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1. INTRODUCTION

1.1 BACKGROUND

- P%‘g?ﬁf"::A e s 7

Because pavement performance is dependent on strength, which is
L; often expressed in terms of a limiting vertical strain in the subgrade
for asphaltic concrete (AC) pavements and & limiting tensile stress in
the rigid pavement layer for portland cement concrete (PCC) pavements,
it is necessary to employ a layered elastic approach to the problems of
calculating the load-carrying capacity of a pavement and the overlay
thickness required for a pavement. The values of the elastic moduli of
the subgrade and each pavement layer are required for this approach, and
fast and reliable methods for determining the in situ elastic moduli of
a pavement-subgrade system are also required. It is generally thought
that the value of the in situ subgrade Young's modulus is the signifi-
cant unknown parameter to be determined by the method of vibratory non- L
destructive testing of pavements.

The U. S. Army Engineer Waterways Experiment Station (WES) has

for many years used the method of vibratory nondestructive testing of

=3 This. methon 4s relatively quick, reproducible,

airfield pavements.
and inexpensive. Nondestructive vibratory testing of pavements may even-
tually lead to a very accurate prediction of load-carrying capacity and
pavement life. The Young's modulus of the subgrade is closely related

to load-bearing capacity and pavement life aad is an important factor in
the design of pavements and overlays. Therefore, it is important to

have a method of determining the Young's modulus of the subgrade by per-

T B T ST N O T

forming vibratory nondestructive tests at the pavement surface.

The allowable static load (load-carrying capacity) for a pavement

is related to a limiting value of the vertical strain in the subgrade of

an asphaltic-concrete pavement and to a limiting tensile stress in the
wearing surface of a rigid pavement. Layered elastic theory relates the
limiting strain and stress values to the allowable load at the pavement
surface, and computer programs are available to do this. These static
elastic computer programs require the Poisson's ratio and Young's modu-

lus for each pavement layer and subgrade. For a specified Poisson's

e




ratio, it is Young's modulus of a material that describes its response

to an applied static load.
It is important to be able to predict the Young's modulus of the
subgrade directly from the dynamic response data produced by the vibra-

A0 o B ey

tory nondestructive tests conducted at the surface of a pavement, be-

cause it is the static elastic Young's modulus that is entered in the

layered elastic computer programs for determining the allowable load for
a pavement. Because soils behave in a nonlinear manner under dynamic %
and static loadings, the static and dynamic loads produced by a vibrator
will affect the elastic properties of the soil in the subgrade. The
subgrade Young's modulus that is entered in the allowable load calcula-
tion must be independent of the static and dynamic loads generated by
the vibrator that is used for the nondestructive testing of a pavement.
The subgrade Young's modulus that is entered in the layered |
elastic computer program for pavement evaluation must depend only on the
static confining pressure produced in the subgrade by the aircraft load

applied to the pavement surface and by the natural overburden pressure

in the subgrade. Extraction of the subgrade Young's modulus from dy-
namic vibratory response data taken in the field requires a nonlinear
dynamic theory of pavement response which can isolate the effects of the
static and dynamic loads generated by the vibrator.

An independent method of checking the values of the subgrade ;
Young's modulus that are predicted by vibratory nondestructive field

tests would give pavement engineers the confidence to use these modulus
values for pavement evaluation. The subgrade Young's modulus that is i
determined from the vibratory nondestructive field tests must agree with ﬁ
the Young's modulus value that is obtained from laboratory tests done on
an undisturbed soil sample taken from the subgrade of a pavement. The
laboratory test considered is the resilient modulus test, which is a dy-
namic test done on a soil sample for a specific static confining pres-

E sure. The resilient modulus is a measure of the response of a soil to a
dynamic load; i.e., the resilient modulus is a dynamic modulus. The re- !

silient modulus is a nonlinear function of the applied dynamic deviator

stress, and therefore a nonlinear dynamic theory of the resilient

-
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modulus test is required to extract the value of the static elastic

Young's modulus from the dynamic test data obtained in the laboratory.

The research presented in this report is part of a more extensive
research program in which pavement performance will be predicted by the
layered elastic model for a pavement and subgrade whose elastic moduli
are obtained by vibratory nondestructive field tests. Wave propagation
methods exist that determine the Young's modulus of each pavement layer
as well as the Young's modulus of the s0il in the subgrade of a pavement.
In this report, it is assumed that the elastic moduli of the pavement
layers are known and only the subgrade Young's modulus must be deter-
mined by vibratory nondestructive testing methods. Eventually the
elastic moduli of all the pavement layers and the subgrade may be deter-
mined by vibratory nondestructive testing techniques.

Experimental and theoretical investigations were performed to
find methods for determining the subgrade Young's modulus by vibratory
nondestructive field test methods and to correlate the field test re-
sults with laboratory tests done on undisturbed subgrade soil samples.

The instrument used for the vibratory nondestructive testing of
pavements was a mechanical vibrator whose force payload to the pavement
surface is generated either by a hydraulic system or a mechanism of coun-
terrotating weights. The WES 16-kip* vibrator applies a static load of
16 kips to the pavement surface and a dynamic load up to 15 kips at fre-

quencies ranging from 5 to 100 Hz. Both static and dynamic loads are

applied to the pavement surface through a circular 18-in.-diam baseplate.
Four types of nondestructive tests are generally performed on

pavements, and these consist of the following measurements:

Dynamic load-deflection curves giving the dynamic amplitude

= as a function of the dynamic load.

b. Frequency response spectrum giving the dynamic amplitude as a
function of frequency for a fixed dynamic load.

c. Deflection basin measurements.

d. Rayleigh wave dispersion curves giving phase velocity versus

wavelength.

* A table for converting units of measurement is presented on page 5.




Only the impedance methods--the dynamic load-deflection curves (a above)
and the frequency response spectrum measurements (g above)--will be con-
sidered in detail in this report, and two methods of determining the sub-

grade Young's modulus based on these measurements will be examined.

1.2 OBJECTIVES

The basic objectives of this study are:

a. Development of a procedure for determining the Young's modu-

] lus of a subgrade of a pavement using vibratory nondestruc-
tive test data taken at the surface of the pavement.

b. Development of a method of laboratory confirmation of the sub-
grade Young's moduli values measured in the field.

The study of the determination of the subgrade Young's modulus
and its connection with the resilient modulus measured in the laboratory
includes the following specific objectives:

a. Development of a linear elastic dynamic model to describe the
] frequency response measurements and to determine the subgrade
] Young's modulus from these measurements.

b. Development of a nonlinear elastic dynamic model of pavement
response to describe the measured nonlinear dynamic load-
deflection curves and to determine the subgrade Young's modu-
lus from this type of field measurement.

Development of a dynamic model which will analytically de-
scribe the nonlinear dependence of the laboratory resilient
modulus on the static confining pressure and the dynamic

1 deviator stress and which gives the procedure for extracting
' the Young's modulus from the resilient modulus.

|o

3 d. Determination of a procedure for comparing and correlating

laboratory and field test values of the Young's modulus, and

the development of the capability of extrapolating the labo-

ratory derived Young's modulus to values of the static con-

fining pressure that are expected to occur in the subgrade i
F for an actual aircraft loading.

Development of a linear elastic dynamic model to describe the
frequency response spectrum measured at a pavement surface should be re-
garded as the first step toward development of a nonlinear elastic dy-
namic model of the frequency response curves. The nonlinear model of
F the frequency response spectrum can be obtained from development of the

nonlinear model of the dynamic load-deflection curves; however, this

e w
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analysis is rather complicated and is ¢t1ll under development. A non-
linear dynemic theory is required for the frequency response spectrum
measurements and the load-deflection curve data in order to remove the
extraneous effects of the static and dynamic loads generated by the WES
16-kip vibrator on the value of the predicted subgrade Young's modulus.
A computer program EC.ST, based on the linear elastic theory, was de-
veloped to determine the subgrade Young's modulus from the measured
frequency response curves.

The resilient modulus is a measure of the dynamic response of a
material and cannot be used directly in the static layered elastic com-
puter programs that calculate the static load-carrying capacity of a
pavement. The static elastic Young's modulus must be extracted from the
laboratory resilient modulus test data. It is this laboratory derived
Young's modulus evaluated at a confining pressure equal to the overbur-
den pressure in the subgrade that must be compared with the subgrade
Young's modulus that is derived from vibratory nondestructive field test
data. The value of the subgrade Young's modulus that enters the layered
elastic computer programs for calculating the allowable load-carrying
capacity of a pavement is the laboratory derived Young's modulus ex-
trapolated to a value of the confining pressure that is expected to oc-

cur in the subgrade due to the actual static weight of an aircraft.
1.3 SCOPE

To achieve the objectives listed above, theoretical and experi-

mental studies were performed.
1.3.1 THEORETICAL STUDIES

The theoretical studies included:

a. Development of a technique for determining the subgrade
Young's modulus by applying the linear elastic pavement re-
sponse model to the frequency response spectrum measured at
the pavement surface. This includes the determination of the
inertial, damping, and elastic parameters directly from the
measured frequency response curves.

|

Development of a method for determining the subgrade Young's
modulus from measured nonlinear dynamic load-deflection
curves by using the nonlinear elastic pavement response model

11
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to describe the measured dynamic load-deflection curves.

This requires the determination of the inertial, damping, and
elastic parameters of the model from the measured load-
deflection curves.

Determination of the parameters which are entered in the non-
linear dynamic model of the resilient modulus laboratory .
tests and which describe the dependence of the Young's modu-
lus (derived from laboratory tests) on the static confining
pressure applied to the soil sample.

o

The basic purpose of the theoretical studies described in this
report is the development of a nonlinear elastic model of pavement re-
sponse to dynamic and static loads. This model will give a theoretical
expression for the dynamic load-deflection curves and the frequency re-
sponse spectrum which will depend on: the applied dynamic and static
loads, the Young's modulus, Poisson's ratio, and thickness of each pave-
ment layer including the subgrade and on a set of pavement parameters
that describe the inertial, damping, and nonlinear elastic behavior of a
pavement. If the values of the elastic moduli of the upper pavement
layers are known and if the values of the nonlinear elastic parameters
are known for a pavement site, then the value of the subgrade Young's
modulus at the pavement site can be found by requiring that the theoret-
ical pavement response be equal to the measured pavement response.

When this procedure is applied to the frequency response spectrum
using the linear elastic dynamic model, it is not possible to separate
the effects of the static and dynamic loads from the predicted value of
the subgrade Young's modulus. The linear elastic dynamic theory applied
to the frequency response spectrum produces values of the effective mass,
damping coefficient, and elastic spring constart, but the value of the
elastic spring constant is conditioned by the static and dynamic loads
generated by the vibrator and so the value of the predicted Young's modu-
lus will also be conditioned by these extraneous loads. The value of the
subgrade Young's modulus of physical interest depends only on the natural
overburden pressure in the subgrade, and a nonlinear theory of the fre-
quency response spectrum is required to remove the extraneous effects of
the static and dynamic loads generated by the vibrator. The nonlinear

theory of the frequency response spectrum is still under development.

12
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The nonlinear dynamic theory presented in this report was de-
veloped to describe the nonlinear dynamic load-deflection curves. In
this model, in addition to the Young's moduli, Poisson's ratios, and
layer thicknesses, there also occur parameters that describe the iner-
tial, damping, and nonlinear elastic behavior of the pavement materials.
These parameters must be determined by fitting the theoretical model tc
pavements of known structure. Once these parameters are determined, the
theoretical model will depend only on the elastic moduli of the pavement
layers and subgrade and on the static and dynamic loads generated by the J
vibrator. In this way, the static and dynamic loads generated by the
vibrator are separated from the elastic moduli of the pavement and sub-
grade, and the elastic moduli will depend only on the natural overburden
pressure. The Young's modulus of the subgrade is then obtained by match-
ing the theoretical dynamic load-deflection curve with the measured load-
deflection curve. A computer program SUBE was developed to calculate
the subgrade Young's modilus from the measured dynamic load-deflection
curves.

It is important to be able to relate the Young's modulus value i
derived from laboratory resilient modulus tests on subgrade s®il to the |
subgrade Young's modulus value that is predicted by the dynamic model ;
applied to vibratory nondestructive field test data. The resilient modu- |
lus measures the response of a material to a dynamic load, and the theo-
retical model that describes the resilient modulus in terms of dynamic
deviator stress and the static confining pressure must contain material !
parameters that describe this dependence. These material parameters
must be known if the effects of the dynamic load are to be removed and
the static~pressure-dependent Young's modulus is to be extracted from
the dynamic resilient modulus test data. The dependence of the Young's
modulus on the static confining pressure must be known because this mod-
ulus must be evaluated at the natural overburden pressure in the sub-
grade if a comparison is to be made with the subgrade Young's modulus
that is obtained by vibratory nondestructive field tests.

For use in the layered elastic theory computer programs that l

calculate the allowable load-carrying capacity of a pavement, the

13
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laboratory derived Young's modulus must be extrapolated to a value of
the static confining pressure that is equal to the confining pressure
produced in the subgrade by the static weight of the aircraft plus the
overburden pressure in the subgrade.

1.3.2 EXPERIMENTAL STUDIES

The experimental field studies were performed on pavements and
subgrades, and the experimental laboratory studies were resilient modu-
lus tests on undisturbed subgrade soil samples. The experimental
studies included:

a. Measurement of dynamic load-deflection curves using a vibra-
tor developed at WES which can generate dynamic loads up to
15 kips at a frequency of 15 Hz and with a constant 16-kip
static load (WES 16-kip vibrator).

b. Measurement of dynamic frequency response curves giving dy-
namic amplitude versus frequency for a constant dynamic
loading.

c. Laboratory measurement of resilient moduli of subgrade soils
for a series of static confining pressures and dynamic devi-
ator stresses.

The theoretical and experimental work done in this report will
have applications for the nondestructive testing of roads and airport
pavements. The dynamic load-deflection curves measured in the field
can be used to determine the subsurface structure, and if the elastic
moduli of the pavement layers are aséumed to be known, the subgrade

Young's modulus can be determined.
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2. DYNAMIC FREQUENCY RESPONSE SPECTRUM METHOD FOR
DETERMINING THE SUBGRADE MODULUS

2.1 GENERAL CONSIDERATIONS

The problem of calculating the allowable load of a pavement or
the required overlay thickness of a pavement can be treated by using a
layered elastic interpretation of pavement response. This method re-
quires that the elastic moduli of each pavement layer be known. The al-
lowable load or pavement overlay thickness is calculated for flexible
pavements by specifying a limiting strain in the soil of the subgrade,
and for rigid pavements by specifying a limiting stress at the bottom of
the rigid pavement layer. A layered elastic computer progrem is uti-
lized to relate the load applied at the pavement surface to the stress
and strain in the pavement layers and subgrade. The required input
parameters fof this computer program are the elastic moduli of the sub-
grade and the elastic moduli and thickness of each pavement layer. With
a knowledge of these input parameters, the limiting stress and strain
conditions can be transformed into allowable loads and pavement overlay
thicknesses.

A quick method of determining the elastic moduli of the pavement
layers and subgrade is desirable. Various techniques have been used for
determining all of the elastic moduli by using vibratory nondestructive

3,4 For instance, the wave propagation method utilizing

testing methods.
Rayleigh waves has been used, but with limited success. The Young's
modulus value of the subgrade is generally known with less precision
than the modulus values of the pavement layers. The elastic moduli of
the wearing surface, base, and subbase of a pavement can be obtained

from a knowledge of the type of material in these layers and from labora-
tory tests such as the resilient modulus test. The Young's modulus of
PCC pavement is known with reasonable precision to vary from 4.0 to 6.0

x lO6 psi; the Young's modulus of AC pavements is known to be
temperature-dependent from laboratory tests; and the elastic moduli of

base and subbase materials can be estimated from laboratory resilient

modulus tests.
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A reasonable procedure for the vibratory nondestructive evalua~-
tion of pavements that utilizes the layered elastic approach would be to
consider the elastic moduli of the pavement layers to be known, and
treat the subgrade Young's modulus as the unknown quantity to be deter-
mined from the vibratory nondestructive test data. The frequency re-
sponse spectrum method of determining the subgrade Young's modulus is
outlined in this section. This section develops a simple spring model
interpretation of the measured frequency response data and determines a
spring constant for the entire pavement and subgrade system. The spring
constant is then related to a value of the Young's modulus of the sub-
grade by using the Chevron layered elastic computer program in which the
elastic moduli of all of the pavement layers have been previously se-
lected. This method of predicting the subgrade Young's modulus gives
modulus values which are considerably higher than those predicted by the
Shell relationship, which relates the linear elastic Young's modulus to
the measured CBR of a subgrade.

The mechanical vibrator that is used for the nondestructive test-
ing of pavements and subgrades operates at a known frequency and pro-
duces a sinusoidal dynamic force and dynamic deflection of the pavement
surface directly beneath the vibrator baseplate. The frequency response
spectrum gives the dynamic deflection of the pavement surface beneath
the vibrator baseplate as a function of frequency for a fixed value of
the dynamic load. A typical measured frequency response spectrum ap-
pears in Figure 1. This section investigates a method for determining
the subgrade Young's modulus from the frequency response spectrum mea-
sured at a pavement surface. This method includes the development of a
linear spring-mass-dashpot model to describe the measured frequency re-
sponse spectrum. The elements of this model (spring constant, damping
constant, and effective mass) are determined directly from the measured
maximum amplitude and the frequency at maximum amplitude. The value of
the subgrade Young's modulus is then calculated from the static spring
constant by using a standard linear layered elastic half-space computer
program.

It is not immediately evident whether the pavement-subgrade system

16
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Figure 1. Typical frequency response curve

is linear elastic or nonlinear elastic by examining the frequency re-
sponse spectrum that is determined for a fixed value of the dynamic load.
However, it is known that pavement and subgrade materials have nonlinear
elastic load-deflection curves for static and dynamic loadings. These
nonlinear elastic properties require the elastic moduli of the pavement
and subgrade to be dependent on the magnitude of the static and dynamic
stress produced by the vibrator in the pavement and subgrade. The value
of the subgrade Young's modulus that is theoretically predicted from a
frequency response spectrum for fixed dynamic and static loads is de-
pendent on the magnitude of these loads. A direct comparison of the
subgrade Young's modulus predicted from the frequency response spectrum
with the subgrade Young's modulus predicted by wave propagation methods
(Shell formula) need not produce agreement.

