propagating crack are needed.

The ultimate goal of the research reported in this paper is to pro-
vide the basis of a computational procedure for plastic dynamic crack propa-
gation in structures of engineering interest. We envision that the results
might be used to construct a special crack tip element in a finite element
or other numerical analysis procedure. The prerequisite for such a develop-
ment is knowledge of the nature of the crack tip singularity. This can be
obtained via an asymptotic analysis in which attention is focused on the
very near crack tip region . Previous solutions for a crack propagating
dynamically with attendan t plastic deformation have not been able to include

___________________________ • .—.~-—- -- ---• ..---—-•—-~---~-- • • -•— • •. - —--~‘• —- -.-—— “--—- • • .— • • -—-  _______________



the singularity . This has been accomplished here with an asymptotic analy-
sis in the specific case of antiplane shear (Mode III) crack propagation .
While such calculations have little practical significance , the solution
presented in this paper has allowed some important conclusions to be drawn
and has pointed the way to the solution of Mode I problems .

In an asymptotic analysis, only the highly strained material in the
near tip regime is considered. Hence, it is the stress—strain behavior at
very large strains that is important. In fact, the limiting speed for
crack -propagation is dictated by the slope of the stress—strain curve at
large strain. In this sense only a material model with a finite slope of
the stress—strain curve at large strains offers a basis for such calcula-
tions; i.e., any other formulation will give either a zero or an infinite
wave speed for large strain , neither of which are physically realistic.

The material model used in this work Is based on Prandtl—Reuss
incremental plasticity with a bilinear stress—strain relation . Irreversible
material unloading behind the crack tip is specifically allowed.. This form-
ulation leads to a set of three first order ordinary differential equations
that are nonlinear with variable coefficients . Therefore, a numerical solu-
tion was necessary. The results show that s, the order of the crack tip
singularity, and the angle defining the position of the plastic unload—

• Ing interf ace, while highly dependent on the slope of the stress—strain
curve in the plastic regime, are much less dependen t on the crack speed.
Specif ically , for a given crack speed, both si and Q~, increase with the
slope of the plastic portion of the stress—strain curve. For a given bi-
linear relation, si decreases modestly with crack speed while increases.
Possibly of most significance, it appears that the change in the order of
the singularity with crack speed may be considered to be negligible if the
changes in the crack speed are not too large. If borne out by the analysis
of the Node I problem now in progress, this finding’~ ill greatly simplify
the computation of dynamic crack propagation/arrest events .

STATUS OF DYNAMIC FRACTURE MECHANICS

There are two generic problems that fall into the domain of dynamic fracture
mechanics. These are, (1) a cracked body s ubjected to a rap idly vary ing
load ing, and (2) a body containing a rapidly propagating crack. The first
type has wide applicability . Several laboratory test specimens (e.g.,
Charpy, Drop Weight Tear Test) and virtually all structural components sub-
jected to impact loading fall into this category. The second type of prob-
lem, while having a much narrower field of applicability , is no less im-
portant. There are several kinds of engineering structures in which un-
checked unstable crack growth would have catastrophic consequences . These
include gas transmission pipelines, sh ip hulls , and nuclear reactor corn—
ponents . In these structures , it is essential to go beyond the normal
fracture mechanics design philosophy of simply attempting to preclude crack
growth initiation . Specific attention must be given to the arrest of un—

• stable crack propagation. This second line of defense requires direct con-
sideration of rapid crack propagation preceding arrest.

Engineering structures requiring protection against the possibility
of large—scale catastrophic crack propagation are generally constructed of
ductile, tough materials. For the initiation of crack growth , LEFM pro—
cedures can give only approximately correct predictions for such materials.
The elastic—plastic treatments required to give precise results have not
yet been developed in a completely acceptable manner , even under static

- • conditions . The followtng describes current progress in this area to
• provide a starting point for the development of the dynamic plastic propa-

gating crack tip analysis that is the objective of this work .
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Linear Elastodynamic Treatments

Under the assumption of linear elastic material behavior , the most promi-
nent parameter is the elastodynamic stress intensity factor. This para—

• meter , which enters in the computed elastodynamic stress field in the
immediate vicinity of a crack tip, depends on time t and on the speed of
the crack tip , v. It is given the symbol k = k(t,v) to distinguish it
from the stress intensity factor for the corresponding quasi—static problem
(when inertia terms are ignored in the computations), indicated by K=K(t).
Although not explicity indicated, bo th k( t,v) and K(t) also depend on the

• crack length, on the external geometry of the cracked body, on material
• . constants, and of course on the external loads.

The general form of the elastodynamic near—tip f ields for a crack
propagating rapidly along a rather arbitrary but smooth trajectory is well
known. Let us consider a crack propagating in its own plane with a time—
varying crack—tip speed v(t). The two—dimensional geometry with a system
of moving polar coordinates centered at the crack tip is shown in Fig. 1.

xa

v (t )

/ . Fig. 1

-
~~~ For symmetric opening up of the crack (Mode I ) ,  the instantaneous hoop

stress near the crack tip may be expressed as

- 
1 ~ _

~~~ k1
(t,v) T~ (O ,v) , (1)

0 (2ir )~ r

where T~ (O ,v) = 1, and k1(t,v) is the Mode I elastodynainic stress intensity
factor. The function T~ (0,v) is universal in that it is independent of the
overall geometry and the loading. It is of note that the maximum value of
T’(O ,v) moves out of the plane 0 0 (the plane of crack propagation) as
v~t) increases beyond a certain value. 

Generally k1(t,v ) is much more
difficult to compute than the corresponding quasi—static stress intensity
factor.

