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Abstract

A new dual optimization framework for some problems of information

< theory and statistics is developed in the form ol dual convex programming
problems and their duality theory. It extends the work of Charnes and

Cooper for finite discrete distributions to the case of general measures.

]
Although the primal problem (constrained relative entropy) is an infinite
dimensional one, the dual problem is a finite dimensional one without
constraints and involving only exponential and linear terms. Applications :
range from mathematical statistics and statistical mechanics to traffic
engineering, marketing and economics,
4
]
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A DUAL OPTIMIZATION FRAMEWORK FOR SOME PROBLEMS
OF INFORMATION THEORY AND STATISTICS

A. Ben-Tal and A. Charnes

In his ‘'Mathematical Foundations of Statistical Mechanics"
Khinchin! introduced the notion of conjugate function as the solution
v, the maximization of relative entropy subject to a single constraint
on the mean of the distribution sought. |In their developments of
information theoretic methods in mathematical statistics, Kullback and
Leibler? made a basis for treating problems of statistical estimation and
hypothesis testing which was extensively developed in the monograph of
Kullback ‘“Information Theory and Statistics''3. More recently, Akaike
in his paper ‘'Information Theory and an Extension of the Haximum Likeli-
hood Principle'' has emphasized the great breadth and depth of these
information theoretic methods by indicating their application to many
classes of statistical problems, and also including the representation of
the maximum likelihood principle as asymptotic, for large samples, to the
decision theoretic approach of information theory. Again, more recent
work In irreversible statistical mechanics by B.0. Koopman“ has emphasized
the importance and analytic convenience of a constrained entropy (or in-
formation) approach in deducing important statistical mechanics phenomena

with a minimum of ad hoe hypothesis.

In all of this work the extremization problem has been solved
explicitly only (as in Khinchin's case) for a single linear equality

constraint in non-negative variables. Not until the work of Charnes and




Cooper®'®, has the fact been brought out that dual convex programming
problems are involved, and that the dual of the constrained entropy problem

is in terms of exponentlal and linear functlions in unconstrained variables.

The work of Charnes and Cooper, while tying in the method to other problems

of traffic engineering and economics, as well as providing a complete
characterization of the duality states, has encompassed explicitly only

the case of finite discrete distributions (measures).

It is the purpose of this paper to extend these results and develop
a dual optimization framework that can adequately handle these classes of
problems of information theory and statistics. In particular we have
developed a complete duality theory for the case of general as well as i

finite measures.

Although our primal problem is an infinite dimensional one (with fini-

tely many constraints) the dual problem is a finite dimensional one, without

constraint and involving only exponential and linear terms. As we show
elsewhere, such a dual optimization framework with convenient analytical
functions In an unconstrained dual seems to be a unique property of the

information theoretic functional.

The paper is conveniently summarized by the titles of its sections

as follows:

1. A formal statement of the problem. b
2. Some preliminaries from Convex Analysis.

kB Linearly constrained convex programs and their duals.

k. Conjugates and subgradient of integral functionals.

5. A complete duality theory for problem (A). :
6. The case of probability measures. ;
7. Generalizations. !
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1. A FORMAL STATEMENT OF THE PROBLEM

Let T be an arbitrary set, F the o-field of Borel subsets of T,
dt a non-negative regular Borel measure (rBm) on T and M(T) the linear
space of real-valued finite rBm's on T. For an element u € M(T) we shall

denote by g%- Its Radon-Nikodym derivative.

For a given summable positive function c: T + R; continuous functions
Foe T + R (i =1,...,m) and real scalars e'(l = 1,...,m) we seek to solve

the following problem

(A)
inf ] u(t) togl ‘-;{% ldt

T
subject to
(1) J u(t)F, (t)dt = o, i = 1,...,m

T

d
(2)  w=gh, wENT
(3) u non-negative and absolutely continuous

(with respect to dt).

Consider the linear operator A: M(T) » R™ given by

LF,(t)du :

LFm(t)du ‘

and the integral functional
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J u(t)logl %{%}»]dt if u is an absolutely
T continuous non-negative rBm
du
and u = -
Ju) & L3
[ L otherwise.

Then Problem (A) can be written as
(P) inf{J(u): Au=96 , u € S)

where 0 = (e‘,....em)T and S = domJ A{u : J(u) <=}

It will be shown later (Section 5) that J is a convex functional, and

so (P) is a linearly constrained convex optimisation problem. In Section 3
we study such programs and introduce a duality theory for them. Before
doing so we collect in the next section certain material from Convex

Analysis needed in the sequel.

