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Ab st r a et

— A new dual opt i nuz ation f r a m e w o r k  f or  some prob lems of i nformat ion

theory and stat ist ics is developed in  the for!i1 ot dual ( 50f lv( X programming

problems and their dual i ty  theory . It extends the work  of ( ‘harne S and

Coope r for f inite disc re t e distributions to the case of general  measures.

Al though the primal problem (const raine( l  r e l a t i v e  ent ropy ) is an in f in i t e

di mensional one , the dua l  p rob lem is a f i n i t e  d i m e n s i o n a l  one without

const rain t s  and in v o l v i n g  onl y e xp ont9l t  i a l  and l inea r  t e r m s .  Applicat ions

range from mat lwniat  ical  s t a t i st  i ( 5  and s t a t i s t i c a l  o w eh an i e s  to t ra f f i c

en gineer ing ,  mark et ing  a rid econo in ic S

S -.
‘S ~~
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A DUAL OPTIMIZAT I ON FRAMEWORK FOR SOME PROBLEMS

OF INFORMAT I ON THEORY N1D STATIST I CS

A. Ben-Ta l and A. Charnes

In h i s  “P4athematical Foundation s of Statistica l Mechan i cs”

Khinch ln 1 introduced the notion of conjugate function as the solution

~ the maximizat ion of relative entropy subject to a single constraint

on the mean of the distribution sought. In their developments of

information theoretic methods in mathematical statistics , Kullback and

Leib)er2 made a basis for treating problems of statistical estimation and

hypothesis testing which was extensively developed in the monograph of

Kullback “information Theory and Statistics ”3. More recently, Akalke

in his paper “information Theory and an Extension of the Max i mum Like li-

hood Principle ” has emphas i zed the great breadth and depth of these

information theoretic methods by Ind i cating their app lication to man y

classes of statist ical p roblems , and also including the representation of

the maximum likelihood princi p le as asymptotic , for large samples, to the

decision theoretic approach of Information theory. Again , more recent

work in irreversible statistical mechanics by B.c. Koopman~ has emphas i zed

the i mportance and analyt ic conven i ence of a constraltied entropy (or in-

formation) approach in deducing importan t statistical mechanics phenomena

with a minimum of ad hoc hypothesis.

In all of this work the extremization problem has been solved

exp licitly only (as In Kh inch in ’s case) for a single linear equa lity

constraint in non-negative variables. Not until the work of Charnes and

-~~~~~~ 
_
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Cooper5’6 , has the fact been brought out that dua l convex progranmiing

problems are involved , and that the dual of the constrai ned entropy problem

Is in terms of exponential and linear functions in unconsrriinad variables.

The work of Charnes and Cooper , while tying in the method to other problems

of traffic eng ineering and econom i cs, as well as providing a complete

characterization of the duality states , has encompassed exp licitly onl y

the case of finite discrete distributions (measures).

It is the purpose of this pape r to extend these results and develop

a dual optimization framework that can adequately handle these classes of

problems of info rmation theory and statistics. In particular we have

deve l oped a complete duality theory for the case of general as well as

finite measures.

Although our prima l problem is an Infin Ite dimensional one (with finN

tely many constraints) the dual p roblem is a finite dimensional one , without

constraint and involving onl y exponential and l inear terms . As we show

elsewhe re , such a dual optimization framework with convenien t analyt i cal

functions In an unconstrained dua l seems to be a unique p roperty of the

information theoretic functional.

The paper is conveniently sumarized by the titles of its sections

as fol lows :

I . A formal statement of the prob l em.

2. Some preliminaries from Convex Analys is.

3. Linearly constrained convex programs and their duals.

4. Conjugates and subgrad ient of Integral functiona ls.

5. A complete duali t y theory for problem (AL

6. The case of probability measures.

7. Generalizations.

—-~i-4
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1. A FORMAL STATEMENT OF THE PROBLEM

Let I be an arbitrary set, F the a-field of Borel subsets of I,

dt a non-negative regular Borel measure (rBm) on I and M(T) the linea r

space of real-valued finite rBm ’s on T. For an element p € M(T) we shal l 
-

denote by its Radon-N i kodym derivative .