The conditions governing crack motion can be expressed in terms of
k1
(t,v) and an experimentally determined critical value that is assumed to

be a property of the material. In conventional (quasi—static) LEFM one has
K1 = Kc as the condition for crack instability . In the dynamic generaliza-
tion of LEFM, K has two counterparts . First, for the initiation of crack
growth

k
1
(t,0) = K

d
(à) (2)

where 6 represen ts the loading rate. For perfectly brittle fracture Kc
=K d .Similarly , f or a pr opagating crack

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~ -•



— .. ~~~~~~~~~~~~~ — ~~~~ —.- --—..—--,,—-—-——- •—. ---—‘.- ‘~~~~
‘_

~~~ .‘,r ..w.~ —,~-—, v • ~~~~ - - , — ..~~ -.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, ? ~~

_ , _ _ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

k1(t,
v) = K

D
(v) , (3)

where is known as the dynamic fracture toughness.’ A third such rela—
tion is sometimes used for crack arrest. This is expressed in terms of K

1and an “arres t toughness ” parameter , Ka . However , while the concept can
• be useful as an approximation, clearly , for a propagating crack, arrest

can only occur when Equation (3) cannot be satisfied. That is, a crack
will arrest at a time ta when k1 < KD for all t >  t~ • Thus, crack arres t is
properly viewed as the termination of a general dynamic crack propagation
process , not as a unique event governed solely by material properties as
suggested by the static crack toughness Ka approach. While there are cir—
cumstances where such a simplistic point of view gives an adequate engine-
ering approximation, its limitations can only be determined via a rigorous,
fundamentally correct approach .

Applications of LEFM can be made either in terms of the stress
intensity factor or the strain energy release rate parameter G. The
equivalence between these two quantities extends to the dynamic situation
as well. Thus, the LEFM criterion for crack propagation can be generalized
to the dynamic situation as an equality between G and its critical value R,
the energy dissipation rate required for crack growth. Then, for given
structural geometry, applied loads, and operating temperature, an alterna-
tive dynamic crack propagation condition to Equation (3) is

G R(v) . (4)

In terms of Equation (4), a dynamic extension of LEFM can be viewed as one
which delineates the structural contribution to a propagating crack——the
driving force——from the material’s fracture property——the resistance. The
material property represents the energy dissipated ~n flow into the crack
tip and the fracture processes accompanying crack extension. The crack
driving force includes three individual contributions. A net change in
these three components, per unit area of crack extension, is called the
dynamic energy release rate, or , equivalently , the dr iving force for cra ck

• extension. Formally,

G 1 ldW dU dTl... 1 JdW dU dTl
- 

b ~da 
- 

da 
— 

daf 
- by ldt dt 

— f ‘

where U is the strain energy , T is the kinetic energy , W is the work done
on the s truc ture by ex ternal loads , a is the crack length, and b is the
thickness of the body at the crack tip.

Al though Equation (5) apparen tly rep resen ts a global quan tity tha t
must be evaluated by integrating over the entire structure , G can always
be given a local crack tip interpretation. In particular, it can be di-
rectly connected to the dynamic stress intensity factor. For plane strain
conditions we have

G = A(v) k~ , (6)

‘In this paper, a crack tip parameter with a letter subscript always denotes
a material property. Because the basic definitions are just the same in
dynamic LEFM as in conventional static LEFM, there is no reason to put a
subscript on the computational quantities as some authors have done, ex-
cep t for I, II , and III to indicate the fracture mode. In fact , because
of the confusion between material properties and computed entities that
then arises, there is good reason not to do so.

~~~~~
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where E and v , as usual, are the elas tic modulus and Poisso n’s ratio,
respectively , and A is a geometry independent function of the crack speed
given by

(v/c
T
)
2(l_v 2/c

~~~A(v) ½ 1 . (7)
(l—v)[4(1—v /c

L
) (1—v /cT) 

—(2—v /cT) ~

Here C
L 

and CT are the longitudinal and shear wave speeds, respectively .
The function A(v) is unity at zero crack—tip speed, and increases monotoni—
cally to become unbounded as V~*C R i whe re CR is the speed of Rayleigh waves
in the material. As v -p- c

R 
the elastodynamic stress Intensity factor van-

ishes, and we find G+O as v~
+c R. Consequently , without an external driv-

ing mechanism right at the crack tip, cracks cannot propagate faster than
Rayleigh surface waves.2

Calculational procedures to evaluate k values are well advanced.
Comprehensive review articles are available for further background——see
Refs. [1—4]. The experimental determination of dynamic fracture toughness
values is also well advanced——see Ref. [5]. More recent information on the
application of linear elastic dynamic fracture mechanics to crack arrest
predictions are contained in the paper by Hahn, et al in this volume. We
now move on to consider solutions giving direct attention to the plastic
deformation attending a moving crack tip.

Dynamic Strip Yield Plasticity Treatments

The basic postulate of LEFM is that all inelastic irreversible energy dis—

• sipation processes that accompany crack extension can be included in a
single material property . This property may depend on thickness and tern—
perature, but is independent of the crack length, the applied loads, and

- - 
the external geometry of the body . This also applies to dynamic fracture
mechanics with a dependence on crack speed being allowed to take account of
strain rate effects in the intensely deformed region ahead of a propagating
crack. This will be valid when the plastic zone at the crack tip is small
relative to other dimensions of the cracked body . But, for ductile tough
materials , crack tip plasticity can be quite large. For such materials,
it beco mes necessary to improve on the LEFN autonom ous crack tip plas tic
zone assumption.

In ductile fracture, crack growth takes place by the nucleation and
coalescen ce of voids accom panied by substantial plastic deformation . When
the dominant mode of this deformation is shear on 45 0 planes through— the—
thickness, crack growth occurs under conditions which approximate plane
stress [6]. A useful model for this situation is the strip yield model
given by Dugdale [7] in which the plastic zone is taken to be simply an
extension of the crack. In essence, the Dugda le crack model is ob tained by
superposing two elastic solutions. The first is that for a stress free

2The four relations (2), (3), (4), and (6) can be used to establish a theo—
retical relation between K,~ and K

[A~v 
R(v

)]
½

where R(0) corresponds to the static critical energy release rate .