Throughout the paper we assume that the linear system Ay = @ is

trreducible, i.e.
Range A = R™.

In the finite dimensional case (A is an mxn matrix) this assumption means

D

that A is of full row rank so that none of its m equations A‘u - e,
(1 = 1,...,m) (Al the i-th row of A) Is redundant. Hence the termin-

ology '"'Irreducible'.




2. SOME PRELIMINARIES FROM CONVEX ANALYSIS

I vector
Ltet € and E be real/spaces. and <,> a bilinear function

defined on pairs (x.x*). x € E, x* € E*- Let E and £* e equipped
with locally convex Hausdorff topologies, compatible with the bilinear . $
form, so that every element of one space can be identified with a con-
tinuous linear functional on the other. In this case E and E* are
called paired spaces and <,> is the pairing. (For more information

see [ 7, Chapter 1V].

A function f: E >R is convex if for every Xy 2%y €EE and 0 < A < |
FOx + (1-2)y) < Af(x) + (1-2)f(y), | ’

f is proper if it is bounded below and it is not identically +=,

If, for all x,

dq
f(x) = lim inf f(z) .
Z+x
then f is lower semi-ocontinuous (1.s.c).
x %
The function f : E + R given by
* *
f*(x ) = sup{<x,x > - f(x)}
x
Is called the (convex) conjugate of f. This is always a l.s.c. convex
function. Conversely if f is a l.s.c. proper convex function then 3
* x, *
f(x) = sug(<x,x > - f(x)),
X
i.e.
Kk
faf . ]

e . . u '




A vector x € E* is a swgradient of a convex function f at x |if
(&) f(z) > f(x) + <z-x,x'>  for all z € E.

The set of all subgradients of f at x is denoted by 3f(x). If f s

finite and differentiable at x, with f'(x) denoting its (Frechet) derivative,
then,
Caf(x) = { f'(x)}.

A function g is concave If =-g is convex. The (concave) conjugate
a

of such/function is defined by
*, * *
g'(y) & infl<y y> - gly)).
Y
3. LINEARLY CONSTRAINED CONVEX PROGRAMS AND THE IR DUALS

Let E and F be real vector spaces, A: E + F a linear operator,
h: E + R a convex function with domh =S and g: F+ R a concave

function with dom g = B.

Consider the primal problem
(1) inf{h(x) - g(Ax): x € S, Ax € B}.

The Penchel-Rockafellar duality theory (8 ) associates with (1)

the dual problem
(II) sup{g*(x*) r h*(A*x*): x € B*. A"t € S*}

* _k * * *
where A : F -+ E is the adjoint of A, E and F are t'e spaces paired




with E and R (with the pairing <4t <°.->F) respectively and h ,

®
g are the convex (resp. concave) conjugates of h and g, i.e.

h*(°) = sup{<x,*>. - h(x): x € S}

€

g*(-) - Inf(<y.->F - g(y): y € B}.

The main result concerning (I) and (II) is that if the super-

oconsistency asswmption holds, i.e.
(5 3 x €S such that Ax € int B
then inf(T) = max(IT). Dually if
o * * * & *
() 3 x €S such that A x € int B .

Then

min(I) = sup(II)+ -

Furthermore, whenever min(I) = max([I), a pair x, x'  solves (I) and (T1)
respectively if and only if (see [8), p.185).
(6) XE WM (Ax), A:€dg lx)

It should be mentioned that in the absence of assumption (5), (5')
or similar assumption, one still has the so called weak duality relation:

inf(1) > sup(LT).

Y e write ‘min> (‘max*) if the infimum (supremum) is attained.




Here we consider the following special case of (I):
(P) inf{h(x): Ax = b, x € S}

and we further assume:
(i) E is a Banach space, F is a Hilbert space (with inner product <,>),
(ii) int S¢@ °

(111) ["irreducibility assumption''] Range A = F.

tlote that (P) corresponds to (1) with B = {b} and
g(+) = &(-|8) 2 the indicator function of B.
This implies:
* x

» *® ®
gx)ea x>, B ufF ;

therefore, the dual of (P) is
\3 %, % % ® *®
(D) sup{<b,x > - h (Ax): A x €S }.