For a g i ven summable positive function c: I -
~ R; continuous functions

I -* R (I l ,...,m) and real scalars 0 1 (i — l ,...,m) we seek to solve

the following problem

(A) ( )lnf 
J

u(t) Iog ( 

~~ 
)dt

subject to

( 1)  J u(t)F 1 (t)dt - 01 
i — 1 ,... ,m.

I

(2) uu ’~~~~, p E M (T)

p non-negative and absolutely continuous
(with respect to dt).

Conside r the linear operator A: M(T) + Rm g i ven by

‘ 

.Ir
Fl(t )d P

U— >
F (t)dp -

~:: :r::t.: --_
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J u(t)log( Jdt if  p is an absolutely
I continuous non-negative rBtn

dpan d u~~~~- .

otherwise.

Then Problem (A) can be wr-itten as

(P) inf (J(p): Ap — 8 , p € S)

where 8 • (e i , . ..  iBm
)1 and S — domJ ~{p : J ( p) <x )

It will be shown l ater (Section 5) that ~.I is a convex functional , and

so (P) is  a lin.ariy oonatrains d convex optimization pt’oblem. In Sectio n 3

we study such programs and introduce a duality theory for them. Before

doing so we collect in the next section certain material from Convex

Analysis needed in the sequel.

Throughout the paper we assume that the linear system Ap — B is

ir’r-eâ.toible , i.e.

mRange A — R

in the finite dimensional case (A is an m*n matrix) this assumption means

that A is of full row rank so that none of its m equations A p  — 8~
(I — l,...,m) (Ai the i-th row of A) is redundant. Hence the termin-

ology “irreducible ”.
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2. SOME PRELIMINARIE S FROM CONVEX ANALYSIS
vector

Let E and E* be rea l/ s paces, and <,> a bilinear function

* * * *defined on pa i rs (x ,x ), x E  E . x € E . Let E and E be equi pped

with locally convex Hausdorff topolog ies , compatible with the bilinear

form , so that every element of one space can be i dentified with a con-

*tiriuous linear functional on the other. In this case F and E are

called pai2’edspaoee and < ,> is the pairing . (For more information

see ( 7, Chapte r IV] .

A function f: E -
~~ R is convex if for eve ry x1,x2 € E and 0 < A < 1

f(Ax + (l—A)y) ‘~~ Af(x) + ( I— A ) f ( y ) ,

f is prope r i f  it is bounded below and It is not i dent icall y +CD •

if , for all x ,

f(x) — lim in f f(z)

then f i s lower semi -continuous (1 . s . c).

* *The function f : E -. R g i ven by

* * *f (x ) — sup(<x ,x > - f (x ) }
x

Is called the (convex) conjugate of f. This is always a l.s.c. convex

funct ion . Conversely if f is a l.s.c. proper convex function then

f(x) — sug{cx ,x*> - f*(x*)},

i.e.
**f — f

—
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A vector x~ E E* is a BIbgra diant of a con vex func ti on f at x i f

(4) f (z) ~~‘ f(x) + cz_x ,x*> for all z E F.

The set of all subgrad i ents of f at x is denoted by af(x). If f is

finite and differentiable at x , wi th f’(x) denotIng its (Frechet) deriva tive ,
then ,

- 
af(x) — ( f’(x)}.

A function g is concave if -g is convex. The (concave) conjugate
a

of such/function is defined by

g*(y*) ~ inf( cy *
,y> - g(y)).

y

3. LINEARLY CONSTRAI NED CONVEX PROGRAMS AND THEIR DUALS

Let F and F be real vector spaces, A: E + F a linea r operator ,

h: F • R a convex function with dom h — S and g: F -‘ R a concave

function with dam g — B .

ConsIder the prima l problem

(I) Inf (h(x) - g(Ax) : x € S, Ax € B).

The P.r.ch.1-Roakaf .llar thiality theory ( 8 1  assocIates w i t h  ( I )

the dual problem

* * * * *  * * * *  *(U) sup(g (x ) - h ( A x ) : x  E B  , A x  E S )

* * * * *whe re A : F -. F Is the adjoint of A , F and F are t’ e space s paired

— —
~~

- - - .  - -~~~~~~~~~ - -
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wIth E and R (wi th the pairing < ‘•>E’ < ‘ >F~ 
respective l y and

g are the convex (resp. concave) conjugates of h and g, i.e.