~~~~~~



crack of length 2a in an infinite plate under a uniform tension i. The sec—
cond is for a crack loaded over Intervals of leng th 2.. = a—c (2c Is the physi-
cal crack length) at each of Its ends by a tensile stress equal to the yield
stress Y of the material.3

Dugdale recognized that the stress singularities in each solution not
only occur at the same point but have exactly the same character. The singu-
larities can be made to exactly cancel by adjusting the plastic zone lengths
such that

c ira
- 

cosw . (8)

A more direct way of deducing Eqn. (8) was given by Goodier and Field [8].
Because the singular terms in the stress functions for each subproblem dif-
fer by only a multiplicative constant, the singularities can be abolished by
simply setting the coefficient of this term in the combined stress function
to zero. In an equally expeditious manner, Goodier and Field were able to
determine the normal displacements along the crack line for the Dugdale
model. In particular , they found 5, the crack opening displacemen t at the
tip of the crack, to be

= 
(K-I-i) 

~~ log 
[
sec(f 

~
)] , - 

- 

(9)

where K = (3—v)/(l+v) for plane stress, 3—4v for plane strain (v is Poisson’s
ratio) and G is the shear modulus. The importance of this result is in the
connection that exists between 5 and other crack tip fracture parameters.
As shown by Rice [9]

G = J = Y 6 (10)

for the Dugdale model. Here, G is the LEFM energy release rate defined above,
J deno tes the value of the J integral , and Y is the yield stress. Clearly ,
the equivalence of the various different parameters arises because the
Dugdale model solution is completely within the confines of linear elasticity .

Turning now to rapid crack propagation, Goodier and Field [8] appear -

to have been first to use the Dugdale model in a dynamic solution. They con—
sidered a semi—infinite crack with a finite length strip yield zone propa—
gating at a constant speed in an infinite medium . For this situation, the
yield zone length (determined as in the static case by abolishing the singu-
larity) and the crack tip opening displacement are found to be independent
of the crack speed. Kanninen, et al [10—11] extended this approach by tak—
ing a constant length Dugdale model crack propagating at a constant speed
as the basis of a strain rate dependent crack tip plastic zone calculation.
In this case , the plastic zone length also is independent of crack speed and,
conseq uently, is just identical to Eqn. (8). The crack tip opening displace-
ment, in contrast, does exhibit a crack speed dependence. This result can
be written

3it is often incorrectly assumed that plastic deformation like that of the
Dugda le model is alway s ob tained if the material is thin eno ugh that pl ane
stress conditions hold . However, ‘thinness ’ is not enough to assure this
kind of deformation. Aluminum foil, for ex amp le , does not exhibit plastic —