Unfortunately, the superconsistency assumption (5) does not hold
here since int 8 = #. However, we shall make use of a less familiar

regularity condition ([9], p.50), which for the pair (P)-(D) reduces to
(7 0 € core(A(S) - b),

This condition also implies that iInf(P) = max(D). We recall that for a

subset Qc F

core Q g {qg € Q: Vv € F, 3¢50 such that q + A\v € Q for all A€[-e,u]}.

If Q is a convex set with nonempty interior

core Q = intQ.




The following lemma shows that the irreducibility assumption is

essential for the validity of (7).
Lemma |. Regularity condition (7) holds only if assumption (iil) holds

Proof. Suppose that (7) holds, then

(a) 3xE€ESIAx=1b
(b) Vv € F, 3¢ > 0 such that, for every A€[-e,c), 3x € S satisfying
Ax + Av = b.

Since F is a Hilbert space

®
(8) F = Range A + N(A ),
where N denotes null space, thus if (iii) does not hold

- ® -
(9) v €EN(A), v ¥ 0.
At the same time , (8) Implies, by (a), that
®

(10) bl N(A).

Let x be a solution of Ax + Av = b for some given \ > 0 (such x

exists by (b)). Now
- - - - - Rea =
0< A <v,v> = <y ,b-Ax> = <v,b>=<A v,x> = 0 by (9) and (10).

This contradiction shows that (iii) must hold whenever (7) is valid.

The regularity condition (7) is not easy to check, therefore we

introduce in the following lemma a much simpler one.

0
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Lemma 2. If (P) satisfies (i) (i1) and (ill), then condition (7) is

Implied by the following striot feas dbility assumption:

(11) 3x € intS satisfying Ax = b.
Proof. Let x satisfy (11). Note that, since S 1is convex and 1

intS ¥ @, IntS = coreS. Now x € coreS If and only If

; + Ax € S for all x and all A € [-¢ €] for some ¢ > 0. *

In particular

x 8 x4+ axiv) €58 VA € [-¢,¢)
where x(v) Is a solution of

Ax = v,

(That such a solution exists follows from the Irreducibility assumption.)

Further

b=Ax = b - A(Xx + Ax(v)) = b = AR + Mx(v) = 0 + Av.

The latter shows that for every v € F, there exist x satisfying

Ax + Av = b A € [-e,e] for some € >0,

0 € core(A(S)-b).
(]

We will summarize the results concerning the linearly constralned

problem (P) and its dual (D) in the following

Theorem | Consider problem (P) and assume that (i), (i1) and (ii1)

S— -
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inf (P) = max (D).

(2) Whenever min (P) = max (D), a necessary and sufficient conditions

* *
for a pair x €S, x €S tosolve (P) and (D), respectively, are

Axo = b and

*, % %
(12) x, € dh (A xo) g

Proof. Condition (11) Implies (7), by Lemma 2, and the latter implies
inf(P)" = max(D) by ihe above cited result [ 9 , p. 50]. The optimality
conditions (12) are the specialization of (6) to our special case.

Indeed, for g(<) = &(-|{b}) we have g*(') w <b,*> so that

29 (x) = (b} .

4.  CONJUGATES AND SUBGRADIENTS OF INTEGRAL FUNCTIONALS -

in
The duality theory presented in the previous section Is stated/terms

of the conjugate function of the objective function, and its subgradient.
in Problem (A) however, the objective function Is the integral fimotional
J(u). Therefore, we shall collect in this section results concerning the
computation of J* and 3J(+). For more details the reader is referred

to [10] and [ 1] .

Let C(T) be the vector space of continuous functions x: T + R with

the norm
Il = max{|x(t)|: t € T}.

We recall that the space M(T) of Section ! is the dual of €(T). Further




let

(a)
(b)

(c)

- 12 -

f: Tx R+ R be a function satisfying

vt €T, f(t,*) is l.s.c. proper convex function.
f(t,x) is measurable in t for all x € R and the (nonempty convex)
set

D(t) = {x € R: f(t,x) < =}

has a nonempty interior.
D(t) Is fully l.s.c. (see [10,p.457] this condition holds e.g. when

D(t) ‘does not depend on t. The latter is enough for our purposes).

Define the integral functional on C(T):

L = [ f(eae.

The conjugate of If is then, by definition

I*(u) = sup { J xdy - I f(t,x(t))de: x € (7))},
T T

The following result follows directly from (10 ]. We remark that

conditions (a) and (b) above imply that f(t,x) is, so-called, nommal

integrant.