A nonlinear elastic theory of the frequency response spectrum of

pavements subjected to dynamic loads is required to characterize the

.
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dependence of the predicted subgrade Young's modulus on the static and
dynamic loads exerted by the vibrator on the pavement surface. A non-
linear elastic theory of the frequency response spectrum of a pavement
is generally difficult to develop (Section 3.2.2) and difficult to fit
to experimental data such as resonant frequencies and amplitudes. Also,
many other linear elastic effects such as the different modes of vibra-
tion of the pavement and reflections of waves from lower layers in the
subgrade tend to be at least as important for determining the shape of
the frequency response spectrum as are nonlinear elastic effects. There~
fore, it seems reasonable to begin an analysis of the frequency response
spectrum by using a linear elastic theory, but the predicted subgrade
elastic modulus will include the effects of the static and dynamic loads
exerted by the vibrator. A nonlinear dynamic theory of the frequency
response spectrum is still under development.
2.2 DYNAMIC FREQUENCY RESPONSE
SPECTRUM THEORY

The dynamic frequency response spectrum measured at the pavement
surface is often quite complex and difficult to interpret. Many factors
probably contribute to produce its characteristic shape. The measured
frequency response spectrum for a flexible or rigid ﬁavement has more
tHan one deflection peak. The physical origin of these peaks is diffi-
cult to determine with certainty, but they may be due to the different
possible modes of vib:ation of a pavement. In order to extract some
information about pavement and subgrade structure from the measured dy-
namic frequency response spectrum, it is necessary to use a simple dy-
namic pavement response model to fit the measured frequency response
spectrum with the theoretically predicted frequency response spectrum.
This fit will yield the parameters of the dynamic model from which the
pavement and subgrade structure can be determined.

The simplest mechanical model that has a peak in its frequency
response spectrum is the mass-spring-dashpot model (alsc called the Kel-
vin model). The frequency response spectrum of the Kelvin model ex-

hibits only one deflection peak. Therefore, this model cannot describe
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the complicated measured frequency response spectra of pavements. Never-
theless, some useful information can be obtained by fitting the Kelvin
model individuelly to several of the observed deflection peaks of a fre-
quency response spectrum measured at the surface of a pavement.

The first and second deflection peaks are generally the most pro-

nounced. The first deflection peak generally occurs at about 8 Hz for
all types of pavements and subgrades. This first peak is often elimi-
nated by the electronic filtering that is used during the measurement of
the frequency response spectrum, but the second peak is found to be unaf-
fected by the electronic filtering equipment. How much of the amplitude
of' the first peak is due to electronic manipulation is still not
resolved.

Each deflection peak is associated with a maximum amplitude and a
frequency at maximum amplitude as shown in Figure 2 for the case of the
second peak. The maximum amplitude and frequency were used to calculate
the elements of the spring model: effective mass, effective spring con-
stant, and effective damping constant. The elements of the Kelvin model
can be simply related to the deflection peak. The Kelvin model was ap-
plied individually to the first and second deflection peaks, and it was

found that the model parameters obtained from each peak were roughly the

FREQUENCY RESPONSE CURVES

A Ay

DYNAMIC DEFLECTION

1 a FREQUENCY

MEASURED QUANTITIES: f, - PEAK FREQUENCY
Ay = PEAK DYNAMIC DEFLECTION
J( = Ay /A = RATIO OF PEAK DEFLECTION
TO DEFLECTION AT

ARBITRARY FREQUENCY

Figure 2. Measured quantities
obtained from frequency response
curves




same. This indicated that the entire pavement structure is responsible
for each deflection peak and that, for instance, the first peak cannot
be interpreted as being due solely to the subgrade.

2.3 LINEAR SPRING MODEL

The simplest mechanical model that can be used to describe the dy-

namic response of a pavement that is subjected to a sinusoidal force ap-

plied to the surface of the pavement is the linear Kelvin model that

is shown in Figure 3. Linear spring models can be single-mass or

Can
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SINGLE-MASS MODEL DOUBLE-MASS MODEL

1. LINEAR SPRING 1. LINEAR SPRINGS
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0000

Figure 3. Single- and double-
mess dynamic pavement response
models

multiple-mass models. The equation of motion of the single-mass model

is given by6_9
mA + CA + KA = F(t) (2.1)
§: where
m = lumped effective mass
A = acceleration of pavement surface
C = damping constant
A= velocity of pavement surface
k = spring constant
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A = dynamic amplitude of pavement surface
FD(t) = dynamic force applied to the pavement surface
t = time
For a sinusoidal loading, the dynamic force is given by

iwt

FD(t) = FD(w)e (2.2)

where

i

FD(w) magnitude of the sinusoidal dynamic force applied to the
pavement surface

iwt
e

complex number notation for a sinusoidal time dependence

where i = V=1 and w = angular frequency

Combining Equations 2.1 and 2.2 gives the dynamic deflection as

FD(w)ei(wt-A)

A=
2
\j(k - mwz) + C2w2

where A 1is phase angle between the dynamic load applied to the pavement

(2.3)

surface and the dynamic deflection of the pavement surface, and is given
by tan A = Cw/(k - mwz) s

The frequency at which the deflection has a maximum is called the
frequency at maximum amplitude or peak frequency. The standard method
of determining the elements k , m , and C involves the measurement
of the peak frequency, the peak amplitude, and the resonance frequency.
The resonance frequency accurs when the phase angle A equals /e
These three measured quantities are sufficient to determine the three
unknown elements k , m , and C . Because no phase angles between the
displacement of the pavement surface and the applied dynamic load have
been measured, an alternative method, not requiring the measured phase
angle, is developed for determining k , m , and C .

Within the framework of the single-mass spring model the dynamic
amplitude of the pavement surface response to a sinusoidal dynamic load

6-9

can be written as
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A= 3 (2.4)
2 »
S = \/(k - mw2) + Czw‘ (2.5)

where S 1is dynamic stiffness of the pavement surface. The peak fre-
quency and amplitude can be obtained from Equations 2.4 and 2.5, for the
6

case of constant F to be

D
2=t 01 - 20f (2.6)
w = TR\ -

AM =D (2.7)
, 2
2kD4f1 - D
p=-L— (2.8)
2/km
where
fM = peak frequency
fR = resonance frequency = vk/m/2w
AM = peak amplitude
D = damping ratio

The three elements of the linear spring model that are to be ob-
tained are k , m , and C . These three quantities can be obtained
from measurements of fM 3 fR , and AM . The resonance frequency fR
was not measured. In order to determine these three parameters, another
piece of information, in addition to fM and AM s is necessary. This
is given by

Ha) = 2 (2.9)

where J(w) is ratio of the peak amplitude to the amplitude at some

nearby frequency. The theoretical value of this ratio is given by

ee
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‘/(k - mw2) + 02w2 (2.10)

Ve )

The three measured quantities which are extracted from the frequency re-

J(k,m,C,w) =

sponse curve are f, , A, , and J(w) .
The spring model elements k , m , and C must now be obtained

in terms of f, , Ay , and J(w) . Equations 2.6, 2.7, and 2.8 can be
inverted to determine k and D in the following manner

o )
ko= bt 11 sl (2.11)
M hwszﬁAM
£ 5 -1/2
Dz=%-%1+——2—22— (2.12)
hw meAM

Tﬁe k and D terms have now been expressed in terms of the effective
mass. Using Equations 2.11 and 2.12, it is now possible to express

J(k,m,C,w) in terms of the effective mass as the only unknown parameter

as follows

( 2 mw2> " hmDQm2
I(m,w) = k . (2.13)
2
2 2 2
( 0 mu%> g 4mD Wy
k k

The only unknown independent variable in J(m,w) is now the effective
mass. By sweeping through a series of values of m and calcul&ting

numerical values of J(m,w) , it is possible to determine the specific
value of m for which J(m,w) is equal to the experimental value of

the J ratio

J(m,w) = J(w) (2.14)
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This condition determines the value of the effective mass required by
the Kelvin model to fit the experimentally measured dynamic frequency
response curve. Placing this calculated value of the effective mass
into Equations 2.8, 2.11, and 2.12 gives the proper values of k and C
required to fit the experimental frequency response data. The necessary
computer programs to accomplish this work on a digital computer have
been developed and will be referred to as the WES Dynamic Frequency
Response Program, ECNST (Appendix A).

The results in Equations 2.6-2.13 are valid only for a linear
theory of pavement response to a constant (frequency—independent) dy-
namic load and are obtained from the condition 293A/dw = -FDS-ZBS/aw =0,
or 3S/3w = 0 , where S is given by Equation 2.5 . For a nonlinear
theory of the frequency response spectrum, the resonance condition is
much more complicated and the resonance frequency turns out to be a
function of the dynamic load. This is explained in more detail in Sec-
tion 3.2.2.

2.4 DETERMINATION OF SUBGRADE
MODULUS BY FREQUENCY
RESPONSE METHOD

The value of the spring constant that is determined from the mea-
sured frequency response spectrum will be used to determine the subgrade
modulus. The theory of the linear elastic layered half-space predicts a
theoretical value of the static spring constant kT which depends on
the radius of the loaded area and on the elastic moduli of the subgrade
and the pavement layers. Computer programs are available which calcu-
late the value of kT if the Young's modulus and Poisson's ratio of
each layer of the half-space are known. A well-known computer program
of this kind is the Chevron Program. The procedure for determining the
Young's modulus ES of the subgrade is shown in Figure 4. The measured

values of f AM , and J(w) are inserted into the WES Dynamic Fre-

M L]
quency Response Program and values of k , m , and C are determined.
The Young's modulus and Poisson's ratio of the layers of the pavement
are selected and entered into the Chevron Program. The subgrade modulus

ES is then iterated in the Chevron Program and a series of values of

2L
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Figure 4. Method of calculating subgrade Young's
modulus from measured frequency response curves

kT is determined. The proper value of ES is determined by the

condition

k =k (2.15)

where kT is the theoretical value of the spring constant based on
layered linear elastic theory. The predicted value of Es will
depend on the values of the elastic moduli selected for the pavement
layers.

The value of Es that is predicted by the WES Dynamic
Frequency Response Program depends on the choice of the values of the
Young's modulus and Poisson's ratio of each pavement layer and also
on the choice of Poisson's ratio of the subgrade soil. The predicted

value of Es also depends on the thickness of each pavement layer.
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Any uncertainty in the values of these pavement parameters will lead

to errors in the predicted value of the subgrade Young's modulus.

No sensitivity study has been done using the Chevron layered
elastic computer program to determine the dependence of the predicted
value of Es on the choice of the Young's modulus, Poisson's ratio,
and thickness of the pavement layers. However, the choice of the
Young's modulus of the upper pavement layers will have a significant
effect on the predicted value of Es . Also, the value of the Pois-
son's ratio of the subgrade is expected to have a significant in-
fluence on the value of the predicted subgrade Young's modulus. For
an accurate determination of Es , it is imperative that at least
the Young's modulus values and thickness values of the upper layers
be accurately estimated or measured. The estimation of the Young's
modulus may possibly be done in terms of material characteristics
of the pavement layers, while the measurement of the Young's modulus
may be done by a vibratory nondestructive testing technique. The non-
destructive testing technique should also yield the thickness of
each pavement layer.

In this report the values of the Young's modulus of the base,
subbase, and subgrade materials were estimated by using the Shell for-
mula E = 1500 CBR . The Shell formula is a straight-line fit through

7,8 The values of

a set of data points and is at best an approximation.
the Young's modulus of the AC wearing surface are temperature-dependent
and were estimated from an Asphalt Institute curve that is discussed in
Section 3.4. The Young's modulus for PCC was taken to be 4 x lO6 psi.
The values of the Young's moduli of the pavement layers are essentially
estimated values and do not represent measured values obtained from
laboratory tests on undisturbed samples of pavement materials. The CBR
values were measured at the time of the pavement construction, and these
values may have changed somewhat by the time that the vibratory nonde-
structive field tests were performed. The Shell formula gives only ap-
proximate values of the Young's modulus.

The subgrade Young's modulus predicted by the Shell equation

Es = 1500 CBR 1is obtained by wave propagation techniques and refers to
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the Young's modulus of the subgrade at a confining pressure equal to the
overburden pressure due to the pavement layers above. The Shell equa-
tion does not include the effects of the dynamic and static loads gener-
ated by the vibrator, because the wave propagation measurements are
done at the pavement surface a considerable distance away from the vi-
brator. At this distance the static stress and strain in the pavement
and subgrade due to the static weight of the vibrator is practically
zero. At this large distance the amplitude of the elastic waves is
small so that it is the linear elastic Young's modulus that is measured.

Poisson's ratio for PCC is taken to be 0.2. The value of
Poisson's ratio was taken to be 0.3 for AC and bituminous base course
materials at all temperatures. A value of 0.35 was assigned to all
other base, subbase, and subgrade materials. These values of Poisson's
ratio are simple estimates and are not based on laboratory tests done on
undisturbed samples taken from the specific pavement sites that were in-
vestigated. However, these values of Poisson's ratio were used consis-
tently for all of the pavement sites that weré investigated. The layer
thicknesses were assumed to be those obtained from construction specifi-
cations. In general, no measurements of layer thickness were made.

This procedure gives the pavement structure for the example that is used
in Figure 4. It is imperative that the elastic moduli and thickness of
each pavement layer be known accurately for the prediction of the sub-
grade Young's modulus.

In principle, it is possible to obtain Poisson's ratio as well as
Young's modulus from frequency response measurements performed directly
on a subgrade. The theory of a dynamic loading on a linear elastic
half-space gives a simple connection between the subgrade elastic con-
stants vs and Es and the theoretical values of the spring constant
and damping constant for a homogeneous elastic half-space. This theory
gives the following theoretical expressions for the spring constant and

the damping constant, respectively:

hGSa
i T (2.16)
]
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G, = S (2.17)

where
kH = theoretical value of the spring constant
G_ = shear modulus of the elastic half-space
a = radius of vibrator baseplate
= Poisson's ratio of the elastic half-space
CH = theoretical value of the damping constant
Y_ = weight density of elastic half-space
g = acceleration of gravity
From Equations 2.16 and 2.17, it follows that Poisson's ratio and
Young's modulus of the elastic half-space are given by

VE =l om B (2.18)

- B2~ Bl

Es R (2.19)

where B is a dimensionless number given by

253
(3 - W)’y
B = = 5% (2.20)
thH

Equations 2.18-2.20 are derived from the assumption Sf a linear elastic
half-space, and the assumption that all of the damping of the vibrating
source on the surface of the half-space is due to the mechanical radia-
tion moving to infinity in the half-space. The results in Equa-

tions 2.18-2.20 are applied by assuming that C = CH and k = kH .

i.e., it is assumed that the experimental values of k and C obtained
from the frequency response spectrum that is measured from tests done di-
rectly on a subgrade are equal to their corresponding theoretical values
for a homogeneous elastic half-space. Experimental tests show that this

is a poor assumption and Equations 2.18 and 2.19 give poor results.
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2.4.1 NUMERICAL RESULTS OF
FREQUENCY RESPONSE
METHOD

Values of k, m, C , and Es have been obtained for several
airport pavement sites and are listed in Table 1. This table lists the
sites according to increasing values of the dynamic stiffness modulus
(DSM), which is the slope of the dynamic load-deflection curves at a dy-
namic load of 14 kips. It is seen that the measured‘spring constant k
increases with increasing pavement strength and that k is not equal to
the DSM value. The effective mass is presented as a ratio to the above-
surface (vibrator) mass and increases with the strength of the pavement.
The effective mass is not equal to the above-surface mass, and any
theory which a priori assumes that m = m, cannot be used to fit the
experimental frequency response data. The value of the damping constant
also increases with increasing pavement strength. Table 1 shows the re-
sults for AC pavements, but similar results are expected for rigid pave-
ments. The predicted values of Es are compared to those modulus
values that are predicted by the Shell method (Es = 1500 CBR).T’8 The
values of Es predicted by the combined WES Frequency Response Program
and the Chevron Program are three to five times larger than those pre-
dicted by the CBR method.

There are several possible reasons for the discrepancy in the
values of Es predicted by these two methods:

a. The pavement-subgrade system is nonlinear under dynamic and
static loading, and the predicted value of the subgrade
Young's modulus includes the effects of the dynamic and
static loads generated by the vibrator.

b. The subgrade is not uniform and the theoretical layered
elastic half-space model may require a rigid boundary below
the subgrade.

c. Reflections from a lower boundary layer add to the motion
of the pavement surface.

The relationship Eg = 1500 CBR is only an approximation
and refers to a static elastic Young's modulus corresponding
to the static overburden pressure in the subgrade.

[8

When a rigid boundary such as bedrock is present relatively close to the
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Table 1

Numerical Results for Frequency Response Method

Applied to AC Pavements

D c, 101‘ 1b X Eq (Chevron) E (CBR)

Location kips/in. m/mv x sec/in. kips/in. lQ3 psi 103 psi
B2 T00 1.7 1.0 2137 65 21
N18 170 2.0 0.8 1500 58 27
Wl 860 1,8 0.4 2620 136 30
B3 1630 2.0 8§ 2140 35 25
we 1940 2.4 1.3 2k70 69 30
PlL 2120 2.5 L5 2610 139 30
P13 2780 L.y 2.0 3500 153 30
Bl 3120 10.0 2.8 4270 140 21

pavement surface, it is possible that the effects listed in b and c may
be of importance for determining the motion of a pavement surface that
is subjected to a sinusoidal dynamic loading. However, the discrepancy
between the values of ES predicted by the Shell method and those pre-
dicted by the frequency response spectra method also occurs in cases
where the subgrade is relatively uniform and contains no obvious dis-
continuities. It is likely that the discrepancy in the values of Es
determined by these two methods is due to a combination of the effects
listed in a, b, ¢, and 4.

A basic difficulty with the layered linear elastic interpreta-
tion of the frequency response spectra is that the Young's modulus of
the subgrade that is obtained by this method includes the effects of
the magnitude of the static and dynamic loads of the vibrator that was
used to determine the frequency response spectra. It will be shown in
Section 3 that for the case of subgrade soils that behave nonlinearly
under static and dynamic loads, the static and dynamic loads of the
vibrator precondition the pavement and subgrade so that the value of
the spring constant k determined from the frequency response data

must necessarily include the effects of the static and dynamic loadings.
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Therefore, it is not logical to set k = kT , Where kT is the linear
elastic spring constant of the pavement-subgrade system which is related
to the static elastic Young's modulus of each pavement layer and to the
Young's modulus of the subgrade.