enclaves of this kind . In addition to the specimen being thin , the materi-
al must work harden very little. Then, it will neck as soon as it yields
giving through—the— thickness relaxation and , consequently , narrow elongated
zones that extend along the prolongation of the crack line.

- ~~~~~—~~— •  -~—--—-~~~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ______
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~5(v) = A(v) 5(O) , (11)

where A (v) is the function given by Eqn . (7) and tS (O) denotes the value of
the crack tip opening displacement in the static case ; I.e., as given by
Eqn. (9).

The idea motivating Kanninen , et al [10,11] was that the strain gra-
dient ahead of a crack tip is so steep that the-plastically deformed materi-
al is fractured at enormous strain rates. To take this into account , linear
superposition was used to obtain a model in which the flow stress varied -

arbitrarily along the length of the strip yield zone. The flow stress val-
ues were assigned in accord with a known strain rate dependent constitutive
relation using the crack line disp lacements in the strip yield zone to de-
termine the local strain rates. In this way , predict~ions of the limiting
speed of ductile crack propagation were made——the limiting speed being
governed by the high strain rate dependence of the crack tip flow stress.

Glennie [12,13] has also adopted a model based on a crack propagating
with a thin plastic zone and a strain rate dependent yield stress. He
similarly concluded that the increased yield stress at high strain rates
near the crack tip is the major factor limiting the crack speed. In addi-
tion, by comparing with a small—scale yielding calculation, he found that
the LEFM stress intensity factor can be used for dynamic beha7ior even when
there is considerable plastic yielding. However, because of the uncertainty
of the constitutive relation at high strain rates, no qualitative connection
with fracture toughness was made.

While some useful qualitative conclusions can be drawn from these
calculations, it is not possible to obtain precise r~~ults. There are
several shortcomings causing this. First, steady—state crack growth in an
infinite mediu .i~ is an obviously poor approximation to reality. .Second , the
strain rates that are predicted in these models (and, hence, for which con— -

stitutive relations are required) are several orders of magnitude greater
than can be measured in any conventional test procedure. Third, this kind
of model cannot take account of material unloading in the wake of the crack.
Four th and f inally , there is a definite lack of correspondance between a con-
tinuum strip yield model and the actual fast fracture mechanisms.

As described by Hoagland , et al [14], the morphology of the plastic
deformation attending crack propagation largely consists of highly segmented,
but interconnected , regions arising from isolated high toughness zones that
are bypassed and remain unbroken even at relatively large distances behind
the crack front. They concluded that much of the energy absorbed in unstable
crack propagation can be traced to the plastic stretching of these liga-
ments and, hence, that these are the principal source of the fracture re-
sistance. These experimental observations were supported by computational
results obtained with a quasi—static segmented (discontinuous) strip yield
zone model. This model is somewhat similar to one proposed by Dvorak [15]
to investiga te crack growth accompanied by weakened ductile links within a
discrete crack zone. This zone, which is supposed to form as a result of
selective microcrack propagation in the elastic material ahead of the main
crack , is connected with the energy absorption rate and fracture toughness.

All of the models discussed so far in this section suffer from the
steady—state assumption which forces the propagating crack to maintain a
constant length . A more realistic solution was obtained by Atkinson [16].
He considered a crack expanding at a uniform speed (Broberg model) with
collinear strip yield zones, cancelling the singularity to obtain the length
of these zones. In contrast to the steady—state solutions , the plast ic  zone
size depends on the crack speed in this problem. In fact, it appears to de-
crease with crack speed. Unfortunately , the result is quite complicated and
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no simple dependence can be extracted. Also, although it appears to be pos-
sible, no expression for the crack tip opening displacement was given that
could be used to assess the applicability of Eqn. (11).

In short, while quite attractive from an analytical point of view,
strip yield models suffer from a number of shortcomings when viewed from a
physical mechanisms standpoint. Consequently , other more physically plausible
models seem to be required for a realistic assessment of crack tip plasticity
in dynamic crack propagation.

Dynamic Crack Propagation with Large—Scale Yielding

The strip yield models described in the preceding section were all of the
Dugdale type; i.e., with a thin plastic zone ahead of and collinear with
the crack. Other types of strip yield models do exist. Models employing
dislocation pileups on slip planes inclined to the crack plane to represent
crack tip plasticity have been developed. A particularly tractable model
employing a superdislocation on an inclined slip plane used by Atkinson and
Kanninen [17] has been found to give highly reasonable results for static
conditions. Riedel [18] has used a similar picture to address dynamic
loading in a strain rate sensitive material. However, it has not so far
been possible to incorporate this type of strip yield zone plasticity into
a model for a rapidly propagating crack tip. -

At present, calculations for unstable crack growth in elastic—plastic
materials can only be carried out using numerical methods. There generally
are two deficiencies in all these approaches. First, the work is addressed
to very specific applications ; e.g., pipe fracture . Second , the crack growth
criterion used is overly simplistic. Nevertheless , it is useful to briefly
review the work that has been done in order to properly assess the direc-
tions for future progress. In doing so, attention will be put on the frac—
ture mechanics aspects only. Computational procedures are well covered
elsewhere——for example, see Ref. [19].

Current results in elastic—plastic dynamic crack propagation seem to
be focused on one of two specific applications: analysis of the Charpy
impact test [20—21] and crack propagation in pressurized pipes [22—24].
Ayres [20] performed a two—dimensional (plane strain) elastic—plastic finite
element analysis of a precracked Charpy V—notch specimen. Attention was
focused on the value of the J integral for the initiation of crack growth.
This is given by

J = f W d y — T ~~~~ds , (12)
r

where x and y are Cartesian coordinates (y normal to the crack line), ds is
an increment of arc length along a contour r , T is the stress vector on the
con tour , u is the displacement vector, and W is the strain energy density .
He further defines a corresponding stress intensity factor K~ given by

= [JE/ l_v2]½ . (13)

Recognizing that path independence of J cannot be expected in the dynamic
situation , Ayres used a contour that included only the node points closest
to the crack tip to minimize the error involved. He concluded that values
of J and K~ computed in this way offer reasonable candidnte criteria for
dynamic elastic—plastic fracture .

Norris [21] has taken a different point of view in his analysis of tI~
initiation of crack growth in a Charpy V—notch specimen. He has used a
three—dimensional finite difference method and the semi—emp irical crack
growth criterion developed by Wilkins [25]. Wilkins ’ criterion stems from

• ~~- —~~~~~~~ --~~- --~~~~~ — - —• • - . ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
‘—

~~-.- .-~~~~~
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a ductile fracture model and contains material dependent parameters that are
adjusted (by trial and error) to fit the experimentally determined fracture
initiation in several different geometries . It takes the form

t
D(t) = 

~ 
f ( o )  d~ (14)

0

with fracture occurring when D > D0 over a specified region. In Eqn. (14),
a denotes the mean stress while d~~ is the increment of equivalent plastic
strain. It can be seen that the parameter D can be interpreted as an inte-
grated damage with the critical damage being roughly the strain required for
crack initiation . In particular , Norris found that fracture initiation in
a Charpy test is associated with net section yielding and notch root strains
of about 100 percent. In contrast to Ayres , he concludes that a calculation
of K is therefore not relevant.

A complication existing in all realistic dynamic fracture problems is
that the boundary conditions are generally time—dependent and , arising from
an interaction between the cracked body and the agency supplying the driving
force for fracture, they are somewhat uncertain . Thus, in the Charpy speci—
men, the forces arising from the striking tup must be known in some way . For
laboratory tests, the Interaction between the test specimen and the loading
machine must be taken into account. Lastly , for pipelines , a relation be-
tween crack speed and the pressurizing medium must be considered.

In the work of Emery , et al [22], an axial—through—wall crack was sud-
denly introduced in the wall of a pipe pressurized by either hot water
or air. A finite difference solution procedure was used with the leakage
of fluid through the crack taken into account. In their elastic—plastic
calculations , the crack tip was advanced according ~ a critical crack tip
strain criterion of 2 percent. Of some interest , their results suggest
that the simpler models for crack propagation in ductile pipes using es—
sentially LEFM concepts devised by Popelar, et al [26] and by Freund , et al