— sup {<x , >
E 

— h(x) : x € 5)

— inf{<y~.>~ 
- g(y) : y € B).

The main resuit concerning (1) and (LI) is that if the supe r-

consistency aeswç ’tion holds , I .e.

(5) 3 x € S such that Ax € m t  B

then inf(i) — max(tfl. Duall y if

1•~ * * * *  *(‘ ) 3 x E S such that A x € m t  B

- - Then

min(1) — sup(tt) 
F

- *Furthermore , wheneve r min(I) — max(tI) . a pair x , x solves (1) and (U)

respective l y if and onl y if (see (C], p.185).

* * *  - * *x E a h ( A x ) , A x € a g ( x ) .

It should be mentioned that in the absence of assumption ( 5) ~, (5’)

or similar assumption , one s t i l l  has the so ca l l ed  weak thsality relation :

inf(I) ~~sup(fl).

We write mln~ 
(max ) if the infi,~jm (supremu.n) Is attained.

- -—-
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Here we consider the following special case of (I) :

(P) inf (h(x): Ax • b , x E 5)

and we furthe r assume :

(1) E is a Banach space , F is a Hi lbert  space (with inner product <,>),

( i i )  m t  S ~ 0 ‘

(iii)  (“ i r reducibi l i ty  assumption ”) Range A — F.

Flote that (P) corresponds to (1) w i th  B — {b) and

g(.) — a ( .j B )  ~ the Ind i cator function of B.

This implies :

* * * * *g(x ) <b ,x > , B — F

therefore , the dua l of (P) Is

* * ** ** *(D) supt<b ,x > - h (A x ) : A x € 5 1.

Un fortunatel y, the superconsistency assumptIon (5) does not hold

here since m t  B — 0. However , we shall make use of a less familiar

regularity condition ((9], p.50), wh i ch for the pair (P)-(D) reduces to

(7) 0 € core(A(S) - b)~

TI~is condition also Implies that inf(P) — max (D). We recall that for a

subset Q C F

core Q ~ (q € Q: Vv £ F , 3 t , O such that q + Ày € Q for all AE (-t,L J ).

If Q is a convex set wi th nonempty interior

core Q — m t  Q.
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The fo l low ing lemma shows th*t the i rreducib i lity assumption Is

essential for the validity of (7) .

t.enina I. Regularity condItion (7) holds only if assumption (iii ) holds.

Proof. Suppose that (7) holds , then

a) 3 x € S 3 A x b

(b) yv € F , 3, 0 such that , for every A€ [-c,d, 3x € S satisfy ing

Ax + Xv • b.

Since F is a H i l be r t  space

(8) F Range A + N(A*)

whe re N denotes null space , thus if ( i i i )  does not hold

(9) 3v € N(A ) , ~~ 0.

At the same time , (8) implies , by (a), th at

( 10) b .1. N ( A ) .

Let x be a solution of Ax + Xv  — b for some g ive n X 0 (such x

ex i s t s by (b)). Now

0 A ’v ,v> — ‘.v ,b-Ax~ 
a ..v ,b~~<A *;, > — 0  by (9) and (10).

This contrad i ction shows that ( I i  I) must hold whenever (7) Is valid.

The regularity conditIon (7) I-s not easy to check , the refore we

introduc e in the fo l low ing  lemma a much simpler one.

L
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Lemma 2. If (P) satisfies (I) (ii) and (iii) , then condItion (7) is

im p lied by the following strict f aaa~~ility assumption :

(II) 3x E intS satisfying Ax — b.

Proof. Let ~ satisfy (11). Note that , since S is convex and

IntS i~ 0, IntS — coreS. Now ~ € coreS if and only if

x + A x E S  for all x and al i A E ( -~~t] for som e c>O .

In particular

H x ~ + Ax(v) € S Yx € (-
~~,~

]

where x(v) is a solution of

Ax — v.

(That such a solution exists follows from the irreducibility assumption.)

Furt r

b-A~ — b - A (~ + Xx (v)) — b - A~c + XAx(v ) a u + Xv .