Lemma 3 If f(t,x) is a summable function, for every x € R, and

satisfies (a), (b) and (c) then

(a)
(8)

I, Is well-defined, finite, continuous and convex function on C(T);

f
*

the conjugate of I. Is the function I': M(T) + R given by:

If*(t, %%») if u is absolutely continuous with respect

to dt
() = L]

L otherwise,

where f*(t.x*) Is the conjugate of f(t,*) evaluated at X (W]
— »




Next, one can derive from [10, Cor. 4B), the following formula

for computing the subgradient of 1I..

Lemma 4 Under the assumption of Lemma 3, and the following additional

assumpt ion

(d) {f(t,u(t) + x) is summable for all x in some neighbourhood
of zero,

it follows that u € 3If(u) if and only if almost everywhere (a.e.)

(14) %%-E af(t,u(t)) . almost everywhere (a.e)
Here 3f(t,u) is the subgradient of f(t,*) at wu. 0

5. A COMPLETE DUALITY THEORY FOR PROBLEM (A)
We return to the setting described in Section 1.

Consider the integral functional [: C(T) -+ R,
I(x) = [TC(t)ex(t)"dt‘

)x(t)"‘

The integrand f(t,x) = c(t clearly satisfies assumptions (a), (b)
and (d) of Section 4. (Recall that c(t) {s summable and positive.)

The conjugate of f(t,*) is by definition
e ) - sup (xx" = elt)e® ) .
x€ER

The sup can be easily computed by equating the derivative of the supremand

to zero, so one obtains
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*
x*log [?‘&T] if x* 20
* *
f (tyx) =

) otherwise

(we use the convention 0Olog 0 = 0).

It follows from Lemma 3 that

(A) I(x) is acontinuous convex functional

(8)

[ (u) = J(n)

where J(u) is the integral functional defined in Section (1).

The last relation immediately implies (see Section 2) that J is a

l.s.c. convex functional. Moreover, in regard of the continuity of I
*k
(15) ) = 1MW) = 1w
*
(16) dom J = C(T).

We further note that the adjoint of the linear transformation A of

, * om
Section 1 is the mapping A : R" +C(T)

* * m »
(xl....,xm)T + 'fIXIFi(t)'

We have now all the elements needed to specify the dual problem
of (A), as described in Section 3. In fact, problem (D) becomes here
m o«
z x‘F‘(t) -1
mo jm
(8) sup { £ x,0, - Jc(t)e dt},

tot 1 1 *

an unconstrained finite dimensional concave program. (The r'ation

A*x* € S* is here x*E R" since, by (16), Sﬂr « C(T), i.e. the whole space.)




T

The relations between the primal problem (A) and its dual (B) are

expressed in the following results.

Theorem 2 The supremum of Problem (B) is attained only if
3 positive (a.e.) rBm u, whose derivative u = %E
t
(17)
satisfies the linear equations (1).
Proof. Since (B) is an unconstrained problem, its supremum is

-% -%
attained (say at x ) only if x is a critical point of the supremand.

l.e. Xx is a solution of

IxF. (€)1
8, - Ic(t)F.(t)e gt dt = 0 i = 1,00.,m
] T ]

which, by the definition of the mapping A, is nothing else but
Au = 6
where W is the measure with

z;’;ri (t)-1

G- du
us gt c(t)e
Hence (17) is satisfied by u = u . m]
3
. Theorem 3. Problem (B) is bounded above if and only if Problem (A)

has a feasible solution.

Proof. The "if'' part follows from the weak duality relation

inf(A) @ sup(B). We proceed to prove the ''only if' part.
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Suppose that (A) has no feasible solution and consider the following

subset of R™

K={y € R™ y = Au  for some u € M(T) satisfying (3) } .

By our assumption then

(19) 0 ¢ K.

there
Since. K Is a closed convex cone, it follows from (19) that/exists
' which
a hyperplane, passing through the origin, |/ strictiy separates 6

and K. |.e.

2'y K0 Vy€K
32€R™, z¥0 such that {

z2'6 >0
or
z'(Au) <O Vu € M(T) satisfying (3)
{ z'e > 0
or
<A*z,u> <0 VYu € H(T) satisfying (3)
{ z'e >0
Now

* %
<A Z,u> = L(A z)du and the latter is non-positive for every

non-negative rBm only if

A*z S0 (a.e).