[24] may be reasonably accurate.

The flow area from a postulated pipe break is an important parameter
in the design of nuclear reactor steam supply systems. This problem was
addressed by Ayres [23]. He determined the largest stable crack that could
suddenly appear during normal operating conditions using an elastic—plastic
finite element analysis. The J integral ductile fracture criterion——see
Eqn. (l2)——was used to predict the stability of the hypothetical cracks.

Some progress has been made on elucidating the effects of crack tip
plasticity in dynamic crack propagation, both theoretically [27] and semi—
empirically [28]. Broberg [27] concludes from a study of the morphology of
material separation that energy dissipation accompanying rapid crack propa-
gation can be separated into two components : that dissipated in a process
region in the neighborhood of the crack tip and that dissipated in the
plastic region outside the process region . His Investigations indicate that
the plastic energy dissipation decreases with increasing crack speed while
the converse is true for the process zone. The net effect can be a decrease
of the total energy dissipation with increasing speed to a minimum followed
by a rapid increase at higher speeds. This is consistent with the character
of the bulk of the experimentally determined = K

D
(v) curves that have

been reported.
In contras t to Broberg ’s continuum level approach , Shockey, et al

[281 have developed a micromechanical computational capability for fast
fracture . Their approach is to directly simulate the events occurring in
the process zone and , by computing the energy dissipation rates, determine
the fracture toughness of a propagating crack. This is done by considering
crack growth to occur by the nucleation , growth , and coalescence of micro—
fractures in the plastically deforming material at the crack tip. Input is
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taken from measuremen ts on specimens fractured under stress wave loads. In

this way, they hope to be able to derive fracture toughness values directly
from micromechanical flow and fracture processes.

To close this section of the paper, it might be concluded that current
analyses are clearly unable to ascribe elastoplastic dynamic crack propaga-
tion to a basic condition at the crack tip . Thus, the delineation of a
proper fracture criterion may be the most critical outstanding problem in
the field. The next section describes recent progress in the static case
as a prelude to direct consideration of this problem for dynamic fracture.

Plastic Fracture Criteria for Stable Crack Growth

While the preponderance of all fracture mechanics applications at the pres—
ent time are based on LEFM concepts, it is fast becoming clear that there
are situations where LEFM—based predictions are so conservative that an
Inordinate penalty is exacted on the design . An application which has per-
haps motivated a more intense research effort than any other is the assess-
ment of the margin of safety of flawed nuclear pressure vessels and piping
near and beyond general yielding conditions [29]. A general background on
plastic fracture mechanics can be obtained from Ref. [30]. Here, recent
work by Kanninen , et al [31,32] on the development of a plastic fracture
methodology for stable crack growth under inonotonically increasing loading
is briefly summarized .

The research reported in Refs . [31, 32] proceeds through three main
stages. First, laboratory test pieces of pressure vessel steel and of two
“toughness—scaled” materials are tested to obtain data on crack growth
initiation and stable growth. 4 Next, “generation—phase” analyses are per-
formed. In these, the experimentally observed applied stress versus stable
crack growth data are used as input to a finite element model . Critical
values for each of a number of candidate crack initiation and stable growth
criteria are then generated from the particular test results. Comparison of
results obtained for different initial crack sizes and overa ll tes t piece
geometries provide a basis for an objective appraisal. Finally, in the
third stage, “application—phase” finite element analyses are performed. These
analyses apply a specific fracture criterion to predict the applied stress
versus crack growth behavior for a new set of conditions. The accuracy of
the predictions then offers a further basis for appraising the various can-
didate fracture criteria.

A number of different fracture criteria have been examined. These
include the J integral, an elastic—plastic energy release rate G~, the crack
tip opening angle CTOA , the average crack opening angle COA , and a general—

• ized energy release rate G. Another is the crack tip force F which acts at
the crack tip nodes in a finite element model during the stable crack growth
process.

Computationally,A the generaliz~d energy release rate is the sum of two
terms. That is, G = C + G~ where C is the work done in separating the
crack f aces and G

~ 
is the change in the energy contained in the computational

process zone (CPZ). Crack growth then proceeds such that

R = G E G
A + G z (15)

4Toughness—scaled materials (e.g., aluminum alloys) exhibit essentially the
yield/crack growth character of full thickness pressure vessel steel but in
redu ced thicknesses. This simplifies the t e s t ing  requirements  and thereby
allowE a wi d er  range of conditons to be examined than would o therwise  be
possible. 
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in this approach. Crack instabil i ty ( f r ac tu re )  will then occur when G> R for
the prescribed loads or displacements at some crack length. It might be
noted that the use of a process zone also circumvents the difficulty associ-
ated with a crack tip energy release rate alone. As pointed out by Rice [33],

has a very strong step size dependence, approaching zero in the limit of
vanishing crack advance length .

As described in Refs . [31,32], generation—phase comp utations were made
• for three aluminum-center cracke d panels , an aluminum compact tension sped —

men , and a steel compact tension specimen. Computational results for the
• different fracture parameters during stable crack growth show that the quan-

tities that ref lect  the toughness of the material  in the locale of the crack
tip——C , R , , (CTOA)-, and F ——are relatively invariant during stable
crack growth. c0f these quantities, Fc and the (CTOA) appear to be most
nearly constant. All of the local quantities reflect a loss in crack growth
resistance at the beginning of crack extension, but are then constant. In
contrast, the parameters that sample large portions of the elastic and
plastic strain f ie ld—— (COA )

~ 
and Jo——vary monotonically with stable crack

extension. But, within the precision of the analyses, the comparison of the
center cracked panel and compact specimen results indicate that only (COA)
is independent of geometry. The quantity 

~c 
shows geometry dependence after

a small amount of stable crack growth. -

The findings of this research illuminate the basic cause of stable
growth in elastic—plastic materials . In the cases analyzed, crack grow th
stability cannot be attributed to an increase of the toughness ‘of the ma-
terial. Rather, an increasing load during stable crack growth means that
the portion of the energy flow reaching the crack tip region, diminishes with
crack extension. The reduced energy flow can be thought to result from the
“screening” action of the plastic zone accompanying the growing crack in the
sense described by Broberg [27].

ANALYSIS OF THE NEAR TIP FIELD FOR ANTI—PLANE STRAIN -

DYNANIC CRACK PROPAGATION IN AN ELASTIC-PLASTIC MATERIAL

As described in the preceding portion of this paper, crack tip plasticity in
dynamic crack propagation has been taken into account in two simplistic ways.
The first is by assuming that the plastic region is a small autonomous region
controlled by the surrounding elastic stress field . The second is that the
plastic deformation is confined to a strip ahead of the crack tip. In both
approaches the techniques are essentially those of linear elasticity . Thus,
these models do not account for nonlinear elasto—plastic constitutive be—
hav ior , nor do they account for different stress—strain paths in loading and
unloading. The importance of these effects can only be examined with an in-
cremental plasticity model . Due to the difficulty of performing such calcu—
lations , it is appropriate for a preliminary appraisal to consider the anti—
plane strain case, and to restrict the attention to the general nature of the
near—tip field. An analysis of the near—tip field is presented in this sec-
tion, by extending a corresponding quasi—static solution given by Amazigo and
Hutchinson [35] to the dynamic case.

Mode III Crack Prop agation

The system of moving coordinates (x 1,x2,x3) shown in Fig. 1 is orientedsuch tha t the crack lies in the (x
1
x
3
)—plane , x3 

coincides with the crack
front and x is the direction of crack advance. Motion in anti—plane strain
is defined ~y a displacement distribution w(x1,x,,t) where w is the displace-
ment in the x

3
—direction. Here t is a time conststent wi th the moving co-

ordinate system. For future reference we introduce the following notation
for material derivatives with respect to time
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do 
= (•) . (16)

If the speed of the crack tip is v , where v = v(t) is an arbitrary function
of time subject to the, cond itions that v( t) and dv/d t are continuous , we
have rela tive to the mov ing coord inate sys tem

(‘) = ‘
~ j .  

— v( t) ~~~~~~~~ 

- 

(17)

so that 
2 ~2 2 ~2 

-

( • • ) = — ‘
~.i(t) — 2 v( t) atax  + [ v( t ) ]  —i . (18)

1 1 ax
1

For anti—plane strain the only nonvanishing strain components are c~ 1 and
C23. The corresponding stresses are a13 and a23 . The notation can 5e
simplified somewhat by the definitions

= 
~~~~ 