The latter shows that for every v € F , there exist x satisf y ing

Ax + Xv • b A € (-c ,c] for some t. 0,

i .e .

0 € core(A(S)-b).
0

We w i l l  summarize the resu lts concerning the linearly constrained

prob l em (P) and its dua l (D) in the following

Theorem I Conside r prob lem (P) and assume that (I), (ii) and (iii )
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inf (P) — max (D).

(2) Wheneve r mm (P) • max (D) , a necessary and sufficient conditions

for a pair x0 € 5, x C S~ to solve (P) and CD) , respective l y, are

Ax0 — b  and

(12) x0 € 3h
*(A*x )  . -

Proof. Condition (11) Implies (7), by Lemma 2, and the latter implies

Inf(P) — max(D) by ~he above cited result [ 9 , p. 50]. The optimal i ty

conditions (12) are the specialization of (6) to our special case.

Indeed , for g() — ~~
.
~{b}) we have ~* ( )  — cb , > so that

* *ag (x ) — {b}

0

4. CONJUGATES AND SUBGRAD IENTS OF I NTEGRAL FUNCT IONALS

The duality theory presented in the previous section Is stated /terms

of the conjugate function of the objecti ve funct ion , and its subgradlent.

in Problem (A) however , the objective function is the integral ftinational

J(~a). Therefore, we shall col lect In this section results concerning the

computation of J~ and ~J(.). For more details the reader is referred

to C 10 3 and ( 11 )  .D:L .

Let CCI) be the vector space of continuous functions x: I • R with

the norm

Qx fl a max{ Ix(t) I : t E I).

We recall that the space MCI) of Section 1 is the dual of C(T). Furthe r
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let f: I ~ R • R be a function satisfy ing

(a) V t C I f(t ) is l.s.c. p roper convex function .

(b) f(t ,x) is measurable in t for all x € R and the (nonempty convex)

set

DCt) — {x £ R: f(t,x) < }

has a nonempty interior.

Cc) D(t) is ft4l y i.e.c. (see (10,p.4573 this condition holds e.g. when

D~t) 4oes not depend on t. The latte r is enough for our purposes).

- 
Define the integral functional on C(T):

If(x) — 
J
f(t,x)dt.

The conjugate of is then , by definition

— sup { J xdp — J f(t ,x (t))dt : x C C(T )} .

The following result follows direct ly f rom ( 10 3. We remark tha t

condit ion s (a) and (b) above imply that f(t x) is , so-called , noa~nal

integran t.

Lemma 3 If f(t,x) is a suninable function , for every x C R, and

satisfies (a), (b) and (c) then

(A) Is well— defined , finite , continuous and convex functIon on CCI);

(B) the conjugate of is the function 1*: MCI) • R given by:

Jf * (t 
~~~~~
. ) i f  U I S  absolutely continuous with r.spect

— 
I

a othe rwise ,

whir. f*(t,x*) is the conjugat. of f(t ,’) eva l uated at x~. 0
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Next , one can der ive from (10 , Cor. 4B], the following formula

for computing the subgradient of

Lemma 4 Unde r the assumption of Lemma 3, and the following additiona l

assumpti on

(d) {f(t ,u(t) + x) is summable for all x in some nei ghbourhood
of zero s

it follows that i C aIf(u) If and only if almos t eve rywhere (a.e.)

( 1 4) ~~.€  af(t,u(t)) . almost everywhere (a.e)

Here af(t ,u) is the subgrad i ent of f (t ,) at u . 0

5. A COMPLETE DUAL I TY THEORY FOR PROBLEM (A)

We return to the setting described in Section 1 .

Consider the integral functional I: c(T) -
~

1(x) — 
f

c( t )e~~
t ) 1 dt

The integrand f(t ,x) — c(t)~~
t)
~

l clearly satisfies assumption s Ca), (b)

and (d) of Section 4. (Recall that c(t) is sunwnable and positive.)

The conjugate of f(t,•) Is by definition

* * * x-1f (t ,x ) — sup (xx — c(t)e )
xER -

The sup can be easily computed by equatinq the derivative of the sup remand

to zero, so one obtains

- - — - -~~~— — -  - 
p J
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* * 
x*log 1~~~ ] if x~ ~ Q

f(t ,x ) —

a otherwise

(we use the convention Olog 0 — 0).

It follows from Lemma 3 that

(A) 1(x) is a continuous convex functional

(B) -

— J(ii)

where J(~a) k the integra l functional defined in Section (1).

The last relation i mmediately implies (see Section 2) that J is a

l.s.c. convex functional. Moreover, in regard of the continuity of

( 15) j* ( )  • I** ( )  — 1 (u)

(16) dom J~ — C(T).

We further note that the adjoint of the linear transformation A of

Section 1 is the mapping A~: Rm •c(T)

* *1 m 
*(x 11... ,~i ) E xi F m (t).m I— i

We have now all the elements needed to speci fy th. dual problem

of (A), as described in Sect ion 3. In fact, prob lem (D) become s he re

m 
* 

Z g ~F1 (t ) — 1

(8) SUP { Z x 1 01 
— J c(t)e dt),

i•i I

an wzconetraine d finite dimensiona l concave program. (The’. r~•! at ion

A*x* € S~ is here x~€ Rm since , by (16), S” — C(T ) , i.e. the whole space.) 

-~~~~~~~~~~~ -~~~~~~ - - - -~~~~~~~~~~~~~~~~~~~~~~ -- - --~~~~
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The relat i ons between the prima l problem (A) and its dual (B) are

expressed in the followIng results.

Theorem 2 The sup remum of Prob l em (B) is attained only if

3 positive (a.e.) rBm i~, whose derivat i ve u —

(‘ 7) t

satisfies the linear equations (1).

Proof. Since (B) is an unconstrained problem , its supremum is

attained (say at x ) onl y if x is a c r i t i ca l  point of the supremand.
-*

I.e. x is a solution of

— *

— 

~ 
c (t ) F .  (t )e ‘ ‘ dt — 0 i — 1 ,. . . ,m

wh i ch , by the definition of the mapping A , is nothing else but

whe re ~i i~ the measure with

- Ex~F.(t)-1- dp i iu~~~~~~~ c(t )e

Hence (17) is satisfied by p • p . 0

Theorem 3. Prob l em (B) is bounded above if and only if Problem (A)

has a feasible solut i on .

Proof. The “if” part follows from the weak dua lity relation

inf(A) ~ sup(S). We proceed to prove the “only if” part.
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Suppose that (A) has no feasIble solution and consider the following

subset of Rm

K — (~ C R
m: y — Ap for some p C P4(T) satisfying (3) }

By our ass umpt ion then

( 19) O~~~K.

there
S i nce . K is a closed convex cone, it follows from (19) that/exists

- which
a hype rplane , passing throug h the ori g in , / strict ~~ separates 0

and K. i.e.

~ z’y~~~O V y E K
3 z € R~, z ~ 0 such that ~

~ z’O > O

or

z ’ (Ap) ~~O Vp € MCI) sat isfy ing (3)

z ’O > 0

or

~ 0 Vp € 14(1) satisfying (3)
1.

Now 

<A*z,p> — 1 ( A ~
z)dP and the latter is non-positive for eve~~

non-negative rBm only If

A*z ~- O (a. e) .

We conclude that

(20) 30 ,‘ z C Rm such that A*z ~ 0 (a.e.) and z’e ‘ 0.

Note that Problem (B) is in fact
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(21) 
~~ m{)1

’0 - 
JT

Let z be the vector In (20), then , with

x — Hz (H positive scalar) ,

the objective function in (21) can be made arbitrary large by choosing

#4 large enough. 0

Theorem 4 If Problem (A) is feasible then the inflnimum Is attained and

(22) m in (A) • sup(B).

If Probl em (A) is strictly feasible , i.e. (17) is satisfied~ then

(23) m in(A) • max (B).

Proof. Si nce for Prob l em (A): S~ • CCI) and B* — Rm it fol lows

that conditIon (5’) t r i v ia l l y  holds and hence the conclusion (22).

Now, for Problem (A), the strict feasibility assumption (11) reduces to

(17) and so (23) follows from the first conclusion in Theorem I and (22).D

Th• las t result g i ves the opt imality condItion s for th. pair of dual

Problems (A) and (B).