The subgrade Young's modulus predicted from the frequency response
spectrum by the method described above should not necessarily agree with
the result ES = 1500 CBR , because the latter equation refers to the
static elastic Young's modulus whose value is independent of the static
and dynamic loading of a vibrator and is dependent only on the natural
static overburden pressure in the subgrade beneath the pavement. It
is important to realize that the value of a measured subgrade Young's
modulus depends on the method that is used for its measurement. The
Young's modulus appearing in Es = 1500 CBR is obtained by wave
propagation methods using small amplitude elastic waves, so that this
modulus is a measure of the linear elastic properties of the soil at
very low dynamic stress and strain levels and at a static confining
pressure equal to the overburden pressure. The Young's modulus ob-
tained from the spring model of the frequency response measurements
refers to relatively high values of dynamic and static stress and
strain in the subgrade because of the vibrator loading at the pave-
ment surface. Because subgrade soils behave nonlinearly under dynamic
and static loadings, it is expected that the magnitude of the static
and dynamic loads of the WES 16-kip vibrator will affect the value of
the subgrade Young's modulus that is obtained from frequency response
spectrum measurements.

The values of the Young's modulus obtained by the Shell formula
and the Young's modulus obtained directly from the frequency response
spectrum must be affected by the overburden pressure on the soil at the
top of the subgrade. The Young's modulus of soils depends on the mag-
nitude of the confining pressure. The confining pressure in the sub-
grade of a pavement is due to the weight of the pavement materials above
it, and this overburden pressure affects the Young's modulus of the soil
in the subgrade. A rule of thumb for calculating the overburden pressure

due to a pavement is OOB(psi) = h(ft) , where 0y 1S the overburden
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pressure and h is the depth of the point where the overburden pressue
is to be calculated. Thus, at a depth of 2 ft, the overburden pressue

is approximately 2 psi. The value of ES must include the effects of

this small overburden pressure; i.e., B = ES(OOB)

The frequency response spectrum may eventually yield a good
method for determining the Young's modulus of the subgrade, but a non-
linear dynamic pavement response theory will be required to do this.
Only by a nonlinear theory can the effects of the magnitude of the
static and dynamic load be separated from the predicted value of Es -
A nonlinear theory of pavement response is presented in Section 3.

2.5 POSSIBLE EXPLANATIONS OF
MULTIPLE RESONANCE PEAKS IN
THE FREQUENCY RESPONSE SPECTRUM

The measured frequency response spectrum generally contaeins many
peaks. Two possible explanations for the existence of these multiple
peaks are:

a. They may represent the reinforcement and annihilation of
waves reflected from lower boundary layers.

b. They may represent the fact that the mass of pavement and
soil is a dynamic system with many degrees of freedom and
more than one normal mode of motion may be excited
simultaneously.

If the reflection hypothesis is valid and the motion of the pavement
surface is due in part to reflections from subsurface boundaries, then
the frequency response spectrum will not directly be a measure of
pavement strength, and the frequency response spectrum method of pre-
dicting pavement strength would have to be altered to include the effects
of reflections.

If the pavement and subgrade are behaving as a dynamic system
with more than one degree of freedom, a multiple-mass linear spring
model would have to be used to describe the frequency response spectrum
measured at the pavement surface. The multiple-mass models such as the
one shown in Figure 3 are difficult to handle because they are very
complicated and contain too many parameters to use the simple analytical

method of determining the elements of the model as described in
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Equations 2.6-2.14. Nevertheless, it should be remembered that the

energy put into the pavement-subgrade system by a vibrator is propagated
throughout the pavement and subgrade in the form of elastic waves, and
therefore a lumped-mass spring model is an extreme idealization of the
actual physical situation. Possibly a somewhat more physical model for
pavement vibrations would be the vibration of a rod of distributed mass.
This model will have a frequency response spectrum with multiple reso-
nance peaks which may possibly fit the measured frequency response
spectra.
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3. DYNAMIC LOAD-DEFLECTION CURVE METHOD OF
DETERMINING THE SUBGRADE MODULUS

3.1 GENERAL CONSIDERATIONS

The layered elastic theoretical approach to the calculation of
allowable load or required overlay thickness for a pavement requires the
values of the elastic moduli of the subgrade and each layer of the pave-
ment. In the previous section, a linear spring model was used to deter-
mine a static spring constant for the pavement-subgrade system, from
which a subgrade Young's modulus was obtained by using the linear elas-
tic Chevron computer program'to relate the static spring constant to
the elastic moduli of the pavement and subgrade. The disagreement
between these predicted values of the subgrade Young's modulus and the
values of the static elastic Young's modulus of the subgrade given by
the equation Es = 1500 CBR suggests that the Young's modulus predicted
from frequency response spectra includes the nonlinear effects of the
static and dynamic loads exerted by the vibrator on the pavement surface.
The basic nonlinearity of the pavement and subgrade must be considered
if a correlation is to be made between the impedance method of vibratory
nondestructive pavement testing and the wave propagation method of non-
destructive pavement testing.

An alternative method for determining the subgrade Young's modulus
from vibratory nondestructive test data is the use of the dynamic load-
deflection curves measured at the pavement surface for a fixed frequency
and a fixed static load. These dynamic load-deflection curves are
generally nonlinear for weak pavements and become more linear for
stronger pavements. The values of the Young's modulus of the subgrade
depend on the static overburden pressure that exists in the subgrade.
For the vibratory nondestructive tests using the 16-kip vibrator, the
stress in the subgrade is due to the static and dynamic loads exerted
by the vibrator in addition to the static overburden pressure. The
quantity of physical interest is the Young's modulus of the subgrade
soil at a confining pressure equal to the static overburden pressure.

Therefore the extraneous effects of the dynamic and static loads
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generated by the vibrator must be removed from the determination of the
Young's modulus of the subgrade.

A nonlinear dynamic theory of pavement response is required to
extract the static elastic subgrade Young's modulus for a given over-
burden pressure from the measured dynamic load-deflection curves. It
is important to extract the Young's modulus of the subgrade because it
is the Young's modulus that appears in the relation E8 = 1500 CBR that
is derived from elastic wave propagation. Elastic wave propagation
experiments on soils are done with small amplitudes so that linear
elastic Young's moduli are obtained from these experiments. If the non-
linear (large amplitude) load-deflection tests are to agree with the
wave propagation tests, a Young's modulus must be extracted from the
nonlinear load-deflection test data.

Over the years WES has collected an extensive set of dynamic
load-deflection curves that have been obtained on many airfield pave-
ments throughout the country. A typical measured dynamic load-

deflection curve appears in Figure 5, and it is seen that this curve is
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Figure 5. Typical dynamic load-deflection curve
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generally nonlinear. The dynamic load-deflection curves are measured at
the surface of a pavement. This section develops the nonlinear dynamic
theory of the dynamic load-deflection curves which is necessary for the
determination of the Young's modulus of the subgrade. The nonlinear
dynamic theory predicts the response of a pavement to a dynamic load.
This theoretical model will depend on the Young's moduli of the pavement
layers and subgrade and on model parameters that describe the inertial,
damping, and nonlinear elastic properties of the pavement and subgrade.
The subgrade Young's modulus value is predicted by requiring the dynamic
load-deflection curves predicted by the nonlinear dynamic theory to
agree with the measured dynamic load-deflection curves.
3.2 NONLINEAR THEORY OF PAVEMENT

RESPONSE TO DYNAMIC SURFACE

LOADINGS

The nonlinear dynamic load-deflection curves were measured by
sweeping through a range of dynamic loads up to 15 kips for a frequency
of 15 Hz and at a static surface loading of 16 kips. The nonlinear
dynamic theor, ust account for the frequency and static load conditions
under which the dynamic load-deflection curves were measured. The pre-
dicted subgrade modulus should be free of the particular loading char-
acteristics of the vibrator. Therefore, in addition to the static
Young's modulus, some other parameters have to be introduced which will
account for the observed nonlinearity of the dynamic load-deflection
curves. The predicted subgrade Young's modulus value will be indepen-
dent of the particular loading characteristics of the vibrator (fre-
quency, static load, and dynamic load). Only the natural overburden
pressure will be reflected in the subgrade Young's modulus value.

The nonlinear parameters must also account for the nonlinear be-
havior of the static elastic load-deflection curves were such curves
available. Static load-deflection curves are obtained from plate bear-
ing tests which are dependent to a large degree on the permane~nt
deformation of the pavement and subgrade. The elastic and plastic de-
formations must be separated in order to obtain the static elastic

load-deflection curves. Static elastic load-deflection curves have not
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yet been obtained using the WES 16-kip vibrator.

Dynamic tests on pavements and subgrades avoid the problem of
2 plastic flow by operating at a frequency (15 Hz) that is sufficiently
high so as to obtain resilient deflections whose values are essentially
independent of the plastic flow of the pavement and subgrade materials.

Dynamic theories can be developed which describe the resilient response

of pavements, and these theories can be extrapolated to the case of

zero frequency to obtain the static elastic deflection of the pavement

surface. However, the plastic part of the displacement under a static

load is generally much larger than the elastic part, and a complete

i ! description of pavement performance will require static load tests as
well as resilient dynamic tests.

The determination of the Young's modulus of the subgrade from
measured dynamic load-deflection curves requires a nonlinear dynamic
theory of the elastic response of a pavement to dynamic loads. A non-
linear dynamic theory of pavement response will be used to remove the
extraneous effects of the dynamic and static loads generated by the
vibrator on the determination of the Young's modulus of a subgrade. The

; Young's modulus will depend only on the static overburden pressure in
the subgrade.
3.2.1 EQUATION OF MOTION OF
A NONLINEAR OSCILLATOR
The nonlinear theory of pavement response to a vibratory load
assumes that the pavement-subgrade system can be described by a lumped-

mass nonlinear oscillator whose equation of motion is written as

3 5

mx + Cx + K x + bx> + ex’ = F + Fg (3.1
where:
m = effective mass of the pavement-subgrade system
= total displacement of the pavement surface beneath the
vibrator baseplate
C = damping constant
kOO = linear spring constant
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b = third-order nonlinear pavement and subgrade parameter
= fifth-order nonlinear pavement and subgrade parameter
FD = dynamic load applied to the pavement surface
FS = static load applied to the pavement surface

The total displacement of the pavement surface is composed of static and

dynamic parts as follows
x=x +§& (3:2)

where

X
e

€ = dynamic elastic deflection of the pavement surface

static elastic deflection of the pavement surface

Placing Equation 3.2 into Equation 3.1 gives the following equation

of motion:

p

mg + CE + (koo + 3bx§ + 5ex2)£ + e + e 4+ ge(x_,8) = F,  (3.3)

where
g(xe,E) = 3bxe§ + lOexgg + lOex§£2 + Seke€3 (3.4)

For convenience in manipulating Equation 3.3, it is necessary

to use a time-averaged expression for Equation 3.4 as follows:
2 L 2 L
g(x_,E) = 3a,bx_ + Sajex_ + ajbe” + a)ef (3.5)
where 8, 5 85 a3 , and a) are coefficients to be determined from

the measured dynamic load-deflection data. Combining Equations 3.3

and 3.5 gives the motion equation as

mE + CE + kq6 + vee3 + eng’ = Fp (3.6)
where
k. = k. + 3be.x° + See xh (3.7)
0 00 2%e ™ s
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6 =1+a (3.8)

3
n.=1 + a) (3.9)
€5 % 1.4 8y (3.10)
gy =1+ a, (3.11)

A mechanical vibrator operating on the surface of a pavement
produces static and dynamic deflections of the pavement surface. For
a linear dynamic system, the static and dynamic deflections are inde-
pendent, and the static displacement of e pavement surface would not
appear in the dynamic equation of motion of the pavement surface.h For
a nonlinear dynamic system, such as an actual pavement or subgrade, the
static displacement of the pavement surface appears in the dynamic equa-
tion of motion of the pavement surface, so thct the static and dynamic
displacements are not independent and must be calculated Jjointly from
the dynamic equations of motion.

The parameters 6 , n, e, , and €) appearing in Equa-

tions 3.6-3.11 represent a simple zpproximate way of treating the inter-
dependence of the static and dynamic displacements of the pavement
surface. These parameters describe the approximation of writing Equa-
tion 3.4 in the form of Equation 3.5 which brings the equation of motion
into the solvable form of Equation 3.6. The parameters 6 , n , €5
and €), depend on the pavement strength and are determined by requiring
Equation 3.6 to adequately describe the dynamic load-deflection curves.
These four parameters describe the higher order interaction terms of
£ and o and their departure from the value unity indicates the
degree of mixing of the static deflection and dynamic deflection terms
that occur in Equation 3.6.

The nonlinear parameters b and e determine the static load-
deflection curves, as can be seen from Equation 3.1 which for the static
case becomes

5

e

F. =k.x_ + bxz + ex (3.12)

S 007e
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In general, it is found that b < 0 and e > 0 for pavements and most

subgrades.
3.2.2 THEORY OF DYNAMIC LOAD-
DEFLECTION CURVES AND THE
FREQUENCY RESPONSE SPECTRUM

The problem remains to solve the nonlinear Equation 3.6. This can
be done by casting Equation 3.6 into an equivalent linear form for which

the dynamic amplitude is given by

g = FD/S

' 5
S=\/z -—mm2) +02w2

dynamic stiffness

dynamic spring constant
effective mass
angular frequency

(0 damping constant

The requirement that Equations 3.13 and 3.1l4 be a solution of Equa-

tion 3.6 is that the spring constant in Equation 3.1L4 is given by4

o 3 2 5 L
k = ko + § bOE + F ent (3.15)

Therefore, the spring constant for a nonlinear system depends on the
dynamic and static displacements of the pavement surface.

The conclusion that the spring constant for the equivalent
linear form of a nonlinear pavement-subgrade system depends on the
dynamic and static elastic deflections of the pavement surface, as shown
in Equation 3.15, explains the difficulties that were encountered in
predicting the subgrade modulus from the frequen.y response spectrum
method (Section 2.4.1). The value of k +that is obtained by applying
Equations 2.4 and 2.5 (or equivalently Equations 3.13 and 3.14) to the
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frequency response spectrum of a nonlinear pavement and subgrade is now
seen to include the effects of the static load and the dynamic load
through the nonlinear terms appearing in Equations 3.15 and 3.7.

Therefore the value of k obtained directly from the frequency
response spectrum is actually not the linear elastic spring constant
of the pavement and subgrade, and this value of k cannot be used in
the Chevron layered linear elastic computer program to determine the
value of the Young's modulus of the subgrade. It is actually kOO which
is the linear elastic spring constant, and it is kOO that is directly
related to the elastic constants of the pavement and subgrade. A-.non-
linear dynamic theory of pavement response is required to separate the
value of k into its component parts and extract the value of kOO
from which the subgrade modulus can be determined.

Placing Equation 3.15 into Equations 3.13 and 3.1k and solving
for the dynamic amplitude yields the resulth

F

B 2
E-SO (14 gy +ayp” + ..0) (3.16)
where > '
s, =ﬂk0 - m?) + ¢ (3.17)
75
o= (3.18)
\ 5o
a, = - £ vo(ky - m®) (3.19)

3 - sg [% ne(ko - mm2> + —é— (%—)2 b262] (3.20)

.

o =3 (2) v0%(ep - )

The result in ﬁquation 3.16 gives the dynamic deflection of the
pavement‘surfaée directly beneath tHe vibrator baseplate in terms of the
dynamic load applied to the pavement surface by the vibrator baseplate.
Equations 3.16 and 3.18 show that the dynamic deflection is a nonlinear
function of the dynamic load. The nonlinear portions of the dynamic

load-deflection curves are described by the terms alw and azwe in

b1

M S0 ittt




ete

s

e S i:m'g‘f'f;-,l«.ff} -t

T

Equation 3.16, while the linear portion of these curves, which occurs at
low dynamic loads, is given by FD/So . As shown by Equations 3.16-3.20,
the coefficients S, , @, and o

0 2
of the vibrator and on the structure of the pavement and subgrade.

depend on the operating frequency ﬂ

Two types of dynamic elastic modulus can be obtained from the

measured dynamic load-deflection curves. The secant modulus (impedance)

is obtained from Equations 3.13 and 3.16 and is

2
- 021
S so(l + B+ By ) (3.21)
where
Ry =y
i
e &y = o

The tangent modulus is the slope of the load-deflection curve or the DSM.

It is given by

dr -1
iR L e - [
DSM = T (dF ) (3.22)
D
From Equation 3.16, it follows that ;
DSM =S (1L + 6,4 + 6 wz) (3.23)
0 1 2 i
where
Byt =y ,

Numerical values of the DSM are generally calculated for FD = 15 kips.
The coefficients So s % and a, can be obtained by fitting

the mathematical expression in Equation 3.16 to the dynamic load-

deflection curves measured for a specific frequency which is usually

15 Hz for the WES 16-kip vibrator. The coefficient S_. is the slope

0
of the load-deflection curve at the condition FD = 0 , while the co-
efficients al and ay represent the curvature of the dynamic
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load-deflection curves. The three coefficients S

0° al , and ay
obtained by fitting a polynomial form containing linear, cubic, and
fifth-order terms to each measured dynamic load-deflection curve. A
computer program called NLIN was developed in part to accomplish this
task (Appendix B).

The coefficients ko s S

,koo’b’e’e’n’ez,

and €), that appear in Equations 3.7 and 3.17-3.20 are obtained jointly

0 2 by examining many measured dynamic load- |

deflection curves obtained at pavement sites of known structure, and

from S ul , and a
finding the combination of parameters which describes these curves and ?
produces theoretical values of the static elastic deflection of the
pavement surface which are comparable to the values of the dynamic
deflection of the pavement surface (Appendix B).

The measured dynamic load-deflection curves of medium strength AC
pavements are generally nonlinear when measured at a fixed frequency of
15 Hz. They are even more nonlinear when measured at other frequencies.
The shape of the measured dynamic load-deflection curves depends as much
on the frequency of operation of the vibrator as on the structure of
the pavement and subgrade.h Experience gained from years of nondestruc-
tive testing of pavements indicated that operating the WES 16-kip vibra-
tor at a frequency of 15 Hz produced dynamic load-deflection curves which
were generally more smooth than those measured at other frequencies.

Load sweep tests conducted at frequencies of 5, 10, 20, and 25 Hz pro-
duced dynamic load-deflection curves that were more curved than those
obtained at a frequency of 15 Hz.h Therefore, there is a good practical
reason for conducting the load sweep vibratory tests at a frequency of
15 Hz.