We conclude that
(20) 30 # z € R™ such that A*z <0 (a.e.) and z'6 > 0.
Note that Problem (B) is in fact

— RO —




*
(21) sxeu:m{x'e - Lc(t)eA x=14e l 3

Let z be the vector in (20), then, with
x = Mz (M positive scalar),

the objective function in (21) can be made arbitrary large by choosing

M large enough. O
Theorem 4 If Problem (A) is feasible then the infinimum is attained and
(22) min(A) = sup(B).

If Problem (A) is strictly feasible, i.e. (17) is satisfied, then

(23) min(A) = max(B).

™ it follows

* *
Proof. Since for Problem (A): S = C(T) and B = R
that condition (5') trivially holds and hence the conclusion (22).
Now, for Problem (A), the strict feasibility assumption (11) reduces to

(17) and so (23) follows from the first conclusion in Theorem | and (22).0

The last result gives the optimality conditions for the palr of dual

Problems (A) and (B).

Theorem 5. Let (A) be strictly feasible. Then u € M(T) and e
are optimal solution of (A) and (B), respectively, if and only if u

satisfies (1), (2), (3) and

- ZXF, (t) 1
(20)  Peclde ' (a.e.) .
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Proof. The optimality conditions expressed in the second part of

Theorem | are here: (i) feasibility of 4 and (ii)

g e

(25) et ) .

u(t)-ldt

Now, by (15), J*(u) = J(u) = J c(t)e so that, by Lemma (4),

T

(25) holds if and only if

26 Leaead) (o)

where (t,u) = c(t)eu-I whose subgradient simply coincideswith its

derivative. Hence (26) is equivalent to

du AR -1
*" c(t)e (a.e.)
which is just (24). (m]

6. THE CASE OF PROBABILITY MEASURES

In this section we study problems of type (A) with the additional

constraint

(27) [[uterae =y
T
in which ca.se u becomes a probability measure. Of course one can write
Fag(t) 21, 8 =1

m+1

and derive the following dual problem:




T

|
|
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LA *
z x‘Fi(t) + "mﬂ"
= f=1

m
(28)  sup { Zx 0, + xn,. - Lc(t)e : dt)
=1

an unconstrained problem in R"'”. However, one can derive the

following dual
mo 'Ex:Fi(t)
(8') sup { Z x;8, - log J c(t)e dt}.
i=1 T
an wfcons;:mincd prdlem in K'. To derive (8') from (28), one merely

*
maximizes the objective function In (28) with respect to x for

m+1
* *

fixed (x|.....xm) » which can be done by equating its derivative to zero.

The analytic solution thus obtained

Ex:F'(t)-l

Bise g -log Ic(t)e dt
T

Xt

is then substituted again in (28) and the result is indeed (B').

All the result of the previous section can be applied to the
present case. If, in condition (17), we add the requirement that u
satisfies (27), then Theorems 2,3, and 4 remain vallid. In Theorem §

the optimality condition (24) has to be replaced by

¥ Ty F, (t)
du _ c(t)e
dt

. (a.e.)

EQ?F‘(t)
Lc(t)e dt




7.  GENERALIZATIONS

The reason that the dual Problem (B) is wnoonstrained is that
s* & dom 4" = (1),
This in turn holds since
dom £'(t,*) = R ;
which'in £urn results from the fact that
(29) Rarge 2 f(t,x) = R.

Here f was the integrand f(x,t) = x log E%?T "

These observations lead to the following:

Proposition Consider a primal problem of the form

(30)  laf { Lf(t. B )ge: u satisties (1), (2), and (3))

And assume that f |Is a normal convex integrand, differentiable In x
for all t € T and satisfying (29). Then Problem (30) has the following

unconstrained dual:

m »
T x,F,(t))de} .

(31) supn {o'x" - L_f*(t. P

x*€ER

where

f(t,y) = yr(e.x") - f(e,F(e,x"))
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»
and where x = I'(t,x ) is a solution of the equation
*
= flt) = x" . D

If f(x,t) satisfies condition (a)-(d) of Section (4), then results
analogous to Theorems 4 and 5 are valid for the dual pair (30)-(31).

It is also easy to see from the proof of Theorem 3 that, If

\ “lim f*(t.y) <w
Y..-

then Problem (31) is bounded above if and only if, Problem (30) has a

feasible solution.

We finally remark that the constraints (1), can be replaced by

the more general constraint

[Tu(t)K(t.s)dt « b(s),

where b s an element of an Hilbert space. The generalization of

Theorems 2-5 to this case is straightforward.
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