i = 1,2 (19)

Yi
=2 d

i3
=
~~~~ 

i = l ,2 - 
, 

(20)

Relative to the moving coord inates the equation of motion can then be
written as -

T~~ 1
P w  (21)

where I = 1,2 and p is the density. Notice that ~ follows from Eqn. (18).
The system of governing equations must be completed by constitutive

relations. In the following we examine the near—tip fields for the various
different constitutive behaviors shown in Fig. 2. First, for linear elas—
ticity——Fig. 2(a)——the constitutive equation is r~ = C y~ . The solution for
this case with a near—tip f ield of the form

w C W ( O )  r5 (22)

has been obtained by Achenbach and Bazant [36]. The result is s ½ and

W(O) = ‘V
i 
cos 0 — (l_ 8

2
)½ ‘11

2 
sin 0 , (23)

where 8 = V/C
T~ 

C
T 

= ( G/ p) ½ and

2 2 ½  ½
= 

(1—8 sin 0) ± cos 0
2 2 . (24)

1—8 sin 0

Notice that the stresses show the familiar square root singularity of LEFM .
For bilinear elasticity——Fig. 2(b)——an effective shear stress T for

a simple shearing history can be defined as

i =  (‘r~~+ t ~ ) . (25)

It is assumed that loading and unloading takes place along the same curve .
The generalization to anti—plane shear deformation is then

G y  r (26)
and ~ - i

-- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -_______ - - - •
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1) (1 
- 

~~~ ~ T > (27)

For a near—tip solution of the form (22), the strength of the singularity
and the general form of W(0) are just the same as for classical elasticity.
The relevant elastic constant is, howeve r , the slope of the stress—strain
curve in the high strain region, G~, since this value applies at the large
stresses and strains which pertain at the crack tip . The flattening of the
stress—strain curve has important consequences for the significance of dy-
namic effects in rapid crack propagatjion. Although the speed of the crack
tip may be small as compared to (G/p)1, it may be significant compared to
(G
~
/p)’

~
, and it is the latter comparison which counts. In fact,1 if the

fracture process is essentially brittle, the magnitude of (Ct/p)~ 
presents

an upper limit for the crack propagation speed.
Next we consider small strain nonlinear elasticity which is based

on a power law relation of the kind illustrated in Fig. 2(c). For pro-
portional loading the power hardening can be used to represent elastic—
plastic materIal behavior in what is known as the deformation theory of
plasticity. For anti—plane shear deformation we have - .

C = T T~, 
- 

(28)

C (
~

) T~ T > T (29)

where n > 1, and T is defined by Eqn. ( 2 5 ) .
For a propagating crack the loading near the crack tip is not propor—

tional; in fact there is a zone of unloading. Thus , deformation theory can—
not represent plastic de formation near a rapidly propagatin g crack -tip . Even

-: - if Eqn (29) is interpreted as a nonlinear stress—strain relation for an
• elastic material, it is not possible to obtain a solution of the kind given

by Eqn. (22). The reason is that for n > l the slope of the stress—strain -

curve vanishes as y
1 

-
~~ , and the characteristic wave speed becomes zero.

Thus , a crack tip mov ing at any speed is prop agating superson ically , and
asymptotic solutions of the kind (22) do not apply . On the other hand, if
n < 1 the slope of the stress—strain curve becomes unbounded as y1 

-
~~ ~~~.

Consequen tly , the characteristic wave speed of the material becomes unbounded
and dynamic effects disappear altogether for a crack tip moving at a bounded
velocity.

Finally, we consider rapid crack pro pagation in s train harden ing
elastic—plastic materials characterized by J2 flow theory and a bilinear
effective stress—strain curve as shown in Fig. 2(d). For deformation in
anti—plane strain the incremental stress—strain relations for loading into

• the plastic regime (dr>O) are

1 1~

C. ‘
7

Figure 2 
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Gt d y~ = a d T
1 + (1 — a) T ’ ‘r~ d t (30)

while for elastic unloading (dr< 0)

G~ d y
1
= ad T~ . (31)

Here, a C 1G. For the problem at hand the stress and strain increments
can be repl~ ced by the material der iva tives wi th ‘respect to time, as def ined
by Eqn. (16). We have

G~ j’1 
= a + (1 — a) T ’ T~ ~r (~t > 0) (32)

and
C
t f.~ 

= a (~ < 0) . (33)

Some usef ul ins ight on the Infl uence of s train harden ing and unload ing on
the near—tip fields can be obtained on the basis of Eqns. (32) and (33) by an
asymptotic analysis of the near—tip fields. This analysis is carried out in
the next section, following the quasi—static treatment of Ref. [35].