There is also a gooa theoretical reason for the straightening
effect of the 15-Hz operating frequency of the vibrator. As seen from
Equations 3.16-3.19, the degree of nonlinearity of a dynamic load-
deflection curve depends on the strength of the pavement and the frequency
of operation of the vibrator. The strength of the pavement affects the ‘
degree of nonlinearity of the dynamic load-deflection curves through ;

- -4 |
the term Soh that appears in Equations 3.16 and 3.18. The 5, term |
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ff shows that strong pavements tend to be more linear than weak pavements.

From Equation 3.19 it is clear that there is a critical frequency for

;1; which the first-order nonlinear term vanishes and this frequency is
given by
| 0
| e =% m (3.24)

This critical frequency is found to be about 15 Hz for most AC and PCC
pavements. At this frequency, the dynamic load-deflection curves should
become less curved in the regions of low dynamic force if the second-
order nonlinear term is comparatively small. The straightening effect
at the critical frequency will not be strongly evident if the second-
order nonlinear term is comparatively large. The resonance frequency

fR has a value close to the critical frequency fc .

Aside from the few experimental measurements of the critical
frequency that are presented in Reference 4, there have been no direct
measurements of the critical frequency for different types of pavements
and subgrades. The values of the critical frequency that are determined
in this report use Equation 3.24 where the parameters ko and m were

determined by analyzing dynamic load-deflection curves that were meas-

ured at a frequency of 15 Hz.

For the nonlinear dynamic theory, Equation 3.16 describes the
frequency response spectrum as well as the dynamic load-deflection curves.
As was the case for the linear elastic dynamic theory of the frequency
response spectrum, an expression is required for the pesk frequency and
the peak amplitude in terms of the inertial, damping, and elastic param-
eters of the dynamic model. The model parameters could then be obtained
directly from the measured values of the peak frequency and peak ampli-
tude as described for the linear elastic model in Section 2.L.

For the linear elastic dynamic model with a frequency independent
dynamic load, the results in Equations 2.6 and 2.7 are derived from the
peak condition 9A/dw = -FDS-288/8w = 0 or equivalently 2ds/dw = 0 .
For the nonlinear model, the peak condition for the case of a frequency
independent dynamic load (constant FD) can be obtained from Equation

! 3.16 to be
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where the frequency dependent functions S G5 s and y are

W
given by Equations 3.17-3.20. Equation 3.25 reduces to the linear elas-
tic peak condition for the linear elastic case which has @) =a, = 0 .
The solution of Equation 3.25 gives the peak frequency f,, as a function

of the dynamic and static loads, inertial mass, damping cgnstant, and
the linear and nonlinear elastic pavement parameters; i.e., fM = fM
(FD,FS,m,C,koo,b,e,e,n,ez,su,x,lo,za,lh). The peak amplitude is found
by placing this value of fM into Equation 3.16. The solution of Equa-
tion 3.25 is still under development.

The nonlinear dynamic theory of pavement response predicts the
resonance frequency and the peak frequency to be functions of the
dynamic and static loads developed by the vibrator. Therefore frequency
response curves measured for a series of fixed dynamic loads would be
necessary to fit the nonlinear dynamic frequency response theory to the
experimental data. Sev?ral frequency response curves have been meas-
ured at pavement sites for a series of fixed dynamic loads, and these
data indicate that the frequency response spectrum changes shape consid-
erably for different dynamic force levels. It may not be an easy mat-
ter to detect a dependence of the resonance frequency on the magnitude
of the dynamic load. Further experimental tests are necessary.

When developed, the nonlinear theory of the frequency response
spectrum will be used to determine the subgrade Young's modulus in a
manner similar to that described for the linear elastic dynamic theory
described in Section 2.4. The nonlinear theory of the frequency re-
sponse spectrum will eliminate the effect of the static and dynamic
loads from the predicted value of the subgrade Young's modulus. The
nonlinear dynamic theory shows that the measured resonance frequency
and peak frequency will depend on the magnitudes of the static and dy-

namic loads developed by the vibrator, and so it is clear why
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Equation 2.11 of the linear elastic theory predicts values of k , and
also Es ,» that are much larger than the values given by Es = 1500 CBR .
Equation 2.11 combined with the measured values of fM produces a spring
constant k that depends on the magnitudes of the static and dynamic
loads exerted by the vibrator on the pavement surface. Therefore the
condition k = kT , where kT is the linear elastic spring constant
given a layered linear elastic theory, cannot be used to determine the
value of the subgrade Young's modulus as was done in Section 2.4. A non-
linear dynamic theory is required to remove the extraneous effects of

FD and FS on the predicted value of the subgrade Young's modulus.

3.2.3 DYNAMIC NATURE OF
THE SPRING CONSTANT k

The measurement of the dynamic load-deflection curves determine
the linear and nonlinear elastic parameters of a pavement system (kOO’
b,e,e,n,ez,eh). These parameters relate the spring constants k and
ko . Equation 3.15 shows that the spring constant k that is deter-
mined from a dynamic analysis of the nonlinear properties of a pavement-
subgrade system is dependent on the dynamic and static displacements of
the pavement surface as well as on the elastic constants of the pavement-
subgrade system. Therefore, the spring constant k that is determined
from the dynamic response of a nonlinear pavement system is a dynamic
quantity that is not analogous to an ordinary static spring constant.
The theoretical static spring constant determined from a static linear
elastic program such as the Chevron Program will depend only on the
elastic constants of the pavement. Therefore, the value of k deter-
mined from the dynamic response data of a nonlinear pavement cannot
logically be compared to the static kT value determined from static
layered elastic computer programs. Static plate bearing tests will re-
sult in a spring constant which will also not be directly comparable to
the spring constant determined from an analysis of dynamic data.

The dynamic spring constant k is related to the static elastic
spring constants kOO and ko by Equations 3.7 and 3.15. The static
elastic spring constant ko includes the effects of the nonlinear nature

of pavements through terms dependent on the static elastic deflection of
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the pavement surface. Therefore k and ko must be comparable in mag-

nitude. The spring constant k is the linear elastic spring constant

of the pavement-subgrade system?o It is the linear elastic spring con-
stant kOO that should agree with the theoretical static elastic spring
constant that is given by the Chevron and Shell linear layered elastic
computer programs. In any case, the elastic properties of pavements are
described by three spring constants k , ko , and kOO , and the linear
spring constant kOO is expected to have a value considerably smaller
than the values of k and k., . Because k and k

0 0
magnitudes, the value of resonance frequency will be approximately equal

have comparable
to the value of the critical frequency, fR ~ fc . The peak frequency

fM will be only slightly smaller than fR and fc .

3.2.4 FINITE DEPTH OF INFLUENCE

The nonlinearity of the static elastic and the dynamic elastic
load-deflection curves can be related to the assumption that the static
elastic stress and strain does not extend to infinite depth in the sub-
grade but has a finite depth of influence.h The basic nonlinear elastic
nature of subgrade materials manifests itself in a finite range for the
static stress and strain fields.

The static linear koo
be related to the elastic moduli of the pavement layers and to the

and nonlinear parameters b and e can

depth of influence of the static stress-strain field.h The finite depth
of influence is written in terms of the static deflection of the pave-

ment surface as

o 2 L
L= Ry + RoXx_ + )X, (3.26)
where
£ = finite depth of influence
Lo,ze,lh = coefficients of the power series expansion of the

finite depth of influence.

For the simplest case of a vibrator placed on the surface of a subgrade,
the static parameters are
2
3 2nay(1 - vs)GS
00 10(1 - 2vs)

k (3.27)

k7




e et

2
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bw o > 2 2.2 (3-28)
20(1 - 2vs)

2
. 6na"¥6(1 - vs)Gs

e = (3.29)
20(1 = 2vs)
where
22 2 8 zh
§ == = (3.30)
0 0
where

a = radius of vibrator baseplate
v = Poisson's ratio of subgrade

= shear modulus of subgrade

]
n

volume factor for the frustum of the cone of stress and
strain

The expressions for k.. , b , and e given by Equations 3.26-3.30 (and
their generalization to the case of a pavement over a subgrade) are de-
rived by calculating the work done during the static elastic deflection
of a pavement surface due to a static load described by Equation 3.12,
and then setting this work equal to the elastic strain energy of the
pavement and subgrade.

The volume factor ¥ depends on a parameter «k which gives a
measure of the lateral spreading of the static stress and strain in the
pavement and subgrade.h The static stress and strain distribution in
the pavement and subgrade beneath the static 16-kip load of the WES
vibrator is assumed to be confined to a frustum of a cone whose upper
radius is equal to that of the vibrator baseplate and whose lower radius
(at depth &) is determined by the degree of lateral spreading of the
static stress and strain in the pavement and subgrade. The parameter
k 1is the ratio of the radius of the lower area of the frustum to that
of the upper area.h The radius of the lower circular area of the
frustum is xa . Values of «k larger than unity indicate that the
static stress and strain spreads in the lateral directions in the pave-

ment and subgrade. The volume factor ¥ 1is the ratio of the volume of
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18 the frustum of the cone of static stress and strain to the volume of a

cylinder whose length is ¢ and whose radius is equal to the radius of

the baseplate of the vibrator.h

&2 The parameters x and Y give a measure of the lateral spreading

of the stress and strain in a pavement and subgrade, and indicate how

i much of the static load applied at the pavement surface is transmitted

'_f to the subgrade at a point directly beneath the applied load. An im-
portant function of a pavement is the protection of the subgrade from
excessive stress and strain which might cause harmful plastic flow of
soil in the subgrade. The structure of a pavement is designed in part
to protect the subgrade. Therefore, it is important to know the depend-
ence of the lateral stress-strain spreading factor «k on the structure
or more simply on the resilient strength of pavements. It is found that
the parameter « 1is an increasing function of pavement strength.

3.2.5 ELASTIC MODULI OF PAVEMENT
LAYERS AND SUBGRADE

The static linear elastic parameter k and the static nonlinear

i elastic parameters b and e are related tooghe strupture of the pave-

ment and subgrade because these parameters depend on the elastic moduli

of the pavement layers and subgrade. For the case of a vibrator oper-

ated directly on a subgrade, the relations in Equations 3.27-3.30 give

the theoretical connection between the parameters kOO s b, and e

and the elastic moduli of the subgrade, ES and Vs For the more

general case of a mechanical vibrator operating at the surface of a

pavement overlying a subgrade, the parameters kOO" b, and e de-

pend on the elastic moduli of the pavement layers as well as on the

elastic moduli of the subgrade (El,vl,Ez,vz,...Es,vs). For this case,

expressions for kOO s, b, and e in terms of the elastic moduli are

presented in Reference L.

In this way, the theoretical expression for the dynamic stiff- :

i ness as given by Equations 3.1k4, 3.7, and 3.15 is connected to the i

elastic moduli of the subgrade and pavement layers. The predicted value

! of ES (assuming Vi 0.35) for a subgrade is then obtained by finding
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the value of Es that makes the theoretically predicted dynamic load-
deflection curve agree with the dynamic load-deflection curve measured
at the surface of a pavement. But, before this can be done, the model

parameters must be determined for any pavement location.
3.3 MODEL PARAMETERS

In order to determine the subgrade Young's modulus by vibratory
nondestructive tests, all of the parameters that enter into the non:
linear dynamic pavement response model must be known for each pavement
test site. This section gives these parameters and describes their de-
pendence on the elastic strength of pavements.

The parameters of the nonlinear pavement response model have been
determined empirically because they depend in a complicated manner on the
structure of the pavement and subgrade and on the particular vibrator used
for nondestructive testing. Each pavement site will have its own char-
acteristic set of parameters when tested with the WES 16-kip vibrator,
and these parameters would be different had another vibrator been used.
The model parameters were determined at pavement sites of known struc-
ture by requiring that the dynamic load-deflection curve predicted theo-
retically by the nonlinear response model agree with the load-deflection
curve determined in the field. By requiring agreement for a number of
pavement sites of known structure, it is possible to predict the values
for all of these parameters at any pavement site where a dynamic load-
deflection curve is measured.

The model parameters m, C , kOO PR IR (- S 20 5 22 5 zh 5
0 Ky N5 €5, and € describe the inertial, damping, and linear
and nonlinear elastic properties of the pavement and vibrator system and
depend on vibrator characteristics and on the structure of the pavement
and subgrade. This dependence is in general very complicated and dif-
ficult to determine theoretically. The simplest way to attach the model
parameters to the strength of a pavement-subgrade system is to determine
these parameters in terms of the measured DSM of a pavement. The DSM
value is a suitable choice for a parameter in terms of which to describe

the model parameters because it is a measure of the bulk strength of the
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pavement and subgrade. The model parameters expressed in terms of the
measured DSM correspond to the WES 16-kip vibrator. The vibrator char-

acteristics appear in these parameters because the subgrade Young's
modulus to be determined is intended to be independent of the dynamic
characteristics of the vibrator. A corresponding set of vibrator param-
eters will have to be developed for any other vibrator that is to be
used for nondestructive testing of pavements.

The theoretical nonlinear dynamic pavement response model was
developed to predict the Young's modulus of a subgrade from dynamic
load-deflection curves measured at a pavement surface. The nonlinear
dynamic model of pavement response gives a theoretical prediction of the
DSM of a pavement in terms of the elastic moduli of the pavement layers
and subgrade and in terms of the model parameters m , C , kOO s b
e, 20 » 22 . zh SRS TR ST T €5 s and €) - The nonlinear
dynamic model can be used to predict the subgrade Young's modulus only
if the elastic moduli of the pavement layers are known and if the model
parameters are known as functions of the measured DSM of a pavement.
Then, if the DSM is measured at a pavement site, the only unknown param-
eter in the nonlinear dynamic model is the subgrade Young's modulus.

The value of the subgrade Young's modulus can then be varied in the
nonlinear dynamic model until the model predicts the measured value of
the DSM. This gives the predicted value of the subgrade Young's

modulus. Therefore it is important to have the model parameters as known
functions of the measured DSM value of a pavement. The model parameters
are presented as a function of the measured DSM in Figures 6-21.

The model parameters are determined by applying the nonlinear
dynamic theory to the dynamic load-deflection curves measured at pave-
ment sites where the elastic moduli of the pavement layers and subgrade
are known. About 30 pavement sites were considered whose DSM values
ranged from 300 to 6500 kips/in. Each of the data points in Figures 6~
21 represent a pavement location that was studied. The model parameters
were determined jointly by a trial and error process for the 30 pave-

ment locations. The model parameters were varied until the parameters
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obtained for each pavement site made the nonlinear dynamic pavement
response theory fit the measured dynamic load-deflection curves for each
of these sites. In this way, the model parameters were obtained as a
function of the measured DSM as shown in Figures 6-21.

The coefficients So s @y and a can be obtained by fitting

2
the mathematical expression in Equation 3.16 to the dynamic load-

deflection curves measured for a specific frequency, which is usually

15 Hz for the WES 16-kip vibrator. The coefficient S0 is the slope

of the load-deflection curve for the condition F_ = 0 , while the co-

D
efficients o, and ay represent the curvature of the dynamic load-

deflection cu;ves. The three coefficients SO s Gy and a, are ob-
tained by fitting a polynomial form containing linear, cubic, and fifth-
order terms to each measured dynamic load-deflection curve.

The model parameters m , C , k00 s b e s zo > 22 5 lh A
R O e €5 » and €, are too numerous to be determined individ-
ually from a measured dynamic load-deflection curve. Rather, a trial
and error procedure was used to choose the parameters so as to make the

theoretically predicted dynamic load-deflection curves agree with the

dynamic load-deflection curves that were measured at about 30 pavement
sites where the elastic moduli of the pavement and subgrade were known.
The model parameters must satisfy several mathematical conditions for a

load-deflection curve measured at each pavement site.

The first three conditions are obtained by fitting the dynamic

| 3 response formula in Equation 3.16 to each measured load-deflection
E curve; this determines values of So s Qg and oy at each pavement
Fv site, and Equations 3.17, 3.19, and 3.20 can be used to relate these
three parameters to the model parameters. Condition 4 is that the mea-
. " 2 2 2
sured value of SO be given by S0 = (ko - mw ) + Cw , where ko

is the nonlinear theoretical expression for ko given by Equation 3.T.

Condition 5 is that the measured value of S for an arbitrary value of

R _( 2)2 P2 i
dynamic load be given by S = k - mw + Cw , where k 1is the

nonlinear theoretical value of k given by Equation 3.15. Conditions
6-8 are that kog » b » 8nd e be related to %55 %, and 2 and
the elastic moduli of the pavement layers by Equations 3.88-3.90 of
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Reference 4. Condition 9 is that the static elastic displacement of the
pavement surface be comparable to the dynamic elastic displacement of
the pavement surface. Condition 10 is that the parameter lh be nega-
tive so that the finite depth of influence Equation 3.26 is convergent.
Condition 11 is that the coefficients « , 20 > 22 , and Eh be in-
creasing functions of the measured DSM value of a pavement. Condition
12 is that the theoretical and measured values of the DSM be equal.

The model parameters were adjusted for each pavement site of
known structure and measured DSM, subject to the mathematical conditions
mentioned above, until a pattern of variation of these parameters as a
function of DSM was obtained. Each data point in Figures 6-21 refers
to a pavement site for which the elastic moduli of the subgrade and pave-
ment layers were assumed to be known and for which a measured DSM value
has been obtained. These parameters have been derived from dynamic
load-deflection curves measured at 15 Hz, and the model parameters are,
therefore, associated with a frequency of 15 Hz. There is a possibility
that these parameters are intrinsically frequency-dependent. A more
detailed account of the behavior and physical meaning of the model raram-
eters will now be given.

3.3.1 EFFECTIVE SPRING

CONSTANTS k AND k0

According to Equation 3.7, the spring constant k. is a function

of the static elastic displacement of the pavement surfage beneath the

vibrator baseplate, and according to Equation 3.15, the spring constant
k that enters the impedance calculation depends on both the static and
dynamic deflections of the pavement surface beneath the vibrator base-

plate. As shown in Figures 6 and T, the spring constants k and ko
are increasing functions of the measured DSM value of the pavement. The
values of the dynamic spring constant k include the nonlinear effects

of the static and dynamic loads generated by the vibrator, and therefore
the value of k cannot be directly compared with the theoretical values
of a spring constant that would be obtained from a static linear layered

elastic theory such as is described by the Chevron computer program.
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The values of the spring constant ko include the nonlinear effects of

the static load exerted by the vibrator, so that k., also cannot be

0
directly compared with the value of a spring constant that is predicted
by a linear layered elastic theory. Because k and ko are nonlinear

spring constants, they must be comparable in magnitude.
3.3.2 EFFECTIVE MASS m

The effective mass that enters the impedance calculation is shown
in Figure 8. The experimental data obtained using the WES 16-kip vibra-
tor on several different types of pavements and subgrades shows that
the effective mass which enters the calculation of the dynamic stiffness
of a pavement or subgrade surface is not related to the moving mass of
the vibrator m . The value of the effective mass depends on the
structure of the pavement and subgrade and is an increasing function of
the DSM value of the pavement or subgrade. For pavements it is much
larger than the vibrator mass m >> m, s buﬁ for subgrades it may be
equal to or less than the vibrator mass.