~~~~~~ 
Let (A) be strict l y feasible. Thin € MCI ) and € Rm

are optima l solution of (A) and (B), respect ive ly , if and only if ~

satisfies (1), (2), (3) and

~~~ (t)—1
(24) ft .’ 6(t). (a...) . 
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Proof. The optimality conditions expressed in the second part of

Theorem 1 are here: (i) feasibility of ~ and ( i i )

a 
- * *(25) ~J (Ax ~

Now, by (15), J*(u) — 1(u) — 
JT

6(t)eu
~
t
~~

1dt so that , by Lemma (4) ,

(25) hol ds if and only if

(26) ~~.E af(t ,Ax ) (a.e.)

where f(t,u) — C(t)e”~ whose subgradien t simply coincideswith its

derivative . Hence (26) is equivalent to

~j~~
— c(t)e

A
~~~

’
~ (a.e.)

wh Ich is just (24) . 0

6. THE CASE OF PROBABIL ITY MEASURES

In this section we study prob lems of type (A) with the additional

const raint

(27) 
J
u(t)dt — 1

in wh i ch case p becomes a probability measure. Of course one can write

1 , 
~~~ 

a I

and derive the following dual p roblem :

-- - - - - - -

~

- -

~ 

~~- - - -- - -~~~~- - - - -
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m * *
~ 

x i Fi (t) + xm+i
_ l

in * * i— i
(28) sup ( Z X;O i + - c(t)e dt)

I—i

an unconstra ined p roblem in RI~
I3I
. However , one can derive the

follow i ng dual

- *
in 

* 
E
~
c i F i (t)(B’) sup { Z x i ei 

— log j c(t)e dt}.
1— 1

an wi s ’zinsd p rthl.m in?. To der ive  (8 ’) from (28), one merel y

maximizes the objective function in (28) with respect to x~4~1 for

fixed (x~,...,x ), wh i ch can be done by equating its derivat i ve to zero.

The analytic solution thus obtained

*
* r EX1 F 1 (t) 1

x — -log I c(t)e dtm+1

is then substituted again in (28) and the result is indeed (B’).

All the result of the previous section can be applied to the

p resent case. If , in condition (17) , we add the requirement that u

sa ti sf ies  (27) , then Theorems 2,3, and 4 remaIn valid. In Theorem 5

the optImality conditIon (24) has to be rep l aced by

EX~ F (t)

~~ c(t )e 
~~~ (t) 

— (a...)

c t e  dt
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7. GENEUL IZATIONS

The reason that the dual Problem (B) is wzoonstrv~iinsd Is that

dom J~ — C(T).

This in turn holds since

dan f*( )  — R

wh i ch in turn results from the fact that

(29)l~ rge -~~~f(t,x) — R.

Here f was the in teg rand f (x ,t )  — x log c(t)

These observations lead to the following:

Propos iti on Cons i der a pr i mal prob lem of the form

(30) i.nf ( JT. f (t~ 
~~~~~
. )dt : ~ sat is f ies  (1) , (2) , and (3))

And assume that f i s a norma l convex iritegrand , diffe rentiable in x

for all t € I and satisfying (29). Then Prob l em (30) has the following

unconstrained dual :

- in

(31) sup (G I X* - I f~ (t , Z x ’
~F1 (t ))dt } .

x*€lIm Jr i.i

where

f*(t y) • yr(t ,x*) — f ( t ,F(t ,x*))

L -- - ____________________
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*and whe re x • r(t ,x ) Is a solu ti on of the equati on

d * o

If f(* ,t) sati sfies conditi on (a )— ( d ) of Sec ti on (4) , then resul ts

analo gous to Theorems 4 and 5 are valid for the dual pair (30)-(31).

it is also easy to see from th. proof of Theorem 3 that , i-f

- l im f*(t ,y)

then Problem (31) is bounded above if and only If , Problem (30) has a

feas ible solution .

We finall y remark that th. constraints (1) , can be replaced by

the more genera) cons t rain t

f
u(t)k (t ,s)d t • b (s) ,

where b is an element of an Hu bert space. The generalizat i on of

Theorems 2-5 to this case is strai ghtforwa rd .
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