Dynamic Near—Tip Fields According to Flow Theory

Analogously to Eqn. (22), we seek an asymp totically val id sol ution for ~ of
the general fo rm

C v ~ (0) -r5 , (34)

where C is an amplitude factor, while ~(0) and s are to be determined. By
employing Eqn. (20), the strain rates corresponding to Eqn. (34) are obtained
as

= C v -~~-— [~ (0) r5] I = 1,2 - (35)
x
i

Now
a a s i n O 3

-i--— — cos 0 — (36)

and

a a cos O 3
— sin 0 — +  — (37)
3x2 

3r r 30

so that Eqn. (35) yields

= C v [s (J cos 0 — ~1’ sin 0] ~~~~ (38)

and
— C v [S ~i sin 0 + ~i ’ cog 0] ~~~~ (39 )

where ( ) ‘ = d/dO . For an asymptotic analysis only the lowest orders in r
need to be retained. This, in turn, means that 3/at  can be neglec ted as
compared to —v(t) 3/3x1 

in Eqn. (17). Thus

C) - — v (t) —a-— - (40)
ax
’
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Expressions for the stress components can be written as

= C G T
1 
r8 I — 1 2  (41)

and
- t — C G T r

5 
1 — 1 ,2 , (42)

where Eqn. (25) implies -

T = (T~ + T~)
½ 

. (43)

We also def ine

= C C V i~ ~~~~ (44)

and

+ = C G v T r ~~
’ . (45)

It follows from (40) and (35) that

= — s  T
1 
cos 0 + T’ sin 8 - (46)

T =— .sTcos 0 + T’ sin 0 • 
. 

‘ (47)

Now , turning to the equation of mot ion, substitution of Eqns. (41) and (34)
into (21) yields

s T
1 

cos 0 — T~ sin 0 + s T2 sin 0 + T~ cos 0 = ~2 
~~ s 

cog 0 + ~~~
‘ sin 0) , (48)

where 8 V/CT , and CT 
= (G/ p )½. Substitution of Eqns. (38) to (45) into

(32) yields

a (s W cos 0 — W ’ sin 0) = a T
1
+ (1— a) T ’ T

1 
‘F (49)

and
a (s W sin 0 + W’ cos 8) = a T2 + (1 — a) T 1 T2 ‘F . (50)

The corresponding equations for elastic unloading can be obtained by
extending the work of Achenbach and Bazant [36]. The solution is

= (1 — 82 1 2 0)
s~’2 ~os [s(w—1T)] , (51)

where tan w = (l_82)
½ 
tan 0. In the sequel we will need W~. This takes the

form

s {8
2sin O cos 8 cos [s(w—1r)] + (1_8

2)½ sin [ s ( w .~r )] } ( l_ 8 2 sin 2 8) 5 P ’2_ 1
e (52)

Because of antisymmetry relative to 8 — 0, only the doma in 0 < 0 c ~
need be considered. The boundary conditions on the crack face and in the
plane ahead of the crack tip must reflect a stress—free condition and a
condition of antisymmetry, respectively. These can be expressed as

W 0  o n O O (53)
and

on0 ir . (54)

- — _______________________________________
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As in the quasi—static solution of Ref. [35], the boundary between the load-
ing and unloading zones surrounding the crack tip is assumed to be a radial
line emanating from the crack tip at an angle 0 = 0k,, see Fig. 3. The field
in the loading zone 0 < 0 < is governed by Eqns. (48) — (50). The solu-
tions in the unloading zone 0~ < 0 < ‘ir are given by Eqns. (51) and (52).

It remains to determine the conditions at the interface 0 = 0~,. One
condition at 0 = O~, is that ‘r vanishes. This implies that T — 0 or, from
(47), that -

— $ T cos 0 + T’ sin 0 = 0 at 0 = 0 - (55)

In addition, the particle ,yelocity and the stresses must be continuous.
Consequen tly

[
~~] 

= [~Y ’ ]  = 0 at 0 = 0 , (56)

where the following notation has been used

lim lim
[ ~ 

= e+o~ 
( ) — o-~o— 

C ) (57)
p p

The firstof Eqns. (56) is automatically satisfied by writing the solution
in the elastic unloading region in the form 

-

~e
= ~(o;) ~1e

(0) ~
‘
~~(0~ ) . (58)

Here W(0,) is the solution in the loading region evaluated at 0 = 0 . It
• then follows from continuity of W’ a~ 0 = O~ that 

p

1 ’(O ) = W(0 ) W’(O ) ~
_l
(~ ) , (59)p p e p  e p

where 
~e
(0p) and 

~
‘
e~
°p
~ 

follow from Eqns. (51) and (52). Using Eqns. (51)
- • - and (52) this can be expressed In the more convenient form

+8  {8

2
~~
;
0 c~~ ~ + 

— 

~~~3
2~~ 

tan [s(w—x)]} ~1 = 0 at 0 = 0 , (60)
1 8 s in0 1 8 sin 0

where w is evaluated at This completes the formulation of the problem

ding

Solution Procedure and Results

The problem has now been reduced to determining a solution for the plastic
loading region; i.e., a solution that satisfies the field equations for the
region 0 ,~~. 0 5. Op given by Eqns. (48) — (50), the boundary condition at
0 = 0 given by (53), and the boundary conditions at 0 O~, given by Eqns.• (55) and (60). The quantities to be determined are ~(0), T1(0), T2(O), 0~ ,
and s. This is a nonlinear eigenvalue problem which must be solved nume r~.—
cally.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ —~~
-- —

~~~~
-——- -
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The first step in the numerical procedure is to obtain expressions for
the derivatives of the unknown functions. From Eqns. (49) and (50) we have

T T’
T~ = — W ’ + as W cos 0 + ~ T1 cot 0 — (61)

and TT’
= W’ cot 0 + s W + -

~~
- T cotO — 1—a 2 

, (62)2 a 2  a T

where (47) has been used to obtain a slight simplification. Next, solving
Eqn. (48) and using (61) and (62) gives

4, = — 
sin 0 is 8~ 

W cos 0 -~~-~~~--~~~ s T cos 0 + ~ (a + cot 2 0) T sin O2 a 1 a 2
1— B  sin 0

1—a T’~~+ — —  (T
i, 
sin 0 — T2 cos 0) -j - . (63)