The dynamic load generated by the WES 16-kip vibrator is ap-
plied to the pavement surface through a moving mass whose weight
wv is 16 kips and whose mass m, is Wv/g , Where g 1is the accele-
ration of gravity. For the WES l6-kip vibrator, the vibrator mass is
500 1b x sec2/ft. An analysis of the measured dynamic load-deflection
curves for pavements using a spring model with the elements k , m ,
and C shows that in general m >> m, . This means that the lumped
effective mass m that occurs in the Kelvin model of the dynamic
response of a pavement is associated with the motion of the pavement
and subgrade, and is not directly related to the vibrator mass that is
used to excite the pavement surface. Therefore the pavement and sub-
grade system is associated with an effective lumped mass as well as a
spring constant and a damping constant. The elastic, inertial, and
damping properties of a pavement-subgrade half-space cannot be separated
from each other, and any half-space that has the elements k and C
associated with it must of necessity also have an effective mass m .

The lumped effective mass of a pavement-subgrade half-space
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determines in part the dynamic properties of the half-space. Equation
3.24 shows that the effective mass determines in part the value of the
critical frequency associated with the dynamic load-deflection curves
of a pavement. As seen by Equations 3.16-3.20, the effective mass plays
an important role in determining all of the parameters required to de-
scribe the dynamic load-deflection curves.

Because it appears in the expression for the impedance of the
pavement surface, the effective mass is a measure of the inertial ef-
fects of the pavement and subgrade and has no direct connection with the
mass of the vibrator. The concept of effective mass occurs in linear
systems as well as nonlinear systems and plays an important role in

Syl The effective mass reflects mainly the inertial effects

acoustics.
associated with the mechanical motion of the material in the pavement
and subgrade; it produces a large contribution to the value of the DSM.
The large value of the effective mass indicates that the inertial term
mm2 is comparable to the spring constant term k . The effective
mass that is presented in Figure 8 was determined from vibratory non-
destructive tests done at 15 Hz. The effective mass may be frequency-
dependent, and this dependence would have to be determined from fre-
quency response curve measurements, from the location and size of the
dominant resonance frequency peak.

3.3.3 EFFECTIVE DAMPING

CONSTANT C AND
DAMPING RATIO D

The damping constant C appears in Figure 9 as a function of the
DSM value of a pavement or subgrade. The value of C depends on the
structure of the pavement and is found to be an increasing function of
the measured DSM value of the pavement or subgrade. As shown in Fig-
ure 10, the damping ratio D = C/(2/km) is a decreasing function of
the measured DSM. For the WES 16-kip vibrator operating on subgrades
D = 0.3 , while for this vibrator operating on relatively stiff pave-
ments D =~ 0.01 . Therefore, the damping ratio varies considerably from

one site to another and cannot be chosen to be a constant for all

pavements.
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3.3.4 STATIC .ELASTIC
PARAMETERS Koo >
b, AND e

The parameters k b, and e are given in Figures 11, 12,

s
and 13, respectively. ngse coefficients describe the static load-
deflection curve which is measured at the surface of the pavement or
subgrade and is represented mathematically by Equation 3.12. The co-
efficient kOO determines the linear portion of the static load-
deflection curve, while b and e describe the nonlinear portion of
this curve. The values of these parameters depend on the structure of
the pavment and subgrade. Detailed calculations of the dependence of
oo > "
been performed. The value of the parameter b has been found to be

b , and e on the structure of the pavement and subgrade have

negative for all of the pavement and subgrade sites that were investi-
gated, and the parameter e has been found to be positive for all sites.

The linear elastic spring constant k can be compared directly with

00
the spring constant that is predicted by the Chevron layered linear

elastic computer program, although it should be remembered that ko0 is

associated with a finite depth of influence of the static stress and
strain field, while the Chevron linear elastic calculation has an infi-
nite range of influence. The spring constant kOO is related to the
elastic moduli of the pavement layers and the subgrade, and does not
depend on the magnitude of the static and dynamic loads generated by
the vibrator at the pavement surface.

The static elastic parameters k b, and e were deter-

00 °*
mined by fitting fifth-order polynomial forms to the measured dynamic

load-deflection curves as required by Equation 3.16, and then using

Equations 3.7-3.20 to determine these static elastic parameters. There
is a considerable amount of scatter in the predicted values of kOO . |
-b , and e , but they appear to be generally increasing functions of
DSM. As shown in Figure 14, the predicted static elastic displacement

under the static load of 16 kips is a decreasing function of the

measured DSM.




3.3.5 FINITE DEPTH OF IN-
FLUENCE COEFFICIENTS
20 A 22 , AND zh
As mentioned in Section 3.2.4, the nonlinearity of the load-
deflection curves measured at a pavement surface can be related to the
assumption of a finite depth of influence for the static stress-strain
field in the subgra.de.h For a linear elastic half-space, the stress-
strain field due to a static load acting at the surface extends to an
infinite depth and radial distance. A nonlinear load-deflection curve
can be derived from the assuption that the static stress-strain field ex-
tends to a finite depth and radial distance.u
The coefficients 20 - 12 , and zh are related to the elastic
moduli of the pavement layers and to the static elastic parameters

k
00
were obtained by examining a number of dynamic load-deflection curves for

b, and e .h The values of the coefficients 20 = 22 , and lh

pavements of known structure, determining the coefficients kOO o 4D 22
and e by fitting these load-deflection curves with fifth-order poly-
nomials according to Equation 3.16, and then determining 20 A 22 =
and Zh in terms of these coefficients by using Equations 3.T.4-3.90 of
Reference L4, the simplest example of which appears in Equations 3.27-
3.30 of the present report.

The finite depth of influence of the static stress-strain field

is described by the coefficients 10 5 22 , and zh that appear in
Equation 3.26 and are shown in Figures 15-17. These coefficients depend
3 on the size of the vibrator baseplate and on the structure of the pave-
ment and subgrade.h The coefficients 20 s 22 , and Eh are found to
be increasing functions of the measured DSM value of a pavement, and
this means that a static load applied to a strong pavement will in-
fluence more of the subgrade than would the same load applied to a weak

pavement. The static displacement of the pavement surface will be less
for the strong pavement than for the weak pavement, but the strain in
the subgrade under the strong pavement will extend to a greater depth
than it will under the weak pavement. A static load applied to a weak

pavement or soil formation will produce a large displacement which is

i
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localized to the area under the load, while the same load applied to a
strong pavement will produce a small displacement which extends over a
large volume of material. As shown in Figures 15-1T the signs of 20 .
22 , and lh are as follows: 20 2 088 22 >0, and lh £00 5

3.3.6 STRESS-STRAIN DISTRI-

BUTION PARAMETER «

The stress-strain field in the pavement and subgrade beneath
the static 16-kip load of the WES vibrator is assumed to be confined to
a frustum of a cone whose upper radius is equal to the radius of the
vibrator baseplate and whose lower radius is determined by the degree
of horizontal spreading of the stress and strain in the pavement and
subgrade.h The parameter «k 1is the ratio of the radius of the lower
area of the frustum ﬁo that of the upper area. If «k =1 , the stress
and strain would not spread horizontally and would be confined to a
vertical cylinder in the pavement and subgrade directly beneath the
vibrator baseplate. Values of «k larger than unity indicate that the
stress-strain field extends into the horizontal as well as the vertical
regions of the pavement and subgrade. The parameter «k 1is a measure of
the lateral spreading of the stress-strain field in a pavement, and
indicates how much of the static load applied to the pavement surface is
transmitted to the subgrade at a point directly beneath the load.

An impoftant function of a pavement is protection of the subgrade
from excessive stress and strain which would cause undesirable plastic
flow in the subgrade. The structure of a pavement is designed in part
with this purpose in mind. Therefore, it is important to know the de-
pendence of the lateral stress-strain spreading factor k on the struc-
ture (strength) of pavements. For the case of & subgrade alone, the

parameter «k 1is related to the parameters k Joick Silies. - Y 20 5 12 ¥

s
and lh in the manner indicated in Equationsog.27-3.30. The relation-
ship of these parameters for the case of a pavement over a subgrade is
given in detail in Reference L.

The parameter «k was determined along with the parameters kOO .
D, ey lo ¥ 12 , and lh by fitting a number of dynamic load-

deflection curves to the mathematical expression in Equation 3.16.

Th




Figure 18 gives the parameter k as a function of the measured DSM of
pavements. This figure shows that the lateral spreading of the static
stress-strain field increases with the measured DSM of the pavement,
and that the lateral spreading of the stress and strain is smaller for
AC pavemnents than for the stronger PCC pavements. This is in agreement
with the well-known fact that AC pavements tend to transmit the surface
load directly into the subgrade, while PCC pavements tend to diffuse
the load over an extended area of the subgrade.

3.3.7 DYNAMIC PARAMETERS 6 ,

n, €5, AND €)

When the WES 16-kip vibrator operates on a pavement surface, it
produces static and dynamic deflections of the pavement surface. For a
hypothetical linear dynamic system, the static displacement of a pave-
ment surface does not enter into the dynamic equation of motion of the
pavement surfa.ce.h For a nonlinear dynamic pavement-subgrade system,
the static displacement of the pavement surface appears in the
dynamic equation of motion of the pavement surface, and the static and
dynemic deflections are not independent (see Equation 3.3) and must be
calculated jointly from the dynamic equations of motion.

The parameters 6 , n , €5 s and €) appearing in Equations
3.6-3.11 represent a simple approximate way of treating the interde-
pendence of the static and dynamic displacements of the pavement surface.
These parameters describe the approximation of writing Equation 3.4 in
the form of Equation 3.5 which brings the equation of motion into the
solvable form of Equation 3.6.

The parameters 6 , n , €5 » and €) represent the cross
product terms between the nonlinear dynamic and static displacement
terms that occur in the dynamic equation of motion of the pavement
surface beneath the vibrator baseplate. These parameters describe the
dependence of the spring constant k on the dynamic displacement of

the pavement surface and the dependence of the spring constant ko on

the static elastic displacement of the pavement surface. The parameters

6 and n appear in Figures 19 and 20, while 52 = 4,0 and €y = 17.0
for the WES 16-kip vibrator.




3.3.8 CRITICAL FREQUENCY

b4
e

The dynamic load-deflection curves for medium strength and
stronger AC pavements measured with the WES 16-kip vibrator at 15 Hz
are generally nonlinear, but when measured at 5, 10, 20, or 25 Hz they
are even more nonlinea.r.h The shape of the measured dynamic load-
deflection curves depends on the operating frequency of the vibrator
as well as on the structure of the pavement and subgrade. Therefore,
for practical reasons, the load sweep tests are conducted at 15 Hz. The
theoretical reason for the existence of this special operating frequency
can be seen from Equations 3.16 and 3.19, which show that the theoret-
ical dynamic load-deflection curves become less curved when the operat-
ing frequency of the vibrator is given by Equation 3.24. From Equation
3.24, it is apparent that the critical frequency is a function of pave-
ment structure (strength).

The values of the critical frequency that appear in Figure 21 as
a function of DSM were determined from Equation 3.24 where ko and m
are parameters that were determined by analyzing dynamic load-deflection
curves measured at a frequency of 15 Hz. For the pavement sites con-
sidered in Figure 21, the critical frequency was not obtained by direct
measurement of dynamic load-deflection curvés at different frequencies
in the neighborhood of fc to see if indeed these load-deflection
curves become less curved at the critical frequency. Such tests would
be desirable, but at present these data do not exist. Reference 4 shoﬁs
some evidence of a straightening effect at a frequency of 15 Hz as com-
pared to dynamic load-deflection curves measured at 5, 10, 20, and
25 Hz. The values of the critical frequency that appear in Figure 21
were obtained indirectly from the parameters ko and m that were
obtained from load-deflection curves measured at 15 Hz.

As shown in Figure 21, the critical frequency is a slowly de-
creasing function of the measured DSM value of pavements and subgrades.
The critical frequency is a decreasing function of the pavement strength
because the effective mass that enters the calculation of the critical

frequency is an increasing function of pavement strength. For the WES
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16-kip vibrator, the critical frequency is approximately 15 Hz for
medium strength and stronger AC pavements. Therefore, the reason that
the WES 16-kip vibrator is generally operated at 15 Hz is that this
frequency is the critical frequency for most pavements. Figure 21 also
shows that subgrades have critical frequencies considerably larger than
15 Hz, but this has not yet been confirmed experimentally by actually
doing tests at these higher frequencies.

Because the values of k and ko are comparable, it follows
that the resonance frequency fR is approximately equal to the critical
frequency fc , and therefore Figure 21 may be considered to give the
resonance frequency as a function of measured DSM. The resonance fre-
quency for most AC and PCC pavements is about 15-20 Hz. Figure 21 shows
that the resonance frequency for subgrades is somewhat higher. The
peak frequency fM is about 18-20 Hz for subgrades and 15-20 Hz for

pavements.

3.3.9 GENERAL DISCUSSION
OF MODEL PARAMETERS

The spring constants k and ko include the nonlinear effects
of the static and dynamic deflections of the pavement surface (Equations
3.7 and 3.15) and are therefore not simply related to the linear elastic
spring constant kOO . A comparison of Figures 6, T, and 11 shows that
the spring constants k and ko have comparable values while the linear
elastic spring constant kOO is about one fifth of their value. There-~ 1
fore, the spring constant k that would be obtained directly from mea-
sured frequency response data using a linear spring model (x,m,C) cannot
be used as a 1inear'elastic spring constant from which to extract the
elastic moduli of a pavement and subgrade.

It is the linear elastic spring constant kOO that is related
to the elastic moduli of the pavement layers and subgrade. The dif-
ference in the values of k and ko0 explains the difficulty that
arose in the determination of the subgrade modulus using the frequency .
response method (Section 2.4.1). In that procedure, the value of k ?

determined from a frequency response spectrum was used directly in the




Chevron layered linear elastic computer program with the result that the
predicted value of the Young's modulus of the subgrade was several times
larger than the value given by the Shell equation, ES = 1500 CBR .

In order to use the frequency response spectrum technique for
the determination of ES , it would be necessary to extract the value
of the linear elastic spring constant kOO from the value of k that
is determined directly from a frequency response spectrum. To do this
would require frequency response spectra measured for a series of fixed
dynamic loads. Because pavements and subgrades respond nonlinearly to
dynamic loads, it is always necessary to have test data for a series of
dynamic loads in orcder to separate the linear elastic spring constant

kOO from the dynamic spring constant k .

3.4 DETERMINATION OF SUBGRADE

YOUNG'S MODULUS FROM DYNAMIC

LOAD-DEFLECTION CURVES

The nonlinear dynamic response model that has been outlined in

the preceding sections can be used in conjunction with a dynamic load-
deflection curve measured at the pavement surface to determine the
Young's modulus of the subgrade beneath the pavement. The Young's mod-
ulus of the subgrade will be determined by comparing the theoretically
predicted dynamic load-deflection curve with the dynamic load-deflection
curve that is measured at the pavement surface and finding the value of
the subgrade Young's modulus which makes the theoretical pavement re-~
sponse agree with the measured response. A computer program (SUBE de-
seribed in Appendix B) has been developed which calculates the theoret-
ical dynamic response of a pavement in terms of the elastic moduli of
the pavement layers and subgrade and in terms of the empirically deter-
mined parameters koo DG e 20 s 22 s lh SIS - SRR R €5 s
€y, s M and C which have been expressed in terms of the measured
DSM values of the pavement (Section 3.3). A typical example of the
vibratory nondestructive input data to the computer program SUBE is
shown in Table 2. The computer program SUBE predicts the value of the
subgrade Young's modulus from the measured dynamic load-deflection curves.

In addition to the measured dynamic load-deflection curve (and
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Table 2

Input to WES Nonlinear Dynamic Program SUBE;

Site B2A, DSM = 700 Kips/In.

FD £
kips e
0 0.0
2 0.003
N 0.007
6 0.011
8 0.015
10 0.020
12 0.025
14 0.030

the DSM), the computer program SUBE which predicts the subgrade Young's
modulus, requires the elastic moduli of the wearing surface, base, and
subbase of the pavement. In this way, only the subgrade Young's mod-
ulus is unknown, and this can be determined by requiring agreement be-
tween the measured and theoretically predicted load-deflection curves.
There are logical methods for estimating the elastic modulus of the
wearing surface, base course, and subbase course of a pavement.7 In
this report, the Young's modulus of the AC wearing surface has been
estimated using the Asphalt Institute temperature dependence curve that
is given in Figure 22. (Reference T gives an estensive literature re-
view of the subject of the temperature dependence of Young's modulus
for AC pavements.) The values of the Young's modulus for AC and bitu-
minous base materials are taken from Figure 22 corresponding to the
pavement temperature value that existed during the measurement of the
dynamic load-deflection curves. The Young's modulus for PCC was taken
to be U x 106 psi.

The Young's modulus of the base and subbase materials was
selected on the basis of measured CBR values using the Shell formula
Es = 1500 CBR . Reference T discusses the validity of the Shell formula
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Figure 22. Dependence of Young's modulus of AC on temperature

and describes the wave propagation method on which this relationship is
based. The Young's modulus is a linear elastic modulus of a material;
i.e. an elastic modulus that is measured under very small dynamic stress
and strain levels. The wave propagation method utilizes small amplitude
elastic waves which are associated with very small stress and strain
values, so that the propagation speed of these waves is a measure of the
linear elastic moduli of the pavement material. Therefore, the Shell

formula is a reasonable way of selecting the values of the Young's mod-

ulus for these pavement materials. The relationship Es = 1500 CBR is

a best straight-line fit through a set of data points that have consid-
7,8

erable scatter. Therefore, the Shell relationship is at best an
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approximation, and considecable uncertainty in the value of the predicted
subgrade Young's modulus must be accepted. Table 3 lists the values of
the Young's modulus and Poisson's ratio that were used in this report

for base course and subbase course materials.
Table 3

Young's Modulus and Poisson's Ratio of
Base and Subbase Materials

Assigned Value

of Young's :
Modulus A331gn§d Va%ue
3 of Poisson's
Material Description 10~ psi Ratio
Crushed Crushed limestone 80 0.35
limestone
CW Well-graded gravel 60 0.35
GW-GM GW and silty gravel 50 0.35
GP Poorly graded gravel Lo 0.35
Stone Crushed stone 35 0.35
GP-GC GP and clayey gravels 35 0.35
SP-SM Poorly graded sand and 30 0.35
silty sand
Bituminous Mineral aggregate and Temperature 0.30
concrete bituminous material dependent

The values of Poisson's ratio were assigned according to the
rule: v = 0.2 for PCC, v = 0.3 for AC and AC base materials at all
temperatures, v = 0.35 for all other base and subbase materials, and
v = 0.35 for all subgrade soils. This choice of Poisson's ratio pro-
duced the most consistent results for the 30 pavement sites of known
structure that were examined. The choice of v = 0.35 for the subgrade
soil was found to be necessary in the sense that larger values of
Poisson's ratio produced theoretical values of the DSM that were always
smaller than the measured values of the DSM, and predicted Es values

could not be obtained in this case. The values of Poisson's ratio

81




4“._.V-.w...,.,=

Es given above are essentially estimates and are not based on laboratory
3 tests done on pavement and subgrade samples teken from the 30 sites

that were investigated.

B The layer thicknesses that were assigned to the pavement layers
were obtained from construction specifications. No measurements of
layer thickness were made at the 30 pavement sites that were investi-
gated. Essentially, the entire pavement structure--elastic moduli and
layer thicknesses--has been derived by indirect means and not by direct
testing.

The value of Es that is predicted by the WES nonlinear dynamic
load-deflection computer program, SUBE, depends on the choice of the
values of Young's modulus and Poisson's ratio of each pavement layer
and also of the choice of Poisson's ratio of the subgrede. The pre-
dicted value of ES also depends on the values of the pavement layer
thicknesses. Errors in the estimation of these pavement parameters will
result in errors in the predicted value of the subgrade Young's modulus.

Only a preliminary study has been done on the sensitivity of the
predicted values of Es to the choice of the values of the elastic
moduli and thickness of each pavement layer. The results of this study
are essentially that the value of the Young's modulus of the wearing
surface has more effect on the predicted value of Es than do the
values of the Young's moduli of the base and subbase materials. The
predicted value of the subgrade Young's modulus depends strongly on the
choice of the value of Poisson's ratio of the subgrade soil. It is im-
perative that at least the Young's modulus of the wearing surface of
AC and PCC pavements be known accurately, and accurate ways of deter-
mining this quantity should be developed. It would be of value if a
procedure were developed to nondestructively determine the entire pave-
ment structure.

The subgrade Young's modulus can be determined by combining the
nonlinear dynamic model with the measured dynamic load-deflection curves.
A theoretical description of the dynamic load-deflection curves using

# nonlinear dynamic model has been outlined in Section 3.2 and has

{iscussed in detail in Reference 4. The parameters kOO - B 5 And
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e that appear in the nonlinear dynamic model are functions of the
Young's modulus of the pavement layers and the subgrade. These Young's
moduli appear as parameters in a general expression for the pavement
response to a static and dynamic loading and, therefore, are independent
of the magnitude of the static and dynamic loading generated by the
vibrator. The Young's modulus of the subgrade is a function of the
static overburden pressure because the Young's modulus is a function of
the static confining pressure. Other types of elastic moduli (such as
the resilient modulus) are dependent on the static and dynamic stress
conditions in the pavement. However, it will be shown in Section 4 that
the nonlinear dynamic theory described in Section 3.2 can also be used
to resolve the resilient modulus into a dependence on dynamic and static
stress and on a set of parameters which characterize the pavement and
subgrade material.

For a choice of Young's modulus and Poisson's ratio of the upper
pavement layers, the subgrade modulus is obtained by requiring that the
theoretically predicted dynamic load-deflection curves agree with the
measured dynamic load-deflection curves. This procedure for determining
the subgrade Young's modulus using the computer program SUBE is shown in
Figure 23. The pavement and subgrade structures for which the subgrade
elastic modulus was predicted are shown in Table 4. The predicted
values of the subgrade Young's modulus are presented in Table 4 along
with the values of the subgrade Young's modulus that were obtained from
the empirical Shell equation Es = 1500 CBR . The values of the sub-
grade Young's modulus predicted by the nonlinear dynamic response
theory are in general agreement with those predicted by the empirical
equation Es = 1500 CBR .

The values of the subgrade Young's modulus obtained by small-
amplitude wave propagation tests (Shell method), by the frequency
response spectrum method (Section 2), and by the nonlinear dynamic load-
deflection curve method (Section 3) must be affected by the overburden
pressure on the soil at the top of the subgrade. The Young's modulus
of soils (and pavement materials) depends on the magnitude of the con-

fining pressure. The confining pressure on the soil at the top of the
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Figure 23. Determination of subgrade modulus from measured
i dynamic load-deflection curves

subgrade is due to the weight of the pavement material above it, and
this overburden pressure will affect the value of the Young's modulus
of the soil. The magnitude of the overburden pressure is generally
only a few pounds (force) per square inch, but the values of E, ob-
tained by the Shell method and by the method of nonlinear dynamic load-
deflection curves will be affected slightly by this pressure; i.e.,

Eg = Eglogg) -

8l
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L. LABORATORY CONFIRMATION OF VIBRATORY
NONDESTRUCTIVE FIELD TEST DATA

4.1 GENERAL DESCRIPTION OF
THE RESILIENT MODULUS TEST

It is the Young's modulus (evaluated at a static stress level

corresponding to the actual stress conditions in the subgrade during the

operation of an aircraft) that is entered in the layered elastic com-

puter to determine the allowable static load or pavement overlay thick-
ness for a specified number of repetitions of an aircraft. The non-
linear theory of pavement vibrations that is developed in Section 3
determines the subgrade Young's modulus from nonlinear dynamic load-
deflection curves measured at a pavement surface. It is important to
have an independent laboratory confirmation of the value of the subgrade
Young's modulus that is determined in the field by vibratory nondestruc-
ctive testing. This section develops a method of correlating the field
values of the subgrade Young's modulus with the values of Young's modu-
lus iLhat are extracted from laboratory resilient modulus tests.

When a heavy aircraft operates on a pavement, the stress and
strain in the subgrade is sufficiently large to cause nonlinear elastic
deformation of the soil. This is expected because even the relatively
small load produced by the WES 16-kip vibrator results in nonlinear
dynamic load-deflection curves. The resilient mbdulus is a physical
quantity measured in the laboratory which exhibits the nonlinear be-
haviour of base, subbase, and subgrade materials subjected to repetitive
dynamic loads for a series of fixed confining pressures. Because the
resilient modulus test exhibits the nonlinear behaviour of soils under
dynamic loading, it is a suitable laboratory test to use as a check on
the values of the subgrade Young's modulus that are derived from the
nonlinear dynamic load-deflection curves measured in the field.

The important physical quantity that must be extracted from lab-
oratory resilient modulus test data is the static elastic Young's
modulus. This section applies the nonlinear dynamic theory of pavement

response that was outlined in Section 3.2 to the laboratory measurement
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of the resilient modulus. The dependence of the resilient modulus on
static confining pressure, dynamic deviator stress, and material prop-
erty parameters will be determined. The material property parameters
are independent of the dynamic and static stress and are analogous to
the model parameters derived from the dynamic load-deflection curves
obtained from the vibratory nondestructive method of testing pavements.
The value of Young's modulus can be expressed in terms of the static
confining pressure and the material property parameters.

In its natural state, an element of soil in the subgrade is sub-
Jected only to the overburden pressure. When a vibrator is operated on
the surface of a pavement or subgrade, an additional static and dynamic
stress is applied to an element of soil in the subgrade. For the WES
16-kip vibrator, the static load applied to the surface is 16 kips,
while the dynamic load can be varied up to 15 kips and is applied sinu-
soidally with a frequency of 15 Hz. The nonlinear load-deflection
curves measured in the field are obtained by sweeping through a range
of dynamic loads. The magnitude of the stress and strain field in the
pavement layers and subgrade varies with the depth and radial distance
from the source and can be calculated by standard elasticity theory with
the assumption of linear elasticity.

An appropriate laboratory test will also involve a sweep through
a series of dynamic loads for a fixed frequency. The resilient modulus
test determines the resilient modulus Mr for a series of dynamic
loadings at a fixed frequency and fixed confining pressure.7 The lab-
oratory sample for resilient modulus testing is a cylinder with a typ-
ical diameter of 3 in. and a length of 6 in. The cylindrical sample is
subjected to a static confining pressure, and then a dynamic load is
applied in the axial direction. The stress is uniform along the axis
of the laboratory sample. The total stress along the axis of the lab-

oratory sample is written as

(4.1)




e Rt

Op = dynamic stress in axial direction of sample

o
S
The axial dynamic stress is also called the dynamic deviator stress and

confining pressure

‘ti is written as o =0 -0 where o0 equals total stress along the

’
axis of the specgmen. Thi resilient modulus has been measured for a
: number of soil and pavement materials, and Mr has been found to depend
4 on 0g and op - The results of typical resilient modulus tests appear
in Figures 24-27.

The dymamic stress acting along the axial direction of the soil
specimen during the laberatory resilient modulus test is applied as a
series of pulses in the form of haversines with a pulse of 0.2-sec dura-
tion being applied every 3 sec. The characteristic frequency of the
dynamic loading on the sample will therefore be in the range of 5 Hz,
which is somewhat lower than the frequency of 15 Hz at which the vibra-
tory nondestructive field tests are conducted with the WES 16-kip vibra-
tor. The 0.2-sec duration of the dynamic pulse that is spaced every
3 sec is selected for a standard resilient modulus test done at WES to
simulate a moving wheel of an aircraft traveling at 20 to 30 mph. It
is possible to alter the equipment to attain a loading frequency compar-
able to 15 Hz, but this was not done for the resilient modulus tests
described here. Future resilient modulus testing should be done at a
frequency of 15 Hz when the specific purpose of these tests is a com-
parison with the results of the vibratory nondestructive tests done with
the 16-kip vibrator operating at 15 Hz. Nevertheless, the difference
in the frequencies used for these two types of tests requires that an
adequate account of frequency effects be included in the theoretical
analysis of both laboratory and field vibratory tests.

References T, 12, and 13 give a description of the resilient
modulus and the experimental data which give the dependence of the re-
silient modulus on static and dynamic stress. At present, there is no
theoretical description of the resilient modulus which expresses this
quantity in terms of material parameters and in terms of the dynamic
and static stress conditions in the pavement and subgrade. In this re-

port, it is assumed that the basic nonlinearity of the dynamic
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3 load-deflection curves measured during vibratory nondestructive testing

of puvements and subgrades is due to the basic nonlinearity ~f the pave-

ment and subgrade materials as exhibited in the laboratory resilient

Y modulus tests. 'Therefore, a common description of both laborateory and
I'ield tests should be possible.

The subgrade Young's modulus that is extracted from vibratory

{ nondestructive field test data is independent of the dynamic and static
loads generated by the vibrator but does depend on the value of the
overburden pressure at the top of the subgrade. Similarly, a theo-
retical analysis of the resilient modulus data is necessary in order to
extract a static elastic Young's modulus from the laboratory dynamic
recponce data which will be independent of the dynamic deviator stress,
but which will depend on the confining pressure. The Young's modulus

that is extracted from the dynamic'resilient modulus test data for a

soil specimen must be compared with the static Young's modulus that is

obtained from the vibratory nondestructive field test method that uses

the dynamic load-deflection curves (Section 3) and with the static i

elastic modulus given by the Shell formula Es = 1500 CBR . i 4

The value of *the subgrade Young's modulus that is obtained by
vibratory nondestructive field tests will depend on the magnitude of s
the overburden pressure at the top of the subgrade, and this dependence é
must be accounted for by the dependence of the Young's modulus, ex- |
tracted from the resilient modulus, on the confining pressure applied
Lo the scil samprle. It should be emphasized that the nonlinear dynamic
theory of the resilient modulus test and the nonlinear dynamic theory
of the load-deflection curves measured for the Jibratbry nondestructive
field tests both utilize the entire measured dynamic load-deflection
curve.

L.> NONLINEAR DYNAMIC ANALYSIS
AF THE RESILIENT MODULUS TEST

A dynamic theory of the resilient modulus test has been developed

which is similar in form to the analysis developed for the vibratory

nondestructive field tests. The basic result of this theory is that the

dynamic displacem¢ 1t of the test specimea can be written as

B W ——

9L

| 4
|
i 3
i

i3
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2
§'= ﬁk - mw2) v oy (L.3)

where
Ev = resilient dygamic displacement on the cylinder end in the
axial direction
FD = dynamic load on the cylinder end in the axial direction
S = dynamic stiffness of the loaded end of the cylinder

A, = area of the loaded end of the cylinder
0. = dynamic stress on the cylinder end in the axial direction

D

k = spring constant of the loaded end of the cylinder
m = effective mass of the loaded end of the cylinder
w

= effective angular frequency component of the dynamic load
applied to the soil sample

C = damping constant of the loaded end of the cylinder

The nonlinear theory of vibrations that was outlined earlier in
this paper for the vibratory nondestructive field tests can also be used
to calculate the quantities in Equations 4.2 and 4.3. This nonlinear
theory shows that the spring constant is given by

Eak, « %begfr + % enEt (4.4)

Ky = kg * 3b52x§v + Seehxzv (4.5)
where b, e, 06 , n, 62 , and €) are parameters which character-
ize the soil sample, and xev is the resilient static displacement of
the soil sample in the axial direction. The coefficients kOO 5. B 5
and e could be determined from the resilient static stress-strain
curve if such a curve could be measured. The resilient static stress-
strain curve of the soil sample is determined by

i e 3 5
Fs = OSAC = kooxev + bxev +oex (4.6)
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where

Fs = total static force applied to the cylinder end

0., = static confining pressure

S
The solution of Equations 4.2 and 4.5 can be written a.sh

F
b el 2
A RN RR Y (1.7)

where

S0 = vkko & mwz.)2 + 02w2 (4.8)

m falonn
En  Bfp
- S eope (4.9)
Boo B
gt 2
L E—be(ko - mw") (k.10)

op = 1) (1, - ) - 5 [ ool - ) (D] m

The dynamic stiffness of the soil sample can be obtained from Equations

4.2 and L4.7 to'be

2
S = So(l + BY + BV ) (k.12)
B, = -y (4.13)
g
By = 0y = Oy (k.1k)

The quantities necessary for the calculation of the resilient modulus

have now been determined.

4.3 CALCULATION OF THE RESILIENT
: MODULUS

The resilient modulus is defined as the secant slope of the
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unloeding portion of the dynamic stress-strain curve of the soil sample

and is given by

s (4.15)

where
dynamic strain in the axial direction
length of the soil sample

™
e
non

area of the ehd of the cylindrical sample

>
[}

In Equation k.15, Ev is assumed to describe the unloading portion of
the resilient dynamic load-deflection curve of the soil sample. Com-

bining Equations 4.12 and L4.15 gives
= 2
M_ = Mro(} +BY + By ) (4.16)
where
2 Lb '

The quantity Mro is the value of the resilient modulus for a zero
value of the dynamic deviator stress; it is, in fact, the intercept
points shown in Figures 24-26 for op = 0 . The values of Mro depend
on the static confining pressure.

For the low frequency and small mass with which the resilient
modulus tests are conducted, the inertial and damping terms in Equa-
tions 4.3 and 4.8 can be neglected and the following approximations

can be made
S ~ k (%.18)
S, ~ k (4.19)
The same approximations can be made in Equations 4.10 and L4.11.

97




i
\
|
|

Combining Equations 4.5, 4.17, and 4.19 gives the following -

approximation:
2 L
Mro ~eqteXx  +ex (4.20)
where
By '
€ = 2. *o0 (4.21)
C
e, = o 3be '(h 22)
2 A 2 2
C
e, = L See (4.23)
L Aq L x

The quantities €y s S5 and e, are soil parameters which are inde-
pendent of the size of the soil sample and machine characteristics. The
calculation of the resilient Poisson's ratio requires further study.

The quantity Mro gives the intercept values of Mr for oy = 0,
while the quantities ey >
these intercept values of the resilient modulus with the confining

e, » and e, describe the variation of

pressure. The term € is the value of the resilient modulus for the

case of zero dynamic deviator stress and zero confining pressure;

D =0 and OS =0.