Now , by multiplying (61) by T1, (62) by T2, and adding the resul ts , making
use of Eqn. (43) and the fact that TT ’ = T1T~ + T2T~ , gives -

TT ’ = a (T2 cot 0 — T1) 4’ + as (T2 + T1 cot 0) 4 + ~ ~
2 
cot e - . (64)

By combining Eqns. (63) and (64) a recursion formula can be ob tained for
W. This is

2 . 
T2 cos 8 — T

1 
sin 8 T

2 
s inO + T

1
cos O 

~)s {T2 + B W sin 6 co sO_ ( 1_ cx)
( T 

- )( T

2 2 T
2 

cos 0 — T1 sin 8 2) —l
. {

~
. — B sin 0— (1—a) ( T ) - (65)

The numerical procedure used is simply to replace 4’ by the difference
formula [W (0 + ~O) — W( O— ~ 8) ] / 2 AO in Eqn . (65). Having a solution at an
angle 0 , W(6+~8) can therefore be determined since all quantities on the
right—hand side of (65) are known . To ob tain T~ and T ,  Eqn . (64) can be
combined with (61) and (62) to get

r
— — I 1 + (1—a) (T2 cot 0 — T

1
) —i I ~~~

‘ +
L T J

r Ti
+ s I c o t e —  (l—a)(T

2
+T cot 0) 4 1w + s T1 cot O (66)

L 1 T -~
• and

— Ecot 0 — (1—a)(T
2 
cot 0 — T

1
) 
_
~] 

W +

+ s [1 — (l—a) (T
2+T

1
cot 0) —4] ~ + s cot e . (67)

Then , replacing Tj and T~ by similar diff:rence formulas , Eqns (66) and (67)
can also be used as recursion relations .

In common with the numerical procedure used by Amazigo and Hutchins on
[35 J , for given values of a and 8, a trial value of s is selected and values
of W, T1 and T2 determined from Eqns. (65) to (67) as functions of 0. The 
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integration proceeds (with a normalization condition that T2(O) — 1)
until Eqn. (55) is satisfied . If Eqn. (60) is also satisfied, then op has
been found and the trial value of s is the correct one. If not, the esti-
mate of s is Improved and the computation repeated . In this way, the values
of 8p and s given in Tables 1 and 2, respectively, were determined5. These
data are also shown in Figures 4 and 5. Values of the tangential stress
component T0 taken from these results are shown in Figs . 6 and 7.

TABLE 1. CALCULATED VALUES OF O P FOR DYNAMIC
- PLASTIC ANTI-PLANE SHEAR CRACK PROPAGATION 

- - -

0p

a 8=0 8 0.l 8 0.25 ‘ 8 0.5 8 0.75

• 1.0 1.571 1.576 1.602 1.690 1.786

0.7 1.522 1.528 1.554 1.643 
- 

1.731

0.5 1.473 1.478 1.505 1.595

0.3 1.393 1.398 1.427 1.519 -

0.2 1.328 1.334 1.363

0.1 1.217 1.225 1.259

TABLE 2. CALCULATED VALUES OF s FOR DYNAMIC PLASTIC
ANTI—PLAN E SHEAR CRACK PROPAGATION

S

a 80 8 0.1 8 0.25 8 0.5 80. 75

0.1 —0.500 —0.500 —0.500 —0.500 —0.500

0.7 —0.444 —0.444 —0.442 —0.434 —0.396

0.5 —0.395 —0.394 —0.391 —0.375

0.3 —0.325 —0.324 —0.319 —0.288

0.2 —0.277 —0.276 —0.269

0.1 —0.208 —0.206 —0.194

5Results for B = 0 given in Tables 1 and 2 are in essential agreement with
the quasi—static results given in Ref. [35]. However , it was not pos-
sible to verify the results of Ref. L35 J for a < 0.1. 

~~~~~~~~~~ —-~~~~~~- —~~~~ --~~ - 
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DISCUSSION

There are several points that warrant further comment. First, the fact that
the yield stress does not appear in the result might possibly be viewed as
an inadequacy of this work. But, it is instead a natural consequence of the
asymptotic analysis procedure followed here. In such an approach attention
is focused exclusively on the highly deformed material at the crack tip ;
material that is already deformed beyond the yield point. It should also be
noted that the asymptotic approach does not provide a complete description
of the deformation state——it is known only to within a multiplicative factor.
This factor must be determined from the interaction of the crack tip region
and the material surrounding it; e.g., in a finite element analysis. In
this way , the yield stress (together with the applied load and component
geometry) will enter into the result. In such computations the well known
effect of strain rate on yielding can then be taken into account. The
effect of strain rate on the slope of the stress—strain curve beyond the
yield point is less well established. However, it can be seen from the
results of this paper that this effect could have a substantial influence on
dynamic crack growth.

The preceding comments focus attention on a further key feature of the
results. This is that the limiting speed of subsonic crack propagation is
dictated by the slope of the stress—strain curve at very large strains where
it likely is least accurately known. The extent to which this dominance
will be mitigated by consideration of the full field is an open question at
this point in the research.

Las tly, although a number of crack growth criteria for dynamic plastic
fracture have been identified in this paper , it has not yet been possible to
make even a tentative selection. On the basis of th~ success of the energy
release rate parameter in both elastodynamic problems and in quasi—static
plastic fracture, together with the theoretical considerations .elucidated
by Broberg, the energy criterion might be regarded as the leading candidate .
To definitely establish the usefulness of such a criterion requires further
progress In the course of research initiated in this paper. Specifically ,

- 

- an asymptotic solution for the Mode I case is needed. (This work is already
in progress by the present authors.) Next, the asymptotic solution must be
incorporated into a complete analysis; e.g., as a special crack tip finite
element as in Ref. [371. The first step is to use experimental results in
conjunction with the analysis procedure so devised to appraise various can-
didate parameters and their formulations. This must be done in both the
“generation” and “application” phases as in the quasi—static plastic frac-
ture research described above. The present work is clearly just the first
step in such a research effort.
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