It is also possible to define a tangent slope resilient modulus

i.e., ©

as follows

-1
do dg
G =EP'=K_'(3-F1> (h.24)
. C D

where Mrt is the tangent resilient modulus. Combining Equations 4.7
and 4.24 gives

M, = Mro(l R 52\;;2) (4.25)

where
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61 = -3n1 (k.26)
& W% - 5a (4.27)
2 1 2 e

The tangent resilient modulus is analogous to the DSM value measuréd by
vibratory nondestructive tests in the field.
4.4 CALCULATION OF THE STATIC
ELASTIC YOUNG'S MODULUS

Equations 4.7, 4.16, and 4.1T show that the parameter .
describes the linear elastic response of a soil to a dynamic load.
The value of Mro depends on the value of the confining pressure at
which the resilient modulus test is performed. Both Mr and Mro are
dynamic quantities which describe the resilient response of the soil
sample to a dynamic load. The Young's modulus, which describes the
elastic response of the soil to a static load, must be extracted from
the measured values of the dynamic resilient modulus. The Young's mod-
ulus of a soil depends on the confining pressure applied to the soil,
and its value for a given confining pressure is obtained from Equa-
tion 4.6 to be

2 2 N .
Es = 80 + 82xev + ahxev (4.28)

where Lk

§ =29 (4.29)

& =Lt (4.30)

&, = A, (4.31)

n
>

The parameters 80 3 82 , and 8& depend cn the composition and
structure of the soil specimen; they are soil parameters. Equation 4.28
gives a general expression for the Young's modulus as a function of con-
fining pressure because Xy is related to Oy by Equation 4.6. The
parameter 80 is the Young's modulus for an unconfined sample of soil
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(cs = 0). It is required to determine the coefficients &0 ; 82 , and

8& in terms of the measured dynamic resilient modulus data, i.e., it is

required to determine Es from Mr 5
The expression for M_ given by Equations 4.16-4.19 character-

izes the resilient modulus in terms of o US , and w . The param-

D £
eters required to describe the resilient modulus are koo AT AR

(188 AT o S P €55 €, 5, M, L , and A These parameters will de-

pend on the type of testing machine, sizecof soil sample, and the type
of soil constituting the soil sample, and therefore the parameters will
have to be determined for each type of testing machine. The parameters
m, L, and AC are known immediately from the size and density of

the soil specimen. The parameters Mro - Bl , and 82 that occur in
the expression for Mr given by Equation 4.16 were obtained by fitting
Equation 4.16 directly to the measured resilient modulus curves. The

parameters k b > (S (0 SRR G i e2 , and Eh were then

00 ’

obtained from Mro » B, and 82 by a trial and error method using

Equations L4.8-4.19. Tht static elastic and the dynamic elastic dis-
placements of the soil sample must also be known. The parameters
a5 %y 61 , and 62 are obtained from 81 and 82 by using
Equations 4.13, 4.14, 4.26, and 4.27. Finally, the parameters ey »
e, , and e are calculated using Equations 4.20-4.23, and the param-
eters 80 - 82 , and &h are calculated using Equations L4.29-k.31.
Only a preliminary analysis of the resilient modulus data was
performed. The values of the parameters that occur in a resilient
modulus test that is described by Equations 4.2-4.23 are given for the
case of a specimen of loess in Table 5. The parameters in Table 5 refer
to the resilient modulus curves that are presented in Figure 24, 1In
general, the values of the resilient modulus parameters will depend on
soil properties such as water content; content of clay, silt, and
organic matter; dry density; Atterberg limits; grain size; etc. The
brief analysis done here is sufficient to determine only order of
magnitude values for these soil parameters. It would be of value to
determine the soil parameters that describe the dependence of the re-

silient modulus on Og and % in terms of soil type and composition.
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Table S
Parameters Describing the Dynamic Characteristics of the
Resilient Modulus Laboratory Test on a Sample of Loess

LD o N AL s £

o

¥ (Figure 24)
| Parameter Unit Value Parameter “Unit Value
hi A in.® 6.16 oy 127404 2.83 x 10'3
3 L in. 6.0 a, 16%/1n.8 6.07 x 10%®
v 16 5.0 8, 15%/10." -2.83 x 103
z = 1b sec>/in. 0.013 8, 15%/4n.8 1.9% x 1026
.l , w e 31.4 0 Dimensionless 30.0
F m2 1b/in. 12.8 Dimensionless 50.0
: c 1b sec/in. 30.0 €, Dimensionless 31.0
‘ Cw 1b/in. 180.0 €) Dimensionless 54.0
| B 1b/in. 2.7 x 10* e 1b/in.2 2.6 x 10"
‘ ko 1b/in. 4.0 x 10° e, 1b/in." -1.8 x 10°
Kk 1b/1in. k.0 x 10" e, 1v/1n. 2.6 x 1012
b 1b/in.3 «2.0.% 307 &, 1b/1n.? 2.6 x 10"
e 1b/in.” 1.0 x 1013 & 1b/in." -1.9 x 10"
2, 4 13 @ 6 13
8 1b°/in. -8.49 x 10 &,. 1b/in. 1.9 x 10
5, 1%/1n. 4.17 x 10°7

— e . .
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The value of ES that is determined by the nonlinear dynamic
load-deflection curve method (Section 3) and by the Shell formula
B = 1500 CBR (wave propagation method) includes the effect of the
static overburden pressure. Therefore, the values of Es determined
by these two field methods must be compared to the values of ES that
are determined from resilient modulus test data by using Equation L4.28
for a static confining pressure which is equal to the overburden pres-
sure at the top of the subgrade of the pavement locations where the
vibratory nondestructive field tests are conducted.

A comparison of Mro given by Equation L4.20 with Es given by
Equation 4.28 shows that these two quantities are not equal. This is
reasonable because the former quantity is a dynamic elastic modulus
while the latter is a static elastic modulus. However, a comparison of
M and E_ does show that 80 = e

ro 0’
because it shows that the Young's modulus for unconfined soils is equal

This is an important conclusion

to the value of the resilient modulus for the condition op = 0 and

og = 0; i.e., 80 = Mr(oD W0, op= 0) . Therefore, &0 can be
obtained directly from resilient modulus test data by extrapolation of
the values of M} to the condition op = o O . In other words, the

static elastic modulus 80 can be determined very simply from dynamic
resilient modulus test data. It is also true that for a small confining
pressure, Mro ~ Es .

Most pavements have a wearing surface, base, and subbase whose
total thickness is rarely more than 4 ft. In fact the thickness of a
thin pavement is about 1.2 ft, a medium thickness pavement about 2.0 ft,
and a thick pavement about 3.5 ft. This means that the overburden
pressure at the top of the subgrade is relatively small, being generally
less than L4 psi. Therefore, the subgrades of most pavements will have a
Young's modulus whose value is given approximately by ES ~ 30 . There-
fore, in general, the Young's modulus Es of a soil specimen taken from
a subgrade can be approximately obtained from an extrapolation of the
resilient modulus test data to the condition OD =0 and cs )
because Mr(oD =0, °S =0) = 80 . For exceptionally thick pave-

ments, the overburden pressure will considerably affect the value of the
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subgrade Young's modulus and Equation 4.28 must be used in conjunction
with the resilient modulus test data in order to determine Es .

It has been shown that except for the case of very thick pave-
ments, the Young's modulus of the subgrade can be approximately deter-
mined from resilient modulus test data without having to fit Equaticns
4.2-4.31 of the nonlinear dynamic theory to the measured resilient mod-
ulus test data. All that is necessary is sufficient resilient modulus
test data to obtain the value of Mr extrapolated to the case
op = 0 and OS = 0 , because this immediately gives 80 which is a
good approximation to the value of Es except at large confining pres-
sures. For the case where the overburden pressure is large enough to
make Es considerably different from 80 » & full analysis must be done
to extract the values of 80 ’ 82 , and 8h from the resilient modulus
test data for use in Equation 4.28. :

Undisturbed soil samples were taken from the Alum Creek site and
from the Weapons Effects Laboratory (WEL) and Poorhouse sites at WES,
and resilient modulus laboratory tests were performed on these samples.
The results of these tests appear in Figures 25-27. A rough extrapo-
lation of these curves to the condition op = 0 and oy = 0 gives an
approximate value of the Young's modulus Es . These extrapolated
values agree reasonably with the values of Es shown in Table U4 that
were predicted by the nonlinear dynamic theory applied to the dynamic
load-deflection curves that were obtained by vibratory nondestructive
testing at these sites. More field and laboratory tests are required to
establish a correlation between the values of Es predicted from the
field and laboratory data. Also, resilient modulus tests of much
better quality and extending over a greater range of dynamic deviator
stress (in the low and high values of OD) will be required for accurate
laboratory determinations of Es .

4.5 GENERAL BEHAVIOR OF THE
RESILIENT MODULUS Mr(oD,oS)

The preceding analysis shows that the characteristic shape of

the nonlinear dynamic load-deflection curves measured in the field by
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the WES 16-kip vibrator is due in part to the basic nonlinear response
of the material in the subgrade to dynamic loads. The signs of the co-
efficients describing the resilient modulus test (al >0, ay>0,

8 LG O B @i SR

1 2 1 2
a large extent the signs of the corresponding coefficients determined

>0, b<0, and e > 0) determine to

from the vibratory nondestructive tests conducted on pavements and sub-
grades. However, inertial, damping, and frequency effects will affect

the values of «o. and o, that are determined by vibratory nondestruc-

tive field testiig. Forzthe vibratory nondestructive tests done on
pavements and subgrades at 15 Hz, it is generally found that @, > 0
and a, > 0 , which is in agreement with the signs of the corresponding
coefficients describing the resilient modulus laboratory test. For
frequencies different from 15 Hz and for exceptional pavement cases, it
is found that a, > 0 and ay < 0 or a, < 0 and ay > 0 . There-
fore, the combination of the large effective mass associated with a
pavenent and subgrade and the relatively high frequency of operation of
the WES 16-kip vibrator can produce a dynamic load-deflection curve
which has a shape which is considerably different from the shape of

the dynamic load-deflection curve measured in the laboratory during a
resilient modulus test.

Because of the finite size of the soil sample for the resilient
modulus test, the effective mass of the soil sample is for the purpose
of a good approximation equal to the actual mass of the sample. The
effective mass that enters the dynamic calculations for the vibratory
nondestructive field tests is generally quite large compared to the
moving mass of the vibrator because of the large inertial effects asso-
ciated with the pavement and subgrade. The large effective mass and high
frequency of the vibratory nondestructive field tests indicate that the
inertial and damping terms are comparable or larger than the elastic
effects mm2 ~k and Cw ~ k . The relatively small mass of the soil
sample used for the laboratory resilient modulus tests and the low
frequency at which these tests are conducted suggest that for this
case mm2 << k and Cw << k , and the linear and nonlinear elastic

properties are measured directly in this test.
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The resilient modulus tests combined with the nonlinear dynamic
theory of these tests indicate that the static nonlinear elastic coeffi-
cients b and e have the signs b < 0 and e > 0 . It is this basic
property of soils that is responsible for making the corresponding coef-
ficients determined from field tests exhibit the same signs. The non-~
zero values of b and e as determined from the resilient hodulus
test are related to the finite depth of influence of the static stress-
strain field in the subgrade beneath a static load placed on the pave-
ment surface. The intrinsic nonlinearity exhibited by the soil during
the resilient modulus tests is responsible for the finite depth of
influence of the static stress-strain field in an actual soil formation.

The dependence of Mr on the dynamic deviator stress is given
theoretically by Equation 4.16 which shows that for small values of
% (and Bl < 0) the resilient modulus is expected to decrease with in-
creasing values of OD , while for larger values of °D the resilient
modulus is expected either to level off or attain a minimum value before
starting to increase with a further increase of the dynamic deviator
stress op . Figure 24 indicates that the minimum point may occur,
while some experimental resilient modulus test data exist that defi-

nitely exhibit this general behavior.l3’lh

The values of Mr may
eventually increase with OD because of the dynamic compaction of the
soil. The decrease of Mr for small values of op may reflect a
loosening (or dilatation) of the soil. If this is the case, the coef-
ficients b and 82 measure the loosening effect while the coef-
ficients e and &h measure the soil compaction. In other words,
the state of compaction of a soil will determine its degree of non-
linearity under static and dynamic loadings. The coefficients b ,
e, &2 , and 8h are probably important to the description of the
liquefaction process in soils because liquefaction is essentially a
nonlinear process in soils. These parameters also describe the dilata-

tion and compaction of soils under dynamic loadings. Decreasing values
of Mr are not expected for soils with Bl >0 .
The experimental resilient modulus data shown in Figures 25-27

show only values of Mr decreasing with an increase of the dynamic
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deviator stress op - This is due to the limited range of the dynamic
deviator stress that is applied to the soil samples; the dynamic devi-
ator stress was not high enough to observe the increasing values of the
resilient modulus. In some cases such as silty sands, only increasing
resilient modulus values are observed as a function of dynamic deviator
stress.ls This may be due to the limited range of values of °D that
were used, because the dynamic deviator stress was not carried low
enough into the region where the resilient modulus is a decreasing func-
tion of Op -+ On the other hand, it may be the case that silty sands

do not exhibit a minimum vaiue of Mr , and Mr may be a monotonic in-
creasing function of o with Bl > 0 for this case. Only further
experimental resilient modulus test data for silty sands will clarify
the situation. The complete description of the nonlinear behavior of

a soil specimen requires that a full range of values of the dynamic
deviator stress be applied to a soil sample.

For each type of soil, the minimum value of Mr will occur at a
specific value of the dynamic deviator stress GD which is character-
istic of the soil type, density, water content, composition, etc. The
value of the dynamic deviator stress at which Mr attains a minimum
can be obtained from Equation 4.16 by the condition er/doD = 0 with

the result that

S -B
0 1l
o = s || cnian— (h.32)
DM AC 282
where ODM is the value of OD for which Mr is a minimum. The

value of Bl must be negative for Mr to exhibit a minimum value.
If the situation Bl
value of M, (as may be the case for silty sands) and Equation k4.32

> 0 were encountered, there would be no minimum

would not be valid in this case.

The value of o will depend on the type of soil, confining

DM
pressure, water content, density, frequency of applied dynamic load at
which the resilient modulus test is conducted, etc. Figure 2k shows

that for the sample of loess at a confining pressure of og = 40 psi,
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the value of the dynamic deviator stress at which Mr attains a minimum

oM = 60 psi. Because SO is an increasing function of the

confining pressure, Equation 4.32 shows that o

value is

DM is an increasing func-

tion of the confining pressure as indicated roughly in Figure 2&. The

value of o© is a good measure of the liquefaction potential of a soil

DM
subjected to a dynamic stress op - If OD < OpM the soil will dilate
and possibly liquefy while if o > %M the soil will be compacted and
probably will not liquefy. The parameter GDM is a good indicator of

the stability of a subgrade soil under the action of known dynamic loads.
When an aircraft operates on a rough pavement, dynamic forces
are produced which in turn create dynamic stresses in the subgrade. De-

pending on the relative values of o, and o the subgrade soil can

s
either dilate or contract under dynazic loads?Mthereby producing an
eventual failure of the subgrade. The laboratory measured value of
opM can be used to predict the future behavior of a subgrade soil under
the action of a known dynamic loading. Therefore, although the basic
use of the measured resilient modulus of & soil is the determination of
the Young's modulus Es(cs) , an important secondary use of Mr would
be the determination of the density variation of subgrade soils under
dynamic loading.

There is also a minimum value of the resilient modulus when it
is considered as a function of the static confining pressure. For the
case of o_ = 0 , the minimum value can be calculated from Equation 4.2

D
by calculating ero/doS = 0 with the result that

-3b22

Xem lOeeh (k.33)

where L is the static elastic displacement of the soil sample at the
static confining pressure where Mro is a minimum. The value of b is
negative. The value of this characteristic confining pressure is then

obtained by placing Equation 4.33 into Equation 4.6. The static confin-
ing pressure at which the minimum in M  occurs is so small (~1.0 psi)

that it is probably of no practical interest.
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4.6 RELATIONSHIP OF THE LOAD-
CARRYING CAPACITY OF A PAVEMENT
AND THE RESILIENT MODULUS OF
THE SUBGRADE
The allowable load (bearing capacity, load-carrying capacity)
refers to the maximum static load that can be applied to a pavement for

3 Because a

a specified number of repetitions before failure occurs.
static load is involved, the pressure-dependent Young's modulus of the
subgrade Es is entered in the static layered elastic computer pro-
grams that theoretically predict the allowable load for a pavement. It
is not the resilient modulus of the subgrade Mr that is entered in the
static layered elastic computer programs (Chevron Program and Shell
Program), because Mr describes the response of a material to a dynamic
load. The limiting stress and strain criteria that govern the perfor-
mance of pavements and subgrades refer to static stress and strain
levels.ls These limiting values of static stress and strain must be
used in conjunction with Young's modulus values to determine the allow-
able static load for a pavement.

If the allowable static load of a pavement is required, the
values of Mr(oD,oS) must be used to determine the Young's modulus of
the subgrade Es(os) by the method outlined in this section. The
function ES(GS) is then used in the static layered elastic computer

programs to calculate the static load-carrying capacity of a pavement.
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 SUMMARY

Of much importance to pavement engineers is an estimation of the
strength and condition of the subgrade of a pavement without having to
drill holes through the pavement to have direct access to the subgrade.
The layered elastic approach to the problem of calculating the load-
carrying capacity and the overlay thickness of a pavement requires the
value of the subgrade Young's modulus in addition to the elastic moduli
of the pavement layers. The nonlinear dynamic response model that is
developed to describe the dynamic load-deflection curves that are mea-
sured at a pavement surface can be used to eliminate the extraneous
effects of the static and dynamic loads produced by the WES 16-kip
vibrator and to determine quickly and accurately the value of the sub-
grade Young's modulus.

The nonlinear dynamic pavement response model that is presented
in this report gives a quantitative description of the dynamic response
of a pavement surface under the action of the dynamic and static load
applied to the pavement surface by the WES 16-kip vibrator. The model
parameters (spring constants, effective mass, damping constant, and
finite depth of influence of the static load) have been determined as a

function of pavement strength as represented by the measured DSM. The

nonlinear pavement response model gives a theoretical expression for the

pavement response in terms of these parameters and in terms of the

elastic moduli of the pavement and subgrade. For a suitable choice of

the elastic moduli of the pavement layers, it is possible to predict the

value of the subgrade Young's modulus from the dynamic load-deflection
curve measured at the pavement surface.

The nonlinear dynamic model has also been applied to the dynamic
resilient modulus test, and the resilient modulus has been analytically
characterized as a function of static confining pressure, dynamic
deviator stress, and coefficients that describe the material properties
of the soil. The Young's modulus of the subgrade soil sample can be

extracted from the dynamic resilient modulus data, and this Young's
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modulus can be compared with the subgrade Young's modulus that is pre-

dicted from vibratory nondestructive field tests.

5.2 CONCLUSIONS

5.2.1 TFREQUENCY RESPONSE METHOD

The study of the use of the frequency response curves for deter-

mining the elastic modulus of the subgrade gave the following conclusions:

a.

A relatively simple linear spring model can be developed which
can describe a frequency response curve having one dominant
peak; however, this linear model is inadequate to relate the
frequency response curve to the Young's moduli of the subgrade
and pavement (Sections 2.3 and 2.k4.1).

The three parameters of the linear spring model k , m , and
C can be determined in terms of the position and size of the
deflection peak. For most pavements the peak frequency is
about 15-20 Hz and the resonance frequency is about 15-20 Hz
(Sections 2.3 and 3.3.8).

The effective mass is an increasing function of the pavement
strength and is generally much larger than the above-surface
moving mass of the vibrator that is used to excite the pave-
ment surface. The spring constant and demping constant are
also increasing functions of the pavement strength

(Section 2.4.1).

The value of the spring constant k obtained from the dy-
namic data is generally much larger than that predicted by the
Chevron linear layered elastic program for a pavement system
whose subgrade Young's modulus is given by Eg = 1500 CBR .
This is due to the nonlinear nature of the pavement response
to dynamic load which implies that the spring constant k
depends on the magnitudes of the static and dynamic loads
exirted by the vibrator on the pavement surface (Section
2.h.1),

If the value of the spring constant k that is determined
from the frezquency response spectrum data is used in con-
Junction with the linear layered elastic Chevron Program to
determine the value of the subgrade Young's modulus, the
predicted value of the subgrade Young's modulus is several
times larger than the value given by the Eg = 1500 CBR
rule. This is due to the extraneous effects of the static
and dynamic loads on the value of the spring constant k .
The spring constant k 1is not directly related to the
Young's moduli of the subgrade and pavement layers
(Section 2.4.1).

The Young's modulus of the subgrade cannot directly be ob-
tained from the linear model of the frequency response
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spectrum, and a nonlinear dynamic model seems to be required
to determine the subgrade Young's mudulus (Sections 2.4.1 and
25 )4

5.2.2 DYNAMIC LOAD-DEFLECTION
CURVE METHOD

The nonlinear dynamic pavement response model that is used to
describe the dynamic load-deflection curves that are measured on pave-
ments and subgrades using the WES 16-kip vibrator yields the following
conclusions:

a. A single-mass nonlinear spring model can be developed which
adequately describes the measured dynamic load-deflection
curves and predicts the value of the subgrade Young's modulus
(Section 3.2).

b. Thirteen parameters are required for the nonlinear spring
model: k s PEG eus 0 SERES R JTe N SRR IR R o g
2y , k, m, and C . These parameters have been deter-
mined as a function of pavement strength as represented by
the measured DSM value (Section 3.3 and Figures 6-20).

c. Damping and inertial terms make significant contributions

to the dynamic response of a pavement, and the damping and
inertial terms vary greatly with the type of pavement. Both
C and m are larger for stiffer pavements, but the damping
ratio D decreases for increasing values of the measured
DSM (Section 3.3.3 and Figures 8-10).

d. The spring constant k determined from dynamic data depends
on the dynamic and static loads generated by the vibrator
and cannot be identified with the static elastic spring
constant that would be obtained from static plate bearing
tests or from layered linear elastic theory computer programs
(Sections 3.2.3 and 3.3.1, and Figure 6).

e. The static linear elastic spring constant koo and the
static nonlinear elastic spring constant kg are increasing
functions of the measured DSM, and, therefore, the measured
DSM of a pavement can be used as a measure of the static
stiffness of a pavement or subgrade. The spring constant
ko depends on the static load applied by the vibrator to
the pavement surface (Sections 3.3.1 and 3.3.4, and Figures

e

Sabadie o

7 and 11).
f. The static elastic load-deflection curves are determined by
parameters kpog , b , and e . The nonlinear parameters b

and e make a significant contribution to the shape of these
curves and to the value of the elastic part of the reaction

modulus determined from plate bearing tests on subgrades and
pavements. The parameters kop , b , and e are generally

e e e o
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increasing functions of the measured DSM. The predicted
static elastic displacement of the pavement under the vibra-
tor baseplate is a decreasing function of the measured DSM
(Section 3.3.4 and Figures 11-1k4).

The nonlinearity of the static and dynamic load-deflection
curves can be related to the finite depth of influence of
the static stress and strain field in the subgrade. The
parameters &y , %o , and &) , which describe the finite
depth of influence of the static stress-strain field, are
found to be increasing functions of the measured DSM (Sec-
tions 3.2.4 and 3.3.5, and Figures 15-1T).

The lateral spreading of the stress and strain distribution
in the pavement and subgrade is described by the parameter
« and tends to increase for increasing values of the mea-
sured DSM (Sections 3.2.4 and 3.3.6, Figure 18, and
Reference 4).

There are significant interaction terms involving the dynamic
and static displacement in the equations of motion of the
pavement surface beneath the vibrator baseplate, and four
parameters 6 , n, €p , and €} are required to quantify
these interaction terms (Section 3.2.1 and 3.3.7, and Figures
19 and 20).

The nonlinear dynamic theory of pavement response shows that
there is a critical frequency f, for which the measured
nonlinear dynamic load-deflection curves tend to be less
curved than the load-deflection curves measured at other
frequencies. The critical frequency decreases with increas-
ing values of the measured DSM but remains in the neighbor-
hood of 15 hz for medium-strength and strong pavements
(Sections 3.2.2 and 3.3.8, and Figure 21).

The subgrade Young's modulus can be determined directly from
the measured dynamic load-deflection curve, and a reasonable
agreement with the rule Eg = 1500 CBR is obtained. The
subgrade modulus depends on the static overburden pressure
produced by the layers of pavement above the subgrade
(Section 3.4).

5.2.3 LABORATORY CONFIRMATION

OF THE SUBGRADE ELASTIC
MODULUS VALUE

The following conclusions can be obtained from a consideration

of a nonlinear dynamic theory of the laboratory resilient modulus test:

e

A nonlinear dynamic theory of the resilient modulus labora-
tory test can be developed which is analogous to the non-
linear theory of the vibratory nondestructive tests conducted
on pavements and subgrades (Section L.2).
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b. The resilient modulus is expressed analytically as a function
of confining pressure, dynamic deviator stress, and the
frequency of application of the dynamic loading in the axial
direction. The resilient modulus is a dynamic modulus which
describes the response of a material to a dynamic load
(Section 4.3).

c. It is possible to extract the static elastic Young's modulus
from the measured resilient modulus test data. It is the
Young's modulus that enters the layered elastic computer
programs that calculate the allowable load-carrying capacity
of a pavement. It is this Young's modulus that must be com-
pared with the subgrade Young's modulus that is predicted
from vibratory nondestructive field tests and with the sub-
grade Young's modulus given by the Shell wave propagation
relationship E_ = 1500 CBR (Section 4.4).

d. The Young's modulus that is extracted from the resilient

modulus test is a function of the confining pressure. The
Young's modulus under unconfined conditions can be easily
obtained from M, by extrapolating M, to the condition

Gy - 0 and g, = 0 (Section L4.h4).

e. The resilient modulus may have a minimum value at a specific
value of the dynamic deviator stress which depends on the
soil type and structure (Section 4.5).

f. The allowable static load of a pavement can be determined by
the layered elastic theory if the subgrade modulus that
is used is the static elastic Young's modulus that is ex-
tracted from the resilient modulus test (Section 4.6).

5.3 RECOMMENDATIONS

The use of layered elastic theory computer programs to predict
the allowable load-carrying capacity of a pavement requires an accurate
value of the subgrade Young's modulus and accurate values of the elastic
moduli of all the pavement layers that occur on top of the subgrade.
This report develops the capability of predicting the Young's modulus
of the subgrade using vibratory nondestructive testing techniques, and
presents a method of laboratory confirmation of the field tests results
through measurement and analysis of laboratory resilient modulus data.
Further experimental and theoretical work is necessary to apply the
basic techniques and conclusions of this report to the problem of cal-

culating the allowable load-carrying capacity of a pavement.
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5.3.1 DETERMINATION OF
SUBSURFACE STRUCTURE

The determination of the subgrade Young's modulus by the vibra-
tory nondestructive testing technique requires a knowledge of the
elastic moduli of the pavement layers above the subgrade. The deter-
mination of the allowable load-carrying capacity of a pavement by the
method of layered elastic theory requires the elastic mbduli of all
pavement layers as well as the Young's modulus of the subgrade. There-
fore, the Young's moduli of the pavement layers are used twice in the
procedure for calculating the allowable load-carrying capacity of a
pavement. In view of this it is recommended that:

a. Vibratory nondestructive tests be developed which will
accurately determine the values of the Young's moduli of all
pavement layers. This will include wave propagation methods
such as the Rayleigh wave dispersion technique.

b. The development of & reliable method of estimating the Young's
modulus of the material in each pavement layer in terms of
its composition and structure be undertaken.

5.3.2 LABORATORY CONFIRMATION OF
FIELD TEST DATA

A complete connection between the resilient modulus laboratory
tests and the vibratory nondestructive field tests has not yet been
accomplished. But the results of a preliminary theoretical study show
that it is possible to apply a nonlinear dynamic theory to the resilient
modulus laboratory test to determine the static elastic Young's modulus
of a subgrade soil, and to compare this value with the Young's modulus
value predicted by the nonlinear dynamic analysis of the vibratory
nondestructive field test data and with the Young's modulus predicted
by the Shell formula Es = 1500 CBR .

A nonlinear dynamic analysis of laboratory resilient modulus
test data requires a complete determination of the resilient modulus
function Mr(oD 5 cs) over an extended range of values of 9% and
Os . Several soil parameters are derived from a nonlinear dynamic
analysis of the resilient modulus test data, including the Young's

modulus parameters 80 3 82 , and 8& (Section 4.4). It is thought
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that further resilient modulus tests performed on pavement and subgrade
materials will be of value to allowable load calculations. An analysis
of these test will include:

a. The complete determination of the function Mp(op , og) for
a full range of values of op and o0g sufficient to observe
the minimum value of M, that may occur at a specific value
of op , and sufficient to allow an accurate extrapolation of

Mr to the condition °D =0 and os =0.

b. The application of the nonlinear dynamic response theory
to the resilient modulus test in order to determine the soil
parameters of this model in terms of soil characteristics
such as water content, dry density, soil composition, etc.
& { Specifically, the determination of the Young's modulus coef-
3 ficients &, , & , and &, 1is important in order to deter-
mine the dependence of Young's modulus on the static confining E
pressure for any soil type.

c. It is suggested that these parameters be obtained from resil-
ient modulus tests on many undisturbed soil specimens taken

from the subgrades of pavements where vibratory nondestructive
tests have been conducted. In this way, a connection between :
laboratory and field test data can be made. 4

d. It should be possible to extrapolate the Young's modulus
function to values of og corresponding to the static con-

* fining pressure produced in the subgrade by the static weight
of an aircraft.

e. The resilient modulus may be used to determine the stability
of subgrade soils under the action of dynamic loads. It sug-
gested that the importance of the parameter oM be examined
for this purpose.
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APPENDIX A: DOCUMENTATION OF THE WES
DYNAMIC FREQUENCY RESPONSE PROGRAM

Program Identification

1. Program Title: WES Dynamic Frequency Response Program
2. Program Code Name: ECNST
3. Writer: Richard A. Weiss

b, Organization: U. S. Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi 39180
5. Date: March 1976
. Source Language: FORTRAN IV

6

T. Availability: Complete program listing is available at WES.

8. Abstract: Program calculates the linear spring model param-
eters: spring constant (k), effective mass (m), and damping constant

(C) from a measured frequency response spectrum.

Engineering Documentation
9. Narrative Description: Program ECNST, "WES Dynamic Frequency

Response Program," calculates the linear spring model parameters k ,

m , and C from the deflection peak of a measured frequency response
spectrum. The required measured quantities are the peak frequency, peak
amplitude, and the ratio of the peak amplitude to the amplitude at a
frequency in the neighborhood of the peak frequency.

10. Method of Solution: A linear harmonic oscillator model was

developed to describe the measured frequency response spectrum of the
pavement surface. The governing equation of motion of the pavement sur-

face is assumed to be

mA+ CA+ KA =F

D
where
m = effective mass of pavement
A = dynamic deflection of the pavement surface
C = damping constant
k = spring constant
FD = dynamic load applied to pavement surface
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The computer program calculates the parameters k , m , and C by

solving the following equations:

: - = 2 1/2
k=hn2f§m S 2D2
4
b meAM
e . > 1/2
: ; D2=‘é‘-é‘ S 21)2
lmmeAM
L
y 2 1/2
A (l mm2) . hmD2m2
il . s iR k
A 2
(1 m"’) haD %02
s 3 M
k k

The required measured quantities are f, , AM » and AM/A . The simul-
taneous solution of these three equations gives k, m, and D from
which C is obtained by C = 2Dvkm .

11. Program quabiiities: The model is based on a single-mass
linear harmonic oscillator and can only describe a frequency response
spectrum that has one dominant deflection peak.

12. Data Inputs: The program requires Ay » fy » @nd AM/A ‘
13. Printed Output: The printed output consists of the three

model elements k , m , and C .
14. Computer Equipment: Program ECNST was developed on a GE-L00
computer.

15. Source Program: The source listings for program ECNST are
available at WES.
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APPENDIX B: DOCUMENTATION OF THE WES NONLINEAR
DYNAMIC LOAD-DEFLECTION PROGRAM

Srogram Indentification
1. Program Title: WES Nonlinear Dynamic Load-Deflection Programs
2. Program Code Name: NLIN, SUBE

3. Writer: Richard A. Weiss

L. Organization: U. S. Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi 39180

5. Date: March 1976

6. Source Language: FORTRAN IV

7. Availability: Complete program listing is available at WES.

8. Abstract: Program NLIN fits a polynomial expression to the
measured dynamic load-deflection curves and determines the linear and
nonlinear parameters of the dynamic model that describes the nonlinear
dynamic load-deflection curves. The program SUBE calculates the value
of the subgrade Young's modulus by requiring the nonlinear dynamic
model to describe the measured dynamic load-deflection curves and to

reproduce the measured DSM value.

Engineering Documentation

9. Narrative Description: Programs NLIN and SUBE, "WES Nonlinear

\l

Dynamic Load-Deflection Programs," calculate the basic parameters of the
nonlinear dynamic response theory of pavements. The program NLIN is a
research program that is used to determine the nonlinear spring model
parameters. The program SUBE is used to calculate the value of the
subgrade Young's modulus from the measured dynamic load-deflection
curves and the elastic moduli of the pavement layers.

10.  Method of Solution: A nonlinear oscillator model was de-

veloped to describe the dynamic load-deflection curve measured at the
pavement surface. The governing equation of motion is assumed to be
3 >

Ox + bx” + ex” =F_, + F

mx + Cx + k A

0

where
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m = effective mass

Y
i
3
"t
;sj x = total elastic displacement, static plus dynamic

C = damping constant
kOO = linear spring constant
i b = third-order nonlinear elastic coefficient
e = fifth-order nonlinear coefficient
The equation of motion is solved by a series expansion, and the coeffi-

cients b, and e are determined by matching the series ex-

ko0
pansion to the measured dynamic load-deflection curve.

11. Program Capabilities: The model is based on a single-mass

nonlinear oscillator with third- and fifth-order nonlinear terms and can
be used to describe and evaluate a nonlinear dynamic load-deflection
curve measured on a pavement or subgrade and predict the subgrade Young's
modulus from the measured data. The program is valid only for values of
DSM in the range 300 < DSM < 6500.

12. Data Inputs: The programs require a tabulation of values
of dynamic load and dynamic deflection as determined from the measured

F dynamic load-deflection curve, the elastic moduli of the pavement layers,

and the measured DSM value.

13. Printed Output: The printed output of the program NLIN

consists of the values of the parameters kOO , b, and e , as well
as assorted spring constants, dynamic stiffness values, depth of
influence of the static stress-strain field, static displacement of the
surface, effective mass, and the damping constant. The printed output
of the program SUBE are the predicted values of the subgrade Young's
modulus.

14. Computer Equipment: Programs NLIN and SUBE were developed

on a GE-40O computer.
15. Source Program: The source listings for programs NLIN and
SUBE are available at WES.
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8.1,8.2,8.3,&b

J(w)

LIST OF SYMBOLS

Radius of vibrator baseplate
Coefficients

Dynamic amplitude of motion of the pavement sur-
face as determined by the linear elastic model

Velocity of pavement surface

Acceleration of pavement surface

Area of end face of cylindrical soil sample
Peak dynamic amplitude of the pavement surface

Third order nonlinear pavement and subgrade
parameter

Damping constant of the vibrator-pavement-subgrade
system

California Bearing Ratio
Damping ratio
Dynamic stiffness modulus

Fifth order nonlinear pavement and subgrade
parameter

Expansion coefficients for the resilient modulus
at zero dynamic deviator stress

Complex number notation for a sinusoidal time
dependence

Young's modulus of subgrade

Expansion coefficients of the Young's modulus
Critical frequency

Peak frquency

Resonance frequency

Dynamic load of vibrator

Magnitude of the sinusocidal dynamic force applied
to the pavement surface

Static load applied to the pavement surface
Acceleration of gravity
Shear modulus

Measured value of the ratio of the peak amplitude
to the amplitude at a neighboring frequency
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J(k,m,Cow) = J(m,w)

Theoretical value of the ratio of the peak dy-
namic amplitude to the amplitude at a neighboring
frequency

Dynamic spring constant of a pavement or subgrade

Effective static spring constant that appears in
the dynamic equations of motion

Theoretical value of the static sprirg constant
as predicted by a layered linear elastic computer
program

Linear elastic spring constant for a nonlinear
pavement

Finite depth of influence of the static strain
field

Coefficients of the power series expansion of the
finite depth of influence

Length of the soil sample

Lumped effective mass of pavement and subgrade
Mass of moving weight of the vibrator
Resilient modulus

Resilient modulus value for the case of zero
dynamic deviator stress

Dynamic stiffness of pavement or subgrade
Dynamic stiffness for zero dynamic load
Time

Weight of moving mass of vibrator

Total elastic deflection of the pavement surface
beneath the vibrator baseplate

Static elastic deflection of the pavement surface

Static elastic displacement of soil sample at the
static confining pressure where Mro is a
minimum

Static elastic deflection of soil sample in a
resilient modulus test

Coefficients appearing in the power series ex-
pansion of the amplitude of the dynamic deflec-
tion of the pavement surface

Coefficients for the power series expansion of
the dynamic stiffness
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Function of the expansion coefficients of the
finite depth of influence

Expansion coefficients of the resilient modulus
test

Dynamic strain in axial direction of the soil
specimen in the resilient modulus test

Parameters describing the cross product terms cf
the static and dynamic deflection terms in the
equation of motion of the pavement surface

Ratio of the radius of the lower base to the
radius of the upper area of the frustum of the
cone of stress and strain

Poisson's ratio

Dynamic elastic deflection of the pavement sur-
face beneath the vibrator baseplate measured from
the static equilibrium deflection

Resilient dynamic displacement of the cylinder
end in the vertical direction

Total stress along the axis of the soil sample
for the resilient modulus test

Dynamic deviator stress in the axial direction of |
the soil sample |

Static confining pressure on the soil sample

Value of % for which Mr is a minimum
Overburden pressure on the soil at the top of the
subgrade

2 =k
Fp%o

Volume factor for the frustrum of the cone of
stress and strain

Angular frequency
Peak angular frequency
Angular frequency at resonance

Phase angle between the dynamic load applied to
the pavement surface and the dynamic deflection
of the pavement surface
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